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ABSTRACT 

The current work develops a computational heat transfer 

model based on Dissipative Particle Dynamics (DPD) approach 

to study thermal transport in natural convection using nanofluids. 

The present work tests the role of nanoparticles on heat transfer 

enhancement in nanofluids, which gives a better understanding 

of the energy transport between base fluid particles and the 

suspended nanoparticles in nanofluids. It was found that the heat 

transfer deteriorates by increasing the volume fraction of 

nanoparticles. 

NOMENCLATURE 
 

a [-] repulsion parameter 

Cv J/kg.K specific heat at constant volume 

f N force 

g m/s2 gravity vector 

H m cavity height 

h W/m2.K heat transfer coefficient 

k W/m.K thermal conductivity 

kB J/K Boltzmann constant 

ko [-] parameter controlling thermal conductivity of 

the eDPD particle 

Pr [-] Prandtl number, Pr= ν/ α 

q W/m2 heat flux,  

r [-] position vector 

rc [-] cut-off radius 

Ra [-] Rayleigh number, Ra = gβ(TH-TC)H3/( νC αC) 

T ºC dimensional temperature 

t s Time 

u,v m/s dimensional x- and y-component of velocity 

w [-] weight function 

U, V  Non-dimensional velocity, U=uH/ α, V=vH/ α 

x, y m dimensional coordinates 

X, Y [-] dimensionless coordinates, X=x/H, Y=y/H 

α m2/s thermal diffusivity 

β 1/K thermal expansion coefficient 

γ [-] dissipative force parameter 

ζ [-] random number for the momentum equation 

ζe [-] random number for the energy equation 

θ [-] dimensionless temperature, θ = (T-TC)/(TH-TC) 

κ [-] collisional heat flux parameter 

λ [-] random heat flux parameter 

ν m2/s kinematic viscosity 

ρ [-] eDPD number density 

σ [-] amplitude of the random force 

   

Subscripts 

C  cold 

H  hot 

i, j  indices 

nf  nanofluid 

 

Superscripts 

bf  Base fluid 

C  conservative 

D  dissipative 

R  random 

cond  conduction 

visc  viscous 

 

 

 

INTRODUCTION 
Enhancement of heat transfer in thermal systems is very 

essential from the industrial and energy saving perspectives. The 

low thermal conductivity of heat transfer fluids, such as water, is 

considered a primary limitation on the enhancement of the 

performance and the compactness of the thermal systems. In 

recent years, heat transfer enhancement using nano-scale particle 

dispersed in a base fluid, known as nanofluid, has been used to 

enhance heat transfer. In fact, there is still a debate in literature 
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on the role of presence of high thermal conductive nanoparticles 

on the heat transfer enhancement, especially in natural 

convection applications. Most theoretical studies in literature 

reported an enhancement in heat transfer due to the presence of 

high thermal conductive nanoparticles in contrary to what 

observed experimentally.  

Examples of controversial results are found in the results 

reported theoretically by [1, 2] where they reported an 

enhancement in heat transfer due to the addition of nanoparticles  

in contradictory to what observed experimental findings by Putra 

et al. [3] and Wen and Ding [4]. The numerical study of Abu-

Nada et al. [5] related such deterioration in heat transfer, 

observed experimentally, to the increased level of viscosity of 

nanofluids by the presence of nanoparticles which tend to 

decrease the convection heat transfer. Although such explanation 

is in agreement with the experimental findings of Putra et al. [5] 

and Wen and Ding [6], however it lacks the complete picture 

how the thermophysical properties of nanofluids are related to 

nanoscopic details of particles interaction in the base fluid. 

Besides, it does not illuminate the energy mechanisms 

encountered at nanoscale in nanofluids. 

Conceptually, the mentioned theoretical studies relied on 

using the continuum models to study nanoparticles energy 

transport in base fluids. The major concern is whether on the 

scale of several nano meters, the continuum assumption is still 

valid. Actually, the mean free path of base fluid particles is in the 

same order of magnitude of the nanoparticles size and the 

continuum assumptions become questionable. Therefore, a more 

robust numerical discrete approach is needed to tackle such 

problem. 

In fact, the time and spatial scales of the heat transfer within 

nanofluids are larger than the complete discrete models such as 

molecular dynamics (MD) and smaller than the conventional 

continuum models such as Navier-Stokes Equations (NES). 

Such intermediate spatial and time scales can be captured using 

mesoscopic particle-based methods by means of coarse graining 

where each simulated particle represents a group of actual fluid 

molecules. The most recent promising coarse grained technique 

is the dissipative particle dynamics (DPD) method.  

Dissipative particle dynamics (DPD) method is a coarse 

grained version of MD introduced by Hoogerbrugge and 

Koelman [5], where each DPD particle represents a group or 

packet of actual molecules. The DPD particles are randomly 

distributed in the flow domain and particle interaction obeys 

conservation of mass, momentum and energy. Español [6] and 

Avalos and Mackie [7] launched energy conservative DPD 

version appropriate for studying heat transport by adding internal 

energy to the DPD system. The energy conservative DPD 

version is known in literature as energy conservative dissipative 

particle dynamics (eDPD). Since its introduction, the eDPD 

approach was limited to relatively few heat transfer studies on 

convective heat transfer problems. Chaudhri and Lukes [9] 

recently conducted a comprehensive review of the eDPD 

investigations in literature. Actually, all eDPD conducted studies 

in convective heat transfer are only limited to pure fluids and it 

is very important to extend the eDPD approach to mimic 

convective heat transfer in nanofluids.  Therefore, the scope of 

the present proposal is to extend the applicability of eDPD to 

investigate the mechanisms of heat transfer, within nanofluids,  

 

DPD MODEL 
The time progress of eDPD particles is governed by 

conservation of momentum and energy and is described by the 

following set of equations by absorbing the Boussinesq 

approximation: 

i
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where β is the thermal expansion coefficient and g


 is the 

gravity vector. The conservative force
C

ijf

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D

ijf
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The weight function w for the conservative force is given as, 
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The weighting function for the dissipative and random forces is 

given as 
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In the present study, the value of S is set to S= ½ and the cut-off 

radius is set to 1.1. For more details on the selection of S and rc  

the reader is referred to Abu-Nada [11]. 

The heat flux vectors
cond

ijq ,
visc

ijq  
R

ijq  accounts for viscous, 

collision, and random heat fluxes respectively and are given by 

[11]: 



















ij ji

ij

2

ij

cond

ij
T

1

T

1
rwq )(     (9)  

   






























ij

ijijijij

R

ij

2

ij2

ijijijij

D

v

visc

ij verw
m

verw
C2

1
q 





)()(      

      
                   (10)  

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

1708



  

  





ij

e

ij

21

ij

R

ij

R

ij trwq  /)(     (11)  

where 
jiij rrr   and 

jiij vvv  ; eij is the unit vector pointing 

in the direction from j to i. The parameter aij is a repulsion 

parameter between the eDPD particles. Also, the parameters γij 

and σij account for the strength of dissipative and random forces, 

respectively.  Also, the parameters κij and αij control the strength 

of the collisional and random heat flux, respectively.  

The random number 
ijζ  is a random number that has a zero 

mean and unit variance and the random number 
e

ij
  

is non-

symmetrical random number with zero mean and unit variance. 

The relation between the parameters γij and σij is governed by the 

Fluctuation-Dissipation theorem [11], 

 
jiB
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where kB is the Boltzmann constant. The parameter κij is given 

as, 

 
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where ok is interpreted as heat friction that controls thermal 

conductivity  and, Cv is the heat capacity at constant volume for 

eDPD particle.  

PROBLEM DESCRITIPTION AND MODEL VALIDATION 
Figure 1 shows a schematic diagram of the problem geometry 

selected to investigate the heat transfer enhancement using 

nanofluids. The cavity is filled with CuO-water nanofluid. The 

height of the cavity is defined by H and the width of the cavity 

is defined by W. The aspect ratio (i.e., W/H) is kept constant for 

the present study and is set to 1. The left wall is maintained at a 

hot temperature TH whereas the right wall is kept at a cold 

temperature TC. The top and the lower walls are considered 

adiabatic. The standard Boussinesq model is used to approximate 

the density variation of the nanofluid.  

The problem of natural convection in hand is characterized 

by two important non-dimensional numbers, which are Prandtl 

number (Pr) and Rayleigh number (Ra), which  are given as: 

C

C




Pr ;  

CC

3

CH HTTg
Ra



 
    (14) 

Here we defined these dimensionless numbers based on cold 

wall temperature.  

The eDPD parameters (i.e., aij, γij , σij, κij and αij) are related 

to non-dimensional numbers Pr and Ra via the thermal 

diffusivity and kinematic viscosity. The Prandtl number 

considered in this study is fixed to the value of water, Pr = 6.55. 

We need to link this value with the kinematic viscosity and the 

thermal diffusivity of the eDPD system. 

 
Figure 1 Schematic of the problem geometry 

 

The kinematic viscosity of the eDPD system is assigned by 

running a Poiseuille flow between two parallel plates. Then, the 

value of the thermal diffusivity of the eDPD system is simply 

calculated based on the prescribed value of the Prandtl number 

(i.e., α=ν/Pr). The value of the thermal diffusivity of the eDPD 

system is measured by comparing the eDPD results to the 

analytical solution of a transient heat conduction in a square 

heated slab. In terms of the eDPD model, the parameter that 

controls the thermal diffusion is ko. The value of ko in the eDPD 

model is tuned until the analytical solution agrees with the 

eDPD solution. The values of eDPD kinematic viscosity and 

thermal diffusivity are measured to be 1.1078 and 0.169, 

respectively. For full details for measuring the kinematic 

viscosity and thermal diffusivity of the eDPD system the reader 

can refer to the work of Abu-Nada [11]. 

Similarly, the value of Rayleigh number of the eDPD model is 

assigned by the ratio of the buoyancy forces to the viscous 

forces The viscous force is assigned by fixing the height of the 

domain (H). In the current study, H is fixed to 24. As for the 

buoyancy force, its value is assigned by fixing the temperature 

difference between the cold wall and the hot wall, i.e. T , in 

addition to the value of the body force term (gβ). In the current 

study, the temperature difference is fixed to ΔT=0.4 and the 

body force term (gβ) is changed to prescribe the value of 

buoyancy force and accordingly the value of the Rayleigh 

number. For full details for assigning the Rayleigh number of 

the eDPD system the reader can refer to the work of Abu-Nada 

[11]. 

In the current study, the Groot-Warren version of velocity-Verlet 

integration scheme is used to solve the eDPD governing 

equations. Full details of the integrations scheme used in this 

paper is found in [11]. 

The no-slip boundary condition at the four walls of the cavity 

was used by means of allocating extra wall layers of frozen 

particles. To avoid the penetration of fluid particles across the 

solid walls, the particles are bounced back. 

With regards to the temperature boundary condition at the hot 

and cold walls, it is assumed that any particle hitting a wall will 

g TH 

) 

TC 

 

dT/dy=0 

dT/dy=0 

H 

W 
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acquire the same temperature of that wall. However, for the 

adiabatic walls, the conduction heat flux is simply set equal to 

zero. This condition is applied at top and bottom insulated walls 

in the cavity, see Fig. 1.  

 

Nanofluid Physical Properties 

The effective thermal conductivity of the nanofluid is 

calculated by the Chon et al. model [13] as:  
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In the above equations, f stands for the base fluid, which is 

water in this study, kb is the Boltzmann constant, 1.380710-23 

J/K, and lf is the mean path of base fluid particles given as 0.17 

nm [13]. The correlation for dynamic viscosity of CuO-Water 

nanofluid is derived using available experimental data of 

Nguyen et al. [14]. In a previous study, we have derived a 

correlation and a two-dimensional regression on the 

experimental data reported in Nguyen et al. [14]. This 

correlation for CuO-water nanofluids is defined as [5] 
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        (18) 

Validation of the Numerical Model 

The eDPD results for natural convection for pure fluid was 

validated in previous studies of the author against experimental 

and numerical published data. The validations is given in 

references [11 and15].In this paper we will also further validate 

the case of nanofluid against in-house nanofluid finite volume 

(FV) code developed for studying heat transfer enhancement 

using nanofluid. This nanofluid FV was validated and 

benchmarked against experimental results in previous 

publications of the author [5, 11, 15]. Figure 2 shows such 

validation and the figure shows a good match between the 

present nanofluid eDPD results and the in-house nanofluid FV 

code results.  

 

  
Figure 2 Code Validation: Vertical velocity comparison 

between current eDPD nanofluid results and FV results at the 

mid height of the cavity, Y = 0.5 and φ=3%. 

 

RESULTS AND DISCUSSION 
In the current study, the nanofluids considered is CuO-

water nanofluid. The volume fractions of nanoparticles 

considered is φ = 1 and 3 % and the Rayleigh number is fixed to 

Ra =5×104. The thermophysical properties of nanofluid are 

assumed to vary only with volume concentration of 

nanoparticles and are independent of the nanofluid temperature. 

In other words, the thermal conductivity and the viscosity of 

nanoparticles (given by Eq. (15) and Eq. (18), respectively) are 

evaluated at a fixed temperature, which is the right wall cold 

temperature, which is taken as 22 °C in the present study.  

Figure 3 presents the temperature isotherms in the 

cavity. The basic features of heat transfer in differentially heated 

cavities are captured by the eDPD simulation. For example, the 

isotherms are more vertical near the hot and cold walls and 

flatten horizontally in the middle of the cavity due to the 

dominance of convection. This is a basic feature of natural 

convection dominated by convection. Figure 3 illustrates some 

sensitivity of the thermal boundary layer thickness, at to the 

heated wall, to the concentration of nanoparticles. This 

sensitivity of thermal boundary layer thickness to volume 

fraction of nanoparticles is related to the increased viscosity at 

high volume fraction of nanoparticles. High values of φ increases 

the nanofluid viscosity which causes the velocity to decrease 

which accordingly reduces convection. Figure 4 shows the 

vertical velocity (y-component of velocity) distribution 

throughout the cavity and it is clear that higher concentration of 

nanoparticles decreases the fluid velocity in the cavity. The 

reduction in velocity and convection increases the thermal 

boundary layer thickness. The increase of thermal boundary 

layer thickness is responsible for the reduction in temperature 

gradients at the heated surface, which causes a reduction in 

Nusselt number. 
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(a)  

 
(b)  

Figure 3 Temperature isotherms (a) φ=3% (b) φ=1%. 

 

 

Figure 5 (a) shows the local Nusselt number along the heated 

wall. The local Nusselt number along the heated wall is 

expressed as: 

nfk

hH
Nu         (19) 

The heat transfer coefficient (h) is expressed as: 
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w
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q
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The thermal conductivity is expressed as: 
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q
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The average Nusselt number is defined as: 

 dyyNuNu

1

0

avg        (22) 

A 1/3rd Simpson’s rule of integration is used to evaluate 

Eq. (22). A normalized Nusselt number is defined as the ratio of 

Nusselt number at any volume fraction of nanoparticles to that 

of pure water, and is given as: 

 
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 0Nu
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
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
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The normalized Nusselt number is used as an indicator 

of heat transfer enhancement where values less than unity 

correspond to a deterioration in heat transfer. Figure 5(b) shows 

a decrease in Nusselt number with the increase of volume 

fraction of nanoparticles. The figure shows that the Nusselt 

number decreases up to 5 % for volume concentration of φ = 3%. 

The influence of nanoparticles has two opposing effects on the 

Nusselt number: a favourable effect that is due to the presence of 

high thermal conductivity nanoparticles, and an undesirable 

effect due to the high level of viscosity experienced at high 

volume fractions of nanoparticles.  

 

 
(a)  

 
(b)  

Figure 4 Y-velocity contours in the cavity (a) φ=3% 

(b) φ=1% 

The heat transfer in natural convection at high Rayleigh 

numbers is dominated by convection while at low Rayleigh 

numbers is dominated by conduction. For the Rayleigh number 

in hand, 5×104 ,  the heat transfer dominated by convection and 

by the presence of nanoparticles this will cause the nanofluid to 

become more viscous, which will reduce convection currents and 

accordingly reduce the temperature gradient and Nusselt number 

at the heated surface. This is accompanied by some enhancement 

in heat transfer due to the high thermal conductivity of 

nanoparticles but, such enhancement is small compared to the 

deterioration brought by viscosity. This is due to the reduction in 

the convection currents next to the heated surface, and due to the 

less pronounced role of Brownian motion, which is due to the 
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fact that the thermal conductivity of nanofluid is inversely 

proportional to the viscosity squared as shown in Eq. (17). 

 
 

(a) 

 
(b) 

Figure 5 Effect of nanoparticles on Nusslet number 

(a) Local Nusslet number variation along the left heated wall of 

the cavity (b) Normalized average Nusslet number at the left 

heated wall of the cavity 

 

  

CONCLUSION  
 

Dissipative particle dynamics was applied to investigate the 

effects of nanoparticles on natural convection in differentially 

heated cavity. The eDPD simulations were benchmarked against 

finite volume solutions and it was found that dissipative particle 

dynamics appropriately predict the temperature and flow fields 

correctly in the cavity. The heat transfer was found to decrease 

by increasing the volume fraction of nanoparticles.  
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