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ABSTRACT 

This paper presents a performance analysis of a novel bi-

directional groove design for dry gas seals. The scope of 

analysis includes the impact of important groove design 

parameters on the dry gas seal performance. The leakage flow 

and the axial stiffness and damping force coefficients are taken 

into account for performance assessment. For varying geometry 

the pressure field in the lubrication gap of the application is 

estimated. Based on these pressure fields the performance 

parameters are calculated. The utilized method to predict the 

fluid flow through the lubrication gap is founded on the 

Reynolds theory of lubrication. This two dimensional approach 

is based on the assumptions of a laminar viscous flow field with 

isothermal conditions and takes aerostatic as well as 

aerodynamic effects into account. The 2D approach is solved 

by a finite difference approximation. The aim of the 

contribution is to recommend geometrical parameters to ensure 

large static stiffness and damping force coefficients while still 

allowing for low seal leakage rates.  
 

INTRODUCTION 
 Applications based on the technology of two non-

contacting rotating rings, separated by a thin fluid film, are in 
the focus of development in various mechanical engineering 
sectors. The possibility of replacing a common technical 
application by this novel technology has several advantages. 
Primarily the opportunity of reducing weight and geometrical 
properties results in lower power consumption and reduced 
turbo-machine dimensions, at the same or even improved 
operation performance. Furthermore, a significant potential of 
leakage rate reduction is assured through the application.  
An established configuration consists of the stationary ring 
(non-rotating stator) positioned in the casing and the rotating 
ring (rotor) attached to the shaft of the turbo-machine. The 
configuration is depicted in Figure 1. In machine downtime the 
stationary ring, with freedom in axial direction, is shifted 
against the opposite ring, by an induced closing force (spring). 
Therefore the application is closed. During operation, the 
stationary ring lifts off the rotating ring. Owing to aerostatic 
and aerodynamic forces a fluid film of only a few micrometers 
develops between the facing surfaces. The originating axial gap 
between the facing surfaces ranges between 1-10 µm. The 
application is adaptable to operating pressures applied at the 
outer (p2>p1) or the inner diameter (p2<p1). In both cases a 

pressure distribution between the two pressure levels develops. 
To take influence on this pressure distribution one of the facing 
surfaces contains repetitive grooved sections. By changing the 
ring’s topography, a significant impact on the aerodynamic 
force is achieved. A high aerodynamic force is essential to build 
up a fluid film rapidly, especially during the machine startup. 
Thereby, the duration of friction of the facing surfaces during 
times of no lubrication or mixed lubrication is reduced. This 
results in increased lifetime and reduced power losses. 

The theoretical analysis of fluid flow in narrow gaps has 
been a subject of research since the middle of the last century.  
From the beginning most investigations focus on spiral groove 
thrust bearings (SGTBs) and spiral groove face seals (SGFSs). 
Muijderman [1] presents the Narrow Groove Theory (NGT) for 
analysis of flat, spherical and conical SGTBs and approximate 
formulations are given for pressure, resulting loads, friction 
torque, and the coefficient of friction. A limited number of 
experiments are also reported for SGTBs and comparisons with 
the given analyses are favorable for incompressible fluids. 
Limitations of the NGT are apparent and extensions to the 
original analyses appear to account for more realistic 
configurations. Considering both SGFS and Rayleigh step 
seals, Cheng, et al. [2] discuss the relative placement of grooves 
and seal dams in a NGT analysis for compressible fluids. Seal 
dams on the low pressure side of a SGFS minimize leakage rate 
at the expense of axial stiffness at low speeds. For these lower 
speeds, seal dams on the high pressure side give higher values 
of stiffness. Considering a flat, spherical, conical and 
cylindrical groove geometry, Smalley [3] describes the NGT in 
generalized coordinates and solves the governing equations 
with finite differences to give load, capacity, power loss, 
leakage rate and stiffness coefficients. 

Experimental studies in addition to that presented by 
Muijderman include those studies reported by James and Potter 
[4] on ceramic SGTBs. Static loads with 10 percent possible 
error and an optimum bearing geometry are verified from the 
experiments. DiRusso [5][6] presents measurements of film 
thickness and drag torque for various SGFS configurations. 

The analysis of compressible fluid grooved seals at varying 
compressibility number (Λ) is difficult due to the non-linearity 
of the Reynolds equation which results in steep pressure 
gradients near the groove to dam interfaces. Numerical methods 
often have difficulties in convergence, thus requiring fine 
meshes to ensure reliable solutions. Furthermore, the effect of 
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frequency excitations on the dynamic force performance of 
SGFSs is largely ignored. Hunger [7] and Zirkelback et al. [8] 
describe this effect using numerical approaches. 

The authors’ intent is to extend performance analyses of 
applications based on the technology of two non-contacting 
rotating rings. Therefore performance analysis of a dry gas seal 
(DGS) with a novel groove design is executed. A Finite 
Difference Method (FDM) analysis of isothermal, compressible 
fluid follows. Perturbations of the non-linear Reynolds equation 
determine differential equations from which the dynamic axial 
force coefficients result. The static and dynamic force 
performance of the novel designed DGS is analyzed as a 
function of various geometrical parameters. 

 

 

Figure 1 Arrangement of rotor and stator 

 

NOMENCLATURE 
 
Cz [Ns/m] Axial damping coefficient 

Cz,dim [-] Dimensionless axial damping coefficient: Cz/Cz 

F [N] Force 

H [-] Normalized fluid film depth 

h [m] Fluid film depth 

lg [-] Groove extend: (rg)/r 

Kz [N/m] Axial stiffness coefficient 

Kz,dim [-] Dimensionless axial stiffness coefficient: Kz/Kz 

n [-] Iteration step 

ng [-] Number of grooves 

P [-] Normalized pressure 

p [Pa] Pressure 

Q [g/s] Leakage rate 

Qdim [-] Dimensionless Leakage rate: Q/Q 

R [-] Normalized radius 

r [m] Radius 
T [K] Temperature 

tk [m] Maximal fluid film depth in groove 

t [s] Time 

U [1/s] Rotational speed 

w [m] width 

Z [N/m] Complex impedance 
 

Special characters 

 [deg] Section angle 

 [-] Convergence accuracy 

γd_r [-] Groove depth ratio: tk/r·e03 

γw_r [-] Groove width ratio: wg/(wg+wl) 
 [-] Compressibility number (bearing number) 
 [Pas] viscosity of fluid 

 [-] Normalized circumferential direction 

 [deg] Circumferential direction 

 [kg/m3] Density 

 [rad/s] Angular velocity 

ex [1/s] Frequency of dynamic axial motions 

σ [m] Surface roughness 

 

Subscripts 
 Surface roughness

dim  dimensionless 

g  groove 

i  inner  
l  land 

m  mean 

max  maximum 

min  minimum 

o  outer 
rat  ratio 

ref  reference 

  Performance result based on initial seal geometry 

 

GOVERNING EQUATION OF 2D APPROACH 
 The basic equation for calculating the pressure of a 

compressible fluid in the sealing gap is based on the Reynolds 
theory of lubrication. This theory is derived from the Navier-
Stokes equations of motion and the condition of continuity of 
the fluid based on certain assumptions.  

 

Assumptions 
Based on the Reynolds theory of lubrication the following 

assumptions are defined: 
 

 Ideal gas behavior 
 Isothermal and isoviscous conditions 

 Laminar flow 

 Smooth seal faces 

 No misalignment of facing surfaces 

 Rigid faces 

 

Unless detailed examination of the gas properties is not 

required, the fluid is of Newtonian nature and ideal gas 

behavior is accepted in narrow gap analyses. Since moderate 

rotational speed and low pressure conditions are subjects in the 

present analysis, laminar flow is defined. Additionally, it is 

assumed that no turbulence or vortices develop in the flow. 

Non-contact of the facing seal faces is defined. Therefore, heat 

generation is very small and the temperature gradient is 

negligible. The gas viscosity is relatively insensitive to pressure 

and temperature variation. Based on this fact, isoviscosity is 

stated. In the present study, fluid flow at full lift-off is 

examined. Therefore, effects on the flow due to surface 

roughness are ignored. These effects are merely significant in 

the mixed lubrication regime. In case of mixed lubrication, the 

surface roughness of the facing surfaces (σ) equals the fluid 
film thickness (hmin) in between the facing surfaces [9][10]. 

Patir and Cheng [11][12] stated that surface roughness is 
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significant mostly in regimes where h/σ≤3 is valid. By reasons 
of accurate manufacturing of facing surfaces (lapping) and face 

material choice σ typically exhibits a value about 0.1 µm 

[10][13]. Therefore, smooth seal faces are defined. Figure 2 

illustrates the determined fluid body parameters in between the 

parallel facing surfaces of stator and rotor for a repetitive ring 

section. In between the parallel facing surfaces, the fluid film 

thickness is marginal compared to other dimensions of length. 

Therefore, the velocity gradients in circumferential and radial 

direction are the significant and hence determining velocity 

gradients. Viscosity, pressure and temperature are presumed to 

be constant across the fluid body thickness. 

 

Figure 2 Sealing gap parameters 

NUMERICAL METHOD 
The Reynolds equation in cylindrical coordinates for an 

isoviscous, ideal gas (ρ=p/Rs∙T) under laminar and isothermal 
flow conditions within the facing seal faces is 

 ͳ� ߠ߲߲ (�ℎଷ (ߠ߲�߲ + � ߲߲� (�ℎଷ ߲�߲�) = �߱ߟ6 ߲ሺ�ℎሻ߲ߠ + ߲ሺ�ℎሻ߲�   . 
 

(1) 

Using the definitions 

 � = �� ,  � = �� ,  � = ௣௣   ,  � = ℎ� , � = ߱ߟ6 �  ௣   �   
 

equation (1) can be transformed into the normalized form: 

 ͳ� ߲߲� (��ଷ ߲�߲�) + � ߲߲� (��ଷ ߲�߲�) = � ߲ሺ��ሻ߲�   . 
 

(2) 

Equation (2) is the basic equation for the Reynolds theory 
of lubrication to describe the time-independent fluid flow in 
between two parallel surfaces of different relative movements. 

It is the governing equation for the chosen 2D-method to 
determine the pressure distribution in the sealing gap. The 
normalized fluid film depth (H) equals to (Hmin+Hg) in the 
groove and (Hmin) in the land and dam regions. Λ represents the 
compressibility number, commonly known as bearing number. 
Normalized pressures at the inner and outer radius are specified 
as Pሺ��,ሻ = ��  , Pሺ�௢,ሻ = �௢, (3) 

 

and, since circumferential thermal distortion and 
misalignments of the faces are not taken into account, the 
circumferential pressure distribution for each repeating groove 
and land section is periodic: 

 Pሺ�,଴ሻ = �(�,ଶ/௡�) 
 

(4) 
 

A successive approximation scheme based on the Newton-

Raphson method is adopted for the iterative solution of 
equation (2). The FDM is used to discretize the equation. The 
established 2D calculation grid is formulated by a general 
matrix KMN. This nonsymmetrical matrix is banded by the non-

zero terms at the upper right and lower left corners, due to 
boundary conditions and the grid numbering algorithm. Only 
the terms within the bandwidth are stored. The general 
nonsymmetrical banded matrix is first factored into upper and 
lower triangular matrices. The solution can then be calculated 
by a back-substitution scheme. At each iteration, the matrix 
KMN is updated. The convergence condition is defined by: 

 � = |�௡+ଵ − �௡ ||�௡ | ≤  �଴ 

 

(5) 
 

where �௡  are the dimensionless pressure values at iterative 
step n; �௡+ଵ are those at step n+1 and �଴ is the convergence 
accuracy defined as 1.0x10-6. A more detailed description of the 
presented numerical model is described in Kefalas et al. [14]. 

To determine the seal stiffness and damping force 
coefficients, the rotating surface is considered to undergo small 
axial motions (z) relative to an equilibrium position (ho) at an 
excitation frequency (ωex). The fluid film depth is equal to 

 hሺr, Θ, tሻ = ℎ௢ሺ�, �ሻ + �݁��  �; � = √−ͳ 

 

(6) 
 

The resulting pressure is also described by the 
superposition of zeroth- and first-order pressure fields, 

 pሺr, Θ, tሻ = �௢ሺ�, �ሻ + �ଵሺ�, �ሻ�݁��  � 
 

(7) 
 

Substitution of the equilibrium and the perturbed fluid film 
depth and pressure into the Reynolds equation results in 
equation (1) for (p0, h0) and the first-order equation for (p1) as 

 

 ͳ� ߠ߲߲ ሺ݉̇�ଵሻ + � ߲߲� ሺ݉̇�ଵሻ + ���ሺ�ଵℎ଴ + �଴ሻ = Ͳ 

 

(8) 

ro 
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Figure 3 Groove geometry and arrangement on ring-surface 

 

where the first-order radial and circumferential mass flow 
rates are 

 ݉̇�ଵ = − ͳͳʹߟ (͵ℎ଴ଶ�଴ ߲�଴߲� + ℎ଴ଷ ߲ሺ�଴�ଵሻ߲� ) 

 

(9) 

݉̇�ଵ = − ͳͳʹߟ ቆ͵ℎ଴ଶ�଴ ߲�଴߲� + ℎ଴ଷ ߲ሺ�଴�ଵሻ߲� ቇ+ ߱�ʹ (�Ͳ + ℎ଴�ͳ) (10) 

 

Integration of the first-order field (p1) on the seal surface 
gives stiffness (real part) and damping (imaginary part) 
coefficients, together representing a complex impedance 

 � = �� + �߱���� = −݊�∫ ∫ �ଵሺ�, ሻ�݀݀ߠ��
௢

� �  

 

(11) 

In dependence on equation (1), equation (8) is transferred 
into the normalized form, based on the same definitions, and 
discretized by a FDM method. The same successive 
approximation scheme is used to solve the resulting set of 
equations.  
 

RESULTS AND DISCUSSION 
A parametric study for the dry gas seal with a novel groove 

design helps to ascertain the seal geometry for best static and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

dynamic seal behavior. The basic geometry is shown in 
figures 3a-c and its variation for the present parametric study is 
given in table 1. The initial groove geometry represents a 
narrow width seal ratio (Rrat=ro/ri=1.27) with twenty grooves 
and a groove extend of lg=0.74. The pressure ratio 
(Prat=po/pi=20) represents a large pressure drop across a typical 
gas face seal. The nominal parameters are set to the published 
values, i.e. groove width ratio γw_r=0.65 and groove depth ratio 
γd_r=0.72. Based on this initial seal geometry the reference 
performance result (Q, Kz , Cz) are determined to state the 
dimensionless performance parameters in figures 4-11. 
 
Effect of the Number of Grooves (ng) 
The dimensionless leakage rate remains unchanged with 
increasing groove number (ng) after increasing prominently 
from ng=5 to ng=15 (Fig. 4). In general, the leakage rate 
depends on the fluid film depth in the groove region (hmin+hg). 
With increasing groove number the groove clearance increases, 
but the minimum fluid film depth (hmin) of the force equilibrium 
situation (Fo/Fc~1) does not change significantly for a high 
amount of grooves. Therefore, strong changes in leakage rate 
are solely depicted for ng<15. The dimensionless axial stiffness 
coefficient (Kz,dim) rises from the smallest value of ng and 
reaches an asymptotic value, as the number of grooves becomes 
larger (Fig. 5). The dimensionless axial damping coefficient 
(Cz,dim) reaches a minimum at ng=20, before rising slightly for 
increasing groove numbers (in dependence on Kz,dim). Based on 
these results, a surface topography arrangement with 18 
groovesshould 

 

  Table 1 Parametric variation of groove design 

Variation ng γw_r =wg/(wg+wl) lg=(rg)/r γd_r =tk/r·e03 

Number of grooves (ng)  5-30 0.65 0.74 0.6 

Groove width ratio γw_r 20 0.32 - 0.79 0.74 0.6 

Groove extend lg 20 0.65 0.5 – 0.9 0.6 

Groove depth ratio γd_r 20 0.65 0.74 0.16 – 0.96 

compressibility number ()=98; 
Fluid Properties: =1.910-5 Pas, Rs=287.058 J/(kgK), T=333.15 K 
 

 

a – Arrangement of grooves on ring surface b – Design of novel groove c – Cross-section of grooved ring 
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Figure 4 Variation of dimensionless leakage rate with the 

number of grooves (ng) 

 

Figure 6 Variation of dimensionless leakage rate with the 

groove width ratio (γw_r) 

 

Figure 8 Variation of dimensionless leakage rate with the 

groove depth ratio (γd_r) 

 

Figure 10 Variation of dimensionless leakage rate with the 

groove extend (lg) 

 

Figure 5 Variation of dimensionless force coefficients with the 

number of grooves (ng) 

 

Figure 7 Variation of dimensionless force coefficients with the 

groove width ratio (γw_r) 

  
Figure 9 Variation of dimensionless force coefficients with the 

groove depth ratio (γd_r) 

  
Figure 11 Variation of dimensionless force coefficients with 

the groove extend (lg) 
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grooves should be chosen, since this number ensures operation 
with relatively high stiffness and damping coefficients. 
 
Effect of the Groove Width Ratio (γw_r) 

An increasing groove width ratio results in an increase of 
the dimensionless leakage rate. The impact of this ratio on the 
leakage rate is high (Fig. 6), compared to the influence of i. e. 
the groove number or groove depth ratio. The dimensionless 
stiffness coefficient decreases slightly with increasing groove 
width ratios up to γw_r=0.6. Passing this value the stiffness 
coefficient decreases strongly. Regarding the dimensionless 
damping coefficient the depicted characteristic reverses. As the 
stiffness coefficient shows nearly constant values for γw_r<0.6 
and to ensure a high damping coefficient, a groove width ratio 
of γw_r=0.6 is recommended.  
 
Effect of the Groove Depth Ratio (γd_r) 

Figure 8 indicates a rise of the dimensionless leakage rate 
as the groove depth ratio increases. This is based on the 
increasing fluid film depth in the groove region (hmin+hg) with 
increasing groove depth. For γd_r>0.6 the magnitude of increase 
of leakage rate decreases slightly as the impact of groove depth 
on the average seal clearance reduces. The dimensionless 
stiffness coefficient increases for γd_r<0.48 and decreases 
prominently for γd_r>0.48. Aiming for the highest stiffness 
coefficient for designing the surface topography, the maximum 
value γd_r=0.48 determines the optimum groove depth value 
(Fig. 9). In contrast to the stiffness coefficient, the 
dimensionless damping coefficient increases as the groove 
depth ration increases.    
 

Effect of the Groove Extend (lg) 
Figure 10 shows that the leakage rate increases with 

increasing groove extend (lg). This is based on the average 
clearance of the face seal, which also increases as the groove 
region covers more of the seal face area. In dependence on the 
groove depth ratio (γd_r), the dimensionless stiffness coefficient 
increases for small values of the groove extend (lg<0.66) and 
decreases with increasing groove region extend in radial 
direction (Fig. 11). In contrast to the results of γd_r variation, the 
dimensionless damping coefficient values do not show a 
continuous increase. A minimum damping coefficient is 
calculated for lg=0.58. Based on these results, a groove extend 
of lg=0.7 should be chosen, since this extend ensures operation 
with nearly the highest stiffness coefficient and a relative high 
damping coefficient at same time. 

CONCLUSION 
A finite difference analysis for isothermal, compressible 

fluid flow through a dry gas seal with a novel groove design 

has been detailed along with a successive approximation 

scheme based on the Newton-Raphson method for the iterative 

solution of the nonlinear Reynolds equation. Zeroth- and first-

order pressure fields are calculated for the force equilibrium 

situation. The leakage rate and the force coefficients (stiffness 

and damping) are predicted for varying parameters of the 

groove design. Based on the calculation of the dry gas seal 

performance characteristics as the seal geometry changes, the 

optimum geometry for the novel groove design is identified by: 

number of grooves (ng) =18, groove width ratio (γw_r) =0.6, 
groove depth ratio (γd_r) =0.48 and groove extend (lg) =0.7.  

The parametric study executed to analyse the DGS 

behaviour with the novel groove design yields interesting 

results for operation performance. The results show that the 

number of grooves (ng>15) and the groove depth have small 

impact on the leakage flow. The leakage rate is strongly 

influenced by changes in groove extend and width. Regarding 

the groove extend and the groove depth only a certain 

geometrical configuration ensures a high axial stiffness 

coefficient (�̅�). The number of grooves (ng>15) and the groove 

width (γw_r<0.6) allow a nearly constant characteristic. Aside 

from the constant range a selection of geometrical setting is not 

recommended as changes in ng and γw_r result in high losses of 

axial stiffness. The determined axial damping coefficient 

(Cz,dim) depicts identical characteristics for the parameter of 

groove extend, groove depth and width. With increasing value 

of these parameters the axial damping coefficient increases. 

Regarding groove depth and extend Cz,dim is not the 

determining performance parameter, as dry gas seals are 

traditionally designed featuring high axial stiffness. In case of 

the number of grooves and groove width Cz,dim is included into 

the seal design decision as Kz,dim depicts a nearly constant range 

for varying design parameters. In this particular case aiming for 

high axial damping is the premise. Content of prospective 

investigation is the performance comparison of a dry gas seal 

with the novel groove design and other utilized groove designs.                
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