
ANGULAR EQUIVALENCE OF NORMED SPACES

EDER KIKIANTY AND GORD SINNAMON

Abstract. Angular equivalence is introduced and shown to be an equivalence
relation among the norms on a fixed real vector space. It is a finer notion
than the usual (topological) notion of norm equivalence. Angularly equivalent
norms share certain geometric properties: A norm that is angularly equivalent
to a uniformly convex norm is itself uniformly convex. The same is true for
strict convexity. Extreme points of the unit balls of angularly equivalent norms
occur on the same rays, and if one unit ball is a polyhedron so is the other.

Among norms arising from inner products, two norms are angularly equiv-
alent if and only if they are topological equivalent. But, unlike topological
equivalence, angular equivalence is able to distinguish between different norms
on a finite-dimensional space. In particular, no two ℓp norms on Rn are angu-
larly equivalent.

1. Introduction and Definition

Two norms on a real vector space are equivalent if both give rise to the same
notion of convergence. A wide variety of functional analysis results concern only the
topology a norm generates, not the specific values taken by a given norm. In such
a setting, choosing the most convenient one among several, or many, topologically
equivalent norms can clarify arguments and simplify proofs.

In other situations, specific properties of individual norms are central to the
theory. For example, uniform convexity is an important property of a norm that
may not be shared by a topologically equivalent norm.

It is our object here to introduce a finer equivalence of norms, one that preserves
certain properties of the norm that simple topological equivalence does not. The
idea is straightforward; two norms are angularly equivalent if, over all pairs of non-
zero vectors, the angle between the pair, determined by one norm, is comparable
to the angle between the same pair, determined by the other norm. This will be
made precise shortly.

Although the theory of angles in normed spaces cannot match the elegance of its
counterpart for inner product spaces, it serves here to give us a means of defining
an equivalence of norms that compares vectors two by two rather than one at at
time, as topological equivalence does. Thus, angular equivalence emerges as a kind
of “second order” equivalence compared to the “first order” topological equivalence.

Definition 1. Two norms, ‖·‖1 and ‖·‖2, on a real vector space X are topologically
equivalent provided there exist positive constants m, M such that for all x, y ∈ X,

(1.1) m‖x‖1 ≤ ‖x‖2 ≤M‖x‖1.
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Very little is needed to give the definition of angular equivalence besides an
accessible concept of angle in normed spaces. We define an angle based on the
g-functional, introduced in [5] and studied in [2, Chapter 4] and references there.
It it closely connected to smoothness and convexity properties of the unit ball and
lends itself to straightforward calculations.

Fix vectors x and y in a real vector space X , with norm ‖ · ‖. A few applications
of the triangle inequality are enough to show that 1

t (‖x + ty‖ − ‖x‖) is a non-
decreasing function of t taking (−∞, 0) ∪ (0,∞) into [−‖y‖, ‖y‖]. It follows that
both

g+(x, y) = ‖x‖ lim
t→0+

1
t (‖x+ty‖−‖x‖) and g−(x, y) = ‖x‖ lim

t→0−

1
t (‖x+ty‖−‖x‖)

exist, and satisfy
(1.2)
−‖x‖‖y‖ ≤ ‖x‖(‖x‖−‖x−y‖) ≤ g−(x, y) ≤ g+(x, y) ≤ ‖x‖(‖x+y‖−‖x‖) ≤ ‖x‖‖y‖.
Definition 2. Suppose ‖ · ‖ is a norm on a real vector space X. The g-functional
relative to ‖ · ‖ is the map g : X × X → [0,∞) given by, g = 1

2 (g
− + g+). If x

and y are non-zero vectors in X, the norm angle1 from x to y is θ(x, y), defined by
0 ≤ θ ≤ π and

cos θ(x, y) =
g(x, y)

‖x‖‖y‖ .

We will refrain from referring to the norm angle “between” x and y, since the
norm angle from x to y may not coincide with the norm angle from y to x. If the
norm in X arises from an inner product, it is easy to see that norm angles agree
with angles defined by the inner product. To see that θ(x, y) does not depend on
the lengths of x and y, make the substitution s = bt/a in the defining limits to get
g(ax, by) = abg(x, y) whenever a, b > 0. A little extra care shows that this equation
holds for any a, b ∈ R so, in particular, g(x,−y) = −g(x, y).
Definition 3. Two norms, ‖ · ‖1 and ‖ · ‖2, on a real vector space X are angularly
equivalent provided there exists a constant C such that for all non-zero x, y ∈ X,

(1.3) tan(θ2(x, y)/2) ≤ C tan(θ1(x, y)/2).

Here θ1(x, y) and θ2(x, y) are the norm angles from x to y relative to ‖ · ‖1 and
‖ · ‖2, respectively. Also, tan(π/2) is taken to be +∞.

It is clear from the definition that angular equivalence is a reflexive and transitive
relation. To see that it is also symmetric, replace y by −y in (1.3). Then, for
j = 1, 2, gj(x,−y) = −gj(x, y), cos θj(x,−y) = − cos θj(x, y) and

tan(θj(x, y)/2) =

(

1− cos θj(x, y)

1 + cos θj(x, y)

)1/2

=

(

1 + cos θj(x,−y)
1− cos θj(x,−y)

)1/2

=
1

tan(θj(x,−y)/2)
.

So if (1.3) holds for all non-zero x, y then so does
(1.4)

tan(θ1(x, y)/2) =
1

tan(θ1(x,−y)/2)
≤ C

tan(θ2(x,−y)/2)
= C tan(θ2(x, y)/2).

1The term “g-angle” is in use, coined by Pavle Miličić for an angle based on a symmetrized
g-functional.
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Thus angular equivalence is an equivalence relation.
Since (1.3) implies (1.4) with the same constant C, angular equivalence has a

strong form of symmetry. It follows that the constant C is necessarily at least 1.

Remark 1. We will see later that for “most” x and y, g− and g+ coincide. When
they differ, the choice of g as the average of the two is unimportant for our pur-
poses; the notion of angular equivalence does not depend on the value of g at these
exceptional pairs. Moreover, at pairs for which g− and g+ coincide, any semi-
inner product necessarily agrees with their common value. So angular equivalence
is not dependent on the specific functional used to define it. See [2] for a thorough
discussion of semi-inner products. This remark is supported by Theorem 3.3 and
Corollaries 3.4 and 3.5 below.

The use of the trigonometric ratio tan(θ/2) in the definition of angular equiva-
lence may seem arbitrary, since there are many possible ways to express the con-
dition that two angles be comparable. Our choice is motivated by the situation
for inner product spaces, where the ratio tan(θ/2) appears in the following sharp
inequality relating the best constants for topological and angular equivalence.

Proposition 1.1 ([4]). Let X be a real vector space equipped with inner products
〈·, ·〉1 and 〈·, ·〉2, giving rise to norms ‖ · ‖1 and ‖ · ‖2 in the usual way. Let m,M ∈
[0,∞] be the best constants in the inequality

m‖x‖1 ≤ ‖x‖2 ≤M‖x‖1, x ∈ X.

Then, for any non-zero x, y ∈ X,

tan(θ2(x, y)/2) ≤ (M/m) tan(θ1(x, y)/2).

The constant M/m is best possible in this inequality. Here θ1 and θ2 are the angles
between x and y relative to ‖ · ‖1 and ‖ · ‖2, respectively. (The usual angles coincide
with the norm angles in inner product spaces.)

This result is a reformulation of the generalized Wielandt inequality. The origi-
nal, based on [8] and appearing in [1], involves the action of an invertible matrix on
Cn, relating the angle between a pair of vectors and the angle between the trans-
formed vectors. Since M/m < ∞ if and only if the two norms are topologically
equivalent, the reformulated inequality shows that if two norms arise from inner
products on the same vector space, then the norms are angularly equivalent if and
only if they are topologically equivalent.

This is an indication that angular equivalence is not too much finer than topo-
logical equivalence; the two notions coincide on an important class of spaces. As
an indication that angular equivalence is nonetheless considerably finer than topo-
logical equivalence see Corollaries 2.3 and 2.4 below, where we show that, unlike
topological equivalence, norms on a finite-dimensional spaces are not all angularly
equivalent. (Of course, we have not yet established that angular equivalence is in
fact finer than topological equivalence. But we will; see Theorem 4.2.)

2. A First Look at Angular Equivalence

Many properties shared by angularly equivalent norms may be deduced from the
definition with minimal calculation, while others emerge only after careful analysis.
In this section we present a selection of the former.
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Recall that if E is a subset of a real vector space X we say x ∈ E is an extreme
point of E provided x is not in any open line segment contained in E. When X is
a normed space and E is the closed unit ball of X this is of particular interest in
functional analysis. Our first result shows that the unit balls of angularly equivalent
norms share the same extreme “directions”.

Theorem 2.1. Let X be a real vector space having two norms, ‖ · ‖1 and ‖ · ‖2.
Suppose ‖ · ‖1 and ‖ · ‖2 are angularly equivalent and x is a non-zero vector in X.
Then x/‖x‖1 is an extreme point of the ‖ · ‖1-unit ball if and only if x/‖x‖2 is an
extreme point of the ‖ · ‖2-unit ball.

Proof. We argue the contrapositive. Suppose x/‖x‖2 is not an extreme point of the
‖ · ‖2-unit ball. Then there are points y and z in X such that (y + z)/2 = x/‖x‖2
and the closed line segment from y to z is contained in the ‖ · ‖2-unit ball. If
s ∈ [0, 1] then (1− s)y+ sz and sy+ (1− s)z are on the line segment and hence in
the ‖ · ‖2-unit ball. Thus,
2 = ‖y+z‖2 = ‖(1−s)y+sz+sy+(1−s)z‖2 ≤ ‖(1−s)y+sz‖2+‖sy+(1−s)z‖2 ≤ 2.

It follows that ‖(1 − s)y + sz‖2 = 1. In particular, observe that ‖y‖2 = ‖z‖2 = 1.
Now,

g±2 (y, z) = lim
t→0±

1
t (‖y + tz‖2 − 1)

= lim
s→0±

1−s
s (‖y + s

1−sz‖2 − 1)

= lim
s→0±

1
s (‖(1− s)y + sz‖2 − 1 + s) = 1.

This shows that g2(y, z) = 1, cos(θ2(y, z)) = 1, and tan(θ2(y, z)/2) = 0. By angular
equivalence, tan(θ1(y, z)/2) = 0 as well. This implies cos(θ1(y, z)) = 1 and hence
g1(y, z) = ‖y‖1‖z‖1. The last statement, which may be written as

g−1 (y, z) + g+1 (y, z) = 2‖y‖1‖z‖1,
combined with

g−1 (y, z) ≤ g+1 (y, z) ≤ ‖y‖1(‖y + z‖1 − ‖y‖1) ≤ ‖y‖1‖z‖1,
from (1.2), gives

‖y‖1(‖y + z‖1 − ‖y‖1) = ‖y‖1‖z‖1.
Since ‖y + z‖1 = ‖y‖1 + ‖z‖1 and x/‖x‖2 = (y + z)/2, we have

x

‖x‖1
=

y + z

‖y + z‖1
=

‖y‖1
‖y‖1 + ‖z‖1

y

‖y‖1
+

‖z‖1
‖y‖1 + ‖z‖1

z

‖z‖1
,

which is a convex combination of the points y/‖y‖1 and z/‖z‖1. Thus, x/‖x‖1 is
an interior point of the line segment from y/‖y‖1 to z/‖z‖1. Since the endpoints of
this segment lie in the ‖ · ‖1-unit ball, convexity shows that the entire line segment
does. Thus, x/‖x‖1 is not an extreme point of the ‖ · ‖1-unit ball.

Reversing the roles of the two norms gives the other implication. �

A normed space is strictly convex if every boundary point of the unit ball is an
extreme point. It is immediate that strict convexity is preserved by angular equiv-
alence. The corresponding result for uniform convexity also holds, see Corollary
2.7.
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Corollary 2.2. Suppose X be a real vector space having two angularly equivalent
norms, ‖ · ‖1 and ‖ · ‖2. Then X is strictly convex when equipped with ‖ · ‖1 if and
only if X is strictly convex when equipped with ‖ · ‖2.

The unit ball of finite-dimensional normed space is polygonal if and only if it has
only finitely many extreme points, namely, the vertices of the polygon.

Corollary 2.3. Let X be a finite-dimensional real vector space having two angularly
equivalent norms, ‖ · ‖1 and ‖ · ‖2. Then the ‖ · ‖1-unit ball is polygonal if and only
if the ‖ · ‖2-unit ball is polygonal. In this case, the vertices of the two polygons lie
on the same rays.

Remark 2. If two norms are angularly equivalent on X then the restrictions of
those two norms to any subspace Y of X are also angularly equivalent. This follows
easily from the definition. However, the subspace Y may have extreme points that
the original space did not have. For every subspace Y , the rays containing extreme
points relative to Y are the same for both norms.

One of the most telling features of angular equivalence is its ability to distinguish
between norms on a finite-dimensional space. Here we see that no two ℓp norms
are angularly equivalent. (This only applies in finite dimensions. The angular
equivalence of the usual ℓp sequence space norms is a question that does not arise
naturally, since they are not norms on the same underlying vector space.)

Corollary 2.4. Suppose p, q ∈ [1,∞]. For any integer n ≥ 2, the ℓp and ℓq norms
on Rn are angularly equivalent only if p = q.

Proof. If the two norms are angularly equivalent then their restrictions to the sub-
space R2 of Rn (embedded in the usual way) are also angularly equivalent. So we
may assume n = 2. The unit ball in the ℓ1 norm is a square with vertices at (0,±1)
and (±1, 0). The unit ball in the ℓ∞ norm is a square with vertices at (±1,±1).
When 1 < p <∞, the unit ball in the ℓp norm is not a polygon. By Corollary 2.3,
the ℓ1 norm and the ℓ∞ norm are not angularly equivalent to each other or to any
other ℓp norm.

It remains to consider p, q ∈ (1,∞). Fix s > 0 and consider the vectors (1, 0)
and (1, s). The value of the ℓp-norm g-functional for this pair is,

‖(1, 0)‖ℓp lim
t→0

1
t (‖(1, 0)+t(1, s)‖ℓp−‖(1, 0)‖ℓp) = lim

t→0

1
t (((1+t)

p+|t|psp)1/p−1) = 1.

Thus θℓp ≡ θℓp((1, 0), (1, s)) satisfies,

cos θℓp =
1

(1 + sp)1/p
and tan2 θℓp =

(1 + sp)1/p − 1

(1 + sp)1/p + 1
.

By angular equivalence of the ℓp and ℓq norms, there exists a C > 0, independent
of s such that

1

C
≤

(

(1 + sp)1/p − 1

(1 + sp)1/p + 1

)(

(1 + sq)1/q + 1

(1 + sq)1/q − 1

)

≤ C

Taking the limit as s → 0+ it is easy to see that this expression remains bounded
above and below only if p = q. �

The next theorem may be viewed as a stability result for angular equivalence.
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Theorem 2.5. Suppose ‖ · ‖1 and ‖ · ‖2 are angularly equivalent norms on a real
vector space X. Then the norm ‖ · ‖3 = ‖ · ‖1+ ‖ · ‖2 is angularly equivalent to ‖ · ‖1
and ‖ · ‖2.
Proof. Fix non-zero x, y ∈ X . Let gj(x, y) and θj = θj(x, y) be the g-functional
and norm angle from x to y with respect to the norm ‖ · ‖j, for j = 1, 2, 3. The
definition of the g-functional shows that

g3(x, y)

‖x‖3
=
g1(x, y)

‖x‖1
+
g2(x, y)

‖x‖2
,

or equivalently,

‖y‖3 cos θ3 = ‖y‖1 cos θ1 + ‖y‖2 cos θ2.
Therefore,

tan2(θ3/2) =
1− cos θ3
1 + cos θ3

=

‖y‖1

‖y‖3

(1− cos θ1) +
‖y‖2

‖y‖3

(1− cos θ2)

‖y‖1

‖y‖3

(1 + cos θ1) +
‖y‖2

‖y‖3

(1 + cos θ2)

=
1 + ‖y‖2

‖y‖1

1−cos θ2
1−cos θ1

1 + ‖y‖2

‖y‖1

1+cos θ2
1+cos θ1

tan2(θ1/2).

But for any A,B > 0, 1+A
1+B ≤ 1 + A

B , so

tan2(θ3/2) ≤
(

1 +
tan2(θ2/2)

tan2(θ1/2)

)

tan2(θ1/2) ≤ (1 + C2) tan2(θ1/2),

where C is the constant of angular equivalence of ‖ ·‖1 and ‖ ·‖2 from (1.3). Taking
square roots shows that ‖ · ‖3 is angularly equivalent to ‖ · ‖1, and hence to ‖ · ‖2
as well. �

With stability under sums of norms we can easily give an example to show that
an angular equivalency class containing inner product norms may contain other
norms as well.

Example 1. A norm that is angularly equivalent to a norm arising from an inner
product need not arise from an inner product: Consider the two norms on R2 defined
by ‖(ξ, η)‖1 = (3ξ2 + η2)1/2 and ‖(ξ, η)‖2 = (ξ2 + 3η2)1/2. These both arise from
inner products and are topologically equivalent so by Theorem 1.1 they are angularly
equivalent. Theorem 2.5 shows that their sum, ‖(ξ, η)‖3 = ‖(ξ, η)‖1 + ‖(ξ, η)‖2 is
also angularly equivalent. However, it is easy to check that ‖·‖3 does not arise from
an inner product. (For example, the parallelogram law fails for the vectors (1, 0)
and (0, 1).)

The stability of angular equivalence does not extend to the maximum of two
norms.

Example 2. The maximum of two angularly equivalent norms is a norm that need
not be angularly equivalent to the original two. Let ‖ · ‖1 and ‖ · ‖2 be the norms in
the previous example, set ‖(ξ, η)‖4 = max(‖(ξ, η)‖1, ‖(ξ, η)‖2), and let gj(x, y) and
θj = θj(x, y) be the g-functional and norm angle from x to y with respect to the
norm ‖ · ‖j, for j = 1, 4. Now let s > 0 and take x = (1, 1) and y = (1 − s, 1 + s).
Calculations show that

‖x+ ty‖1 = 2
√

(1 + t)2 − (1 + t)ts+ t2s2 and g1(x, y) = 4− 2s;
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and also that

‖x+ty‖4 = 2
√

(1 + t)2 + (1 + t)|t|s+ t2s2, g±4 (x, y) = 4±2s, and g4(x, y) = 4.

But ‖x‖1 = ‖x‖4 = 2, ‖y‖1 = 2
√
1− s+ s2 and ‖y‖4 = 2

√
1 + s+ s2. So, using

the definition of cos θ1(x, y) and cos θ4(x, y), we get,

tan2(θ1(x, y)/2) =
3s2

4(1− s/2 +
√
1− s+ s2)2

and

tan2(θ4(x, y)/2) =
s+ s2

(1 +
√
1 + s+ s2)2

.

Clearly, there is no constant C for which tan(θ4(x, y)/2) ≤ C tan(θ1(x, y)/2) as
s→ 0+. Thus ‖ · ‖4 is not angularly equivalent to ‖ · ‖1.

We close this section with the promised proof that uniform convexity is preserved
by angular equivalence. A real vector space X , with norm ‖ · ‖, is uniformly convex
provided that for all ε > 0 there exists a δ > 0 such that if ‖x‖ = ‖y‖ = 1 and
‖x − y‖ ≥ ε then ‖(x + y)/2‖ ≤ 1 − δ. First we show that unform convexity can
be characterized in terms of the norm angle. The idea appears in [7], where closely
related results are proved.

Theorem 2.6. Let X be a real vector space with norm ‖ · ‖ and let θ(x, y) denote
the norm angle from x to y. Then X is uniformly convex if and only if for all
ε > 0 there exists a δ > 0 such that if ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε then
tan(θ(x, y)/2) ≥ δ.

Proof. Suppose X is uniformly convex. Fix ε > 0 and choose an η > 0 so that
‖(x + y)/2‖ ≤ 1 − η whenever ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε. Set δ =

√
η. If

‖x‖ = ‖y‖ = 1 and ‖x−y‖ ≥ ε then (1.2) shows that −1 ≤ g(x, y) ≤ ‖x+y‖−1 ≤ 1
so

tan(θ(x, y)/2) =

√

1− g(x, y)

1 + g(x, y)
≥

√

1− g(x, y)

2
≥

√

1−
∥

∥

∥

x+ y

2

∥

∥

∥
≥ √

η = δ.

For the converse, fix ε > 0 and choose an η > 0 such that if ‖x‖ = ‖y‖ = 1 and
‖x−y‖ ≥ ε/4 then tan(θ(x, y)/2) ≥ η. Set δ = min(η2/(1+η2), ε/4). Now suppose
‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε, and set z = x + y. If z = 0, then the desired
conclusion, ‖z/2‖ ≤ 1− δ, is trivial. Otherwise,

‖(2− ‖z‖)x− ‖z‖((z/‖z‖)− x)‖ = ‖x− y‖ ≥ ε,

so either ‖(2 − ‖z‖)x‖ ≥ 2δ or ‖‖z‖((z/‖z‖)− x)‖ ≥ ε − 2δ. The first of the two
implies that ‖z/2‖ ≤ 1 − δ and completes the proof. The choice of δ ensures that
ε− 2δ ≥ ε/2 so the second implies ‖(z/‖z‖)− x‖ ≥ ε/(2‖z‖) ≥ ε/4, and we have

η ≤ tan(θ(z/‖z‖, x)/2) =
√

1− g(z/‖z‖, x)
1 + g(z/‖z‖, x) .

But this is equivalent to g(z/‖z‖, x) ≤ (1 − η2)/(1 + η2). Using (1.2) again, this
time with x and y replaced by z and x, respectively, gives ‖z‖− 1 ≤ g(z/‖z‖, x) so
we have,

‖z/2‖ ≤ 1
2 (1 + g(z/‖z‖, x)) ≤ 1

2

(

1 +
1− η2

1 + η2

)

= 1− η2

1 + η2
≤ 1− δ.
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�

The next result uses the previous theorem so it is included here despite its
dependence on Theorem 4.2 below.

Corollary 2.7. Suppose X be a real vector space having two angularly equivalent
norms, ‖ · ‖1 and ‖ · ‖2. Then X is uniformly convex when equipped with ‖ · ‖1 if
and only if X is uniformly convex when equipped with ‖ · ‖2.
Proof. Let C be the constant in the definition of angular equivalence so that, using
symmetry and (1.3), for all non-zero x and y in X we have tan(θ1(x, y)/2) ≤
C tan(θ2(x, y)/2).

Theorem 4.2 shows that ‖ · ‖1 and ‖ · ‖2 are also topologically equivalent so there
exist constants m and M such that (1.1) holds.

Suppose X is uniformly convex when equipped with ‖ · ‖1 and fix ε > 0. Choose
η > 0 so that, if ‖x‖1 = ‖y‖1 = 1 and ‖x− y‖1 ≥ mε/(2M), then tan(θ1(x, y)/2) ≥
η. Set δ = η/C.

Let ‖x‖2 = ‖y‖2 = 1 and ‖x − y‖2 ≥ ε, and set x̂ = x/‖x‖1 and ŷ = y/‖y‖1.
Clearly, ‖x̂‖1 = ‖ŷ‖1 = 1. Also, (as in the proof of the Dunkl-Williams inequality,)

ε ≤ ‖x− y‖2 =
∥

∥

∥

∥

x̂

‖x̂‖2
− ŷ

‖x̂‖2
+

ŷ

‖x̂‖2
− ŷ

‖ŷ‖2

∥

∥

∥

∥

2

≤ ‖x̂− ŷ‖2
‖x̂‖2

+
|‖x̂‖2 − ‖ŷ‖2|

‖x̂‖2
≤ 2‖x̂− ŷ‖2

‖x̂‖2
.

But ‖x̂‖2 = ‖x‖2/‖x‖1 ≥ m so ‖x̂ − ŷ‖1 ≥ (1/M)‖x̂ − ŷ‖2 ≥ mε/(2M). This
ensures that tan(θ1(x̂, ŷ)/2) ≥ η. But θ1(x̂, ŷ) = θ1(x, y) so angular equivalence
implies tan(θ2(x, y)/2) ≥ η/C = δ. This shows that X is uniformly convex when
equipped with ‖ · ‖2. For the other implication, reverse the roles of ‖ · ‖1 and
‖ · ‖2. �

3. Norms in the Plane

Since angular equivalence is defined in terms of pairs of vectors, it is natural to
study it first in two-dimensional spaces. Our analysis in the plane is more than
the investigation of a special case, however. It enables us to establish results for
real vector spaces of any dimension: It is evident from the definition that, if a pair
of norms on a real vector space X are angularly equivalent then the restrictions
of those norms to any subspace of X are also angularly equivalent. We will make
use of the equally evident converse: If the restrictions of two norms on X to any
two-dimensional subspace of X are angularly equivalent with constant C, then the
original norms are also angularly equivalent with the same constant C. Uniform
control of the constant is essential here.

In the plane we can study norms by viewing the boundary of their unit balls
as polar functions. The following setup and notation will be used throughout this
section and the next. Here and throughout, the symbol “∠” denotes the usual angle
in the plane, not the norm angle.

Suppose ‖·‖ is a norm on R2 and define r > 0 by requiring ‖r(t)(cos t, sin t)‖ = 1
for all t ∈ R. Then r is a strictly positive, π-periodic function and the unit ball,
{ρ(cos t, sin t) : 0 ≤ ρ ≤ r(t), t ∈ R}, is a closed, convex set with (0, 0) in its
interior. The convexity of the unit ball readily implies that r is continuous. Since
r is continuous and periodic it attains its minimum and maximum values; both
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are strictly positive. Call them rm and rM , respectively. Let O = (0, 0) and
parametrize the boundary of the ball by setting Pt = r(t)(cos t, sin t) for all t ∈ R.
If 0 < |α− β| < π, set

ψ(α, β) =

{

∠OPαPβ , α > β,

π − ∠OPαPβ , α < β.

Also define ϕ−(α) = limβ→α− ψ(α, β) and ϕ+(α) = limβ→α+ ψ(α, β). These exist
by property (ii) below.

Lemma 3.1. Suppose α, β ∈ R with 0 < |α− β| < π. Then:

(i) ψ(α, β) + α = ψ(β, α) + β;
(ii) ψ(α, t) is non-decreasing for t in (α − π, α) ∪ (α, α+ π);
(iii) 0 < ψ(α, β) < π and, if 0 < |α− β| ≤ π/2, then

0 < tan−1(rm/rM ) ≤ ψ(α, β) ≤ π − tan−1(rm/rM ) < π;

(iv) r(α)/r(β) = cos(α− β) + sin(α− β) cotψ(α, β) and ψ is continuous;
(v) the left derivative of r at α exists and equals r(α) cotϕ−(α), the right

derivative of r at α exists and equals r(α) cotϕ+(α), and r is differentiable
wherever ϕ− = ϕ+;

(vi) ϕ−(α) ≤ ϕ+(α) and if α < β then ϕ+(α) + α ≤ ϕ−(β) + β;
(vii) ϕ− is left continuous and ϕ+ is right continuous;
(viii) ϕ− and ϕ+ are continuous at all but countably many points, and ϕ− is

continuous at α if and only if ϕ+ is continuous at α if and only if ϕ−(α) =
ϕ+(α).

Proof. The angles of triangle PαOPβ add to π. If α > β they are α − β, ψ(α, β),
and π − ψ(β, α) and if α < β they are β − α, ψ(β, α) and π − ψ(α, β). This proves
(i).

To prove (ii), suppose s < t and both lie in (α− π, α) ∪ (α, α+ π). If s < t < α
then, by convexity, the segment PsPα intersects the segment OPt. It follows that,

ψ(α, s) = ∠0PαPs ≤ ∠0PαPt = ψ(α, t).

If s < α < t then the segment PsPt intersects the segment OPα. Thus

ψ(α, s) + π − ψ(α, t) = ∠OPαPs + ∠OPαPt = ∠PsPαPt ≤ π.

If α < s < t then the segment PαPt intersects the segment OPs. It follows that,

π − ψ(α, s) = ∠0PαPs ≥ ∠0PαPt = π − ψ(α, t).

In each of the three cases we have ψ(α, s) ≤ ψ(α, t), as required.
Since r(α) > 0, r(β) > 0, and 0 < |α − β| < π, △PαOPβ is non-degenerate.

In particular, 0 < ψ(α, β) < π, the first statement of (iii). For the other, suppose
0 < α− β < π/2. Then, using (ii),

ψ(α, β) ≥ ψ(α, α − π/2) = tan−1(r(α − π/2)/r(α)) ≥ tan−1(rm/rM ) > 0

and

ψ(α, β) ≤ ψ(α, α + π/2) = π − tan−1(r(α + π/2)/r(α)) ≤ π − tan−1(rm/rM ) < π.

The sine law in △OPαPβ gives

sinψ(α, β)

r(β)
=

sin(∠OPαPβ)

r(β)
=

sin(∠OPβPα)

r(α)
=

sin(π − ψ(α, β) − (α− β))

r(α)
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when α > β and

sin(π − ψ(α, β))

r(β)
=

sin(∠OPαPβ)

r(β)
=

sin(∠OPβPα)

r(α)
=

sin(ψ(α, β) − (β − α))

r(α)

when α < β. These both reduce to the equation in (iv). Continuity of r now implies
continuity of ψ.

To prove (v) we use (iv) to get

r(α) − r(s)

α− s
= r(s)

(

cos(α− s)− 1

α− s
+

sin(α− s)

α− s
cotψ(α, s)

)

.

The definitions of ϕ+ and ϕ− (and the continuity of r) show that the left and right
derivatives of r exist and are equal to,

lim
s→α−

r(α) − r(s)

α− s
= r(α) cotϕ−(α) and lim

s→α+

r(α) − r(s)

α− s
= r(α) cotϕ+(α),

respectively. It is immediate that r is differentiable wherever ϕ+ = ϕ−.
By (ii),

ϕ−(α) = lim
s→α−

ψ(α, s) ≤ lim
t→α+

ψ(α, t) = ϕ+(α).

Also, if α < β then, by (i) and (ii),

ϕ+(α) + α = lim
t→α+

ψ(α, t) + α ≤ ψ(α, β) + α

= ψ(β, α) + β ≤ lim
s→β−

ψ(β, s) + β = ϕ−(β) + β.

These prove (vi).
For (vii), observe that if γ > α, applying (vi), (ii), and then (iv) gives

ϕ+(α) ≤ lim
s→α+

ϕ−(s) + s− α ≤ lim
s→α+

ϕ+(s)

= lim
s→α+

lim
t→s+

ψ(s, t) ≤ lim
s→α+

ψ(s, γ) = ψ(α, γ).

Letting γ → α+ shows ϕ+(α) ≤ lims→α+ ϕ
+(s) ≤ ϕ+(α). Thus, ϕ+ is right-

continuous at α. A similar argument shows that ϕ− is left-continuous.
By (vi), the functions s 7→ ϕ−(s) + s and t 7→ ϕ+(t) + t are both non-decreasing

and hence continuous except at countably many points. It follows that ϕ− and ϕ+

are both continuous except at countably many points, the first statement of (viii).
The second may be deduced from the following consequence of (vi) and (vii):

ϕ−(α) = lim
s→α−

ϕ−(s) ≤ lim
s→α−

ϕ+(s) ≤ ϕ−(α)

≤ ϕ+(α) ≤ lim
t→α+

ϕ−(t) ≤ lim
t→α+

ϕ+(t) = ϕ+(α).

�

The g-functional and norm angle for a norm on R2 can be expressed in terms of
the functions r, ψ and φ.
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Theorem 3.2. Suppose ‖ · ‖ is a norm on R2, define r, ψ and ϕ± as above, and
let Qt = (cos t, sin t) for t ∈ R, If a, b > 0 and 0 < |α− β| < π, then

g(aQα, bQβ) =
ab

r(α)2
(

cos(α− β) + 1
2 (cotϕ

−(α) + cotϕ+(α)) sin(α− β)
)

,

cos θ(aQα, bQβ) =
cot(α− β) + 1

2 (cotϕ
−(α) + cotϕ+(α))

cot(α − β) + cotψ(α, β)
, and

tan2(θ(aQα, bQβ)/2) =
cotψ(α, β) − 1

2 (cotϕ
−(α) + cotϕ+(α))

2 cot(α− β) + cotψ(α, β) + 1
2 (cotϕ

−(α) + cotϕ+(α))
.

If a, b > 0 and α = β then

g(aQα, bQβ) =
ab

r(α)2
, cos θ(aQα, bQβ) = 1, and tan2(θ(aQα, bQβ)/2) = 0.

If a, b > 0 and |α− β| = π then

g(aQα, bQβ) = − ab

r(α)2
, cos θ(aQα, bQβ) = −1, and tan2(θ(aQα, bQβ)/2) = ∞.

Proof. Since a and b are non-zero, for t sufficiently close to zero we may define c
and γ ∈ (α− π/2, α+ π/2) as functions of t, by requiring that cQγ = aQα + tbQβ.
Evidently, both c and γ are differentiable. Equating components, we have the
equations,

c cos γ = a cosα+ tb cosβ and c sin γ = a sinα+ tb sinβ.

Differentiating these with respect to t gives

c′ cos γ − cγ′ sin γ = b cosβ and c′ sin γ + cγ′ cos γ = b sinβ.

This system is readily solved to yield c′ = b cos(β − γ) and cγ′ = b sin(β − γ). The
definition of r ensures that ‖r(t)Qt‖ = 1 for all t, so

1
t (‖cQγ‖ − ‖aQα‖) =

1

t

(

c

r(γ)
− a

r(α)

)

=

c−a
t r(α) − r(γ)−r(α)

γ−α aγ−α
t

r(α)r(γ)
.

As t→ 0 we have

c→ a, γ → α, c−a
t → c′(0) = b cos(β−α) and aγ−α

t → aγ′(0) = b sin(β−α).

Notice that γ is a strictly monotone function of t in a neighbourhood of 0. Lemma
3.1(v) shows that

lim
t→0±

r(γ) − r(α)

γ − α
= r(α) cotϕ±(α) or lim

t→0±

r(γ) − r(α)

γ − α
= r(α) cotϕ∓(α),

depending on whether γ is increasing or decreasing. In either case,

g(aQα, bQβ) =
1
2‖aQα‖

(

lim
t→0+

1
t (‖cQγ‖ − ‖aQα‖) + lim

t→0−

1
t (‖cQγ‖ − ‖aQα‖)

)

=
a

r(α)

b cos(β − α)r(α) − r(α)12 (cotϕ
+(α) + cotϕ−(α))b sin(β − α)

r(α)2

=
ab

r(α)2
(

cos(α− β) + 1
2 (cotϕ

−(α) + cotϕ+(α)) sin(α− β)
)

.
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Using this formula and Lemma 3.1(iv), we get

cos θ(aQα, bQβ) =
g(aQα, bQβ)

‖aQα‖‖bQβ‖

=
g(aQα, bQβ)

ab/(r(α)r(β))
=

cot(α− β) + 1
2 (cotϕ

−(α) + cotϕ+(α))

cot(α− β) + cotψ(α, β)
.

But tan2(θ/2) = (1− cos θ)/(1 + cos θ), so,

tan2(θ(aQα, bQβ)/2) =
cotψ(α, β) − 1

2 (cotϕ
−(α) + cotϕ+(α))

2 cot(α− β) + cotψ(α, β) + 1
2 (cotϕ

−(α) + cotϕ+(α))
.

The formulas in the case α = β and |α−β| = π are easily established directly from
the definitions of the g-functional and norm angle. We omit the details. �

If we have two norms, ‖ · ‖1 and ‖ · ‖2, on R2 we define rj , ψj and ϕ±
j as

above based on ‖ · ‖j , for j = 1, 2. The previous theorem shows that the angular
equivalence of these two norms can be expressed in the form,

(3.1)
cotψ2(α, β) −A2

2 cot(α − β) + cotψ2(α, β) +A2
≤ C2 cotψ1(α, β) −A1

2 cot(α− β) + cotψ1(α, β) +A1

for all α, β ∈ R with 0 < |α− β| < π. Here Aj =
1
2 (cotϕ

−
j (α) + cotϕ+

j (α)) for j =

1, 2. The cases β = α and β = α±π need not be included, as tan(θ2(aQα, bQβ)/2) ≤
C tan(θ1(aQα, bQβ)/2) holds trivially in those cases.

However, one can avoid discontinuities of the functions ϕ±
1 and ϕ±

2 . Next we see
that it is enough to consider only values of α for which A1 and A2 simplify.

Theorem 3.3. The norms ‖ · ‖1 and ‖ · ‖2 on R2 are angularly equivalent with
constant C if and only if (3.1) holds for all α, β satisfying

(3.2) ϕ+
1 (α) = ϕ−

1 (α), ϕ+
2 (α) = ϕ−

2 (α), ϕ+
1 (β) = ϕ−

1 (β), ϕ+
2 (β) = ϕ−

2 (β),

and 0 < |α− β| < π.

Proof. If the two norms are angularly equivalent, then by Theorem 3.2, (3.1) holds
for all α, β such that 0 < |α − β| < π. Conversely, suppose (3.1) holds for all α, β
satisfying (3.2) and 0 < |α − β| < π. We will show that (3.1) holds for all α, β
satisfying 0 < |α− β| < π.

By Lemma 3.1(viii) the set E = {t ∈ R : ϕ+
1 (t) = ϕ−

1 (t), ϕ
+
2 (t) = ϕ−

2 (t)} has a
countable complement and is therefore dense in R. By hypothesis, for each α ∈ E,
inequality (3.1) holds for all β ∈ E∩((α−π, α)∪(α, α+π)). The continuity of ψ1 and
ψ2, from Lemma 3.1(iv), shows that it remains valid for all β ∈ (α−π, α)∪(α, α+π).
Fix a β ∈ R. Then (3.1) holds for all α ∈ E ∩ ((β − π, β) ∪ (β, β + π)). Taking
one-sided limits of (3.1) with respect to α, but only through points of E, gives, for
each α ∈ (β − π, β) ∪ (β, β + π), the two inequalities, (one with “+” and one with
“−”)
(3.3)

cotψ2(α, β) − cotϕ±
2 (α)

2 cot(α−β) + cotψ2(α, β) + cotϕ±
2 (α)

≤ C2(cotψ1(α, β) − cotϕ±
1 (α))

2 cot(α−β) + cotψ1(α, β) + cotϕ±
1 (α)

.

Fix an α ∈ (β − π, β) ∪ (β, β + π). A convexity argument will show that for the
fixed β and α, (3.3) implies (3.1).
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Let Aj(z) = (1− z) cotϕ−
j (α) + z cotϕ+

j (t) for j = 1, 2. The inequality

(3.4)
cotψ2(α, β) −A2(z)

2 cot(α− β) + cotψ2(α, β) +A2(z)
≤ C2 cotψ1(α, β)−A1(z)

2 cot(α− β) + cotψ1(α, β) +A1(z)

holds for z = 0, 1 because of (3.3). If we show that it holds for z = 1/2 then we
have (3.1).

It is important to point out that in each of fractions in (3.4) the numerator and
denominator cannot both be zero, lest cot(α − β) + cotψj(α, β) = 0. If this were
true, then either ψj(α, β) = β − α or ψj(α, β) = β − α + π. But by Lemma 3.1(i)
this is ψj(β, α) = 0 or ψj(β, α) = π, contrary to Lemma 3.1(iii).

Define f : [0, 1] → [0,∞) by

f(z) = C2(cotψ1(α, β) −A1(z))(2 cot(α− β) + cotψ2(α, β) +A2(z))

− (cotψ2(α, β) −A2(z))(2 cot(α− β) + cotψ1(α, β) +A1(z)).

First consider the case β < α < β + π. Lemma 3.1(ii) shows that for j = 0, 1
and 0 ≤ z ≤ 1,

0 < ψj(α, β) ≤ ϕ−
j (α) ≤ ϕ+

j (α) ≤ ψj(α, β + π) < π

and we get,

cotψj(α, β) ≥ cotϕ−
j (α) ≥ Aj(z) ≥ cotϕ+

j (α) ≥ cotψj(α, β + π).

Since r(β) = r(β + π), Lemma 3.1(iv) implies

cos(α−β)+sin(α−β) cotψj(α, β) = cos(α−β−π)+sin(α−β−π) cotψj(α, β+π)

so cotψj(α, β+π) = −2 cot(α−β)−cotψj(α, β). We conclude that the numerators
and denominators of both sides of inequality (3.4) are all non-negative. It follows
that (3.4) holds if and only if f(z) ≥ 0.

The second case is similar. If β − π < α < β then Lemma 3.1(ii) shows that for
j = 0, 1 and 0 ≤ z ≤ 1,

0 < ψj(α, β − π) ≤ ϕ−
j (α) ≤ ϕ+

j (α) ≤ ψj(α, β) < π

and we get,

cotψj(α, β − π) ≥ cotϕ−
j (α) ≥ Aj(z) ≥ cotϕ+

j (α) ≥ cotψj(α, β).

Since r(β) = r(β − π), Lemma 3.1(iv) implies

cos(α−β+π)+sin(α−β+π) cotψj(α, β−π) = cos(α−β)+sin(α−β) cotψj(α, β)

so cotψj(α, β − π) = −2 cot(α − β) − cotψj(α, β). This time the numerators and
denominators of both sides of inequality (3.4) are all non-positive but again (3.4)
holds if and only if f(z) ≥ 0.

It remains to show that f(1/2) ≥ 0.
The function f(z) is a quadratic polynomial and the coefficient of z2 is

−(C2 − 1)(cotϕ−
1 (t)− cotϕ+

1 (t))(cotϕ
−
2 (t)− cotϕ+

2 (t)) ≤ 0

so it is a concave function. Since (3.4) holds for z = 0 and z = 1, f(0) ≥ 0 and
f(1) ≥ 0. It follows that f(z) ≥ 0 for all z ∈ [0, 1] and in particular f(1/2) ≥ 0. �
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This theorem may be used to simplify verification of angular equivalence of
norms on R2 but it also shows that the notion of angular equivalence does not
depend on the value of the two g-functionals at the exceptional pairs for which
either g-functional fails to satisfy g−(x, y) = g+(x, y).

Corollary 3.4. Let ‖ · ‖1 and ‖ · ‖2 be norms on the real vectors space X. To show
that the norms are angularly equivalent with constant C it is enough to verify (1.3)
for pairs x, y satisfying g+1 (x, y) = g−1 (x, y) and g+2 (x, y) = g−2 (x, y)

Proof. Suppose that (1.3) holds for pairs x, y satisfying g+j (x, y) = g−j (x, y) for
j = 1, 2. A calculation shows that this case includes all linearly dependent pairs.
So fix a pair of independent vectors x and y in X . We identify their two-dimensional
span with R2 by the map (ξ, η) 7→ ξx+ ηy so that ‖(ξ, η)‖j = ‖ξx+ ηy‖j is a norm
on R2 for j = 1, 2. This identification is isometric in both norms so it does not
affect g-functional calculations or norm angles.

Using these norms on R2 we define ϕ+
j and ϕ−

j for j = 1, 2. Suppose the condi-

tions (3.2) hold for some α, β satisfying 0 < |α− β| < π. The proof of Theorem 3.2
shows that g+j (aQα, bQβ) = g−j (aQα, bQβ) for j = 1, 2 and for any a, b > 0. But

the points aQα, bQβ ∈ R2 correspond to vectors in the span of x and y. Our hy-
pothesis, shows that tan(θ2(aQα, bQβ)/2) ≤ C tan(θ1(aQα, bQβ)/2). By Theorem
3.2 inequality (3.1) also holds. Now Theorem 3.3 shows that the two norms on R2

are angularly equivalent with constant C. The same is true for the original two
norms on the span of x and y. In particular, (1.3) holds for the vectors x, y. This
completes the proof.

�

Let X be a real vector space. A semi-inner product in the sense of Lumer-Giles,
is a map [·, ·] : X × X → [0,∞) that is linear in the first variable, homogeneous
in the second, positive definite, and satisfies [x, y]2 ≤ [x, x][y, y]. It follows that
x 7→ [x, x]1/2 is a norm on X . See [2, Chapter 2] and the references there. It is
natural to define the angle θ[·,·] from x to y, associated with semi-inner product
[·, ·], by requiring that 0 ≤ θ ≤ π and

cos θ[·,·] =
[y, x]

[y, y]1/2[x, x]1/2
.

Corollary 3.6 in [2] shows that any semi-inner product in the sense of Lumer-
Giles satisfies g−(x, y) ≤ [y, x] ≤ g+(x, y). In particular, [y, x] = g(x, y) whenever
g−(x, y) = g+(x, y) for all x, y ∈ X . This proves the following.

Corollary 3.5. Let X be a real vector space and let [·, ·]1 and [·, ·]2 be semi-inner
products in the sense of Lumer-Giles, giving rise to norms ‖ · ‖1 and ‖ · ‖2, respec-
tively. If (1.3) holds with θ[·,·]1 and θ[·,·]2 replacing the norm angles θ1 and θ2 then
‖ · ‖1 and ‖ · ‖2 are angularly equivalent.

It is worth pointing out that if X is a normed space, setting [y, x] = g(x, y)
defines a semi-inner product in the sense of Lumer-Giles only under additional
conditions on the norm. See [2, Definition 4.2.9 and Proposition 4.2.10].

4. Angular Equivalence Implies Topological Equivalence

The techniques developed in the last section are used to prove that angular
equivalence is finer than topological equivalence. The definitions of rj , ψj , and ϕ

±
j ,
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relative to the norm ‖·‖j , for j = 1, 2, that were introduced at the beginning of Sec-
tion 3 will be used throughout. We begin by showing that the angular equivalence
of two norms gives a relationship between their ψ and ϕ-functions.

Lemma 4.1. Let ‖ · ‖1 and ‖ · ‖2 be angularly equivalent norms on R2. If 0 <
α− β < π/2, then

(α+ ϕ−
2 (α)) − (β + ϕ+

2 (β)) ≤MC2((α+ ϕ−
1 (α)) − (β + ϕ+

1 (β))),

where M = sup{csc2 ψ1(t, s) : s, t ∈ (β, α), s 6= t}.

Proof. Let E be the set of points in (β, α) at which both ϕ+
1 = ϕ−

1 and ϕ+
2 = ϕ−

2 .
By Lemma 3.1(viii), E contains all but countably many points of (β, α) and ϕ+

1 ,
ϕ−
1 , ϕ

+
2 , and ϕ

−
2 are continuous there. Fix s, t ∈ E and let t̄ ∈ (β, α). The cosecant

function decreases on (0, π/2) and increases on (π/2, π). So if y lies between ψ1(t, s)
and ψ1(t, t̄) we have

csc2 y ≤ max(csc2 ψ1(t, t̄), csc
2 ψ1(t, s)) ≤M.

The mean value theorem implies that,

| cotψ1(t, s)− cotψ1(t, t̄)| ≤M |ψ1(t, t̄)− ψ1(t, s)|.

Letting t̄→ t, we have

(4.1) | cotψ1(t, s)− cotϕ+
1 (t)| ≤M(|ϕ+

1 (t)− ψ1(t, s)|.

On the other hand, the function csc2 is bounded below by 1 so

(4.2) | cotψ2(t, s)− cotϕ+
2 (t)| ≥ |ϕ+

2 (t)− ψ2(t, s)|.

By Lemma 3.1(iii) the functions ψ1 and ψ2 each take values in a compact subset
of (0, π). So do their limits, ϕ+

1 and ϕ+
2 . But the cotangent function is unbounded

near 0. Therefore, for each ε > 0 there exists a δ > 0 such that if 0 < |t − s| < δ
then

|2 cot(t− s) + cotψ2(t, s) + cotϕ+
2 (t)|

|2 cot(t− s) + cotψ1(t, s) + cotϕ+
1 (t)|

≤ 1 + ε.

Since t ∈ E, the angular equivalence of ‖ · ‖1 and ‖ · ‖2, in the form (3.1), becomes

cotψ2(t, s)− cotϕ+
2 (t)

2 cot(t− s) + cotψ2(α, β) + cotϕ+
2 (t)

≤ C2 cotψ1(t, s)− cotϕ+
1 (t)

2 cot(t− s) + cotψ1(t, s) + cotϕ+
1 (t)

.

Note that both sides of the inequality are non-negative. Combining it with the
previous estimate gives

(4.3) | cotψ2(t, s)− cotϕ+
2 (t)| ≤ (1 + ε)C2| cotψ1(t, s)− cotϕ+

1 (t)|

whenever 0 < |t− s| < δ.



16 EDER KIKIANTY AND GORD SINNAMON

Now suppose that s, t ∈ E and s < t. By Lemma 3.1(i), t−s = ψj(s, t)−ψj(t, s),
for j = 1, 2, so (4.3) combines with (4.2) and (4.1) to give

(t+ ϕ+
2 (t))− (s+ ϕ+

2 (s))

≤ |ϕ+
2 (t)− ψ2(t, s)|+ |ψ2(s, t)− ϕ+

2 (s)|
≤ | cotψ2(t, s)− cotϕ+

2 (t)|+ | cotϕ+
2 (s)− cotψ2(s, t)|

≤ (1 + ε)C2(| cotψ1(t, s)− cotϕ+
1 (t)|+ | cotϕ+

1 (s)− cotψ1(s, t)|)
≤ (1 + ε)MC2(|ϕ+

1 (t)− ψ1(t, s)|+ |ψ1(s, t)− ϕ+
1 (s)|)

= (1 + ε)MC2(ϕ+
1 (t)− ψ1(t, s) + ψ1(s, t)− ϕ+

1 (s))

= (1 + ε)MC2((t+ ϕ+
1 (t))− (s+ ϕ+

1 (s))).

Removal of the absolute value signs to get the second-last line is justified by Lemma
3.1(ii). Now suppose β < β̄ < ᾱ < α with ᾱ, β̄ ∈ E. Since E is dense (β, α) we can
choose t0 = β̄ < t1 < · · · < tn = ᾱ with tk − tk−1 < δ and tk ∈ E for each k. Then

(ᾱ+ ϕ+
2 (ᾱ))− (β̄ + ϕ+

2 (β̄)) =
n
∑

k=1

(tk + ϕ+
2 (tk))− (tk−1 + ϕ+

2 (tk−1))

≤ (1 + ε)MC2
n
∑

k=1

(tk + ϕ+
1 (tk))− (tk−1 + ϕ+

1 (tk−1))

= (1 + ε)MC2((ᾱ + ϕ+
1 (ᾱ))− (β̄ + ϕ+

1 (β̄))).

Letting β̄ decrease to β through E, ᾱ increase to α through E, and ε→ 0 we have

(α+ ϕ−
2 (α)) − (β + ϕ+

2 (β)) ≤MC2((α+ ϕ−
2 (α))− (β + ϕ+

2 (β)).

�

Somewhat surprisingly, the next result, initially expected to be easy, turned out
to be the main result of the current article because of its involved proof. It is hoped
that greater familiarity with angular equivalence will reveal a simpler one.

Theorem 4.2. Let X be a real vector space with norms ‖ · ‖1 and ‖ · ‖2. If ‖ · ‖1
and ‖ · ‖2 are angularly equivalent then they are also topologically equivalent.

Proof. Let C ≥ 1 be the constant in the definition of angular equivalence, that is,
suppose that for all non-zero x, y ∈ X ,

tan(θ2(x, y)/2) ≤ C tan(θ1(x, y)/2).

We will show that for all non-zero x̄, ȳ ∈ X ,

(4.4)
‖x̄‖1‖ȳ‖2
‖x̄‖2‖ȳ‖1

≤ 40C2.

Topological equivalence follows from this by fixing any non-zero ȳ ∈ X to get
m‖x̄‖1 ≤ ‖x̄‖2 with m = ‖ȳ‖2/(40C2‖y‖1) and, interchanging x̄ and ȳ in (4.4),
‖x̄‖2 ≤M‖x̄‖1 with M = 40C2‖ȳ‖2/‖ȳ‖1.

If x̄ and ȳ are multiples of one another then (4.4) holds trivially so we assume
henceforth that they are independent. Let Z be the two-dimensional subspace of
X spanned by x̄ and ȳ. Choose vectors x, y ∈ Z satisfying three conditions:
(4.5)

‖x‖2 = ‖y‖2 = 1; ‖y‖1 ≤
‖z‖1
‖z‖2

≤ ‖x‖1 for 0 6= z ∈ Z; ‖x‖1 ≤ ‖x+ty‖1 for t ≥ 0.
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To see that this is possible, take x and y to give the maximum and minimum,
respectively, of the continuous function z 7→ ‖z‖1 on the compact set {z ∈ Z :
‖z‖2 = 1}. For any non-zero z ∈ Z, z/‖z‖2 is in this set so the first two conditions
hold. But they also hold with y replaced by −y. The third condition must hold
either with y or with −y; otherwise, there would exist s, t > 0 such that ‖x+ty‖1 <
‖x‖1 and ‖x− sy‖1 < ‖x‖1, which leads to the contradiction,

‖x‖1 = ‖ s
s+t (x+ ty) + t

s+t (x− sy)‖1 ≤ s
s+t‖x+ ty‖1 + t

s+t‖x− sy‖1 < ‖x‖1.

With x and y now fixed, we identify Z with R2 by the linear map (ξ, η) 7→ ξx+ηy
so that ‖(ξ, η)‖1 = ‖ξx + ηy‖1 and ‖(ξ, η)‖2 = ‖ξx + ηy‖2 give two norms on R2.
These make the identification isometric in both norms so g-functional calculations
are not affected. In particular, the two norms on R

2 are angularly equivalent with
constant C. Define rj , ψj and ϕ±

j as above for j = 1, 2. Note that the polar graph

of rj coincides with the boundary of the ‖ · ‖j-unit ball—we refer to it simply as
the rj-curve.

The first condition of (4.5) ensures that r2(0) = 1 and r2(π/2) = 1. For conve-
nience we set a = r1(0) and b = r1(π/2). The second condition implies that,

‖x̄‖1‖ȳ‖2
‖x̄‖2‖ȳ‖1

≤ ‖x‖1
‖y‖1

=
b

a
,

so we may complete the proof of (4.4) and the theorem by showing b/a ≤ 40C2.
Suppose instead that b/a > 40C2. First, we set up to apply Lemma 4.1 with
α = tan−1 3 and β = 0. Estimates will be needed for α + ϕ−

1 (α) − ϕ+
1 (0), α +

ϕ−
2 (α)− ϕ+

2 (0), and M = sup{csc2(ψ1(s, t)) : s, t ∈ (0, α), s 6= t}.
For the remainder of the proof we will frequently apply the definitions of ψ and

ϕ± and the properties in Lemma 3.1(i) and (ii) without explicit reference. Also, as
above, “angle” refers to the usual angle in R2, not the norm angle.

The third condition of (4.5) shows that, in the first quadrant, the r1-curve lies
to the left of the line x = a. Therefore ψ1(0, t) ≥ π/2 for t > 0 and, in the limit,
ϕ+
1 (0) ≥ π/2. Also, the r1-curve intersects the line y = 3x on the segment from

(0, 0) to (a, 3a). Therefore ψ1(π/2, α) is less than or equal to the measure of the
angle from (0, 0) to (0, b) to (a, 3a). That is,

(4.6) ψ1(π/2, α) ≤ cot−1(b/a− 3).

Note that since C ≥ 1 our assumption that b/a > 40C2 implies b/a > 3. Now,

(4.7) α+ ϕ−
1 (α) − ϕ+

1 (0) ≤ α+ ψ1(α, π/2)− π/2 = ψ1(π/2, α) ≤ cot−1(b/a− 3).

To estimate ϕ+
2 (0) we use the angular equivalence hypothesis applied to the two

norm angles from (1, 0) to (cos(−t), sin(−t)), for t > 0. In the form (3.1), it implies

cotψ2(0,−t)−A2

2 cot t+ cotψ2(0,−t) +A2
≤ C2 cotψ1(0,−t)−A1

2 cot t+ cotψ1(0,−t) +A1
.



18 EDER KIKIANTY AND GORD SINNAMON

where Aj =
1
2 (cotϕ

−
j (0) + cotϕ+

j (0)), j = 1, 2. By Lemma 3.1(iii), A1, A2, ψ1 and
ψ2 are uniformly bounded away from zero, but cot t→ ∞ as t→ 0+. Thus,

cotϕ−
2 (0)− cotϕ+

2 (0)

= 2 lim
t→0+

cotψ2(0,−t)−A2

2 cot t+ cotψ2(0,−t) +A2
(2 cot t+ cotψ2(0,−t) + A2)

≤ 2 lim
t→0+

C2 cotψ1(0,−t)−A1

2 cot t+ cotψ1(0,−t) +A1
(2 cot t+ cotψ2(0,−t) +A2)

= C2(cotϕ−
1 (0)− cotϕ+

1 (0)).

Returning to the second condition of (4.5) we see that for each t,

r1(t)

r2(t)
=

‖(cos t)x + (sin t)y‖2
‖(cos t)x + (sin t)y‖1

≥ 1

‖x‖1
= a.

Recalling that r2(0) = 1 and applying Lemma 3.1(v), we get

0 ≤ lim
t→0−

1

t

(

a− r1(t)

r2(t)

)

= lim
t→0−

a
r2(t)− 1

tr2(t)
− r1(t)− a

tr2(t)
= a cotϕ−

2 (0)−a cotϕ−
1 (0).

Thus, cotϕ−
2 (0) ≥ cotϕ−

1 (0) and we have

cotϕ+
2 (0) ≥ cotϕ−

2 (0)− C2(cotϕ−
1 (0)− cotϕ+

1 (0))

≥ (1− C2) cotϕ−
1 (0) + C2 cotϕ+

1 (0)

≥ (1− C2) cotψ1(0,−π/2) + C2 cotψ1(0, π/2)

= (1− C2)(a/b) + C2(−a/b)
≥ −2C2a/b.

We conclude that

ϕ+
2 (0) ≤ cot−1(−2C2a/b) = π − cot−1(2C2a/b).

The r2-curve passes through (−1, 0) and (0, 1) so, in the first quadrant, it lies
below the line y = x + 1. Thus, the r2-curve intersects the line y = 3x on the
segment from (0, 0) to (1/2, 3/2). It follows that ψ2(α, 0) is greater than or equal to
the measure of the apex angle of the isosceles triangle with vertices (0, 0), (1/2, 3/2),
and (1, 0). The latter is π − 2α so we have

(4.8) α+ ϕ−
2 (α) − ϕ+

2 (0) ≥ α+ ψ2(α, 0)− ϕ+
2 (0) ≥ cot−1(2C2a/b)− α.

Finally we estimate M . Since b/a > 40C2 > 3 + 1/3, cot−1(b/a − 3) <
cot−1(1/3) = α so (4.6) implies

ψ1(α, π/2) = ψ1(π/2, α)− α+ π/2 ≤ cot−1(b/a− 3)− α+ π/2 ≤ π/2.

Thus, for s, t ∈ [0, α) with s 6= t,

ψ1(t, s) ≤ ψ1(t, α) = ψ1(α, t) + α− t ≤ ψ1(α, t) + α ≤ ψ1(α, π/2) + α ≤ π/2 + α.

Combining this with,

ψ1(t, s) ≥ ψ1(t, 0) = ψ1(0, t)− t ≥ ϕ+
1 (0)− t ≥ π/2− t ≥ π/2− α

gives π/2− α ≤ ψ1(t, s) ≤ π/2 + α and hence

csc2 ψ1(t, s) ≤ csc2(π/2− α) = 10.
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So M ≤ 10. Now Lemma 4.1 gives,

α+ ϕ−
2 (α) − ϕ+

2 (0) ≤ 10C2(α+ ϕ−
1 (α)− ϕ+

1 (0)).

Using (4.7) and (4.8), we have

cot−1(2C2a/b)− α ≤ 10C2 cot−1(b/a− 3).

Since cot−1 u ≤ 1/u when u > 2/π, and C ≥ 1, our assumption b/a > 40C2 yields,

10C2 cot−1(b/a− 3) ≤ 10C2 cot−1(40C2 − 3C2) ≤ 10/37 < 0.271

and
cot−1(2C2a/b)− α ≥ cot−1(2/40)− tan−1 3 > 0.271.

This contradiction completes the proof. �

5. Further Work

There are many natural, fundamental questions about angular equivalence still
to be investigated. We list a few in the hope that interested readers will contribute
to the theory. Throughout, ‖ ·‖1 and ‖ ·‖2 are angularly equivalent norms on a real
vector space X . By Theorem 4.2 the two norms are also topologically equivalent.

Since the completions of ‖ · ‖1 and ‖ · ‖2 are norms on a common vector space it
makes sense to ask,

Question 1. Are the completions of angularly equivalent norms again angularly
equivalent?

If Y is a subspace of X then it is closed with respect to ‖ · ‖1 if and only if it is
closed with respect to ‖ · ‖2. Each of the two norms give rise to a quotient norm on
X/Y defined by, ‖x+ Y ‖j = infy∈Y ‖x+ y‖j , j = 1, 2.

Question 2. Do angularly equivalent norms induce angularly equivalent norms on
quotient spaces?

The vector space X∗, of continuous linear functionals on X , is the same for
both norms. Thus, their respective dual norms ‖ · ‖∗1 and ‖ · ‖∗2 are norms on a
common vector space. These dual norms are not, in general, angularly equivalent.
See Example 3, below. So it is natural to ask,

Question 3. Under what conditions on angularly equivalent norms are their dual
norms also angularly equivalent?

Example 3. The dual norms of angularly equivalent norms need not be angu-
larly equivalent: Consider the two weighted ℓ1 norms, ‖(ξ, η)‖1 = 2|ξ| + |η| and
‖(ξ, η)‖2 = |ξ| + 2|η| on R2. A calculation shows that, with θj denoting the ‖ · ‖j-
norm angle from (ξ, η) to (µ, ν),

tan2(θ2/2) =
|µ| − µ sgn ξ + 2(|ν| − ν sgn η)

|µ|+ µ sgn ξ + 2(|ν|+ ν sgn η)

≤ 4
2(|µ| − µ sgn ξ) + |ν| − ν sgn η

2(|µ|+ µ sgn ξ) + |ν|+ ν sgn η
= 4 tan2(θ1/2).

(The operator sgn takes the value 1, −1 or 0 when its argument is positive, negative
or zero, respectively.) Thus, the two norms are angularly equivalent. However, their
dual norms are given by ‖(ξ, η)‖∗1 = max(|ξ|/2, |η|) and ‖(ξ, η)‖∗2 = max(|ξ|, |η|/2),
respectively. These have polygonal unit balls in which the vertices are not on the
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same rays. One unit ball has vertices at (±2,±1) and the other has vertices at
(±1,±2). By Corollary 2.3 the dual norms are not angularly equivalent.

The Cartesian product and tensor product of normed vector spaces can be given
various different, but topologically equivalent, norms. This leads to the question,

Question 4. How should the norm of a Cartesian or tensor product be defined
to ensure that product norms are angularly equivalent whenever the norms on the
factors are angularly equivalent?

An Orlicz space can be equipped with either of two topologically equivalent
norms, the Luxemburg norm or the Orlicz norm. Both are needed because each
arises naturally from the other when considering the norm on the dual space. For
the special case of Lp spaces, these two norms coincide (up to a constant multiple)
and hence are angularly equivalent. However, the examples following [3, Theorem
10] show that there are Orlicz spaces which are strictly convex when equipped with
the Luxemburg norm but are not strictly convex when equipped with the Orlicz
norm. By Corollary 2.2 the two norms are not angularly equivalent for such spaces.
So we ask,

Question 5. For which Orlicz spaces are the Luxemburg norm and the Orlicz norm
angularly equivalent?

A similar question could be posed for many other families. For example, topo-
logically equivalent norms abound on the much-studied families of Banach spaces
defined by Hardy, Sobolev, Besov, Triebel, Lizorkin and others.
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