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ABSTRACT 
Two-dimensional numerical simulations are conducted for 

natural convection in an enclosure with a hot inner cylinder 
located at the center in the Rayleigh number range from 105 to 
106. The Prandtl number is set to be 0.7 corresponding to the air. 
We investigate the effect of various temperature conditions on 
the bottom wall on thermal and flow structures of the natural 
convection in the enclosure. It is identified that the streamlines 
and isotherms in the enclosure depend on the Rayleigh number 
and the temperature condition imposed on the bottom wall of 
the enclosure. When Ra=105, small inner vortices are formed in 
the lower part of the cylinder and they show significant changes 
in their size due to the increase in the temperature on the 
bottom wall. When Ra=106, secondary vortices are formed in 
the lower part of the cylinder because of the separation of the 
main convection flow from the side walls. And the magnitude 
of the convection velocity at Ra=106 becomes much larger than 
that at Ra=105, which leads to the occurrence of a stronger 
upwelling plume above the top surface of the cylinder. The 
numerical solutions at Ra=105 reach the steady state after fully 
converged regardless of the variation in the temperature 
condition on the bottom wall. On the other hand, the numerical 
solutions for all cases at Ra=106 except the case with the 
temperature condition of zero show the time dependent 
characteristics. 

 
INTRODUCTION 

Natural convection in an enclosure is relevant to many 
practical applications such as heat exchangers, cooling of 
nuclear and chemical reactor systems, cooling of electronic 
equipment and so on. Due to various applications, fundamental 
studies on the natural convection in an enclosure, including 
Rayleigh-Bénard convection in a horizontal layer of the fluid 
confined between two parallel plates, have been performed by 
many researchers for decades [1-8]. 

Gelfat [1] described a complete numerical solution of the 
formulated benchmark problem devoted to the parametric study 
on Rayleigh-Bénard instability in rectangular two- and three-
dimensional boxes. The results of the parametric calculations 
were presented in [1] as characteristic curves showing the 
dependence of the critical Rayleigh number on the aspect ratio 
of the cavity. Quertatani et al. [2] numerically performed a 
study on a classical Rayleigh-Bénard convection problem, and 
reported the characteristics of the flow and thermal structures 
for the Rayleigh numbers ranging from 310  to 610 . D’Orazio  

NOMENCLATURE 
 

Symbols 
fi  

[-] Momentum forcing 
g  [m/s2] Gravitational acceleration 
h  [-] Heat source or sink 
H  [-] Dimensionless vertical length of enclosure 
L  [-] Dimensionless horizontal length of enclosure 
n  [-] Direction normal to the wall 
Nu  [-] Nusselt number 
P  [-] Dimensionless pressure 
Pr  [-] Prandtl number 
q  [-] Mass source or sink 
R  [-] Dimensionless radius of circular cylinder 
Ra  [-] Rayleigh number 
t  [-] Dimensionless time 
T  [K] Temperature 
u,v  [-] Dimensionless velocity components in x and y directions 
x, y  [-] Cartesian coordinates 

   
Special characters 
α  [m2/s] Thermal diffusivity 
β  [1/K] Thermal expansion coefficient 

ijδ  [-] Kronecker delta 

ρ  [kg/m3] Density  
ν  [m2/s] Kinematic viscosity 
θ  [-] Dimensionless temperature 
   
Subscripts 
b   Bottom wall 
c   Cold 
cyl   Cylinder 

h   Hot 
t   Top 
*   Dimensional variable 

  Surface-averaged value 

 
 

et al. [3] studied the case of 2-D Rayleigh-Bénard convection 
developed in a cavity with a large aspect ratio ranging between 
2 and 6, where the Rayleigh number range of 3 610 ~ 2 10×  was 
considered in the study. 

In many engineering applications, the situation frequently 
arises wherein diverse thermal boundary conditions are 
imposed on walls of an enclosure. Therefore, many studies 
have considered the effect of a thermal boundary condition on 
natural convection. Corcione [4] studied the natural convection 
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in an air-filled rectangular enclosure heated from below and 
cooled from above with respect to variable thermal boundary 
conditions imposed on the side walls. The author reported that 
bi-direction differential heating has a significant effect on the 
flow mode transition of natural convection in the horizontal 
cavity. Kim et al. [5] recently investigated the natural 
convection induced by a temperature difference between a cold 
outer square cylinder and a hot inner cylinder for different 
Rayleigh numbers in the range of  310 to 610 . The location of 
an inner circular cylinder was changed vertically along the 
centerline of the square enclosure. They reported that the 
numerical solutions for the flow and thermal fields eventually 
reach the steady state for all Rayleigh numbers considered. The 
number, size, and formation of the convection cells strongly 
depended on the Rayleigh number and the position of the inner 
circular cylinder. Kandaswamy et al. [6] numerically studied 
unsteady laminar natural convection in an enclosure with 
partially-heated side walls and an inner body as an internal heat 
source. They investigated the effects of the aspect ratio of the 
enclosure, different Prandtl numbers, and locations of the 
thermally active part of the side walls. They described the flow 
structure and the heat distribution in the enclosure, and the 
profile of the convection velocity in the mid-plane of the 
enclosure, for various simulation parameters. In addition, they 
assessed the heat transfer rate from walls of the enclosure. 
Aydin and Yang [7] numerically investigated the natural 
convection in a square cavity with localized isothermal heating 
from below and symmetrical cooling from the side walls. They 
considered various lengths of the local heating zone as a main 
simulation parameter. They reported that the Nusselt number on 
the heated part of the bottom wall increases with increasing 
Rayleigh number and length of the heating zone. Lee et al. [8] 
numerically studied the effects of the locally heated bottom 
wall of the enclosure with an hot inner cylinder located at the 
center on thermal and flow structures of natural convection for 
different Rayleigh numbers in the range of 310 to 610 . They 
reported that the numerical solutions for Rayleigh numbers 
ranging from 310 to 510  reach a steady state. On the other hand, 
at 610Ra = , thermal and flow fields show time-dependent 
characteristics after their full development.  The generation and 
dissolution of vortices in the enclosure were dependent mainly 
on the size of the local heating zone. Basak et al. [9] studied 
effects of thermal boundary conditions in a square enclosure on 
buoyancy-induced convection flow with respect to fluids with 
different Prandtl numbers using the finite element method. 
They imposed a non-uniform heating conon the bottom wall. 
They reported that the non-uniform heating of the bottom wall 
produces a greater heat transfer rate in the center region of the 
bottom wall than that produced in the uniform heating case for 
the Rayleigh numbers considered.  

Generally, natural convection in an enclosure, whose flow is 
caused by temperature-induced density variations, has been 
studied as mentioned above. It is relevant to many industrial 
and environment applications, such as heat exchanger, nuclear 
and chemical reactors, cooling of electronic equipment and 
stratified atmospheric boundary layers. 

In this study, 2-D numerical simulations were performed for 

natural convection in a square enclosure with a hot inner 
circular cylinder in the range of Rayleigh numbers from 510  to 

610  in order to compare the phenomena of the results which are 
studied by Lee et al. [8], academically. We investigated the 
effect of various temperature conditions of the bottom wall on 
the characteristics of the flow structure and heat transfer of 
natural convection. 

 

NUMERICAL METHOD 
A schematic of the system is shown in Fig. 1. The system 

consists of a square enclosure with length L  and an inner 
circular cylinder with radius of R= 0.2 L  which is located at the 
center of the enclosure. As shown in Fig. 1, the top wall is kept 
at a constant low temperature cT . The bottom wall of the 
enclosure is kept at a constant temperature bT  whose value 
varies against the simulation case considered in this study. The 
adiabatic thermal boundary conditions are imposed on the side 
walls of the enclosure. The cylinder surface is kept at a constant 
high temperature hT . 

The governing equations describing unsteady incompressible 
viscous fluid flow and thermal fields are the continuity, 
momentum and energy conservation equations in their non-
dimensional forms, which are defined as 
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Figure 1 Computational domain and coordinate system 

along with boundary conditions 
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In Eq. (4), the superscript (*) denotes the dimensional 
variables; ρ  and α represent the density and the thermal 
diffusivity of the fluid, respectively; P , θ , and t  represent the 
dimensionless pressure, the dimensionless temperature, and the 
dimensionless time, respectively; ix  represents the 
dimensionless Cartesian coordinates; and iu  represents the 
corresponding dimensionless velocity components. Subscripts 
i  and j  are the tensor notation with i =1, 2 and j =1, 2. The 
fluid properties were assumed to be constant except in the 
buoyancy term according to the Boussinesq approximation 
which is only valid when temperature and, therefore, density 
variations are small. The aforementioned non-
dimensionalization yields two dimensionless parameters: 

Pr ν α= and 
3 ( )h cg L T T

Ra
β

νa
−

= , where ν , g , and β  are the 

kinematic viscosity, gravitational acceleration and volume 
expansion coefficient, respectively. The gravitational 
acceleration g acts in the negative y direction. The Prandtl 
number was set to be 0 7Pr .=  corresponding to the property 
of air. The Rayleigh numbers of 510  and 610  are considered in 
this study. 

The immersed boundary method was used to capture the 
virtual surface boundary of the inner circular cylinder. The 
extra momentum forcing expressed by the term if  in Eq. (2) is 
imposed at individual computational nodes inside the virtual 
boundary of the circular cylinder in order to comply with the 
wall no-slip boundary condition. The mass source/sink term q  
in Eq. (1) was applied on the cylinder surface or inside the 
cylinder to satisfy the mass conservation in the cell containing 
the virtual boundary. In Eq. (3), heat source/sink h  was applied 
to satisfy the isothermal boundary condition on the virtual 
boundary. The four-step time-split scheme was used to advance 
the flow field. 

For the flow field, no-slip and no-penetration boundary 
conditions were imposed on walls. For the temperature fields, 
the hot dimensionless temperature of 1.0hθ =  was imposed on 
the wall of the inner cylinder, whereas the cold dimensionless 
temperature of 0.0cθ =  was imposed on the top and side walls 
of the enclosure.  For the bottom wall of the enclosure, the 
dimensionless temperature varies from 0.0bθ =  to 1.0bθ =  
against the simulation case considered in this study.  

Once the velocity and temperature fields were obtained, the 
local and surface-averaged Nusselt numbers were calculated as 
follows:   

0

1,
S

wall

Nu Nu Nu ds
n S
θ∂

= =
∂ ∫                (5) 

where n is the direction normal to the wall and S the surface 
length. 

The uniform grid is distributed in the computational domain 
as shown in Fig. 2. Table 1 shows the grid dependency test 
results when 610Ra =  and 0.0bθ = . As shown in Table 1, the 
difference in the values of surface-averaged Nusselt number on 
the cylinder, cylNu , calculated using different grid points of  

 
Figure 2 Distribution of the grid generated in the 

computational domain 

Table 1 Grid dependency test results for the surface-averaged 
Nusselt number around the inner cylinder cylNu  when 

610Ra =  and 0.0bθ = . 

Grid number cylNu  Difference (%) 

202 202×  4.9921 0.18 
252 252×  4.9902 0.21 
302 302×  4.9978 0.06 
352 352×  4.9998 0.02 
402 402×  5.0009 - 

 
202 202× , 252 252× , 302 302× , 352 352×  and 402 402×  
for 610Ra =  and 0.0bθ =  is very small. Based on this grid 
dependency test result, a grid resolution of 302 302×  along 
horizontal ( )x  and vertical ( )y  directions was employed in the 
present study.  
 

RESULTS AND DISCUSSION 
Figure 3(a) and 3(b) show distributions of isotherms and 

streamlines in the enclosure for cases of 0.0bθ =  at different 
Rayleigh numbers of 510  and 610 , respectively. In terms of 
general fluid motion occurring due to natural convection as 
shown in Fig. 3, the heated lighter fluid is lifted along the hot 
surface of the inner cylinder due to buoyancy as a driving force. 
As the fluid flow approaches the cold top wall of the enclosure, 
it becomes gradually colder and denser. The fluid is cooled 
down further as it moves along the cold top wall in the lateral 
direction. Finally, a denser fluid cooled moves downward along 
adiabatic side walls of the enclosure. Thus, the main circulation 
of the convection flow is formed in the enclosure. 

When 510Ra = , a single vortex core of each main 
circulation is located in the upper part of the cylinder, and a 
single upwelling plume can be identified above the top surface 
of the cylinder at 510Ra =  as shown in Fig. 3(a). When  
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(a) 

 
 

(b) 
Figure 3 Isothermals (left) and streamlines (right) 

distributed in the enclosure;  (a) 510Ra = , (b) 610Ra =  
 

610Ra = , small secondary vortices occur in the vicinity of 
the bottom wall of the enclosure owing to the separation of the 
velocity boundary layer by the strong convective flow. Since 
the convection velocity significantly increases with increasing 
Rayleigh number, the thermal boundary layer behavior can be 
clearly observed around the cylinder and near the top wall of 
the enclosure as shown in isotherms of Fig. 3(b). The thermal 
boundary layer is lifted up from the top surface of the cylinder 
following a strong rising plume. The flow strongly impinges 
against the top wall of the enclosure, which leads to a thinner 
thermal boundary layer and thus the enhancement of the heat 
transfer capacity in this region. 

Figure 4 shows the distribution of isotherms and streamlines  
 

 
 

(a) 

 
 

(b) 
Figure 4 Isothermals (left) and streamlines (right) distributed in 

the enclosure at 510Ra = (a) 0.5bθ = , (b) 1.0bθ =  

 
 

(a) 

 
 

(b) 
Figure 5 Time-averaged isothermals (left) and streamlines 

(right) distributed in the enclosure at 610Ra = (a) 0.5bθ = , (b) 
1.0bθ =  

 
at 510Ra =  according to the variation in bθ . The numerical 
solutions at 510Ra =  reach the steady state regardless of the 
variation in the temperature condition on the bottom wall after 
fully converged. At 0.5bθ =  in Fig. 4(a), the bi-cellular 
vortical structure occurs in the main circulation flow. As bθ  
increases to 1.0bθ = , lower inner vortices gradually increase in 
its size since the thermal gradient in the lower part of the 
cylinder is gradually stronger with increasing temperature of 
the bottom wall. As a result, the isotherms are distorted further 
as bθ  increases. 

Figure 5 shows the distribution of time-averaged isotherms 
and streamlines at 610Ra =  according to the variation in bθ . 
The numerical solutions for all cases at 610Ra =  except the 
case with the temperature condition of zero show the time 
dependent characteristics. When 0.5bθ = in Fig. 5(a), 
secondary vortices are generated in the lower left and right 
corners of the enclosure, and their size increases gradually as 

bθ  increases. The primary vortices occupying most space in the 
enclosure are confined further to the upper region of the 
enclosure due to the presence of secondary vortices as the 
temperature on the bottom wall of the enclosure increases. 

Figure 6 shows distributions of the surface-averaged Nusselt 
number on the cylinder surface cylNu , top wall tNu  and 

bottom wall bNu  of the enclosure as a function of bθ  for 
two different Rayleigh numbers considered in this study. In 
these figures, positive or negative values of the Nusselt number 
denote the direction of the heat transfer on walls. As shown in 
Fig. 6(a), the absolute value of cylNu  decreases 

monotonically with increasing bθ  at 510Ra =  and 610Ra =   
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(a) 

 
(b) 

 
(c) 

 
Figure 6 Time- and surface-averaged Nusselt for two different 

Rayleigh numbers; (a) cylinder surface, (b) top wall and (c) 
bottom wall of the enclosure 

 
since the fluid temperature around the cylinder gradually 
increases with increasing bθ . As shown in Fig. 6(b), the 
variation in tNu  according to bθ  is very small for 510Ra =  

and 610Ra = . At 610Ra = , the heat transfer rate is much 
larger than that at 510Ra =  due to effects of the strong 
convection and rising thermal plume impinging against the top 
surface of the enclosure. As shown in Fig. 6(c), bNu  has 

positive values for 0.0 ~ 0.5bθ =  at 510Ra = , which means 
the heat transfer from the surrounding fluid to the bottom wall. 
The value of bNu  at 510Ra =  gradually decreases with 

increasing bθ  from 0.0bθ =  to 0.5bθ = . After 0.5bθ = , the 
direction of the heat transfer is changed (i.e., a positive-to-
negative Nusselt number), and then the absolute value of 

bNu  gradually increases with increasing bθ  from 0.5 to 1.0. 

When 610Ra = , the variation trend in the bNu according to 

bθ  shows very similar to that at 510Ra = . 
 

CONCLUSION  
Two-dimensional numerical simulations are conducted for 

natural convection in an enclosure with a hot inner circular 
cylinder located at the center in the Rayleigh number range 
from  510  to  610 . We investigate the effect of various 
temperature conditions on the bottom wall on thermal and flow 
structures of the natural convection in the enclosure. It is 
identified that the streamlines and isotherms in the enclosure 
depend on the Rayleigh number and the temperature condition 
imposed on the bottom wall of the enclosure. 

The numerical solutions at 510Ra =  reach the steady state 
regardless of the variation in the temperature condition on the 
bottom wall after fully converged. On the other hand, the 
numerical solutions for all cases at 610Ra =  except the case 
with the temperature condition of zero show the time dependent 
characteristics. 

When 510Ra = , small inner vortices formed in the lower 
part of the cylinder show significant changes in their size due to 
the increase in the temperature on the bottom wall. When 

610Ra = , secondary vortices are formed in the lower part of 
the cylinder due to the separation of the main convection flow 
from side walls of the enclosure.  

When 610Ra = , much stronger rising plumes than those at 
510Ra =  are formed above the top surface of the cylinder. 

Thinner thermal boundary layer is formed on the lower surface 
of the cylinder and the top surface of the enclosure due to the 
effects of the strong convection and rising thermal plume 
impinging against the top wall of the enclosure, which results in 
higher heat transfer capacity than that at 510Ra = . 
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