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ABSTRACT 
     Buoyancy-driven magneto hydrodynamic flow in a liquid-

metal filled cubic enclosure is investigated by three 

dimensional numerical simulations. The enclosure is heated and 

cooled along two opposite vertical walls, all other walls being 

adiabatic. A uniform magnetic field is applied orthogonally to 

the gravity vector and to the temperature gradient (i.e., parallel 

to the isothermal walls). The Prandtl number is = 0.019 

(characteristic of Galium); the Rayleigh number is made to vary 

from 103 to 107, the Hartmann number between 30 to 120 and 

the electrical conductance of the walls between 0 and 1. The 

Navier–Stokes equations, for the electrical potential, are solved 

by a finite volume method using the CFD package CFX-4 with 

some necessary adaptations. Steady-state conditions are 

assumed. In all cases, a three-dimensional flow with complex 

secondary motions and a complex current pattern is established. 

The results show that the dynamic and temperature fields are 

strongly affected by variations of the magnetic field intensity 

and the angle of inclination. 

        Numerical simulations are carried out considering 

different combinations of Grashof and Hartmann numbers to 

study their effects on the streamlines, the isotherms and the 

Nusselt number. Wall electrical conductivity enhances damping 

by changing the distribution of the induced electric current to 

one which augments the magnitude of the Lorentz force. 

 
Keywords:  Natural convection, Magnetic field, Cavity, 

Liquid metal, finite-volume, Lorentz force, three dimensional 

 

Introduction and previous work  

     Within the separated-cooled concept for the liquid metal 

breeder blanket of a power fusion reactor [1], the problem 

arises of understanding and characterizing buoyant flows in a 

low Prandtl number fluid under the influence of a strong 

magnetic field. 

      In this a crucible of molten material is slowly drawn from a 

furnace and solidification takes place. This technique is of 

significant practical importance in the growth of high-quality 

materials for optoelectronic applications as reviewed by Hill 

[2]. The industrial process may involve dendrite growth and the 

distribution of dopants and is thus a complicated problem. 

However, insights can be gained from studying the basic fluid 

dynamics that results from the differential heating of the sample 

since other processes are strongly influenced by the induced 

motion. For small temperature differences, the convection is 

steady and primarily consists of a large, single circulation. The 

bulk flow in a confined cavity evolves considerably for larger 

values of the driving force, as the interaction between the 

different regions of flow becomes significant. Thus, the 

mechanisms underlying the transitions to time-dependent and 

eventually turbulent flow are often complex. We refer to the 

review article by Muller & Ostrogorsky[3] for a discussion of 

convective effects in crystal growth. Our model Bridgman 

configuration consists of a rectangular, insulated enclosure of 

square cross-section where the ends are conducting. It contains 

liquid gallium and is heated and cooled in a controlled way at 

the two opposite ends. A schematic diagram of the geometry is 

presented in figure 1. We have chosen to investigate this 

relatively narrow configuration because of its practical 

relevance and we find that cross-flows are important since the 

onset of time dependence is essentially different to that studied 

in two-dimensional models With the application of an external 

magnetic field, it is possible to act on the flows without any 

physical contact, and thus to remove the fluctuations to control 

heat and mass transfers, in order to improve the quality of the 

crystal. For this purpose, the damping magnetic to control the 

flow induced by a temperature variation was used in several 

industrials applications. Tagawa and Ozoe [4] numerically 

studied three-dimensional natural convection of a liquid metal 

in a cubic enclosure, under the action of a magnetic field 

applied, according to the three main directions. Benhadid and 

Henry [5] studied the effect of a magnetic field on the flow of 

liquid metal in a parallelepiped cavity, using a spectral 

numerical method. Bessaih et al. [6] numerically examined the 

effect of the electric conductivity of the walls and the direction 

of the magnetic field on the flow of Gallium. Their results show 

a considerable reduction in the intensity of the convection when 

the magnetic field increases. Kherief N M. and al [7] obtained 

numerical solutions for the velocity and temperature fields 

inside the enclosure, to determine the effects of the magnetic 

field strength and direction, the inclination of the enclosure on 

the transport phenomena. The results show that the dynamic 

and temperature fields are strongly affected by variations of the 

magnetic field intensity and the angle of inclination. Numerical 

simulations have been carried out considering different 

combinations of Grashof and Hartmann numbers. Kherief N M. 

et al [8]. Steady, laminar, natural-convection flow in the 

presence of a magnetic field in an inclined rectangular 

enclosure heated from one side and cooled from the adjacent 

side was considered. The governing equations were solved 

numerically for the stream function, vorticity and temperature 

using the finite-volume method for various Grashof and 
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Hartmann numbers and inclination angles and magnetic field 

directions. The results show that the orientation and the 

strength and direction of the magnetic field have significant 

effects on the flow and temperature fields. Counterclockwise 

inclination induces the formation of multiple eddies inside the 

enclosure significantly affecting the temperature field. 

Circulation inside the enclosure and therefore the convection 

becomes stronger as the Grashof number increases while the 

magnetic field suppresses the convective flow and the heat 

transfer rate. 

           The aim of the present work is to examine in detail 

the effect of a magnetic field on natural convection and heat 

transfer in a three-dimensional cavity filled with an electrically 

conducting fluid. The applied magnetic field is assumed to be 

parallel to gravity. For many fluids used in the laboratory, the 

conductivity is usually small and hence the magnetic Reynolds 

number is very small. Therefore, we assume that the induced 

magnetic field produced by the motion of the electrically 

conducting fluid is negligible compared to the applied magnetic 

field B. Then the electromagnetic retarding force and the 

buoyancy force terms appear in the horizontal and vertical 

momentum equations respectively with a result that a boundary 

layer type of analysis is not applicable. Thus the equations are 

not amenable to analytical treatment. In the present paper we, 

therefore, solve the problem numerically using an implicit finite 

difference scheme which is computationally stable. The effect 

of various controlling parameters on fluid flow and heat 

transfer are examined.  

NOMENCLATURE 
 
A aspect ratio 
B magnetic field [T] 

B0       uniform magnetic flux density 
eB         unitary vector of the direction of B 

Fx     Lorentz force in the x-direction 

Fy     Lorentz force in the y-direction 
Fz     Lorentz force in the z-direction    

g gravitational acceleration, m.s-2  

Gr Grashof number   23 / HTTg CH   

H height of the cavity, m 

Ha Hartmann number  HB0  

L length of the enclosure, m 
Jx electric current in the x-direction, A.m-2 

Jy       electric current in the y-direction, A.m-2 

Jz electric current in the z-direction, A.m-2 

δH  dimensionless thickness Hartmann layer, =Ha-1 

δS   dimensionless thickness side layer, =Ha-1/2 

Nu     average Nusselt number 
Nx     nodes number in the x-direction 

Ny     nodes number in the y-direction 

Nz     nodes number in the z-direction 
p pressure, N.m-2 

Pr Prandtl number  /  

Ra     Rayleigh number 

Rm Reynolds magnétic number   

T temperature, K 
TH     hot temperature [K] 

TC     cold temperature [K] 

u velocity in the x-direction, m.s-1 
U dimensionless velocity in the x-direction, 
v velocity in the y-direction, m.s-1 

V       dimensionless velocity in the y-direction  

w       velocity in the z-direction, m.s-1 
W dimensionless velocity in the z-direction 

α thermal diffusivity, m2.s-1 

β       thermal expansion coefficient, K-1 

φ dimensionless electric potential,   

θ dimensionless temperature 

ρ density of the fluid, kg.m-3 
σ electrical conductivity, Ω-1.m-1 

υ kinematic viscosity of the fluid, m2.s-1 

Plane PT or plane (y-z)Plane PV or plane (x-y) 
Plane PH or plane (x-z) Lines CC mid-plane (x-y) 

Lines AA mid-plane (x-z) LinesBBmid-plane(y-z) 

 

Geometry and mathematical model 
    The geometry of the flow field analyses in this study is 

illustrated in Fig. 1. A liquid metal with a density ρ, a 

kinematics viscosity ν and an electrical conductivity σ, fills a 

rectangular cavity of dimensions L × H ×l, having an aspect 

ratio A=L/H=1, and subjected to a uniform magnetic field B0. 

The magnetic field is applied in the y direction. The cavity is 

isothermally heated from the left vertical wall with a uniform 

constant temperature TH and the right vertical with temperature 

TC (TH > TC). The fluid contained in the rectangular cavity is 

Galium whose Prandtl number equals to 0.019. We will refer to 

different cross-sections of the cavity, in order to describe both 

the numerical and the experimental flows.  

 
Figure 1. The geometry of the problem 

 
Figure 2. (a) Schematic diagram of the enclosure and 

coordinate system: uniform magnetic field in (b) x-, (c) y-

directions. 

      We denote by (X-Y) Plane PV, (Y-Z) Plane PT and (X-Z) 

Plane HP cross sections, the planes which are perpendicular to 

the z, x and y-axes respectively and in addition, we indicate the 

coordinates of their centers. 

Examples of three cross sections, centered on x = Ax=1/2, y = 0 

and z = 0 can be seen in figure 1. These will commonly be 

referred to as the central cross-sections. 

The governing equations are obtained using the following 

assumptions: 

 Joule heating is negligible. 

 Viscous dissipation is negligible. 

 The induced magnetic field is negligible because 

Rem<<1. 

 The liquid metal is not magnetized (μm=1). 

 The liquid metal is incompressible and Newtonian. 

 The Boussinesq approximation holds. 

    The interaction between the magnetic field and convective 

flow involves an induced electric current 
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 𝑗: 𝑗 =  𝜎[−∇⃗⃗⃗𝜑 + 𝑉⃗⃗ ∗ 𝐵⃗⃗]                                     

The divergence of Ohm’s law∇ . 𝑗⃗⃗⃗⃗⃗⃗⃗⃗ = 0 produces the equation of 

the electric potential: 

∇2𝜑 = ∇⃗⃗⃗(𝑉⃗⃗˄𝑒𝐵⃗⃗⃗⃗⃗)                                                (1) 

Whereas those of F are obtained using the equation:  

 𝐹⃗ = 𝑗∗ ∗  𝐵⃗⃗ 
By neglecting the induced magnetic field, the dissipation 

and Joule heating, and the Bousinesq approximation is valid; 

and using  H, α /H, H 2 /α, ρ0 (α / H) 2 , α B0 and (TH  -  TC) as 

typical scales for lengths, velocities, time, pressure, potential, 

and temperature, respectively, the dimensionless governing 

equations for the conservation of mass, momentum ,and energy, 

together with appropriate boundary conditions in the Cartesian 

coordinates system (x, y, z), are written as follows: 

0.  V                                                                   (2) 

FeTTgVpVV
t

V
y 




)(

1
).( 0

2 


                  (3) 

TTV
t

T 2).( 





  

                                   (4) 

where 


 3)( HTTg
Ra CH 

  are the Rayleigh 

number,   23 / HTTgGr CH  is the Grashof number, 

HBHa 0 the Hartmann number, and  /Pr   the 

Prandtl number. 

 Electric potential equation:  

Horizontally applied magnetic field:
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Vertically applied magnetic field:    
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Transversally applied magnetic 

field:
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Case of a horizontal magnetic field when B is applied in the x-

direction, the expressions are: 

FX= 0 ;𝐹𝑌=(−
𝜕𝜑

𝜕𝑍
− 𝑉) . 𝐻𝑎2. 𝑃𝑟 ;  𝐹𝑍=(

𝜕𝜑

𝜕𝑌
− 𝑊) . 𝐻𝑎2. 𝑃𝑟 ;  𝑗𝑋 = −

𝜕𝜑

𝜕𝑋
  𝑗𝑍 =

−
𝜕𝜑

𝜕𝑍
− 𝑉𝑗𝑌 = −

𝜕𝜑

𝜕𝑌
+ 𝑊 

Case of a vertical magnetic field when B is applied in the y-

direction, the expressions are: 

𝐹𝑋=(
𝜕𝜑

𝜕𝑍
− 𝑈) . 𝐻𝑎2. 𝑃𝑟 ; FY=0; 𝐹𝑍 = (−

𝜕𝜑

𝜕𝑌
− 𝑊) . 𝐻𝑎2. 𝑃𝑟    𝑗𝑋 = −

𝜕𝜑

𝜕𝑌
− 𝑊   

𝑗𝑌 = −
𝜕𝜑

𝜕𝑌
 𝑗𝑍 = −

𝜕𝜑

𝜕𝑍
+ 𝑈 

Case of a transversal magnetic field when B is applied in the z-

direction, the expressions are: 

  𝐹𝑋=(−
𝜕𝜑

𝜕𝑌
− 𝑈) . 𝐻𝑎2. 𝑃𝑟 ; 𝐹𝑌=(

𝜕𝜑

𝜕𝑋
− 𝑉) . 𝐻𝑎2. 𝑃𝑟 ;  FZ= 0 ; 𝑗𝑌 = −

𝜕𝜑

𝜕𝑌
+

𝑉 𝑗𝑌 = −
𝜕𝜑

𝜕𝑌
− 𝑈    𝑗𝑍 = −

𝜕𝜑

𝜕𝑍
   

At  X = 0; U = V = W = 0, Θ =1 and 0/  x        

At  X = 4; U = V = W = 0, Θ =0 and 0/  x        

At Y = 0; U = V = W = 0, 𝜕𝛩
𝜕𝑌⁄  = 0 and 0/  y       

At Y = 1; U = V = W = 0, 𝜕𝛩
𝜕𝑌⁄  = 0 and 0/  y       

At  Z = 0; U = V = W = 0, 𝜕𝛩
𝜕𝑍⁄  = 0 and 0/  z       

At  Z = 1; U = V = W = 0, 𝜕𝛩
𝜕𝑍⁄  = 0 and 0/  z       

Numerical method 
       Equations (1-4) with the boundary conditions are solved by 

using the finite volume method [9]. Scalar quantities (P, T, ϕ) 

are stored in the center of these volumes, whereas the vectorial 

quantities (u, v, and w) are stored on the faces. For the 

discretisation of spatial terms, a second-order central difference 

scheme is used for the diffusion and convection parts of the 

equations (2-5), and the SIMPLER algorithm [9] is used to 

determine the pressure from continuity equation. 

       In MHD flows boundary layers different to those in 

ordinary hydrodynamics occur. At walls perpendicular to the 

magnetic field Hartmann layers of thickness δH~Ha-1 appear 

which are characterized by an exponential decay of the velocity 

towards the wall.  

At walls parallel to the magnetic field, the so-called side layer 

exists, which is different in shape and thickness (δS~Ha-1/2) 

compared to the Hartmann layers. In order to capture the 

Hartmann and side layers and by taking into account the fact 

that their thickness diminishes as Ha increases (δH~Ha-1and 

δS~Ha-1/2) the grid line densities are chosen according to the 

value of the magnetic field B and its direction. These are given 

in Table 1. The increments DX, DY and DZ of the grid used are 

not regular. They are chosen according to geometric 

progressions of ratio 1.07 which permitted grid refinement near 

the walls; i.e. in the Hartmann and side layers where large 

velocity and temperature gradients exist, thus requiring a larger 

number of nodes.  

Table 1 Meshes used in the computations 
 Ha Mesh size      

NxxNyxNz  

No magnetic field 0 112x112x120 

y-Direction magnetic 

field fig.2 (b) 

25 

50 

75 

100 

112x112x120 

112x112x120 

112x112x120 

112x112x120 

       

      The magnetic field direction y was resolved by a 

comparatively smaller number of points since the above-

mentioned integral model was adopted for the Hartmann layers. 

Some simulations with no MHD effects were also performed; 

for these cases, a non-equispaced grid with NxxNyxNz= 

112x112x120= 1404928 nodes was used Fig.3 (b). 10000 

iterations at most were needed for a complete convergence of 

all variables; the convergence speed was thus higher than for 

the quasi-2D, fully developed, problem and was only slightly 

affected by the conductivity of the walls, the Rayleigh number, 

or the Hartmann number. 

 
Figure 3.  Mesh size,NxxNyxNz 
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Computed results and discussion 
Code validation 
An important step in code development is to validate and 

compare the results computed from the code developed with 

published data from other computational codes. 

The results at Ra = 1.59.107 and Ha=10 computed by code 

development for two-dimensional and A=4 flow shown in Fig. 

2. The stream functions and isotherms are in good agreement 

with the results of Gelfgat et al [7]. 

a  b 

Figure 3.For two-dimensional flow at Ra = 1.59.107, Pr = 

0.019 and Ha =10: (a) stream functions ; and (b) isotherms . 

 

Figure  4. Current path for Ha= 25 in plane PT. 

 

       In order to give better insight into the physics behind the 

change in flow pattern, sketches of the cur-rent path in plane 

PT corresponding to Ha= 25 are given, respectively, in Fig. 3. 

The Lorentz forces are produced by the interaction between 

these currents and the applied vertical field. As can be noticed, 

the flowing fluid generates under the action of the magnetic 

field, currents which are positive in the neighborhood of the top 

wall and negative in the neighborhood of the bottom wall. This 

difference in sign is due to the different directions of the fluid 

in contact with the top and bottom walls. Because of this 

difference in sign, the Lorentz force acting on the top layers of 

the fluid is negative (i.e. a retarding force) and that acting on 

the bottom layers is positive (i.e. also a retarding force since the 

fluid flows in the negative direction towards the plane X= 0). 

The conservation equations of mass, momentum and energy are 

solved by Patankar’s [9] SIMPLE algorithm with hybrid 

difference scheme. 

     The temperature is constant on horizontal lines in the layer 

of the central part. The temperature gradients are concentrated 

in two layers adjacent to the heated and the cooled walls, and 

the distortion of the temperature field near the corners, 

however, can be attributed to convective energy transport. This 

behavior of the temperature field can be interpreted as two 

thermal boundary layers on both vertical surfaces separated by 

a core with a temperature which is constant along horizontal 

lines but not along vertical lines. 

The velocity vectors in vertical plane x–y are represented in 

Fig. 4 at three different levels of cavity depth, at quarter, mid 

and third planes. The velocity vectors of Fig. 4 indicate that the 

recirculation flow is adjacent to the walls, the central core of 

fluid is practically stagnant and the velocity maximum value 

moves closer to the wall as the Rayleigh numbers increase. 

Small change occurs in velocity values and flow patterns at x–y 

plane for the three different levels. This may be due to the 

effect of w-velocity, which is small. 

The velocity vectors in the horizontal plane x–z are represented 

in Fig. 5. One can show that the w-velocity values are very 

small compared to those of u and v especially at y = ¼ and ¾ 

H. 

       In effect, results obtained show that the flow and the 

thermal fields illustrated in the Figs. 5 a,b,c respectively 

relatively intense straining of the fluid for large values of Gr. 

We note the evolution of the stream function by increasing the 

Gr number.  

Fig. 5c. Then, one notices light modifications which appear by 

increasing Gr. For Gr=107, small recirculation zones, also 

called "vortices". The thermal field of the flow is presented in 

Figs. 6, It should be noted that for a weak Gr number, no good 

stratification of the isotherms with the horizontal walls of the 

enclosure is observed. Indeed when the Gr number increases, 

we notice the presence of significant variations in temperature. 

This is explained by the existence of convective transport 

dominating the flow (the acceleration of the particles cause this 

phenomenon). The convection flow along the two adiabatic 

vertical walls shows the beginning of the development of a 

multi-cell flow within the cavity, which enhances effectiveness 

of heat transfer through top wall. This effect has been observed 

until Gr = 107, where the cross temperature gradient and the 

resulting multi-cell flow have become strong enough for heat 

transfer to be enhanced from the bottom wall to the top wall. In 

Fig. 7, we present the distribution of the velocity vectors. We 

notice, that for a small Gr value, the flow generates very weak 

velocity gradients, whereas when the Gr number increases, the 

flow induced by the increasing buoyancy forces, the flow 

becomes animated. Significant velocity gradients are then 

localized near the walls, resulting in the production of vortices. 

 

Figure 5.  Structure of the flow represented contours of stream 

function by:Pr= 0.019; Ha=0 ; A=1; α=0, and for various 

Grashof number : a)- Gr=103 ; b)- Gr=105 ; c)- Gr=107. 

 

Figure 6.  Structure of the flow represented isothermal by:Pr= 

0.019; Ha=0 ; A=1; α=0, and for various Grashof number : a)- 

Gr=103 ; b)- Gr=105 ; c)- Gr=107 

 

Figure 7. Structure of the flow represented by velocity vectors: 

Pr= 0.019; Ha=0 ; A=1; α=0, and for various Grashof number : 

a)- Gr=103 ; b)- Gr=105 ; c)- Gr=107. 
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Effects of the Hartmann Number 
    Figure 8 and Fig. 18 show the effect of the magnetic field in 

the two directions X and Y using different values of the 

Hartmann number (Ha = 0, 10, 50, 100). 

     We notice the results of the dynamic field presented, in the 

form of contours of the stream function, Fig. 8. The figures 

show that for Ha=10, the flow is characterized by many cells. 

When the intensity of the magnetic field in the X direction 

increases, the number of cells reduces to two cells. On the other 

hand, in the Y direction, with the same intensities, the flow 

structure changes. 

      For Ha = 100, the cells begin to lose their organized shape. 

When Ha is increased further, the flow becomes unstable and a 

somewhat perturbed cell is apparent. 

      The effect of the magnetic field is significant when α equals 

900. It is also noted that when the magnetic field is applied in 

the Y direction, the natural convection is clearly weakened. An 

elimination of the thermal stratification is obtained by 

increasing the Gr number. However, an increase in the intensity 

of the magnetic field leads to isotherms nearly parallel to the 

horizontal walls explaining the elimination of the convective 

phenomena and the presence of the conductive phenomena. 

This also explains the decelleration of the thermal transfer as 

confirmed by the average Nusselt number Fig. 13. Concerning 

the horizontal and vertical normalized velocity profiles, they 

are shown in Figs14 and 15 (in the case of the X direction 

magnetic field and Y-direction magnetic field) respectively. 

It is clear from the results that as Ha increases; the velocity 

components tend to decrease. In fact, for Ha=120, their values 

are practically equal to zero in the major part of the cavity 

except near the end walls. It is thus clear that the use of a 

magnetic field can strongly decrease the flow intensity, but 

cannot completely inhibit fluid motion. 

 

 

 

 

 

Figure 8. Structure of the flow represented by contours of 

stream function, for: Gt=107, A=1, Pr=0.019,  and for various 

Hartmann number: a- Ha=30; b- Ha=100; c- Ha=120. Avec : 

1-α= 0, 2-α=90°. 

 

 

 

 

Figure 9. Structure of the flow represented by isothermal, for: 

Gt=107, A=1, Pr=0.019, and for various Hartmann number: a)-

Ha=0; b)-Ha=30; c)-Ha=100; d)-Ha=120. with : -α=90°. 

 

 

 

 

 

Figure 10. Structure of the flow represented by isothermal, for: 

Gt=107, A=1, Pr=0.019, and for various Hartmann number: a)-

Ha=0; b)-Ha=30; c)-Ha=100; d)-Ha=120. with : -α=0°. 

 

 

 

 

Figure 11. Structure of the flow represented by velocity vectors, 

for: Gt=107, A=1, Pr=0.019, and for various Hartmann 

number: a)-Ha=0; b)-Ha=30; c)-Ha=100; d)-Ha=120. with : -

α=90°. 
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Figure 12. Structure of the flow represented by velocity vectors, 

for: Gt=107, A=1, Pr=0.019, and for various Hartmann 

number: a)-Ha=0; b)-Ha=30; c)-Ha=100; d)-Ha=120. with : 

α=0 °. 
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Figure 13. Variation the average Nusselt number according to 

Ha -a) directions X. –b) directions Y 
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Figure 14. Profiles of horizontal velocity component at x=1/2, -

a) a) directions X. –b) directions Y  
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Figure 15.  Profiles of vertical velocity component at Y=0.5, -a) 

a) directions X. –b) directions Y 

 

 Effect of wall conductivity 
      Figs. 16(a, b and c) show that for insulated walls the surface 

representing the distribution of electric potential, presents 

variations less important than those corresponding to 

conducting walls. These high gradients in electric potential in 

the case of conducting walls are reflected, according to Ohm's 

law in higher values of the electric current (Figs. 17 case1 and 

case4) and hence in those of the Lorentz force. Wall electrical 

conducting leads therefore to lower source or to higher sink 

terms in the momentum equations, depending on the flow 

direction; i.e. to an overall damping of the flow. This can be 

noticed through the comparison of the maximum velocities 

shown in Fig. 16(a). Another way for viewing the effect of 

magnetic field is to use the Lycoudis number Ly [3] defined by 

Ly=2Ha2/Ra½ and traditionally employed to correlate the heat 

transfer rate of free convection of a liquid metal in an external 

magnetic field. The above conclusions that the convection is 

deadened more effectively when the frontal walls (Z=0 and 

Z=1) are electrically conducting. This is due to the fact that the 

walls electrically conducting lead to a weak source or terms 

raised in the equations of momentum depend on the direction of 

the flow, with a complete damping of the flow For example, 

with (Ha=10) the average Nusselt number is (2.5) without unit 

for case 1 is (1.4) without unit for case 4 Fig. 17.  
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Figure 16. Variation of umax, vmax, and wmax with the 

Hartmann number for the various cases (case 1: all the walls 

are electrically insulating; case 2: only the vertical walls are 

electrically conducting; case 3: only the horizontal walls are 

electrically conducting; case 4:  only the frontal walls are 

electrically conducting) (a) umax, (b) vmax, (c) wmax. 
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Figure 17. Variation of average Nusselt number Nmoy with the 

Hartmann number Ha and various cases (case 1:  all the walls 

are electrically insulating; case 2:  only the vertical walls are 

electrically conducting; case 3:  only the horizontal walls are 

electrically conducting; case 4:  only the frontal walls are 

electrically conducting), for Gr=107. 

Conclusion 
A numerical study was carried out for the effect of x, y and z-

direction uniform magnetic field on three-dimensional flow and 

temperature distribution of molten Galium natural convection 
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in an enclosed cavity heated from one vertical wall and cooled 

from an opposing vertical wall. The results show that the y-

direction external magnetic field was found to be the most 

effective in suppressing convection, and the y-direction field to 

be the least effective at Ha = 120 with reduction in Nusselt 

number value. The average Nusselt number values decrease 

with increase in Hartmann number values. Also, electrical wall 

conductivity changes the Lorentz force distribution by 

increasing it in regions where it opposes the flow, decreasing it 

in the remaining regions where it is favorable to the flow: the 

consequence being an enhanced damping of the flow. 

        In conclusion, the results indicate that one can control the 

flow via a good choice of the strength and direction of the 

magnetic field, as well as of the electric conductivity of the 

cavity walls. 
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