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ABSTRACT 

Flow displacements in porous media are encountered in a 

wide variety of fields, in particular in the energy and 

environmental sectors. Such flows are prone to a hydrodynamic 

instability that develops as a result of differences in the physical 

properties of the different fluids, namely their viscosity and/or 

density. A simple and inexpensive way to attenuate the 

instabilities is to implement time-dependent injection schemes.  

In this study, flows in radial two- dimensional homogeneous 

porous media are modelled. A low-viscosity fluid is injected 

radially at the centre of the cell to displace a more viscous one. 

The model equations are developed and a linear stability analysis 

is carried out. Different time-dependent velocity profiles are 

considered and the effects of different flow parameters are 

analysed and compared with the corresponding constant 

injection velocity flows. For consistency, the comparisons are 

conducted on the basis that all injection schemes including the 

constant one, result in the same total amount of injected fluid.  

Qualitative analyses are conducted using different measures of 

the growth of the instability and are used to determine the 

changes induced by the time-dependent injections. These 

changes in the flow dynamics can be used to control the degree 

of mixing between the two fluids and to optimize a variety of 

flow displacements in porous media. 

 

INTRODUCTION 
Hydrodynamic instabilities can develop at the interface 

between two fluids flowing in a porous medium. These 

instabilities manifest themselves in the form of finger-like 

structures at the interface between the two fluids.  In the case of 

homogeneous porous media, the instability develops as a result 

of viscosities mismatch and is referred to as viscous fingering 

and/or densities mismatch where it is known as the Rayleigh-

Taylor instability. Both instabilities are encountered in a variety 

of processes that span a wide range of fields that include 

chemical, petroleum and environmental sectors. Hence a better 

understanding of these instabilities is crucial for the design, 

optimization and improvement of numerous processes 

encountered in the operation of packed bed reactors, production 

and enhanced recovery of oil, decontamination of soil as well as 

the sequestration of carbon dioxide 

Extensive studies have been conducted to analyze the effects 

of different factors on the instability including the viscosity ratio 

[1], dispersion [2], non-Newtonian rheological behavior of the 

fluids [3], chemical reaction [1], heat transfer [4] and flow 

configuration [5] among others. Detailed literature reviews that 

date back to the 1980s and 1990s are found in [6] and [7]. 

The vast majority of existing studies have focused on 

miscible displacements when dispersion plays an important role 

in addition to the viscosity/density ratios and the injection rates. 

However in numerous practical applications, the flow 

displacements are immiscible and surface tension forces become 

a major factor in the development and subsequent fate of the 

instability.  

Immiscible flows were studied experimentally. Paterson [8] 

investigated the width of fingers and developed equations to fit 

the radius of the tip and base of fingers based on the injection 

flow rate, time and arbitrary parameters. In a later study, Chen 

[9] analyzed the effect of plate roughness and flow rate as well 

as interfacial tension. It was observed that for smooth plates, 

fingering patterns are strongly influenced by the flow rate, with 

narrower fingers occurring as the flow rate increases. In rough 

plates, fingers tend to branch more easily. Low flow rates for 

both smooth and rough plates enable the fingers to be more 

compact. The same author later observed the development of 

fingers at later long times after multiple splitting, suggesting that 

immiscible patterns can be similar at the same dimensionless 

time [10]. In a subsequent study, Praud and Swinney [11] found 

an asymptotic behavior for the ratio of the fingers’ radius over 

the gap thickness in a radial Hele-Shaw cell.  

Many miscible displacement experiments have also been 

performed under a variety of conditions.  Chen demonstrated that 

fractal dimensions remain constant [5]. Much of the 

experimental work on miscible flow has however been 

conducted for rectilinear geometries.  

The stability of immiscible displacement in a radial geometry 

has been studied by Wilson [12] and later by Paterson [8]. An 

equation relating the growth rate of the instabilities with the 

radius of the interface, the surface tension, the mobility ratio as 

well as the injection rate was derived. Later variations on this 

equation describing the growth rate of instabilities were 

developed. In particular Park and Homsy [13] derived an 

equation for the pressure jump at the interface. Their study was 

based on a three dimensional analysis, where the displaced fluid 

leaves a thin layer in the Hele-Shaw cell. Experiments validated 

the relationship developed to predict the number of fingers more 

accurately. Subsequently Martyushev and Birzina [14] used this 

pressure jump expression to develop a new equation for the 

growth rate of instabilities in the front for radial instabilities 

flows in the case of constant injection rate and constant pressure. 
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Miranda and Widom [15] investigated the effects of non-linear 

terms in the growth rate of instabilities. Based on their results 

from the linear portion of the growth rate, it was found that the 

number of fingers is dictated by the mode at which its amplitude 

is the largest. A large number of fingers (n) often leads to finger 

splitting, thus requiring the application of non-linear analysis. 

     Most of the existing studies dealing with time-dependent 

injection schemes have been based on Linear Stability Analysis 

(LSA.) Dias et al. attempted to minimize the integral of growth 

rate over time [16].  With the aid of some reasonable 

approximations, it was found that a linear injection rate would 

provide more stable growth of the interface.  In a subsequent 

study [17], it was observed that for a 3-dimensional, spherical 

system, the best injection scheme is related to the square of time. 

It is important to note that in both scenarios, the proposed flow 

rate scheme is not dependent on the properties of the fluid or the 

medium. These results were recently tested by Huang and Chen 

[18] for immiscible, partially miscible and miscible radial flows 

in a Hele-Shaw Cell. It was demonstrated that for immiscible and 

partially miscible flows, the linear injection scheme can 

substantially reduce the fingering instabilities, reducing the 

interfacial length when compared to the constant injection 

scheme. Miscible flows, on the other hand, showed opposite 

trends. 

    The application of cyclic time-dependent injection schemes to 

control fingering was investigated mostly for miscible 

displacement [19]. More complex scenarios have also been 

observed. Daripa [20] investigated multi-layered flow instability 

and proposed systems where stable flow would occur for three 

to multiple layers of fluid.  

It was observed that the equation presented by Paterson et al. 

[8] tends to overestimate the growth rate of disturbances 

compared to more complex models, so that its use as a tool to 

identify injection schemes that reduce instability is safe. 

NOMENCLATURE 
 

   

M [] Mobility ratio 

p [Pa] Pressure 

R [m] Radius  

R0 [m] Core radius of injection  

t [s] time 

T [s] Period 

U [m/s] velocity 

Un [m/s] Normal velocity 

 

Special characters 

β [m3s/kg] Mobility 

Γ [] amplitude 

ζ [m] Amplitude of instability in the linear regime  

θ [] angle 

κ [1/m] Curvature 
λ [1/s] Growth rate 

ȝ [Pa.s] viscosity 
σ [] Relative growth rate 

τ [m2] Surface tension 

ϕ [1/s] Injection strength 

φ [] Phase shift 

 

Subscripts 

1  Fluid 1: less viscous 

2  Fluid 2: more viscous 

n  Mode (1,2,3…)  

c  constant 

e  exponential 

l  linear 

s  sinusoidal 

TD  Time-dependent 

   

 
MODEL AND MATHEMATICAL FORMULATION 
    The considered model consists of a two-dimensional 

homogeneous porous medium with constant permeability K, 

where the flow develops radially from a centre source. A fluid of 

viscosity µଵ is injected in the centre of the domain and displaces 

radially a second fluid of viscosity µଶ, that initially occupies the 

medium. The two fluids are assumed to be fully immiscible with 

a surface tension τ. The displacement is isothermal, non-reactive 

and the fluids are assumed to be Newtonian. A schematic of the 

flow is shown in Figure 1. 

 

Figure 1 Schematic of the flow displacement 

 

The mathematical model describing the immiscible 

displacement consist of the continuity equation (mass 

conservation) and Darcy’s law:  

 ∇. U = ��, �  ܴ
0, � > ܴ                               (1) 

U = ,�∇ଵߚ−� �  ܴ(�, ,�∇ଶߚ−(� � > ܴ(�, �)                (2) 

 

In the above model, the equations are formulated in each 

region occupied by either fluid1 or fluid2. The continuity 

equation involves a source injection rate � in a specific region 

of the domain, determined by a radius ܴ, which also 

corresponds to the initial radius of the interface. Darcy’s law 

expresses the proportionality between the fluid velocity (U) and 

the pressure gradient through the mobility (ߚ� = � ��ߤ , � = 1,2) 

corresponding to the ratio of the medium’s permeability (�) and 

the fluid viscosity (ߤ). The interface between the two fluids at 

any time (�) and angle (�) is ܴ(�, �).  Kinematic and dynamic 

jump conditions at the interface in the form of continuity of the 

normal velocity (Un) and Laplace-Young equations are used: 

 

[U]ଵଶ = 0                                                                    (3) 

[�]ଵଶ = ��                                                                     (4) 
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Where the brackets refer to the difference of values at the 

interface between the injected fluid (fluid1) and the one already 

present in medium (fluid2). In the above equations, � is the 

curvature of the interface while � is the surface tension.   

The objective of this study is to analyse the development of 

the instability under time-dependent injection flows. In what 

follows the exact forms of the three considered time-dependent 

injection rates as well as the constant one, are presented.  

 

-Constant injection: ܳ� = ܳ,             (5) 

-Sinusoidal injection: ܳ௦(t) = ܳ �1 + Γ sin �ଶ�tT ��         (6)  

-Exponential injection: ܳ�(t) =   (7)                        (�ܦ)���ܥ

-Linear injection: ܳ(�) = �� + �                                   (8) 

    

In the above equation, ܳ is the constant injection flow rate 

corresponding to an injection strength; � = ܳ/�ܴଶ. The 

cyclic injection scheme is characterized by its relative amplitude Γ and period; T. Note that when  Γ  1, the displacement rate 

will be positive (ܳ(t)  0) and the flow will undergo simple 

injection while for Γ > 1 it will alternate between injection  

(ܳ(t) > 0) and extraction (ܳ(t) < 0). The exponential injection 

scheme, and the linear injection scheme are dependent on the 

constant C and D, and m and b, respectively which shall be 

defined later. It is important to note here that all three time-

dependent schemes will result in the same amount of injected 

fluid over a period. This implies that the net injected flow in both 

the time-dependent and constant velocity displacements is the 

same. 

The model equations are formulated in dimensionless form 

using the following scales: 1/� for time, ܴ for length, �ܴ 

for velocity, ܴଷ�/ߚଶ for surface tension and �ܴଶ/ߚଶ for 

pressure. The resulting dimensionless forms are: (* indicates 

dimensionless quantities): ∇∗. U∗ = ��∗, �∗  1

0, �∗ > 1
                             (9) 

U∗ = �−M∇∗�∗, �∗  ܴ∗(�, t∗)−∇�∗,            �∗ > ܴ∗(�, t∗)            (10) 

[�∗]ଵଶ = τ∗�∗, [U∗ ]ଵଶ = 0                               (11) ܳ�∗ = 1,ܳ௦∗(t∗) = �1 + Γ sin �ଶ�t∗T∗ �� ,ܳ�∗(t∗) (∗�)∗�ܳ, (∗�ܦ)���ܥ= = ��∗ + �                (12) 

 

The notation used in the above expressions are:  

U∗ = U ܴ�⁄ , U∗ = Un ܴ�⁄ , t∗ = t�,  �∗ = � ܴ⁄ ,   ܴ∗
= ܴ ܴ⁄ ,�∗ = � �⁄ , T∗ = T�,τ∗ = τߚଶ ܴଷ�⁄ ,    �∗ =

�ܴ , �∗ = ��ܴଶ ⁄ଶߚ , 

 ܳ∗(t) = ܳ(t) ܳ⁄ = ܳ(t) �ܴଶ�⁄  

  and M =   .ଶ is the mobility ratioߚ/ଵߚ

 

The dimensionless parameters that govern the displacement 

and that will be analysed in this study are M and τ∗.  
Henceforth, all the asterisks are dropped as all quantities are 

presented in dimensionless form.  

 

 

LINEAR STABILITY FORMULATION 

The relationship between the growth rate and the other 

parameters that govern the displacement in a radial geometry are 

the following. [16] 
1�(�) ��(�)�� = ���                                       (13) �(�) = exp �� �(�)��௧� �                            (14) �(�) =

ܳ
2�ܴଶ (�� − 1) − ଷߙܴ �(�ଶ − 1 )   (15) 

In the above expressions, � is the mode, �(�) is the growth 

rate, � = (� − 1)/(� + 1), ߙ = �� (� + 1)⁄ . 

A large growth rate ensures that the amplitude of the waves 

in linear regime is large.  

FUNCTIONS FOR STABILITY ANALYSIS 
The minimization of  �(t) has been previously used to find 

injection schemes that attenuate instabilities [16]. The 

exponential of the integral of the growth rate over time is 

obtained using simple numerical integration techniques, such as 

the trapezoidal rule. A large value of �(t) would likely indicate 

an increase in the amplitude and the rate at which fingers grow 

in the linear regime. The value of n is chosen as ���, which is 

the mode that results in the maximum growth rate of instabilities. 

The mode ��� can be found by determining the mode where 

d�/dn=0  

To quantify the differences between the time-dependent and 

constant schemes, a function G(t) which is a measure of the 

integral of the growth rate difference, is adopted: 

 �(�)=ln (�(�)��)-ln (�(�)�)         (16) 

 

where ln (�(�)��) and ln (�(�)�) are the integrals of the growth 

rate �(�) over time for a specific time-dependent (TD) injection 

rate, and for the constant injection case respectively. A positive 

G(t) indicates that the flow is more unstable than the case with 

the constant injection.   

To ensure that the different injection schemes can be 

consistently compared, all flow schemes are such that they lead 

to the same cumulative Q. Furthermore, all results are presented 

for M=10 and τ=1 × 10−ଷ, unless stated otherwise. The reported 

results for the growth rate of instabilities (λn(t)) are all made 

relative to the value of �(�) for a constant injection scheme, so 

that: 

(t) =(σn(t)TDߣ  − σn(t)c)/�(t)�.                   (17) 

 

In all the subsequent results, it is important to notice the 

difference between ߣ(t) and �(�). While λn(t) only indicates the 

propensity of a system to experience instability at any given time 

and injection rate, the function �(�) expresses the cumulative 

effect of instabilities from the start of the injection process up to 

a given point in time. As a matter of reference, the profiles for 

Q(t), ln (�(�)�), and λn(t) for the constant injection scheme are 

shown in Figure 2. 
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Figure 2 Profiles of injection rate Q(t), the logarithm of the 

amplitude of instability ln(ζn(t)c), and the growth rate Ȝn(t) for 

the constant injection scheme 

TRENDS AND RESULTS  
   The results will be first discussed for the cyclic sinusoidal 

scheme, where in particular the effects of the period, amplitude 

and shift are examined. This is followed by a discussion of 

results for the monotonic injection schemes. 

 

Cyclic Injection Schemes 

 
In what follows, the effects of the period (T) are evaluated. 

Figure 2 and Figure 3 depict the variations with time of the 

injection rate; Q(t), the growth rate; λn(t) and the quantifying 

function; �(�), for two values of the period and fixed amplitude 

and phase shift. Based on these figures, the growth rate is 

essentially in phase with the injection rate. This is in accordance 

with the growth rate equation. The function �(�) tends however 

to be out of phase with the other variables, likely because it is 

dependent on the integral of the growth rate over time. This 

implies that its derivative is in phase with the growth rate. More 

importantly, it is found that the larger period results in smaller 

values of the quantifying function �(�) which implies a stronger 

attenuation of the flow instability. Note however that the values 

of �(�) at t = tc  (the end of the injection process) are virtually 

the same for both periods.  

 

 

Figure 3 Profile of injection rate (Q), normalized growth rate 

(Ȝn(t)) and integral of growth rate over time (�(�)), at T=20, 

Γ=1, φ=0  

 

Figure 4 Profile of injection rate Q(t), normalized growth rate 

(Ȝn(t)) and integral of growth rate over time (G(t)), at T=5, Γ=1, 
φ=0 

The effect of varying the amplitude of the injection (Γ) was also 

investigated at a fixed period (T=5). Figures 4, 5 and 6 show the 

results for Γ =1, 0.5 and 4, respectively. For the two scenarios 

with amplitudes smaller than one and hence displacements 

involving only injections, an increase in the amplitude tends to 

enhance the flow instability as exemplified by the larger values 

of �(�). This increase in the instability is however much larger 

for amplitudes (Γ > 1) where injection alternates with 

extraction, leading to values of �(�) one order of magnitude 

larger than those for Γ  1 (see Figure 5). It is interesting to 

notice that the growth rate λn(t) is limited in how negative it can 

become, and this is more visible as the amplitude increases.  It 

can also be seen that during these intervals, the function  �(�) 

diminishes slightly, but never enough so as to become negative. 

This implies that once the interface becomes disturbed and 

instabilities have developed, it is not possible to revert back to a 

stable interface even if extraction is employed. 

 

 

Figure 5 Profile of injection rate (Q), normalized growth rate 

(Ȝn(t)) and integral of growth rate over time (�(�)), at T=5, 

Γ=0.5, φ=0 

 
    The role of the phase shift can substantially influence the 

occurrence and extent of instabilities. Variations of �(�) with 

time and with the phase shift φ are presented in Figure 7. It can 

be seen that as � approaches �, there is a substantial reduction 

in �(�), although the difference tends to diminish at later times.  
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Figure 6 Profile of injection rate (Q), normalized growth rate 

(Ȝn(t)) and integral of growth rate over time (�(�)), at T=5, 

Γ=4, φ=0 

 

 

 

 

Figure 7  Profile of �(�) as a function of phase shift and time 

at T=5, Γ=1 

Based on the previous results, it was attempted to modify the 

cyclic injection scheme by exploring similar schemes where the 

amplitude is now time-dependent. In particular, results for an 

amplitude that varies exponentially with time have been 

obtained, with different rates of decay. The adopted injection rate 

has the form: ܳ = ܳ� �1 + eDt sin �2πt

T
+ φ��                             (18) 

This new model introduces an additional parameter that 

determines the rate of the temporal change of the amplitude. This 

approach attempts to reduce the growth of the amplitude to λn(t), 

and therefore reduce �(�) with time so as to make the 

displacement less unstable.  

In order to ensure that the amount of fluid injected over a 

fixed period of time is the same when D≠0, the value of ܳ�  has 

been changed accordingly. Different values of the parameter D 

have been tested to determine its role in attenuating or enhancing 

the instability.  

Figure 8 is a representative example of the results that 

illustrate how negative values of the parameter D can actually 

reduce the instability. It can be noted that as the parameter D 

decreases, the trends tend to smooth and stabilize almost 

asymptotically for Q and ߣ(�). 

 

Figure 8 Variation of �(�) as D changes from 0 to -2, φ=π, 
T=5  

It is clear that the application of time-dependent amplitude in 

the injection flow can considerably affect the development of 

instabilities in the linear regime. The use of this injection scheme 

might indicate that the application of sinusoidal injection 

schemes appears to play a bigger role in reducing instabilities at 

early times, but as the interface becomes larger, a constant 

injection scheme seems to be more adequate. Although a smaller 

interface may be more sensitive to the changes in the injection 

rate, the combination of shrinking amplitude and the impact of a 

small curvature may actually have stabilizing effects on the 

growth of the interface.  

 

Monotonic Injection Schemes 

 

In addition to the cyclic injection schemes, a number of 

monotonically growing flow injection schemes have also been 

analysed to explore their role in attenuating the instability. An 

exponential function was chosen to define the injection rate with 

respect to time. The parameters C and D are chosen by 

minimizing the function �(�) through numerical integration and 

by fulfilling the constraint where: 

 ∫ ܳ�(�)��௧� = ܳ��                                                      (19)  

With respect to linear injection schemes, two flow scenarios 

were investigated: one is based on the work of Dias et al. [16], 

where the parameters are defined as: 

 � = 2π(Rc − R)ଶ tcଶ⁄ , � = 2π(Rc − R)R tc⁄ ,       (20) 

and the other option is an extreme case where the injection starts 

at zero:  � = 2Q tc⁄ , � = 0.                                                     (21) 

 

   Trends for the variations of the relative growth rate (dashed 

lines) and the integral of growth rate (solid lines) for the linear 

and exponential injection schemes are shown in Figure 9. Based 

on these results, it can be concluded that the best way to 

ultimately minimize instabilities is to adopt a monotonic 

injection scheme, namely the injection profile proposed by Dias 

et al. [16].  
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Figure 9 Relative growth rate Ȝn(t) (dashed lines) and the 

integral of growth rate over time G(t) (solid lines) for 

exponential and linear injection schemes. 

   

CONCLUSION  
   Linear stability analysis indicates that most cases of cyclical 

injection schemes appear to lead to an increase in interfacial 

instability compared to the constant injection scenarios. 

However, a proper choice of the phase shift can actually reduce 

it at earlier times. Smaller period of the cyclic schemes tend to 

diminish the extent of instabilities with time; whereas larger 

amplitudes have a tendency to enhance the instabilities. A 

proposed scheme where the amplitude varies exponentially with 

time was found to substantially reduce the extent at which 

instabilities grow, showing that cyclic injection scheme might 

play a bigger role in reducing instability at the beginning of the 

injection process. 

   With regards to the monotonic injection schemes, the three 

models appear to lead to similar trends with respect to the growth 

rate of instabilities. Overall, this study reveals that among the 

different injection schemes, the two that have the potential to 

attenuate the flow instability are either the monotonic or the 

decaying sinusoidal injection schemes. 
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