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ABSTRACT 

In engineering practice, measuring temperature on both 

sides of a wall (of, for example, turbine casing or combustion 

chamber) is not always possible. On the other hand, 

measurement of both temperature and heat flux on the outer 

surface of the wall is possible. For transient heat conduction 

equation, measurements of temperature and heat flux 

supplemented by the initial condition state the Cauchy problem, 

which is ill-conditioned In this paper, the stable solution is 

obtained for the Cauchy problem using the Laplace 

transformation and the minimisation of continuity in the 

process of integration of convolution. Test examples confirm 

proposed algorithm for the inverse problem solution. 

 

INTRODUCTION 
In thermal problems, the coefficients of governing equations 

such as the thermal conductivity, density and specific heat, as 

well as the intensity and location of internal heat sources, if 

they exist, and appropriate boundary and initial conditions 

should be specified. Such problems are referred to as ‘direct 

thermal problems’ and may be accurately solved using standard 

numerical methods since they are well posed. However, in 

many practical applications which arise in engineering, a part 

of the boundary is not accessible for heat flux or temperature 

measurements. For example, the temperature or the heat flux 

may be seriously affected by the presence of a sensor which 

results in a loss of accuracy in measurement or, more simply, 

the surface of the body may be unsuitable for attaching a sensor 

to measure the temperature or the heat flux. Inner surface of 

turbine casing or combustion chamber can be indicated as 

examples. The situation when neither the heat flux nor 

temperature can be determined on a part of the boundary, while 

both of them are prescribed on the remaining part, leads to an 

ill-posed problem called the ‘Cauchy problem’[11, 12] which is 

more difficult to solve both analytically and numerically. 

The Cauchy problem is not new in literature [1-7]. Due to its 

ill-posed character many approximation methods are used. In 

paper [1] the problem is reduced to a linear integral Volterra 

equation of second type which admits a unique solution. 

Method of fundamental solution was used in paper [2] for 

solving the steady Cauchy problem. In papers [3-4] method of 

finite difference with the Fourier transform techniques was 

used. Legandre polynomials were used in paper [5] for solving 

1-D Cauchy problem. Wavelet-Galerkin method with the 

Fourier transform was used in paper [6]. The unique solution of 

Cauchy problem was considered in paper [7]. 

The purpose of this paper is to propose a stable solution 

obtained for the Cauchy problem using the Laplace 

transformation and the linear approximation of function in 

convolution product and thermodynamical regularization. Test 

examples confirm proposed algorithm for the solution of 

inverse problem. 

NOMENCLATURE 
c [J/K] heat capacity 
Etotal [J] total energy 

F [K] sought temperature at the point x=δ 

H [K] temperature distribution at point x=δ 
J [-] functional 

k [W/mK] thermal conductivity  

L [-] differential operator 
p [-] variable 

Q [W/m2] heat flux  

q [-] dimensionless heat flux 
T [K] temperature  

t [s] time 
w [-] regularization matrix 

x [m] Cartesian coordinates 

 

Special characters 
α [-] regularization parameter 

Δτ [s] dimensionless time step 

δ [m] thickness 

η [-] Heaviside function 

μn [-] eigenvalue 
ξ [-] dimensionless coordinate 

ρ [kg/m3] density  

σs [-] intensity of entropy production 
τ [-] dimensionless time 

χ [-] unknown function 
ψ [-] integral kernel 

ψs [-] local dissipation function 

Ω [m2] calculated area 
ϑ [-] dimensionless temperature 

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

1574

mailto:michal.cialkowski@put.poznan.pl


    

FUNDAMENTAL EQUATION 
For region shown in Fig. 1, the governing equation and 

conditions describing heat flow are as follows:  

 heat conduction equation 
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 initial condition  

    xT0,xT 0                                   (2) 

 boundary conditions 
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The distribution of the temperature F(τ) (5) is sought. 

 
Figure 1 Calculation area 

In consideration of the boundary conditions (3) and (4), the 

problem formulated by (1-4) is the Cauchy problem. For the 

next considerations the following non-dimensional variables 

are introduced: 
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and now non-dimensional formulation of the linear problem is 

as follows:  

 heat conduction equation  

2
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 initial condition  

    00, ,  <0,1>                          (8) 

 boundary condition at surface  = 1 

        h,1 = maxT/H ,  > 0            (9) 
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 unknown boundary condition at surface  = 0 

    ,0 ,     maxT/F    > 0                 (11) 

In consideration of equations (6)-(9) linearity, the Laplace 

transformation will be used for their solution. Let  
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then the system of equations (6)-(9) is transformed to following 

form:  

 heat conduction equation with the initial condition  
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 ,     00,             (13) 

 boundary conditions at surface  = 1 

   shs,1                                     (14) 

 
 sq
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s,1d

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 unknown boundary condition at surface  = 0 

   ss,0                                   (16) 

Idea of determining the unknown distribution (5) is based on 

determination of direct problem, namely the solution to the 

equation (7) with conditions (8)-(11), and next on the 

determination of the relation between functions χ(t) and h(t). 

For simplicity, it is assumed   const00  , then the 

solution to the direct problem has a form  
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For  = 1 
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Unknown function  s  we will search on the base of the 

known distribution (9), namely 
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In this way we have the Volterra integral equation of second 

kind for determining the function (t) in a form  

      




















 

ss

stgh
LsqsL

scoshs

1
LssL 1111  

   th
scoshs

1
Lt 1

0 




















 

               (19) 

x 

 

δ 0 

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

1575



    

Finally, for q() = 0 and 0  = 0, the form of the solution (19) 

can be written as follows 
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From condition (9) on the base of (20) we obtained the equation 

for the determination function    
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The equation is an integral equation of Volterra kind. 

NUMERICAL CALCULATIONS 
In order to test solution to integral equation (22) we will 

compare the numerical solution with the analytical one. 

The discretization of eq. (22) was done on the equidistance net. 

Analytical solution to equation (7) with the initial condition 

(,0) = 0 and the following boundary conditions  
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has the form [10] 
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where numbers pn are the following roots of equation  
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Solution (24) is used for determining functions h(t) and q(t) 

given by formulas (9) and (10). 

INVERSE PROBLEM  

At each segment <j-1, j>, j = 1,…, M function () in (22) is 

approximated by χ = χj−1 ∙ Θ + χj ∙ (1 − Θ), 0 <  < 1, 

therefore, between segments the function () is not 

differentiated and a jump of the first derivative appears there 

  

Figure 2 Idea of linear regularization of the solution () 

 
Figure 3 Idea of parabolic regularization of the solution () 

Leading the first parabola j-2,j-1,j through the following points 

(j-2,      j-2), (j-1, j-1), (j, j) and the second parabola j-1,j,j+1 

through points (j-1, j-1), (j,j), (j+1, j+1) we require that the 

difference between the first derivative in common points of 

both parabolas should be equal zero, what in case of uniform 

mesh j-1 and j,              j - j-1 = h, k = 1,2,…, M leads to one 

equation on region <j-1, j+1> 

033 1jj1j2j   , j = 2,…, M – 2         (25) 

In case of the linear regularization, as shown in Fig. 2, the 

conditions that lead to reduction of jumps of the first derivation 

are 

 02 1jj1j   , j = 1,2,…, M – 1              (26) 
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Discretization of the equation (22) leads to the following matrix 

form 

[ψ]{χ}={h}                                    (27) 

Dimension of matrix [] is equal      1M1Mdim  . 

Because the inverse problem is ill posed, then the condition 

(25) or (26) is added to the system (27) to reduce the 

oscillations in solution to the inverse problem 
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where matrix [w] related with the condition (25) has the 

following form, and α denotes the regularization parameter 

 






















13310

01331

w







 

     1M3Mwdim                       (29) 

and for the condition (26) we have 
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Solution of over-determined system of equations (27) can be 

considered as a minimization of functional 

           0 ,whJ
22
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or in standard mathematical form (11), (12)  
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OPTIMAL CHOICE OF REGULARIZATION PARA-
METER VIA THREMODYNAMICAL CRITERION 
Processes of heat flow are accompanied by entropy production 

and energy dissipation. The intensity of the source of entropy 

production is given by formula [9] 

 
 

 

2
k T1 T

σ ρc div k T q
s 2T t T

2
k T1

                    LT
2T T

 
      

 


 

             (32) 

and the function of energy dissipation by formula [9] 
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Function of temperature satisfies the heat conduction equation 

for LT = 0, thus total intensity of the source of entropy totalσ  

and relatively, of energy dissipation totalψ  in the time interval 

<0,t> and the region  is equal to 
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The total energy is expressed by the integral  

 
t

2

total

0 Ω

E k T dΩdt                          (35) 

Physical processes proceed with minimal increment of entropy 

total and minimal dissipation of energy total. Therefore, the 

regularization parameter will correspond to the minimal value 

total or total and will also depend on the form of the regularized 

functional (31). 

NUMERICAL CALCULATION 
For given temperature distribution at the edge of x = 0 (Fig. 3) 

with β=10.0 and q(x= δ)=0, the temperature distribution at the 

edge x= δ was calculated. The course of temperature at x= δ 

was disturbed with random error δ = 5%, the value of disturbed 

temperature was treated as measured value. The solution of the 

inverse problem obtained for different regularization 

parameters and in different coordinate systems is shown in 

figures from 4 to 9. 

 

Figure 3 Analytical temperature distribution at surface x=0.0 : 

T=T0*(1-exp(-beta*tau)) 
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Figure 4 Distribution of: energy/energy_min, 

sigma/sigma_min, psi/psi_min as the function of regularization 

parameter alfa, beta = 10, |delta_random| = 5.0% 

 

Figure 5 Distribution of ||A*X-Y|| = f(||w*X||) for Tikhonow-

Phillips functional J(alfa) = ||A*X-Y||**2+ ||alfa*W*X||**2, 

beta = 10 

 

Figure 6 Tikhonow-Phillips functional J(alfa) = ||A*X-Y||**2+ 

||alfa*W*X||**2, beta = 10 

 

Figure 7 Distribution of ||X|| = f(alfa), beta = 10 

 

Figure 8 Temperature distribution at surface x=1.0 , beta = 10 , 

|delta_random| = 5.0% for different regularization parameters 
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Figure 9 Temperature distribution at surface x=0.0 , beta = 10, 

|delta_random| = 5.0% for different regularization parameters 

 

Figure 10 U - curve for Tikhonow-Phillips functional J(alfa) = 

||A*X-Y||**2+ ||alfa*W*X||**2, beta = 10 

CONCLUSIONS 

The U-curve (Fig. 10) expresses the dependence between terms 

of functional for the regularized solution. It may indicate where 

the solutions to the inverse problem, obtained using various 

methods (such as the Morozov principle, the minimum intensity 

of entropy production, minimum of dissipation energy, L-curve, 

etc.), are placed on it. Analysis of the location of the solutions, 

obtained using various methods, on the U-curve indicates the 

area (slow heating: low beta-parameter), where those solutions 

are within relatively short distance from the result obtained 

using the Morozov method. Extrema points of the functional of 

the intensity of entropy production and of the dissipation are in 

the vicinity of the minimum of ||X|| norm of the regularized 

solution. Numerical experiment shows that the curvature of the 

L-curve corresponds to the parameter gamma = 1 in the 

Morozov method (discrepancy principle). Future work: 

investigation of inverse Cauchy–type problem for steady-state 

thermal loading of the turbine blade. Intensity of entropy 

production will be investigated in case of higher rank of 

regularization matrices and 2D problem [13]. 
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