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Critical Analysis of Angle Modulated Particle Swarm Optimisers

by

Barend Jacobus Leonard
E-mail: bleonard@cs.up.ac.za

Abstract

This dissertation presents an analysis of the angle modulated particle swarm optimisation
(AMPSO) algorithm. AMPSO is a technique that enables one to solve binary optimi-
sation problems with particle swarm optimisation (PSO), without any modifications to
the PSO algorithm. While AMPSO has been successfully applied to a range of optimi-
sation problems, there is little to no understanding of how and why the algorithm might
fail. The work presented here includes in-depth theoretical and emprical analyses of the
AMPSO algorithm in an attempt to understand it better. Where problems are identified,
they are supported by theoretical and/or empirical evidence. Furthermore, suggestions
are made as to how the identified issues could be overcome. In particular, the generating
function is identified as the main cause for concern. The generating function in AMPSO
is responsible for generating binary solutions. However, it is shown that the increasing
frequency of the generating function hinders the algorithm’s ability to effectively exploit
the search space. The problem is addressed by introducing methods to construct differ-
ent generating functions, and to quantify the quality of arbitrary generating functions.
In addition to this, a number of other problems are identified and addressed in various
ways. The work concludes with an empirical analysis that aims to identify which of
the various suggestions made throughout this dissertatioin hold substantial promise for
further research.
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At heart, science is the quest for awesome — the literal awe that you feel
when you understand something profound for the first time. It’s a

feeling we are all born with, although it often gets lost as we grow up and
more mundane concerns take over our lives.

Sean M. Carroll
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Chapter 1

Introduction

Your assumptions are your windows on the world. Scrub them off

every once in a while, or the light won’t come in.

Isaac Asimov

Particle swarm optimisation (PSO) is a stochastic search method, introduced by
Kennedy and Eberhart, which manipulates a population of candidate solutions in order
to iteratively find better solutions in a continuous search domain [21]. The algorithm
has been successfully applied to a wide range of continuous optimisation problems [13].
Kennedy and Eberhart also proposed a modified version of the PSO algorithm to solve
binary optimisation problems, dubbed binary particle swarm optimisation (BPSO) [22].
Even though subsequent studies have made improvements on BPSO, many of the pro-
posed algorithms suffered from all, or a subset of, the same complications, as noted by
Pamparà et al. [30]:

• Hamming cliffs: When continuous values are represented in binary format, it
often happens that consecutive continuous values result in relatively dissimilar bi-
nary representations. For example, the integers 310 and 410 result in the two binary
representations 0112 and 1002, respectively. The Hamming distance between the
two binary representations is 3. Consequently, many bits may need to change in
a binary representation in order to arrive at a continuous solution that is, in fact,
adjacent to the current solution.

• Loss of precision and the curse of dimensionality: Only a finite number of

1
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Chapter 1. Introduction 2

bits can be used to represent continuous values. The effect is that most continuous
values are merely approximated by the binary representation. Additionally, im-
proving the accuracy of the approximation necessarily results in higher-dimensional
binary representations.

• Search space discretisation: A further consequence of representing values in a
continuous search space with binary strings is that the characteristics of the search
landscape are affected. For example, plateaus may be created and would, in turn,
affect the performance of the optimisation algorithm [40].

The above considerations motivated the development of a new PSO variant that
can solve binary optimisation problems, but without direct interaction with the binary
search space. Instead, the PSO algorithm is presented with a continuous optimisation
problem whose solution can be used to efficiently generate a binary solution of any
desired number of bits. Importantly, once the desired bit count is established, the same
binary solution is always generated for any particular solution to the continuous problem.
The continuous problem presented to PSO is to find the coefficients of a trigonometric
function, such that the function can be used to generate the optimal solution to some
binary problem. This approach was first proposed by Franken [18], and later formally
introduced by Pamparà et al. [34]. Franken [18] presented a trigonometric function with
four coefficients that control the function’s shape. Although the origin of the function
is not entirely clear, Pamparà et al. [34] attributed its conception to the field of signal
processing in the telecommunications industry, where similar functions are often used to
perform angle modulation1 [3, 36]. The resulting technique was therefore named angle
modulated particle swarm optimisation (AMPSO). This dissertation presents a critical
analysis of AMPSO.

1For the remainder of this dissertation, the term “angle modulation” will only be used in the context
of optimisation, and will refer solely to the process of searching for trigonometric function coefficients
in an attempt to generate optimal binary solutions.
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Chapter 1. Introduction 3

1.1 Motivation

Since the introduction of AMPSO, studies of the algorithm’s performance, and com-
parisons to pre-existing binary optimisation algorithms, have been limited to empirical
analyses [30]. In many cases, AMPSO was compared to novel algorithms that employed
the same general technique as AMPSO. That is, novel algorithms that solved binary
problems by searching for binary solutions via an intermediary continuous problem. Es-
sentially, it was noted that angle modulation was not limited to being combined only
with PSO, but could work with any continuous optimisation algorithm. As such, studies
were produced to investigate the performance of angle modulation when combined with
other continuous optimisation algorithms, such as differential evolution (DE), artificial
bee colony optimisation (ABC), and genetic algorithms (GA) [16, 30, 31, 32]. While
these studies are interesting in their own right, they shed little light on the theoretical
aspects of the AMPSO algorithm. Furthermore, while published works are heavily bi-
ased towards positive results, there are cases where the algorithm does not perform well.
In such cases, existing studies provide minimal insight as to why the algorithm fails.

As a result of the current state of research on AMPSO, there is no clear understanding
of the capabilities and/or limitations of the algorithm. The work presented in this
dissertation aims to provide a better understanding of many theoretical aspects of the
AMPSO algorithm. This will lay the groundwork for future studies concerning AMPSO
specifically, and, in some cases, angle modulation in general, to draw more reliable
conclusions from empirical observations.

1.2 Objectives

This section outlines the objectives that this work aims to achieve. The objectives are
not necessarily addressed in the order they are presented here. The main reason for
this is that this dissertation is the culmination of a series of smaller research projects
that were performed and published in isolation. While the various works are presented
here as a unified research topic with a single narrative, the overarching contribution of
the research only became clear during later investigations (specifically, in chapter 4 of
this dissertation). Nonetheless, the earlier studies contributed as well, in the sense that
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Chapter 1. Introduction 4

without them it would not have been obvious that a better theoretical understanding of
AMPSO was required. The objectives of this study are as follows:

• To provide evidence of cases where the AMPSO algorithm fails and/or where the
behaviour of the algorithm cannot readily be explained based on current knowledge.

• To identify a range of potential underlying causes of failure.

• To investigate the identified aspects theoretically and/or empirically, as deemed
appropriate.

• To provide recommendations on how any identified limitations of the AMPSO
algorithm could be overcome.

• To provide empirical analyses of the most promising recommendations.

1.3 Contributions

The novel contributions made by the work presented in this dissertation are listed below:

• Three novel variants of the AMPSO algorithm are introduced.

• The AMPSO generating function is studied in detail for the first time in order to
establish its effect during the search process.

• It is revealed that there is a non-uniform relationship between step sizes in the
continuous search space and step sizes in the binary solution space in AMPSO.
The consequences of this relationship are discussed in detail.

• The convergence behaviour of particles in AMPSO is investigated empirically for
the first time. The investigation is rooted in established PSO theory.

• A formal definition is provided to quantify the ability of a given generating function
to solve arbitrary binary problems of which only the dimensionality is known.

• A very simple generating function that can solve low-dimensional binary problems
is constructed.
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Chapter 1. Introduction 5

• The concept of ensemble generating functions is introduced for use with arbitrarily
high-dimensional binary problems.

• The frequency distribution of binary solutions in the AMPSO search space is in-
vestigated for the first time.

• A new PSO variant for binary optimisation is introduced, which guarantees that
binary solutions are uniformly distributed in the search space.

• It is shown that poorly designed binary solution representations can violate the un-
derlying assumptions made by the PSO algorithm, and thus affect the algorithm’s
performance.

1.4 Dissertation Outline

The rest of this dissertation is structured as follows:

• Chapter 2 presents an overview of those aspects of optimisation and PSO that
are relevant to the research presented in this dissertation.

• Chapter 3 gives an overview of the AMPSO algorithm, and introduces three
variants in an attempt to overcome a number of potential issues in the algorithm’s
design.

• Chapter 4 considers a range of properties of the AMPSO algorithm that could
potentially have a negative influence on the algorithm’s performance. Each iden-
tified aspect is discussed in detail, and recommendations are made to overcome
identified issues.

• Chapter 5 provides an empirical analysis to evaluate the merits of the most
promising recommendations that were made in chapter 4.

• Chapter 6 concludes the dissertation.

• Appendix A provides a list of important acronyms, and their definitions, that
are used or newly defined in this dissertation.
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Chapter 1. Introduction 6

• Appendix B lists and defines the mathematical symbols used throughout this
work, categorised by the chapter in which they appear.

• Appendix C lists the publications that were derived from the work presented in
this dissertation.
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Chapter 2

Optimisation Problems and

Particle Swarm Optimisers

The greater the number of collective intellects with which an indi-

vidual is involved, the more opportunities he has to diversify his

knowledge and desire.

Pierre Lévy

This chapter provides a detailed overview of those aspects of optimisation problems
and the PSO algorithm that are directly relevant to the research presented in this dis-
sertation. An optimisation algorithm is a search method whose goal is to find the inputs
to a given objective function, such that the output of the function is either minimised
or maximised. The types of input variables that the objective function is defined for
often place limits on the kinds of algorithms that can be used to optimise the function’s
output. For this reason, adapting an existing optimisation technique to a new kind of
problem is not always trivial. This chapter introduces two types of optimisation prob-
lems, namely, continuous and discrete optimisation problems. The PSO algorithm was
originally developed to solve continuous optimisation problems. However, a discrete ver-
sion of the algorithm was later introduced to solve binary optimisation problems. The
modifications that needed to be made to the PSO algorithm in order to deal with the
new problem type are discussed in detail.

The definitions of the different types of optimisation problems are given in Section 2.1.

7
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Chapter 2. Optimisation Problems and Particle Swarm Optimisers 8

Section 2.2 gives an overview of the PSO algorithm for continuous optimisation problems.
A discrete version of PSO is presented in Section 2.3. The chapter is summarised in
Section 2.4.

2.1 Optimisation Problems

Any optimisation problem has an objective function f , which is defined for some domain
S. The domain is often referred to as the search space. Assuming that the goal is to
minimise the output of the objective function, a minimisation problem can be defined
as follows: given an objective function f : S → R, find the values for the input variables
x ∈ S such that f(x) is minimised. Maximisation problems can be expressed in terms of
minimisation problems by observing that max(f) ≡ min(−f). An optimisation problem
may also be subject to certain constraints, in which case the valid input variables are
constrained to x ∈ F , where F ⊆ S is the feasible space.

The types of variables for which an objective function is defined determines the
problem type. A continuous optimisation problem has real-valued input variables. That
is, S = Rnx , or xj ∈ R, for each dimension j = 1, . . . , nx. If xj ∈ D, where D ⊆ R
is some discrete subset of R, then the problem is referred to as a discrete optimisation
problem. In this dissertation, a specific kind of discrete optimisation problem will be
investigated, namely, binary optimisation problems. In the case of a binary optimisation
problem, xj ∈ B, where B = {0, 1}.

For the remainder of this dissertation, the terms “continuous optimisation problem”
and “continuous problem” will be used interchangeably. Similarly, no distinction will be
made between the terms “binary optimisation problem” and “binary problem”.

2.2 Particle Swarm Optimisation

This section provides an overview of the PSO algorithm. The basic workings of the
algorithm are presented in Section 2.2.1. The control parameters of PSO are discussed
in Section 2.2.2, while some theoretical aspects of PSO are reviewed in Section 2.2.3.
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Chapter 2. Optimisation Problems and Particle Swarm Optimisers 9

2.2.1 Overview

Particle swarm optimisation is a stochastic, population-based search algorithm, intro-
duced by Kennedy and Eberhart [9, 21]. The PSO algorithm maintains a population,
or a swarm, of potential solutions, called particles. Every particle i in the swarm has
a position xi and a velocity vi in the nx-dimensional search space. In addition, each
particle also keeps track of the best position yi it has found during the search process,
known as the particle’s personal best position. The original PSO algorithm implemented
a star topology, such that every particle shares information with every other particle in
the swarm. This configuration is referred to as the global best PSO, or gbest PSO. In the
gbest PSO, the best position found by the swarm is called the global best position and
is denoted by ŷ.

In the original version of the gbest PSO, the velocity of each particle is updated at
every time step t+ 1 during the search process as follows:

vi(t+ 1) = vi(t) + c1r1(t)[yi(t)− xi(t)] + c2r2(t)[ŷ(t)− xi(t)], (2.1)

where c1 and c2 are acceleration coefficients, and r1j(t) and r2j(t) are random values,
sampled from U(0, 1) in each dimension j = 1, . . . , nx. The position of each particle is
then updated using

xi(t+ 1) = xi(t) + vi(t+ 1). (2.2)

The resulting behaviour is that particles stochastically return to regions of the search
space where good solutions have previously been found.

The original PSO algorithm was developed to solve continuous problems. As a result,
no constraints are placed on the values that a particle’s position may assume. That is,
xij ∈ R, or xi ∈ Rnx . Because particle positions are used as input vectors to the
objective function, this satisfies the definition of an unconstrained continuous problem,
as discussed in Section 2.1.

2.2.2 Control Parameters

The PSO algorithm has two primary goals. The first goal is to explore the search space
in order to determine which regions are likely to contain promising solutions. The second
goal is to exploit the most promising region in an attempt to find the best solution.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. Optimisation Problems and Particle Swarm Optimisers 10

The exploration and exploitation capabilities of the PSO algorithm are controlled by
the two acceleration coefficients c1 and c2 (see Section 2.2.1). The c1 coefficient is called
the cognitive acceleration coefficient, because it scales the force that attracts a particle
towards its own personal best position. Similarly, the c2 coefficient is known as the
social acceleration coefficient, because it scales the attraction force towards the global
best position. By adjusting c1 and c2, a trade-off between exploration and exploitation
is established.

Note from Equation (2.1) that a particle’s previous velocity is always added to its
new velocity at every time step. The previous velocity term is referred to as the inertia
term and causes a particle to maintain a bias towards its current direction. However,
adding the previous velocity at every time step also has the adverse effect of increasing
the magnitude of the particle’s velocity at every time step. The effect is that exploitation
is hindered, because the step sizes of particles keep increasing. The problem of increasing
particle velocities can be alleviated in various ways, including the use of velocity clamp-
ing [10], or by using a constriction coefficient [5, 6]. However, the most widely adopted
solution is to scale the effect of the particle’s previous velocity by including an inertia
weight [37].

Shi and Eberhart [37] introduced a modified version of PSO that uses an inertia
weight to scale the inertia term in Equation (2.1). To achieve this, Equation (2.1) was
modified such that

vi(t+ 1) = ωvi(t) + c1r1(t)[yi(t)− xi(t)] + c2r2(t)[ŷ(t)− xi(t)], (2.3)

where ω is the inertia weight. Scaling the inertia term by a factor of ω < 1 addresses the
problem of increasing particle velocities. Furthermore, the inertia weight also prevents
sudden, large changes in direction as particles move through the search space, until
enough evidence has been gathered to justify such changes. For specific configurations
of ω, c1, and c2, swarm convergence is theoretically guaranteed [4, 11, 35, 39].

2.2.3 Convergence in Mean and Standard Deviation

The term “convergence” is often used in literature to refer to different concepts. Through-
out this dissertation, “convergence” will be used to refer to the stabilisation of particles
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Chapter 2. Optimisation Problems and Particle Swarm Optimisers 11

around known positions in the search space:
A particle i is said to be order-1 stable when the expected position E[xi] of the

particle is equal to some point µ. Under the correct conditions, particles in PSO will
eventually become order-1 stable [11, 35, 39]. That is,

lim
t→∞

E[xi(t)] = µ. (2.4)

Poli [35] also showed that PSO is order-2 stable. That is, the standard deviation σi of
the particle’s positions around µ converges, such that

lim
t→∞

σi(t) =
1

2

√
c(ω + 1)

c(5ω − 7)− 12ω2 + 12
· |ŷ(t)− yi(t)|, (2.5)

where c = c1 = c2. Consequently, a particle i will continue searching within a region
bounded by σi, unless yi(t) = ŷ(t). When σi remains stationary, the particle is said to
be order-2 stable. Order-2 stability is equivalent to convergence. The parameter values
given in Table 2.1 have been shown to lead to convergent particle trajectories [4, 35, 39].

If a particle i is order-1 stable, the standard deviation σi(t) can be interpreted as the
expected magnitude of the velocity of the particle at time t + 1. The expected average
magnitude of particle velocities in the swarm at time t+ 1 is then given by

E[vavg(t+ 1)] =

∑ns

i=1 σi(t)

ns
, (2.6)

where ns is the number of particles in the swarm, and the particles in the swarm are
order-1 stable. When using the parameter values listed in Table 2.1, the deviation is
given by

σi(t) = 1.0432 · |ŷ(t)− yi(t)|. (2.7)

2.3 Binary Particle Swarm Optimisation

A discrete version of PSO that can optimise binary problems was introduced by Kennedy
and Eberhart [22, 23]. This algorithm is known as BPSO. An overview of BPSO is given
in Section 2.3.1. The algorithm is then critiqued in Section 2.3.2.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. Optimisation Problems and Particle Swarm Optimisers 12

Table 2.1: Convergent PSO parameter values.

Parameter Value

ω 0.729844
c1 1.496180
c2 1.496180

2.3.1 Overview

In order to solve binary problems with PSO, the first required modification is that
particle positions must be binary vectors. That is, xi ∈ Bnx . Particle movements then
imply a bit flip in one or more dimensions of the position vector. The problem with
binary position vectors is that the velocity update equation in PSO (Equation (2.3)) is
no longer applicable, since it entails performing real-valued operations on the individual
dimensions of a particle’s position.

The solution that Kennedy and Eberhart proposed was to change the interpretation
velocity vector of a particle. Instead of a step size, the velocity vij of a particle in BPSO
is used to compute the probability that the position of particle i in dimension j is 1.
This interpretation immediately implies that particle velocities must be normalised such
that v′ij ∈ [0, 1]. In order to obtain normalised velocities, the velocity of each particle is
scaled using the sigmoid function, such that

v′ij(t) = sig(vij(t)) =
1

1 + e−vij(t)
. (2.8)

The position of a particle is then updated probabilistically, such that

xij(t+ 1) =

1 if r3j < v′ij(t)

0 otherwise,
(2.9)

where r3j ∼ U(0, 1).
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2.3.2 Critique

The BPSO algorithm described in Section 2.3.1 has been criticised in literature for fun-
damentally changing the behaviour of the PSO algorithm [12, 24, 30]. In particular, it
has been noted that the BPSO algorithm changes the meaning of the control parameters
in PSO, and that, as a result, PSO theory does not apply to BPSO. This section high-
lights and discusses the implications that the new interpretation has on for the various
components of the PSO algorithm.

2.3.2.1 Acceleration Coefficients

In BPSO the two acceleration coefficients, c1 and c2, no longer control the trade-off
between exploration and exploitation. Instead, maximum exploration is achieved when
v′ij = 0.5. That is, the probability that each bit equals 1 is exactly 0.5. Thus, because of
the sigmoid normalisation in Equation (2.8), maximum exploration is achieved in BPSO
when vij = 0, for all j = 1, . . . , nx.

2.3.2.2 Inertia Weight and Velocity Clamping

The meaning of the inertia weight is also different in the context of BPSO. Instead
of smoothing particle trajectories, the purpose of ω in BPSO is only to prevent the
magnitudes of particle velocities to grow too rapidly during the beginning of the search.
When particle velocities in BPSO become much larger or much smaller than 0, the
algorithm can no longer explore the search space. Therefore, ω should be close to zero
during the beginning of the search process. In addition to the inertia weight, velocity
clamping is also required in BPSO, to prevent saturation of the sigmoid normalisation
function. If particle velocities become too large or too small, the respective probability
of a bit being 1 or 0 approaches 1, effectively bringing an end to the search process. To
prevent this, particle velocities should be clamped such that their magnitudes remain
within the active range of the sigmoid function.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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2.3.2.3 Particle Positions and Fitness Values

Another important insight is that the concept of particle positions in the search space no
longer makes sense in the context of BPSO. The reason for this is that a particle does not
even have a position until its velocity is evaluated using Equation (2.9). Furthermore,
the random variable r3j in Equation (2.9) means that consecutive evaluations of the
same particle would likely yield different positions. As a direct consequence, the fitness
values associated with particles no longer convey any useful information about the search
space. The result is that the cognitive and social attraction forces in Equation (2.1) —
which are supposed to guide particles to good solutions in the search space — become
meaningless in the context of BPSO.

2.3.2.4 PSO Theory

In addition to the concerns discussed above, it should be noted that PSO theory, as
explained in Section 2.2.3, is no longer applicable in the case of BPSO. Essentially, this
means that a new theoretical framework is required in order to fully understand the
BPSO algorithm, and to perform meaningful studies regarding its behaviour. Thus, a
reasonable conclusion is that, while BPSO borrows terminology from the PSO paradigm,
it really belongs in a different category of optimisation algorithms.

2.4 Summary

This chapter gave a formal definition of continuous- and discrete optimisation problems.
Two versions of the particle swarm optimisation (PSO) algorithm were then introduced.
The first version of PSO that was discussed is used to solve continuous problems and
includes an inertia weight to smooth particle trajectories as they move through the
search space. The second version is called binary PSO (BPSO), and is used to solve
binary optimisation problems.

BPSO was criticised for changing the interpretation of the velocity vectors in PSO.
This new interpretation implies that none of the control parameters in BPSO retain their
original meaning. Furthermore, PSO theory is not applicable to the BPSO algorithm.
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Consequently, it was concluded that BPSO should rather not be classified as a particle
swarm optimiser, even though it borrows the terminology.
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Chapter 3

Angle Modulated

Particle Swarm Optimisation

Man’s mind, once stretched by a new idea, never regains its original

dimensions.

Oliver Wendell Holmes Sr.

AMPSO is a technique that enables the standard PSO algorithm to optimise binary
problems without requiring any modifications to the PSO algorithm. The technique was
originally suggested by Franken [18], but was formally introduced by Pamparà et al [34].
This chapter gives an overview of the AMPSO algorithm. Additionally, a number of
potential drawbacks of the technique are identified. Three variants are then introduced
in an attempt to overcome these drawbacks. The new variants are compared with the
normal AMPSO algorithm to confirm whether they are superior.

Section 3.1 gives an overview of the basic AMPSO algorithm. Section 3.2 discusses
a number of shortcomings in the AMPSO algorithm. In Section 3.3, three new variants
of the AMPSO algorithm are introduced. The experimental setup is explained in Sec-
tion 3.4, while the results are discussed in Section 3.5. The chapter is summarised in
Section 3.6.

16
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Chapter 3. Angle Modulated Particle Swarm Optimisation 17

3.1 Overview

AMPSO makes use of the PSO algorithm (see Section 2.2) to optimise the coefficients
(a, b, c, and d) of the following trigonometric function:

g(x) = sin[2π(x− a)b cos(2π(x− a)c)] + d. (3.1)

This function is often referred to as the generating function. The generating function
has four coefficients that control various aspects of the function as follows:

• a: controls the horizontal shift,

• b: controls the amplitude of the cos wave, which, in turn, controls the frequency
of the sin wave,

• c: controls the frequency of the cos wave, and

• d: controls the vertical shift.

When using PSO to search for good coefficients for g, the position of a particle i has
the form xi = (a, b, c, d). In order to generate a binary solution from a given particle’s
position, the values a, b, c, and d are substituted into g. Then the generating function
is sampled at regular intervals x = 0, 2, 3, . . . , nb− 1, where nb is the required number of
binary digits. A binary solution B ∈ Bnb is constructed by noting the value of g(x) at
every sampling position:

Bj =

0 if g(x) ≤ 0,

1 otherwise.
(3.2)

Consequently, an nb-dimensional binary problem may potentially be solved using a four-
dimensional PSO. The process of generating a binary solution in AMPSO is illustrated
in Figure 3.1.

Note that AMPSO makes no modifications whatsoever to the original PSO algorithm.
That is, particle positions are still real-valued vectors, and the interpretation of particle
velocities remains unchanged. As a result, the meanings of the control parameters in
PSO also remain unchanged, and PSO theory readily applies to AMPSO.
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Chapter 3. Angle Modulated Particle Swarm Optimisation 18

Figure 3.1: A five-dimensional binary solution is generated by sampling g at regular intervals.

In this example, xi = (0.0, 0.5, 0.8, 0.0), or a = 0, b = 0.5, c = 0.8, and d = 0.

3.2 Potential AMPSO Pitfalls

This section notes a number of potential flaws in the AMPSO algorithm. The work
presented here is the first and only study, as of this writing, to identify and attempt to
rectify these weaknesses in AMPSO.

The generating function enables AMPSO to produce different binary solutions. How-
ever, some solutions may be easier to generate than other solutions, because of the
following shortcomings in the AMPSO technique:

1. The generating function has a fixed amplitude: The generating function g is
a sin wave, which means that it has an amplitude of 1, and AMPSO has no means of
adjusting the amplitude. Modifying the amplitude of the generating function would
effectively scale the effect of the vertical shift coefficient, d, potentially allowing
AMPSO to find some solutions faster.

2. The sampling interval is always the same: AMPSO samples the generating
function at integer intervals. If AMPSO could adjust the sampling interval, some
solutions may be easier to produce.

3. Sampling always starts at 0: Allowing AMPSO to determine the sampling
starting position automatically may enhance the search capabilities of the algo-
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rithm.

4. The initialisation domain limits the diversity of solutions: As noted above,
the generating function in AMPSO has an amplitude of 1. During initialisation,
particles are usually distributed in the range [−1, 1]4 [30, 34]. The implication is
that all solutions are initialised with −1 ≤ d ≤ 1, which means that the vertical
shift of the generating function can never exceed its amplitude. Thus, the range
of the generating function will always include g(x) = 0. From Equation (3.2), this
implies that 0-bits can never be entirely eliminated from any candidate solution
during initialisation with absolute certainty.

3.3 AMPSO Variants

This section introduces three variants of the AMPSO algorithm that address the above-
mentioned limitations. The amplitude AMPSO (A-AMPSO) algorithm is discussed in
Section 3.3.1. Section 3.3.2 gives an overview of the min-max AMPSO (MM-AMPSO)
algorithm, while the increased-domain AMPSO (ID-AMPSO) variant is discussed in
Section 3.3.3.

3.3.1 Amplitude AMPSO

The A-AMPSO algorithm augments particle positions with an additional dimension to
control the amplitude of the generating function. This gives rise to five-dimensional
particles of the form xi = (a, b, c, d, e), while the generating function changes to

g(x) = e sin[2π(x− a)b cos(2π(x− a)c)] + d, (3.3)

where e is the amplitude of g. Equation (3.3) is then substituted into Equation (3.2)
when generating binary solutions. This variant addresses shortcomings 1 and 4 from
Section 3.2, as is illustrated in Figure 3.2.
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3.3.2 Min-Max AMPSO

The MM-AMPSO variant adds two additional dimensions to particles’ positions. The two
new dimensions control the bounds of the sampling range of the generating function. The
position of a particle becomes a six-dimensional vector of the form xi = (a, b, c, d, α1, α2).
Let α` = min{α1, α2} be the lower bound, and αu = max{α1, α2} be the upper bound,
then the generating function is sampled at every δth position in the range [α`, αu), where

δ =
αu − α`
nb

. (3.4)

This variant addresses shortcomings 2 and 3 from Section 3.2. This is illustrated in
Figure 3.3.

3.3.3 Increased-Domain AMPSO

The final variant is ID-AMPSO. In ID-AMPSO the initialisation range is simply increased
from [−1, 1]4 to [−1.5, 1.5]4. This variant addresses shortcoming 4 from Section 3.2, but
without the increase in particle dimensionality that was required for A-AMPSO (Sec-
tion 3.3.1). An illustration is provided in Figure 3.4.

3.4 Experiments

To determine whether the proposed variants in Section 3.3 provide improvements over the
standard AMPSO algorithm, an empirical study was performed. This section outlines
the experimental procedure that was followed.

Section 3.4.1 describes the benchmark problems that were used, while the algorithmic
setup is explained in Section 3.4.2.

3.4.1 Benchmark Problems

Five binary benchmark problems were used in this study. The implementations of these
problems were provided by the computational intelligence library (CIlib) [7, 33]. Each
problem is discussed below.
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Figure 3.2: An illustration of the solution generated by a newly initialised A-AMPSO particle

xi = (0.3, 0.0, 0.5, 0.8, 0.35), or e = 0.3, a = 0, b = 0.5, c = 0.8, and d = 0.35. The amplitude

coefficient allows the algorithm to initialise solutions that contain no 0 bits. By adjusting the

d coefficient, solutions with no 1 bits can also be initialised.

3.4.1.1 N-Queens

The n-queens problem is a chess board problem, where the objective is to place n queens
on an n×n chess board in such a way that no queen is able to capture any other queen,
by the standard rules of chess. Various solutions to the problem can be found in [8], [29],
and [38]. The n-queens problem is a minimization problem.

For the purpose of this study, a solution to the n-queens problem was represented
with an n2-bit string, where a 1-bit indicates that the corresponding square on the chess
board contains a queen, and a 0-bit indicates an empty square.

The problem was investigated for board sizes of 8 × 8, 9 × 9, 10 × 10, 11 × 11,
12 × 12, 20 × 20, and 25 × 25. These board sizes led to solution representations of 64,
81, 100, 121, 144, 400, and 625 bits, respectively.

3.4.1.2 Knights’ Coverage

The knights’ coverage problem [17] is also a chess-board problem and is defined as follows:
for any n× n chess board, use the minimum number of knights to cover the maximum
number of squares on the chess board. A square on the chess board is considered to be
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Figure 3.3: An illustration of the solution generated by an MM-AMPSO particle with position

xi = (1.0, 1.3, 0.0, 0.5, 0.8, 0.0), or α1 = 1.0, α2 = 1.3, a = 0, b = 0.5, c = 0.8, and d = 0.35.

The sampling range is controlled by α1 and α2. This allows the algorithm generate a broader

range of solutions more easily. Note that MM-AMPSO can easily generate solutions with no

0’s or no 1’s as well.

covered if and only if a knight is occupying the square, or a knight may move to the
square in a single move from its current location. The allowed movements of knights are
defined by the standard rules of chess. This problem is a minimization problem.

A solution to the knights’ coverage problem was represented by an n2-bit string. A
1-bit indicates that the corresponding square on the chess board contains a knight, and
a 0-bit indicates an empty square.

For this study, the problem was optimized for chess board sizes of 8 × 8, 9 × 9,
10 × 10, 11 × 11, 12 × 12, and 20 × 20. The resulting solution representations had 64,
81, 100, 121, 144, 225, and 400 dimensions, respectively.

3.4.1.3 Knight’s Tour

The knight’s tour problem [20] is yet another chess board problem. Given an n × n

chess board, the aim is to find a sequence of moves for a single knight, such that every
square on the board is visited exactly once. The knight may start on any square, but its
movement is restricted by the normal rules of chess. The knight’s tour is a maximization
problem.
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Figure 3.4: An illustration of the solution generated by a newly initialised ID-AMPSO particle

xi = (0.0, 0.5, 0.8, 1.05), or a = 0, b = 0.5, c = 0.8, and d = 1.05. The increased initialisation

domain allows the algorithm to initialise solutions that are guaranteed to contain no 0 bits,

because the amplitude of g is 1. By adjusting the d coefficient, solutions with no 1 bits can also

be initialised.

From any position on the chess board, a knight has a maximum of eight valid moves.
Each move can therefore be encoded as a 3-bit binary value. The complete solution to
this problem is then a bit string with 3n2 bits.

This problem was investigated for the following board sizes: 4 × 4, 5 × 5, 6 × 6,
7 × 7, 8 × 8, 10 × 10, and 12 × 12. The respective solution representations were 48,
75, 108, 147, 192, 300, and 432 bits in length.

3.4.1.4 Deceptive Problems

Finally, the following two deceptive problems were used in this study: order-3 deceptive,
and order-5 deceptive. The concept of deception was introduced by Goldberg and aims
to deliberately mislead the evolutionary process modelled in genetic algorithms [19].
Deceptive problems are designed in such a way that a deceptive attractor leads the
search away from the global optimum. For example, for an order-3 deceptive problem f ,
the bits in a candidate solution are grouped into nb

3
three-bit groups. Assuming that f is

a maximization problem, with a global maximum at (1, 1, 1, . . .) and a global minimum
at (0, 0, 0, . . .), the relationships in Table 3.1 must hold for every group of three bits in
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Table 3.1: Order-3 Deceptive Relationships

f(. . . 0∗∗ . . .) > f(. . . 1∗∗ . . .) f(. . . 00∗ . . .) > f(. . . 11∗ . . .), f(. . . 01∗ . . .), f(. . . 10∗ . . .)

f(. . . ∗0∗ . . .) > f(. . . ∗1∗ . . .) f(. . . 0∗0 . . .) > f(. . . 1∗1 . . .), f(. . . 0∗1 . . .), f(. . . 1∗0 . . .)

f(. . . ∗∗0 . . .) > f(. . . ∗∗1 . . .) f(. . . ∗00 . . .) > f(. . . ∗11 . . .), f(. . . ∗01 . . .), f(. . . ∗10 . . .)

a candidate solution. Both the order-3 and order-5 deceptive problems are defined as
maximization problems.

For this study, the order-3 and order-5 deceptive problems were optimized in the
following dimensions: 30, 45, 60, 75, and 90.

3.4.2 Algorithmic Setup

The three AMPSO variants proposed in Section 3.3 were compared to the original
AMPSO on the five benchmark functions described in Section 3.4.1. Parameters settings
were obtained using iterated F-race [1], [2]. The parameters were optimised simultane-
ously for all four algorithms across all problems and dimensions, and were then used for
every test case. The parameters are shown in Table 3.2.

Each algorithm executed for 1000 iterations, and average results over 30 runs are
reported in Section 3.5. Finally, pair-wise Mann-Whitney U tests were performed to
determine significant wins and losses for all algorithms across all problems at a 95%
confidence interval.

3.5 Results and Discussion

Graphs 3.1 to 3.8 show the fitness profiles of the different algorithms for the lowest and
highest dimensions on the various benchmark problems.

It is observed from Graph 3.1 that AMPSO, ID-AMPSO and A-AMPSO performed
comparably in 64 dimensions on the n-queens problem, with AMPSO reaching a lower av-
erage fitness at times. MM-AMPSO lagged notably behind. This indicates that the two
additional dimensions added to the position vector in MM-AMPSO imposed additional
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Table 3.2: Best performing parameter values.

Parameter Value

ω 0.4237
c1 1.6369
c2 1.5943

complexity that the algorithm was not able to overcome for this particular problem.
Graph 3.2 shows that, for 652 dimensions, AMPSO has the steepest initial gradient,
but again ID-AMPSO and A-AMPSO eventually reached fitness values close to that of
AMPSO.

Graphs 3.3 and 3.4 show the fitness profiles on the knights’ coverage problem. It is
observed that all algorithms performed comparably in 64 dimensions, with MM-AMPSO
obtaining a slightly lower fitness value on average. In 400 dimensions, MM-AMPSO
had a lower initial gradient compared to the other algorithms. However, MM-AMPSO
overtook all the competitors in the last 100 iterations. The results for the knight’s
coverage problem are in contrast with what was observed for the n-queens problem.
These results indicate that the ability to adjust the sampling domain of the generating
function during the search process can be beneficial in some problem cases.

For the knight’s tour problem, Graph 3.5 shows that AMPSO obtained the highest
average fitness in 48 dimensions. All algorithms stagnated at inferior solutions on this
problem, with MM-AMPSO having the worst average fitness. In Graph 3.6, it is ob-
served that MM-AMPSO still had the worst average fitness in 432 dimensions, but that
ID-AMPSO obtained the best average fitness after 1000 iterations. Again this result
indicates that there are problem cases for which AMPSO suffers some loss in perfor-
mance due to the limitations of the generating function. In the case of the knight’s tour
problem, the larger initialisation domain of the ID-AMPSO variant is only beneficial in
high dimensions, and only towards the end of the 1000-iteration search period.

Graphs 3.7 and 3.8 show the fitness profiles for the order-5 deceptive problems. Fit-
ness graphs for the order-3 deceptive problems are omitted, but are similar to those in
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Graph 3.1: Fitness profiles for the 64-dimensional n-queens problem.

50

100

150

200

250

300

0 20 40 60 80 100

Fi
tn

es
s

Iterations

N-Queens (625 dimensions)

AMPSO
ID-AMPSO
A-AMPSO

MM-AMPSO

Graph 3.2: Fitness profiles for the 625-dimensional n-queens problem.

Graphs 3.7 and 3.8. It is immediately obvious that all three proposed variants obtained
much better average results than AMPSO in the initial phases of the search process.
In fact, the variants consistently found the optimal solutions to these problems during
initialization. The reason for this is that the solution to all the deceptive problems is a
bit string consisting only of 1-bits. Recall from Section 3.3 that all three the variants are
able to create such solutions during initialization. Graphs 3.7 and 3.8 also indicate that
the problem’s dimensionality affects only ID-AMPSO’s ability to consistently initialize
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Graph 3.3: Fitness profiles for the 64-dimensional knights’ coverage problem.
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Graph 3.4: Fitness profiles for the 400-dimensional knights’ coverage problem.

1-bit solutions, and the effect only persists through the first few iterations. AMPSO is
noticeably affected by an increase in dimensionality for the order-5 deceptive problem.
However, due to a phenomenon known as roaming particles [14, 15] — where particles
move outside the initialisation domain — AMPSO is also able to find the optimal so-
lutions to all the deceptive problems within the first 10 to 70 iterations, regardless of
dimensionality.

Tables 3.3 to 3.5 report the statistical wins and losses for all algorithms on the
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Graph 3.5: Fitness profiles for the 48-dimensional knight’s tour problem.
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Graph 3.6: Fitness profiles for the 432-dimensional knight’s tour problem.

n-queens-, knights’ coverage-, and knight’s tour problems after 1000 iterations. A statis-
tical win or loss necessarily implies a statistically significant difference in performance.
Statistical significance was measured at a 95% confidence interval. The statistical results
for the deceptive problems are not reported in tables, because, as discussed above, all
the algorithms solved all the deceptive problems, implying no statistically significant
difference in performance after 1000 iterations.

Each table row indicates the wins and losses for all four algorithms on a specific
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Graph 3.8: Fitness profiles for the 90-dimensional order-5 deceptive problem.

problem. Because a pair-wise comparison was performed, an algorithm can have at most
three wins or three losses. In addition, a win for one algorithm necessarily implies a loss
for some other algorithm. In the cases where one algorithm obtained more wins than all
the other algorithms, the number of wins for the winning algorithm is printed in bold.

Table 3.3 shows that AMPSO, A-AMPSO, and ID-AMPSO all obtained statistically
superior fitness values to the other three algorithms on some of the n-queens problems.
AMPSO obtained the most wins overall, while MM-AMPSO lost in all cases. The results
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Table 3.3: Statistical Wins and Losses for the n-queens Problem

Dimensions
AMPSO A-AMPSO ID-AMPSO MM-AMPSO

wins losses wins losses wins losses wins losses

64 3 0 1 1 1 1 0 3
81 1 0 1 1 2 0 0 3
100 2 0 1 1 1 0 0 3
121 1 0 1 0 1 0 0 3
144 1 1 2 0 1 0 0 3
400 2 0 1 0 1 1 0 3
625 2 0 1 2 2 0 0 3

corroborate the observations made in Graphs 3.1 and 3.2.
Table 3.4 shows that AMPSO, A-AMPSO, and ID-AMPSO all performed well on the

knight’s coverage problem. However, A-AMPSO was superior in most low-dimensional
problems, while MM-AMPSO showed very good performance in high dimensions. This
confirms that the gain in performance, due to a little complexity to the AMPSO algo-
rithm, can be significant.

Finally, Table 3.5 shows that AMPSO was superior when considering low-dimen-
sional knight’s tour problems, while A-AMPSO and ID-AMPSO performed comparably
to the AMPSO algorithm in 108 to 192 dimensions. However, MM-AMPSO is superior
to all other algorithms in high dimensions. This demonstrates how an increase in dimen-
sionality of the knight’s tour problem affect the performance of the various algorithms.
Furthermore, Table 3.5 illustrates that the enhancements made to the AMPSO algorithm
by MM-AMPSO, while having a negative effect on performance in low dimensions, allow
the algorithm to overcome the increased complexity of the problem in higher dimensions
(300 or more dimensions).

While it is clear that the AMPSO variants proposed in this chapter provided statis-
tical improvements in some specific problem cases, the average results obtained by the
variants are generally not much better than AMPSO when taken on face value. Fur-
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Table 3.4: Statistical Wins and Losses for the Knight’s Coverage Problem

Dimensions
AMPSO A-AMPSO ID-AMPSO MM-AMPSO

wins losses wins losses wins losses wins losses

64 1 0 1 0 1 0 0 3
81 0 1 3 0 0 1 0 1
100 1 1 3 0 1 1 0 3
121 0 1 3 0 1 1 0 2
144 1 1 2 0 1 0 0 3
225 1 1 0 3 1 1 3 0
400 1 0 0 3 1 0 1 0

Table 3.5: Statistical Wins and Losses for the Knight’s Tour Problem

Dimensions
AMPSO A-AMPSO ID-AMPSO MM-AMPSO

wins losses wins losses wins losses wins losses

48 2 0 1 0 1 1 0 3
75 3 0 1 1 1 1 0 3
108 1 0 1 0 1 0 0 3
147 1 0 1 0 1 0 0 3
192 1 0 2 0 1 1 0 3
300 0 1 0 1 0 1 3 0
432 0 1 0 1 0 1 3 0

thermore, the limitations that were identified in Section 3.3 were presented without any
empirical evidence that they truly affect the search capabilities of the algorithm. Might
a deeper understanding of the AMPSO algorithm shed light on other — perhaps more
severe — flaws in the algorithm? This notion is pursued in the next chapter.
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3.6 Summary

This chapter presented the angle modulated particle swarm optimization (AMPSO) al-
gorithm. A number of limitations due to the algorithm’s bit-generating function were
discussed, and three variants of the algorithm were proposed to address these limitations.
The three variants that were proposed are: amplitude AMPSO (A-AMPSO), min-max
AMPSO (MM-AMPSO), and increased-domain AMPSO (ID-AMPSO). The AMPSO
algorithm was then compared to the three variants on a number of binary benchmark
problems in various dimensions.

It was observed that, in some problem cases, the limitations imposed on AMPSO
affect the performance of the algorithm. Furthermore, it was observed that the additional
complexity in the proposed variants was not favourable in low dimensions, but allowed
the algorithms to obtain statistically equal or superior performance to AMPSO in higher
dimensions.

In addition, it was shown that all three variants allowed for a greater variety of initial
solutions to be generated. This ability allowed the variants to solve deceptive problems
during initialization, while AMPSO required between 10 to 70 iterations to find optimal
solutions.

It was concluded that a deeper understanding of exactly how the AMPSO algorithm
works might reveal other flaws in the algorithm. Thus, a better understanding of AMPSO
could lead to a new variant or technique that performs better accross a wider range of
problems and dimensions than the variants that were introduced in this chapter. The
next chapter presents a detailed study of various aspects of the AMPSO algorithm.

Derived Publications

The empirical study presented in this chapter was published in [26].
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Chapter 4

Critical Considerations on Angle

Modulated Particle Swarm Optimisers

If you try and take a cat apart to see how it works, the first thing

you have on your hands is a non-working cat.

Douglas Adams

Chapter 3 identified a number of potential problems with AMPSO. Three variants of
AMPSO were introduced to attempt to overcome these problems. The A-AMPSO and
MM-AMPSO variants introduced additional complexity in terms of dimensionality to the
PSO algorithm, but showed performance improvements in a handful of problem cases.
The remaining variant, ID-AMPSO, showed no statistically significant improvement over
AMPSO.

Most notably, the approach followed to identify potential flaws in the algorithm has,
thus far, not been backed by empirical or theoretical evidence. As a result, there is
no clear understanding of when or why the AMPSO algorithm (or, indeed, any of the
variants introduced in Section 3.3) might fail to produce good results. Therefore, the aim
of this chapter is to study various aspects of the AMPSO algorithm in order to identify
and provide evidence for any effects or characteristics that may have a negative influence
on the performance of AMPSO. Where applicable, this chapter also presents potential
solutions to many of the problems found during the course of the analyses. However,
empirical testing of the proposed solutions will only be done in the following chapter.

33
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Section 4.1 investigates the periodicity of the generating function. The relationship
between the continuous search space and the binary solution space is discussed in Sec-
tion 4.2. Section 4.3 studies the convergence behaviour of AMPSO. The problem of
finding good generating functions is addressed in Section 4.4, while the frequency dis-
tribution of binary solutions in the AMPSO search space is discussed in Section 4.5.
Section 4.6 investigates the importance of good binary solution representations. The
chapter is summarised in Section 4.7.

4.1 Periodicity of the Generating Function

To begin, consider the periodicity of the generating function. A periodic function is a
function whose values repeat at some fixed interval T . Formally, if f(x) is periodic, then
there exists a T 6= 0, such that

f(x+ T ) = f(x), ∀x ∈ R. (4.1)

The use of a periodic generating function in AMPSO raises the concern that it could
cause repetition in the generated bit string. The interval of repetition in the resulting
binary solution is not necessarily the same as the period T of the generating function, but
rather depends on T , as well as the sampling domain. Nevertheless, as the dimensionality
nb of the binary problem increases, so does the probability of producing solutions that
contain repetition, if the generating function is periodic.

Of course, in order to know whether this problem is a valid concern in AMPSO,
it is necessary to know if g (Equation (3.1)) is periodic. One might easily make the
assumption that g is periodic, because it is a sin wave. However, closer inspection of the
function reveals that it is, in fact, not periodic, as long as bc 6= 0. A proof is provided
below. For ease of reference, Equation (3.1) is redefined here.

The AMPSO generating function is given by

g(x) = sin[2π(x− a)b cos(2π(x− a)c)] + d. (4.2)

In the case where b = 0, Equation (4.2) reduces to a constant value:

g(x) = sin(0) + d = d. (4.3)
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When c = 0,
g(x) = sin[2π(x− a)b] + d, (4.4)

which clearly is periodic. Now, consider the case where bc 6= 0. Without loss of generality,
let

g(x) = sin(f(x)), (4.5)

where
f(x) = bx cos(cx). (4.6)

Now, sin(x) = 0⇔ x = πn, with n ∈ Z. Therefore,

g(x) = 0⇔ f(x) = πn. (4.7)

Consider the function f on any interval,

Ik =


[

2πk
c
− π

2c
, 2πk

c

]
if c > 0[

2πk
c
, 2πk

c
− π

2c

]
if c < 0,

(4.8)

where k ∈ N+. Observe that cos(x) has roots at x = πn− π
2
. Therefore,

f

(
2πk

c
− π

2c

)
= b

(
2πk

c
− π

2c

)
cos
(

2πk − π

2

)
= 0.

(4.9)

Furthermore, observe that cos(2πn) = 1. Therefore,

f

(
2πk

c

)
=

2πbk

c
· cos(2πk)

=
2πbk

c
.

(4.10)

Figure 4.1 illustrates the relevant intervals of f for k = 1, . . . , 6, b = 1, and c = 1. From
the observations above, it is evident that the range of f on Ik is

[
0, 2πbk

c

]
if bc > 0, or[

2πbk
c
, 0
]
if bc < 0. In either case, the length of this range is

∣∣2πbk
c
− 0
∣∣). Now, because f

is continuous, there exists a value x∗ ∈ Ik such that f(x∗) = πn for every πn in the range
of f on Ik. Furthermore, f is monotonic on any interval Ik, because cos(x) is monotonic
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Figure 4.1: The range of f on Ik is
[
0, 2πbk

c

]
when bc > 0. Every interval Ik is highlighted in

bold for k = 1, . . . , 6, b = 1, and c = 2. Note that the range of f on every highlighted interval

contains
⌊∣∣2bk

c

∣∣⌋+ 1 multiples of π, including 0π.

on any interval
[
2πk − π

2
, 2πk

]
. Therefore, the number of multiples of π contained in the

range of f on Ik is given by

Π(k) =

⌊∣∣2πbk
c
− 0
∣∣

π

⌋
+ 1

=

⌊∣∣∣∣2bkc
∣∣∣∣⌋+ 1.

(4.11)

Note that Π(k) is equal to the number of roots of g in the interval Ik. Now,

lim
k→∞

Π(k) =∞. (4.12)

The same argument can be used for the sequence of intervals (Jj), where⋃
j∈N

Jj = (R+ ∪ {0})−
⋃
k∈N

Ik, (4.13)

Then, by simple inductive argument, it is clear that Π(k) also diverges over larger,
consecutive intervals. Therefore, the roots of g become more frequent as x → ∞. The
same is true for x→ −∞, because g is a sin wave, which is symmetric.
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Because the number of roots of g increases indefinitely over consecutive intervals as
|x| → ∞, there can be no sequence of intervals, (Kk), such that the length of any interval
Kk is equal to the period T , and the number of roots of g in every interval Kk is the
same, and ⋃

k∈N

Kk = R. (4.14)

That is,
g(x+ T ) 6= g(x) ∀x ∈ R. (4.15)

Therefore, g is aperiodic if bc 6= 0.

4.2 Spatial Disconnect

While the problem with periodic generating functions has now been ruled out for the
specific case where g is used as the generating function, it is clear from Section 4.1 that
the roots of g increase in frequency as |x| → ∞. This effect is illustrated in Figure 4.2.
The rate at which the frequency of roots increases is dependent on the c coefficient of
g. The perpetual increase in the frequency of roots of g may seem harmless, but it has
severe consequences for the AMPSO algorithm, as explained next.

The AMPSO algorithm is concerned with two spaces: the continuous coefficient space,
where the PSO algorithm is defined, and the binary solution space, wherein the solution
to the arbitrary binary problem exists. Recall from Section 2.2.2 that the PSO algorithm
works in two primary phases, known as the exploration and exploitation phases. During
the exploration phase, particle step sizes are relatively large so that many parts of the
search space are sampled sparsely in order to determine which regions in the search
space are likely to contain good solutions. During the exploitation phase, particle step
sizes become smaller so that the good regions that were found during the exploration
phase can be thoroughly searched in an attempt to find the best solution. When solving
continuous problems (which is what PSO was designed for), the magnitude of the velocity
of a particle is the distance between its current and previous position. This distance is
generally also an indication of how similar two solutions are. The assumption is that
if some arbitrary solution in the continuous search space is good, then other close-by
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Figure 4.2: The roots of g increase in frequency as |x| → ∞.

solutions are probably also good. However, when particle positions are mapped to binary
solutions using angle modulation, it may happen that two solutions which are close to
each other in the coefficient space are actually far apart in the solution space. When
this happens, the ability of PSO to exploit the solution space is hindered. This problem
is henceforth referred to as spatial disconnect.

Note that the assumption that good solutions are grouped together is an assump-
tion made by PSO, but not necessarily by all optimisation algorithms. That is, other
optimisation algorithms may not be influenced by the spatial disconnect problem. One
example of such an algorithm is simulated annealing (SA) [25], where new solutions are
not necessarily generated close to the current best solution. The use of SA and other
similar algorithms with angle modulation is beyond the scope of this dissertation, but
might be worthwhile considering as alternatives to PSO.

One way of measuring the similarity between two binary solutions is to calculate the
Hamming distance between them. The Hamming distance between two binary strings
of equal length is the number of corresponding bits in the two binary strings that differ
in value. Figure 4.3 illustrates the concept of Hamming distance.

The problem of spatial disconnect can be demonstrated by the following process:
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Figure 4.3: There are five corresponding bits with different binary values in these two binary

strings, so the Hamming distance between them is 5.

1. Determine a step size s.

2. Uniformly initialise a random vector p1 in the range [−1, 1]4.

3. Substitute the coefficients of g with the elements of p1.

4. Generate an nb-dimensional bit string, using g. Call the bit string b1.

5. Create a uniform random vector s with 4 dimensions in the range [−1, 1]4, and
length s.1

6. Let p2 = p1 + s.

7. Substitute the coefficients of g with the elements of p2.

8. Generate an nb-dimensional bit string, using g. Call the bit string b2.

9. Divide each bit string (b1 and b2) into equally-sized groups of bits.

10. Determine the Hamming distance between each of the corresponding groups of bits
in b1 and b2.

11. Repeat steps 2 to 10 n times, and calculate the average Hamming distance between
the corresponding groups of bits in b1 and b2.

The process outlined above simulates the movement of a particle from a random
point p1 in the coefficient space to another point p2, with velocity s. Note that the
length s of s is the amount of change in the coefficient space. By repeating the entire

1The length s in this case refers to the square-root of the sum of all the vector elements, as opposed
to the cardinality of s, which is 4.
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process for decreasing values of s, the average amount of change in the binary solution
can be measured and compared to s. By dividing the binary strings b1 and b2 into blocks
(step 9 above), the amount of change in lower- and higher dimensions of the binary
solution can also be compared. For PSO to be able to successfully exploit the binary
solution space, there must be a direct correlation between the amount of change in the
coefficient space and the amount of change in the solution space. Furthermore, because
s is chosen uniformly, and s is constant while repeating steps 2 to 10, the amount of
change measured should, on average, be uniform across all dimensions of the solution
space.

Figures 4.4 to 4.8 show the average Hamming distances across all dimensions of
the solution space for various values of s. In this case, nb = 100, and the resulting bit
strings were divided into twenty-five 4-bit groups for the purpose of measuring Hamming
differences. All averages were measured by repeating steps 2 to 10 thirty times. Figure 4.4
shows that, when s = 0.1, the average Hamming distance is more or less uniform across
all dimensions of the solution space. However, in Figures 4.5 to 4.8, it is observed that
as the value of s is decreased, the distribution of change in the solution space becomes
increasingly non-uniform. In particular, while there is a correlation between the amount
of change in the coefficient space and the amount of change in the solution space, the
correlation is stronger for lower dimensions of the solution space. Practically, this implies
that the lower-dimensional bits will stabilise at higher particle velocities than the higher-
dimensional bits in the binary solution. Hence, a spatial disconnect exists.

The spatial disconnect is caused by a combination of the increasing frequency of roots
of g (see Section 4.2) and the manner in which g is sampled to generate binary solutions.
The original AMPSO algorithm samples g on integer intervals x = 0, 1, 2, . . . , nb − 1.
This relatively fast increase in the value of x means that the frequency of roots of g
at the sample positions also increases quickly (albeit, depending on the value of c), as
can be seen in Figure 4.2. The higher the frequency at a given sampling position x, the
higher the probability that the sign at x will change when the coefficients of g change
by a small amount. Recall from Section 3.1 that a change in the sign at x is equivalent
to a bit flip in the binary solution. It is important to realise that the results reported
here are independent of any specific binary problem, and that the spatial disconnect is
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Figure 4.4: For particle step sizes of s = 0.1, the amount of change is uniform across all

dimensions of the binary solution.

caused by the generating function. Note the absence of a binary problem in steps 1 to 11
above.

The problem of spatial disconnect can be partially overcome by MM-AMPSO, which
has the ability to decrease the sampling domain, and thereby the sampling interval, so
that x does not increase as fast. This provides an explanation for MM-AMPSO’s good
performance in some high-dimensional problem cases that were studied in Section 3.3.
However, this problem persists in both the ID-AMPSO and A-AMPSO variants.

Another question that arises from the results presented in this section is: do particles
in AMPSO eventually slow down sufficiently to exploit the higher dimensions of the
solution space? Note that even if particles do slow down sufficiently, the non-uniform
distribution of change is still detrimental to performance if the optimal values of lower
dimensional bits are in any way dependent on the values of higher dimensional bits.
Nonetheless, the question remains interesting. Section 4.3 analyses the velocities of
particles in AMPSO throughout the duration of the search process.
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Figure 4.5: For particle step sizes of s = 0.01, the amount of change is low in the first four

dimensions of the binary solution.

4.3 Velocities in Angle Modulated Particle Swarms

This section presents the first empirical investigation into the behaviour of angle modu-
lated particle swarms, with respect to particle velocities.

The work presented in this section is based on the theoretical aspects of PSO that
were discussed in Section 2.2.3. The experimental setup is outlined in Section 4.3.1,
while the results are presented in Section 4.3.2. Section 4.3.3 discusses the implications
of the results in terms of the spatial disconnect that was discovered in Section 4.2.

4.3.1 Experimental Setup

In order to analyse particle velocities in angle modulated particle swarms, experiments
were constructed using AMPSO, A-AMPSO, and MM-AMPSO. ID-AMPSO was not
considered further in this study, because there is no statistical difference in performance
between ID-AMPSO and AMPSO (see Section 3.3.3).

All algorithms were executed on the same set of problems used in Section 3.4, with
the exception of the deceptive problems, which were showed to be easily solvable by
AMPSO and all three variants. The following problems were evaluated:
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Figure 4.6: For particle step sizes of s = 0.001, the amount of change is low in the first four

dimensions of the binary solution, slightly higher in dimensions four to eight, and high in the

remaining dimensions.

• N -Queens (64-, 100-, 400-, and 625 dimensions),

• Knight’s tour (48-, 108-, 300-, and 432 dimensions), and

• Knight’s coverage (64-, 100-, 400-, and 625 dimensions).

In every case, the parameter values in Table 2.1 were used. These parameters are used
because they have been shown to produce convergent behaviour, which is what this
experiment aims to investigate. In each case, the algorithm was allowed to execute for
1000 iterations. The swarm consisted of 20 particles, and the following measurements
were recorded at every iteration:

• expected average magnitude of particle velocities (Equation (2.6)),

• actual average magnitude of particle velocities, and

• whether the global best fitness had changed since the previous iteration.

Because the purpose of these experiments is to gain insight into the behaviour of angle
modulated swarms by analysing particle velocities during the search process, it does not
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Figure 4.7: For particle step sizes of s = 1×10−4, there is no change in the first four dimensions

of the binary solution. The amount of change increases gradually from dimensions five to 40,

and remains high in the remaining dimensions.

make sense to average the measurements over a number of independent runs. Thus,
although the experiments were performed for 30 independent runs, each of the graphs
that are reported in Section 4.3.2 shows the behaviour of a single execution. However,
unless stated otherwise, the results are representative of the kind of behaviour that was
observed across independent executions of the experiments.

4.3.2 Results

Graphs 4.1 to 4.3 show the three most typical cases of the behaviour of angle modulated
swarms with respect to average particle velocities. With a few exceptions, these three
cases were observed throughout all experiments, across all problems and dimensions.
The graphs show the actual- and expected average particle velocities in the swarm at
each iteration. The intermittent vertical lines indicate when changes in the global best
fitness occurred.

In Graph 4.1, particle velocities initially decrease. Changes in the global best fitness
are also initially frequent, as expected. However, the average velocity quickly stagnates
(after about 100 iterations) at a value between 0.1 and 1. The stagnation is evident
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Figure 4.8: For particle step sizes of s = 1×10−5, there is no change in the first 16 dimensions

of the binary solution. The amount of change increases gradually from dimensions 17 to 100.

from the fact that the expected average velocity E[vavg] converges to a constant value,
indicating that the swarm is order-2 stable at this point. Minor fluctuations in E[vavg]

are still caused by changes in the particles’ personal best positions, but it is not until
a change in the global best fitness occurs (around iteration 280 in this case) that the
swarm destabilises momentarily. Unfortunately, the swarm stabilises at a higher velocity
after this event occurs. From Equations (2.7) and (2.6), it is evident that the global best
position has, on average, shifted further away from the particles’ personal best positions,
causing an increase in average particle velocity.

Another common case is shown in Graph 4.2, where particle velocities initially de-
crease until the swarm stabilises, as in the previous case. However, in this case, subse-
quent changes in the global best position do not destabilise the swarm. The fact that
the swarm remains stable sometimes, even though the global best fitness has changed,
indicates that the global best position in those cases did not change by much. That is, in
those cases, the new global best position is relatively close to the old global best position
in the coefficient space.

Another, less common, scenario is shown in Graph 4.3. In this case, the initial de-
crease in average velocity is especially short-lived, while a number of consecutive desta-
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Graph 4.1: Particle velocities initially decrease, but stabilise after about 100 iterations. After

around 280 iterations, a change in the global best position destabilises the swarm. The swarm

then becomes stable at a higher average velocity.

bilising changes in the global best position cause the average particle velocity to grow
progressively. This indicates that the global best position gradually shifts further away
from the particles’ personal best positions as the search continues. In these cases, the
average velocity of the swarm generally eventually stabilises at a value between 1 and
10.

Finally, Graph 4.4 depicts an uncommon scenario that was only observed for MM-
AMPSO in a handful of cases. This graph shows that the average velocities of particles
can grow to values as high as 100 if destabilising changes in the global best position keep
occurring.

In a few cases the average velocities of particles were observed to drop below 0.1.
However, there were no cases were the average particle velocities ever dropped below
0.01. Henceforth, the phenomenon where particle swarms become order-2 stable at high
average velocities will be referred to as inadequate convergence.

4.3.3 Discussion

The results shown in Section 4.3.2 indicate that particle velocities in AMPSO tend to
stabilise at relatively high values. In the most common scenarios, particle velocities
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Graph 4.2: Particle velocities initially decrease, but the swarm stabilises after a few hundred

iterations, with an average particle velocity of between 0.1 and 1.

stabilised at values between 0.1 and 1.
When these results are compared to those reported in Section 4.2, it becomes clear

that neither AMPSO, nor any of the variants ever progress to the exploitation phase
of the search process. Recall from Figure 4.4 that a step size as small as 0.1 in the
coefficient space causes, on average, 1.5 out of four bits to flip across all dimensions of
the binary solution.

While spatial disconnect (see Section 4.2) highlights the severity of the problem, it
also offers an explanation for inadequate convergence in the case of angle modulated
swarms. When a particle i in PSO is attracted towards ŷ and yi, the assumption is
that good solutions are likely to be found in the vicinity of other previously-found good
solutions. In moving towards those previously-found locations, the particle progressively
discovers better solutions, and ŷ and yi move closer together. The effect is that the
particle progressively stabilises at lower velocities, until |yi − ŷ| becomes sufficiently
small, so that σi also becomes very small, relative to the search domain. However, in the
case of angle modulated swarms, the generating function may cause spatial disconnect,
nullifying the assumption that good solutions are grouped together. In this case, while
a particle is still attracted towards previously-found good solutions, it is unlikely to find
better solutions in those regions, so the distance between ŷ and yi does not decrease
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Graph 4.3: Particle velocities do not get a chance to decrease, because a number of consecutive

changes in the global best position causes the two attractors to become more separated over

time.

enough, relative to size of the coefficient space. As a result, the particle becomes order-2
stable at a high velocity. Essentially, a particle in this state indefinitely explores the
coefficient space in a region of size σi around µ. If, by chance, any particle in the swarm
does find a better global best solution, the other particles may become destabilised if
the global best position moves by a large enough distance. However, the destabilised
particles will yet again stabilise as they fail to find better solutions near the new point
of attraction, ad infinitum.

A potential solution to the problems that have been discovered so far is to replace
the generating function. The problem of finding a new generating function is addressed
in Section 4.4.

4.4 Generating Function Potential

The generating function presented by [34] was chosen seemingly arbitrarily and without
justification. Indeed, the only justification to be found in literature is from Franken,
when he postulated the possibility of a “. . .mathematical function that will allow for
more intricate arrangements of 0’s and 1’s, and adapting this function through the use
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Graph 4.4: Particle velocities escalate to extremely high values as the global best position

moves very far from the particles’ personal best positions, on average.

of PSO” [18].
While all the problems that were discussed in Sections 4.1, 4.2, and 4.3 have to be

considered when choosing a new generating function, another very important question
has eluded researchers thus far: can one produce every possible bit string of length
nb by varying the coefficients of the generating function? Or, stated differently, does
the generating function have the potential to produce any arbitrary bit string of length
nb? This question is of paramount importance, because if the generating function cannot
produce any arbitrary bit string, AMPSO might, in some cases, never be able to produce
optimal solutions.

A formal definition of generating function potential is given is Section 4.4.1. Sec-
tion 4.4.2 demonstrates the use of generating function potential by constructing a novel
generating function that can solve simple binary problems. Section 4.4.3 discusses the
implication of generating function potential for lower-than-nb-dimensional problems once
a suitable generating function has been found. Section 4.4.4 addresses the problem of
finding a generating function that has the potential to solve arbitrarily high-dimensional
binary problems. Section 4.4.5 discusses the applicability of generating function potential
to AMPSO variants.
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4.4.1 Definition of Generating Function Potential

The following definition assumes that sample values in AMPSO are mapped to binary
digits using Equation (3.2).

Given an arbitrary generating function Υ, the potential of Υ to generate any arbitrary
bit string of length nb by varying the coefficients of Υ and sampling the function at
regular, fixed intervals is given by

P nb
Υ =

|Bnb
Υ |

2nb
, (4.16)

where Bnb
Υ is the set of binary strings of length nb that Υ can generate. Equation (4.16)

will henceforth simply be referred to as the nb-potential of Υ. An nb-potential of 1

indicates that it is possible to generate every possible bit string of length nb by varying
the coefficients of Υ. Lower values of P nb

Υ indicate that there are bit strings of length
nb that can never be generated by the function. Note that the nb-potential of Υ says
nothing about the likelihood of generating any specific bit string of length nb.

To demonstrate the usefulness of generating function potential, an example is given
below.

4.4.2 Example of Finding an Appropriate Generating Function

One of the motivations for introducing angle modulation, was the fact that the method
reduces the dimensionality of the problem [34]. However, for very low-dimensional bi-
nary problems (three dimensions or lower), the dimensionality of the problem actually
increases when angle modulation is applied (assuming that g is used as the generating
function), because g has four coefficients. This example will show that it is possible
to replace the generating function with one that has fewer coefficients to prevent the
increase in dimensionality for simple binary problems.

Consider a binary problem with a 3-bit solution, and a simple generating function:

h1(x) = sin(x). (4.17)

This generating function has no coefficients and will therefore always produce the same
bit string, assuming that h1 is sampled at x = 0, 1, 2. Table 4.1 lists all the possible
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solutions to a 3-dimensional binary problem. Column 2 indicates that h1 always produces
the bit string ‘011’:

bit 1: sin(0) = 0.0→ 0

bit 2: sin(1) ≈ 0.8→ 1

bit 3: sin(2) ≈ 0.9→ 1,

(4.18)

which means that |B3
h1
| = |{‘011’}| = 1. Therefore, the 3-potential of h1(x) is

P 3
h1

=
|B3

h1
|

23

=
1

8

= 0.125.

(4.19)

The low 3-potential of h1 indicates that this function would be a very poor choice of
generating function to use with angle modulation. Of course, h1 is clearly a toy example,
because there are no coefficients to optimise.

Consider a slightly more complex function:

h2(x) = sin(vx). (4.20)

Adding the v coefficient means that the function can now produce different bit strings
by varying v. In the case of AMPSO, it also implies 1-dimensional particles of the form
xi = (v).

Table 4.1 shows that there exist four values for v that produce the first four possible
solutions, respectively. These values were found empirically, assuming the same sampling
positions as for h1. However, no values for v could be found to produce the remaining
four solutions. The fact that no values for v could be found to produce the last four
solutions does not necessarily imply that it is impossible to produce those solutions.
However, in this case it is easy to show that h2 cannot generate solutions whose first bit
is ‘1’. Indeed, consider the calculation of the first bit:

h2(0) = sin(v(0)) = 0.0→ 0, (4.21)

regardless of the value of v. Therefore, |B3
h2
| = 4, and P 3

h2
= 0.5. The 3-potential of h2

is a significant improvement over the 3-potential of h1, but still not good enough.
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Table 4.1: Different binary solutions are obtained by varying the value of v. Assuming that

x ∈ {0, 1, 2}, a ‘-’ indicates that it is not possible to generate a particular solution. A ‘*’

indicates that a particular solution is always generated.

Solution h1(x) = sin(x)
h2(x) = sin(vx) h3(x) = sin(v(x+ 1))

v v

000 – 5 6
001 – 4 5
010 – 2 4
011 * 1 17
100 – – 2
101 – – 3
110 – – 14
111 – – 1

The problem with h2 can easily be corrected by adding a constant horizontal shift
term to prevent the first bit from always being sampled at sin(0):

h3(x) = sin(v(x+ 1)). (4.22)

Table 4.1 shows that, for h3, there exist values for v to generate every possible 3-bit
binary solution. Hence, P 3

h3
= 1, meaning that h3 is a generating function, with a single

coefficient, that has the potential to solve any 3-dimensional binary problem. Table 4.1
also shows that all the possible solutions exist for 1 6 v 6 17. Therefore, a suitable
initialisation range for particles in the PSO algorithm has also been found (although a
smaller range that is equally suitable might exist).

A point of concern regarding h3 is that the function is clearly periodic and may there-
fore give rise to repetition in the binary solution. However, as indicated in Section 4.1,
periodic generating functions are of greater concern for higher values of nb. In the case
where nb = 3, a periodic generating function is not problematic.
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4.4.3 Implication for Lower-than-nb-Dimensional Binary Prob-

lems

Another useful observation to make from Table 4.1 is that the solutions to every 2-bit
binary problem are contained in the 3-bit solutions. That is, if one ignores the final
bit of every 3-bit solution in Table 4.1, then every 2-bit binary string is present in the
list. The implication is that if a generating function is able to generate all 3-bit binary
strings, then it is also able to generate all 2-bit binary strings, simply by not sampling
the final bit. By the same reasoning, it then follows that all 1-bit solutions can also be
generated. This implication necessarily holds for any value of nb and can be formally
stated as follows:

P nb
Υ = 1 ⇒ P nb−1

Υ = P nb−2
Υ = . . . = P 1

Υ = 1. (4.23)

Therefore, if P nb
Υ = 1, then Υ is a generating function with the potential to solve any

binary problem with dimensionality nb or lower.

4.4.4 Generating Functions to Solve High-Dimensional Binary

Problems

It has now been shown that generating function potential can be used to quantify the
usefulness of any arbitrary generating function. However, up to this point, only very
simple functions were considered. This section investigates the use of generating func-
tion potential to find appropriate generating functions to solve high-dimensional binary
problems.

4.4.4.1 Estimating Generating Function Potential

The most challenging aspect of determining the nb-potential of a generating function
Υ is finding the set Bnb

Υ of bit strings that Υ can generate. One conceivable way of
generating Bnb

Υ is to sample Υ at x = 0, 1, 2, . . . , nb − 1 for every possible permutation
of the coefficients of Υ and recording which bit strings are generated. Of course, this
is impossible, because the coefficients of Υ are continuous. However, the values of the
coefficients can be limited to some finite subset C ⊆ R. Let CΥ denote the number of
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coefficients of Υ. By limiting the values that the coefficients may assume, a set PCΥ

of all allowed permutations of the coefficients of Υ can be generated. The number of
permutations |PCΥ

| is given by
|PCΥ
| = |C|CΥ . (4.24)

For example, if Υ has two coefficients whose values are limited to 0.0, 0.1, and 0.2, then
the permutations listed in Table 4.2 are possible, and

|PCΥ
| = |C|CΥ

= 32

= 9.

(4.25)

The complexity of generating a bit string of length nb from Υ, using every possible
permutation in PCΥ

, is
O(nb · |PCΥ

|) = O(nb · |C|CΥ), (4.26)

which increases exponentially with the number of coefficients CΥ.
If the method described above is used to calculate the nb-potential of an arbitrary

generating function, the following should be noted:

1. Because C is a finite subset of R, the calculated nb-potential is only an estimate of
the function’s true nb-potential.

2. The true nb-potential of the function is necessarily greater than or equal to the esti-
mated value. Therefore, if the estimated nb-potential of Υ equals 1, then P nb

Υ = 1.

3. To obtain the best estimate of the true nb-potential of the function, |C| should be
as large as possible.

4. Because any given permutation will always generate the same binary solution, C
must be chosen such that

|PCΥ
| > 2nb . (4.27)

Without this constraint, an estimated nb-potential of 1 can never be obtained.

The nb-potential of g (Equation (3.1)) was estimated using the approach outlined
above. In this case, C = {−1.000,−0.975,−0.950, . . . , 0.00, 0.025, 0.050, . . . , 1.000}, and
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nb = 16. The range [−1, 1] was chosen, because that is the range within which AMPSO
is generally initialised [26, 30, 34]. From Equation (4.25),

|PCg | = |C|Cg

= 814

= 43 046 721,

(4.28)

which satisfies the constraint in Equation (4.27):

|PCg | > 2nb

43 046 721 > 216

> 65 536.

(4.29)

Generating a bit string from g for each of the 814 permutations of the coefficients of g,
yielded an estimated 16-potential of 1. That is, every possible bit string of length 16

could be generated. Therefore,
P 16
g = 1. (4.30)

Increasing nb to 17 still satisfied the constraint in Equation (4.27), but yielded an esti-
mate of P 17

g > 0.99932. In order to prove that P 17
g = 1, |C| needs to be further increased.

Unfortunately, this approach quickly becomes infeasible, because of the increasing com-
putational complexity to estimate |Bnb

Υ |.

4.4.4.2 Ensemble Generating Functions

An alternative method to solve arbitrarily high-dimensional binary problems is to make
use of multiple generating functions to solve parts of the binary solution independently.
A separate generating function would then be used for each nb

ϕ
-bit group of bits in the

binary solution, where ϕ is the total number of generating functions. Together, the ϕ
generating functions are referred to as an ensemble generating function, Θ. Assuming
that the ϕ generating functions are all the same function Υ, and that P

nb
ϕ

Υ = 1, it
follows that P nb

Θ = 1. The PSO that results from using Θ as the generating function has
dimensionality

nx =
nb
nb

ϕ

· CΥ

= ϕCΥ.

(4.31)
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Table 4.2: Each line in this table represents one possible permutation of the coefficients of Υ.

Each permutation can potentially generate a different binary solution.

Coefficent 1 Coefficient 2

0.0 0.0
0.0 0.1
0.0 0.2
0.1 0.0
0.1 0.1
0.1 0.2
0.2 0.0
0.2 0.1
0.2 0.2

The position of a particle i then has the form

xi = (ψΥ11, ψΥ12, . . . , ψΥ1CΥ
, ψΥ21, ψΥ22, . . . , ψΥ2CΥ

,

. . . , ψΥϕ1, ψΥϕ2, . . . , ψΥϕCΥ
),

(4.32)

where ψΥij is the jth coefficient of the ith Υ function.
In the specific case of h3, this implies that an nb-dimensional binary problem can be

solved using an nb

3
-dimensional PSO, with particle positions taking the following form:

xi = (v1, v2, v3, . . . , vϕ). However, if nb is too big, the periodicity of h3 might cause
repeating patterns to start appearing in the binary solution. Of course, g is also a
potential candidate to replace Υ. In the case of g, the resulting PSO has dimensionality
nb

4
, from Equations (4.30) and (4.31). However, recall from Figure 4.6 that the problem

of spatial disconnect already manifests when g is used to solve 16-dimensional binary
problems.

The use of AMPSO with ensemble generating functions will henceforth be referred
to as ensemble AMPSO (E-AMPSO).
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4.4.5 Using Generating Function Potential with AMPSO Vari-

ants

One point of concern regarding generating function potential is whether it is applicable
to the AMPSO variants described in Section 3.3. In the case of ID-AMPSO, no modifica-
tions were made to the algorithm, so generating function potential automatically applies.
In the case of A-AMPSO, an additional coefficient was introduced, but the definition of
generating function potential is not dependent on the number of coefficients, so gener-
ating function potential also applies to A-AMPSO. The only point of possible confusion
is MM-AMPSO (refer to Section 3.3.2). The MM-AMPSO algorithm has the ability to
vary its sampling domain. More precisely, the way in which MM-AMPSO calculates the
sample positions might cast some doubt regarding the applicability of the implication
for lower-than-nb-dimensional problems, discussed in Section 4.4.3.

Consider the case where α` = 0, αu = 5, and nb = 5. From Equation (3.4), δ = 1

for this particular configuration. Further assume that a = 0, b = 0.5, c = 0.8, d = 0.
When a bit string is generated, the scenario depicted in Figure 3.1 is obtained. Thus,
the generated bit string is ‘01100’. Now, according to Section 4.4.3, the bit string ‘0110’
should be obtainable by neglecting to sample the final bit. To do so, the value of nb is
reduced to 4. But reducing the value of nb changes the value of δ, and therefore also
the sampling positions. This means that some bits in the newly generated 4-dimensional
bit string might change. The concern in this case is that it is no longer guaranteed
that the generating function will be able to produce all lower-dimensional bit strings.
Fortunately, this effect is easily corrected by adjusting the value of αu. In this particular
case, the value of αu can be set to 4 to obtain the correct value for δ to produce the
desired bit string.

From the example above, it is clear that by making the necessary adjustment to
αu, MM-AMPSO can also generate any lower-than-nb-dimensional bit string, assuming
that the generating function has an nb-potential of 1. Thus, the concept of generating
function potential, including the implication for lower-than-nb-dimensional problems, is
equally applicable to AMPSO and all the AMPSO variants contained in this thesis.
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4.5 Frequency Distribution of Candidate Solutions

It should be noted that P nb
Υ , as described in Section 4.4, says nothing about the distri-

bution of solutions in the search space. This section investigates how candidate binary
solutions are distributed througout the AMPSO search space. Section 4.5.1 discusses
the importance of uniform candidate solution frequency distributions. Section 4.5.2 in-
troduces an alternative method to solve binary problems with PSO, which guarantees a
uniform frequency distribution of candidate solutions.

4.5.1 Frequency Distribution of Binary Solutions in AMPSO

Consider again the illustration given in Figure 3.1. In that illustration, the values a = 0,
b = 0.5, c = 0.8, and d = 0 produced the binary solution ‘01100’. However, it is trivial
to see that choosing a sufficiently small, but non-zero positive value for a would produce
the exact same binary solution. The fact that different permutations of the coefficients
can produce the same binary solution has two obvious effects. Firstly, the search space
contains plateaus, and, secondly, all solutions are not guaranteed to exist in the search
space with the same frequency. That is, even if P nb

Υ = 1, meaning that every possible
binary solution exists in the search space, some solutions may be much more common
(and therefore easier to find) than other solutions.

In order for PSO to find good solutions, it is desirable that every potential candidate
solution should exist in the search space with the same frequency. Without a uniform
solution frequency distribution, PSO may not be able to find good solutions if they
happen to be infrequent compared to bad solutions. When solving continuous problems,
the solution frequency distribution in the PSO search space is uniform, because every real
number exists in R exactly once. However, when angle modulation is applied to PSO, the
relationship between the continuous generating function and the binary solution space
causes a non-uniform frequency distribution of binary solutions in the AMPSO search
space. This is because there are more possible permutations of the coefficients of g than
there are binary solutions.

To illustrate, consider an arbitrary 8-bit binary problem that is being optimised
with AMPSO. Any given permutation of the coefficients of g will result in a specific
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Figure 4.9: An estimation of the frequency distribution of binary solutions in the AMPSO

search space for 8-dimensional binary problems, with g as the generating function.

binary solution. The frequency distribution of binary solutions can then be seen by
generating a solution for every possible permutation of the coefficients of g and count-
ing the number of times that each unique solution is generated. This is obviously not
possible, because the coefficients of g are real values, which means that there is an
infinite number of permutations. However, as was the case in Section 4.4.4.1, the fre-
quency distribution of solutions in the AMPSO search space can be estimated by limiting
the values that any coefficient may assume to some subset C ⊆ R. Figure 4.9 shows
the frequency distribution of 8-bit binary solutions in the AMPSO search space when
C = {−1,−0.9, 0.8, . . . , 0.0, 0.1, 0.2, . . . , 1.0}. The total number of permutations of the
coefficients of g in this estimation is |C|4 = 214 = 194, 481. The total number of 8-bit
binary solutions is 28 = 256. In Figure 4.9, every value on the x-axis is an integer which
represents the corresponding binary solution. For example, the value 0 corresponds to
the binary string ‘00000000’, the value 1 corresponds to ‘00000001’, etc.

It is clear from Figure 4.9 that — although every 8-bit binary solution exists —
the frequency distribution of binary solutions in the AMPSO search space is not close to
uniform. In fact, 20% of the search space is dominated by the ‘00000000’ and ‘11111111’
solutions. This provides an explanation for the ease at which the deceptive problems were
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solved by AMPSO and all of its variants in Chapter 3. A number of smaller spikes in the
frequency distribution plot indicate that some solutions are much more common than
others. The twelve most common solutions (not counting the two solutions mentioned
above) are listed below:

410 = 000001002, 12810 = 100000002,

810 = 000010002, 19110 = 101111112,

1610 = 000100002, 22310 = 110111112,

3210 = 001000002, 23910 = 111011112,

6410 = 010000002, 24710 = 111101112,

12710 = 011111112, 25110 = 111110112.

The two least common solutions are 7110 = 010001112 and 18410 = 101110002.
It is obvious from the above observations that the most common solutions in the

AMPSO search space are the ones that contain a lot of repetition. This trend is also
true for binary solutions of higher dimensionality, although the frequency distribution
plots become difficult to read because of the exponential growth in the number of binary
solutions.

The cause of this trend is the generating function. Regularities in the shape of the
generating function mean that some solutions are much easier to generate than others
by varying the values of the coefficients. The solutions that are easy to generate may
overshadow good solutions in the search space. Furthermore, common solutions may
cause plateaus in the fitness landscape, thereby complicating the search even more.

This problem can potentially be alleviated by using a different generating function.
However, it is difficult to imagine a generating function that would produce a uniform so-
lution frequency distribution. Indeed, even for the simple case where h3 (Equation (4.22))
is used to solve a 3-dimensional binary problem, the solution frequency distribution is
also not uniform. An estimation of the frequency distribution of 3-dimensional binary
solutions in the AMPSO search space — when h3 is used as the generating function — is
shown in Figure 4.10. In this case, C = {1.00, 1.01, 1.02, . . . , 17.0}. A more appropriate
solution to this problem might be to replace angle modulation with a different method
altogether that naturally produces a uniform solution frequency distribution.
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Figure 4.10: An estimation of the frequency distribution of binary solutions in the AMPSO

search space for 3-dimensional binary problems, with h3 as the generating function.

4.5.2 Obtaining A Uniform Solution Frequency Distribution with

Natural Numbers

This section details a new approach to solve binary optimisation problems with PSO.
The method is explained in Section 4.5.2.1, while two potential problems with the new
approach are addressed in Sections 4.5.2.2 and 4.5.2.3.

4.5.2.1 PSO with Natural Numbers

To obtain a uniform solution frequency distribution, some uniform mapping from the
continuous feasible space F to Bnb is required. That is, a mapping M : F → Bnb is
needed, such that for every B ∈ Bnb , there is an equal number of values x ∈ F that map
to B.

Consider the set of natural numbers N0 = {0, 1, 2, . . .}. Every element in N0 can be
mapped to a binary value by converting the element from base-10 to base-2. Furthermore,
the mapping is a one-to-one mapping, meaning that it is always uniform. Now, clearly
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N0 is not continuous. However, observe that

bxc ∈ N0 ∀ x ∈ R≥0. (4.33)

Therefore, PSO can be used to find a real value x ∈ R≥0 such that bxc is the natural
number that maps to the desired binary solution. Furthermore, to ensure that a mapping
exists from F to every element B ∈ Bnb , only a subset of R≥0 is required, such that
F ⊆ R≥0 = [0, 2nb), and nx = 1.

For example, if nb = 3, then there are 23 = 8 candidate binary solutions, which map
to the following eight natural numbers: {0, 1, 2, 3, 4, 5, 6, 7}. Therefore, the continuous
feasible search space F , whose floored elements are equal to these eight natural numbers,
is F = [0, 8). A one-dimensional PSO can now be used to search F for the natural number
that maps to the optimal three-bit binary solution. This technique will henceforth be
referred to as the natural numbers PSO (NNPSO). Note that the frequency distribution
of binary solutions in F is naturally uniform in the case of NNPSO.

Because NNPSO guarantees that all the possible candidate solutions are contained in
F = [0, 2nb), particles in NNPSO should not update their personal best positions unless
they are within these bounds.

4.5.2.2 Hamming Cliffs

An immediate point of concern in NNPSO is that two similar solutions in F could pro-
duce two dissimilar solutions in Bnb . For example, assume that nb = 3 and, consequently,
F = [0, 8). Now consider the values 3.5 ∈ F and 4.2 ∈ F . To map these values to binary
solutions, the floor function is computed before converting the value to base-2. That is,

b3.5c = 310 → 0112, and

b4.2c = 410 → 1002.
(4.34)

The values 3.5 and 4.2 produce consecutive natural numbers, but the Hamming distance
between the two binary solutions is 3. This is clearly not desirable, because it means
that similar solutions are not grouped together in the search space, which (recall from
Section 4.2) is a fundamental assumption that PSO exploits to perform optimisation.
Fortunately, this problem is easily addressed by using a gray code conversion, instead
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of a binary conversion. Gray code ensures that consecutive values in N0 always produce
binary strings with a Hamming distance of 1. In the case above, gray code conversion
produces the following binary solutions:

b3.5c = 310 → 0102, and

b4.2c = 410 → 1102.
(4.35)

4.5.2.3 Search Space Explosion

Another problem with NNPSO is that the size of the one-dimensional search space F
grows exponentially with nb. Recall from Section 4.5.2.1 that F = [0, 2nb). The effect
is that the search space quickly becomes so large that one would need a huge number
of particles in the swarm in order to get close to adequate coverage of the search space
during swarm initialisation. As a result, PSO becomes ineffective when solving large
binary problems with NNPSO.

One potential (although not foolproof) way to address this problem is to divide the
binary problem into separate, smaller problems, at the expense of increased particle
dimensions. For example, an 8-dimensional binary problem can be split into two four-
dimensional binary problems. Then, NNPSO would be used to find two natural numbers
bx1c and bx2c whose gray codes can be concatenated to produce one 8-dimensional binary
solution. This obviously implies that particles in NNPSO are now two-dimensional. That
is, where it used to be the case that F = [0, 256)1, now F = [0, 16)2. This approach will
henceforth be referred to as ensemble NNPSO (E-NNPSO).

To formalise, the E-NNPSO algorithm can be used to solve nb-dimensional binary
problems in a φ-dimensional real-valued search space F = [0, 2nb/φ)φ. As mentioned
above, this approach is not foolproof, because the search space still grows exponentially,
albeit not in a single dimension. The hope is that PSO would be able to cope better
with the growth if the domain can be kept relatively small in each dimension.

4.6 Binary Solution Representations

The final aspect of AMPSO that will be considered is the influence of specific binary
solution representations on the algorithm’s performance. In order to illustrate the com-
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plications introduced by binary solution representations, a heavy focus is placed on the
n-queens problem in this section. However, the ramifications discussed here hold true
for any binary problem, albeit in ways that are specific to the individual problem.

The representation of solutions in the search space is important, because the PSO
algorithm makes certain assumptions. In particular, PSO assumes that similar solutions
are grouped together in the search space. In general, this assumption refers to the fit-
nesses of different solutions. That is, solutions that return good objective function values
are assumed to be grouped together. However, the assumption is actually deeper than
that. Consider first the representation of solutions in a continuous search space: each
variable is represented by a real number. Now consider the way in which solutions are
modified by PSO during the search process: a particle is moved by a certain step size in
every dimension, with small step sizes representing minor adjustments to the solution.
That is, while the PSO algorithm expects to find solutions with similar objective func-
tion values close by, it generates those similar solutions by manipulating the solution
representation. Therefore, not only does PSO assume that similar solutions are grouped
together, but also that the representations of those solutions are similar — solutions that
look similar are similar.

At this point the paragraph above may seem blindingly obvious and not at all useful,
but that is partly because the assumptions are clearly true when dealing with contin-
uous problems. It is only once binary solution representations are introduced that the
assumptions can subtly break down.

Section 4.6.1 analyses the n-queens solution representation, as implemented in CIlib,
and shows why the assumptions made by PSO do not necessarily hold in the binary
context. In Section 4.6.2, a new n-queens solution representation is introduced, which
does not violate the assumptions made by the PSO algorithm.

4.6.1 N-Queens Solution Representation in CIlib

Recall from Section 3.4.1 that the implementations of the benchmark problems used
in that study was provided by CIlib. The n-queens problem was briefly discussed in
Section 3.4.1.1. This section discusses the n-queens problem in more detail in order to
illustrate how the solution representation in CIlib causes the assumptions made by PSO
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to break down.

4.6.1.1 The chess board

In CIlib, the n × n chess board is represented as a binary string B of length n2. Since
each square on the board is either occupied by a queen or not, the problem lends itself
well to this binary representation. For example, to represent a candidate solution to the
4-queens problem, the 4× 4 chess board is represented as a 16-bit binary string, where
a 0-bit indicates an empty square, and a 1-bit indicates an occupied square. Figure 4.11
illustrates two candidate solutions to the 4-queens problem, together with their binary
representations.

4.6.1.2 The objective function

The objective function in CIlib is defined as

f(B) = 1000(|n−Q|) +
Q∑
i=1

ki, (4.36)

where Q is the total number of queens on the board, and ki is the total number of
conflicts that queen i is involved in. Thus, the objective value for the example candidate
solution in Figure 4.11(a) is f(B) = 4. An optimal solution (one with n queens and no
conflicts between any two queens), such as the solution in Figure 4.11(b), results in a
fitness evaluation of 0.

The first term in Equation (4.36) assigns large fitness values to invalid solutions
(solutions that do not have exactly n queens on the board). The fitness for such solutions
increases linearly for each additional missing or redundant queen.

4.6.1.3 What’s the problem?

The problem with the above solution representation manifests when the PSO algorithm
attempts to make adjustments to the solution representation in order to move towards
a better solution. Consider the two solutions illustrated in Figure 4.11. If the queens
in Figure 4.11(a) are numbered sequentially in the order that they appear in the binary
representation, then moving queen 3 one row down would result in the optimal solution
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(a) 0010 1000 0101 0000 (b) 0010 1000 0001 0100

Figure 4.11: Two candidate solutions to the 4-queens problem. The binary solution represen-

tation B for each solution is given below its corresponding figure. (Spaces are included for ease

of reading).

shown in Figure 4.11(b). That is, these two solutions are conceptually adjacent: one
single-square move is required to obtain the optimal solution. However, when looking
at the binary representations, one notes that two bits have changed between the two
representations. Furthermore, the two bits are far apart.

For this particular move, one could argue that both the two binary representations
and the resulting solutions are still relatively close together (the Hamming distance
between the two representations is only 2). However, consider what would happen if
the PSO algorithm had changed two different bits from the ones in the example above.
For instance, if any two 0-bits were changed to 1-bits, that would result in a vastly
inferior solution, but which also has a Hamming distance of 2 from Figure 4.11(a).
Alternatively, changing bits 4 and 5 results in a solution that has a Hamming distance of
2 from Figure 4.11(a), but would require multiple moves to obtain, according to the rules
of chess. That is, a small change in the solution representation results in a large change
in the actual solution. To make matters worse, changing any single bit in Figure 4.11(a)
necessarily results in an inferior solution, even though a single bit flip implies a smaller
Hamming distance than the required 2-bit change. Hence, the assumption that solutions
whose representations look similar are, in fact, similar is violated. As a result, the PSO
algorithm’s attempts to move to better solutions by making minor adjustments to the
current solution representation are flouted. The problem is subtle, but real.
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4.6.2 A New Solution Representation for the N-Queens Problem

Coming up with a binary solution representation that does not violate the assumptions
made by PSO might require a substantial rethinking of the particular problem. The so-
lution will often employ some domain knowledge and therefore only apply to the specific
binary problem at hand. To illustrate that it is possible, a new binary solution represen-
tation for the n-queens problem is developed here. New binary solution representations
for additional problems are beyond the scope of this work.

4.6.2.1 N queen positions

A considerable disadvantage of the n-queens solution representation in Section 4.6.1
is that queens can appear at any location on the board by changing 0-bits to 1-bits.
Similarly, queens can disappear from any location on the board by changing 1-bits to
0-bits. This property causes single bit changes in the solution representation to produce
large changes in both the actual solution (the state of the chess board), as well as the
objective function values. Hence, getting rid of this characteristic seems like a good place
to start.

To that end, the new binary representation will do away with the n2-length binary
string that represents the chess board. Observe instead that there are n queens on the
board, and that each queen must occupy a position in a different column.2 Therefore,
the position of each queen in its column can be represented by a binary string of length
dlog2 ne, where the decimal value of the binary representation indicates the queen’s
position. In the case of the 4-queens example, this implies that the position of each queen
is represented by dlog2 4e = 2 bits, as illustrated in Figure 4.12. In this representation,
queens can only move up or down — never sideways.

The first obvious advantage of the new representation is that fewer bits are required
to represent solutions. Additionally, queens can no longer appear and disappear. In
fact, invalid solutions are only possible if n is not a power of two. This is because for

2This assumption is true for any optimal solution to the n-queens problem, but does not necessarily
hold for other chess board problems. The n-queens problem is also rendered substantially easier by this
assumption, as many sub-optimal solutions can no longer be represented.
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(a) 01 10 00 10 (b) 01 11 00 10

Figure 4.12: New binary representation for the 4-queens problem. For each queen, 2 bits are

used to represent the queen’s position in its column.

any n that is a power of two, the resulting number of bits for each queen can represent
exactly n decimal numbers. Hence, every possible binary string represents a solution
with exactly n queens on the n × n chess board. However, if n is not a power of two,
some queens may be moved off the board by increasing their positions to values greater
than n − 1. For example, on a 5 × 5 chess board, each queen requires three bits, and
a binary representation of ‘101’, ‘110’ or ‘111’ for any queen would move that queen
beyond the lower edge of the board. Nonetheless, this is already an improvement over
the previous representation.

The next step is to ensure that solutions that are close together conceptually also
have binary representations that are close together. The problem with the current rep-
resentation is that the binary-to-decimal conversion creates Hamming cliffs in the resp-
resentations. Consider moving a queen down its column on a 4× 4 board. The queen’s
representation would follow the following sequence: 00 → 01 → 10 → 11. Note that
the second step in this sequence requires two bits to flip. To prevent this issue, gray
code will be used instead of binary to represent queen positions. The result is that every
single-square move on the board implies a one-bit change in the solution representation.
For example, on a 4× 4 board, the sequence of representations as a queen moves down
its column is now: 00→ 01→ 11→ 10.
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4.6.2.2 The objective function

Finally, it is necessary to construct an objective function that takes advantage of the
characteristics of the new solution representation. To achieve a sensible objective func-
tion, and to make the purpose of each term clear, the function is assembled in a stepwise
fashion below. Where applicable, symbols have the same definition as in Equation (4.36).

The objective is to minimise the number of conflicts between queens on the board.
Therefore, a natural function to start with is one that simply counts the number of
conflicts between queens in a given solution:

f(B) =
Q∑
i=1

ki. (4.37)

An obvious problem with this objective function is that it does not take into account
the possibility of a solution having more or fewer than exactly n queens on the board.
In Equation (4.36), this problem was addressed by adding a linear term, which increased
by a large constant for each additional missing or excessive queen. While the approach
makes sense, it poses the problem of choosing an appropriate constant — in the case of
CIlib, the value 1000 was chosen somewhat arbitrarily. Additionally, as was discussed
in Section 4.6.1.3, the large penalty for invalid solutions creates very deep local optima
in the search landscape. For these reasons, a quadratic term will be used instead, such
that the fitnesses of solutions with missing queens still increase rapidly, but the penalty
is small initially:

f(B) = (n−Q)2 +
Q∑
i=1

ki (4.38)

The objective function is now similar in form to Equation (4.36), but it does not yet
exploit any properties of the solution representation. Recall from Section 4.6.2.1 that the
new representation already forces every queen to occupy a position in its own column.
This was deemed an improvement to the solution representation, because any optimal
solution to the n-queens problem necessarily has that property. It then follows that the
promotion of solutions in which every queen occupies its own row would also be beneficial
to the search, regardless of whether there are still conflicts between queens in such a
solution. (Note that minimisation of conflicts is already catered for in Equation (4.38)).
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To promote solutions where each queen occupies its own row, consider triangular num-
bers. Triangular numbers are the sequence of numbers obtained from the sequential sum-
mation of the natural numbers. Thus, the natural numbers are N+ = {1, 2, 3, 4, 5, 6, . . .},
and the traingular numbers are T = {1, 3, 6, 10, 15, 21, . . .}. Triangular numbers are so
named, because the mth triangular number can be illustrated visually by arranging a
number of objects in the shape of an equilateral triangle with sides of length m, as
shown in Figure 4.13. The mth triangular number Tm is given by

Tm =
m(m+ 1)

2
. (4.39)

Now, let every square Bij on the chess board be 0 if the square is empty, or 1 if the
square is occupied by a queen. Furthermore, let

R =
n−1∑
j=0

n−1∑
i=0

rij, (4.40)

where

rij =

i if Bij = 1

0 otherwise.
(4.41)

Then, R = Tn−1 if and only if every row i on the n× n chess board contains exactly one
queen. Thus, the objective function can be penalised if queens are not properly spread
out on the chess board:

f(B) =

[
(n−Q)2 +

Q∑
i=1

ki

]
× (|Tn−1 −R|+ 1) . (4.42)

Note that if every queen occupies its own row, then Equation (4.42) reverts to Equa-
tion (4.38).

Thus, the solution representation derived in Section 4.6.2.1, combined with Equa-
tion (4.42), firstly does not violate the fundamental assumptions made by the PSO
algorithm, and secondly exploits the properties of the solution representation. It should
be clear that the process outlined in this section is heavily dependent on the nature of
the binary problem in question, but that it is an important process to follow if one hopes
to find good solutions to the binary problem using PSO.
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Figure 4.13: The first four triangular numbers illustrated as the number of dots needed to

form equilateral triangles with sides of length 1, 2, 3, and 4, respectively.

4.7 Summary

This chapter investigated various aspects of angle modulated particle swarm optimisers in
order to understand why the algorithm might fail to optimise arbitrary binary problems.

The periodicity of the generating function was investigated and found not to be a
problem in the standard AMPSO algorithm or any of its existing variants. However, it
was discovered that the roots of the generating function increase in frequency along the
x-axis in both directions. This characteristic was shown to cause a basic assumption
made by PSO (that good solutions are grouped together in the search space) to be
violated. The problem is referred to as spatial disconnect, and was shown to manifest in
all existing AMPSO variants, regardless of which binary problem is being optimised.

The first empirical analysis of particle convergence in angle modulated particle swarm
optimisers was also provided. It was shown that particles in AMPSO tend to stabilise
at high velocities, relative to the size of the search domain. This problem is referred to
as inadequate convergence. The most important consequence of inadequate convergence
is that particles in AMPSO are not able to exploit good solutions in the search space,
because their step sizes remain too high. The problem was discussed in terms of the
spatial disconnect that was discovered earlier.

The problems discovered in the initial parts of this chapter were all associated with
the generating function. In particular, spatial disconnect seemed to be the cause of these
problems. Thus, it was hypothesised that the best way to address the problems would
be to replace the generating function with one that does not cause spatial disconnect.
To this end, the chapter outlined the first formal definition to quantify the ability of
arbitrary generating functions to solve arbitrary binary problems. This quantity is re-
ferred to as the potential of the generating function. Using the definition of generating

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Critical Considerations on Angle Modulated Particle Swarm Optimisers 72

function potential, a new generating function was constructed to solve binary problems
with fewer than four dimensions. This new generating function has a single coefficient,
meaning that a reduction in dimensionality when solving simple binary problems using
AMPSO was made possible for the first time. Furthermore, the use of multiple generat-
ing functions in AMPSO was proposed as a method to solve arbitrarily high-dimensional
binary problems. Generating functions consisting of multiple functions that solve parts
of the binary problem are referred to as ensemble generating functions.

Additionally, it was shown that the frequency distribution of binary solutions in the
AMPSO search space is not uniform. Consequently, some solutions might be harder to
find than other solutions, simply because they are not as common in the search space.
This problem was addressed by proposing a novel PSO variant, called NNPSO, which
guarantees that solutions are distributed uniformly in the feasible search space.

Finally, this chapter discussed the importance of good solution representations when
solving binary problems with PSO. Some focus was placed on the n-queens problem to
illustrate how naive solution representations can subtly break the assumptions made by
PSO. A new solution representation for the n-queens was developed in order to ensure
that no known assumptions are violated.

The insights gained from this chapter pave the way for various additional studies, as
well as many more potential improvements to angle modulated particle swarm optimisers.
The next chapter provides empirical investigations into some of the proposals that were
made in this chapter. Investigating every proposal thoroughly could easily result in a vast
number of experiments. In order to keep the scope manageable, only those proposals that
seem most promising, when considered in the greater context this chapter, are examined
further.

Derived Publications

• The analyses presented in Sections 4.1 – 4.4 were published in [28].

• The analyses presented in Sections 4.5 and 4.6 formed part of the work that was
published in [27].
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Chapter 5

Empirical Analysis

Science, my lad, is made up of mistakes, but they are mistakes

which it is useful to make, because they lead little by little to the

truth.

Jules Verne

This chapter provides an empirical analysis in which some of the suggestions that were
made throughout this dissertation are investigated. The aim is not to draw conclusive
findings on the capabilities of the various approaches, but rather to substantiate or refute
the suggestions with initial empirical evidence, whatever the case may be. The work
presented here will serve as a guideline for constructing meaningful, in-depth empirical
studies in future research endeavours.

Section 5.1 provides brief summaries of the algorithms used in this section. An
overview of the problems is given in Section 5.2, while the measurements are listed in
Section 5.3. The results are discussed in Section 5.4, and the chapter is concluded in
Section 5.5.

5.1 Algorithms

This section describes the algorithms that were compared in the experimental analysis.
Each of the algorithms has already been discussed in detail in previous chapters. There-
fore only brief descriptions, together with references will be provided here. Section 5.1.1
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describes the algorithms used in the experiments. For those algorithms that did not
form part of the experimental study, justifications are provided in Section 5.1.2, while
the parameters used in the experiments are given in Section 5.1.3.

5.1.1 Algorithm Descriptions

The algorithms used in the empirical analysis are listed below. Algorithms are shown in
bold, while a brief explanation of each algorithm is printed in normal font beside each
entry:

• BPSO: a variant of PSO, designed to work on binary optimisation problems. The
algorithm interprets particle velocities as probabilities in order to determine how
particles move in binary space. The algorithm is discussed in detail in Section 2.3.

• AMPSO: an algorithm which solves binary optimisation problems via an inter-
mediary continuous optimisation problem. PSO is applied to find the optimal
coefficients of a continuous generating function, such that the generating function
can be used to produce the optimal binary solution. For a complete overview, see
Sections 3.1 and 3.2.

• AMPSO variants

– A-AMPSO: adds an additional coefficient to the AMPSO algorithm in order
to control the amplitude of the generating function. An overview is presented
in Section 3.3.1.

– MM-AMPSO: augments particles in AMPSO with two additional dimen-
sions to control the sampling range of the generating function. A discussion
is provided is Section 3.3.2.

• E-AMPSO: divides the binary optimisation problem into equal parts. Each part
is then assigned its own generating function, and the coeffiecients of all generating
functions are optimised simultaneously by PSO at the expense of increased par-
ticle dimensions, when compared to AMPSO. The concept is fully explained in
Section 4.4.4.2.
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• E-NNPSO: uses NNPSO (see Section 4.5.2.1) to solve binary problems by dividing
the problem into equal parts. For each part of the problem, the partial binary
solution is found by searching for a natural number with PSO. The natural numbers
are all optimised simultaneously. The algorithm is introduced in Section 4.5.2.3.

5.1.2 Justifications for Omitted Algorithms

The following is a list of algorithms that were discussed in this dissertation, but omitted
from the empirical analysis. The algorithm is printed in bold below, together with the
justification for its omition in normal font:

• PSO: this algorithm is fundamental to understanding how the AMPSO algorithm
and all of its variants function. Therefore, PSO was discussed in detail in Sec-
tion 2.2. However, the PSO algorithm is a continuous algorithm and cannot solve
binary problems in its original form. For this reason PSO is not considered in the
analysis performed in this chapter.

• ID-AMPSO: the study presented in Chapter 3 found no difference in performance
between AMPSO and ID-AMPSO (see Section 3.5). This result, combined with the
fact that the variation proposed by the algorithm is extremely minimal, provides
reasonable grounds to not consider the algorithm in further studies.

• NNPSO: as discussed in Section 4.5.2.3, the one-dimensional search space in
NNPSO grows exponentially with nb. In practise, this quickly becomes a problem
as the search space becomes so large that overflows occur in particles’ positions.
For this reason the performance of NNPSO could not be accurately assessed, and
the algorithm was therefore not considered. In the case of E-NNPSO, the search
space grows in multiple dimensions, preventing the overlow issues.

5.1.3 Algorithm parameters

For all algorithms, the parameters listed in Table 2.1 were used. In the case of BPSO,
particle velocities were clamped at a maximum of 4.
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5.2 Problems

This section describes the binary problems that were used to assess the performance of
the various algorithms listed in Section 5.1.1. For ease of reference, a brief overview of
each binary problem is presented in its own section below.

5.2.1 N-Queens

The n-queens problem requires one to place n queens on an n× n chess board in such a
way that no two queens are in conflict, according to the standard rules of chess. The n-
queens problem was discussed in great detail in this dissertation. Sections 4.6.1 and 4.6.2
discuss the CIlib implementation and a newly developed representation of the problem,
respectively. In this analysis, the representation developed in Section 4.6.2 was used.
Therefore, the objective function is defined as follows (Equation (4.42)):

f(B) =

[
(n−Q)2 +

Q∑
i=1

ki

]
× (|Tn−1 −R|+ 1) .

All algorithms were compared on the n-queens problem with n = 10, 15, 20, and 25.
Given the solution representation, this resulted in problem dimensions of 40, 60, 100,
and 125, respectively. For a complete description of this problem, refer to Section 4.6.2.

In the case of E-AMPSO and E-NNPSO, this problem was divided into n parts. That
is, in each case, E-AMPSO optimised n generating functions to find the position of the
queen in each column. Similarly, E-NNPSO searched for n natural numbers that mapped
to the optimal queen positions.

5.2.2 Knights’ Coverage

The knights’ coverage problem requires the placement of the minimum number of knights
on an n×n chess board, such that the maximum numbers of squares on the chess board
are covered. For a full description of the term “covered”, refer to Section 3.4.1.2. The
objective function used in this analysis was provided by the CIlib library and is defined
as follows:

f(B) =
K
C + 1

+
n2 − C
K + 1

, (5.1)
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where K is the number of knights on the chess board, and C is the number of cov-
ered squares on the chess board. The knights’ coverage problem was investigated for
n = 10, 15, 20, and 25, which gave rise to problem dimensionalities of 100, 225, 400,
and 625, respectively.

As was the case for the n-queens problem above, this problem was divided into n
equal parts when either E-AMPSO or E-NNPSO was used.

5.2.3 Random Bit String Matching

For this problem, random target bit strings of length 50, 100, 200, 300 and 500 were
generated. The objective is to find a bit string B, such that the Hamming distance
between B and the target bit string is minimised. The optimal solution has a Hamming
distance of 0 to the target bit string.

In the case of E-AMPSO and E-NNPSO, this problem was divided into 5-bit parts
in all cases.

5.3 Measurements

In addition to the global best fitness, the measurements used in Section 4.3.1 were also
recorded at every iteration. The complete set of measurements are as follows:

• global best fitness,

• expected average magnitude of particle velocities (Equation (2.6)),

• actual average magnitude of particle velocities, and

• whether the global best fitness had changed since the previous iteration.

5.4 Results and Discussion

This section discusses the results obtained from the experiments outlined above. The
discussion is split into two parts. Section 5.4.1 focusses on the fitness profiles of the
algorithms on the various problem cases, while Section 5.4.2 investigates the velocities
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of particles in E-NNPSO during the search process. Finally, the discussion is concluded
in Section 5.4.3.

5.4.1 Fitness Results

Graphs 5.1 to 5.4 show the average fitness profiles for all algorithms for the n-queens
problems. For all three problem cases, E-NNPSO obtained a much lower average fitness
than all the other algorithms. To understand why E-NNPSO obtained the lowest average,
it is helpful to visualise a solution to the n-queens problem. Figure 5.1(a) shows the best
solution found by the E-NNPSO algorithm on the n-queens problem with n = 15. The
solution is not complete. An “X” in the figure shows the location where the final queen
could have been placed. However, a queen in that position would cause a conflict with
another queen to the lower right. Note that there is no obvious repeating pattern in this
solution to the n-queens problem. While the solution in Figure 5.1(a) is not optimal,
it resembles the typical non-repetitive pattern that solutions to the n-queens problem
exhibit — at least, when they are encoded as binary strings.

Recall from Section 4.5.1 that candidate solutions that contain repetition are rela-
tively common in the AMPSO search space. Therefore, AMPSO and all of its variants
have a very hard time in finding good solutions to the n-queens problem and tend to
converge on sub-optimal solutions instead. Essentially, the AMPSO algorithms already
fail during the exploration phase of the search. The same argument explains why BPSO
obtained a lower average than AMPSO. However, the lack of sensible guides in BPSO
ultimately means that the algorithm cannot effectively exploit the search space. In con-
trast, the E-AMPSO algorithm is able to effectively explore and exploit the solution
space, given the new binary representation for this problem. Unfortunately, inescapable
local optima are still present in the search landscape, as is evident by the fact the solution
depicted in Figure 5.1(a) is still not optimal. Even if a queen is placed at the position of
the “X” in the figure, there are still conflicts. Thus, finding the optimal solution would
require many moves to make space for the queen that is currently missing.

The fitness profiles for the knights’ coverage problems are shown in Graphs 5.5 to 5.8.
For this problem, the MM-AMPSO and E-AMPSO algorithms obtained the lowest av-
erage fitness in all cases. Again, a visualisation of the solution is helpful. Figure 5.1(b)
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(a) E-NNPSO solution (b) E-AMPSO solution

Figure 5.1: Figures (a) and (b) show the best solutions found for n-queens and knights’

coverage, respectively. In both cases, n = 15. The “X” in Figure (a) marks the location where

the final queen could have been placed.

shows the best solution obtained by E-AMPSO on the knights’ coverage problem, with
n = 15. The repetitive pattern in the solution is immediately obvious. This solution also
happens to be optimal. The AMPSO algorithms have an advantage on this problem,
because the optimal solutions happen to be common in the AMPSO search space. E-
AMPSO obtained a lower average fitness in all cases, because the algorithm breaks the
problem up into individual columns. In that case, each column’s solution is a bit-string
of either only ‘1’ bits, or only ‘0’ bits. Recall from Section 4.5.1 that, in the 8-dimensional
case, those solutions make up 20% of the search space. While the exact proportion of
the search space made up by these solutions might differ for higher dimensions, they do
still dominate. In the case of MM-AMPSO, the algorithm is able to isolate parts of the
generating function that exhibit the required pattern and thus obtained a lower average
fitness than either AMPSO or A-AMPSO.

Finally, Graphs 5.9 to 5.13 show the fitness profiles for the bit string mapping prob-
lems. The AMPSO algorithms obtained the highest average fitness values across all
problem cases. This was expected, because random bit strings are not likely to con-
tain patterns. E-NNPSO obtained the lowest average fitness on 50-, 100-, and 200-
dimensional problem cases. This was also expected for the reasons given above. How-
ever, for the 300-dimensional case, E-NNPSO obtained the highest average fitness, while
the lowest average fitness was obtained by BPSO. The reason for this dramatic change
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Graph 5.1: Fitness profiles for n-queens problem with n = 10.
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Graph 5.2: Fitness profiles for n-queens problem with n = 15.

in the relative performance of E-NNPSO is not currently clear, but warrants further
investigation. One possibility is that the division of the problem into 5-bit parts pushes
the dimensionality of the resulting PSO too far. However, finding optimal splits for this
problem across multiple dimensionalities is beyond the scope of this work. The perfor-
mance of E-NNPSO deteriorates even further in the 500-dimensional case, with almost
no improvements being made on average for the entire duration of the search.

The performance of BPSO on the bit string matching problems is also better than
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Graph 5.3: Fitness profiles for n-queens problem with n = 20.
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Graph 5.4: Fitness profiles for n-queens problem with n = 25.

AMPSO and all its variants in all cases. While the bad performance of the AMPSO
algorithms on this problem is now understood, explaining why BPSO performs relatively
well remains a difficult task. This is, in part, due to the fact that neither the PSO theory
used, nor any of the analyses performed in this dissertation apply to BPSO, as was
discussed at length in Section 2.3.2. A thorough theoretical investigation of the BPSO
algorithm is beyond the scope of this work.
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Graph 5.5: Fitness profiles for knights’ coverage with n = 10.
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Graph 5.6: Fitness profiles for knights’ coverage with n = 15.

5.4.2 Particle Velocities in E-NNPSO

The typical average particle velocity profiles for E-NNPSO are depicted in Graphs 5.14
to 5.16. As was the case when studying particle velocities in AMPSO in Section 4.3,
each velocity profile shown here is the behaviour of a single execution of the algorithm.
However, the results reflect the behaviour observed across multiple executions. Further-
more, the results shown here were all recorded on the n-queens problem. The reason
no other problems were considered here is that the n-queens problem is the only prob-
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Graph 5.7: Fitness profiles for knights’ coverage with n = 20.
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Graph 5.8: Fitness profiles for knights’ coverage with n = 25.

lem whose solution representation was studied and rectified in this dissertation, such
that it does not violate any known assumptions made by the PSO algorithm (see Sec-
tion 4.6). Such violations may affect the behaviour of particle velocities, and could affect
the interpretation of the results significantly.

The first noteworthy observation is that, in general, there is a noticeable downwards
trend in the velocities of particles as the search progresses. This is a good result, indicat-
ing that particles’ personal best positions and the global best position gradually move
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Graph 5.9: Fitness profiles for Random Bit String Matching with nb = 50.
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Graph 5.10: Fitness profiles for Random Bit String Matching with nb = 100.

closer together throughout the search process. This scenario is shown in Graph 5.14.
Additionally, Graphs 5.15 and 5.16 show that jumps in the average magnitude of par-
ticle velocities do occur in E-NNPSO, but that the velocities generally recover to lower
magnitudes after these events occur. In contrast, in the case of AMPSO, particle veloci-
ties would typically stabilise at higher average magnitudes after similar events occurred.
In AMPSO, that behaviour was attributed to the problem of spatial disconnect (see
Section 4.2). Spatial disconnect seems to be eliminated in the case of E-NNPSO, which
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Graph 5.11: Fitness profiles for Random Bit String Matching with nb = 200.
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Graph 5.12: Fitness profiles for Random Bit String Matching with nb = 300.

makes sense, because the problem is known to be caused by the generating function,
and no such function exists in E-NNPSO. One could well argue that the mapping from
grey code to binary is itself a generating function, but then it is necessary to concede
that the nature of this mapping is fundamentally different from that of the generating
function in AMPSO. Specifically, increasing the dimensionality nb of the binary problem
also increases the size of the E-NNPSO search space. Therefore, new binary solutions
occupy new locations in the search space. In contrast, the AMPSO generating function
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Graph 5.13: Fitness profiles for Random Bit String Matching with nb = 500.
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Graph 5.14: Particle velocities gradually decrease over the course of the search process

would merely be sampled at additional sampling points to generate a higher-dimensional
binary solution, and the increasing frequency of the generating function is what causes
the problem.

However, while the scenario depicted in Graph 5.17 was extremely rare, it did occur
in a handful of test cases. In this situation, the velocities of particles gradually decreased
during the first 550 iterations. At this point, a change in the global best position caused
particle velocities to increase, and subsequently the swarm failed to recover back to lower
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Graph 5.15: Particle velocities generally decrease. When jumps in the average magnitude of

particle velocities occur, the swarm subsequently recovers to lower velocities again.
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Graph 5.16: Particle velocities generally decrease. When jumps in the average magnitude of

particle velocities occur, the swarm subsequently recovers to lower velocities again.

particle velocities. Note that the average magnitude of particle velocities eventually
reached a value of 1000, which is much higher than what was observed in the case of
AMPSO. Given that the nature of the E-NNPSO algorithm is not that different from
the standard PSO algorithm, this result may suggest that such cases also occur in PSO
in general, albeit probably not very frequently. While understanding exactly why this
result occurred would be fascinating, such an investigation falls outside the scope of this
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Graph 5.17: Particle velocities initially decrease, but a destabilising change in the global best

position eventually causes velocities to increase. After this initial increase, the swarm is not

able to recover, and stabilises at higher velocities instead.

dissertation.

5.4.3 Conclusion

Given the results discussed above, one can reasonably conclude that further research into
the E-NNPSO is justified, since it outperformed AMPSO and all of its variants on a large
number of test cases. The E-AMPSO algorithm, while obtaining better average fitness
values than all the other AMPSO algorithms, generally lagged behind E-NNPSO or
BPSO or both. The exception to this was the performance of E-AMPSO on the knights’
coverage problem, but only because solutions to that problem happens to contain a lot
of repetition. Therefore, it seems natural to consider E-AMPSO to be merely another
AMPSO variant. Further justification for this choice is that E-AMPSO still suffers from
spatial disconnect, albeit to a lesser extent. The only real advantage that E-AMPSO has
over other AMPSO variants is that the potential of the ensemble generating function is
known to be 1, as long as the binary problem is divided into parts of length 16 or less.
However, even in those cases, E-AMPSO failed to produce the best results.

In addition to further studying E-NNPSO, it would be useful to compare the results
to particle velocities in the standard PSO algorithm. If the scenario shown if Graph 5.17
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also occurs in the standard PSO algorithm when applied to continuous problems, there
are likely underlying reasons for the effect that do not have anything to do with the
application of PSO to solve binary problems. Alternatively, if no evidence can be found
of this effect in the continuous case, then at least the cause can be attributed to the
mapping from the continuous search space to the binary solution space. In either case,
further research is needed to understand the cause.

The use of new generating functions was deemed superfluous for the purpose of this
work, and indeed was not even considered in this experimental chapter. The main rea-
son is that different trigonometric functions would almost certainly also cause spatial
disconnect in AMPSO. The only way to prevent spatial disconnect is to use a periodic
function, which would cause repeating patterns in the generated binary solutions. There-
fore, a new generating function that does not have either of these problems — if such a
function exists — would likely not be trigonometric. Chaotic maps come to mind, and
might be worth investigating, but such a venture was deemed beyond the scope of this
work. Nonetheless, if further research in this direction is undertaken, the potential of any
new generating function can — and should — be evaluated, using the work presented in
Section 4.4 as a guide.

5.5 Summary

This chapter presented an empirical investigation to evaluate the merits of some of the
recommendations that were made throughout this dissertation. The algorithms consid-
ered in this investigation were BPSO, AMPSO, A-AMPSO, MM-AMPSO, E-AMPSO,
and E-NNPSO. Each of these algorithms were tested on the n-queens, knights’ coverage,
and random bit string matching problems in various dimensions. It was observed that E-
NNPSO obtained the best average fitness in the majority of test cases. In the case of the
n-queens problem, the success of E-NNPSO was attributed to the algorithm’s uniform
candidate solution distribution, as opposed to AMPSO and its variants, whose solution
spaces are dominated by binary solutions that contain repetition. For the knights’ cover-
age problems, AMPSO or one of the AMPSO variants generally outperformed all other
algorithms. It was shown that the optimal solutions to the knights’ coverage problem

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Empirical Analysis 90

contain a lot of repetition, and therefore AMPSO and its variants can generally find
those solutions easily.

In addition to measuring performance, the velocities of particles in E-NNPSO were
also studied. Observations showed that, in general, velocities in E-NNPSO tend to de-
crease during the search process. This result was deemed an improvement over AMPSO
and was explained by the fact that E-NNPSO lacks a generating function, which is the
cause of spatial disconnect in AMPSO. It was concluded that further research into the
performance of E-NNPSO is justified.

Further research into the use of ensemble generating functions, or replacing g with
new generating functions in AMPSO was discouraged, because of the difficulty of con-
ceiving a generating function that is not periodic, and at the same time would not cause
spatial disconnect. However, it was noted that non-trigonometric functions may provide
a solution, and that the work on generating function potential that was presented in this
dissertation should be applied if any such research is pursued.

Derived publications

• Parts of the empirical analysis presented in this chapter was published in [27].
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Chapter 6

Conclusions

We can judge our progress by the courage of our questions and the

depth of our answers, our willingness to embrace what is true rather

than what feels good.

Carl Sagan

This chapter gives an overview of the conclusions arrived at in this dissertation. For
ease of reference the research objectives given at the outset of this work are reiterated
in Section 6.1. A summary of the novel contributions made by this work is presented in
Section 6.2, while the experimental findings are outlined in Section 6.3. Finally, potential
future research topics are listed in Section 6.4.

6.1 Research Objectives

The research objectives are as follows:

• To provide evidence of cases where the AMPSO algorithm fails and/or where the
behaviour of the algorithm cannot readily be explained based on current knowledge.

• To identify a range of potential underlying causes of failure.

• To investigate the identified aspects theoretically and/or empirically, as deemed
appropriate.
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• To provide recommendations on how any identified limitations of the AMPSO
algorithm could be overcome.

• To provide empirical analyses of the most promising recommendations.

6.2 Summary of Contributions

The first contribution made in this dissertation was to introduce three variants of the
AMPSO algorithm that were intended to overcome a number of perceived limitations
of the original AMPSO algorithm. It was shown in Chapter 3 that the new variants
achieved statistically significant improvements over AMPSO on a number of benchmark
problems. However, it was noted that the perceived limitations were presented in the
absence of any empirical and/or theoretical evidence, and that the performance gains
made by some of the variants could potentially be better understood, given a deeper
understanding of the inner workings of the AMPSO algorithm. To this end, a critical
analysis of AMPSO was presented in Chapter 4.

The analysis of AMPSO started out by investigating the periodicity of the generating
function. This was deemed important, because a periodic generating function could
potentially produce binary solutions that contain repeating patterns. It was shown that
the standard AMPSO generating function is not periodic. However, the proof uncovered
an alarming characteristic of the generating function: that the frequency of the function
increases indefinitely as |x| → ∞.

Arguably the most important contribution made by this work was the discovery
in Section 4.2 that the increasing frequency of the generating function gives rise to a
problem dubbed spatial disconnect. Essentially, spatial disconnect implies that small
step sizes in the coefficient space do not translate into small step sizes in the solution
space. Specifically, in the case of AMPSO, it was shown that bits in the lower dimensions
of the binary problem stabilise first, and that high dimensional bits only stabilise at much
lower particle velocities. The consequence of spatial disconnect is that AMPSO cannot
effectively exploit the binary solution space.

During the investigation of spatial disconnect, the question arose whether particle
velocities in AMPSO eventually slow down enough that high-dimensional bits in the
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binary solution can also be exploited. What followed in Section 4.3 was the first empirical
investigation into the convergence behaviour of particles in AMPSO. It was shown that
particles in AMPSO tend to converge at high velocities relative to the size of the search
space. Additionally, it was observed that the velocities at which the swarms converged
were generally too high for even the lower-dimensional bits in the binary solution to
stabilise. This was the second most important contribution made in this dissertation.

Because spatial disconnect was now known to be caused by the generating function,
the next question was whether a different generating function could be used in order to
prevent spatial disconnect from manifesting. Section 4.4 addressed the problem of finding
a suitable generating function. It was noted that, thus far, it was not even known whether
the current generating function could generate any arbitrary binary solution. To find
out, the concept of generating function potential was developed. The new definition was
then applied to introduce a novel generating function for use with low-dimensional binary
problems. In order to solve arbitrarily high-dimensional binary problems with AMPSO,
the concept of ensemble generating functions was introduced in Section 4.4.4.2.

Another novel contribution was to show in Section 4.5 that candidate binary solutions
do not appear in the binary solution space with uniform frequency in AMPSO. The reason
is that the generating function produced non-uniform mapping from the coefficient space
to the solution space, and consequently some solutions would exist with a much higher
frequency than others. As a solution to this problem, a novel PSO variant was introduced.
The variant was named NNPSO, and makes use of natural numbers to produce a uniform
solution frequency distribution.

The final contribution was to investigate how the binary solution representation could
affect the performance of AMPSO. It was shown that poorly constructed binary repre-
sentations could violate the assumptions made by the PSO algorithm. As a consequence,
the ability to exploit the solution space is hindered. To provide an example of how this
problem can be overcome, a new solution representation for the n-queens problem was
developed in Section 4.6.2.
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6.3 Summary of Experimental Findings

An empirical analysis was performed in Chapter 5. The purpose of the analysis was to
support the most promising recommendations made throughout the dissertation with
initial empirical evidence. The BPSO, AMPSO, A-AMPSO, MM-AMPSO, E-AMPSO,
and E-NNPSO algorithms were compared on three benchmark problems. The three
problems were n-queens, knights’ coverage, and random bit string matching, all with
various dimensionalities. It was observed that E-NNPSO obtained the best average
fitness values on the n-queens and bit string matching problems, with the exception
of high-dimensional bit string matching problems. The success of E-NNPSO on these
problem cases were attributed to the lack of a generating function that could cause
spatial disconnect. On the knights’ coverage problems, the AMPSO algorithms generally
obtained the best average fitness values. This was explained by the fact that optimal
solutions to the knights’ coverage problem contain a lot of repetition. It was shown in
Section 4.5.1 that solutions containing repetition dominate the solution space in AMPSO,
thus making these solutions relatively easy to find.

The velocities of particles in the E-NNPSO algorithm were also investigated. It was
shown that particle velocities tend to decrease during the search process. This result,
combined with the good performance of E-NNPSO led to the conclusion that future
research into E-NNPSO is justified.

The use of ensemble generating functions in AMPSO did not provide a sufficient
increase in performance to justify much further research. Similarly, an investigation
into alternative generating functions was not performed, because of the difficulty in
designing a function that does not cause spatial disconnect, while also not producing
repeating patterns in generated binary solutions. Furthermore, the non-uniform solution
frequency distribution is also caused by the generating function, and would manifest
for any function that does not guarantee that an equal number of permutations of its
coefficients will map to each possible binary solution.
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6.4 Future Work

The following is a list of potential future studies that could follow from the work presented
in this dissertation:

• A thorough investigation of the magnitude of velocities at the time of convergence
in PSO could shed some light on the convergence behaviour of E-NNPSO.

• An investigation into the solution representations of a wider range of binary bench-
mark problems is required. This study should determine whether the solution
representations violate any of the assumptions made by the PSO algorithm, and
rectify any such cases before any PSO-based algorithm is applied the problems.

• An analysis of E-NNPSO on a wider range of binary benchmark problems is re-
quired.

• The use of non-trigonometric generating functions can be investigated. Care should
be taken to avoid any of the detrimental characteristics of the standard generating
function that were discovered in this dissertation.
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Appendix A

Acronyms

This appendix lists all the acronyms used in this dissertation. Acronyms are listed
alphabetically. Each acronym is typeset in bold, with the meaning of the acronym
printed alongside it in normal font.

A-AMPSO Amplitude AMPSO

ABC Artificial Bee Colony Optimisation

AMPSO Angle Modulated Particle Swarm Optimisation

BPSO Binary Particle Swarm Optimisation

CIlib Computational Intelligence Library

DE Differential Evolution

E-AMPSO Ensemble AMPSO

E-NNPSO Ensemble NNPSO

GA Genetic Algorithm

ID-AMPSO Increased-Domain AMPSO

MM-AMPSO Min-Max AMPSO

NNPSO Natural Numbers PSO
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PSO Particle Swarm Optimisation

SA Simulated Annealing
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Appendix B

Symbols

This appendix provides an exhaustive list of symbols used throughout this dissertation.
Symbols are listed by chapter and sorted alphabetically. Where applicable, Roman
symbols are listed first, followed by Greek symbols. In cases where symbols are re-used,
they are re-defined under the relevant chapters.

B.1 Chapter 2: Optimisation Problems and Particle

Swarm Optimisers

B The set of binary numbers

c Sum of the social- and cognitive acceleration coefficients

c1 Cognitive acceleration coefficient

c2 Social acceleration coefficient

D A discrete subset of R

E[•] An arbitrary expected value

F Feasible space

f Objective function

i Particle index

j Dimension index

ns Swarm size
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nx Dimensionality of a continuous optimisation problem

r Random vector

R The set of real numbers

S Search space

t A specific time step during the search process
vavg Average magnitude of particle velocities

vi Velocity of particle i

x Input to an objective function

xi Position of particle i

ŷ Global best position

yi Personal best position of particle i

µ Mean of a particle’s positions

σ Standard deviation

B.2 Chapter 3: Angle Modulated Particle Swarm Op-

timisation

a, b, c, d, e Coefficients of the AMPSO generating function

B Binary solution

g AMPSO generating function

nb Dimensionality of a binary optimisation problem

α Coefficient of the AMPSO generating function

α` Lower bound

αu Upper bound

δ Sampling interval
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B.3 Chapter 4: Critical Considerations on Angle Mod-

ulated Particle Swarm Optimisers

bi nb-dimensional bit string

C Number of coefficients

h Generating function

I Interval

Jk, Kk Sequences of intervals

k Arbitrary positive natural number

N0 Set of natural numbers, including 0

N+ Set of positive natural numbers

O(•) Big O notation

P Generating function potential

P Set of permutations

pi Random vector

s Step size

s Uniform random vector with length s

T Period of a continuous function

v Frequency coefficient

Z Set of integers

Θ Ensemble generating function

Π(•) Number of roots of g in an arbitrary interval

Υ Arbitrary generating function

ϕ Number of generating functions in Θ

ψ Coefficient of an ensemble generating function
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Appendix C

Derived Publications

The following three publications were derived from the work presented in this disserta-
tion:

• B.J. Leonard and A.P. Engelbrecht. Angle modulated particle swarm variants. In
Swarm Intelligence, volume 8667, pages 38–49, 2014.

• B.J. Leonard, A.P. Engelbrecht, and C.W. Cleghorn. Critical considerations on
angle modulated particle swarm optimisers. Swarm Intelligence, pages 291–314,
2015.

• B.J. Leonard and A.P. Engelbrecht. Frequency distribution of candidate solutions
in angle modulated particle swarms. In IEEE Symposium on Swarm Intelligence,
pages 251–258, 2015.
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