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ABSTRACT 

Heat transfer in solids may be dealt with the heat equation, 

which is a partial differential equation, from which different 

analytical solutions for the study of heat transfer throughout 

solids and at their surfaces may be found. This implies the 

resolution of a distributed parameter model. On the other hand, 

the possibility of considering the thermal-electrical analogy is 

usually assumed, this being based mainly on the similarity 

between Ohm’s and Fourier’s laws under the assumption that 

the different variables used in electrical networks may be 

regarded as analogues to the thermal network variables. This 

implies the use of a lumped parameter model, which may be 

represented as a system of differential and algebraic equations 

(DAE) linked to the graphical representation of the thermal 

network. In this latter case the limitations of such analogy for 

describing heat flow should be taken into account. Therefore, it 

would be important to consider thermal networks independently 

of the thermal-electrical analogy. For this, thermal networks 

may be built as particular cases of directed graphs, within graph 

theory, since thermal networks may have physical meaning 

without the electrical analogy. The interpretation of a graph as a 

thermal network may directly use physical principles of heat 

and thermodynamics. This enables us to propose an alternative 

to the use of the electrical analogy, since electrical networks are 

only a particular application of graph theory consistent with 

electromagnetic laws which are not analogous to 

thermodynamic laws. Furthermore, the construction and the use 

of thermal networks for analysing heat transfer problems may 

be simplified from this perspective. 

 

1. INTRODUCTION 
Heat transfer in solids is usually approached by using 

calculus. The textbook by Carslaw and Jaeger is an early 

reference which proposes analytical solutions for the study of 

heat transfer throughout solids and at their surfaces [1]. These 

authors present the heat equation as a partial differential 

equation for solids, and they notice the thermal-electrical 

analogy. This analogy is based mainly on the similarity 

between Ohm’s and Fourier’s laws, implying that the different 

variables used in electrical and thermal networks are usually 

presented as analogues [2]. At solid surfaces in contact with a 

fluid (air) the analogy with Ohm’s law can be extended by 

considering Newton’s cooling law, which may represent heat 

losses between the solid’s surface and its surroundings. Heat 

losses at a solid’s surface may be due to convective (air-solid) 

and radiative (surface-surface) phenomena. Today, Newton’s 

cooling law dealing with convective losses and radiative losses 

may be handled by linearizing the radiative losses given by 

Stefan-Boltzmann’s law. The assumption of linear energy flow 

in form of heat (heat flow) within solids and at their surfaces, 

independently of the physical linear law considered, enables the 

use of the heat equation beyond heat conduction within solids. 

On the other hand, due to the limitations of thermal-

electrical analogy for describing heat flow, thermal networks 

should be seen as a particular case within graph theory, which 

is a wide field of mathematics [3]. Moreover, thermal networks 

may be studied by using linear algebra. The interpretation of a 

graph as a thermal network needs to utilize physical principles 

of heat, i.e. thermodynamic laws. This allows us to propose an 

alternative to the use of the electrical analogy, since electrical 

networks constitute another particular application of graph 

theory consistent with electromagnetic laws which are not 

analogous to thermodynamic laws [4]. 

Firstly, we will offer insight into the classical foundations 

of the heat conduction theory in solids before providing all the 

information necessary for building a thermal network to be 

employed in heat transfer modelling of a dynamic system. In 

addition, we show that thermal networks may be seen as the 

graphical representation of a linear time invariant system of 

differential algebraic equations (DAE). Thermal networks are 

formed by nodes (vertices in graph theory) and branches (edges 

in graph theory) weighted by a thermal resistance. It is 

important to highlight that thermal networks or the system of 

DAE will be linear in parameters but temperature or heat 

sources, which are the physical variables, may be non-linear 

functions. Moreover, linear in parameters does not mean that 

the thermal network represents a homogeneous system in space 

[5]. The density, specific heat capacity or conductivity may be 

a function of space as well as time in general. An 

inhomogeneous system would simply require a thermal 

network of higher order, i.e. a greater number of nodes and 

branches. Each node of the thermal network has a single value 

for each variable at a given time. The parameters of the thermal 

networks will be assumed to be time invariant; however, the 

temperature and heat sources provided may be time variant. In 

short, linearity will be related to the parameters of the thermal 

network or the system of DAE, not to the physical variables 
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and thermal networks to be used in transient further steady-state 

problems. 

Finally, thermal networks are usually associated with the 

use of lumped parameter models. As lumped parameter models 

are historically presented as opposite to distributed parameter 

systems [6], a brief discussion is included on the concepts of 

lumped and distributed parameter models, since these are 

considered important to appreciate the subtle difference 

between them.  

2. HEAT FLUX (HEAT FLOW RATE) 
Heat flux or heat flow rate is the amount of energy in form 

of heat which goes from one system at a higher temperature to 

another system at a lower temperature per time unit. 

2.1. LINEAR HEAT FLUX 

The mathematical theory of heat conduction may be said 

to be founded upon a hypothesis suggested by experimental 

evidence [1] and it states that the energy which flows, Q, in one 

direction across a solid per time and surface unit is given by: 

𝑄

𝑆𝑡
=

𝜅(𝜃𝑠1 − 𝜃𝑠2)

𝑑
 (1) 

where 𝜅 is the thermal conductivity, which may be considered a 

constant property dependent on the solid; (𝜃𝑠1 − 𝜃𝑠2) is the 

difference of temperatures between the two surfaces of the 

solid; and S and d are the surface and the thickness of the solid, 

respectively.  

Eq. Erreur ! Source du renvoi introuvable.(1) reaches 

the range of physical law when carried to the limits of zero 

surface, thickness, and time. Assuming heat flux density in 

three dimensions, we get: 

𝑞𝑆 = −𝜅𝛁𝜃 (2) 

where 𝛁 is the gradient operator and the density heat flux is 

noted as 𝑞𝑆 (W/m2). The surface, S, is usually considered 

constant and it can be considered explicitly in Eq. (2). Then, we 

will get the heat flux, 𝑞, instead of the density heat flux.  

𝑞 = 𝑞𝑆𝑆 (3) 

The importance of Eq. (2) resides in its linearity, and it is 

usually known as Fourier’s law [7]. 

An important detail needs to be highlighted—that is, time 

is not considered in thermodynamics since system changes are 

studied from one equilibrium state to another. For this reason, 

heat or heat transfer are considered energy in transit with units 

of energy. Hereafter, once time is considered, we will refer to 

heat “rate” transfer or heat flux as energy per time unit but 

density heat flux as energy per time and space unit. The 

differences between heat transfer and heat flux need to be noted 

to avoid confusion. 

In engineering, time is relevant and we consider heat flux 

density as the energy transferred across a surface per unit area 

and per unit time as expressed by Fourier’s law. Heat flux 

occurs only as a consequence of a gradient of temperatures 

between systems at different temperatures which are connected 

thermally. Classically, this is interpreted while assuming the 

existence of isothermal surfaces and assuming that temperature 

is a potential function. The exchange of energy will be a 

function only of the difference in temperatures between 

isothermals in such a context. In this study, thermal networks 

will use the concept of nodes (vertices in graph theory) instead 

of isothermal surfaces. In fact, in the case of isothermal 

surfaces the energy is assumed to be transferred between points 

of different isothermal surfaces. An isothermal surface has a 

single temperature by definition; and a node of a thermal 

network will also have a single temperature. Nodes may be 

seen as a generalization of isothermal surfaces since they may 

be seen as isothermal surfaces or volumes, or they can even be 

considered a single point. A volume may refer to absolute or 

relative space; nodes (points, surfaces, and volumes) will be 

considered fixed in space.   

Next, it should be noted that the origin of the heat 

conduction theory is not the differential expression, Eq. (2), but 

the algebraic expression, Eq. (1), which should be seen as 

suggested more than verified by experience [1].  The origin is 

crucial since the definition of thermal conductivity arises from 

such an algebraic equation, Eq. (1): 

𝜅 =
𝑄𝑑

(𝜃𝑠1 − 𝜃𝑠2)𝑆𝑡
 (4) 

Therefore, thermal conductivity is not a measurable 

quantity but rather needs to be estimated from measurements of 

the physical variables. From Eq. (4), the theoretical assumption 

of a time invariant and constant thermal conductivity between 

two surfaces is usually made, which refers, upon a classical 

interpretation, to the resistance of heat spreading throughout the 

volume between the surfaces [1].  

2.2. ENERGY CONSERVATION 

The next important point is the assumption of the 

principle of energy conservation, which is a first principle of 

physics. From a classical standpoint, the energy, 𝐸, entering or 

leaving a system (in or out) is equal to the change of energy 

within the system. The energy balance equation of a system is: 

Δ𝐸 = 𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛 (5) 

In thermodynamics, it is assumed that energy may be 

transferred in form of heat from a system in equilibrium to 

other system/s and vice versa up to reaching overall 

equilibrium. The energy balance is reached between a system 

and its surroundings (other system/s) and, in this context; a 

macroscopic system will be a node. The concept of a node will 

be used for building thermal networks based on graph theory, 

where a node is called a vertex. The aim is to enable the study 

of the dynamic system for solving heat transfer problems using 

linear algebra; since thermodynamics do not consider the study 

of dynamic systems. We will say that the resistance occurs 

between two nodes instead of between two surfaces. In this 

way, as explained above, the nodes may be surfaces but they 

can also be volumes or points. The resistance will be the 

resistance of two nodes for exchanging energy in form of heat 

due to their different temperatures. Furthermore, the use of 

nodes, instead of isothermal surfaces only, allows us to 
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consider the algebraic linear law, Eq. (1), in general not limited 

only to heat conduction within solids.   

On the other hand, it is important to note that physics is a 

science of measurements, and measurements are comparisons. 

Therefore, it is always necessary to state a baseline for energy 

measurements, i.e. in the case of energy measurements a zero 

energy value. In the case of energy transferred in form of heat, 

the temperature will be the measurement for quantifying the 

energy of a system (a node). For this purpose, the increment of 

enthalpy of a system, Δ𝐻, is usually defined as [7]: 

Δ𝐻 = 𝑚𝑐Δ𝜃 (6) 

where 𝑚(kg) is the mass of the system given by its density 

times its volume, 𝑐(J/kgK) is the specific heat capacity of the 

system, and 𝜃(K) is the temperature of the system. The zero 

enthalpy corresponds to 0ºC and enthalpy, H, can be written as: 

𝐻 = 𝑚𝑐𝜃 (7) 

Eq. (4) and (5) assumes that the change of energy in the 

system (node) is due only to the temperature change of the 

system (node). Such expressions are usually considered from a 

thermodynamic viewpoint. In a dynamic context, this 

expression of the energy of the system may be derived in time 

assuming that only the temperature is time variant: 

𝑑𝐻

𝑑𝑡
= 𝑚𝑐

𝑑𝜃

𝑑𝑡
 (8) 

This approach will be considered in this dissertation, 

where no mass transfers of phase changes are considered. The 

use of thermal networks will not be limited by these 

assumptions, but such subjects would require further 

development, which is beyond the scope of this study. 

Next, the relation between the enthalpy, H, and the 

internal energy, U, of a system (node) should be noted. By 

definition, the enthalpy is the addition of the internal energy of 

the system and the mechanical work done over/by the system 

[8]: 

Δ𝐻 = Δ𝑈 + Δ𝑃𝑉 + 𝑃Δ𝑉 (9) 

One of the main hypotheses in the present dissertation is 

that the processes to be treated will be at constant pressure and 

volume. Thus, the changes in enthalpy and in internal energy 

will be equal. That is, the exchange of heat will be the only 

cause of all the energy change in the system and no work is 

done by/over the system (node). In this way, the energy transfer 

is due to heat flux between the system and its surroundings, and 

heat flux is due only to temperature differences between the 

system and its surroundings. This is the initial hypothesis of 

textbooks which deal with heat transfer in solids [1, 7]. In 

thermal networks, a node (system) may or may not be the 

abstract representation of a solid. 

A key point is that the mass of the system (node), given by 

its density times its volume, and the specific heat capacity will 

be assumed to be constant and time invariant. The product of 

the mass by the specific heat capacity is equal to the heat or 

thermal capacity, C(J/K): 

𝐶 = 𝑚𝑐 (10) 

The heat capacity is a measurable physical quantity given by 

definition as the amount of heat which produces a change of 

temperature in a system (node) of 1ºC:  

𝐶 =
𝑄

Δ𝜃
 (11) 

From Eq. (10) and (11) we get: 

𝑄 = 𝑚𝑐Δ𝜃 (12) 

In the present study, we recall again that heat, Q(J), will 

be the only cause of the change of temperature of a system and 

it will correspond exactly with the change of the internal energy 

that will be given by the change of enthalpy.  

𝑄 = Δ𝐻 (13) 

2.2. THE HEAT EQUATION  

The heat equation can be derived from Eq. (5). In the 

present case the energy change of a system (node) is assumed 

to be due only to the temperature change—that is, heat is the 

only cause of the change of internal energy without mass 

transfer or phase change. It may be given by the time variation 

of the enthalpy, Eq. (8): 

Δ𝐸 =
𝑑𝐻

𝑑𝑡
 (14) 

or: 

Δ𝐸 = 𝜌𝑉𝑐
𝑑𝜃

𝑑𝑡
 (15) 

where the density, 𝜌(kg/m3), the volume, 𝑉(m3), and the 

specific heat capacity, 𝑐(J/kgK), are considered time invariant 

for the system (node). 

The heat flux entering or leaving the system (node) is 

given by: 

𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛 = (𝑞𝑜𝑢𝑡 − 𝑞𝑖𝑛)𝑆  (16) 

where S is the surface of the system (node). 

When we use Eq. (15) and Eq. (16), assuming a cubic 

volume and considering the first heat flux in the x-direction, 

Eq. (5) becomes: 

𝜌𝑐𝑆𝛿𝑥
𝜕𝜃

𝜕𝑡
= 𝛿𝑞𝑥𝑆 (17) 

where the surface cancels, and taking the limit of 𝛿𝑥 → 0, we 

may get: 

𝜌𝑐
𝜕𝜃

𝜕𝑡
=

𝜕𝑞𝑥

𝜕𝑥
 (18) 

It is possible to follow an analogous procedure in y and z 

directions considering heat flux as a vector, 𝐪 = (𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧). 

Then, we get the known as the heat equation when Fourier’s 

law is considered and heat sources, 𝑝, are added to the system: 

𝜌𝑐
𝜕𝜃

𝜕𝑡
= −𝛁 ∙ (−𝜅𝛁𝜃) + 𝑝 (19) 
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It is important to note that we will work with linear algebra 

not with calculus. In any case, this simplified way of 

formulating the heat equation is useful to bear in mind that 

calculus comes later than linear algebra.   

3. GRAPH THEORY AND THERMAL NETWORKS 
The basis of networks is the graph theory, which is 

considered to have been started by Leonard Euler and the 

problem of the seven bridges of Konigsberg [3]. A formal 

definition given by Wallis [9] states that a graph consists of a 

finite set of objects called vertices together with a set of 

unordered pairs of vertices called edges. Graphs are usually 

represented by diagrams in which the vertices are points, and 

edges between two points (x, y) are shown as lines from x to y. 

Graphs have multiple applications and the general graph theory 

is broad. In particular, we will examine oriented or directed 

graphs (digraphs). A digraph is like a graph except that each 

edge is given a direction and one vertex is designated as a start 

and the other as a finish; a digraph can be restricted to allow not 

more than one edge to connect two points. 

An important application of digraphs involves electrical 

networks, which, in particular, consider algebraic graph theory 

based on Kirchhoff’s voltage and current laws as well as Ohm’s 

law [10]. This early application explains the origin of the 

thermal-electrical analogy, but Fourier’s law inspired Ohm’s 

law [4], and Kirchhoff’s voltage law does not apply for 

temperature sources since temperature sources in a series 

cannot be added algebraically; that is, the sum of the drops in 

temperature in a closed thermal network cannot be zero. This 

latter restriction is mandatory for avoiding the violation of 

thermodynamic laws. This crucial difference, among others [4], 

weakens the analogy and makes it recommendable to state 

thermal networks from graph theory directly despite using the 

thermal-electrical analogy.  Another option usually often 

proposed is the use of thermodynamic bond graphs [11, 12]. 

Nonetheless, bond graphs also play with analogies at a level 

higher than graph theory; the idea of bond graphs is to extend 

the use of analogies to mechanical or hydraulic systems, further 

electrical or thermal systems. The use of the same mathematical 

expressions is proposed but changing the meaning of vertices 

(potentials) and edges (forces) [11]. 

Thermal networks may be seen as directed graphs and this 

will be taken as the prime idea in this dissertation instead of the 

usual analogy with electrical networks [1, 7, 13], which are also 

directed graphs. The reason for not using the analogy resides in 

its limitation for steady-state problems and for the differences 

between heat and electricity [4], as for example the different 

rules that apply to the addition of temperature sources and 

electrical voltage sources. The addition of temperature sources 

must obey thermodynamic laws; this means that two 

temperature sources connected in series cannot be added 

together to get an equivalent temperature source which is the 

algebraic sum of them, while it is well known that electrical 

voltage sources in a series can be added together to give an 

equivalent electrical voltage source which is the algebraic sum 

of them. In short, Kirchhoff’s voltage law has no analogy in 

thermal systems. Moreover, the difference regarding the order 

of the time derivative between the elliptic partial differential 

equation representing electromagnetic fields and the parabolic 

partial differential equation representing temperature fields is 

well known. Consequently, there is no analogous term for the 

inductance, so that the existence of such a term, called 

inertance, would go against the second law of thermodynamics 

[12]. 

Gustav Kirchhoff used the incipient graph theory for his 

advances in the study of electrical circuits [10], as James J. 

Sylvester made use of graph theory in his paper “Chemistry and 

Algebra” [3]. Electrical and chemical circuits are only 

applications of the graph theory. Currently, the power of graphs 

has extended their use from chemistry and physics to all 

disciplines, including social or information sciences. The 

advantage of graph theory is that it offers simplicity to the 

representation of a problem, and this simplicity allows a new 

insight which facilitates the analysis of the problem itself. In 

the case of thermal networks, they will be expressed as directed 

graphs and they will be represented by matrices considering 

linear algebra in their study. From mathematics to physics, a 

thermal network will be expressed as a directed graph instead 

of adapting ad hoc, by an incomplete analogy, an electrical 

network to be a thermal network. 

Then, the problem becomes to put physics on digraphs to 

establish thermal networks. Firstly, the vertices will be the 

thermal nodes and the edges will be thermal branches. The 

nodes will be characterized by a unique temperature and will be 

connected in the sense given by Fourier’s law, while thermal 

resistances will be placed at branches and thermal capacitances 

at nodes. The absent of mass transfer makes capacitances time 

invariant since it is related to the constant mass of the element 

and its specific heat. Instead of mass, the coefficient mass per 

volume is used, i.e. density. Mass transfer is a notable issue and 

it should be coupled with the solution of the problem in future 

works.  

We may conclude that, basically, a network is a graph 

where vertices and edges become entities in the physical sense. 

Once a graph is applied to a particular problem, we have a 

network, implying a non-abstract sense to vertices and edges. In 

the case of thermal networks, vertices and edges have a 

physical sense, nodes represent temperatures, and they are 

weighted by thermal capacities; the edges represent physical 

interactions between nodes and they are weighted by thermal 

resistances from which heat flows from node to node. Thermal 

networks will imply, by construction, the linearity of heat 

transfer between nodes, which is further verified by experience 

[14].  

2.3. THERMAL NETWORKS AND DAE 

From a thermal network, it is possible to design a system 

of DAE. A thermal network may be arranged in (Figure 1): 

 branches, containing thermal resistances, 𝑅𝑘, and 

temperatures sources, 𝑏𝑘,  which are crossed by heat 

flow rates, 𝑞𝑘, and  

 nodes to which thermal capacities and flow sources are 

connected. 

This formalism allows a unique representation for all 

branches of the model studied [5, 14, 15]. 
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The temperature difference over a resistance is 𝑅𝑘 is: 

𝐞 = −𝐀𝛉 + 𝐛 (20) 

where: 

𝐞 = [𝑒1, … , 𝑒𝑘 , … 𝑒𝑚]𝑇 is the vector of temperature drops over 

thermal resistances, with 𝑚 the number of branches in the 

model, which is equal to the number of resistances in the 

model; 
𝛉 = [𝜃1, … , 𝜃𝑙 , … , 𝜃𝑛]𝑇 is the vector of temperature values in 

the nodes, with 𝑛 the number of nodes;  
𝐛 = [𝑏1, … , 𝑏𝑘 , … , 𝑏𝑚]𝑇 is the vector of temperature sources on 

the branches; 

and 𝐀 is the incidence matrix of the thermal network, with 

dimension 𝑚 × 𝑛; 𝐀 is a matrix operator which makes the 

difference of temperatures. The 𝑚 rows of the incidence matrix 

𝐀 correspond to the branches containing heat rate flows, 𝑞𝑘, 

crossing the resistances, 𝑅𝑘, and the 𝑛 columns correspond to 

the nodes representing the temperatures 𝜃𝑙. 

The elements of the incidence matrix 𝐀 are given by: 

𝑎𝑘𝑙 = {

−1               if flow 𝑞𝑘 exits from node 𝜃𝑙    
        0               if 𝑞𝑘 is not connected to node 𝜃𝑙

 +1               if flow 𝑞𝑘 enters in node 𝜃𝑙        

  

 

 

Figure 1.Typical branch and nodes in thermal networks 

The heat flow rate in all branches of a thermal network is:  

𝐪 = 𝐆𝐞 (21) 

where:  

𝐪 = [𝑞1, … , 𝑞𝑘 , … , 𝑞𝑚]𝑇 is the vector of heat rates in the 

branches  

𝐆 = [
𝑅1

−1 … 0
⋮ ⋱ ⋮
0 … 𝑅𝑚

−1
] is a diagonal matrix of thermal 

conductances. 
The balance of heat rates in a node 𝜃𝑙 states that the 

variation in time of the energy accumulated in the thermal 

capacity, 𝐶𝑙�̇�𝑙, is equal to the algebraic sum of heat rates 

entering or exiting the node 𝜃𝑙 and the heat rate source 𝑓𝑙 

connected to the node. The balance equation of heat rates for all 

nodes of a thermal network can be written as: 

𝐂�̇� = 𝐀𝑇𝐪 + 𝐟 (22) 

where  

𝐂 = [
𝐶1 … 0
⋮ ⋱ ⋮
0 … 𝐶𝑛

] is a diagonal matrix of thermal capacities. 

𝐀𝑇 is the transpose of the incidence matrix; it is a matrix 

operator which makes the algebraic sum of heat transfer rates 𝐪 

in nodes. 
𝐟 = [𝑓1, … , 𝑓𝑙 , … , 𝑓𝑛]𝑇 is the vector of heat rate sources 

connected to the temperature nodes. 

Substituting Eq. (20) and Eq. (21) in Eq. (22), we can write the 

set of heat balance equations as: 

𝐂�̇� = −𝐀𝑇𝐆𝐀𝛉 + 𝐀𝑇𝐆𝐛 + 𝐟 (23) 

or, by noting 𝐊 ≡ −𝐀𝑇𝐆𝐀 and 𝐊𝑏 ≡ 𝐀𝑇𝐆, as: 

𝐂�̇� = 𝐊𝛉 + 𝐊𝑏𝐛 + 𝐟 (24) 

The Eq. (23) gives a set of differential algebraic equations 

for the nodes with negligible capacity (the elements of matrix 𝐂 

corresponding to negligible capacities are assumed to be zero). 

Eqs. (20)-(22) are present in one expression in the set of 

differential algebraic equations, Eq. (23). Eqs. (20)-(22) may be 

also arranged using a block matrix: 





































f

b

θ

q

CA

AG

dt

dT

1

 (25) 

Eq. (25) is an adaptation of the equilibrium equations to 

dynamic heat transfer problems where the term related to the 

dynamics of the system, 𝐂
𝑑

𝑑𝑡
, is placed separately from the 

conductance matrix, 𝐆, instead of changing it by an impedance 

matrix, as is done for electrical networks [16].  

2.4. DISTRIBUTED AND LUMPED PARAMETER 
MODELS  

Heat equation and thermal networks are two different ways 

of dealing with heat flow. The difference resides in considering 

finite networks or finite systems of differential and algebraic 

equations (DAE) instead of a partial differential equation 

(PDE), which may become an infinite system of DAE [5], for 

dealing with the space distribution of a physical system.  

It is usually considered that thermal networks are lumped 

parameter models in which the variables are not functions of 

the space, while the heat equation is considered a distributed 

parameter model in which the variables are dependent on space. 

As has been stated above, lumped parameter models may be 

described by a finite system of differential algebraic equations 

(DAE), and distributed parameter models may be described by 

partial differential equations (PDE). We could consider that 

lumped and distributed parameter models may be described, in 

general, by a system of DAE, allowing us to consider the same 

mathematical formalism for describing both kinds of models. In 

mathematics, operators are also introduced, which may be 

differentials or not, for using the same formalism and defining 

both distributed and lumped parameter models in the same way 

[17]. Once the same mathematical formalism is used to 

describe a system regardless of considering it distributed or 

lumped, the difference remains in the assumption that a lumped 
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parameter model is an approximation of a distributed parameter 

model, which is supposed to be able to describe the physical 

system perfectly [6]. The dependence on space of a lumped 

parameter model is given by its order, which is not infinite. 

This is a subtle difference between distributed and lumped 

parameters models since, for practical applications, solving a 

distributed parameter problem usually requires its reduction to 

a lumped parameter problem, i.e. a finite order model. The 

reduction of the distributed system to a lumped system implies 

a connection between the two representations. This may be 

done before or after solving the time integration [18]. Such 

reduction is usually done by space integration of the distributed 

system, and for this reason it should be noted that a lumped 

system designed in such way could be considered a distributed 

system where the spatial dependence is present implicitly. In 

this way, a lumped model should not be considered the opposite 

of a distributed model since it may be used to determine the 

variables at every space placement. The question would be to 

estimate the order of the lumped model needed to accurately 

describe a thermal system distributed in space [5]. 

2.5. CONCLUSIONS 
It has been shown that the heat flow between systems at 

different temperature may be studied, further using the classical 

heat equation and Fourier’s law, by using thermal networks 

built considering thermodynamics and graph theory. In such a 

case, thermodynamic systems are represented by nodes, and the 

most important principle to be kept is that of energy 

conservation. Furthermore, the interactions between the nodes 

of thermal networks may be considered to be governed by a 

linear law, as is usual in classical physics. Thermal networks 

introduced in this way do not have the limitations of the 

analogy with electrical networks; the main problem of thermal-

electrical analogy is that Kirchhoff’s voltage law does not apply 

for thermal networks, since temperatures cannot be added 

algebraically as can be done for electrical voltage. 

Finally, it should to be highlighted that lumped parameter 

models (thermal networks) may consider the distribution of the 

variables in space implicitly. The only theoretical difference 

regarding a distributed parameter model (heat equation) is 

based on the assumption that the distributed parameter model 

uses the exact value of the variables at every point in space, 

while the lumped parameter model will use only the exact value 

of the variables at a finite number of space nodes. 
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