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Kinetic interpretation of log-logistic 
dose-time response curves
Walter W. Focke   1, Isbe van der Westhuizen1, Ndeke Musee1 & Mattheüs Theodor Loots   2

A Hill-type time-response curve was derived using a single-step chemical kinetics approximation. 
The rate expression for the transformation is a differential equation that provides an interpolation 
formula between the logistic growth curve and second order kinetics. The solution is equivalent to the 
log-logistic cumulative distribution function with the time constant expressed in terms of a kinetic 
rate constant. This expression was extended to a full dose-time-response equation by postulating a 
concentration dependence for the rate constant. This was achieved by invoking a modified form of 
Haber’s law that connects an observed toxic effect with the concentration of the active agent and the 
elapsed exposure time. Analysis showed that the concept of Concentration Addition corresponds to a 
special case where the rate constant for the overall transformation rate is proportional to the sum of the 
rate constants that apply when the agents act individually. Biodiesel “survival” curves were measured 
and used to test the applicability of the empirical model to describe the effects of inhibitor dosage and 
binary inhibitor mixtures. Positive results suggest that the proposed dose-response relationship for 
the toxicity of agents to organisms can be extended to inanimate systems especially in cases where 
accurate mechanistic models are lacking.

The performance of real-world systems are governed by numerous interacting subsystems. Exact mechanistic 
modelling is the preferred approach but this requires comprehensive knowledge of the interrelationships and 
interactions between all the elements of the functioning system. The complexity involved is often almost beyond 
measure and, especially for biological phenomena, cannot be predicted at the level of numerical precision achiev-
able in classical physics1. Such complexity extends to inanimate systems. The mechanisms of processes in con-
densed phases tend to occur in multiple steps at different rates. They are often unknown or too complex to be 
characterised by a simple model that provides exact predictions. For example, even a simplified mechanistic 
kinetic model for the thermal oxidation of an unstabilised, saturated hydrocarbon polymer, driven by hydrop-
eroxide decomposition, requires experimental evaluation of a large number of temperature-dependent rate 
constants2. Fortunately, according to von Bertalanffy’s General Systems Theory3 universal principles apply to 
such complex systems. The overall dynamic behaviour can often be approximated by a much simpler model. For 
instance, single-step reaction approximations were found useful to describe condensed phase kinetics, albeit at 
the expense of insights into the underlying mechanisms4. Nevertheless, the single-step kinetics approach yields 
a useful tractable mathematical description as a workable substitute for the generally complex set of kinetic 
equations4.

Dose-response and time-response equations are widely employed in diverse scientific fields5–8. In the most 
general case, they are used as combined dose-time-response models. They are employed to describe the temporal 
variation of a representative magnitude in an object population, as influenced by variation in the magnitude of 
an effector agent5–9. Depending on the field, the “population” may represent humans, other biological lifeforms in 
ecological systems, farm lands, chemical compounds, enzymes, etc. Dose-response models are used to describe 
the effect of the amount of a toxin or a therapeutic drug on survival in biological communities; the combined 
effect of inhibitors on enzymes10; the relationships among exposure time, concentration, and toxicity of insecti-
cides11; the quantity of applied fertiliser on agricultural yield12; the relationship between herbicide dose and plant 
response13; the decomposition kinetics14 or the polymorphic transformations of solids15, and the concentration of 
antioxidants on the oxidative stability of organic materials, etc.

Notably, the response functions usually exhibit a sigmoidal time- or dose dependence as indicated in Fig. 1. 
The logistic equation, also known as the Boltzmann sigmoidal model, is the classic example of a sigmoidal func-
tion. It has a long history and has been used to model diverse scenarios including animal and human population 
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ecology16–18, bioassays, radioreceptor assays and radioimmunoassays19, 20, and also chemical reactions21, 22. The 
logistic equation21 assumes that the transformation rate is proportional to both the transformed and the untrans-
formed substrate. It predicts that the transformation initially proceeds exponentially, then slows and eventually 
saturates to produce the characteristic S-curves shown in Fig. 1. Both the time-response and the dose-response 
curves tend to show sigmoidal trends.

The sigmoidal response time-response and dose-response curves provide an overview of the performance of 
the activity of the effector agent under consideration. In most applications, e.g. in toxicity studies, the number of 
experiments are limited by time and cost constraints and, in particular, by ethical considerations. It is therefore 
difficult to generate the numerous data points necessary for full elucidation of the expected sigmoidal curves. 
However, often complete knowledge is not essential. This is particularly true in toxicity studies. It may be suffi-
cient to accurately estimate the dose or concentration of the active agent that will result in the median response. 
For example, LD50 is the lethal dose that will kill 50% of the population of a specific test organism in a given 
period of time; while the LC50 is the lethal concentration required to kill 50% of the population studied.

Nevertheless, assuming the validity of the universality of complex logistic-like behaviour, it is of interest to 
study proxy systems that do allow generation and analysis of more comprehensive data sets. For the purposes 
of this study, biodiesel stabilization was investigated as a proxy system. The biodiesel was taken to represent 
a substitute substrate (or population) that is subjected to a chronic stress factor, which in this case, entailed 
exposure to air at an elevated temperature. The progress of the demise of the substrate was conveniently and 
continuously measured using a Thermomat. The measured response followed a sigmoidal curve that indicated 
the intrinsic stability of the substrate in the form of a proxy life-time curve. The curve was found to shift towards 
longer times when suitable antioxidants were added. Figure 1 shows this schematically. Figure 1b shows that, for 
a fixed evaluation time, the response curve describing the effect of the antioxidant concentration on performance 
is also sigmoidal. We posit that this (or such a) proxy system is analogous to the expected behaviour of an arbi-
trary population subjected to a chronic stress factor, e.g. a toxic chemical in the environment. The antioxidant 
simulates the effect of a once-off dose of a therapeutic agent that assists the individuals in the population to cope 
with the chronic stress and therefore survive for a longer time. The net result is an extension of the median “life 
expectancy”.

Therefore, this communication considers the general case of a substrate/population that is subjected to a 
chronic stress factor for which an effector agent can provide partial relief. The objective is to develop the simplest 
mathematical model capable of simultaneously describing the effects of both time and the concentration of the 
effector agent. This model is then applied to survival curves measured for antioxidant-stabilised biodiesel as a 
proxy for real life systems. The effect of binary antioxidant mixtures is also considered. The focus of this commu-
nication is on estimating the median response from such experimental sigmoidal curves and to determine how it 
varies with time and concentration of the antioxidants.

Results
Dose-time survival curve model.  The Hill survival function was obtained by solving a parametric differ-
ential equation that describes the rate of transformation (or conversion in chemical terms) of the substrate:

τ= + θS t t( ) 1/[1 ( / ) ] (1)

Figure 1.  (a) Schematic representation of time-response curves, showing the temporal evolution of a 
measurable property P (e.g. mortality in biological systems) following the logistic curve for different active 
agent dose levels. The concentration or dose level either increases or decreases in the order: a < b < c < d. 
The magnitude of the property ranges from Po at zero transformation to P∞ at complete transformation (or 
conversion). The property of central interest is the time tm where the transformation equals the median effect 
value Pm = (P∞ − Po)/2. (b) Dose response curve for a fixed elapsed treatment time derived from the set of time-
response curves. The median response is attained at a dosage equivalent to LC50.
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Here S(t) is the survival (survivor or reliability) function which is the probability that the “substrate of interest” 
will survive beyond a specified time t; τ is the time constant and θ is a shape factor. A convenient property of the 
Hill equation is the fact that the constant τ corresponds to the time where the transformation reaches the half way 
mark, i.e. the median response. The rate constant of the differential equation, and therefore also the time constant 
τ, must be dependent on the concentration of the active agent. The necessary link was made via the modified 
Haber rule5, 11, 23, 24 yielding

τ κ= − β −
C C[ ( ) ] (2)o

1

The Plackett and Hewlett25, 26 generalization for the action of two agents administered simultaneously lead to 
the following expression:

τ τ τ= +βλ βλ βλ− − −
[ ] (3)mix A B

1/ 1/

where λ is a constant, τmix is the effective time constant for the mixture and the τi values apply for the cases when 
the agents were used on their own.

Application to biodiesel oxidation.  Figure 2 shows selected experimental survival results for neat sun-
flower biodiesel as well as samples spiked with antioxidants. The curves are typical examples that show the effect 
of concentration on the time-response for Anox 20 (single antioxidant), and a binary mixture of the antioxidants 
Anox 20 and Orox PK. For the binary antioxidant mixtures, the total amount of antioxidant was kept constant at 
0.25 wt.%. Least square regression over all the experimental data sets determined θ = 3.45 ± 0.10.

Figure 3 shows how the time constant τ varies with single antioxidant concentration. Figure 4 illustrates the 
variation of the time constant τ with antioxidant binary blend composition when the total concentration is kept 
constant at 0.25 wt.%. The results suggest that it was possible, by adding a binary mixture of Anox 20 and Orox 
PK, to more than double the τ value; thus signifying enhanced stability of the biodiesel (Table 1).

Discussion
The purpose of this study was not to develop an understanding of the operating antioxidant mechanisms and 
their interactions. Therefore, the comments made here are limited to straight forward observations. Of the three 
antioxidants tested, Anox 20 was the most effective as it increased the stability of the biodiesel. Naugard P, for all 
practical purposes, showed no stabilising effect. Figure 3 indicates that, in the range of antioxidant concentrations 
tested, the time constant varied approximately linearly with dosage:

τ τ κ= + C (4)o i i

where τo is the time constant for the neat biodiesel and τi = κiCi is the time constant contribution by the anti-
oxidant i dosed at a concentration Ci. This implies that β = −1 for the current antioxidants used to stabilise the 
biodiesel. Equation (4) also holds for the binary blends Anox 20 + Naugard P and Orox PK + Naugard P. See 
Fig. 4. However, this was not the case for binary blends of Anox 20 with Orox PK as the results revealed a strong 
synergistic interaction between these two antioxidants (Fig. 4). The plotted line for this binary blend in Fig. 4 
corresponds to a fit to the Plackett and Hewlett25, 26 equation (27) with λ = 2, i.e.

∑τ τ τ= +








 (5)

mix o
i

i

2

Clearly there is reasonable agreement between model and experimental data.

Figure 2.  Experimental biodiesel “survival curves” derived from conductivity-based time-response data. Open 
symbols: Neat Anox 20 at different dosage levels. Filled symbols: Mixtures of Anox 20 and Orox PK with the 
total antioxidant dose held at constant at 0.25 wt.%.
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This study followed a kinetic approach to establish a general mathematical framework for the temporal 
response of a system or substrate being transformed by the action of one, or a combination of active agents 
administered at different dosage levels. The effect of an environmental factor on the rate of transformation of the 
system was also considered. Herein the system may imply a human, a biological lifeform in an ecological system, 
an agricultural farm, a chemical formulation, or a material among others. The active agents may include drugs, 
inhibitors, toxins, fertilisers, biocides, pesticides, weed killers, etc. The effect of an environmental factor, in this 
case temperature, on the rate of transformation of the system was also considered.

As proxy system, the stabilisation of sunflower biodiesel against oxidative degradation was used as an illus-
trative example. The fuel was fortified by addition of antioxidant combinations in order to extend its useful 
temperature-dependent service life. The stability of the biodiesel was evaluated using the Thermomat method. 
The experimental response curves were fitted to the Hill-equation equivalent to a log-logistic distribution. This 
allowed facile evaluation of the time constant τ, the time to the median response, used in this case as quantifier 
for the oxidative stability of the biodiesel. It was found to vary linearly with antioxidant concentration when they 
were added alone. The strong synergistic interaction between the antioxidants Anox 20 and Orox PK was ade-
quately described by the Plackett and Hewlett25, 26 equation. Although this equation was originally developed for 
applications in toxicity studies, here it was found to be applicable to account for the “survival” of biodiesel. These 
results supports Bertalanffy’s idea that universal principles hold true to diverse complex systems3. Therefore the 

Figure 3.  Variation of time constant τ with neat antioxidant concentration. Error bars indicate ± 3 standard 
deviations.

Figure 4.  Variation of the time constant τ with antioxidant dosage for binary antioxidants mixtures. The total 
dose of antioxidant dose was held constant at 0.25 wt.%. Dosage reported in the graph is for the first antioxidant 
in the binary mixture.
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ideas presented in this communication can potentially find widespread application since the specific biodiesel 
example can be considered as a proxy for more general cases. Indeed, the development of the proposed model was 
informed by concepts established in widely different fields.

Conclusions
A Hill-type time-response function follows from the assumption that the transformation of a substrate, under 
the influence of an effector agent, is described by an autocatalytic rate expression. A full time-dose-response rela-
tionship is obtained if the kinetic rate constant is made to be dose-dependent. This can be justified by invoking 
a modified form of Haber’s rule that defines the relationship between exposure time and the concentration of a 
toxic agent.

According to the resulting time-dose-response model, the concept of Concentration Addition corresponds 
to the special case where the rate constant, for the overall transformation rate, is equivalent to the sum of the rate 
constants that apply when the agents act individually.

The utility of the empirical model, to describe the effects of inhibitor dosage and binary inhibitor mixtures, was 
tested using experimental biodiesel “survival” curves. Positive results suggest that the proposed dose-response 
relationship for the toxicity of agents to organisms can be extended to inanimate systems especially in cases where 
accurate mechanistic models are lacking.

Methods
Theoretical method.  In the context of chemical reaction kinetics, the logistic rate equation is defined as

α
= α − α

d
dt

k (1 ) (6)

where k is the rate constant α is the degree of conversion. Equation (6) is also referred to as the Prout-Tompkins 
rate equation22, 27. In chemistry it represents the archetype autocatalytic reaction with a well-defined induction 
time that is described by a single controlling transformation variable α. This is equivalent to the “conversion” in 
chemical terminology. An autocatalytic reaction is one for which at least one of the reaction products acts as a 
catalyst to accelerate the course of the reaction. This type of behaviour has been observed in the decomposition 
kinetics of inorganic solids27, explosives28 and in resin cure reactions29. Many chemical systems appear to follow 
autocatalysis when several chemical species participate through a complex set of primitive reactions. A good 
example is the oxidation of hydrocarbons and polymers which proceeds as an autocatalytic, free radical chain 
reaction process30. The conversion curve displays an induction time and features a sigmoidal shape2. While a 
sigmoidal response curve appears to be an intrinsic property of this system, it can be shifted to longer times by 
addition of antioxidants31. Analogous examples are found in explosives technology32.

When an autocatalytic reaction defined by equation (6) proceeds isothermally, the general solution is:

Sample
Orox 
PK Naugard P Anox 20 τ, h (exp.) τ, h (fitted) Difference, %

Biodiesel 0 0 0 5.66 ± 0.43 5.66 0.00

Single antioxidants

Anox 20

0 0 0.083 8.39 ± 0.12 8.01 4.5

0 0 0.125 9.45 ± 0.16 9.20 2.6

0 0 0.167 10.99 ± 0.04 10.39 1.0

0 0 0.250 12.42 ± 0.38 12.74 2.6

Naugard P

0 0.083 0 6.12 ± 0.25 5.74 6.2

0 0.125 0 5.95 ± 0.19 5.77 3.0

0 0.167 0 5.57 ± 0.01 5.81 4.3

0 0.250 0 5.82 ± 0.50 5.88 1.0

 Orox PK

0.083 0 0 6.60 ± 0.06 6.03 8.5

0.125 0 0 6.96 ± 0.12 6.22 10.6

0.167 0 0 7.00 ± 0.03 6.41 8.5

0.25 0 0 5.82 ± 0.05 6.78 16.4

Binary mixtures

0 0.167 0.083 7.75 ± 0.48 8.16 5.3

0 0.125 0.125 9.30 ± 0.93 9.31 0.1

0 0.083 0.167 10.86 ± 0.00 10.45 3.7

0.167 0.083 0 5.59 ± 0.00 6.48 15.8

0.125 0.125 0 5.75 ± 0.01 6.33 10.0

0.083 0.167 0 6.14 ± 0.34 6.18 0.7

0.167 0 0.083 10.46 ± 0.28 11.41 9.1

0.125 0 0.125 12.25 ± 0.46 12.56 2.5

0.083 0 0.167 13.11 ± 0.29 13.40 2.2

Table 1.  Results of neat antioxidants and binary mixtures of the antioxidants. Notes: 1. Compositions are in 
units of wt.%; and 2. “Neat” refers to biodiesel without any added antioxidant. 3. Fitted using equations (4) or (5).
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α = + − α = +− − −e e or e/[1 ] 1 1/[1 ] (7)k t t k t t k t t( ) ( ) ( )o o o

Here to serves the purpose of the required integration constant. In theory it can be determined from knowledge 
of the degree of conversion at time t = 0:

= α −t k[log(1 / 1)]/ (8)o o

Note that the degree of conversion attains the value α = 0.5 at t = to. It is usual to assume that, for chemical sys-
tems, the rate constant k follows an Arrhenius temperature dependence.

On occasion it is not the degree of conversion per se that is of interest but rather some measureable physical 
property P that depends on the state of transformation of the system. In chemical systems the latter corresponds 
to the degree of conversion of the limiting reagent. The simplest dependence would be a direct proportionality. 
Thus let Po and P∞ correspond to the states α = 0 and α = 1 respectively. Then variation of the property P with 
time can be written in the following two equivalent forms:

= + − α = + − − α∞ ∞ ∞P t P P P P P P( ) ( ) ( )(1 ) (9)o o o

The important physical property of concern in the present study was the change in the conductivity of water 
used to trap the vapours emitted by biodiesel degrading during the oxidation experiments.

More generally, the degree of conversion, i.e. the variable α(t), is a cumulative statistical distribution function 
F(t) defined on the real line. In practice it is often only the positive domain that is of interest. In this regard, empir-
ical evidence has shown that the considerable flexibility of the log-logistic distribution allows it to deal with the 
complex interactions controlling many situations. This includes applications in toxicity33, in hydrology34, income 
distribution in economics (where it is known as the Fisk distribution35), autocatalytic cure reactions29 or solid 
state decomposition reactions based on nucleation and growth mechanisms in chemistry14. In pharmacology, 
medicinal chemistry and biology the log-logistic distribution is known as the median-effect or Hill equation36, 37.  
It is, for instance, widely used to model response surfaces in drug combination studies38 including multiple anaes-
thetic drugs39; the effect of fungicide combinations40; the inhibition of cancer cell growth in the joint action 
of multiple anticancer agents41, 42, the interactions among toxicants43 and the effects of multiple inhibitors on 
enzyme systems38.

The Hill equation was originally derived on the basis of equilibrium principles applied to the cooperative bind-
ing of ligands to a macromolecule44. Instead, for the present discussion, it is fruitful to consider the Hill equation 
to arise from the following rate expression that governs transformation of the substrate:

α α α= −θ θ− +d
dt

k (1 ) (10)
1 1/ 1 1/

where the constant θ is a shape parameter. Note that this differential equation provides a parametric interpolation 
formula between the predictions of the logistic equation (θ → ∞) and second order kinetics (θ = 1). The general 
solution is

α α θ− = + −θ k t t[ /(1 )] 1 [ ( )/ ] (11)o
1/

It can be cast in the following explicit form:

α θ− = + + − θk t t1 1/{1 [1 ( )/ ] } (12)o

For θ → ∞ Equation (10) reduces to equation (6). For 0 < 1/θ < ∞ it is possible to force α = 0 at t = 0 by setting 
to = 0. With this condition the equation reduces to the simpler form:

α τ− = + θt1 1/[1 ( / ) ] (13)

where the time constant, defined by τ = θ/k, is a scale parameter. The distribution function F(t) = α(t) is the gen-
eral Hill time-response equation that describes the temporal transformation of the population. It is the probability 
that, at a fixed time t, the transformation of the substrate has proceeded to an extent equal to or less than α(t). The 
odds for this happening is the chance of it occurring and this is given by the ratio α/(1−α):

τα − α = θt/(1 ) ( / ) (14)

The question is now how to go about transforming this empirical equation into an effective dose-time-response 
relationship for mixtures of active agents. The key is provided by the parameter τ. It is the median of the 
log-logistic distribution, i.e. it corresponds to the time at which α = 0.5. Application of the Hill dose-response 
equation to toxicity studies has provided valuable insights that facilitate the desired extension. Empirical evidence 
in toxicity studies suggests that, for a fixed effect level, the relationship between exposure time and the concentra-
tion of a toxic agent follows the modified Haber rule5, 11, 23, 24:

κ− =βC C t( ) 1/ (15)o

where Co is a threshold concentration (measurable or biologically-effective) and β and κ are constants. It is con-
venient to peg the effect level in equation (10) at α = ½ by an appropriate choice of the constant κ. In toxicology 
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this just means that τ is associated with toxicity measures such as LC50 or LD50. With α = ½ it then follows from 
equation (9) that kt = θ and substituting for the time variable in equation (10) yields

κθ= − βk C C( ) (16)o

In essence, this shows that the modified Haber Rule is a consequence of the assumption that the rate constant 
in the Hill model differential equation has a power law concentration dependence on the active agents. Note that 
the parameter κ has dimensions of [T]−1[C]−β.

Substituting equation (16) back into equation (14) yields the general form of the Hill response function that 
covers both time and dose levels for a single active agent. In the odds form it is defined by

α α κ− = − β θ
C C t/(1 ) [ ( ) ] (17)o

This implies that the general form for the time constant in equation (14), based on equation (17), is

τ κ= − β −
C C[ ( ) ] (18)o

1

The equivalent dose-response form of equation (9), at a fixed test time te, is then

α α− = − − βθ⁎C C C C/(1 ) [( )/( )] (19)o o

where C* is defined by the relationship

− = κ − β⁎C C t( ) (20)o e
1/

Setting Co = 0 reduces equation (19) to the conventional Hill dose-response function determined for a fixed 
evaluation time44. Finally, combining equations (19) and (20) provides

τ = − − β⁎t C C C C/ [( )/( )] (21)o o

Effect of active agent mixtures.  The development was limited to the case where the effect of all agents are 
described by Hill equations with the same identical θ value. In what follows, it is also assumed for convenience 
that there is no threshold concentration, i.e. Co = 0.

Independent chemical action.  Note first that, if the agents do not interact from the perspective of chemi-
cal reaction kinetics, the rate expression of equation (10) implies that

∑=k k
(22)mix

i
i

So that

∑τ τ=












−

1/
(23)

mix
i

i

1

This means that the standard Hill response function holds for the mixture except that an effective scale parameter, 
defined by equation (23), is used. Note that equation (23) defines the mixture time constant as a harmonic mean 
over the τ values that would have applied had the actives been applied individually on their own. Equation (23) 
defines the response of the system on the assumption that the active agents act independently in a chemical rate 
sense. This is not the same as the conventional concept of Independent Action10.

Concentration Addition.  Equation (23) is based on the assumption that the active agents act independently 
according to the rate expression of equation (9). This is not necessarily the case and more often than not, when 
dosed as a combination, they will in fact affect each other’s performance. In such scenarios it is necessary to find 
suitable mixing rules for either the rate constant (k) or the mixture time constant (τ). In essence a mixing rule 
defines a way to calculate a mixture parameter from knowledge of the parameters that apply when the individual 
active agents operate on their own45. The concept of concentration addition (CA), often applied in toxicological 
studies, can be used to define such a mixing rule. The CA concept is best explained by considering the isobol-
ogram presented in Fig. 5. An isobologram is a graph used for binary mixtures of active agents. The two linear 
dose axes define a Cartesian plane on isoboles, i.e. equi-effect curves at various concentrations or doses of the two 
active agents are plotted45, 46. The straight line isobole in Fig. 5 defines the expected response for concentration 
addition45 when two actives are administered as a mixture:

= −⁎
⁎

⁎C C C
C

C
(24)B B

B

A
A

This equation can be re-arranged to read:

+ =⁎ ⁎
C
C

C
C

1
(25)

A

A

B

B
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For a mixture of agents with composition defined by the fractions xA and xB respectively, the required concen-
tration to achieve the same desired effect level is then given by:

= +⁎ ⁎ ⁎C
x
C

x
C

1
(26)mix

A

A

B

B

The full dose response curve is obtained by substituting ⁎Cmix for C* in equation (19) with Co = 0. This also applies 
to equation (16) from which, after some simple algebraic manipulations, the following result is obtained for 
Concentration Addition (CA):

τ τ τ= +β β β− − −
[ ] (27)mix A B

1/ 1/

Again the standard Hill response function (equation (13)) holds except that the scale parameter for the mixture, 
as determined by equation (27), is used. Note that equation (27) states that τmix is a power mean of order −1/β 
over the individual τi values applicable when the agents were used on their own. Some special cases are of interest:

•	 When β = −1 then the rate constant is inversely proportional to the active agent concentration. This type of 
response is expected for a beneficial agent that improves the survival rate. In this case τmix is given by a sum-
mation over the individual τi values:

τ τ τ= + (28)mix A B

•	 When β = 1 it implies that the rate constant is directly proportional to the active agent concentration. This 
type of response is expected for a harmful agent, e.g. a toxin that decreases the survival rate. In this case τmix 
is evaluated as a harmonic mean over the individual τi values:

τ τ τ= +1/ 1/ 1/ (29)mix A B

This is equivalent to the result found in equation (23). From this it can be concluded that independent chemical 
action is equivalent to Concentration Addition when the power exponent of the modified modified Haber rule 
equals β = 1. The response function for the mixture of active agents can also be expressed in terms of the individ-
ual response functions:

α α α α α α− = − + −βθ βθ βθ/(1 ) {[ /(1 )] [ /(1 )] } (30)mix mix A A B B
1/ 1/

Other isoboles.  Plackett and Hewlett25, 26 considered the deviations from the CA line and suggested the 
following generalization for the action of two agents administered simultaneously:

= +λ λ λ⁎ ⁎ ⁎C C C C C C( / ) ( / ) ( / ) (31)mix A A B B
1/ 1/ 1/

This leads to the following expressions for the mixture response time constant and the mixtures odds function:

Figure 5.  Illustrating the concept of Concentration Addition (CA) with an isobologram for a binary mixture 
of active agents. CA* and CB* correspond to the concentrations at which application of agents A and B lead to a 
specific effect, e.g. LC50 in toxicology. The straight line defines the expected effect for concentration addition.



www.nature.com/scientificreports/

9Scientific Reports | 7: 2234  | DOI:10.1038/s41598-017-02474-w

τ τ τ= +βλ βλ βλ− − −
[ ] (32)mix A B

1/ 1/

α α α α α α− = − + −λβθ λβθ λβθ/(1 ) {[ /(1 )] [ /(1 )] } (33)mix mix A A B B
1/ 1/

where αA and αB are the expected responses for the agents acting on their own.

Experimental Methods
Materials.  Pure triple-distilled sunflower oil was obtained from Sunfoil. The antioxidants considered were 
tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)]methane (Anox 20 ex Addivant) a hindered phe-
nolic antioxidant, poly(1,2-dihydro-2,2,4-trimethylquinoline) (Orox PK ex Orchem) an amine-type antioxidant 
and tris(nonylphenyl) phosphite (Naugard P ex Chemtura) a phosphite-type antioxidant. The first two antioxi-
dants are classed as primary antioxidants while the third is classed as a secondary antioxidant. The antioxidants 
were added to the biodiesel at different loadings up to a maximum of 0.25 wt.%.

Biodiesel preparation.  The biodiesel was prepared using alkali-catalysed methanolysis. Potassium hydrox-
ide was used as the catalyst and small batches of 500 mL were made. The full procedure is described elsewhere47.

Biodiesel characterization.  The FAME analysis was performed at Analytical Services, Food and Beverage 
Laboratory, CSIR, Pretoria using an Agilent 6890 GC-FID. An Agilent J&W GC column CP-SIL 88 was used 
for the separation of the FAME’s. Quantification was performed by internal standard calibration using methyl 
heptadecanoate. The FAME content was computed according to EN 14103 and Ruppel and Huybrighs48 with 
the sum of all the peaks from the methyl myristate (C14) peak up to that of the methyl ester of C24:1 accounted 
for. Identification of the FAMEs in the biodiesel samples was accomplished by comparing their retention times 
to a Supelco FAME reference mixture containing 37 components. Additional biodiesel physical properties were 
determined, using standard procedures, by Bio Services CC, Randburg, South Africa. These properties included 
free glycerine, methanol content, water content, acid value, iodine value, and flash point. The properties of the 
biodiesel used in this study are summarised in Table 2. It met the EN 14214 specifications including the require-
ment that the ester content should not be lower than 96.5%.

Oxidative stability.  The effect of antioxidant concentration on the progression of oxidative degradation was 
determined by spiking the biodiesel with different amounts of neat antioxidant, or mixtures of antioxidants as 
summarised in Table 1. Triplicate measurements were done on a total of 22 different compositions including the 
neat biodiesel. The oxidation stability of the neat biodiesel as well as the stabilised biodiesel samples was deter-
mined using a Metrohm 895 Professional PVC Thermomat. All the biodiesel oxidation stability analyses were 
done using the Rancimat method described in European Standard EN 14112. The oxidation test was done at a 
constant temperature of 110 °C and the airflow rate was set at 10 L h−1. Biodiesel samples (3.00 g) were weighed 
into the reaction vessels, and placed in the heated cellblock. Air was passed through the sample and then through 
a measuring vessel containing 50 mL of deionised water. The volatile acids formed during the oxidation process 
are absorbed in this water and increase its conductivity. This increase in conductivity is measured as a function of 
time in the Rancimat method.

Data reduction.  In this study, it was assumed that the conductivity vs. time curves (σ = σ(t)) could be rep-
resented by equation (34):

Property Value Units

FAME (ester content) 98.3 wt.%

FAME composition: (%) wt.%

 Methyl palmitate, C16:0 6.73

 Methyl stearate, C18:0 6.63

 Methyl oleate, C18:1 22.4

 Methyl linoleate, C18:2 62.0

 Methyl linolenate, C18:3 0.22

 Other methyl esters 2.02

Density at 15 °C 888 kg m−3

Viscosity at 40 °C 4.6 mm2 s−1

Flash point 170 °C

Water content 0.04 %

Acid value 0.1 mg KOH g−1

Methanol content 0 wt.%

Iodine value 118 —

Free Glycerol 0.01 wt.%

Appearance clear —

Table 2.  List of biodiesel (FAME) properties made from sunflower oil.
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σ σ α= + +t mt P t( ) ( ) (34)min

where σ(t) is the experimental conductivity vs. time curve; σmin is the conductivity offset at time t = 0; m is the 
slope of the initial portion of the conductivity curve; P is a proportionality constant and α(t) is the response 
function. Note that the parameter m in equation (34) compensates for any linear signal drift over the full meas-
urement time. The response function α(t) should be able to adequately represent the experimental data over the 
full measurement range. Model parameters were obtained by least square regression using Solver-based Microsoft 
Excel programming49. This showed that the Hill expression, equation (13), was adequate for the present data set 
with θ = 3.45 ± 0.10 assumed to be the same for all data sets.
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