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ABSTRACT 
Species, energy and momentum conservation equations are 

solved in spherical symmetry and under ideal gas 
approximation, to yield an analytical model capable to evaluate 
the heat transfer and the evaporation rate from a drop under 
quasi-steady conditions, accounting for the temperature 
dependence of mixture density and diffusion coefficient. The 
model is applied to predict the evaporation rate from water and 
hydrocarbon droplets under pressure and temperature 
conditions of interest for applicative fields, like fire control and 
combustion. The results obtained by the proposed model are 
compared with those from the most commonly used ones where 
mass diffusion coefficient and gas density are kept constant to 
an average value. 
 

INTRODUCTION 
    Drop evaporation in a hot gaseous environment is of 

fundamental importance for a wide range of engineering 
applications, like in spray combustion, spray cooling, spray 
drying, fire suppression, etc. The evaporation process involves 
simultaneous heat and mass transfer and a wide literature is 
available on the modelling of the complex physical phenomena 
involved (see [1] for a thorough review). To numerically 
simulate evaporating spray using CFD methodologies, detailed 
models based on single drop analysis have to be simplified to 
be CPU efficient and this forced the introduction of many 
simplifying hypotheses to develop the nowadays available 
evaporation models. Constant properties of the gas mixture, 
quasi-steadiness, drop sphericity are among the most common 
approximations, and the most frequently used models (see for 
example [2]) are based on these assumptions, although recently, 
attempts to relieve some of them became available in the open 
literature [3-4]. 

Modelling of mass transfer and thermal phenomena 
occurring within the liquid phase in an evaporating drop has 
been object of deep investigation and an extensive literature 
became available in the latest years (see [1,5] for reference). 
The most simplified models, used in many conventional CFD 
codes for spray applications, assume infinite liquid thermal 
conductivity when modelling the drop heating, neglecting 

temperature gradient inside the drop [5]. There exists 
experimental evidence [6,7] that contradicts this assumption 
and to cope with these findings this issue has been addressed 
introducing a finite effective thermal conductivity, which takes 
into account also the effect of liquid recirculation inside the 
drop [1,5]. The totality of the analytical evaporation models 
implemented in commercial CFD codes neglects moving 
boundary effect due to radius shrinking; this hypothesis has 
been removed by Sazhin et al. in [8,9], who included the effect 
of a moving boundary to solve the conservation equations in 
the liquid phase. The comparison with previous models shows 
that drop shrinking has a non neglectful effect on liquid 
temperature prediction, yielding longer evaporation times 
compared to the conventional approach and reaffirming that 
such effect cannot be ignored when accurate predictions are 
needed.  

    When a drop is injected into a hot gas, large temperature 
gradients are achieved and the previously mentioned constant 
property approximation becomes questionable since at least gas 
density and diffusion coefficient have a strong dependence on 
temperature. The use of an average value for all those 
properties that are expected to significantly change with 
temperature, commonly obtained by the ‘1/3-rd rule’ [10], may 
not be enough to correctly catch the main features of the 
phenomenon. Recently it was shown that a model that takes 
into account gas temperature and density gradient effects may 
yield significant differences respect to the classical ones, and it 
may better perform when compared with available 
experimental results obtained under high gas temperature 
conditions [3]. Among other parameters, the diffusion 
coefficient of a vapour in a gaseous mixture shows a significant 
temperature dependence, statistical thermodynamics [11] 
predicts a power law dependence on the absolute temperature 
with exponent equal to 3/2, while the widely used Fueller-
Scheller-Giddings correlation [12] suggests a value of 7/4 for 
the same exponent. 

Numerical models for drop evaporation studies have been 
deeply refined over the decades including more complex 
physical aspects like drop composition, shape, interaction with 
other drops and/or solid surfaces (see [13,14] for reference) and 
obviously also detailed model to evaluate the temperature 

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

772



    

dependence of all the involved thermo-physical properties. 
However, due to the complexity of the numerical 
implementation and the CPU time required for a single drop 
test case simulation, they can be used only as benchmarking for 
simpler models to be developed. 

The main aim of this work is to develop an evaporation 
model for single component drops that includes the effect of  
gas density and diffusion coefficient temperature variation, 
with the target to efficiently implement it in comprehensive 
CFD tools for sprays injected in hot environment.  

NOMENCLATURE 
Roman symbols 
cp [J/kgK] Specific heat at constant pressure 
c [kmol/m3] Molar density 
D10 [m2/s] Binary diffusion coefficient  

F [-] Function, equation (14) 
G [-] Logarithm of gas mass fraction 
k [W/mK]  Thermal conductivity 
K0 [-] Coefficient, equation (11) 
Le [-] Lewis number 
LeM [-] Modified Lewis number 
mev [kg/s] Mass evaporation rate 
Mm [kg/kmol] Molar mass 
n [-] Exponent, equation (9) 
PT 

[Pa] Pressure 

r [m] Radial coordinate 
R [J/kmolK] Universal gas constant 
R0 [m] Drop radius 
Sc [-] Schmidt number 
T [K] Temperature 
U [m/s] Stefan velocity 
y [-] Molar fraction 
Y [-] Non-dimensional evaporation rate 
Greek symbols 
χ [-] Mass fraction 
ρ [kg/m3] Mass density  
Λ [-] Non-dimensional number (equation 6a) 
θ [-] Molar mass ratio 
ζ [-] Non-dimensional radial coordinate, ζ=R0/r  
Ψ [-] Evaporation rate ratio  
Subscripts 
r  Radial component 
ref  Reference condition 
s  Surface 
∞  Free stream condition 
0  Ambient or reference 
Superscripts 
c  Constant mass density 
(0)  Gas 
(1)  Vapour 
∼  ^  Non-dimensional 
Abbreviations 
CFD  Computational Fluid Dynamics 
CPU  Central Processing Unit 
ODE  Ordinary Differential Equation 

MODEL EQUATIONS 
The species conservation equations for a single component 

spherical drop steadily evaporating in a hot gaseous 
environment can be written in simplified form as follows (see 
[15] and also [3] for further details): 

( )0
(0)

10 0
d

U D
dr

χρ χ ρ− =            (1a) 

( )1
(1)

10 24
evmd

U D
dr r

χρ χ ρ
π

− =              (1b) 

where, due to the assumption of a stationary liquid-gas 
interface, mev is the actual evaporation rate (refer to the 
nomenclature for the meaning of the other symbols) and the gas 
flux is nil everywhere (see again [15]). Summation of the two 
equations yields the mass conservation equation: 
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The momentum and the energy conservation equations for 
the evaporating drop in spherical symmetry, under the same 
simplifying hypotheses as in [3], are: 
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The usual approach to the problem is to define some 
reference conditions to which evaluate the average value of the 
fluid properties; in particular the gaseous mixture density ρ and 
the binary diffusion coefficient D10 depends on temperature and 
the ‘1/3-rd rule’ is usually applied to define the reference 
temperature [10]: 

3

2 ∞+= TT
T s

ref              (4) 

and ρref=ρ(Tref), D10,ref=D10(Tref). Considering that 
( ) ( )1 0 1χ χ+ = , the second species equation (1b) can be 

obtained from equations (1a) and (2) and introducing the 
following non-dimensional variables: 
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and the parameters: 
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the above reported species, momentum and energy 
conservation equations reduce to: 
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It has already been shown [3] that, for a large variety of 
conditions of interest for applications, the non-dimensional 
parameter Λ assumes quite large values, then justifying the use 
of an asymptotic form (for Λ→∞) of the momentum equation 
that in the present case simply becomes: dPT/dζ=0 or: 

∞= ,
ˆˆ
TT PP                                                                             (8) 

which, under the assumption of ideal gas behaviour for the 
gaseous mixture, yields: 

( )( ) ∞=+ ,
0 ˆ~~1 TPTρθχ             (9) 

where 
( ) ( )

( )0

01

Mm

MmMm −=θ . 

The binary mass diffusion coefficient is expected to depend 
on temperature following the general rule: 

n
ref

n

T

T
D ~

~
~

10 =                      (10) 

where: n=0 stands for the case of constant diffusion coefficient, 
which is the usual assumption that yields to the classical results 
[16,2], n=3/2 is the value suggested by classical statistical 
thermodynamics [11] and n=7/4 is the value given by the 
widely used FSG correlation [12]. 
 

BOUNDARY CONDITIONS AND ANALYTIC 
SOLUTIONS  

The B.C. for the energy equation can be set as: 

( ) ( ) ∞=∞=== TrTTRrT s ;0                    (11) 

and the well known analytic solution is: 

( ) ( ) 001
~

KeKT Y +−= − ζζ          (12) 

where 
Y
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Equation (7a) can be transformed, using equations (9) and 
(10) into the following ODE: 
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The analytic solution of equation (13) exists for many rational 
values of the parameter n (those for which the integral 

( ) ( )∫
−= ζζζ dTI n

n
1~

can be analytically evaluated). Applying 

the Dirichlet boundary conditions: 

( ) ( )( ) ( ) ( )( )1 10 ln 1 ; 1 ln 1 sG Gχ χ∞= − = −         (14) 

the following equation can be derived: 
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where the integral ( )∫
−=

1

0

1~ ζζ dTYF n
n  can conveniently be 

written in terms of the parameter K0 instead of Y, since its 
functional form depends on the sign of K0 for  n≠0. Noticing 
that:  
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where y(1) is the vapour molar fraction; introducing the molar 

density 
RT

P
c T=  and the modified Lewis number: 
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equation (15)  can be written in a simpler form: 
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The expressions of Fn for the three values of n of interest in 
this analysis are reported in the following equations: 
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    The solution of the non-linear equation (18), using an 
iterative method, allows to evaluate K0 and the evaporation rate 

can be calculated from the definition of  ( )sTYK
~

,0 : 

0
0

, 0

1
4 lnref

ev
p ref s

k K
m R

c K T
π −

=
− ɶ

         (20)  

 

RESULTS AND DISCUSSION  
 The classical model [16] is found by solving the above 

reported species conservation equations under the hypotheses 
that ρ and D10 are independent of temperature. In such case a 
reference value for these parameters is chosen, usually through 
the ‘1/3-rd rule’ [10], using  equation (4) for the reference 
temperature and the following one for the reference species 
mass fractions: 

( )
( ) ( )1 1

1 2

3
s

ref

χ χχ ∞+
=                                       (21) 

and the corresponding evaporation rate is: 
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−
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The effect of temperature dependence on gaseous mixture 
density and diffusivity on the instantaneous drop evaporation 
rate is investigated using the analytical models described in the 
previous section (equations 19), which have been compared 
with the constant property model (equation 22). The 
comparison has been made selecting as evaporating fluid water 
and n-octane, which are representative of fire control and 
internal combustion engine spray applications. All the results 
presented in the following paragraphs are obtained under 

steady-conditions, setting ( ) 01 =∞y , ( )1 0χ∞ = .  

Figure 1(a) shows the effect of liquid temperature on the 
non-dimensional evaporation rate Y (equation 6a) for water 
drop vaporising under steady condition at 1bar and 1500K 
gaseous environment, as predicted by the variable property 
models with exponent n=7/4 and n=3/2 (see equations 19a and 
19b, respectively), by the variable density model (n=0, equation 
19c) and by the constant property model (equation 22). The 
graph evidences that the two variable property models predict 
very similar results through all the selected range of operating 
conditions. The variable density model noticeably under-
predicts the evaporation rate for drop temperature far from the 
boiling point. As the drop temperature increases the predictions 
from the variable density model approach the ones from the 
more complete variable property models and a small 
temperature window exists where all the models predict almost 
the same results, then the trend inverts and the variable density 
model over-estimates the evaporation rate predicted by the 
variable property models.  

 
 

 

 
Figure 1 (a) Effect of drop temperature on non-dimensional 
evaporation rate predicted by the four models for water drop at 
1bar and 1500K; (b) zoom of (a) close to the boiling point. 
 

This is evidenced in Figure 1(b), which shows the zoom of 
Figure 1(a) focusing on the temperature window close to the 
boiling point. The constant property model follows a similar 
trend of the variable density model, but the discrepancy from 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
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the variable property models is substantially reduced. The 
reason for such behaviour is related to the temperature 
dependence of density and diffusion coefficient, which product 
enters in the relation defining the drop evaporation rate.  
To better appreciate the comparison among the different 
models, the evaporation rate is reported in non-dimensional 
form, where the variable property model with n=7/4 is taken as 
reference case: 

*
*

7 / 4

Y

Y
Ψ =                                           (23) 

Figure 2 shows the effect of drop temperature on the 
evaporation rate ratio for water drop evaporating at atmospheric 
pressure conditions and temperature equal to 500K and 1500K, 
figures (a) and (b) respectively. The results from the four 
models are reported showing that the two variable property 
models are in rather good agreement with differences up to 
about 5% under highly evaporating conditions. The increase of 
gas temperature enhances the discrepancy of the constant 

property and variable density models compared to the reference 
case.  

Figure 3 presents the comparison of Ψ as predicted by the 
four models for n-octane drop at 1 bar and gas temperature 
equal to 600 and 1500K (figure 3a and 3b, respectively), 
confirming the previous outcomes with only a different 
behaviour predicted by the constant property model that 
substantially under-predicts the evaporation rate at high drop 
temperatures. The opposite mechanism of the constant property 
model in case of n-octane compared to water (see figure 2) is 
due to the opposite value of the parameter θ, which is positive 
in case of hydrocarbons and negative for water.  

The effect of high gas pressure is reported in figure 4 for the 
case of n-octane drop vaporising at 20bar and the two gas 
temperatures selected in figure 3, evidencing that only the 
variable density model shows a substantial reduction on the 
evaporation rate at drop temperature close to the boiling point. 
The models have been applied to predict the evaporation rate 
for other hydrocarbons and the results confirm the previous 
outcomes (not shown here).  

 
(a)                                                                                   (b) 

 
Figure 2 (a) Evaporation rate ratio Ψ  predicted by the four models as function of drop temperature for water drop at 1bar and (a) 
500K and (b) 1500K. 

 
(a)                                                                                   (b) 

 
Figure 3 (a) Evaporation rate ratio Ψ  predicted by the four models as function of drop temperature for n-octane drop at 1bar and (a) 
600K and (b) 1500K. 
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(a)                                                                                   (b) 

 
Figure 4 (a) Evaporation rate ratio Ψ  predicted by the four models as function of drop temperature for n-octane drop at 20bar and (a) 
600K and (b) 1500K. 
 

CONCLUSIONS  
An analytical model has been developed predicting the 

evaporation rate from a drop under quasi-steady conditions, 
accounting for the temperature dependence of mixture density 
and diffusion coefficient. The evaporation rate for water and 
hydrocarbon drops at different drop and gas temperature and 
pressure is calculated by the present model and the results are 
compared with the predictions from the variable density model, 
previously developed by the Authors, and by the classical 
constant property model. The results evidence that the selection 
of the exponent for the power law dependence of the diffusion 
coefficient on the absolute temperature may have an effect only 
at evaporating conditions close to the boiling point. Accounting 
only for the temperature dependence of density on the 
evaporation rate predictions yields more visibly discrepancy 
compared to the case of constant property, due to the different 
dependence of density and diffusion coefficient with 
temperature. The discrepancies are enlighten under highly 
evaporating conditions and particularly for hydrocarbon drops. 
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