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ABSTRACT

In this paper the response of the laminar boundary layer on a

flat plate to arbitrary translation were investigated numerically. It

was found that accelerating velocity profiles have steeper gradi-

ents in the near wall region and a lightly thicker boundary layer

when compared to steady state results ([3],[15]). The gradient

were proportional to the acceleration parameter. Decelerating ve-

locity profiles indicated that flow reversal took place. This rever-

sal was proportional to the deceleration. The boundary layer was

thinner than calculated in the steady state case. Three types of re-

sponses of the boundary layer to changing conditions in the rela-

tive frame velocity have been identified; Response Type I which

is viscous dominant, Response Type II where certain regions in

the boundary layer are dominated by viscosity and other regions

by momentum and Response Type III which is dominated by

momentum.

INTRODUCTION

In this paper the response of the laminar boundary layer on a

flat plate in arbitrary translation is investigated. This is done us-

ing a non-inertial approach as mathematically described for ro-

tation cases in [5]. Formulations of the non-inertial conservation

of momentum equation is available from literature [2], [10], [19].

Non-inertial studies mostly focussed on turbo-machinery, wind

turbines and other studies that involves rotation [4], [13], [12].

A method was proposed by Kageyama and Hyodo [12] to derive

the Coriolis force in the momentum equation using and Eule-

rian approach. While it only concerned incompressible flow in

constant rotation, the approach was mathematically rigorous and

was adapted in Combrinck et.al.[6] to account for the full aero-

ballistic range of motion - acceleration in six degrees of freedom.

The set of Navier-Stokes equations that was formulated with this

approach, were implemented in an numerical code and is used

in this analysis. Two studies that bear specific relevance to this

work is Mager [14] and [1]. These are used as benchmarks for

the observed boundary layer behaviour.

NOMENCLATURE

e Internal energy
h Enthalpy
k Heat transfer coefficient
p Pressure
ru Gas Constant
t Time
u Velocity in the x-direction
u Velocity vector
x Displacement in the x-direction
x Position vector
Cp Specific heat at constant pressure
I Identity matrix
Mw Molecular Weight
Pr Prandtl Number
R Universal gas constant
T Temperature
V Velocity vector
X Position vector

Special Characters
κ Thermal conductivity
λ Second viscosity
µ Dynamic viscosity
ν Kinematic viscosity
ρ Density
φ Viscous dissipation term
ψ Specific pressure

p
ρ

Ω Rotational speed around the z-axis
ΩΩΩ Rotational speed vector
∇ Del operator

Subscripts and Superscripts

s Static conditions
t Total conditions

THEORETICAL FORMULATION

Assumptions

The following assumptions were made with regards to the

flow field in this analysis:

• The flow can be completely described in the non-inertial ref-

erence frame.

• The fluid is Newtonian i.e. the viscous stresses in the fluid

is linearly proportional to the strain rate.

• The ideal gas law is an appropriate equation of state to utilize

at a closure model.

• The compressible form of the governing equations accu-

rately describes the flow.

• The flow is well within the laminar regime, no turbulence
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models are employed.

• Viscous dissipation terms, φ̂, in the energy equation can be

neglected since this is a laminar case and the dissipation

term is associated with turbulent behaviour.

• The bulk viscosity is zero, as per Stokes Law.

• Heat conduction is described by Fouriers Law.

Governing Equations

The governing equations used in the analysis was derived in

[6]. The conservation of mass equation made use of the formu-

lation:

∂ρ̂

∂t
+ ∇̂ · ρ̂û = 0 (1)

The non-inertial energy equation was shown in [5] to have no

non-inertial term, this was confirmed in [6].

∂ρ̂ê

∂t
+(∇̂ · ρ̂êû) =− p̂(∇̂ · û)+ ∇̂ · (k̂∇̂T̂ )+ φ̂ (2)

The non-inertial momentum equation for fully arbitrary flow

was implemented as follow:

∂ρ̂û

∂t
+ ∇̂ · (ρ̂û⊗ û)− ∇̂ · [µ̂(∇̂û+ ∇̂ûT )+ λ̂(∇̂ · û)Î]

+
∂

∂t
(ρV(t))

︸ ︷︷ ︸

Translation

−ρx̂∧ Ω̇ΩΩ
︸ ︷︷ ︸

Euler

−2ρû∧ΩΩΩ
︸ ︷︷ ︸

Coriolis

+ρx̂∧ΩΩΩ∧ΩΩΩ
︸ ︷︷ ︸

Centrifugal

−2ρV(t)∧ΩΩΩ
︸ ︷︷ ︸

Magnus

=−∇̂p̂

(3)

Closure Models

The system of governing equations above requires additional

equation to obtain a unique solution. An equation of state, trans-

port model and thermodynamic model is required to ensure that

for the number of unknowns, there are the same number of equa-

tions.

The equation of state used in this case is the ideal gas law. This

relates the pressure to the density, gas constant and temperature

of the fluid.

p = ρRT (4)

The transport model makes use the equation below, where the

Prandtl number is expressed as a ratio of viscous diffusion rate

over the thermal diffusion rate:

Pr =
Cpµ

κ
(5)

In this implementation either the internal energy or enthalpy

can be used to determine the temperature profile in the fluid. The

enthalpy is a function of internal energy and pressure. This equa-

tion can be re-written to make the internal energy the subject of

the equation. The known quantities in the flow is then used to

model the internal energy.

es = hs −
p

ρ

=
∫ T

T0

CpT −
ruT0

Mw

(6)

The total enthalpy can also be expressed as the sum of the

static enthalpy and the enthalpy of the dynamic pressure ([17]).

The static enthalpy is replaced with known quantities in the flow,

and the equation becomes:

ht =
∫ T

T0

CpdT +0.5U ·U (7)

CASE DESCRIPTION

Analysis Overview

The accelerating cases were initialized from a steady state

solution at 10 m/s (Re = 3.5 × 104) and accelerated to a free

stream velocity of 80 m/s (Re = 2.81 × 105). This was be

done at for five cases each at acceleration speeds from 70g to

700000g with increasing orders of 10. The decelerating cases

were initialized from a steady state solution of 80 m/s (Re =

2.81× 105) and decelerated to 10 m/s (Re = 3.5× 104) for five

cases with varying constant decelerations from 70g to 700000g

with increasing orders of 10.

The flow conditions were select to ensure that the fluid remains

well within the laminar regime. To this effect the Reynolds

number for a flat plate in translation must be below 300 000 ([7]).

The steady state boundary layer, in both the inertial and non-

inertial frames, is depicted in Figure .

Figure 1. Graphical Representation of the Boundary Layer on

a Flat Plate

In the inertial frame the plate is in motion with a velocity

U in the negative x-direction. In the near-wall region the

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

129



boundary layer assumes an absolute velocity of U in the

negative x-direction - the velocity at which the plate is mov-

ing. In the far field the absolute velocity approaches zero.

In the non-inertial frame the perspective of the observer has

changed; the plate is stationary and the fluid is in motion. In

the near-wall region the fluid velocity approaches zero on the

no-slip wall and in the far field the fluid velocity approaches

U - the relative velocity of the moving plate. The difference

between the two frames is best described as: in the non-inertial

frame the plate is stationary and the fluid is in motion, while in

the inertial frame the plate is in motion and the fluid is stationary.

Computational Domains

Computational grids are required with a sufficient amount of

cells in the near-wall viscous region. It is good practise to design

a grid to have at least 15 cells in the boundary layer region and for

the first dimensionless cell node height to be in order of y+ = 1

([9]). The approximate boundary layer height was calculated.

The estimated boundary region was populated with 50 cells with

a first celll height of 2.6E-4 mm. The computational domain is

described in Figure . The grid have been designed and tested to

ensure grid independence (Figure 3).

Figure 2. Computational Domain for Translating Plate Case

Figure 3. Grid Independence Study Results

Boundary Specification

The boundary condition locations for the flat plate is graphi-

cally represented in Figure 4. A specialized boundary condition

was implemented on the far field velocity to ensure conservation

on the non-inertial velocity field. The boundary conditions speci-

fies the far field inertial velocity, which is stationary, and the code

calculates the relevant non-inertial velocity using the prescribed

motion of the moving frame. The flow conditions was select to

ensure that the fluid remains laminar. To this effect the Reynolds

number for a flat plate in translation must be below 300 000 ([7]).

Figure 4. Graphical Representation of Translating Plate

Boundary Condition

Numerical Method

The analysis were done in OpenFOAM r([16]). It is a

C++ toolbox that provides a platform for the development of

customized numerical solvers related to continuum mechanics

problems using the finite volume method. It is released under

the Open Source Software GNU General Public License ([11]).

Time integration was done using the implicit Euler method

([9],[18]). In the steady state solutions the Courant number was

kept below 0.9. In the accelerating and decelerating cases a con-

stant time step were used since time accurate results are required.

Discretization of the divergence terms were done using

Gausss theorem ([9],[18]) with a total variate diminishing

scheme. The gradient and laplacian term terms were both dis-

cretised with Gausss theorem and a central differencing scheme

([9],[18]).

VALIDATION

The laminar, two dimensional, flat plate was used as a vali-

dation case. This case tested the functionality of the developed

solver. The boundary layer on a flat plate is self-similar which

means that along the plate the shape of the velocity distribution

differs in scale but the form of the profile remains the same. The

profile shape is also similar between the non-inertial and inertial

frames, with the exception of directionality (Figure ).

The laminar flat plate is a classic problem in Fluid Mechanics

for which a similarity solution was developed by [3]. In a similar

manner [15] derived a solution for laminar compressible bound-
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ary layer. Numerical simulations for steady state conditions were

conducted for free stream velocities of 10 m/s and 80 m/s. The

simulation results were compared against the solutions of [3] and

[15] (Figure 4 and Figure 5). The results indicated that the simu-

lated results compares well with the analytical solution.This will

be used as initial conditions from which acceleration or deceler-

ation of the flow will be analysed.

Figure 5. Steady State Solution at 10 m/s

Figure 6. Steady State Solution at 10 m/s

Responses to Acceleration

Results

The accelerating flow analysis was done for the laminar flat

plate. The flow was accelerated from a fully converged, steady

state solution at 10 m/s to a final velocity of 80 m/s. The ac-

celeration was from 70 g to 70000 g at increasing orders of 10.

Comparisons were drawn between the non-dimensional velocity

profiles at common free stream velocities for different accelera-

tions. The results are indicated in three grouping in Figure 18,

Figure 19 and Figure 20.

Sample results that are representative of the boundary layer

responses are shown for explanation purposes in Figure 7 and

Figure 8.

Figure 7. Sample results and observations for the lower accel-

eration cases

In Figure 7 it is shown that the 70 g acceleration case remains

very close to the steady state results. In the near-wall region

the velocity gradient is maintained at steady state values. The

boundary layer thickness is the same. In Figure 18 it is seen that

the profile deviated from the steady state conditions in the middle

boundary layer region between free stream values of 17 m/s and

24 m/s, but by 38 m/s the deviations subsided and a steady profile

was resumed. The diffusion term dominates the 70 g acceleration

case to maintain near steady state conditions.

The 700 g acceleration case maintains the steady state profiles

in the near-wall regions, but deviates as the flow approaches the

free stream conditions in the far field (Figure 7). This leads to

a thicker boundary layer than the steady state. This response is

a combination of the diffusion term dominating in the near-wall

region and the material derivative dominating in the far field.

The higher acceleration cases (> 1000 g) is characterised

by an increased velocity gradient in the near wall region result-

ing in a higher wall shear stress (Figure 8 ). This increase in

near-wall velocity gradient is directly proportional to the accel-

eration - higher acceleration causes higher wall shear stresses.

The boundary layer is thicker than in the steady state conditions.

The flow in all regions is dominated by the momentum of the

acceleration.

Figure 8. Sample results and observations for the higher accel-

eration cases
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The observed behaviour is better understood in the inertial

frame. In this frame the flat plate is initially in a fully developed

steady state condition. The plate is moving but the far field flow

is standing still. The velocity profile will have an identical shape

to the velocity profile in the non-inertial frame, but the veloc-

ity at the wall will have the value of the non-inertial free stream

value and the free stream in the inertial frame will be zero. As

the plate accelerates the velocity at the wall will increase rapidly,

and since it is not steady motion the velocity gradient near the

wall will become steeper. The velocity in the free stream will

however remain at zero. The thickening of the boundary layer

occurs due to the momentum effects dominating the viscous ef-

fect and due to the time scale of the event being too high for the

viscous effects to dominate and adjust the boundary layer flow in

the changing conditions to assume the steady state profile. In the

next section this mechanism will be explained mathematically.

Interpretation

The observed results can be interpreted using the boundary

layer equations derived in [6]. All terms associated with rotation

and translational acceleration in the y-direction is removed from

the equation, resulting in the following set of boundary layer

equations:

x-momentum

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+

∂

∂ŷ
µ̂

∂û

∂ŷ
−

∂ρ̂Vx

∂t
(8)

y-momentum

0 =−
∂ p̂

∂ŷ
(9)

The equation set above is responsible for the observed be-

haviour and from this a mechanism can be devised to explain

the boundary layer response (Figure 9).

Figure 9. Boundary layer profiles for steady and accelerating

conditions

The prescribed frame velocity, here acting in the negative x-

direction, acts as a source of momentum. An increase in this term

on the right hand side of the momentum equation, will result in

an overall increase in the material derivative on the left hand side

of the equation.

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+

∂

∂ŷ
µ̂

∂û

∂ŷ
−

∂ρ̂Vx

∂t

An increase in the material derivative results in an increase in

û, which in term will result in an increase in the wall velocity gra-

dient (Figure 10) which is the observed effect in the accelerating

boundary layer profile.

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+

∂

∂ŷ
µ̂ ∂û

∂ŷ
−

∂ρ̂Vx

∂t

Figure 10. Increased wall velocity gradient for accelerating

conditions

The strength of this mechanism is dependant on the magni-

tude of the frame acceleration. Hence, three distinct acceleration

regions are identified in the translation case (Figure 11) as ex-

plained on the next page:

• Region I - Viscous Dominant. The 70 g case falls within

this region. There is almost no divergence from the steady

state non-dimensional result[15] which is used here for illus-

trative purposes. The viscous effects dominate the boundary

layer flow and any disturbances in the boundary layer is neu-

tralized by the viscous forces. This can be seen the Grouping

I (Fig. 18) results at 20.5 m/s where the disturbance occurs,

the upstream propagation at 24 m/s. At Grouping II (Fig.

19) 38 m/s the disturbance has been dissipated and the pro-

file is on the steady state baseline again. In this region the

rate of change in properties is small enough to allow the flow

the adjust to steady state conditions. The induced momen-

tum effects, due to acceleration, is not high enough to result

in changes in the boundary layer properties.

Acceleration Response - Type I:
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Figure 11. Acceleration Response Regions by Type in Simula-

tion Results

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+ ∂

∂ŷ
µ̂ ∂û

∂ŷ
−

∂ρ̂Vx

∂t

• Region II - Viscous-Momentum Interaction. In the fluids

world there is always a competition between viscous and

momentum effects. The effects can’t be in balance - one

must dominate. In this region the viscous and momentum

forces are of comparable order and causes disturbance of the

boundary layer. The 700 g case falls within this region. The

region (for this specific case) extends from approximately

500 g - 1100 g. It is characterized by unsteady disturbance

propagation in the boundary layer.

Acceleration Response - Type II:

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+ ∂

∂ŷ
µ̂ ∂û

∂ŷ
−

∂ρ̂Vx

∂t

• Region III - Momentum Dominant. The three higher ac-

celeration cases falls within this region - 7000 g, 70000 g

and 700000 g. The region is characterized by a sharp in-

crease in the near-wall velocity gradient that is directly pro-

portional to the acceleration. The boundary layer velocity

profile resembles that of a fully developed, turbulent profile

with the steep gradient that becomes almost parallel with the

free stream in the regions close to the boundary layer edge.

An increase in boundary layer height is observed. There are

definite similarities between the various profiles that can be

further investigated. The general form of the profiles are

comparable with similar studies in literature [1], [14].

Acceleration Response - Type III:

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+

∂

∂ŷ
µ̂

∂û

∂ŷ
−

∂ρ̂Vx

∂t

Responses to Deceleration

0.1 Results

The flow was decelerated from a fully converged, steady state

solution at 80 m/s to a final velocity of 10 m/s. The deceleration

parameter was from 70 g to 70000 g at increasing orders of 10.

Comparisons were drawn between the non-dimensional velocity

profiles at common free stream velocities for different deceler-

ations. The results are shown in three grouping in Figure 21 ,

Figure 22 and Figure 23.

Sample results that are representative of the boundary layer

responses are shown for explanation purpose in Figure 7 and Fig-

ure 8.

The 70 g deceleration case remains equal to steady state con-

ditions for the greatest part of the simulations Figure 12 . There

is a slight difference in the near-wall region, but the flow is con-

sidered to be marginally dominated by the viscosity.

Figure 12. Sample results and observations for the lower de-

celeration cases

Separation is observed in the near-wall region of the 700 g

case (Figure 12). In the far field the boundary layer is slightly

thinner, but not to such a extend that the flow is fully dominated

by the momentum.

In the higher deceleration cases separation is prevalent and

the effect becomes increased with increasing deceleration (Fig-

ure 13). The boundary layer is significant thinner than the steady

state as the flow is dominated by the increased momentum.

The result in this section are comparable with a study done

by [1]. He obtained similar profiles by investigating the effect of

inducing pressure changes in the boundary layer. In the Navier-

Stokes equations, changes in acceleration will have a similar ef-

fect on the boundary layer since it is also located on the right

hand side of the equation. Again the phenomenon can be best ex-

plained in the inertial frame. The plate wall has a certain velocity

and the bulk flow is stationary. The velocity profile will extend
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Figure 13. Sample results and observations for the higher de-

celeration cases

from the high velocity to zero. Now the plate is decelerated, for

arguments sake let say from 80 m/s to 70 m/s. The velocity at the

wall will now be 70 m/s, but due to the historic profile at 80 m/s

there is a certain amount of momentum and energy in the bound-

ary layer. This momentum and energy must go somewhere, it can

not just disappear. If the acceleration is low enough the boundary

layer will have time to adjust to the changing conditions and the

”excess” momentum and energy will diffuse into the bulk flow.

However, if the acceleration is high enough there is not time for

diffusion to take place and the boundary layer has no option but

to separate.

Interpretation

The observed results can be interpreted using the boundary

layer equations derived in [6]. x-momentum

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+

∂

∂ŷ
µ̂

∂û

∂ŷ
−

∂ρ̂Vx

∂t
(10)

y-momentum

0 =−
∂ p̂

∂ŷ
(11)

In this case however, the acceleration terms on the right hand

side of the equation becomes a sink which causes the separation

of the flow (Equation 14).

The deceleration of the relative frame causes a momentum

sink on the right hand side of the momentum equation. This leads

to a decrease on the left hand side in the material derivative.

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+

∂

∂ŷ
µ̂

∂û

∂ŷ
−

∂ρ̂Vx

∂t

The decrease of the material derivative lead to a decrease in

û, which in turn causes a decrease in the velocity gradient at the

wall.

Figure 14. Boundary layer profiles for steady and deceleration

conditions

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+

∂

∂ŷ
µ̂ ∂û

∂ŷ
−

∂ρ̂Vx

∂t

A decrease in the near-wall velocity gradient causes and in-

crease in the pressure gradient, since the terms have opposite

signs. The pressure gradient increases to such an extent that an

adverse pressure gradient forms and the flow separates.

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂
∂x̂

+
∂

∂ŷ
µ̂ ∂û

∂ŷ
−

∂ρ̂Vx

∂t

Figure 15. Adverse pressure gradient for decelerating condi-

tions

The same three distinct regions that were identified in the ac-

celerating case, presented itself here Figure 16:

• Region I - Viscous Dominant. The 70 g case falls within

this region. In comparison with the steady state non-

dimensional result, there is no observed difference in the

profile. The time scale at which the event occurs is low

enough to allow time for the viscous forces in the bound-

ary layer to adjust to the changes and keep the steady state

profile.

Deceleration Reaction - Type I:

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+ ∂

∂ŷ
µ̂ ∂û

∂ŷ
−

∂ρ̂Vx

∂t
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• Region II - Viscous-Momentum Interaction. The 700 g

deceleration case falls within this region. The region is char-

acterized by disturbances in the boundary layer due to the in-

teraction between the viscous and momentum effects. Sepa-

ration of the boundary layer occurs almost immediately and

are directly proportional to the acceleration. In the near-wall

regions the momentum effects dominates, while the close to

the boundary layer edge, the viscous effects dominate. In

the upper regions of the boundary layer the profile conforms

to the steady state result.

Deceleration Response - Type II:

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+ ∂

∂ŷ
µ̂ ∂û

∂ŷ
−

∂ρ̂Vx

∂t

• Region III - Momentum Dominant. The three higher ac-

celeration cases falls within this region. The momentum

effects due to acceleration dominates here. Separation oc-

curs very early and the boundary layer remains separated

thought out the plate. The velocity gradient close to the wall

is very steep and directly proportional to the acceleration.

The boundary layer height is decreased with almost the same

distance for all the cases in this region. Similarity, that will

depend on the time scales involved, is present in the region.

Deceleration Response - Type III:

∂ρ̂û

∂t
+ û

∂ρ̂û

∂x̂
+ v̂

∂ρ̂û

∂ŷ
=−

∂ p̂

∂x̂
+

∂

∂ŷ
µ̂

∂û

∂ŷ
−

∂ρ̂Vx

∂t

Figure 16. Acceleration Response Regions by Type in Simula-

tion Results

CONCLUSION

The aim of this work was to characterize the response of the

laminar boundary layer to arbitrary translations. Three types of

responses have been identified:

• Response Type I, which is viscous dominant. The time scale

at which the event occurs is low enough to allow time for the

viscous forces in the boundary layer to adjust to the changes

and keep the steady state profile.

• Response Type II, which is certain regions in the bound-

ary layer are dominated by viscosity and other regions by

momentum. In acceleration the viscosity dominates in the

near-wall region and momentum in the far field regions. In

deceleration momentum dominates in the near-wall region

and viscosity in the far field.

• Response Type III, which is dominated by momentum. The

time scale at which the event occurs is too high for vis-

cous forces in the boundary layer to adjust to the changes

and keep the steady state profile. In acceleration the near-

wall velocity profile increases with increasing acceleration.

In deceleration separation occurs at a result of momentum

changes in the flow.

In conclusion Figure 16 is presented to depict the variability in

the boundary layer profiles for different initial and acceleration

conditions. The flow history has an influence on the boundary

layer behaviour and must be considered in aerodynamic studies.

Figure 17. Variability in boundary layer profiles for different

starting and acceleration conditions
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Appendix A: Acceleration and Deceleration Figures

Figure 18. Non-Dimensional Velocity Profiles: Translating

Flat Plate - Acceleration Grouping I

Figure 19. Non-Dimensional Velocity Profiles: Translating

Flat Plate - Acceleration Grouping II
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Figure 20. Non-Dimensional Velocity Profiles: Translating

Flat Plate - Acceleration Grouping III

Figure 21. Non-Dimensional Velocity Profiles: Translating

Flat Plate - Deceleration Grouping I

Figure 22. Non-Dimensional Velocity Profiles: Translating

Flat Plate - Deceleration Grouping II

Figure 23. Non-Dimensional Velocity Profiles: Translating

Flat Plate - Deceleration Grouping III
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