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NOMENCLATURE

vi Velocity, where i = 1,2,3
p Pressure
T Temperature
C Salt concentration
µ Fluid viscosity
ρ0 Fluid density

k̂ The reaction rate
kC The molecular diffusivity of the solute through the fluid
g The gravity
αT The thermal expansion coefficient
αC The solutal expansion coefficient

φ̂ The matrix porosity
M The ratio of the heat capacity of the fluid to the heat capacity of the medium
K The permeability tensor
kT The thermal diffusivity tensor
CU Salt concentration of the upper boundary
CL Salt concentration of the lower boundary
TU Temperature of the upper boundary
TL Temperature of the lower boundary
k = (0,0,1)

ABSTRACT

A problem of thermosolutal convection with reaction in an

anisotropic porous medium of Darcy type is investigated. The

Darcy model is employed as the momentum equation with the

density being a linear function in temperature and salt concentra-

tion. Two cases are considered: heated below and salted above

system and heated and salted below system. We allow the per-

meability and thermal diffusivity to be anisotropic tensors. Par-

ticularly, we restrict consideration to horizontal isotropy in me-

chanical and thermal properties of the porous medium. The en-

ergy method is used to study the non-linear stability aspect of

the problem. The D2 Chebyshev Tau method is implemented to

solve the associated system of equations, with the correspond-

ing boundary conditions, and to obtain the non-linear stability

boundaries below which the solution of the system is globally

stable. The effect of the reaction rate, the mechanical anisotropy

parameter, and the thermal anisotropy parameter on the stability

of the system is discussed and presented graphically. We find

that the thermal anisotropy parameter has the opposite effect to

that of the mechanical anisotropy parameter on the stability of

the system.

INTRODUCTION

Convection in porous media, specifically double diffusive

convection in porous media, has its wide implications in geo-

logical process and a variety of geotechnical applications (see

Malashetty and Biradar [1]). Double diffusive convection in

porous media is well investigated by Nield and Bejan [2], In-

gham and Pop [3; 4], Vafai [5; 6], Nield [7], Rudraiah et al.

[8], Wollkind and Frisch [9; 10], Bdzil and Frisch [11; 12], and

Gutkowicz-Krusin and Ross [13]. Many recent studies in dou-

ble and multi-component convection are investigated by Rionero

[14; 15; 16]. Steinberg and Brand [17; 18] carried out the first

study on reactive convection in porous media. They studied the

linear stability analysis of a reactive binary mixture with a fast

chemical reaction. More studies were carried out by Gatica et

al. [19; 20], Viljoen et al. [21], and Malashetty and Gaikwad

[22]. Pritchard and Richardson [23] explored a model similar to

that of Steinberg and Brand [17; 18] in which they used the lin-

ear instability theory to study the onset of Darcy thermosolutal

convection with reaction. Wang and Tan [24] extended the pre-

vious work of Pritchard and Richardson [23] in which Wang and

Tan [24] considered the Darcy-Brinkman model to discuss how

the onset of double-diffusive convection varies with the Darcy

number, the Lewis number, and the reaction term by using the

normal mode technique to carry out a linear instability analysis.

Most studies have focused on studying convection in isotropic

porous media, even though the porous materials in reality are

anisotropic. A well documented review of research articles on

convective flows in anisotropic porous media can be found in

Storesletten [25]. Malashetty et al. [26; 27; 28] studied the on-

set of double diffusive convection in anisotropic porous media

with different effects, like rotation, cross-diffusion effects, and

soret effect. Recently, Malashetty and Biradar [1] studied the on-

set of double diffusive reaction convection in anisotropic porous

layer of Darcy type. Srivastava and Bera [29] considered the on-

set of thermosolutal reaction convection in a couple-stress fluid

saturated anisotropic porous medium. Gaikwad and Begum [30]

investigated the onset of a rotating double-diffusive reaction con-

vection in anisotropic Darcy type porous medium. The authors
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in the six articles mentioned above used a linear theory and a

weak non-linear theory to study the stability. The linear analy-

sis is based on the normal mode technique, while the non-linear

analysis is based on a truncated Fourier series representation.

We are studying non-linear stability using an energy stability

technique which is used extensively by, for example, Straughan

[31; 32; 33], Rionero et al. [34; 35], and Capone et al. [36]. Al-

Sulaimi [37; 38] used the energy method to study the non-linear

stability of Darcy and Brinkman thermosoultal convection with

reaction, respectively, in isotropic porous medium. Malashetty

and Biradar [1] studied the onset of the double-diffusive reac-

tion convection in an anisotropic porous medium of Darcy type.

They analysed the linear and weak non-linear stability of a reac-

tive binary mixture in a horizontal porous layer with anisotropic

permeability and thermal diffusivity. I use the energy method to

study the non-linear stability aspect of the problem. The aim of

the study is to obtain the non-linear stability boundaries below

which the solution is globally stable. The effect of the reaction

terms, the anisotropic permeability, and thermal diffusivity ten-

sors on the onset of stability is analysed and compared with the

relevant results obtained by Malashetty and Biradar [1].

BASIC EQUATIONS

We consider an anisotropic porous layer of the Darcy model

for the momentum equation with the density ρ being a linear

function in temperature T and salt concentration C. In addition,

we need the continuity equation, the advection-diffusion equa-

tion for the transport of heat, and advection-diffusion equation

for the transport of solute with reaction. The governing system

of equations is

µvi =−Ki j p, j −Ki jk jgρ0[1−αT (T −T0)+αC(C−C0)],

vi,i = 0,

1

M
T,t + viT,i = ∇.(kTi j.∇T ),

φ̂C,t + viC,i = φ̂kC∆C+ k̂[ f1(T −T0)+ f0 −C],

(1)

where K = Kxii + Kyjj + Kzkk is the permeability tensor and

kT = kT xii+ kTyjj+ kT zkk is the thermal diffusivity tensor. We

restrict consideration to horizontal isotropy in permeability and

thermal diffusivity, so that Kx = Ky and kT x = kTy. The system is

taken in the domain R
2×(0,d)×{t > 0}, and the corresponding

boundary conditions are

vini = 0 on z = 0,d,

T = TL on z = 0, and T = TU on z = d,

C =CL on z = 0, and C =CU on z = d.

(2)

Where TL > TU since the systems are heated below, while CU >
CL for the salted above system, and CL >CU for the salted below

z = d = 1 ——————————– vini = 0, T = TU , C =CU

.

.

.

.

.

z = 0 ——————————— vini = 0, T = TL, C =CL

Figure 1. The test domain with the boundary conditions.

system. The steady state whose stability is under investigation is

v̄i =0,

T̄ (z) =−βT z+TL,

C̄(z) =−βCz+CL,

p̄(z) =−
1

2
gρ0(αT βT −αCβC)z

2

−gρ0[1−αT (TL −T0)+αC(CL −C0)]z+ p0,

(3)

where βT = (TL −TU )/d, βC = (CL −CU )/d, and p0 is the pres-

sure at z = 0. To study the stability, we introduce perturbations

(ui,π,θ,φ) to the steady solutions (3) in such a way that

vi = v̄i +ui , p = p̄+π , T = T̄ +θ , C = C̄+φ. (4)

We substitute (4) in (1) and derive equations for (ui,π,θ,φ).
We introduce an inverse permeability tensor Mi j which satis-

fies Mi jK jk = δik, where Mi j = diag{κ,κ,κ3};κ 6= κ3. The per-

turbed equations are non-dimensionalized by defining the non-

dimensional variables

π = Pπ∗, ui =Uu∗i , θ = T ♯θ∗, φ =C♯φ∗, xi = dx∗i , t = τt∗. (5)

Choose the time, velocity, pressure, temperature, and

salt scales as τ = d/MU, U = kT z/d, P = dUµ, T ♯2
=

βT µkT z/gρ0αT , C♯2
= βCµkT z/gρ0αC and define the temperature

and salt Rayleigh numbers by R =
√

gρ0αT βT d2/µkT z, Rs =
√

gρ0αC|βC|d2Le/µkT zφ̂ when CL < CU , or Rs =
√

gρ0αCβCd2Le/µkT zφ̂ when CL > CU , where Le = kT z/kC is

the Lewis number. The non-linear, non-dimensional system of

equations is

Mi ju j =−π,i + kiRθ− kiRsφ ,

ui,i = 0 ,

θ,t +uiθ,i = Rw+α∆∗θ+D2θ ,

εφ,t +
Le

φ̂
uiφ,i =∓Rsw+∆φ+hθ−ηφ ,

(6)
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where α = kT x/kT z, ε = MLe, D = d/dz, ∆∗ is the horizontal

Laplacian and h and η are the reaction coefficients

h =
k̂ f1T ♯d2Le

kT zC♯φ̂
and η =

k̂d2Le

kT zφ̂
.

Moreover, −Rs for the salted above system and +Rs for the salted

below system. The corresponding boundary conditions are

uini = 0 , θ = 0 , φ = 0 at z = 0,1 , (7)

with {ui,θ,φ} satisfying a plane tiling periodicity in (x,y) direc-

tion.

LINEAR INSTABILITY THEORY

In order to study the linear instability, we drop the non-linear

terms in system (6) and retain the third component of the double

curl of equation (6)1. Assuming a normal mode representation,

one finds

(D2 −
a2κ3

κ
)W +

a2

κ
RΘ−

a2

κ
RsΦ = 0 ,

σΘ = RW +(D2 −a2α)Θ ,

εσΦ =∓RsW +(D2 −a2 −η)Φ+hΘ .

(8)

Equations (8) are to be solved subject to the boundary conditions

W = Θ = Φ = 0 on z = 0,1 , (9)

using D2 Chebyshev-Tau method, see Dongarra et.[39]. The

analysis is presented in the last section.

NON-LINEAR ENERGY STABILITY THEORY

Returning to the non-linear, non-dimensional perturbed sys-

tem of equations (6) and the corresponding boundary conditions

(7). Multiply equation (6)1 by ui, equation (6)3 by θ, and equa-

tion (6)4 by φ and integrate over the domain. In this way we may

derive the energy identity in the form

dE

dt
= I −D , (10)

where

E(t) =
1

2
‖θ‖2 +

ελ

2
‖φ‖2 ,

I = 2R(θ,w)+λh(θ,φ)− (1±λ)Rs(φ,w) ,

D = (Mi ju j,ui)+α‖∇θ‖2 +(1−α)‖θ,z‖
2 +λ‖∇φ‖2 +λη‖φ‖2,

(11)

and λ > 0 is a coupling parameter to be selected optimally.

Then, provided that RE > 1

dE

dt
≤−D(1−

1

RE

) (12)

is an energy inequality which follows from the energy identity

(10). Where

1

RE

= max
H

I

D
, (13)

and H = {ui,θ,φ |ui ∈ L2(V ), θ,φ ∈ H1(V ), ui,i = 0} and ui,θ,φ
are periodic in x,y. We can show

(Mi ju j,ui)≥ κ0‖u‖2 ; κ0 = min{κ,κ3} ,

and then

D ≥ 2kπ2E(t) ,

where k = min{ 1
αMLe

,1}. Then from (12) we may derive the in-

equality dE/dt ≤ −2a1kπ2E(t), where the coefficient a1 is de-

fined by a1 = (RE −1)/RE .
Upon integration we obtain

E(t)≤ E(0)e−2a1kπ2t ,

which shows that E(t)→ 0 as t → ∞. Therefore, ‖θ(t)‖→ 0 and

‖φ(t)‖→ 0 as t → ∞ according to (11)1.
To show the decay of ‖u‖, we have to employ the Arithmetic-

Geometric Mean inequality in the balance equation obtained by

integrating (6)1 ×ui and using the fact ‖w‖2 ≤ ‖u‖2 to obtain

(

κ0 −
Rα1 +Rsβ1

2

)

‖u‖2 ≤
R

2α1
‖θ‖2 +

Rs

2β1
‖φ‖2, (14)

which shows the decay of ‖u‖2 under the condition

κ0 −
Rα1 +Rsβ1

2
> 0.

Regarding the maximum equation (13), the nonlinear stability

threshold is given by the variational problem

1

RE

=max
H

2R(θ,w)− (1±λ)Rs(φ,w)+hλ(θ,φ)

(Mi ju j,ui)+α‖∇θ‖2 +(1−α)‖θ,z‖2 +λ‖∇φ‖2 +ηλ‖φ‖2
.

(15)
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We have to determine the Euler-Lagrange equations and maxi-

mize in the coupling parameter λ. By standard calculation, the

Euler-Lagrange equations which arise from the variational prob-

lem (13) may be reduced to the normal mode form

(

D2 −
a2κ3

κ

)

W +
a2

κ
RREΘ−

(

1±λ

2

)

a2

κ
RsREΦ = 0 ,

RREW +
(

D2 −a2α
)

Θ+
λh

2
REΦ = 0 ,

−RsRE

(

1±λ

2λ

)

W +
h

2
REΘ+

(

D2 −a2 −η
)

Φ = 0 ,

(16)

and the corresponding boundary conditions are

W = Θ = Φ = 0 at z = 0,1 . (17)

We solved the system (16)-(17) numerically using the D2 Cheby-

shev Tau method, cf. Dongarra et.[39].

NUMERICAL RESULTS

Salted above system

In this article, we are presenting the interpretation of the heated

below salted above system, while the interpretation of the heated

below salted below system is presented in depth by Al-Sulaimi

[40]. Numerically, the results show the coincidence of the linear

instability boundary and the energy stability boundary for differ-

ent values of the anisotropy parameters when there is no reaction,

h = η = 0, as fig.2(a) shows, there is no region of potential sub-

critical instabilities. To investigate the effect of increasing the

reaction rates, different values of h and η are implemented for

α = kT x/kT z = 0.5 and χ = Kz/Kx = 10. Increasing the reaction

rates, see fig.2(b), results in a wider gap between the linear insta-

bility and nonlinear energy stability boundaries; therefore, there

is a wider space of potential subcritical instability. To study the

effect of each of h and η on the onset of convection, a large dif-

ference between their values is implemented for different values

of α and χ. For all chosen values of α and χ, when η is larger

than h the two boundaries coincide, which is expected from sys-

tem (6)4 as −ηφ is a stabilizing term but the region of stability

varies due to the effect of the anisotropy parameters α and χ. On

the other hand, implementing larger values of h than η for dif-

ferent cases of α and χ, reveals regions of potential subcritical

instability. This is a result of a divergence of the energy stabil-

ity boundaries(dashed lines) from the linear instability bound-

aries(continuous lines), which is also expected from system (6)4

as +hθ is a destabilizing term.

The effect of the thermal anisotropic parameter α = kT x/kT z

and the mechanical anisotropic parameter χ = Kz/Kx may be in-

terpreted as follows: When χ < 1, keeping the vertical perme-

ability constant Kz = 1 and decreasing the horizontal permeabil-

ity Kx, lowers the the energy stability boundary and the linear

instability boundary indicating that the effect is destabilizing as
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b) h = 5 and η = 3

Figure 2. Linear instability and energy stability boundaries for

the salted above Darcy convection problem with anisotropic ef-

fect for α = 0.5, χ = 10 and for different values of the reaction

rates h and η. The figure shows the effect of increasing the reac-

tion rates.

fig.5(a,b) shows. When χ > 1, keeping the horizontal perme-

ability constant Kx = 1 and increasing the vertical permeability

Kz, shifts the two boundaries to higher positions indicating that

the effect is stabilizing, as is clear in fig.5(c,d).
Fig.6 indicates the effect of the thermal anisotropy parameter

α = kT x/kT z ≤ 1 for fixed values of the mechanical anisotropy

parameter χ and reaction rates h and η which can be interpreted

as follows. Keeping the horizontal thermal diffusivity constant,

kT x = 1, and increasing the vertical thermal diffusivity, kT z, low-

ering the two boundaries which results in smaller definite sta-

ble space below the energy stability boundary(dashed lines), see

fig.6(a,b), as an indication of a destabilization effect. Note that

the effect of the thermal anisotropy parameter α is opposite to

that of the mechanical anisotropy parameter χ when χ > 1. This

result agrees with the findings of Malashetty and Biradar [1],

Gaikwad et al. [28], and Malashetty and Swamy [41].

CONCLUSION

The onset of thermosolutal convection with reaction in

anisotropic porous medium of the Darcy type is investigated us-
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Figure 3. The energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for α = 1, h =
20, η = 0. The figure shows the effect of increasing the vertical

permeability component, Kz.
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Figure 4. The energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for χ= 10, h=
20, η = 0. The figure shows the effect of increasing the vertical

thermal diffusivity component, kT z.

ing the nonlinear energy stability method. The system of equa-

tions with the corresponding boundary conditions is solved by

using the D2 Chebyshev Tau method. The reaction rates may

stabilize or destabilize according to the values of each of the re-

action terms h and η. h plays the role of destabilizing while η
plays the role of stabilizing. When the vertical permeability is

high (χ > 1), the system is more stable. While decreasing the

horizontal permeability for fixed vertical permeability such that

(χ < 1), the system will be more unstable. When the vertical

component of the thermal diffusivity is high (α < 1), the system

is more unstable. While increasing the horizontal component of

the thermal diffusivity for fixed vertical component of the themal

diffusivity such that (α < 1), the system will be more stable. The

results reveal the opposite effect of the anisotropic parameters

when the vertical components are higher, as fig.(3) and fig.(4)

show. This finding agrees with the findings of Malashetty and

Biradar [1], Gaikwad et al. [28], and Malashetty and Swamy

[41].

ACKNOWLEDGMENT

This work is supported by a scholarship from the Ministry

of Higher Education, Muscat, Sultanate of Oman. I would like

to thank Professor Brian Straughan for his discussion and com-

ments.

REFERENCES

[1] M. S. Malashetty, B. S. Biradar, The onset of double dif-

fusive reaction - convection in an anisotropic porous layer,

Phys. Fluids 23 (2011) 064102.

[2] D. A. Nield, A. Bejan, Convection in porous media,

springer, 2006.

[3] D. Ingham, I. Pop, Transport phenomenon in porous media,

vol. I (1998).

[4] D. B. Ingham, I. Pop, Transport phenomena in porous me-

dia III, Vol. 3, Elsevier, 2005.

[5] K. Vafai, Handbook of porous media, Marcel Dekker, New

York, 2000.

[6] K. Vafai, Handbook of porous media, Crc Press, 2005.

[7] D. A. Nield, Onset of thermohaline convection in a porous

medium, Water Resources Research 4 (3) (1968) 553–560.

[8] N. Rudraiah, P. G. Siddheshwar, T. Masuoka, Nonlinear

convection in porous media: a review, Journal of Porous

Media 6 (1) (2003) 1–32.

[9] D. J. Wollkind, H. L. Frisch, Chemical Instabilities: I. A

heated horizontal layer of dissociating fluid, Physics of Flu-

ids (1958-1988) 14 (1) (1971a) 13–18.

[10] D. J. Wollkind, H. L. Frisch, Chemical Instabilities. III.

Nonlinear stability analysis of a heated horizontal layer

of dissociating fluid, Physics of Fluids (1958-1988) 14 (3)

(1971b) 482–487.

[11] J. Bdzil, H. L. Frisch, Chemical Instabilities. II. Chemical

surface reactions and hydrodynamic instability, Physics of

Fluids (1958-1988) 14 (3) (1971) 475–482.

[12] J. Bdzil, H. L. Frisch, Chemically driven convection, The

Journal of Chemical Physics 72 (3) (1980) 1875–1886.

[13] D. Gutkowicz-Krusin, J. Ross, Rayleigh–Bénard instability

in reactive binary fluids, The Journal of Chemical Physics

72 (6) (1980) 3577–3587.

[14] S. Rionero, Global nonlinear stability for a triply diffusive

convection in a porous layer, Continuum Mechanics and

Thermodynamics 24 (4-6) (2012) 629–641.

[15] S. Rionero, Multicomponent diffusive-convective fluid mo-

tions in porous layers: Ultimately boundedness, absence

of subcritical instabilities, and global nonlinear stability for

any number of salts, Physics of Fluids (1994-present) 25 (5)

(2013) 054104.

[16] S. Rionero, Heat and mass transfer by convection in mul-

ticomponent Navier–Stokes Mixtures: Absence of subcriti-

cal instabilities and global nonlinear stability via the Auxil-

iary System Method, Rendiconti Lincei-Matematica e Ap-

plicazioni 25 (4) (2014) 369–412.

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

82



[17] V. Steinberg, H. R. Brand, Convective instabilities of binary

mixtures with fast chemical reaction in a porous medium,

The Journal of Chemical Physics 78 (5) (1983) 2655–2660.

[18] V. Steinberg, H. R. Brand, Amplitude equations for the on-

set of convection in a reactive mixture in a porous medium,

The Journal of Chemical Physics 80 (1) (1984) 431–435.

[19] J. Gatica, H. Viljoen, V. Hlavacek, Stability analysis of

chemical reaction and free convection in porous media,

International Communications in Heat and Mass Transfer

14 (4) (1987) 391–403.

[20] J. E. Gatica, H. J. Viljoen, V. Hlavacek, Interaction between

chemical reaction and natural convection in porous media,

Chemical Engineering Science 44 (9) (1989) 1853–1870.

[21] H. J. Viljoen, J. E. Gatica, V. Hlavacek, Bifurcation analy-

sis of chemically driven convection, Chemical Engineering

Science 45 (2) (1990) 503–517.

[22] M. Malashetty, S. Gaikwad, Onset of convective instabili-

ties in a binary liquid mixtures with fast chemical reactions

in a porous medium, Heat and mass transfer 39 (5-6) (2003)

415–420.

[23] D. Pritchard, C. N. Richardson, The effect of temperature -

dependent solubility on the onset of thermosolutal convec-

tion in a horizontal porous layer, J. Fluid Mech. 571 (2007)

59–95.

[24] S. Wang, W. Tan, The onset of Darcy-Brinkman thermoso-

lutal convection in a horizontal porous media, Physics Let-

ters A 373 (2009) 776–780.

[25] L. Storesletten, Effects of anisotropy on convective flow

through porous media, Transport phenomena in porous me-

dia (1998) 261–283.

[26] M. Malashetty, R. Heera, The effect of rotation on the onset

of double diffusive convection in a horizontal anisotropic

porous layer, Transport in Porous Media 74 (1) (2008) 105–

127.

[27] S. Gaikwad, M. Malashetty, K. R. Prasad, Linear and

non-linear double diffusive convection in a fluid-saturated

anisotropic porous layer with cross-diffusion effects, Trans-

port in Porous Media 80 (3) (2009) 537–560.

[28] S. Gaikwad, M. Malashetty, K. R. Prasad, An analytical

study of linear and nonlinear double diffusive convection

in a fluid saturated anisotropic porous layer with soret ef-

fect, Applied Mathematical Modelling 33 (9) (2009) 3617–

3635.

[29] A. K. Srivastava, P. Bera, Influence of chemical reaction

on stability of thermo-solutal convection of couple-stress

fluid in a horizontal porous layer, Transport in Porous Me-

dia 97 (2) (2013) 161–184.

[30] S. Gaikwad, I. Begum, Onset of double-diffusive reaction–

convection in an anisotropic rotating porous layer, Trans-

port in Porous Media 98 (2) (2013) 239–257.

[31] B. Straughan, The energy method, stability, and nonlinear

convection, 2nd Edition, Vol. 91 of Applied Mathematical

Sciences, Springer, New York, 2004.

[32] B. Straughan, Stability and wave motion in porous media,
Vol. 165 of Applied Mathematical Sciences, Springer, New

York, 2008.

[33] B. Straughan, Nonlinear stability in microfluidic porous

convection problems, Ricerche di Matematica 63 (1) (2014)

265–286.

[34] S. Rionero, Lˆ2-energy decay of convective nonlinear PDEs

reaction–diffusion systems via Auxiliary ODEs systems,

Ricerche di Matematica 64 (2) (2015) 251–287.

[35] S. Rionero, I. Torcicollo, Stability of a Continuous

Reaction-Diffusion Cournot-Kopel Duopoly Game Model,

Acta Applicandae Mathematicae 132 (1) (2014) 505–513.

[36] F. Capone, V. De Cataldis, R. De Luca, On the stability of

a SEIR reaction diffusion model for infections under Neu-

mann boundary conditions, Acta Applicandae Mathemati-

cae 132 (1) (2014) 165–176.

[37] B. Al-Sulaimi, The energy stability of Darcy thermosolutal

convection with reaction, International Journal of Heat and

Mass Transfer 86 (2015) 369–376.

[38] B. Al-Sulaimi, The non-linear energy stability of Brinkman

thermosolutal convection with reaction, Ricerche di

Matematica (2016) 1–17.

[39] J. J. Dongarra, B. Straughan, D. W. Walker, Chebyshev tau-

QZ algorithm methods for calculating spectra of hydrody-

namic stability problems, Applied Numerical Mathematics

22 (4) (1996) 399–434.

[40] B. Al-Sulaimi, Convection with chemical reaction, and

waves in double-porosity materials, PhD thesis, University

of Durham, 2016. provisional title, in course of completion.

[41] M. Malashetty, M. Swamy, The onset of convection in a bi-

nary fluid saturated anisotropic porous layer, International

Journal of Thermal Sciences 49 (6) (2010) 867–878.

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

83



0 50 100 150

0
5
0

1
0
0

1
5
0

2
0
0

Rs
2

R
^
2

R
L

2

R
E

2

a) h = 20 and η = 0 , χ = 0.1
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b) h = 20 and η = 0 , χ = 0.5
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c) h = 20 and η = 0 , χ = 2
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d) h = 20 and η = 0 ,χ = 10

Figure 5. Linear instability and energy stability boundaries for

the salted above Darcy convection problem with anisotropic ef-

fect for α = 1. The figure represents the effect of different values

of the permeability tensor, χ = Kz

Kx
.
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a) h = 20 and η = 0 ,α = 1
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b) h = 20 and η = 0 ,α = 0.5

Figure 6. Linear instability and energy stability boundaries for

the salted above Darcy convection problem with anisotropic ef-

fect for χ = 10. The figure represents the effect of different val-

ues of the thermal diffusivity tensor, α = kT x
kT z

.
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