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ABSTRACT 
The subsurface nuclear waste repositories have several 

engineered and natural barriers that isolate the radioactive 
material from the human's environment until the radio-toxicity 
of the waste decays to insignificance. One of the major natural 
insulating barriers is rock formation. If due to the various 
reasons the leakage of the radioactive waste would take place, 
the groundwater reservoirs in the vicinity of the repository can 
be seriously contaminated by the radioactive elements 
transferred through the cracks and fractures within the 
insulating barriers. Aquifer contamination by contaminants 
radioactive elements is an actual environmental problem for all 
developed countries. Analysis of mass transport in a complex 
environment shows that the conventional diffusion equation 
based on Fick's law fails to model the anomalous character of 
the diffusive mass transport observed in the field and laboratory 
experiments. Two regimes of anomalous diffusion are 
identified. One regime, which is called sub-diffusion, is 
characterized by the slower propagation of the concentration 
front, so that the squared distance of the front passage requires 
longer time than in the case of the classical Fickian diffusion. 
The second regime (called super-diffusion) is characterized by 
the higher diffusion rate. Both regimes can be modelled by non-
local diffusion equation with temporal and spatial fractional 
derivatives. In the present paper fractional differential 
equations are used for modeling the transport of radioactive 
materials in fractured porous medium. New form of fractional 
equation for modeling migration of the radioactive elements is 
proposed and justified. Solutions of particular boundary value 
problems for these equations were found by application of the 
Laplace transform method. As an example, a mathematical 
model of the radioactive contaminant transport in a confined, 
porous, fractured aquifer is derived and analysed. Through the 
use of fractional derivatives, the model accounts for 
contaminant exchange between fissures and randomly 
distributed porous blocks of fractal geometry and non-local 
character of radioactive decay of the contaminant trapped by 
the porous medium. For the case of an arbitrary time-dependent 
source of radioactive contamination located at the inlet of the 
aquifer, closed-form solutions for solute concentration in the 
aquifer and in the confining rock is obtained. 
. 

 

INTRODUCTION 
Aquifer contamination by radioactive elements is a 

widespread environmental problem. In many countries it is 
common to use fractured bedrock aquifers as water supply and 
contamination of these aquifers is becoming a serious problem 
(Keller et a., 1995).  The fractured porous aquifers are formed 
by porous rock matrixes of nonzero porosity dissected by a 
fractal-type network of fissures of high hydraulic conductivity 
(Fomin et al, 2003). For fractured porous medium, it can be 
said that fluid is stored in the porous elements and transported 
along the fissures. Water flow and solute transport by seeping 
groundwater are relatively slow, and it is not possible to carry 
out experiments over thousands of years and hundreds of 
meters of interest. Instead, one has to rely on models that 
describe the processes and mechanisms that would be dominant 
over long periods of time. It is therefore essential to understand 
the key processes well enough that credible predictions can be 
made using models based on well-established laws of nature. 
The lack of measurement data makes it difficult to build models 
that account for all the processes. Simplifications are therefore 
made in an attempt to bring out the dominant processes; 
Recently, Fomin et al. (2005,2010, 2011) suggested a relatively 
simple model, with fractal retention times, capable of 
simulating the anomalous character of solute concentration 
distributions for the flows in fractured porous media of fractal 
geometry. In the field experiments carried out by Becker and 
Shapiro (2000), Haggerty et al. (2000) and Reimus et al. (2003) 
for the solute transport in highly heterogeneous media, the 
solute concentration profiles exhibited faster-than-Fickian 
growth rates, skewness, and sharp leading edges. These effects 
cannot be predicted by the conventional mass transport 
equations. It was demonstrated in a number of publications 
(e.g. Benson et al., 2000, 2001; Baeumer, 2001; Schumer et al., 
2003; Meerschaert et al., 1999 and Herrick et al., 2002, Fomin 
et al. 2005) that fractional differential equations can simulate 
the anomalous character of solute transport in highly 
heterogeneous media. Suggesting inclusion a fractional-in-time 
derivative into the mass transport equation (in addition to the 
conventional derivative with respect to time), Schumer et al. 
(2003) referred to the conceptual model of multi-rate diffusion 
into immobile zones that had been described by Cunningham et 
al. (1997), Haggerty and Gorelick (1995), Carrera et al. (1998) 
and Haggerty et al. (2000).  
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In the present study a mathematical model of the radioactive 
contaminant transport in a fracture within the fractured porous 
medium is derived and analyzed. Through the use of fractional 
derivatives, the model accounts for the effects of contaminant 
transport retardation caused by non-Fickian diffusion into the 
porous blocks within the aquifer and into the confining rock. 
For the case of an arbitrary time-dependent source of 
contamination located at the inlet of the fracture, closed-form 
solutions for radioactive solute concentration in the fracture and 
in the surrounding rock are obtained.  
 
SYSTEM MODEL AND ANALYSIS 
In the A schematic sketch of the fracture within the porous rock 
is presented in Fig. 1. Cartesian coordinates (x, y) are chosen in 
such a manner that fluid in the fracture flows in the x-direction 
and that the coordinate y is directed upward. Within the fracture 
the certain portion of the solute adsorbs on its walls and the 
other portion diffuses into surrounding porous matrix, where 
also takes part the adsorption on the walls of the pores. The 
radioactive decay of the radioactive contaminant takes place 
both in fracture and porous matrix.    
 

 
Figure 1. A schematic sketch of the model 

 
 It can be readily shown that in the surrounding rocks confining 
the fracture the gradient of solute concentration in the x-
direction is much smaller than that in the direction orthogonal 
to the fracture (Grisak and Pickens, 1981; Rahman et al., 2004; 
Kennedy and Lennox, 1995; Reimus et al., 2003; Tsang and 
Tsang, 1987; Tang et al., 1981). Since the goal of the present 
study is to estimate qualitatively the effect of non-Fickian 
diffusion into the surrounding rocks on the solute transport in 
the fracture, it is assumed for simplicity that rocks from the 
both sides of the fracture have the same physical properties. 
The latter assumption makes the process symmetrical with 
regard to the median line of the fracture y = -h (dashed line in 
Fig. 1). Therefore, the mass flux equals to 0 at y = -h, and the 
solution of the problem in the sub-domain below this line is 
identical to the solution in the upper sub-domain.  Hence, only 
the upper half of the domain (y≥-h) can be considered. Let c2 
and c1 be the concentrations of the solute within the fracture 
and porous matrix, respectively. Then, due to the above 
assumptions, accounting for the fact that the thickness of the 
fracture is much smaller than its length and defining the mean 
concentration of the solute within this thin 
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−
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c , equations that model radioactive mass 

transport in the fracture and porous medium can be presented in 
the following form (Tang et al., 1981):  
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where v is the average velocity of the solution in the fracture, λ 
is a radioactive decay constant, τ is time, s is the mass of the 
solute adsorbed on the walls of the fracture, q is the diffusive 
mass flux on the wall of the fracture, D and D1 are the effective 
diffusivities in the fracture and in the porous medium, which 
account for dispersion and molecular diffusion in the fracture 
and porous medium,  s1 is the mass of the contaminant within 
the matrix, which is adsorbed on the walls of the pores, ρm is 
the density of the rock matrix, θ is the matrix porosity,  and 

α

α

y
c

∂
∂ 1  is the fractional derivative of order α, 10 ≤< α , that can 

be defined by means of Laplace transformation L, from the 

equation [ ] ))0,(( 11
11 τα

α

α

ccpLp
y
c

L −=







∂
∂ − , which is equivalent 

to the Caputo definition (Samko et al.,1993), 









−Γ

−
= ∫

−

ξ
ξα

ξ α

α

α

d
d
dcy

dy
cd y

0

11

)1(
)( .  Inclusion of the fractional 

derivative into equation (2) is attributed to the fact that pore 
geometry and distribution in the rocks is very complex and 
often resembles the fractal structure. For these type of media 
the conventional mass Fickian mass flux can be generalized by 
introducing the fractional derivative, so that it will take the 

following form, 
α
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on the wall of the fracture, y=0, should have the same form, i.e. 
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 The system of equations (1)-(3) will be closed when the 
relationships between c and s along with c1 and s1 are known. 
With the good degree of accuracy it can be assumed (Tang et 
al., 1981) that 

S=Kfc                   (4) 
S1=Kmc1       (5) 

Where Kf  and Km are given constants. Substituting correlations 
(3)-(5) into equations (1) and (2) yields 
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where )1(1 θ
ρ mm KR += and )1(

h
K

R f+=  are retardation 

coefficients. The order of the fractional derivative in equations 
(6) and (7), α, is close to 0 for highly heterogeneous media and 
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increases for more homogenous substances; α=1 for 
homogenous materials. In general, concentration c1 is a 
function of both spatial coordinates, x and y: ),,(11 yxcc τ= . 
However, in the equation (2) the derivative of c1 with respect to 
x is ignored. Dependence of c1 on x is a consequence of the 
boundary conditions on the rock-fracture interface (y=0), which 
couples c1 with the mean concentration in the fracture, 

),( xcc τ= . In order to convert equations (6) and (7) to the non-
dimensional form, the proper characteristic scales must be 
defined. The scale for time, 11

1 / DRhm
+= ατ , represents the 

characteristic time for contaminant penetration in the rock 
matrix to the distance h. The scale for the variable x along the 
fracture, )/()(/ 11

1 RDvRhRvl m
+== ατ , is the characteristic 

distance of contaminant migration during the characteristic time 
),0( mτ . The scale for the y-coordinate is defined by the half-

thickness of the aquifer, h. The initial concentration of solute at 
the inlet of the fracture, c0(0), where the source of 
contamination is located, can be used as the scale for solute 
concentration. Based on these scales, non-dimensional 
variables can be introduced as follows: 
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Substituting the non-dimensional variables given by (8) into 
equations (6) and (7) yields the following: 
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 The following boundary and initial conditions can be imposed 
in order to close the mathematical model of the radioactive 
contaminant transport within the single fracture and 
surrounding porous medium: 

0,0 1 === CCt ;      (11) 
)(,0 0 tCCX == ;      (12) 

0, →∞→ CX        (13) 
0, 1 →∞→ CY        (14) 

;,0 1 CCY ==       (15) 
where C0(t) is the non-dimensional concentration at the inlet of 
the fracture . Note that assuming the concentration C1 on the 
rock-aquifer interface Y=0 to be equal to the mean 
concentration of solute in the aquifer, C,  (boundary condition 
(15)) we slightly overestimate the value of concentration in the 
surrounding rocks. The boundary condition (15) is 
approximation of the more general mass transfer equation 
(Welty, 2001): )( 11 CCShYC −=∂∂ αα at Y=0, where the 
Sherwood number 1DkhSh α=  is greater than 10 for the 
regimes characterized by high Peclet numbers (due to the high 
values of convective mass transfer coefficient k, which is much 
greater than the effective diffusivity of the rock matrix (Guo et 
al., 1999; McGuire et al, 2004)).  

 
SOLUTION OF THE PROBLEM (9)-(15) 
In the present problem, two processes can be singled out: mass 
transport in a fracture and mass transport in a porous medium. 
Apparently, the first process is described by equation (9), which 
contains C and C1. So, provided that correlation between C and 
C1 is known, equation (9) with boundary conditions (11)-(13) 
constitutes the closed boundary value problem that can be 
solved separately from equation (10). This correlation can be 
obtained by integrating equation (10) with boundary conditions 
(14), (15) and initial condition (11). It can be readily shown that 
solution for concentration, C1, can be coupled with the 
concentration in the fracture by the following equation:  
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which analogous to the  Duhamel’s theorem (Carslaw and 
Jaeger, 1959). Function  u in equation (16) is solution of the 
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0,0 0 == ut ;      (18) 
;1,0 0 == uY       (19) 
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Equation (16), in terms of mass fluxes, can be converted into 
the following form: 
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 Substituting formula (21) into equation (9) leads to the 
following boundary value problem for C 
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 0,0 == Ct ;      (24)

 )(,0 0 tCCX == ;      (25) 
0, →∞→ CX       (26) 

Applying the technique of group Lie analysis (Akcenov et al. 
(1994)) it can be readily shown that solution of the above 
formulated boundary-value problem(17)-(20) , for function uo , 
can be presented in the following form (Fomin et al., 2010): 
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where )1/( ααβ += . Accounting for the formula (28), 
formulae (22) lead to the following expression for Q1, which 
represents the mass flux on the wall of the fracture when 
concentration C1 on this wall is set to be equal to 1: 
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where ),( zaγ  is Incomplete Gamma function. Thus, formulae 
(21) and (29) define the actual mass flux on the wall of the 
fracture. In two particular cases that can be easily considered. 
In the case when there is no radioactive decay and diffusion is 

Fickian ( i.e. Λ=0 and 2/1=β ), 
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definition of the fractional derivative (Samko et al.,1993), 
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representation: 
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where )1/( ααβ += . The accuracy of this asymptotic formula 
can be easily verified by simple numerical computations. Our 
computations show that within the relatively long time interval  
from 0 to 1/Λ (note that Λ is small in (30)) and 1.0≥β

 
the 

discrepancy between the values of Q1 computed by the 
formulae (29) and (30) is negligibly small and, therefore,  
formula can be used as a good approximation for Q1, which 
exact value is given by equation (29). Using formula (30), the 
mass flax Q defined by equation (21) can be presented through 
the fractional derivatives: 
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Let us turn to solution of the boundary value problem (23)-(26) 
where function Q in the right hand side of equation (23) is 
defined by the formula (31). Considering the same time period 
as above, i.e. from 0 to 1/Λ, it is convenient to rescale equation 
(23) assigning 1/Λ as a scale for time, so that new time variable 
T=Λt. In this case, as it follows from the scale analysis of 
equation (23), the scale l for the spatial  variable X should be 
converted to a new scale )/(10

βθΛ+Λ=X  and the new spatial 

variable will be defined as )( βθΛ+Λ= XX . In these new 
non-dimensional variables equation (23) can be presented in the 
following form 

τττε β dXTC
T

wC
X

C
X
C

T
Cw

T

∫ Ψ−
∂
∂

−=+
∂
∂

−
∂
∂

+
∂
∂

0
22

2

1 )(),( ,(32) 

where βθΛ+Λ
Λ

=1w , β

β

θ
θ

Λ+Λ
Λ

=2w  , Pe

βθε Λ+Λ
= and 

11 −Λ=Ψ −β
β Q . Note that accounting for the equation (29), 

expression for βΨ  ,  can be presented as 

[ ] ( )ββγβ
β −Γ−−=Ψ −− 1/),1( TeT T . Parameter ε in equation 

(32) is rather small (ε<<1) because Λ<<1 and Pe=O(1). Hence, 
for the moments of time of the order  1/Λ, in major cases, the 
effects of the diffusive transport in overall mass transport 
within the fracture is negligible small (mass transport is  
predominantly determined by an advection mechanism)  and, 
therefore, equation (32) can be rewritten as follows 
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Applying Laplace transformation L with respect to variable T to 
the equation (33), and accounting for boundary condition (24)-
(26), gives 
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When at the entrance of the fracture concentration is constant, 
i.e. C0=1 and sC /10 = , denoting concentration in the fracture 
for this case by Cc, and calculating the inverse Laplace 
transformation 1−L  leads to the following expression: 
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If concentration in the inlet is an arbitrary function of T, C0(T), 
then concentration in the fracture can be obtained by utilizing 
the Duhamel’s theorem (Carslaw and Jaeger, 1959):  
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where Cc is defined by equation (37). If C0 varies exponentially, 
TeC −=0 , i.e. when the radioactivity decays at the entrée point,   

then solution C can be obtained by the inverse Laplace 
transform directly from the equation (36), where )1/(10 += sC . 
As a result of this inversion 
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Thus, solutions of the boundary value problem (23)-(26), which 
models the radioactive mass transport in a single fracture, is 
obtained analytically. I general case, this solution is given by 
equations (38) and (37). In particular case, when the solute 
concentration in the inlet of the fracture is constant or decays 
exponentially, then concentration in the fracture is given by 
expressions (37) and (39), respectively. When the concentration 
distribution within the fracture C is found, concentration of the 
solute in the surrounding porous matrix can be obtained from 
the formula (16), where u0 is defined by the series (27).  
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