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ABSTRACT 

 

The Fourier law of heat conduction is unable to describe the 

phenomena such as self-heating of micro-electronics, situations 

involving very low temperature near to absolute zero, heat 

transport in living tissues and heat sources like laser heating. The 

dual phase lag (DPL) heat conduction model is found to be more 
useful to describe these phenomena. Several analytical solutions 

of 1D single layer to multiple layer (composite material) DPL 

heat conduction problems for mixed boundary conditions (BCs) 

are obtained by representing the BCs with Newton’s law of 

cooling combined with Fourier law of heat conduction. 

However, this is contradictory to the assumption of non-

applicability of Fourier law of heat conduction in the DPL heat 

conduction model. In the present work it is shown that several 

approaches such as separation of variables (SOV), finite integral 

transform (FIT) and orthogonal eigenfunction expansion method 

(OEEM) are not applicable if BCs are consistent with DPL heat 
conduction model assumptions. Moreover, such methods are 

also not applicable in cases of heat conduction in multiple layer 

composite material. Since, only in the case of Dirichlet type BCs 

and single layer material such discrepancy is not present hence, 

the above mentioned approaches can be applied to obtain 

analytical solutions. It is also shown that the Laplace transform 

(LT) can be successfully used to obtain analytical solutions of 

single as well as multiple layer DPL heat conduction problems 

with generalized BCs when Taylor series expansion of the phase 

lag operator is taken into consideration. 

NOMENCLATURE 
 

A(s) [-] Coefficient matrix in Eqn. (41) 

A, B, C [-] Confidents to describe boundary conditions 

C(s) [-] Coefficient matrix of the solution of Eqn. (39) 

CP [Jkg-1K-1] Thermal capacity or specific heat 

D(s) [-] Inhomogeneous component matrix in Eqn. (41) 

𝑓̅(𝑠) [-] Laplace transform of a function in s-space 

𝑓(𝑡) [-] Function of time 

𝑓(0) [-] Function of time at t = 0 

g [Jm-3] Volumetric heat source 

I0 [-] Modified Bessel function of first kind (zeroth order) 

k [Wm-1K-1] Thermal conductivity 

K0 [-] Modified Bessel function of 2nd kind (zeroth order) 

L [-] Symbol for Laplace transform 

M [-] Number of layers 

p [0, 1, 2] Index for coordinate system 

q" [Wm-3] Heat flux 

r [m] Distance or radius 

t [s] Time  

T [K] Temperature 

T0 [K] Initial temperature 

 

Special characters 

α [m2s-1] Thermal diffusivity 

∇ ∙ [-] Gradient 
д [-] Partial derivative 

ρ [kgm-3] Mass density 

τq [s] Relaxation time for heat flux 

τT [s] Relaxation time for temperature gradient 

ω [-] Frequency defined in Eqn. (39) 

 

Subscripts and superscripts 

i  Index for layer 

in  Inner surface of 1st layer 

n  Term in a series or derivative 

out  Outer surface of Mth layer 

s  Laplace transform variable 

INTRODUCTION 
 

The application of dual phase lag (DPL) heat conduction is 

of great importance due to various applications where Fourier 

heat conduction is not valid [1]–[7]. The generalized non-Fourier 

heat model (specially DPL) is given by Tzou [8] and it is capable 

of describing different types of heat conduction phenomena. But 

the mathematical formulation is so complicated that it becomes 

difficult to get solution even by using numerical schemes. A few 

works have been so far carried out to obtain analytical solution 

for such problems. Even less attempts have been made for such 

solutions in context of inhomogeneous mixed boundary 

conditions (BCs), which are mainly obtained by combining 

Fourier heat conduction with Newton’s law of cooling. This 

contradicts the basic postulate of mathematical model. The 

incorporation of DPL model in these BCs makes the problem 

even more difficult because of complex relation between heat 

flux and temperature gradient. The analytical approaches like 

separation of variables (SOV), finite integral transform (FIT) and 

orthogonal eigenfunction expansion method (OEEM) are 

inapplicable into time and space components for such single as 

well as multiple layer heat conduction problems. 

 

The multiple layer 1D DPL heat conduction problems are 

solved numerically [9], [10] as well as analytically[11], [12] only 

in the Cartesian coordinate systems. But both these techniques 

are used to solve problems approximating relation between heat 

flux and gradient only up to 1st term in the Taylor series 
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expansion. Moreover, the BCs are time independent for both of 

these methods. The similar concept was used by Chou et. al.[13] 

to study laser effect on 2D slabs and the DPL heat conduction 

problem and solved numerically. The single as well as multiple 

layer DPL heat conduction problems can be solved analytically 

by using SOV[14], [15], OEEM and FIT if BCs and interface 

conditions are obtained using Fourier model. However, as noted 

earlier, this contradicts DPL heat conduction. The requirement is 

to get rid of inseparable terms in BCs as obtained using DPL 

model. 

In the current work, Laplace Transform (LT) method is used 

for this purpose. This approach provides equations in s-space for 

which analytical solutions are possible. The formulations are 

provided for general DPL model as well as for 1st order 

approximation of Taylor’s series expansion. For the later 
formulation, an inhomogeneous wave like equation is obtained 

for each layer in space. The analytical solutions of the wave 

equation are provided for Cartesian, cylindrical and spherical 

coordinates. A system of equations is formulated by replacing 

analytical solutions in inhomogeneous BCs and interface 

conditions.  The matrix inversion method is applied to find out 

the coefficients of those analytical solutions. The inverse LT can 

provide the final solutions in t-space.  

 

MATHEMATICAL DESCRIPTION OF DPL HEAT 
CONDUCTION PROBLEM FOR MULTIPLE LAYER 

 

Taylor’s series expansion: 

The expansion of any function 𝑓(𝑡) around 𝜏, assuming τ << 1, 

is given as follows 

𝑓(𝑡 + 𝜏) = 𝑓(𝑡) + 𝜏
𝜕𝑓(𝑡)

𝜕𝑡
+
𝜏2

2!

𝜕2𝑓(𝑡)

𝜕𝑡2
+
𝜏3

3!

𝜕3𝑓(𝑡)

𝜕𝑡3
+⋯+

𝜏𝑛

𝑛!

𝜕𝑛𝑓(𝑡)

𝜕𝑡𝑛
+⋯+∞      (1) 

or 

𝑓(𝑡 + 𝜏) = 𝑒𝜏
𝜕

𝜕𝑡𝑓(𝑡)     (2) 

where, 𝑒𝜏
𝜕

𝜕𝑡 = 1 + 𝜏
𝜕

𝜕𝑡
+
𝜏2

2!

𝜕2

𝜕𝑡2
+
𝜏3

3!

𝜕3

𝜕𝑡3
+⋯+

𝜏𝑛

𝑛!

𝜕𝑛

𝜕𝑡𝑛
+⋯+∞. 

 

Relation between heat flux and temperature gradient 

DPL model: The relation between heat flux and temperature 

gradient for ith layer of the composite is, 

𝑞𝑖
,,(𝑟, 𝑡 + 𝜏𝑞) = −𝑘𝑖∇𝑇𝑖(𝑟, 𝑡 + 𝜏𝑇)   (3) 

So, the relation between heat flux and temperature gradient for 

DPL heat conduction model is as follows considering the 

Taylor’s series expansion [16], 

𝑒𝜏𝑞,𝑖
𝜕

𝜕𝑡𝑞𝑖
,,(𝑟, 𝑡) = −𝑘𝑖𝑒

𝜏𝑇,𝑖
𝜕

𝜕𝑡∇𝑇𝑖(𝑟, 𝑡)   (4) 

1st law of thermodynamics for multiple layer: Energy 

conservation for each ith layer of the composite is given as 

follows[17], 

𝜌𝑖𝐶𝑝,𝑖
𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑡
= −∇. 𝑞𝑖

,,(𝑟, 𝑡) + 𝑔𝑖(𝑟, 𝑡)   (5) 

Transport equation: 

DPL heat conduction model: Combining relation between heat 

flux and temperature gradient with 1st law of thermodynamics, 

1D model for multiple layer DPL heat conduction can be written 

as 

1

𝛼𝑖
𝑒𝜏𝑞,𝑖

𝜕

𝜕𝑡
𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑡
= 𝑒𝜏𝑇,𝑖

𝜕

𝜕𝑡
1

𝑟𝑝

𝜕

𝜕𝑟
{𝑟𝑝

𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑟
} +

1

𝑘𝑖
 𝑒𝜏𝑞,𝑖

𝜕

𝜕𝑡𝑔𝑖(𝑟, 𝑡) 

        (6) 

here 𝛼𝑖 =
𝑘𝑖

𝜌𝑖𝐶𝑝,𝑖
 is thermal diffusivity of each layer and  

𝑝 = {
0 for Cartesian coordinates
1 for cylindrical coordinates
2 for spherical coordinates

. 

Initial conditions (ICs): 

𝑇𝑖(𝑟, 𝑡)|𝑡=0 = 𝑇0,𝑖(𝑟)     (7) 

𝜕𝑛𝑇𝑖(𝑟,𝑡)

𝜕𝑡𝑛
|
𝑡=0

= 0 𝑛 = 1,2,… , …∞   (8) 

Boundary conditions (BCs): 

The BCs are obtained by combining DPL heat conduction model 

with Newton’s law of cooling, i.e. considering non-Fourier heat 

conduction. The consideration does not contradict postulates of 

DPL heat conduction. 

DPL model and Newton’s law of cooling: 

At the inner surface, r = r0 

A𝑖𝑛𝑒
𝜏𝑇,1

𝜕

𝜕𝑡
𝜕𝑇1(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟0

+ B𝑖𝑛𝑒
𝜏𝑞,1

𝜕

𝜕𝑡𝑇1(𝑟, 𝑡)|𝑟=𝑟0 =

𝑒𝜏𝑞,1
𝜕

𝜕𝑡𝐶𝑖𝑛(𝑡)       (9) 

At the interface between ith and (i+1)th layer, r = ri and i = 1, …, 

M-1 

𝑇𝑖(𝑟, 𝑡)|𝑟=𝑟𝑖 = 𝑇𝑖+1(𝑟, 𝑡)|𝑟=𝑟𝑖     (10) 

𝑘𝑖𝑒
𝜏𝑇,𝑖

𝜕

𝜕𝑡
𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟𝑖

= 𝑘𝑖+1𝑒
𝜏𝑇,𝑖+1

𝜕

𝜕𝑡
𝜕𝑇𝑖+1(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟𝑖

 (11) 

At the outer surface, r = rM 

A𝑜𝑢𝑡𝑒
𝜏𝑇,M

𝜕

𝜕𝑡
𝜕𝑇M(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟M

+ B𝑜𝑢𝑡𝑒
𝜏𝑞,M

𝜕

𝜕𝑡𝑇M(𝑟, 𝑡)|𝑟=𝑟M =

𝑒𝜏𝑞,M
𝜕

𝜕𝑡𝐶𝑜𝑢𝑡(𝑡)      (12) 

1st order approximation: 

1

𝛼𝑖
[1 + 𝜏𝑞,𝑖

𝜕

𝜕𝑡
]
𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑡
= [1 + 𝜏𝑇,𝑖

𝜕

𝜕𝑡
]
1

𝑟𝑝

𝜕

𝜕𝑟
{𝑟𝑝

𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑟
} +

1

𝑘𝑖
 [1 + 𝜏𝑞,𝑖

𝜕

𝜕𝑡
]𝑔𝑖(𝑟, 𝑡)     (13) 

BCs: 
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At the inner surface, r = r0 

A𝑖𝑛 [1 + 𝜏𝑇,1
𝜕

𝜕𝑡
]
𝜕𝑇1(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟0

+ B𝑖𝑛 [1 +

𝜏𝑞,1
𝜕

𝜕𝑡
] 𝑇1(𝑟, 𝑡)|𝑟=𝑟0 = [1 + 𝜏𝑞,1

𝜕

𝜕𝑡
] 𝐶𝑖𝑛(𝑡)   (14) 

At the interface between ith and (i+1)th layer, r = ri and i = 1, …, 

M-1 

𝑇𝑖(𝑟, 𝑡)|𝑟=𝑟𝑖 = 𝑇𝑖+1(𝑟, 𝑡)|𝑟=𝑟𝑖     (15) 

𝑘𝑖 [1 + 𝜏𝑇,𝑖
𝜕

𝜕𝑡
]
𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟𝑖

= 𝑘𝑖+1 [1 +

𝜏𝑇,𝑖+1
𝜕

𝜕𝑡
]
𝜕𝑇𝑖+1(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟𝑖

     (16) 

At the outer surface, r = rM 

A𝑜𝑢𝑡 [1 + 𝜏𝑇,M
𝜕

𝜕𝑡
]
𝜕𝑇M(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟M

+ B𝑜𝑢𝑡 [1 +

𝜏𝑞,M
𝜕

𝜕𝑡
] 𝑇M(𝑟, 𝑡)|𝑟=𝑟M = [1 + 𝜏𝑞,M

𝜕

𝜕𝑡
] 𝐶𝑜𝑢𝑡(𝑡)  (17) 

The DPL heat conduction problems with Neumann and mixed 

type BCs for single layer as well as multiple layer cannot be 

solved by eigenfunction based methods such as SOV, FIT and 

OEEM. This is due to the fact that the homogeneous BCs and 

interface conditions are inseparable in time and space 

components. 

SOLUTION PROCEDURE: APPLICATION OF LAPLACE 
TRANSFOR 
 

Laplace transform: The LT of different functions are shown as 

follows, 

𝑓̅(𝑠) = 𝐿{𝑓(𝑡)} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
∞

0
   (18) 

𝐿{𝑒𝑎𝑡𝑓(𝑡)} = ∫ 𝑒(𝑎−𝑠)𝑡𝑓(𝑡)𝑑𝑡
∞

0
= 𝑓̅(𝑠 − 𝑎)  (19) 

𝐿 {
𝑑𝑓(𝑡)

𝑑𝑡
} = ∫ 𝑒−𝑠𝑡

𝑑𝑓(𝑡)

𝑑𝑡
𝑑𝑡

∞

0
= 𝑠𝑓̅(𝑠) − 𝑓(0)  (20) 

𝐿 {
𝑑2𝑓(𝑡)

𝑑𝑡2
} = 𝑠2𝑓̅(𝑠) − 𝑠𝑓(0) − 𝑓′(0)   (21) 

𝐿 {
𝑑3𝑓(𝑡)

𝑑𝑡3
} = 𝑠3𝑓̅(𝑠) − 𝑠2𝑓(0) − 𝑠𝑓′(0) − 𝑓′′(0) (22) 

⋮  

𝐿 {
𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
} = 𝑠𝑛𝑓̅(𝑠) − 𝑠𝑛−1𝑓(0) −⋯− 𝑠𝑓𝑛−2(0) −

𝑓𝑛−1(0)       (23) 

⋮. 

Now, taking LT of Eqn. (1) and replacing terms described 

in Eqn. (18), Eqns. (20-23) and so on, the following expression 

can be obtained. 

𝐿 {𝑒𝜏
𝜕

𝜕𝑡𝑓(𝑡)} = [1 + 𝜏𝑠 +
𝜏2𝑠2

2!
+⋯+

𝜏𝑛𝑠𝑛

𝑛!
+⋯∞]𝑓̅(𝑠) −

[𝜏 +
𝜏2

2!
𝑠 +⋯+

𝜏𝑛

𝑛!
𝑠𝑛−1 +⋯∞]𝑓(0) − [

𝜏2

2!
+
𝜏3

3!
𝑠 + ⋯+

𝜏𝑛

𝑛!
𝑠𝑛−2 +⋯∞]𝑓′(0) − [

𝜏3

3!
+
𝜏4

4!
𝑠 +⋯+

𝜏𝑛

𝑛!
𝑠𝑛−3 +

⋯∞]𝑓′′(0) − ⋯− [
𝜏𝑛

𝑛!
+
𝜏𝑛+1

𝑛+1!
𝑠 +⋯∞]𝑓𝑛−1(0) − [

𝜏𝑛+1

𝑛+1!
+

𝜏𝑛+2

𝑛+2!
𝑠 + ⋯∞]𝑓𝑛(0) − ⋯∞    (24) 

The Eqn. (24) can be expressed as follows, 

𝐿 {𝑒𝜏
𝜕

𝜕𝑡𝑓(𝑡)} = [1 + 𝜏𝑠 +
𝜏2𝑠2

2!
+⋯+

𝜏𝑛𝑠𝑛

𝑛!
+⋯∞]𝑓̅(𝑠) −

1

𝑠
[𝜏𝑠 +

𝜏2𝑠2

2!
+⋯+

𝜏𝑛𝑠𝑛

𝑛!
+⋯∞]𝑓(0) −

1

𝑠2
[
𝜏2𝑠2

2!
+
𝜏3𝑠3

3!
+⋯+

𝜏𝑛𝑠𝑛

𝑛!
+⋯∞]𝑓′(0) −

1

𝑠3
[
𝜏3𝑠3

3!
+
𝜏4𝑠4

4!
+⋯+

𝜏𝑛𝑠𝑛

𝑛!
+

⋯∞]𝑓′′(0) − ⋯−
1

𝑠𝑛
[
𝜏𝑛𝑠𝑛

𝑛!
+
𝜏𝑛+1𝑠𝑛+1

𝑛+1!
+⋯∞]𝑓𝑛−1(0) −

1

𝑠𝑛
[
𝜏𝑛+1𝑠𝑛+1

𝑛+1!
+
𝜏𝑛+2𝑠𝑛+2

𝑛+2!
+⋯∞]𝑓𝑛(0) −⋯∞  (25) 

The expression in Eqn. (25) can be rewritten as follows, 

𝐿 {𝑒𝜏
𝜕

𝜕𝑡𝑓(𝑡)} = 𝑒𝜏𝑠𝑓̅(𝑠) −
1

𝑠
[𝑒𝜏𝑠 − 1]𝑓(0) −

1

𝑠2
[𝑒𝜏𝑠 − 1 −

𝜏𝑠]𝑓′(0) −
1

𝑠3
[𝑒𝜏𝑠 − 1− 𝜏𝑠 −

𝜏2𝑠2

2!
] 𝑓′′(0) − ⋯−

1

𝑠𝑛
[𝑒𝜏𝑠 − 1−

𝜏𝑠 −
𝜏2𝑠2

2!
−⋯−

𝜏𝑛−2𝑠𝑛−2

𝑛−2!
−
𝜏𝑛−1𝑠𝑛−1

𝑛−1!
] 𝑓𝑛−1(0) − 𝑠𝑛 [𝑒𝜏 − 1−

𝜏 −
𝜏2𝑠2

2!
−⋯−

𝜏𝑛−1𝑠𝑛−1

𝑛−1!
−
𝜏𝑛𝑠𝑛

𝑛!
] 𝑓𝑛(0) −⋯∞  (26) 

This can be expressed as 

𝐿 {𝑒𝜏
𝜕

𝜕𝑡𝑓(𝑡)} = 𝑒𝜏𝑠𝑓̅(𝑠) − [(
𝑒𝜏𝑠−𝑒

𝜏
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)𝑓(𝑡)]

𝑡=0

 (27) 

where 
1

𝑠−
𝜕

𝜕𝑡

=
1

𝑠
+

1

𝑠2

𝜕

𝜕𝑡
+

1

𝑠3

𝜕2

𝜕𝑡2
+⋯+

1

𝑠𝑛+1

𝜕𝑛

𝜕𝑡𝑛
+⋯∞. 

Similarly, 

𝐿 {𝑒𝜏
𝜕

𝜕𝑡
𝜕𝑓(𝑡)

𝜕𝑡
} = 𝑠𝑒𝜏𝑠𝑓̅(𝑠) − [(

𝑠𝑒𝜏𝑠−
𝜕

𝜕𝑡
𝑒
𝜏
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)𝑓(𝑡)]

𝑡=0

 (28) 

The modified governing equation for DPL heat conduction 

can be written, by taking the LT of Eqn. (6) combining with Eqn. 

(27) and Eqn. (28), as follows 

Transport equation: 

1

𝛼𝑖
{𝑠𝑒𝜏𝑞,𝑖𝑠�̅�𝑖(𝑟, 𝑠) − [(

𝑠𝑒
𝜏𝑞,𝑖𝑠−

𝜕

𝜕𝑡
𝑒
𝜏𝑞,𝑖

𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)𝑇𝑖(𝑟, 𝑡)]

𝑡=0

} =

 𝑒𝜏𝑇,𝑖𝑠
1

𝑟𝑝

𝜕

𝜕𝑟
{𝑟𝑝

𝜕�̅�𝑖(𝑟,𝑠)

𝜕𝑟
} −

[(
𝑒𝜏𝑇,𝑖𝑠−𝑒

𝜏𝑇,𝑖
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)
1

𝑟𝑝

𝜕

𝜕𝑟
{𝑟𝑝

𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑟
}]

𝑡=0

+
1

𝑘𝑖
 {𝑒𝜏𝑞,𝑖𝑠�̅�𝑖(𝑟, 𝑠) −

[(
𝑒
𝜏𝑞,𝑖𝑠−𝑒

𝜏𝑞,𝑖
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)𝑔𝑖(𝑟, 𝑡)]

𝑡=0

}    (29) 
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BCs: 

 

At the inner surface, r = r0 

A𝑖𝑛 {𝑒
𝜏𝑇,1𝑠

𝜕�̅�1(𝑟,𝑠)

𝜕𝑟
|
𝑟=𝑟0

− [(
𝑒
𝜏𝑇,1𝑠−𝑒

𝜏𝑇,1
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)
𝜕𝑇1(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟0

]

𝑡=0

} +

B𝑖𝑛 {𝑒
𝜏𝑞,1𝑠�̅�1(𝑟, 𝑠)|𝑟=𝑟0 − [(

𝑒
𝜏𝑞,1𝑠−𝑒

𝜏𝑞,1
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)𝑇1(𝑟, 𝑡)|𝑟=𝑟0]

𝑡=0

} =

𝑒𝜏𝑞,1𝑠�̅�𝑖𝑛(𝑠) − [(
𝑒
𝜏𝑞,1𝑠−𝑒

𝜏𝑞,1
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)𝐶𝑖𝑛(𝑡)]

𝑡=0

   (30) 

At the interface between ith and (i+1)th layer, r = ri and i = 1, …, 

M-1 

�̅�𝑖(𝑟, 𝑠)|𝑟=𝑟𝑖 = �̅�𝑖+1(𝑟, 𝑠)|𝑟=𝑟𝑖     (31) 

𝑘𝑖 {𝑒
𝜏𝑇,𝑖𝑠

𝜕�̅�𝑖(𝑟,𝑠)

𝜕𝑟
|
𝑟=𝑟𝑖

− [(
𝑒
𝜏𝑇,𝑖𝑠−𝑒

𝜏𝑇,𝑖
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)
𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟𝑖

]

𝑡=0

} =

 𝑘𝑖+1 {𝑒
𝜏𝑇,𝑖+1𝑠

𝜕�̅�𝑖+1(𝑟,𝑠)

𝜕𝑟
|
𝑟=𝑟𝑖

−

[(
𝑒
𝜏𝑇,𝑖+1𝑠−𝑒

𝜏𝑇,𝑖+1
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)
𝜕𝑇𝑖+1(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟𝑖

]

𝑡=0

}   (32) 

At the outer surface, r = rM 

A𝑜𝑢𝑡 {𝑒
𝜏𝑇,M𝑠

𝜕�̅�M(𝑟,𝑠)

𝜕𝑟
|
𝑟=𝑟M

−

[(
𝑒
𝜏𝑇,M𝑠−𝑒

𝜏𝑇,M
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)
𝜕𝑇M(𝑟,𝑡)

𝜕𝑟
|
𝑟=𝑟M

]

𝑡=0

} +

B𝑜𝑢𝑡 {𝑒
𝜏𝑞,M𝑠�̅�M(𝑟, 𝑠)|𝑟=𝑟M −

[(
𝑒
𝜏𝑞,M𝑠−𝑒

𝜏𝑞,M
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)𝑇1(𝑟, 𝑡)|𝑟=𝑟M]

𝑡=0

} = 𝑒𝜏𝑞,M�̅�𝑜𝑢𝑡(𝑠) −

[(
𝑒
𝜏𝑞,M𝑠−𝑒

𝜏𝑞,M
𝜕
𝜕𝑡

𝑠−
𝜕

𝜕𝑡

)𝐶𝑜𝑢𝑡(𝑡)]

𝑡=0

    (33) 

1st order approximation: 

The 1st order approximation of Taylor series expansion for 

the set of above equations can be expressed in the following 

form, 

Transport equation: 

1

𝛼𝑖
{𝑠(1 + 𝑠𝜏𝑞,𝑖)�̅�𝑖(𝑟, 𝑠) − (1 + 𝑠𝜏𝑞,𝑖)𝑇0,𝑖(𝑟) −

𝜏𝑞,𝑖 [
𝜕𝑇𝑖(𝑟,𝑡)

𝜕𝑡
]
𝑡=0

⏞      
0

} =  (1 + 𝑠𝜏𝑇,𝑖)
1

𝑟𝑝

𝜕

𝜕𝑟
{𝑟𝑝

𝜕�̅�𝑖(𝑟,𝑠)

𝜕𝑟
} −

𝜏𝑇,𝑖
1

𝑟𝑝

𝑑

𝑑𝑟
{𝑟𝑝

𝑑𝑇0,𝑖(𝑟)

𝑑𝑟
} +

1

𝑘𝑖
 {(1 + 𝑠𝜏𝑞,𝑖)�̅�𝑖(𝑟, 𝑠) − 𝜏𝑞,𝑖𝑔0,𝑖(𝑟)} 

        (34) 

BCs: 

At the inner surface, r = r0 

A𝑖𝑛 {(1 + 𝑠𝜏𝑇,1)
𝜕�̅�1(𝑟,𝑠)

𝜕𝑟
|
𝑟=𝑟0

−
𝑑𝑇0,1(𝑟)

𝑑𝑟
|
𝑟=𝑟0

} + B𝑖𝑛 {(1+

𝑠𝜏𝑞,1)�̅�1(𝑟, 𝑠)|𝑟=𝑟0 − 𝑇0,1(𝑟)|𝑟=𝑟0
} = (1 + 𝑠𝜏𝑞,1)�̅�𝑖𝑛(𝑠) −

𝐶𝑖𝑛(0)        (35) 

At the interface between ith and (i+1)th layer, r = ri and i = 1, …, 

M-1 

�̅�𝑖(𝑟, 𝑠)|𝑟=𝑟𝑖 = �̅�𝑖+1(𝑟, 𝑠)|𝑟=𝑟𝑖     (36) 

𝑘𝑖 {(1 + 𝑠𝜏𝑇,𝑖)
𝜕�̅�𝑖(𝑟,𝑠)

𝜕𝑟
|
𝑟=𝑟𝑖

−
𝜕𝑇0,𝑖(𝑟)

𝜕𝑟
|
𝑟=𝑟𝑖

} =  𝑘𝑖+1 {(1 +

𝑠𝜏𝑇,𝑖+1)
𝜕�̅�𝑖+1(𝑟,𝑠)

𝜕𝑟
|
𝑟=𝑟𝑖

−
𝜕𝑇0,𝑖+1(𝑟)

𝜕𝑟
|
𝑟=𝑟𝑖

}   (37) 

At the outer surface, r = rM 

A𝑜𝑢𝑡 {(1 + 𝑠𝜏𝑇,M)
𝜕�̅�M(𝑟,𝑠)

𝜕𝑟
|
𝑟=𝑟0

−
𝜕𝑇0,M(𝑟)

𝜕𝑟
|
𝑟=𝑟0

} + B𝑜𝑢𝑡 {(1 +

𝑠𝜏𝑞,M)�̅�M(𝑟, 𝑠)|𝑟=𝑟0 − 𝑇0,M(𝑟)|𝑟=𝑟0
} = (1 + 𝑠𝜏𝑞,M)�̅�𝑜𝑢𝑡(𝑠) −

𝐶𝑜𝑢𝑡(0)       (38) 

Here, the intention is to solve the problem described in Eqn. 

(34) with BCs in Eqns. (35-38), analytically. However, the above 

equations need to be expressed in a standard form before solving 

the problem and these are as follows, 

1

𝑟𝑝

𝜕

𝜕𝑟
{𝑟𝑝

𝜕�̅�𝑖(𝑟,𝑠)

𝜕𝑟
} − 𝜔𝑖

2(𝑠)�̅�𝑖(𝑟, 𝑠) = �̅�𝑖(𝑟, 𝑠)  (39) 

where 𝜔𝑖
2(𝑠) =

𝑠(1+𝑠𝜏𝑞,𝑖)

𝛼𝑖(1+𝑠𝜏𝑇,𝑖)
 and 

�̅�𝑖(𝑟, 𝑠) =
1

1+𝑠𝜏𝑇,𝑖
[𝜏𝑇,𝑖

1

𝑟𝑝

𝑑

𝑑𝑟
{𝑟𝑝

𝑑𝑇0,𝑖(𝑟)

𝑑𝑟
} +

𝜏𝑞,𝑖

𝑘𝑖
𝑔0,𝑖(𝑟) − (1 +

𝑠𝜏𝑞,𝑖) {
1

𝛼𝑖
𝑇0,𝑖(𝑟) +

1

𝑘𝑖
 �̅�𝑖(𝑟, 𝑠)}]. 

The solution of Eqn. (39) is well known and given as follows, 

 

�̅�𝑖(𝑟, 𝑠) =

{
 
 

 
 [𝐶2𝑖−1(𝑠) −

1

2𝑤𝑖(𝑠)
∫ 𝑒𝑟𝑤𝑖(𝑠)𝐹𝑖(𝑟, 𝑠)𝑑𝑟
𝑟𝑖
𝑟𝑖−1

] 𝑒−𝑟𝑤𝑖(𝑠) + [𝐶2𝑖(𝑠)+
1

2𝑤𝑖(𝑠)
∫ 𝑒−𝑟𝑤𝑖(𝑠)�̅�𝑖(𝑟, 𝑠)𝑑𝑟
𝑟𝑖
𝑟𝑖−1

] 𝑒𝑟𝑤𝑖(𝑠) if 𝑝 = 0

[𝐶2𝑖−1(𝑠) −
1

2𝜋
∫ 𝑟𝐾0(𝑟𝑤𝑖(𝑠))𝐹𝑖(𝑟, 𝑠)𝑑𝑟
𝑟𝑖
𝑟𝑖−1

] 𝐼0(𝑟𝑤𝑖(𝑠)) + [𝐶2𝑖(𝑠) +
1

2𝜋
∫ 𝑟𝐼0(𝑟𝑤𝑖(𝑠))�̅�𝑖(𝑟, 𝑠)𝑑𝑟
𝑟𝑖
𝑟𝑖−1

]𝐾0(𝑟𝑤𝑖(𝑠)) if 𝑝 = 1

1

𝑟
[𝐶2𝑖−1(𝑠)−

1

2𝑤𝑖(𝑠)
∫ 𝑟𝑒𝑟𝑤𝑖(𝑠)𝐹𝑖(𝑟, 𝑠)𝑑𝑟
𝑟𝑖
𝑟𝑖−1

] 𝑒−𝑟𝑤𝑖(𝑠) +
1

2𝑟𝑤𝑖(𝑠)
[𝐶2𝑖(𝑠) + ∫ 𝑟𝑒−𝑟𝑤𝑖(𝑠)𝐹𝑖(𝑟, 𝑠)𝑑𝑟

𝑟𝑖
𝑟𝑖−1

] 𝑒𝑟𝑤𝑖(𝑠) if 𝑝 = 2

 (40) 
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In the above equation, only two unknowns are present 𝐶2𝑖−1(𝑠) 

and 𝐶2𝑖(𝑠) for each ith solution. 

A system of 2M number of equations can be formulated 

from the BCs in Eqns. (35-38) and can be written as follows, 

[𝐴(𝑠)]2M×2M[𝐶(𝑠)]2M×1 = [𝐷(𝑠)]2M×1   (41) 

The matrix inversion method can be applied in Eqn. (41) to get 

2M number of coefficients which are, 

[𝐶(𝑠)]2M×1 = [𝐴(𝑠)]2M×2M
−1 [𝐷(𝑠)]2M×1   (42) 

The solution of the PDE in s-space needs inverse LT to get 

solution in t-space. Several inversion methods are available in 

literature and are not described here for the sake of brevity. 

Anyone of them can be used to get the final solution. 

CONCLUSION  
 

A detailed methodology for the solution of 1D multiple layer 

DPL heat conduction using Laplace Transform is developed in 

the present work. The solution is provided for first order Taylor 

series approximation of the governing equations. This approach 

can be used for all three coordinate systems (Cartesian, 

cylindrical and spherical). Moreover, mixed and Neumann BCs 

are considered using DPL approximation which are consistent 

with the governing equation.  The interface flux continuity 

condition is also defined in a similar consistent fashion. 
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