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ABSTRACT 
Numerical tools are widely used to optimize designs of 

latent heat storage systems as well as to control their operative 
conditions and control strategies. Within this context, the aim 
of the authors is to compare the performance of the different 
available numerical methodologies, which are used to model 
the phase change processes occurring in a high temperature 
heat storage system. The models are based on different types of 
discretization, use different methodologies to approach the 
phase change, and are implemented in different software 
platforms. Moreover, the numerical results are compared 
against experimental data from a test facility consisting of a flat 
plate latent heat storage tank with a measured PCM melting 
temperature at 219.5°C. The comparison of the different 
numerical methodologies presented in this research does not 
only focus on the agreement against experimental data, but on 
the computational cost, speed and convergence performance, as 
well. The results indicated that all four models provide good 
agreement in comparison to the experimental results. However, 
they differ significantly regarding convergence behavior. While 
a C-based model is recommended for simulation models with a 
small number of elements and small time steps, the models 
implemented in MATLAB perform better for simulation 
models with a high number of elements and large time steps. 

 
INTRODUCTION 

The phase change process within latent heat storage has 
been subject of study during the last decades [1-3]. Analytical 
solutions of the melting and solidification process require semi-
infinite domains and specific boundary and initial conditions, 
which suppose important simplifications from the analysed case 
study. Within this context, numerical methods have been 
identified as a suitable tool to optimize designs and control 
strategies of latent heat storage systems [4]. There are several 
numerical methodologies which have been used to study the 
solid-liquid phase change phenomena, which can be found in 
purpose-built codes for specific situations (using platforms such 
as MATLAB or C compilers), or adaptations of commercial 

software packages (such as CFD codes). The use of the 
different numerical platforms usually depends on the 
boundaries and complexity of the problem and authors 
expertise, however, there are no comparative studies between 
them in terms of computational cost, accuracy and numerical 
efficiency.  

 
Moreover, there are several approaches to overcome 

numerically the phase change process, in which there should be 
highlighted enthalpy method [5], the effective heat capacity 
method [6] and the source term method [7]. In addition, 
different discretization schemes can be found to discretize the 
domain of the solid-liquid phase change [8]. 

 
This research validates experimentally and compares the 

performance of four models, with different numerical 
platforms, phase change approaches and discretization schemes 
against experimental data. The numerical efficiency, accuracy, 
computational cost and convergence behaviour would be 
analysed and compared between the four models describing a 
solidification process within a flat plate storage system. 

EXPERIMENTAL SET-UP 
The four models analysed in this research are validated and 

compared against experimental data provided from a flat plate 
heat storage set-up at DLR [9], shown in Figure 1.  

 
The storage tank presents four PCM chambers separated by 

channels through which the heat transfer fluid (HTF) flows 
(Mobiltherm 603). The two inner PCM chambers are 80 mm 
thick, while the other two have half of width. The purpose of 
these two outer chambers is to minimize boundary effects on 
the inner two chambers, were thermal evolution is measured 
using Type K (Class 1) thermocouples. Moreover, the tank has 
a height of 1010 mm and is well insulated. The used PCM is an 
eutectic mixture of technical grade quality NaNO3 (46wt%) - 
KNO3 (54wt%) with a measured phase change temperature of 
219.5ºC. 
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This section also analyses how the discretization in the time 
domain affects the computational resources required by each 
model. For this purposes, the two sets of simulations were 
compared using the same mesh size (420 elements) but 
different time steps (1 and 5 s). It can be noticed that the 
CVFDM-sour-Mat has the highest potential for reducing its 
computational time when increasing the time step. 

 

Table 3   Scaled time (s) of each model with different time step 

Model/Time step Δt=1s Δt=5s Decrease (%) 
FVM-eC-CFX 4248 1933 54.5 
FVM-eC-C 3.8 2.7 27.9 
FDM-enth-Mat 162 113 30 
CVFDM-sour-Mat 63.5 14.6 77 

 

CONCLUSION  
This paper presents four different numerical models to 

analyse the performance of a flat plate heat storage system 
using PCM. The numerical models are experimentally validated 
and their accuracy and computational efficiency are evaluated 
and compared. The four models use different discretization 
methods (FVM, CVFDM and FDM), approach for modelling 
the phase change (enthalpy, equivalent heat capacity and source 
method), solver method (Gauss-Seidel or linearization) and are 
implemented in commercial software (ANSYS CFX) or coded 
in MATLAB or C language. 

 
All the analysed numerical models showed good agreement 

in comparison to the experimental data describing a discharge 
process of a high temperature latent heat storage system. 
However, different computational resources were required, also 
depending on the mesh size and time step definition. The 
required time to achieve convergence of the C-based model is 
the lowest in all cases except when using an extra fine mesh 
definition, on the other hand, the models implemented in 
MATLAB are faster with this mesh since they can solve 
equations systems efficiently. The model implemented in the 
commercial software requires the highest computational effort 
than Gauss-Seidel iterative methods, however, it shows high 
potential of computational resources savings in case of 
increasing the time step. 
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