
COMPARISON OF POLYNOMIAL CHAOS EXPANSION METHODS FOR
UNCERTAINTY QUANTIFICATION IN CFD SIMULATIONS
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ABSTRACT
Computational Fluid Dynamics (CFD) computer codes have

proven to be a powerful tool in the analysis of all kinds of fluid
systems. However, there is still a lack of practical methods for
determining the uncertainty of their results, as most current tech-
niques require performing too many simulations to be affordable
in industrial-scale situations. One of the most promising methods
for uncertainty quantification in computational fluid dynamics
is Polynomial Chaos Expansion, a name that includes a variety
of techniques, all based on the same mathematical background:
projecting the system’s response into a basis of orthogonal poly-
nomials. This paper discusses the main advantages and draw-
backs of three of these techniques, namely random sampling,
Gaussian quadrature and linear regression, in terms of reliability,
ease of use and computational costs. All three techniques were
applied to simulations of the turbulent mixing of two streams of
water inside a Y-shaped channel, and the results compared with
experimental data. Results show that, in this test case, quadra-
ture method provides more reliable results than the other two
techniques, with a lower computational cost. Due to its robust-
ness and low number of simulations required, Polynomial Chaos
Expansion via quadrature methods might be suitable for most in-
dustrial CFD simulations.

INTRODUCTION
Computational Fluid Dynamics (CFD) computer codes

enable researchers and engineers to simulate fluid systems
with great detail, and have become an important research and
design tool in many fields. However, as CFD codes became
more capable and popular, the question on how to determine
the uncertainty in the simulations raised. The development of
uncertainty quantification methods suitable for CFD simulations
is an area of active research, since most current techniques
require performing too many simulations to be affordable in
industrial-scale situations. One recent attempt to alleviate this
problem is the use of Polynomial Chaos Expansion (PCE)
methods, which, if properly implemented, can produce accurate
results from a limited number of simulations.

NOMENCLATURE

B [any] Orthogonal basis
d [-] Normalized distance between experimental points and

the uncertainty band
F [any] Generic integral
FOM [-] Figure of merit
f ,g [any] Arbitrary functions
I [-] Turbulence intensity
m [-] Number of simulations / Sample size
n [-] Number of uncertain parameters
N [-] Number of terms in the PC expansion
pi [any] Probability distribution function of the i-th parameter
q [-] Order of the PC expansion
~r [m] Position vector
R [any] System’s response
U [m/s] Mean velocity
u′ [m/s] RMS of velocity fluctuations
xxx [any] Vector of uncertain parameters
X [any] Generic region of integration
xi [any] i-th uncertain parameter

Special characters
αi [-] i-th coefficient of the PC expansion
δi j [-] Kronecker delta
λ [-] Parameter controlling the shape of the inlet velocity profile
µ [any] Mean system’s response
ωi [any] Weights of Gaussian quadrature
φi [any] i-th basis function
σ [any] Variance of the system’s response

The PCE foundational paper can be found in [1], while a
complete review of the different PCE techniques, along with
some applications to CFD simulations, is presented in [2], [3]
and [4].

PCE methods can be broadly classified into two distinct cat-
egories: (i) intrusive, which require modification of the CFD
code, and (ii) non-intrusive, which allow using CFD software
as a ‘black box’ with no need for modifications. Since modifica-
tion of the CFD code is often difficult, or even impossible in the
case of commercial software, intrusive methods are rarely used
in practice. For this reason, the present paper is limited to the
non-intrusive techniques.
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POLYNOMIAL CHAOS EXPANSION
PCE methods are based on projecting the system’s response

into an orthogonal basis of polynomials. Once all the expan-
sion’s coefficients are known, the mean and variance of the
response can be readily calculated.

Let R(xxx) be the system’s response, depending on xxx =
(x1,x2, ...,xn) uncertain parameters of the CFD simulation, such
as the velocity at the inlet or some fluid properties. All uncer-
tain parameters are assumed to be independent, with probability
distribution functions pi(xi). Also, let B = {φi(xxx)}∞

i=0 be an or-
thogonal basis in the L2 space, with inner product

〈 f g〉=
∫

X
f (xxx)g(xxx)p(xxx)dxxx (1)

The orthogonality condition implies that

〈φiφ j〉= 〈φ2
i 〉δi j (2)

where δi j is the Kronecker delta. Hence, the system’s response
can be expressed as a linear combination of the basis functions
[4]:

R(xxx) =
∞

∑
i=0

αiφi(xxx) (3)

In practice, this infinite series must be truncated at some order q.
The total number of terms in the expansion is then given by the
number of uncertain parameters, n, and the expansion order, q,
as shown in [4]:

N =
(n+q)!

n!q!
(4)

Thus, the expansion is written as [4]

R(xxx)≈
N−1

∑
i=0

αiφi(xxx) (5)

There are several methods for calculating the αi coefficients: (i)
spectral projection via random sampling, (ii) spectral projection
via quadrature and (iii) linear regression. The details of these
three methods are explained below.

The basis function must be selected such that they satisfy
the orthogonality property (2). In the case of of uncertain pa-
rameters with uniform distributions, multidimensional Legendre
polynomials must be used [5]. The uncertain parameters must
be properly scaled in the range [0,1].

Once the expansion’s coefficients are known, the mean and
variance of the system’s response can be obtained as follows.
Using the orthogonality property (2) and choosing the basis func-
tions such that φ0 = 1, we have that [3]

µ = α0 and σ
2 =

N−1

∑
i=1

α
2
i 〈φ2

i 〉 (6)

Spectral projection via random sampling
In this method, the αi coefficients are calculated using [4]:

αi =
〈Rφi〉
〈φ2

i 〉
(7)

In the above expression, the term 〈φ2
i 〉 can be readily obtained

evaluating the following integral:

〈φ2
i 〉=

∫
X

φ
2
i (xxx)p(xxx)dxxx (8)

The numerator in (7) is the expectation value of the product of
R(xxx) and φi(xxx). Hence, it can be approximated from a random
sample of xxx. If the sample size is m, then

〈Rφi〉 ≈
1
m

m

∑
j=1

R(xxx j)φi(xxx j) (9)

The main drawback of this method, as stressed in [4], is the large
number of simulation required to obtain converged results. Al-
though low-discrepancy sampling techniques, such as Latin Hy-
percube Sampling, can speed up convergence, the number of
simulations needed is still too high for most practical applica-
tions. On the other hand, the quantity of simulations is indepen-
dent from the number n of uncertain parameters. This can be
an important advantage in problems where n is large, since in all
other methods, namely quadrature and stochastic collocation, the
number of simulations increases rapidly with n.

Spectral projection via quadrature
In this case, the terms 〈Rφi〉 are obtained using numerical

methods to evaluate the following integral

〈Rφi〉=
∫

X
R(xxx)φi(xxx)p(xxx)dxxx (10)

An efficient method to calculate the above integral is Gaussian
quadrature [6]. This method provides an optimal evaluation of
integrals in the form

F =
∫

X
f (xxx)p(xxx)d(xxx) (11)
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by evaluating f (xxx) at m points, and expressing the value of the
integral as

F '
m

∑
j=1

ω j f (xxx j) (12)

where ω j are weights to be calculated. The evaluation points xxx j
are the roots of the orthogonal polynomials in X with weighting
function p(xxx). Conveniently, the values of ω j and xxx j for most
usual cases can be easily found in literature [7], so the evaluation
of the integral is straightforward. Gaussian quadrature is optimal
in the sense that equation (12) is exact if f (xxx) is a polynomial
of order up to 2m− 1. Hence, the more f (xxx) resembles a
polynomial of order 2m− 1 or below, the more accurate the
evaluation of the integral is.

Using the properties of Gaussian quadrature, it can be shown
that the minimum number of evaluation points (i. e., simulations)
needed to obtain good accuracy is [4]

m = (q+1)n (13)

As shown in the equation above, the minimum number of sim-
ulations grows exponentially with n. For this reason, Gaussian
quadrature is a convenient method for problems with a reduced
number of uncertain parameters, but impractical if the number is
moderately large. If dealing with high-dimensionality problems,
alternative quadrature methods based on sparse arrays, such as
Smolyak’s [8], significantly reduce the amount of simulations
required. However, applications of these techniques to CFD sim-
ulations are still scarce [9].

Linear regression
In this approach, the expansion coefficients are calculated

from m simulations, solving the following system


φ0(xxx1) φ1(xxx1) · · · φN−1(xxx1)
φ0(xxx2) φ1(xxx2) · · · φN−1(xxx2)

...
...

. . .
...

φ0(xxxm) φ1(xxxm) · · · φN−1(xxxm)




α0
α0
...

αN−1

=


R(xxx1)
R(xxx2)

...
R(xxxm)

 (14)

At least m = (n+q)!/(n!q!) simulations are needed to solve the
equations. However, some authors recommend using twice this
number in order to increase the robustness of the results [10]. In
that case, the system will be overdetermined and can be solved
using linear regression methods.

Simulation points can be selected in several ways, such as (i)
random or Latin Hypercube Sampling [3], (ii) regular sampling
[11] or (iii) according to the roots of some orthogonal polynomi-
als, as in Gaussian quadrature [12].

EXPERIMENTAL SETUP
The experimental data was obtained from the work by Badillo

et al.[11], performed at the GEMIX facility. Two identical
streams of water were injected thorugh the legs of a Y-shaped
channel (Figure 1). Several sensors located along the channel
measured the velocity, turbulence kinetic energy and concentra-
tion profiles at various planes normal to the stream flow.

50 mm

50
 m

m

600 mm
100 mm

x

y

z

Figure 1. Geometry of the GEMIX experiment.

Water was injected at 23◦C, at a rate of 1 kg/s in each leg.
Before entering the channel, water passed through honeycombs
and a series of grids to reduce turbulence and favor a uniform
velocity profile. The angle between the two legs was 3◦. The ve-
locity and turbulent kinetic energy profiles were measured using
Particle Image Velocimetry, while concentration was measured
using Laser Induced Fluorescence. The experimental measure-
ments were performed along 2 vertical profiles, located at the
central plane of the channel, at x = 70 mm and x = 450 mm.

SIMULATION CONDITIONS
Simulations were performed using the Shear Stress Transport

(SST) turbulence model of ANSYS CFX 15.0. Although for
turbulent mixing processes, Large Eddy Simulation (LES)
turbulence models might be more suitable than Reynolds
Averaged Navier-Stokes (RANS) models, such as the SST, the
high computational cost of LES makes RANS more suitable for
industrial simulations.

Simulations were carried out in accordance with best practice
guidelines [13] in order to ensure robust results . In particular,
independence from the mesh, numerical precision and conver-
gence criteria used was verified.

The mesh was composed of 210000 rectangular prisms, and
was refined close to the walls and horizontal mid-plane. A mass
flow rate of 1 kg/s was imposed at each leg’s inlet, while a 0 Pa
relative pressure was set at the outlet. The convergence criteria
were normalized root mean square residuals below 10−5 for the
conservation equations and global mass, momentum and energy
imbalances below 0.1%. All the remaining options were set as
default.

UNCERTAINTY QUANTIFICATION
Two uncertain parameters were considered: turbulence inten-

sity at the inlet (I) and a parameter controlling the shape of the

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

485



inlet velocity profile (λ). Turbulence intensity is defined as usual

I =
u′

U
(15)

where U is the mean velocity and u′ the root mean square of
velocity fluctuations. The definition of the inlet velocity profile
was taken from [11]:

u(~r) =
(

λ

ud(~r)
− 1−λ

uu

)−1

(16)

being ud and uu the fully developed and uniform velocity
profiles. The developed profile was obtained from a previous
CFD simulation, allowing the flow to develop until a stable
regime was attained. The above expression shows that, for
λ = 0, we have a uniform velocity profile at the inlet, while for
λ = 1, the profile is fully developed. Hence, λ determines the
shape of the velocity profile at the inlet.

The range of the uncertain parameters was [1%,10%] for the
turbulence intensity and [0,1] for λ. A uniform distribution was
assigned to each uncertain parameter.

RESULTS AND DISCUSSION
Due to space limitations, we will limit the discussion of the

results to the velocity profile at x = 450 mm. However, similar
results were obtained for the rest of variables and locations.

The results produced by each of the three PCE methods (i. e.,
random sampling, quadrature and linear regression) are shown
in Figures 2–4, together with the number of simulations used.
All PC expansions were truncated at first order.

Random sampling
This method required a large amount of simulations (90 in

the example of Figure 2) to obtain reasonable results. Even with
90 simulations, convergence was not achieved, and results were
highly dependent on the sampled values of the uncertain param-
eters. Moreover, as displayed in Figure 2, the uncertainty band
was too wide for this method to be useful in practical engineering
problems.

Gaussian quadrature
Gaussian quadrature required only 4 simulations to produce

a realistic uncertainty band. As Figure 3 shows, the uncertainty
band is significantly thinner than that obtained with the random
sampling method, but still contains most of the experimental
points.

Linear regression
The linear regression technique was applied to a regular grid

of 4 points. Results (Figure 4) show that the fraction of exper-
imental points inside the uncertainty band is smaller than when

Gaussian quadrature was used, despite the two bands being of
approximately equal width.

Experiment

Simulation
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Figure 2. Velocity profile calculated via random sampling
from 90 simulations. Shaded area indicates ±2σ uncertainty
band.
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Figure 3. Velocity profile obtained using Gaussian quadrature
with 4 simulations. Shaded area indicates±2σ uncertainty band.
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Figure 4. Velocity profile obtained with the linear regression
method using 4 simulations. Shaded area indicates ±2σ uncer-
tainty band.

Comparison of the methods
In order to facilitate a quantitative comparison of the three

PCE methods discussed above, two issues were considered.
First, how close the experimental points were to the uncertainty
band; second, how wide the uncertainty band was. The ideal
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method would be one that produces a narrow uncertainty band,
still containing all the experimental points inside. To address the
first issue, the following figure of merit (FOM) was defined:

FOM = 1−d (17)

where d is the average distance between the experimental points
and the ±2σ band, normalized such that d ∈ [0,1]. If one point
lies inside the band, d = 0 for that point. Hence, FOM = 1 if
all points are inside the band, and FOM→ 0 as the points move
away from it. The width of the uncertainty band was measured
using its area, normalized in the range [0,1].

Figures 5 and 6 display the FOM and area of the uncertainty
band obtained with each PCE method. The random sampling
technique achieved a higher FOM than the other two methods,
but at the cost of an uncertainty band several times wider. The
excessive width of the uncertainty band renders random sam-
pling useless for most engineering applications, unless a large
quantity of simulations is used. With respect to the other two
PCE methods, Gaussian quadrature provided a higher FOM than
linear regression, with approximately the same uncertainty area.
The advantages of Gaussian quadrature over linear regression are
better appreciated when few simulation are used.
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Figure 5. Figure of merit obtained with each PCE method.
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Figure 6. Normalized area of the ±2σ uncertainty band pro-
duced by each PCE method.

CONCLUSIONS
From all the three PCE methods discussed in this paper,

Gaussian quadrature provided the best results from an engineer-
ing standpoint, since with as few as 4 simulations, it produced a
relatively narrow uncertainty band containing most of the experi-
mental points. Moreover, the solid mathematical principles upon
which Gaussian quadrature stands, guarantee reliable results as
long as the system’s response can be accurately approximated
by a polynomial of sufficient order. This condition is rather
general, and can be easily satisfied in most practical situations.

On the other hand, the criteria for selecting the simulation
points in the linear regression method, using either regular grids
or random sampling, have no solid mathematical justification,
and can inadvertently lead to erroneous results if the simulation
points do not capture the full behavior of the system’s response.

Finally, the random sampling method requires too many
simulations to obtain accurate results, being of little use for
industrial applications, where CFD simulations are usually very
time-consuming. The only situation where randon sampling
might offer some advantage is in problems with a large amount
of uncertain parameters, as in the other two PCE methods, the
number of simulations rapidly grows with n.

The results of this work reveal the ability of PCE via Gaussian
quadrature to provide an accurate estimation of the uncertainty in
CFD simulations, while keeping the computational costs suffi-
ciently low to be feasible even in complex problems. However, it
is important to remark that no uncertainty quantification method
is able to include the uncertainty associated with the hypothe-
sis and simplifications of the CFD model [13]. This limitation
should be considered in cases where model uncertainty domi-
nates over other sources of uncertainty, such as input data and
discretization and numerical errors.
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