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Integrated analysis and transcript 
abundance modelling of H3K4me3 
and H3K27me3 in developing 
secondary xylem
Steven G. Hussey1, Mattheus T. Loots   2, Karen van der Merwe   3, Eshchar Mizrachi1 & 
Alexander A. Myburg1

Despite the considerable contribution of xylem development (xylogenesis) to plant biomass 
accumulation, its epigenetic regulation is poorly understood. Furthermore, the relative contributions 
of histone modifications to transcriptional regulation is not well studied in plants. We investigated 
the biological relevance of H3K4me3 and H3K27me3 in secondary xylem development using ChIP-
seq and their association with transcript levels among other histone modifications in woody and 
herbaceous models. In developing secondary xylem of the woody model Eucalyptus grandis, H3K4me3 
and H3K27me3 genomic spans were distinctly associated with xylogenesis-related processes, with 
(late) lignification pathways enriched for putative bivalent domains, but not early secondary cell 
wall polysaccharide deposition. H3K27me3-occupied genes, of which 753 (~31%) are novel targets, 
were enriched for transcriptional regulation and flower development and had significant preferential 
expression in roots. Linear regression models of the ChIP-seq profiles predicted ~50% of transcript 
abundance measured with strand-specific RNA-seq, confirmed in a parallel analysis in Arabidopsis 
where integration of seven additional histone modifications each contributed smaller proportions of 
unique information to the predictive models. This study uncovers the biological importance of histone 
modification antagonism and genomic span in xylogenesis and quantifies for the first time the relative 
correlations of histone modifications with transcript abundance in plants.

Eukaryotic genomes are compartmentalised into distinct chromatin states that profoundly influence transcrip-
tional activity in a cell-specific manner. Post-translational modifications of histone N-terminal regions influence 
the local chromatin structure by altering their association with nucleosomal DNA or by recruiting chromatin 
re-modelling complexes1, 2. While dozens of histone modifications (HMs) have been described in plants, yeast, 
human, worm and fly, their roles in development and the mechanisms for their establishment, maintenance and 
removal are poorly understood. HMs are generally reset during embryogenesis, after which they regulate distinct 
sets of genes in different tissues during development.

Xylogenesis (wood formation, or secondary growth) represents a strong and permanent carbon sink in plants 
and a commitment to a cell fate ending in cell death. During this developmental process, xylem initial cells 
produced by the meristematic vascular cambium undergo elongation, secondary cell wall (SCW) deposition, 
lignification and finally programmed cell death (in the case of fibres and vessels) in a narrow tissue layer within 
the stem3, 4. The process is likely to be extensively regulated at the chromatin level, as demonstrated for example 
through the regulation of lignification by histone H1.3 in Eucalyptus5. The majority of plant epigenomic stud-
ies, however, have been based on whole organs or complex mixtures of tissues that provide limited resolution 
of cell- or tissue-specific epigenetic regulation during development. An understanding of the epigenetic reg-
ulation of xylogenesis is especially limited due to the frequent use of herbaceous models such as Arabidopsis 
(Arabidopsis thaliana) in studies to date. One exception includes the analysis of DNA methylation in several 
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poplar tissues, revealing hundreds of methylation sites unique to developing xylem, some of which influence 
alternative splicing6.

Trimethylated lysine-4 of histone H3 (H3K4me3) and trimethylation of H3 lysine-27 (H3K27me3) comprise 
two major HMs associated with gene activation and repression, respectively, and occupy contrasting chromatin 
environments7, 8. H3K4 trimethylation is generally established at the 5′ region of transcribed genes by homologs 
of the yeast SET1 histone methyltransferase9, 10, reinforcing transcription by recruiting pre-initiation complex 
machinery11. In contrast, H3K27me3 is deposited via histone methyltransferases in the conserved Polycomb 
Repressive Complex 2 (PRC2), recruited through the recognition of Polycomb Response Elements (PREs) in 
animals where H2K27me3-modified regions are broad and typically span several genes12. In the case of plants, 
H3K27me3 distributions are generally gene-specific13. In some cases, long noncoding RNAs have been shown to 
recruit H3K27me3 to developmentally important genes such as the well-studied FLOWERING LOCUS C model 
(reviewed by Hepworth and Dean)14, while in others PRC2 components appear to recognize PRE motifs also 
found in animals15.

Insights into the relative importance, redundancy and complementarity of different epigenomic marks can 
be revealed by predictive modelling, which approximates the unknown underlying mechanisms (reviewed by 
Budden et al.)16. Since HMs serve as indicators of transcriptional activity and chromatin state, there has been con-
siderable interest in quantifying to what extent gene transcript levels are reflected by HM enrichment, chromatin 
accessibility and transcription factor binding site data. In mammals, worm, fly and yeast, over 50% of variation 
in transcript levels across genes can be predicted from only a few HMs17–19. Inclusion of additional HM data may 
yield R2 values of 0.55 (worm) or even 0.71 (fly)19. However, model accuracy depends heavily on the modelling 
approach, cell line and number of epigenomic marks considered. Optimal modelling approaches and the relative 
importance of different HMs remain to be explored in plants.

Given the paucity of HM profiles with tissue-level resolution in plants and our poor knowledge of epigenetic 
regulation in xylogenesis, we investigated the possible biological roles of the two predominant but antagonist 
HMs, H3K4me3 and H3K27me3, in early secondary xylem development and their associations with observed 
transcript levels. Our woody model, Eucalyptus grandis (Myrtaceae), is of particular significance not only because 
of its high value as a global wood fibre crop, but also its extensive accumulation of tandem gene duplications (the 
highest known in any plant genome) over the last ~50 million years (Myr) ago, which remains poorly understood 
from an evolutionary perspective20. This study contributes over 750 previously unknown H3K27me3 targets, 
reveals new insights into tissue-specific plant epigenetic regulation and shows that ~55% of transcript abundance 
variation across genes can be predicted from multiple HM datasets in Arabidopsis.

Results
Genomic distributions of H3K4me3 and H3K27me3 in developing xylem.  We previously 
described a genome-wide profile of H3K4me3 in the developing secondary xylem (DSX) tissues of field-grown E. 
grandis trees using chromatin immunoprecipitation sequencing (ChIP-seq)21. The ~1 mm DSX layer is exposed 
after peeling off the bark along the cambial layer, representing elongating xylem cells and early SCW deposition 
(Supplementary Fig. S1). We repeated the H3K4me3 ChIP-seq experiment at deeper coverage and also profiled 
H3K27me3 from the same tissue samples. After confirming the specificity of commercial ChIP-seq antibod-
ies against H3K4me3 and H3K27me3 peptides (Supplementary Fig. S2), ChIP-seq was performed based on 
Encyclopedia of DNA Element (ENCODE) guidelines22, yielding highly immuno-enriched ChIP-seq libraries 
(Supplementary Fig. S3) with a low percentage of reads mapping to plastids (Supplementary Table S1). We deter-
mined the deposition preferences of H3K4me3 and H3K27me3 relative to transcriptional start sites (TSS) by plot-
ting relative per-base library coverage across all annotated genes anchored at the TSS. H3K4me3 coverage peaked 
~500 bp after the TSS as found previously21, while H3K27me3 peaked within 300 bp after the TSS (Fig. 1a). As 
a positive control for the TSS region, we plotted low-coverage RNA pol II ChIP-seq data derived from the same 
samples, revealing prominent enrichment over the input control across the TSS (Fig. 1a).

We identified 31,784 H3K4me3 and 16,545 H3K27me3 biologically reproducible ChIP-seq peaks (irrepro-
ducible discovery rate <0.01), covering ~5.1% and 2.7% of the genome, respectively (Supplementary Figs S4–S6, 
Supplementary Datasets 1 and 2), representing genomic regions where these HMs are deposited. Approx. 97% 
of the H3K4me3 peaks identified in our previous study21 were reproduced here. For H3K4me3, and to some 
extent H3K27me3, the peak summits were strongly biased towards genic features relative to the genome anno-
tation (Fig. 1b). H3K4me3 peak density correlated with gene density (Pearson’s r = 0.88) but not with repetitive 
sequences (r = −0.03), while H3K27me3 peak density correlated fairly strongly with both genes (r = 0.48) and 
repetitive sequences (r = 0.31) (Supplementary Fig. S7).

Based on their physical overlap with ChIP-seq peaks, 19,605 and 5,776 genes were identified as occupied by 
H3K4me3 and H3K27me3, respectively (Supplementary Datasets 1 and 2). Of the H3K27me3 dataset, 2,708 
genes (46.9%) were also occupied by H3K4me3 which may potentially indicate genes in a “bivalent” epigenomic 
state. This category was significantly smaller than expected (Fisher’s exact test, P = 3.3 × 10−8) despite a mildly 
positive correlation (r = 0.26) between the average nett signals of each modification was. We observed that tan-
demly duplicated genes, which encompass 34% of known genes in E. grandis20, were enriched for H3K27me3 
(1.64-fold, P ≈ 0, hypergeometric test) but depleted for H3K4me3 (1.42-fold, P ≈ 0), consistent with a report that 
TFL2/LHP1, the “reader” of H3K27me3, is enriched among tandemly duplicated genes in Arabidopsis23. We also 
investigated the association between the modified histones and transposable elements in E. grandis20. Consistent 
with findings in Arabidopsis24, most retrotransposon (Class I) and DNA transposon (Class II) families were sig-
nificantly depleted of H3K4me3 and H3K27me3 compared to a permuted null model (Supplementary Table S2). 
However, maverick/polinton type DNA transposons25 were highly enriched for H3K27me3. Since H3K27me3 
targeting of transposable elements is highly tissue-specific26, it is unclear whether this enrichment is a general 
feature of E. grandis or a result specific to developing xylem.
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The genomic span of H3K4me3 and H3K27me3 deposition is related to distinct biological func-
tions in developing xylem.  Since the biology of H3K4me3 in DSX was investigated previously by our lab21, 
we explored for comparison the biological roles of H3K27-trimethylated genes in DSX. Given that H3K27me3 
targets in secondary xylem tissue are unknown in plants, and to identify unique H3K27me3 targets in E. grandis 
DSX tissue, the closest Arabidopsis homologs of the 5,776 H3K27me3 targets in E. grandis were compared to an 
extensive set of published Arabidopsis H3K27me3 datasets comprised of seedlings, leaf, shoot apical meristem, 
callus, endosperm and root vascular cylinder27–36. Overall, ~69% of homologs of E. grandis H3K27-trimethylated 
genes were identified in previous studies (Supplementary Table S3), implying that at least 31% of the genes are 
previously unknown H3K27-trimethylated targets. Among these, the most significant of five overrepresented 
biological processes was that of response to hypoxia/oxygen levels (adj. P = 0.012), a process frequently associated 
with waterlogging-prone root development37, 38. Among all gene targets, transcription factor activity, transcrip-
tional regulation and DNA-binding activity were highly enriched among H3K27me3-marked genes, as well as 
secondary metabolism and response to endogenous stimuli (Table 1). This contrasted markedly with the “house-
keeping” functions overrepresented among H3K4-trimethylated genes, most of which were significantly under-
represented among H3K27-trimethylated genes (Table 1). Interestingly, flower development was significantly 
enriched among H3K27-trimethylated genes, represented by homologs of the well-studied TFs AG, AP2, FLC, 
LFY, PI and SEP, among others.

The enrichment profile of a given HM (i.e. the genomic span and shape of a ChIP-seq peak, which reflect the 
number of successive nucleosomes at a locus and the proportion of nucleosomes at a given nucleosome position 
that are modified by a HM in a cell population, respectively) is related to the expression and biological functions 
of the associated genes39, 40. To investigate the relationship between biological functions and the span of HMs 
observed in xylem, we analysed the representation and distribution of biological functions among genes occupied 
by HMs of differing length (as determined by the length in basepairs of significant peaks) (Fig. 2a). The clos-
est Arabidopsis homologs of H3K4me3 and H3K27me3-modified genes were divided into equally sized classes 
according to the length of the associated ChIP-seq peak. We identified significantly overrepresented biological 
processes associated with each class separately for H3K4me3 and H3K27me3, and then scored the representation 
of each GO term across the peak length classes. We chose four peak length classes to ensure a reasonable number 
of genes (870–3,275) were used for GO enrichment analysis, thus avoiding spurious enrichments. The GO terms 
were then clustered according to their pattern of representation across the peak length classes (24–1 = 15 clusters 

Figure 1.  Genomic distribution of H3K4me3 and H3K27me3 in E. grandis developing xylem. (a) Relative per-
base coverage of H3K4me3, H3K27me3, RNA pol II and input control libraries across annotated transcription 
start sites (TSS). (b) Genomic features coinciding with H3K4me3 and H3K27me3 ChIP-seq peak summits. The 
proportion of each annotation in the genome is indicated on the far right for comparison.
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possible), ranked by a relative peak length score for each pattern (shown schematically in Fig. 2a), and the number 
of terms for each cluster evaluated for inflation or deflation above expectation using a binomial test.

Interestingly, enriched biological processes differed markedly in number and composition across peak length 
clusters. For H3K4me3, the cluster with the highest peak length score (cluster 1) contained ~11-fold more terms 
than expected (P < 2.2 × 10−16), and was characterized by GO terms relating to xylogenesis (e.g. SCW biogenesis, 
cellulose biosynthesis, cell wall organization or biogenesis, phenylpropanoid biosynthesis, xylem and phloem 
pattern formation), as well as terms relating to early differentiation such as cell growth, tissue development, reg-
ulation of cell size and organ morphogenesis. Notable, these terms were absent from all other clusters with a 

Dataset GO I.D. Ontology description P-value* Enrichment

H3K4me3 
(n = 19,605)

5737 Cytoplasm† 7.40e-33 1.08

5622 Intracellular† 2.41e-29 1.06

9536 Plastid† 1.12e-12 1.07

5739 Mitochondrion† 8.37e-11 1.12

5198 Structural molecule activity† 1.40e-09 1.16

6412 Translation† 1.97e-09 1.15

9058 Biosynthetic process† 1.61e-08 1.07

5886 Plasma membrane 2.70e-05 1.06

5840 Ribosome† 2.77e-05 1.15

6139 Nucleobase, nucleoside, nucleotide and 
nucleic acid metabolic process† 8.28e-05 1.07

9987 Cellular process† 1.21e-04 1.02

19538 Protein metabolic process† 1.76e-04 1.04

8152 Metabolic process† 3.39e-04 1.02

3723 RNA binding† 3.39e-04 1.10

5829 Cytosol† 4.55e-04 1.09

9790 Embryonic development† 5.04e-04 1.09

5794 Golgi apparatus† 3.65e-03 1.11

8135 Translation factor activity, nucleic acid 
binding† 2.16e-02 1.13

5634 Nucleus 2.61e-02 1.03

5783 Endoplasmic reticulum 4.00e-02 1.07

H3K27me3 
(n = 5,776)

3700 Transcription factor activity 3.99e-74 2.55

30528 Transcription regulator activity 1.02e-60 2.28

19825 Oxygen binding 2.26e-35 4.29

3677 DNA binding 1.15e-32 1.78

19748 Secondary metabolic process 3.75e-18 2.58

9719 Response to endogenous stimulus 1.02e-15 1.84

5215 Transporter activity 8.66e-07 1.44

9607 Response to biotic stimulus 1.12e-06 1.64

5576 Extracellular region 2.17e-06 1.87

3676 Nucleic acid binding 3.47e-06 1.24

30312 External encapsulating structure 1.52e-05 1.68

5618 Cell wall 3.50e-05 1.65

6519 Cellular amino acid and derivative 
metabolic process 4.00e-05 1.58

3824 Catalytic activity 5.75e-05 1.11

6950 Response to stress 9.98e-05 1.27

7275 Multicellular organismal development 2.91e-04 1.25

9908 Flower development 3.62e-04 1.74

6629 Lipid metabolic process 1.60e-03 1.40

30154 Cell differentiation 4.78e-03 1.52

9653 Anatomical structure morphogenesis 1.24e-02 1.34

6810 Transport 1.72e-02 1.19

5634 Nucleus 1.80e-02 1.15

5575 Cellular component 1.89e-02 1.03

9628 Response to abiotic stimulus 2.24e-02 1.20

Table 1.  GOSlim plant gene ontologies overrepresented among H3K4me3- and H3K27me3-modified genes. 
*Benjamini & Hochberg-corrected value. †GO terms that were underrepresented among H3K27-trimethylated 
genes.
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lower peak length score (Fig. 2b; Supplementary Dataset 3). Programmed cell death was not enriched in any 
cluster, consistent with the sampling of early xylem development in this study. Similarly, for H3K27me3, the 
highest-scoring cluster was inflated for unique GO terms above expectation (~4-fold), where the first three clus-
ters with higher peak length scores were clearly biased toward wood development processes such as cell wall 
modification, xylem development and lignin biosynthesis or metabolism, while phenylpropanoid biosynthe-
sis was associated with mid-scoring cluster 7 which was also significantly enriched for GO term enrichment 
(P = 9.2 × 10−10) (Fig. 2b, Supplementary Dataset 4). Notably, gene length was not correlated with H3K4me3 
(Pearson’s r = −0.053) or H3K27me3 (r = −0.07) peak length, ruling out the possibility that the biological enrich-
ments may be biased by gene length. These results suggest that genes involved in secondary xylem development 
are likely to be H3K4- and/or H3K27-trimethylated at successive nucleosomes to a pronounced degree.

To further dissect the role of HMs and especially potentially bivalent epigenomic states in xylogenesis, we 
compared the relative signal enrichment of H3K4me3 and H3K27me3 marks for key transcription factors and 
signal peptides associated with vascular development and analysed their expression profiles across various tis-
sues41, 42. Generally, transcription factors regulating xylem development (homologs of ATHB8, ATHB15, REV, 
SND1, SND3, KNAT7) as well as several cambial markers (STM, KNAT1, ARR12, OBP1 and WOX4) had a much 
higher overall enrichment for H3K4me3 than H3K27me3, while for phloem markers (APL, CLE41, CLE44, 

Figure 2.  Enrichment of H3K4me3 and H3K27me3 peak length clusters for unique biological processes. 
(a) Schematic representation of method. (b) Degree of enrichment for unique biological processes for each 
cluster. Selected terms associated with xylogenesis are indicated for the clusters where they occur. *Significantly 
enriched above expectation; binomial test, P < 0.01.
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KANADI) a stronger H3K27me3 signal was observed (Fig. 3a). Homologs of floral homeotic genes, which are 
generally strongly repressed43–45, are shown for comparison. Orthologs of xylem vessel developmental markers 
such as VND1 and VND4/VND5/VND6 also showed higher H3K27me3 signals, possibly owing to repression in 
fibre cells, especially the protoxylem marker VND7 (Fig. 3a). Genes considered bona fide members of lignin bio-
synthesis46 were ~4.6-fold enriched for potentially bivalent genes (P = 1.93 × 10−6), while genes involved in SCW 
polysaccharide biosynthesis20 were not enriched.

Tissue-specific expression of H3K4- and H3K27-trimethylated genes in developing secondary 
xylem.  Based on transcriptome data for seven tissues and organs41, 42, for DSX tissue the H3K4-trimethylated 
genes in DSX had a high median expression level, whereas H3K27-trimethylated genes in DSX showed low 
expression levels in general (Fig. 4a). After genes were assigned to different expression level categories based 
on DSX RNA-seq data, the average coverage of H3K4me3 and H3K27me3 ChIP-seq libraries at 5′ transcribed 
regions increased and decreased, respectively, as expression levels increased (Fig. 4b). Unmodified (H3K4me3− 
H3K27me3−) and potentially bivalent (H3K4me3+ H3K27me3+) genes were expressed at higher levels than those 
marked by H3K27me3 alone, but were still expressed below the median for DSX tissue (Fig. 4a). The tissue 
specificity of genes with different epigenomic combinations of H3K4me3 and H3K27me3 was assessed next, 
according to the Shannon entropy index47. Designating the entropy distribution of all genes expressed in DSX as 
a reference, genes exclusively trimethylated at H3K4 (H3K4me3+ H3K27me3−) had significantly higher entropy 

Figure 3.  Relative enrichment of H3K4me3 and H3K27me3 for E. grandis homologs of transcription factors 
and signal peptides regulating vascular development and flowering in developing secondary xylem tissue. Blue 
bars, enrichment of H3K4 and H3K27 trimethylation (shown as N-terminal region of histone H3), represented 
as a signal of zero (no significant enrichment) to four bars (16-fold enrichment). Red bars, absolute RNA-seq 
expression levels (max FPKM value, 228) for roots, phloem, developing secondary xylem (DSX), shoots, young 
leaves (YL), mature leaves (ML) and flowers41, 42.
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(Kolmogorov-Smirnov test, P < 2.2 × 10−16), which indicates broad expression, whereas unmodified (H3K4me3− 
H3K27me3−) genes and any genes with H3K27 trimethylation (i.e. H3K4me3+/− H3K27me3+) were associated 
with significantly lower entropy (especially for H3K4me3− H3K27me3+ genes) indicating more tissue-specific 
expression (Fig. 4c, Supplementary Table S4, Supplementary Fig. S8).

The tissue-specific expression patterns of genes with different HM states was further explored (Fig. 4d). 
Compared to genes expressed in DSX, those marked by H3K4me3 in DSX showed a highly similar expression 
pattern across tissues (Pearson’s r > 0.99), while those marked by H3K27me3 were dissimilar (r < −0.26). The 

Figure 4.  Association of H3K4me3 and H3K27me3 with gene expression levels and specificity. (a) Box plot of 
absolute expression values of genes from different epigenomic categories. The absolute expression profile for 
developing secondary xylem (far right) is shown for comparison. (b) Average per-base coverage of H3K4me3 
(top) and H3K27me3 (bottom) ChIP-seq libraries around the transcription start site (TSS) of genes expressed 
at various levels in developing secondary xylem. (c) Tissue-specificity distribution of genes marked by different 
combinations of H3K4me3 and H3K27me3, as measured by the Shannon entropy index (calculated for 
genes with nonzero expression in at least one tissue). All pairwise combinations are statistically significant 
(Kolmogorov-Smirnov test, P < 2.2 × 10−16). (d) Average relative expression of genes in different epigenomic 
categories in roots, phloem, developing secondary xylem, shoot tips, young leaves, mature leaves and flowers. 
The relative expression in each tissue of all annotated genes in the genome and genes expressed in developing 
secondary xylem are shown for comparison. DSX, developing secondary xylem.
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average relative expression of H3K27-trimethylated genes in vascular tissues (DSX, phloem) was significantly 
less than the value of genes expressed in DSX tissue (Pearson’s Chi-squared test, P < 0.0001), consistent with a 
repressive function (Fig. 4d). Interestingly, the most significant deviation from expectation was seen for the rel-
ative expression of H3K27-trimethylated genes in DSX, which was disproportionately augmented in roots com-
pared to the remaining tissues (Pearson’s Chi-squared test, P < 0.0001; Supplementary Table S5). The significant 
enrichment of “response to hypoxia/oxygen levels” among H3K27me3 targets (previous section) corroborates 
the higher specificity for roots, suggesting targeted repression of genes involved in the development of this organ 
in DSX.

Modelling steady-state transcript levels from histone modification data.  The degree to which 
individual gene expression can be predicted by models of genome-wide chromatin modification data reveals 
insights into the biology of chromatin-level regulation, such as functional redundancies and the relative impor-
tance of different HMs in gene regulation. Despite diverse approaches to model transcript levels from ENCODE48, 
modENCODE49 and other HM data17–19, 50, 51, there are no reported attempts in plants to model transcript levels 
from HM data and thus the relative impact of known HMs on gene expression is yet to be quantified. Our ability 
to collect large amounts of DSX tissue from each tree allowed us to profile H3K4me3, H3K27me3 and transcript 
levels from the same DSX samples, providing an ideal opportunity to predict gene expression based on two 
antagonistic HMs. Thus, we generated strand-specific RNA-seq data from the two DSX replicates (Supplementary 
Table S6), followed by Yeo-Johnson transformation52 using an optimal λ parameter.

The method used to quantify ChIP-seq signals has a significant effect on model performance53. We therefore 
considered three ways of quantifying per-gene ChIP-seq signal for the HM data (Fig. 5a): (i) ChIP-seq coverage in 

Figure 5.  Prediction of steady-state transcript abundance in developing secondary xylem from histone 
modification ChIP-seq data in E. grandis and Arabidopsis. (a) Three ChIP-seq variables were considered 
for per-gene histone modification enrichment, namely the nett ChIP-seq coverage over one of forty 100 bp 
bins showing the strongest Pearson correlation with transcript abundance (i), the significant ChIP-seq peak 
length (bp) (ii), and the nett ChIP-seq coverage across the entire transcribed region (iii). (b) Prediction of 
transcript abundance using a multiple linear regression model trained on E. grandis H3K4me3(bin25) and 
H3K27me3(bin21) ChIP-seq data. (c) Prediction of transcript abundance using a multiple linear regression 
model trained in Arabidopsis H3K4me3(bin24) and H3K27me3(bin21) ChIP-seq data. (d), Prediction of 
transcript abundance using nine HM ChIP-seq datasets in Arabidopsis35.
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one of forty 100 bp bins, centred around the TSS, that correlates optimally with gene expression54 (see Methods), 
(ii) the length in basepairs of the H3K4me3 or H3K27me3 peak, for those peaks that overlap genes and (iii) 
ChIP-seq coverage across the entire transcribed region, normalized for gene length, here defined as total signal. 
For (i), H3K4me3 signal correlated positively with gene expression level at a maximum value (r = 0.65) at bin 25 
(Supplementary Table S7, Supplementary Fig. S9a), congruent with its approximate binding position (Fig. 1a). 
The H3K27me3 modification signal was negatively correlated with gene expression levels across most of the bins, 
with the strongest association (r = −0.21) recorded at bin 21, immediately after the TSS (Supplementary Table S7, 
Supplementary Fig. S9b).

Using 60% of the annotated genes as a training set and 40% as a testing set, we used multiple linear regression 
analysis to predict the degree to which variation in transformed FPKM values could be uniquely explained by 
these signal parameters, based on eta-squared (ƞ2). From a total explained variance of R2 = 0.53, H3K4me3 signal 
at bin 25, H3K4me3 and H3K27me3 peak lengths and H3K27me3 signal at bin 21 each explained more unique 
variation than the total signal for each mark (Supplementary Table S8). Since peak length is highly influenced 
by peak-calling methods, we simplified the model by using only H3K4me3 signal at bin 25 and H3K27me3 bin 
21 signal, both of which are easily calculated. In this two-variable model, H3K4me3 (ƞ2 ≈ 0.455; P < 2.2 × 10−16) 
and, to a much lesser degree, H3K27me3 (ƞ2 ≈ 0.036; P < 2.2 × 10−16), together predicted ~50% of steady-state 
transcript abundance (Fig. 5b).

To investigate whether the relative proportion of variance in transcript abundance explained by H3K4me3 
and H3K27me3 is not specific to DSX tissue or Eucalyptus, we repeated our modelling approach with published 
ChIP-seq data of these HMs in aerial tissues of Arabidopsis seedlings35, using RNA-seq data for similar tissues 
from plants grown under near-identical conditions55. We found that the expression data correlated optimally at a 
similar bin position and to a similar degree to that observed in our study (Supplementary Table S7), reinforcing 
the known evolutionary conservation of epigenomic biology. Compared to E. grandis, a similar degree of unique 
variation in transcript abundance was explained by H3K4me3 (ƞ2 ≈ 0.464; P < 2.2 × 10−16) and H3K27me3 
(ƞ2 ≈ 0.017; P < 2.2 × 10−16), together predicting ~46% of measured transcript abundance in the testing set 
(Fig. 5c). The slightly lower correlation in Arabidopsis may be due to the fact that expression and HM data were 
not derived from the same experiment or tissue types as in our study.

An important remaining question is whether the integration of additional HMs can significantly increase 
transcript abundance predictions. To address this, and to quantify the unique predictive contributions by differ-
ent HMs, we considered seven additional HMs generated from the same Arabidopsis study35. Bin-wise expres-
sion correlations peaked shortly after the TSS for all HMs aside from H3K36me2 (Supplementary Table S9). 
Despite high correlations with transcript abundance for many of the marks, multiple linear regression analysis 
revealed that the seven additional HMs boosted the transcript abundance prediction accuracy by only ~8.7%, 
totalling ~55% (Fig. 5d). The unique variation explained by H3K4me3 dropped to ƞ2 ≈ 0.096, followed by H3K9ac 
(ƞ2 ≈ 0.036) as well as H3K18ac (ƞ2 ≈ 0.025) and H3K27me1 (ƞ2 ≈ 0.023) despite a weak correlation with tran-
scriptome data (Supplementary Tables S9 and S10). Redundant information between some marks, for example 
between H3K4me2, H3K36me2 and H3K36me335, may explain the higher relative informativeness of HMs that 
have a weaker association with gene expression (Supplementary Table S9). The finding of a high degree of inter-
action between H3K18ac and H3K27me335 may explain the low unique variation explained by H3K27me3 when 
considering these marks simultaneously in a model. Together, these results show that the predictive value of 
H3K4me3 and H3K27me3 in modelling gene expression is highly conserved across the evaluated lineages and 
tissue types, that H3K4me3 captures the most epigenomic information on gene expression consistent with its 
representation of transcription initiation, and that predictive models are improved most, although modestly, by 
the inclusion of apparently minor but informative HMs.

Discussion
In this study, we aimed to understand the functions of major activating and repressing HMs in the chroma-
tin architecture of early-differentiating secondary xylem and quantify their value as predictive markers of gene 
transcript levels in plants. We found that, while H3K4me3 and H3K27me3 are deposited at genes enriched 
for generalized and specific biological processes, as well as non-tissue-specific and tissue-specific expression 
respectively, genes occupied by the broadest signals show a clear bias for xylogenesis-associated terms for both 
marks. H3K4me3 signal is far more informative than H3K27me3 in reflecting absolute expression levels across 
the genome, while it seems that H3K27me3 is deposited at transcriptionally repressed, tissue-specific and 
especially tandemly duplicated subsets of genes. The latter may indicate a role for H3K27me3 in the pseudog-
enization of tandem duplicates and remains to be further investigated. That around 750 H3K27-trimethylated 
genes in DSX are homologs of previously unknown H3K27me3 targets in plants is hardly surprising given that 
woody vascular tissue is unique and somewhat more homogeneous than complex organs used in most epige-
netic studies in herbaceous models such as Arabidopsis and rice. In a study of five maize tissues, approximately 
40% of H3K27me3-occupied genes were unique to each tissue56. Thus, we anticipate that considerably more 
H3K27-trimethylated genes, currently encompassing around half of those annotated in Arabidopsis, will be dis-
covered as new tissues and cell types are explored in ChIP studies.

We were intrigued to find many xylogenesis-associated transcription factors to be in a potentially bivalent 
state, associated with low-level, tissue-specific expression (Fig. 4a). H3K4me3 and H3K27me3 modifications 
can co-occur at the same nucleosome8, unlike H3K27me3 and H3K36me357. However, Luo et al.35 found using 
reciprocal H3K4me3 and H3K27me3 re-ChIP assays that only around half of the bivalent gene candidates tested 
were truly bivalent chromatin fibres, where even for those loci it is likely to be the case for only a proportion of 
cells sampled. Thus, the potentially bivalent regions may reflect mixed signals of activating HMs in some DSX 
cell types (e.g. fibres) and repressive HMs in others (e.g. vessels) within the same tissue. In this scenario, one 
would expect that false bivalent HM signals brought about by a mixture of cell types will result in an H3K27me3 
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signal lower than the median due to a dilution effect; however, in our study the median H3K27me3 fold-change 
for potentially bivalent genes (≈7.9) was similar to that of all H3K27-trimethylated genes (≈7.9), therefore not 
supporting this hypothesis.

Bivalency may arise as a temporary transition state from one chromatin mark to another. This could include 
H3K4me3-to-H3K27me3 transition, observed in seed developmental genes during germination58. Alternatively, 
bivalent regions may result from a transition from repressed (H3K27me3) to activated (H3K4me3) epigenetic 
states at TF genes that promote cambium differentiation into xylem. This is known to occur during leaf-to-callus 
dedifferentiation, where pluripotency is mediated by H3K27me3 silencing of leaf differentiation genes and 
de-repression of auxin pathway genes34, and in animals, where developmentally important TFs required for 
post-embryonic development are kept repressed by H3K27me3 but “poised” for rapid activation via H3K4me359, 

60. We noted that TFs associated with xylem and phloem development, but not vascular cambium, were frequently 
found within potentially bivalent chromatin domains (Fig. 3). Since our collected tissue included cambium, xylem 
mother cells and the earliest stages of fibre and vessel development, we would expect this pattern if TFs promot-
ing differentiation were silenced by H3K27me3 in the vascular cambium and gradually activated by H3K4me3 
during early differentiation. Furthermore, we also found a distinct enrichment among the 38 expressed bona 
fide lignification genes but not SCW polysaccharide genes in E. grandis20, 46, substantiated by an enrichment for 
H3K27me3 among lignin and phenylpropanoid biosynthesis only among genes in two H3K27me3 peak-length 
clusters (Fig. 2b). Since most of the lignification occurs post mortem after SCW polysaccharide deposition61, and 
hence at a later developmental stage than the tissue that was sampled, we can expect a distinct enrichment of 
H3K27me3 among these genes as they await transition from epigenetic repression to activation.

Benayoun et al.62 showed that cell identity markers that perform key roles in specifying cell fate tend 
to have broad H3K4me3 deposition in humans. A similar trend among photosynthesis-related genes dur-
ing leaf development in plants suggests that key tissue-specific pathways may also be targeted for extensive 
H3K4-trimethylation40. Consistent with this, we observed evidence for a link between xylogenesis-associated 
terms and genes with the broadest peaks for both H3K4me3 and H3K27me3 (Fig. 2b). Linked to the biological 
significance of HM span, H3K4me3 and H3K27me3 peak lengths contributed significant unique information 
to gene expression predictions (Supplementary Table S8). Peak length may be informative in cases where the 
ChIP-seq signal has reached saturation (since there are only two residues per nucleosome available for each HM), 
and the mark has spread to adjacent nucleosomes. Thus, the establishment of H3K4me3 and H3K27me3 at suc-
cessive nucleosomes may be linked to distinct biological processes.

Despite several studies using HM and transcription factor binding data to model gene expression in animals 
and yeast, our understanding of the transcriptional effects of HMs in plants is poor. Studies in animal models 
have shown that the predictive value of HM data on gene expression is largely redundant with transcription 
factor binding site data51, 54, 63, demonstrating the utility of HMs as indicators of transcriptional states. While 
the causal relationship between HMs and transcription remains a “hen-and-egg” problem in epigenetics64, 65, 
predictive modelling can reveal redundancies, dependencies and antagonisms between HMs. Our study quanti-
fied the impact of HM status on gene expression in both E. grandis and Arabidopsis, not only for H3K4me3 and 
H3K27me3 as active and repressed chromatin representatives, but also in the context of seven additional HMs. 
We confirmed that 100 bp region-specific H3K4me3 and H3K27me3 signals, both near the TSS, are more inform-
ative than average signals across transcribed regions for plants, as shown in non-plant organisms18, 66, 67. The total 
expression variation explained by region-specific H3K4me3 and H3K27me3 in E. grandis (~50%) is outstanding 
for such a small number of HMs: the best-performing two-modification model out of 820 HM combinations 
in CD4+ T-cells produced R2 ≈ 0.5517. Our parallel analysis in Arabidopsis showed a similar contribution by 
H3K4me3 and H3K27me3, despite the stark difference in the tissues and species compared. However, it is likely 
that the relative informativeness of other HMs will change across tissues and environmental conditions. The much 
smaller predictive value of H3K27me3 relative to H3K4me3 in both organisms is not surprising considering the 
smaller number of genes significantly enriched for H3K27me3 (15.9% of genes in E. grandis versus 53.9% of 
genes for H3K4me3), but redundant information between these antagonistic marks could also lower the unique 
variation explained by each. It is because of this redundancy that vastly diminishing returns are obtained when 
considering additional HMs in predictive models, as demonstrated by the modest increase in model performance 
when we included data for seven additional HMs in Arabidopsis. Nonetheless, our model accuracies exceeded 
several non-plant studies such as the support vector approach by Budden et al.51 using six HMs and DNase-seq 
data in human GM12878 cells which yielded an R2 of 0.45 – smaller than our two-HM Arabidopsis models – or 
the Multivariate Adaptive Regressive Splines model of Xu et al.68 who obtained R2 ≈ 0.52 from twenty-one HMs 
in CD4+ T-cells including their interactions, versus R2 ≈ 0.55 from our nine Arabidopsis HMs.

The roles of HMs in the epigenetic regulation of gene expression in plants are diverse and far from understood. 
H3K4me3 and H3K27me3 appear to be associated with distinct biological processes during secondary xylogen-
esis in the E. grandis model, as revealed by their presence and genomic span along target genes. The predictive 
value of H3K4me3 and H3K27me3 in gene transcription in E. grandis DSX is conserved in Arabidopsis, where 
transcript abundance can be predicted using nine HMs with an accuracy meeting or exceeding most modelling 
approaches in non-plant organisms. The significance and regulatory functions of potentially bivalent chromatin 
domains enriched for particular biological pathways, among them developmentally important transcription fac-
tors regulating SCW formation and lignin biosynthesis, as well as the true bivalent status of these loci, remain to 
be further elucidated. Fine dissection of epigenetic profiles in vascular tissues, such as along xylogenesis devel-
opmental gradients and ultimately at single cell level, are challenging future prospects towards addressing this 
question.
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Materials and Methods
Plant materials.  DSX tissue was collected as described previously21 from two eight-year-old ramets of E. 
grandis clone TAG0014 (Mondi Tree Improvement Research, KwaMbonambi, South Africa), grown in a trial in 
KwaMbonambi, South Africa and sampled in April 2014. The tissue was fixed at room temperature in fixation 
buffer containing 1% formaldehyde for 15 min in the field, quenched and rinsed twice (Kaufmann et al., 2010) 
prior to flash-freezing in liquid nitrogen. Some of the (unfixed) tissue was flash-frozen for RNA extraction.

ChIP-seq sample preparation, sequencing and data analysis.  The DSX tissue was finely ground 
in liquid nitrogen and chromatin was extracted as described in Li et al.69. ChIP was performed with ~2 μg 
anti-H3K4me3 (Merck Millipore #07–473), anti-H3K27me3 (Merck Millipore, ABE44) or anti-RNA Pol II 
(Merck Millipore, #17–672) antibodies using the protocol described in Adli and Bernstein70, without ChIP DNA 
amplification. Illumina ChIP-seq libraries of immuno-enriched and input samples were prepared and sequenced 
(SE50 reads; 200 bp library insert) by the Vincent L. Coates Genomics Sequencing Laboratory, University of 
Berkeley, CA. Read quality assessment and mapping to the E. grandis genome v.1.120 was performed as described 
in Hussey et al.21. Strand cross-correlation analysis was performed as described in Landt et al.22. Significantly 
enriched regions were identified using the ENCODE Irreproducible Discovery Rate (conservative) method with 
a threshold of 0.0166 on peaks identified using MACS v.271. Peaks overlapping with those identified using a non-
specific antibody21 were discarded. Genes were regarded as modified for each HM if the annotated transcribed 
regions overlapped a significant ChIP-seq peak to any degree.

Dot blot analysis.  Peptides representing various lysine methylation states of H3K4me3 (MARTKQTAR) 
and H3K27me3 (VARKSAPA) were synthesized (GenScript Ltd, Hong Kong) and blotted onto nitrocellulose. The 
membrane was blocked and probed with anti-H3K4me1 (ABE1353), anti-H3K4me2 (ABE250), anti-H3K4me3 
(07–473) or anti-H3K27me3 (ABE44; Merck Millipore), then anti-rabbit HRP-conjugated secondary antibody 
and exposed to film using SuperSignal West Pico Chemiluminescent substrate (Thermo Scientific, Rockford, IL).

RNA sequencing.  Total RNA was extracted from DSX tissue, stranded Illumina RNA-seq libraries were 
prepared, and PE50 reads generated (Illumina HiSeq2500) by Beijing Genome Institute, Hong Kong. Reads were 
filtered (phred score >20 for ≥50% of the read, ≤10% “N” bases), assessed for quality using FastQC (http://
www.bioinformatics.babraham.ac.uk/), mapped to the E. grandis genome using Tophat272 (sensitive mode; intron 
length 50 bp to 30 kb; number of threads, 4), and FPKM values calculated for the longest predicted transcript with 
Cufflinks73. Arabidopsis RNA-seq data was obtained from Liu et al.55 as raw reads (SE101), which were trimmed 
to 91 nt to correct for base composition bias, filtered for quality, aligned to the Arabidopsis TAIR874 genome and 
FPKM values similarly calculated as the average of three biological replicates.

Bioinformatics and statistical analyses.  ChIP-seq library coverage at the TSS and Shannon entropy 
indices were calculated as described previously21 using RNA-seq data from roots, DSX, phloem, shoot tips, young 
leaves, mature leaves and whole flowers for three five-year-old E. grandis trees41, 42. For enrichment and deple-
tion analyses (transposable elements), a two-tailed hypergeometric test was used where the expected value for 
each category was calculated as the proportion of all genes marked by H3K4me3 or H3K27me3. Gene Ontology 
enrichment analysis was conducted with the Cytoscape BiNGO plugin75, 76, using as reference the Arabidopsis 
homologs of all E. grandis genes. For biological process enrichment analysis of genes occupied by HM peaks of 
differing lengths, the closest Arabidopsis homologs of H3K4me3 and H3K27me3-modified genes were divided 
into equally sized classes according to the length of the associated ChIP-seq peak. Significantly overrepresented 
biological processes within each class were scored for their representation (present, 1, or absent, 0) across the peak 
length classes. From the patterns of representation across the classes, 16 patterns (clusters) are possible, minus the 
class where no representation is observed in any cluster, thus totalling 15 clusters. A weighted peak length score 
was assigned to each cluster by multiplying each term’s presence or absence score (1 or 0) with 0.1, 0.2, 0.3 or 0.4 
for peak length class 1 through 4, respectively, and dividing the sum by the total number of matches for each clus-
ter. A binomial test of term enrichment for each cluster was performed in R using the formula, binom. test (x, n, 
p = (1/15), alternative = “two.sided”), where x is the number of terms matching the cluster, n is the total number 
of terms across all clusters, and the p is the theoretical probability of a match to a cluster. For Chi-squared analysis 
of tissue specificity of different gene groups (Fig. 4d), average relative expression was discretized by counting 
the number of genes in a given group and tissue with maximum expression observed in that tissue. A global 
Chi-squared test was performed, reporting post-hoc adjusted standardized residuals for each tissue. All statistical 
tests in this study, where applicable, are two-sided.

Multiple linear regression modelling.  Nett ChIP-seq coverage (i.e. average per-base coverage of the 
treatment profile minus the input control profile) for HMs over different genomic regions were calculated from 
bedGraph data files generated by MACS v.271. Arabidopsis ChIP-seq data (BED format), obtained from Luo 
et al.35, were converted to bedGraph format and similarly processed using the TAIR8 annotation. To obtain 
region-specific HM enrichment data, each gene was divided into forty 100-bp bins centred at the TSS (±2 kb) as 
indicated in Fig. 5a, and nett ChIP-seq coverage for each bin was calculated using BEDTools77. ChIP-seq coverage 
in the bin showing the highest correlation between nett ChIP-seq coverage and transcript levels (Supplementary 
Table S7) was considered the region-specific HM enrichment value. Total signal was defined as the nett ChIP-seq 
coverage across the entire annotated transcribed region, normalized by gene length to avoid gene length bias. 
Expression data as Fragments Per Kilobase of exon per Million mapped reads (FPKM) values78 of the processed 
Arabidopsis and E. grandis RNA-seq data were transformed using the Yeo-Johnson method52, in the “boxCox” 
function of the “car” package79, with an empirically determined λ exponent of −0.516 for E. grandis and −0.336 
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for Arabidopsis. Multiple Linear Regression models were trained on approx. 60% of annotated genes and vali-
dated on the remaining 40% using the “lm” function in the “stats” R package80. The contribution to explained 
variance was measured using the “etasq” function from the “heplots” package (http://CRAN.R-project.org/
package=heplots).
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