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ABSTRACT 

Falling film flows in vertical or inclined planes, and pipes, 

are present in the energy and chemical industry (Chemical 

reactors, evaporators, condensers…). The occurrence of waves 

in these falling films is of relevance because it enhances the 

heat and mass transfer in comparison with a flat film.    

Perturbation theory can be applied to the Navier-Stokes 

(NS) equations expressing the velocity and the pressure in 

terms of an order formal parameter representing the smallness 

of the stream wise spatial derivative. Normally good results are 

obtained for this kind of problems solving the first order NS 

equations. 

In the present work we use the integral approach method 

and we expand the velocity profile of the falling liquid in a 

complete orthogonal set of harmonic functions satisfying the 

boundary conditions of the NS problem in first order 

approximation of the formal expansion. The present model does 

not assume self-similar profile of the velocity and its 

convergence to the solution is good with few harmonics.  

The problem is discretized by means of a uniform grid. 

Then the partial differential equations are integrated over the 

length of an arbitrary node. Proceeding in this way we have 

obtained a set of coupled ordinary differential equation system 

(ODES) for the harmonics of the flow rate and the film 

thickness at each grid node The resulting coupled ODES is 

integrated by a semi-implicit predictor-corrector method of the 

Adams-Moulton type that converges, with one iteration, at each 

time step.  

The method predicts well the experimental data on the 

evolution of the waves with time, the height of the waves, the 

wave separation, and the wave profiles for different 

experimental conditions. Providing a physical understanding of 

the non-linear wave phenomena produced in falling films. 

 

INTRODUCTION 
The dynamics of falling films is encountered in a wide 

variety of industrial applications as condensers, evaporators, 

chemical reactors, containment refrigeration of power plants 

and so on [1]. In addition thin films flowing down vertical or 

inclined surfaces are usually unstable, and in many cases non-

linear waves develop on the interfacial surface of the liquid 

enhancing the heat and mass transfer [2].   Numerical 

investigation of the full Navier-Stokes equations by direct 

numerical simulation (DNS) methods are difficult to perform 

due to the extremely small time steps and spatial meshes that 

should be used, in addition to the complexity introduced by the 

free surface [3].  

NOMENCLATURE 
 

B 

g 

[-] 

[m/s2] 

Cotangent of the inclination angle  

Gravity acceleration 

h 

f 

[m] 

[s-1] 

Film thickness in the cross stream direction 

Forced frequency of the inlet flow perturbations. 

aK  

capL  

][−  

][m  

Kapitza number 2)/( νLLcap
 

Capillarity length 2/1)sin/( θρσ g  

Lυ [m] Characteristic length 3/12 ))sin/(( θν g  

p 

q 

Qa 

r 

[N/m2] 

[m2/s] 

[-] 

[m3/s2] 

Pressure 

Flow rate 

Amplitude of the flow perturbation 

Momentum flow rate 

u [m/s] Velocity component is the stream-wise direction 

v [m/s] Velocity component is the cross-stream direction 

x [m] Cartesian axis in the stream-wise direction 

y [m] Cartesian axis in the cross stream direction 

z [m] Cartesian axis in the span-wise direction 

 

Special characters 

ε [-] Formal parameter of the perturbation expansion 

θ [-] Inclination angle in radians. 
ν  [m2/s] Kinematic viscosity 
σ [N/m] Surface tension 

 

Subscripts 

  

a  Atmospheric pressure 

t  time 

0  Undisturbed or stationary  

 

  

   

   

   

   

   

An intermediate level of approximation is when one uses 

the so called boundary layer equations, which are the NS 

equations incorporating the condition that stream-wise 

gradients are small in comparison with cross stream variations. 

This condition allows to apply perturbation theory to the NS 

equations in the form of a systematic expansions in powers of a 

formal parameter ε that express the smallness of the stream-

wise spatial derivative. However in these formal first order NS 

equations one must include the surface tension term that is 

formally of third order in the formal parameter ε. However as 

discussed by Ruyer-Quil and Manneville [2], the capillarity 
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term should be included because contributes to the evaluation 

of the pressure at order zero and cannot be neglected. 

Several methods have been developed in the past to try 

to obtain the non-linear evolution of the waves generated on the 

surface of the thin falling films [2, 3, 4]. These long waves of 

increasing amplitude develop at the surface of thin layer films 

while the film flow remains laminar.  The dynamics of these 

films is controlled by the viscosity, the surface tension and the 

gravity. The amplitude of these waves can change the heat and 

mass transfer on the surface, so condensation and heat transfer 

problems are affected by these waves [5].  

The integral boundary layer method is used in this paper 

with an expansion of the stream-wise velocity in harmonic 

function that satisfy the boundary conditions in first order. This 

method developed by Aktershev and Alekseenko does not 

assume a self-similar profile for the velocity and has more 

degrees of freedom that the self-similarity approach. 

The paper is organized as follows, first we formulate the 

model equations and we scale them conveniently. Then we 

integrate them over the boundary layer thickness (BL) 

obtaining the integral boundary layer equations (IBL). Then the 

velocity is expanded in harmonic functions that satisfy the 

boundary conditions of the problem. The resulting partial 

differential equations that results for the harmonic flow and the 

film thickness are solved by a new method explained in the 

paper, and finally the numerical solutions are compared with 

the experimental data [2], and a discussion of the results is 

performed. 

MODEL FORMULATION AND SCALING 
The solution of the NS equations is performed in this paper 

in the so called boundary layer approximation incorporating the 

condition that the stream wise gradients are small when 

compared to cross stream variations. The basic NS equations 

must be completed with boundary conditions (BC) at the free 

surface and the plate bottom for plane geometry. The continuity 

of the stress at the boundary of the free surface adds two more 

equations originating from the normal and tangential stress 

components [1]. 

Perturbation theory can be applied to the NS equations 

expressing the velocity and the pressure in terms of an order 

formal parameter that shows the smallness of the stream wise 

spatial and time derivatives in comparison with the cross stream 

spatial derivative. Normally good results are obtained for this 

kind of problems solving the first order NS equations [4, 5]. 

In the present work we use the integral approach method 

and we expand the velocity profile of the falling liquid in a 

complete orthogonal set of harmonic functions satisfying the 

BC of the NS problem in first order approximation of the 

formal expansion. We work with dimensionless first order NS 

equations introducing the following characteristics length and 

time scales:  

 3/12
))sing/((L θνν =  , 3/12

))sing/((T θνν =  (1) 

In first order the 2D dimensionless NS equations are given by 

[1]: 

 u1puvuuu yyxyxt ∂++−∂=∂+∂+∂    (2) 

 0vBp yyy =∂+−∂−      (3) 

 0vu yx =∂+∂       (4) 

Where B=cotg θ. These previous equations must be completed 

with BC at y=0 and h. The boundary conditions will be denoted 

by
0

u or 
h

u .It is assumed the non-slip condition at the film 

bottom. The normal and tangential component of the balance of 

forces acting on the interface yields the following pair of 

boundary conditions: 

 0v2hKpp yxxaah
=∂−∂+−     (5) 

 0u
hy =∂        

Where Ka is the non-dimensional Kapitza number Also, 

defining the local instantaneous flow rate q as: 

 ∫=
)t,x(h

0

dy)t,y,x(u)t,x(q      (6) 

Ones arrives to the following equation that express the mass 

conservation: 

     0),(),( =∂+∂ txqtxh xt
    (7) 

Integrating equation (3) between y and h and using the BC (5), 

yields: 

 ( ) hKvvyhBpp xxayhya ∂−∂+∂+−+=   (8) 

On account of equation (8) it is possible to compute px∂ , that 

when substituted into equation (2) yields after neglecting 

second order terms: 

uhKhBuvuuu yyxxxaxyxt ∂+∂+∂−=∂+∂+∂ 1  (9) 

Integrating equation (9) with respect to y between 0 and h(x,t), 

gives on account of the BC: 

( )
0

1 uhKhBhrq yxxxaxxt ∂−∂+∂−=∂+∂   (10)  

where  the momentum flux r is defined as: 

 [ ]∫=
),(

0

2
),,(),(

txh

dytyxutxr     (11) 

And the term 
0

uy∂ is the shear stress at the wall, y=0, in non-

dimensional units. 

Equations (7) and (10) describe the film flow in first order 

perturbation theory when the perturbations on the film surface 

are considered as a long wave in the sense that the ratio of the 

film thickness to the wave length is much smaller that unity. 

HARMONIC EXPANSION AND MODEL EQUATIONS 
 

Next we use the harmonic expansion method developed by 

Aktershev and Alekseenko [4]. First we have chosen the 

following complete orthogonal set of harmonic 

{ }∞

=1
)(

jj yf being, hyy /= and the harmonic functions defined 

as: 

 )sin()( yyf jj ω= , where, 2/)12( πω −= jj
 (12) 

That satisfy the first order boundary conditions of the stream-

wise velocity for all the harmonics and verify the orthogonality 

relation: 

 2/)()(
1

0

jmmj ydyfyf δ=∫     (13) 
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Next we expand the stream-wise velocity in this 

base{ }∞

=1
)(

jj yf : 

 )(),(),,(
1

yftxatyxu j
j

j∑
∞

=

=     (14) 

Due to the orthogonal character of the harmonic functions, it is 

obtained that the expansion coefficients are given by the 

expression: 

  ∫=
1

0

)(),,(2),( ydyftyxutxa jj
  (15) 

Next we substitute in the model equations the stream-wise 

velocity by its expansion given by (14), and we compute first 

the flow rate q, and the momentum flux r that on account of 

(14) can be expressed as a sum of harmonics terms as follows: 

∑∑∑∫
∞

=

∞

=

∞

=

===
1110

),(),(
)(),(),(

j
j

j j

j

j
j

j

h

q
txhtxa

yftxadytxq
ω

 (16) 

 

∑∑∫∑∑
∞

=

∞

=

∞

=

∞

=

===
1

22

1

21

01 1 22
)()(),(

j

jj

j

j

mj
j m

mj
h

qha
ydyfyfhaatxr

ωv  (17) 

 

The harmonic expansion of the non-dimensional shear stress on 

the wall is given by: 

∑∑∑
∞

=

∞

=

∞

=

==∂=∂
1

2
11

00

),(

j

jj

j

jj

j
jyjy

h

q

h

txa
fau

ωω
  (18) 

Because the orthogonal set { }∞

=1
)(

jj yf is complete in the [0,1] 

interval we can expand in harmonics any function )( yf defined 

on this interval. For instance, the expansion of the Nusselt 

profile using equation (15) yields: 

  )sin(
2

2

1

1
3

2
yyy j

j j

ω
ω

∑
∞

=

=−    (19) 

Applying the operator 
0=

∂
yy

to both sides of equation (19) it is 

obtained the result: 

  1
2

1
2

=∑
∞

=j jω
     (20) 

Direct substitution of the expansions (16), (17) and (18) in 

equation (10), on account of eq. (20), gives the following result: 

( ) 0
2

1
2

21

22

2

22

=












+∂+∂−−∂+∂∑
∞

=j

jj

xxxax

j

jj

xjt
h

q
hKhB

h

h

q
q

ω

ω

ω  (21) 

 

Due to the linear independence of the harmonics it is obtained 

from eq. (21) the following set of partial differential equations 

for the evolution of the flowrate harmonics
jq : 

( )
h

q
hKhB

h

h

q
q

jj

xxxax

j

jj

xjt
2

1
2

2

22

2

22 ω

ω

ω
−∂+∂−=∂+∂   (22) 

These equations are coupled to the evolution equation of the 

film thickness that on account of eq. (7) and (16) is given by: 

  0),(),(
1

=∂+∂ ∑
∞

=j
jxt txqtxh    (23) 

Equation (22) and (23) are the cornerstone equations of the 

harmonic expansion method and must be supplemented with 

initial and boundary conditions for the flow rate 

harmonics
jq and the film thickness. 

The linear stability analysis of the first order harmonic equation 

have been performed by Aktershev and Alekseenko [4] and will 

not be repeated here. However a newly developed integration 

of the non-linear equations and its application to different 

experiments will be shown in the next sections. 

INTEGRATION NUMERICAL PROCEDURE 

 
To obtain the shape of the waves and the wave evolution 

under different regimes we have developed a method to 

integrate the set of equations (22) and (23) numerically.  The 

calculation interval was set equal to the experimental one i.e. 

Lx ≤≤0 was set.  An uniform grid was set with node 

boundaries given by xixi ∆−= )1( , with 1,....,2,1 += Ni , the 

coordinates of each node were taken at the centre of the nodes 

and denoted by overbars i.e. xixi ∆−= )1( . So an overbar in a 

magnitude with sub-index i, means that the magnitude is being 

calculated in the centre of the i-th node located between the 

boundaries
1, +ii xx , while a magnitude without overbar is being 

calculated at the boundaries. The next step is to apply to 

equations (22) and (23) the averaging operator over a given 

node: 

 ∫
+

∆
=

11 i

i

x

x

i dxg
x

g      (24) 

Application of the operator (24) to the set of equations (22) 

and (23) yields: 

NiNHjdx
h

q

x

hdx
x

K
hh

x

B
h

h

q

h

q

xdt

qd

i

i

i

i

x

x

jj

xxx

x

xj

a
iii

ji

ij

i

ijjij

,...,2,1;,...,2,1,
2

2
)(2

1

2

1

1

2

2

2

22

12

2

,

1

2

1,

2

,

==
∆

−

∂
∆

+







−
∆

−=







−

∆
+

∫

∫

+

+

+

+

+

ω

ωω

ω

        (25) 

And 

( )∑
=

+ −
∆

−=
NH

j
ijij

i qq
xdt

hd

1
,1,

1      (26) 

Being N the number of grid nodes and NH the number of 

harmonics used in the calculations. 

Performing an integration by parts, three times, in the term that 

contains the third derivative in equation (23) it is obtained after 

some calculus that: 
11

2)(
2

1 ++







∂−∂=∂∫
i

i

i

i

x

x

xxx

x

x

xxx hhhdxhh    (27) 

The first and second derivatives that appear in equation (27) are 

evaluated at the boundaries of each node.  

To express the magnitudes at the node boundaries in terms of 

the values at the node centres we assume that: 

 

2/)( 1 iii hhh += −
, and 2/)( ,1,, ijijij qqq += −

   (28) 

 

Because the grid is uniform this is a good approach. 
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Proceeding in this way and substituting eq. (27) in eq. (25), it is 

obtained the following set of coupled ordinary differential 

equations (ODES) for the evolution of the harmonic flows:  

NiNHj
h

q

hhhhhh
x

K

hh
x

B
h

h

q

h

q

xdt
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ijj
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ijjij
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1,
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1

==−



















∂−∂−





∂−∂
∆

+









−
∆

−+







−

∆
−=

+

+

+

+

ω

ω

ω

ω

 (29) 

To solve the coupled ODE system formed by equations (26) 

and (29), we use a semi-implicit Adams-Moulton predictor 

corrector method of fourth order, with the prediction step based 

on the Adam-Bashforth algorithm [6]. If we denote this system 

of differential equations by: 

  ),( tyf
dt

yd rrr

=      (30) 

Where the vector y
r

has NHN ×+ )1( components 

),...,...,,...,,,...,,( ,1,,11,121 NNHNHNN qqqqhhhyy
rr

≡   (31) 

The algorithm from time step n to time step )1( +n proceed in 

four steps as follows: 

i) First we compute a first estimation of the solution )0(

1+ny
r

at 

time step )1( +n using the Adam-Bashforth predictor: 

 [ ]321

)0(

1 9375955
24

−−−+ −+−
∆

+= nnnnnn ffff
x

yy
rrrrrr  (32) 

ii) Second with this estimation of the solution at time step 

(n+1), we obtain a first estimation of )0(

1+nf of the vector field at 

time step n+1, given by: 

 ),( 1

)0(

1

)0(

1 +++ = nnn tyff
rr

     (33) 

iii)We iterate in Adams-Moulton correction formula, as 

follows: 

[ ]211

)1(

1

)(

1 519),(9
24

−−+
−

++ +−+
∆

+= nnnn

k

nn

k

n ffftyf
x

yy
rrrrrr  (34) 

Where k denotes the k-th iteration. 

iv) The iterations end when  

 

 ε<
−

+

−
++

)(

1

)1(

1

)(

1

k

n

k

n

k

n

y

yy
r

rr
     (35) 

Normally one iteration at each time step and only three 

harmonics is enough to obtain a good solution for this kind of 

problems. So that, in the calculations showed in the next 

section we have fixed the number of iterations to only one and 

the number of harmonics to three to speed up the calculations. 

Calculations were performed with a bigger number of 

harmonics and iterations to see the degree of improvement 

achieved when comparing with the experimental data under 

different regimes and boundary conditions. 

A question to be explained is how to compute the initial 

conditions for the harmonic flow rates
0,jq . In this case we use 

expression (16), and we compute the expansion coefficients 

using expression (15), with the Nusselt profile at steady state, 

this calculation yields: 

04
j

4
j

00

j

0,j
0,j q

6hu6ha
q

ωωω
===      (36) 

COMPARISON WITH EXPERIMENTAL DATA AND 
ANALYSIS OF RESULTS  
 

In this section first we explain some experiments performed by 

Liu and Gollub [2] on the development and interaction of 

solitary waves on film flows in inclined planes, and the 

predictions obtained with the harmonic method when using the 

integration algorithm developed in this paper. The purpose is to 

investigate how the grid size, the number of harmonics, the 

boundary conditions, the excitation frequency and other 

parameters influence the solution. As it is well known natural 

(unforced waves) due to small perturbation in the ambient are 

selectively amplified above the Reynolds critical 

number B25.1Rec = .  However as discussed by Liu and Gollub 

[2] saturated periodic waves do not appear without forcing. In 

this last case the non-linear development of these forced 

periodic waves is strongly affected by the perturbation 

frequency that in some of the experiments was achieved by 

modulating the flow rate at the flow entrance in the inclined 

plane according to the expression: 

 ( ))tf2sin(Q1q)t,0(q pa0 π+=    (37) 

Different grid sizes were used for the simulation, it was 

observed that when grid was refined better predictions were 

obtained for the secondary small waves.  Figure 1 displays the 

simulation results obtained for the case 

with Hz5.1f = , 33.19Re = , kg/mN1088.5/ 25−×=ρσ , and 

s/m1028.6
26−×=ν , º4.6=θ , in this case we use 3 harmonic, 

and a coarse spatial grid in non-dimensional units of 4x =∆ . 

 
 

Figure 1 Simulated (A), and Experimental results 

(B) for solitary waves forced at f=1.5 Hz, Re=19.33, 

Experiments from  ref [2] 
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Because the characteristic length was mm3304.0L =ν , this 

means that the grid size used to obtain figure 1 when expressed 

in dimensional units was mm32.1x =∆ .  It is observed that non-

linear waves of increasing amplitude are generated. These 

waves increase their amplitude until they reach a relative value 

about 50.1h/h 0 = as displayed in figure 2. 

 

 
Figure 2 Simulated (A), and Experimental results 

(B) for solitary waves forced at f=1.5 Hz, Re=19.33, 

Experiments from  ref [2] 

 

To simulate the case with a forcing frequency of Hz3f = , we 

use a finer grid with 2x =∆  in non-dimensional units. In this 

case the prediction of the secondary waves was better than in 

the previous case, but if the size of the grid used to obtain the 

numerical solution increases the prediction of the secondary 

waves is worse as in the previous case. It is observed than when 

the frequency becomes larger, the primary wave fronts are 

closer and the waves interacts significantly due to the 

overlapping of the wave-front of each wave with the tail of the 

preceding wave as noticed in figure 3. 

 

 
Figure 3 Simulated (A), and Experimental results 

(B) for solitary waves forced at f=3Hz, Re=19.33, 

Experiments from ref [2] 

 

As the frequency increases the interaction between 

successive waves become more pronounced and there is an 

overlapping of the front of each wave with the tail of the 

preceding wave this produces a multi-peaked wave, because the 

successive waves cannot be clearly separated as displayed in 

figure 4. In this case the prediction is not as good as in the rest 

of the cases but the model captures very well the formation of 

the multi-peaked waves and the shape of these waves, that it is 

the same one that appears in the experiments as displayed in 

figure 4. However we must notice that the multi-peaked waves 

of the 4.5 Hz case appear in the experiments displaced 0.12 m 

downstream distance as compared with the simulation. 

When we consider the length, amplitude, and shape of the 

waves that are obtained sufficiently far downstream from the 

inlet, it is obtained that the agreement with the experimental 

data is very good as observed in figure 5.  

Therefore in the multi-peaked regime the non-linear 

evolution of thin films is more complex and as discussed by 

Ruyer-Quil and Manneville [7], three regions can be identified, 

corresponding to the initial exponential growth of the wave 

amplitude, the formation of the multi-peaked waves displayed 

in figure (4), and the final wave-train modulation.  
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Figure 4 Simulated (A), and Experimental results 

(B) for solitary waves forced at f=4.5 Hz, Re=19.33, 

Experiments from  ref [2] 

 

 
  

Figure 5 Simulated (A), and Experimental results 

(B) for solitary waves forced at f=4.5 Hz, Re=19.33, in 

glycerine-water experiments from  ref [2] 

CONCLUSION  
 

In this paper we have used a method based on an integral 

boundary layer (IBL) approach of the Navier-Stokes equations.  

Then we have performed an expansion of the velocity profile of 

the falling liquid in a complete orthogonal set of harmonic 

function satisfying the problem boundary conditions. We must 

remark that we have used a first order approximation for the 

Navier-Stokes equations and we have obtained good 

predictions of the experimental results, of Liu and Gollub [2], 

as displayed in figures 1,2,3,4, and 5 of this paper. The present 

model does not assume self-similar profile of the velocity and 

its convergence to the solution is good with few harmonics, 

only three harmonics were used to obtain the solution for the 

cases of figures 1 to 5. Also we notice that the solution 

improved when the grid was refined, figures (1), and (2) where 

computed with a coarser grid than figures (3), (4) and (5) that 

were computed with a finer grid. In this way to have good 

predictions of the small subsidiary waves one must use a grid 

equal or smaller than 2 in non-dimensional units, but if we want 

a qualitative numerical solution we can use a wider grid. For 

this particular case one non-dimensional unit is equivalent to 

0.33mm. 

The numerical method developed in this paper consist in the 

following steps, first the problem is discretized by means of a 

uniform grid. Then the partial differential equations are 

integrated over the length of an arbitrary node. Proceeding in 

this way we have obtained a set of coupled ordinary differential 

equation system (ODES) for the harmonics of the flow rate and 

the film thickness at each grid node The resulting coupled 

ODES is then integrated by a semi-implicit predictor-corrector 

method of the Adams-Moulton type that converges, with one 

iteration, at each time step.  

The previous method predicts well the experimental data 

on the evolution of the waves with time, the height of the 

waves, the wave separation, and the wave profiles for different 

experimental conditions. The method also provide a good 

prediction of the interacting waves when the frequency 

increases, in particular the method reproduce the complex 

multi-peaked wave evolution as displayed in figure 5, where 

not only the peaks are reproduced, but also the frequency of 

these peaks.  Providing a physical understanding of these 

phenomena. 
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