

IMPLEMENTATION OF A LOW-COST PASSIVE BISTATIC RADAR

by

Joshua Leigh Sendall

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronic Engineering)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

September 2016

© University of Pretoria

SUMMARY

IMPLEMNTATION OF A LOW-COST PASSIVE BISTATIC RADAR

by

Joshua Leigh Sendall

Supervisor: Prof. W.P. du Plessis

Department: Electrical, Electronic and Computer Engineering

University: University of Pretoria

Degree: Master of Engineering (Electronic Engineering)

Keywords: Radar, passive radar, low-cost, adaptive filtering, clutter cancellation,

direct-path interference cancellation, matched filtering, tracking filter,

broadcast radio

Passive radar detects and ranges targets by receiving signals which are reflected off targets.

Communication transmissions are generally used, however, theoretically any signal with a

suitable ambiguity function may be used. The exploitation of an existing transmitter and the

removal of emissions allow passive radars to act as a complementary sensor which is useful

in environments where conventional active radar is not well suited. Such environments are

in covert operations and in situations where a low cost or spectrally efficient solution is

required.

Most developed passive radars employ intensive signal processing and use application

specific equipment to achieve detection. The high-end processors and receiver equipment,

however, detract from some of the inherent advantages in the passive radar architecture.

These include the lower cost and power requirements achieved by removing transmitter

hardware.

This study investigates the challenges faced when removing application-specific and high

end components from the system and replacing them with low-cost alternatives. Solutions

to these challenges are presented and validated by designing and evaluating a radar using

these principles.

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering iii

University of Pretoria

It was found that the major limitation in passive radar is the dynamic range of the receiver.

While processing the signals was, and is, a significant challenge, be implemented on a low-

cost, low-power embedded processor. This was achieved by asserting a few limitations to

the configuration, exploiting the subsequently generated redundancy, and taking advantage

of the parallelism by using general purpose graphics processing.. Even on this processor, the

system was able to run in real time and able to detect targets up to 91 km (bistatic range of

195 km) from the radar.

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering iv

University of Pretoria

OPSOMMING

IMPLEMENTERING VAN 'N LAEKOSTE- PASSIEWE BISTATIESE RADAR

deur

Joshua Leigh Sendall

Studieleier: Prof. W.P. du Plessis

Departement: Elektriese, Elektroniese en Rekenaaringenieurswese

Universiteit: Universiteit van Pretoria

Graad: Magister in Ingenieurswese (Elektroniese Ingenieurswese)

Sleutelwoorde: Radar, passiewe radar, laekoste, aanpasbare filter, sluierkansellasie,

direkte baan-versteuringskansellasie, aangepaste filter, volgfilter,

uitsendingsradio

Passiewe radar spoor teikens op en meet die afstand na hulle toe deur seine te ontvang wat

van die teikens af gereflekteer word. Uitgesaaide kommunikasieseine word meestal gebruik,

maar teoreties kan enige sein met ŉ geskikte dubbelsinnigheidsfunksie gebruik word. In ŉ

passiewe radar word senderhardeware en beheerde versendings nie benodig nie en daarom

kan dit as ŉ aanvullende sensor gebruik word in omgewings waar konvensionele aktiewe

radar nie geskik is nie. Voorbeelde van sodanige omgewings is koverte operasies en situasies

waar ŉ goedkoper oplossing of effektiewer spektrumgebruik verlang word.

Meeste bestaande passiewe radars maak gebruik van intensiewe seinverwerking en benut

toegewyde hardeware om opsporing moontlik te maak. Die gebruik van gesofistikeerde

prosesseerders en ontvangstoerusting doen egter afbreuk aan die inherente voordele wat

passiewe radars sou kon inhou, byvoorbeeld die laer koste en laer kragvereistes wat verkry

word deur sendinghardeware te verwyder.

In hierdie studie is die uitdagings ondersoek wat vorendag kom wanneer toegewyde

hardeware van die stelsel verwyder word en vervang word deur alternatiewe,

laekoste-komponente. Oplossings vir hierdie uitdagings is gevolglik voorgestel en getoets

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering v

University of Pretoria

deur ŉ radar wat van hierdie beginsel gebruik maak, te ontwerp en te evalueer. Die resultate

van die praktiese radartoetse dui daarop dat die voorgestelde oplossings wel werkbaar is.

Daar is in hierdie studie bevind dat die grootse beperking van passiewe radar die dinamiese

reikwydte van die ontvanger is. Seinprosessering was ŉ groot uitdaging en het ŉ paar

beperkinge op die konfigurasie geplaas. Daar was egter steeds ŉ mate van

prosesseringsoortolligheid wat benut kon word en parallelle prosesseringstegnieke is

gebruik om die stelsel op ŉ laekoste- en laekrag- ingebedde prosesseerder te implementeer.

Sodoende was dit moontlik om ŉ eenvoudiger prosesseerder suksesvol te implementeer. Die

prosesseerder het die stelsel in staat gestel om intyds te werk en om teikens tot en met 91 km

(193 km bistaties afstand) van die ontvanger af op te spoor.

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering vi

University of Pretoria

ACKNOWLEGEMENTS

I would like to thank the following persons for their support.

My supervisor, Warren Paul du Plessis: for the guidance, support and inspiration during

my studies. Also for reading and correcting all of my reports and papers, and teaching me so

much.

Francois Maasdorp, Craig Tong, Christo Cloete, Rossouw van der Merwe and the

CSIR: for supporting my research and “showing me the ropes”.

My loving girlfriend, Melissa Reed: for being a foundation in my life.

My parents: for their love and support, which is always there unconditionally.

My Lord and saviour Christ Jesus: whom is my strength and shield, and through whom

all thing are possible.

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering vii

University of Pretoria

LIST OF ABBREVIATIONS

ADC Analogue to Digital Converter

ADS-B Automated Dependent Surveillance Broadcast

AGC Automatic Gain Control

ALU Arithmetic-logic Unit

ARD Amplitude-Range-Doppler

ATC Air Traffic Control

AWGN Additive White Gaussian Noise

BLAS Basic Linear Algebra Subroutines

CFAR Constant False Alarm Rate

CGLS Conjugate Gradient Least Squares

CISC Complex Instruction Set Computing

CPI Coherent Processing Interval

CPR Compact Position Report

CPU Central Processing Unit

CUT Cell Under Test

CW Continuous Wave

DFT Discrete Fourier Transform

DMA Direct Memory Access

DPI Direct Path Interference

EM Electromagnetic

FAR False Alarm Rate

FDC Frequency-domain Correlation

FDTC Frequency-domain Time Correlation

FFT Fast Fourier Transform

FIR Finite Impulse Response

FLOP Floating Point Operation

FM Frequency Modulation

GAL Gradient Adaptive Lattice

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering viii

University of Pretoria

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

LNA Low-noise Amplifier

LPF Low-pass Filter

LSB Least Significant Bit

MAC Multiply-Accumulate

MIMD Multiple Instruction Multiple Data

MIMO Multiple Input Multiple Output

MKL Math Kernel Library

NaN Not a Number

NLMS Normalized Least Mean Squared

OEM Original Equipment Manufacturer

OTS Off-the-Shelf

PC Personal Computer

PFA Probability of False Alarm

PLL Phase-locked Loop

PPS Pulse per Second

RAM Random Access Memory

RCS Radar Cross-section

RF Radio Frequency

RISC Reduced Instruction Set Computing

RMS Root Mean Square

RMSE Root Mean Square Error

SDR Software Defined Radio

SFDR Spurious Free Dynamic Range

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SISD Single Instruction Single Data

SLL Sidelobe Level

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering ix

University of Pretoria

SM Streaming Multiprocessor

SNR Signal to Noise Ratio

TDR Target to Direct-path Ratio

TDTC Time-domain Time Correlation

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering x

University of Pretoria

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 PROBLEM STATEMENT .. 1

1.1.1 Context of the problem .. 1

1.1.2 Research gap .. 2

1.2 RESEARCH OBJECTIVE AND QUESTIONS .. 3

1.3 SCOPE ... 4

1.4 RESEARCH CONTRIBUTION .. 7

1.5 OVERVIEW OF STUDY .. 7

1.5.1 Chapter 2 Passive Radar .. 7

1.5.2 Chapter 3 Signal Acquisition ... 7

1.5.3 Chapter 4 Processing Platforms ... 7

1.5.4 Chapter 5 Processing Chain ... 8

1.5.5 Chapter 6 Results ... 8

1.5.6 Chapter 7 Conclusion and Future Work .. 8

CHAPTER 2 PASSIVE RADAR ... 9

2.1 INTRODUCTION .. 9

2.2 BASIC PASSIVE RADAR ARCHITECTURE .. 9

2.3 PASSIVE RADAR IN CONTEXT .. 11

2.3.1 Transmitter/receiver orientation... 11

2.3.2 Continuous and pulse radar .. 12

2.4 HISTORY OF FM-BASED PASSIVE RADAR ... 13

2.5 COMPONENTS OF THE RECEIVED SIGNALS AND ANTENNA

CONFIGURATION ... 15

2.6 PASSIVE RADAR PROCESSING ... 16

2.6.1 Matched filtering .. 16

2.6.2 DPI cancellation ... 18

2.6.3 CFAR detection ... 18

2.7 SUMMARY ... 19

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering xi

University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION .. 21

3.1 PERFORMANCE FACTORS ... 21

3.1.1 Active interference ... 22

3.1.2 Sensitivity .. 24

3.1.3 Dynamic range ... 24

3.2 SITE AND TRANSMITTER SELECTION .. 25

3.2.1 Optimal position... 28

3.2.2 Antenna selection ... 29

3.2.3 Additional considerations .. 31

3.2.4 Transmitter selection .. 31

3.3 RECEIVER SELECTION .. 32

3.3.1 Channel coherency ... 34

3.3.2 Conclusion ... 38

3.4 SUMMARY ... 38

CHAPTER 4 PROCESSING PLATFORMS .. 39

4.1 CENTRAL PROCESSING UNIT ... 39

4.1.1 Multithreading.. 39

4.1.2 SIMD instructions and processor intrinsics ... 40

4.2 GRAPHICS PROCESSING UNIT .. 42

4.2.1 Threading model .. 43

4.2.2 Memory structure ... 47

4.3 COMPARING GPU AND CPU PROCESSORS .. 49

4.3.1 Task and data parallelism... 49

4.3.2 Latency and throughput ... 50

4.4 IMPLEMENTATION HARDWARE .. 51

4.4.1 Mobile system .. 51

4.4.2 Embedded system .. 52

4.5 SUMMARY ... 53

CHAPTER 5 PROCESSING CHAIN ... 54

5.1 INITIAL EVALUATION .. 54

5.2 CANCELLATION FILTER .. 55

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering xii

University of Pretoria

5.2.1 Choice of cancellation region .. 56

5.2.2 Wiener-Hoph Filter .. 58

5.2.3 Linear least squares .. 60

5.2.4 Miscellaneous Filters ... 60

5.2.5 Optimisation ... 61

5.2.6 Experiments and results ... 67

5.2.7 Conclusion ... 84

5.3 MATCHED FILTER .. 86

5.3.1 Time correlation ... 86

5.3.2 Frequency correlation .. 88

5.3.3 Reduced computation filters .. 89

5.3.4 Matched filter performance.. 89

5.4 TARGET DETECTION AND EXTRACTION .. 92

5.4.1 Detection .. 92

5.4.2 Target extraction .. 93

5.5 TARGET STATE SMOOTHING .. 95

5.5.1 Target model .. 95

5.5.2 Model estimation ... 96

5.5.3 Detection association ... 98

5.6 SYSTEM OUTPUT ... 100

5.7 SUMMARY ... 100

CHAPTER 6 RESULTS.. 102

6.1 CONFIGURATION AND IMPLEMENTATION ... 102

6.1.1 Deployment site ... 102

6.1.2 Configuration ... 105

6.2 DETECTION CAPABILITY ... 110

6.2.1 Control data .. 110

6.2.2 Detection probability ... 112

6.2.3 Location error... 117

6.3 PROCESSING PERFORMANCE ... 121

6.3.1 Mobile platform ... 122

6.3.2 Embedded platform .. 123

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering xiii

University of Pretoria

6.4 COST .. 124

6.5 DISCUSSION OF RESULTS .. 124

6.5.1 Detection capability ... 124

6.5.2 Processing performance ... 126

6.5.3 Comparison to existing systems... 127

6.6 SUMMARY ... 129

CHAPTER 7 CONCLUSION AND FUTURE WORK ... 130

7.1 CONCLUSION .. 130

7.1.1 Passive radar performance ... 130

7.1.2 Optimum position .. 130

7.1.3 Antenna and transmitter selection .. 131

7.1.4 Cancellation filter schemes .. 131

7.1.5 Matched filter processing ... 131

7.1.6 Radar performance ... 131

7.2 FUTURE WORK ... 132

7.2.1 Analogue DPI cancellation .. 132

7.2.2 Improved filtering .. 133

7.2.3 Unambiguous target position ... 133

7.2.4 Independent channel gain .. 133

REFERENCES………………………………………………………………………….134

ADDENDUM A DERRIVATION OF COMPUTATIONAL COMPLEXITIES 141

A.1. LU FACTORIZATION .. 141

A.2. CHOLESKY FACTORIZATION .. 143

A.3. LDL FATORIZATION .. 144

A.4. QR FACTORIZATION ... 145

A.5. CONJUGATE GRADIENT LEAST SQUARES .. 148

A.6. CLEAN CANCELLATION ... 150

A.7. CORRELATIVE CANCELLATION .. 151

A.8. GRADIENT ADAPTIVE LATTICE FILTER .. 152

© University of Pretoria

Department of Electrical, Electronic and Computer Engineering xiv

University of Pretoria

ADDENDUM B GPU MEMORY TYPES .. 155

B.1. PAGED MEMORY .. 155

B.2. PINNED MEMORY .. 155

B.3. GLOBAL MEMORY ... 155

B.4. SHARED MEMORY ... 156

B.5. REGISTERS ... 156

B.6. CONSTANT MEMORY .. 156

B.7. TEXTURE MEMORY ... 157

ADDENDUM C EVALUATION METRICS .. 158

C.1. ARITHMETIC METRICS ... 158

Time cost .. 158

FLOPs ... 158

C.2. ARCHITECTURAL METRICS .. 158

Registers per thread/block .. 158

Shared memory per block .. 159

Implementative metrics .. 159

Execution time .. 159

Maximum throughput ... 159

FLOPS .. 159

Occupancy .. 159

© University of Pretoria

CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Passive coherent radars have been an area of recent interest as they have the potential to meet

needs which conventional active radars cannot. The primary advantage of a passive radar is

that it does not transmit a signal. Instead of transmitting a signal, passive radars use

transmitters of opportunity, such as television, radio, or cellular transmissions [1]. Removing

the transmission of a signal provides several benefits including being difficult to detect in

covert scenarios [2, 3], reduced vulnerability to anti-radiation armaments [4], requiring

potentially less power (as no power needs to be transmitted), and not requiring a new

frequency band allocation [2] (i.e. reduced electromagnetic pollution [3]). A practical

motivation for a low-cost passive radar has been identified [5], whereby developing

countries, such as those found in Africa, are unable to afford and maintain primary air traffic

control (ATC) radar systems [5].

A passive radar may use any transmitter of opportunity that the system deems suitable.

However, various signal properties such as bandwidth, transmission power, and ambiguity

functions may impose limits and place unacceptable demands on a system, in order for that

signal to be used.

The absence of transmitter hardware has the potential to reduce capital and operational costs

of implementing a passive radar system [3]. However, the increased demand for processing

[6] depreciates the economic benefit of removing the transmitting components from the

system by requiring more expensive and power hungry processors.

Replacing conventional custom receivers [7] with low-cost off-the-shelf (OTS) digital

receivers reduces the cost of the system, but sacrifices performance for cost. As such, this

trade off dramatically affects the system’s ability to recover target reflections from the

© University of Pretoria

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 2

University of Pretoria

received signals. The main factors which contribute to the decreased target detection

capability are:

 Non-coherency between receiver channels, which degrades the performance of

direct-path interference (DPI) removal and the matched filter,

 decreased SFDR of the reciever,

 analogue to digital converters (ADCs) with lower bit depth, which increases the

systems minimum signal required for detection [8], and

 wider analogue filters, which reduce the effective bit depth of the receiver.

These factors introduce challenges into the system by making DPI mitigation before, and

after digital sampling a high priority. By understanding the performance critical factors of

the receiver with regard to a passive radar, intelligent selection of components can allow for

the performance/cost ratio to be maximised.

In order to remove DPI and clutter, which is required before targets can be detected, digital

adaptive filters are employed [9]. The adaptive filters, which typically implement least-

squares algorithms, are computationally intensive and traditionally require the majority of

available processing power [6, 9]. Compounding the challenges incurred when

implementing a DPI cancellation filter is the high dynamic range of the signals (with the

direct path signal being in excess of 100 dB larger than typical target signals) [1].

Reducing the signal processing requirements allows low-cost processing components to be

considered. While contributing to a reduction in capital cost, low-cost processors can also

exhibit lower power consumption, thereby further reducing the operational costs of the

system.

1.1.2 Research gap

Many passive radar systems exist, but due to the general market requiring high specification

and high performance systems, they often rely on specialized and high-end hardware to

realize real-time processing. However, there is little research into implementing a low-cost

system which can be deployed in financially sensitive scenarios. Previous attempts have

© University of Pretoria

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 3

University of Pretoria

either resulted in poor performance [10], or the need for custom hardware [7] [11].

Furthermore, the reduction in cost of any system increases the resistance to competitor

market entry.

The single site system here cannot unambiguously detect a target. A multi-site or multi-

channel system is required for such detection. This work, therefore, focuses on a low-cost

single site system which can be incorporated into a larger network of sensors.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The research questions posed are:

1. Is real-time processing achievable using mobile non-specialized OTS hardware?

 With most passive radar systems, the objective has been performance and, as

such, high-end processing hardware has been used, even to the extent of

computer clusters [12]. However, in a power and cost sensitive environment,

is it possible to achieve real-time processing on low-power mobile

processors, and what steps/restrictions/simplifications are necessary to

achieve it? This has been previously considered [13], however, it was

performed for a specific cases and the underlying trends were not explored.

2. Which factors constrain the performance of a low-cost passive radar?

 As with any system, it is important to understand the performance limiting

factors within the system. In systems with highly constrained resources it is

even more critical. A low-cost passive radar is an example of such a system,

and in order to successfully implement it, the factors which limit its

performance must be understood so that the resources available can be

optimally distributed, thereby maximising performance. A similar analysis

has been performed focusing on the receiver [7]. The analysis in this study

extends this to the rest of the system.

© University of Pretoria

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 4

University of Pretoria

3. Is it possible to detect aircraft with non-specialized receivers, such as a low cost OTS

SDR?

 The receiver is a key component which imposes many limitations on the

system. As such, it necessary to determine what these are and, if a decrease

in the receiver performance can be tolerated, still allow for adequate

performance. This has been previously explored in literature [10], but with

limited detection ranges displayed and exploration into the reasoning behind

the limited performance.

4. What are the considerations necessary when selecting a site for a low-cost passive

radar and do the priorities differ from conventional passive radar site selection?

 The reduction in performance of key system components, necessary to

decrease the overall system cost, may impose additional restrictions on the

system (such as vulnerability to out-of-band interference). These need to be

understood and quantified.

5. Which floating-point capable processors are best suited to a low-cost passive radar

system?

 Different processor architectures must be explored, not only for performance,

but in order to find a solution that provides sufficient performance at a

minimum cost, i.e. providing a suitable cost-performance trade-off. Some

exploration into this has been performed in literature [11], but the analysis

has only been done for specific configurations.

1.3 SCOPE

Due to the vastness of passive radar, the subject in its entirety is not considered in this study.

The following constraints are imposed on this study to limit this scope.

© University of Pretoria

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 5

University of Pretoria

Transmitter

In order to condense the topic to a manageable scope, only commercial FM radio based

passive radar is considered. This implies a limit on the bandwidth of the signal of 150 kHz,

and that the centre frequency lies between 88 and 108 MHz.

FM passive radar was chosen due to its suitability in the area where the study was based.

This decision also allows the results of the study to be used in the study of the deployment

of passive radar as a low cost radar in Africa, where analogue FM remains a vital and

abundant communication medium.

Mobility

It is further assumed that the radar’s transmitter and receiver are static, and thus clutter lies

close to and is typically centred on a zero Doppler shift. This leaves the radar defined as a

passive bistatic radar.

Direction finding

In this study the direction of targets is not considered. This constraint was applied as

direction finding in passive bistatic radar still requires research and development. One

solution which is currently under development uses multiple sites [14] [15] (either

transmitters or receivers), i.e. a multistatic system [16]. In such a system the processing at

each site is identical to that considered in this study, and the position of a target is determined

by integrating and comparing the results of each site [15]. Hence a number of systems could

be combined to enable unambiguous detection.

Targets

To evaluate the radar system, only aircraft with ADS-B transceivers were considered, as this

provided a means of control data, which was used to verify the position of the aircraft. An

obvious limitation is that the detection accuracy measurable is limited by the accuracy of the

ADS-B detections. Furthermore, civilian aircraft typically have a large RCS and have

© University of Pretoria

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 6

University of Pretoria

significant velocity so as to allow distinction from clutter. This has been an approach in a

number of studies [5,7,11-13,17]

Processors

Of the five major processor families (ASIC, FPGA, DSP, GPP, and GPU) only GPUs and

GPPs, or more specifically CPUs, were considered in this study. ASIC solutions were

excluded as they typically have the highest development and production cost (in the low

quantities expected for this system) of the families.

The passive radar environment lends itself well to floating point processing because of the

high dynamic range of components of the signals received and processed by the system.

Furthermore, many of the computationally intensive operations can be heavily parallelised.

The processors considered were thus selected to support floating point processing and

parallel architectures.

The development cost of both DSPs and FPGAs, both in terms of time and development tool

cost, typically is significantly higher than the CPU variant for two reasons.

Firstly, the drivers and operation software for the receivers considered in this study were

only available for CPU based systems with full OS. The use of a platform without such an

OS would require the development of driver and communication software/hardware to allow

the integration of an OTS receiver. This development is significant and was beyond the scope

of this study.

Secondly, while DSPs and FPGAs may provide a lower cost system when the packages

themselves are considered, the requirement for their integration into a development board

(or custom board) results in increased cost for a one-off unit. This was found to negate many

of the benefits gained by using a DSP or FPGA processor for such low quantities. As such

both FPGAs and DSPs are beyond the scope of this study.

© University of Pretoria

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 7

University of Pretoria

GPUs are considered as they are paired with a CPU which allows the benefits of integrating

a low-cost CPU into a system with a full OS. Furthermore, the algorithms used in performing

the radar processing can exploit parallel processing architectures [5], and require high

dynamic range (which can be achieved by using floating point data structures). Additionally,

GPUs can allow both a high performance to power ratio [18] and a high performance to cost

ratio, conforming well to the requirements of the problem.

1.4 RESEARCH CONTRIBUTION

A DPI and clutter cancellation algorithm was developed which was not based on the

conventional least squares principle, but rather correlation. This was done in an attempt to

reduce the processing requirements of the passive radar system, of which the adaptive

cancellation filter contributes the majority. A paper was submitted for publication based on

this filter architecture and the analysis conducted in Section 5.2.6.1.

1.5 OVERVIEW OF STUDY

The structure of the study and the content of each chapter is summarised below.

1.5.1 Chapter 2 Passive Radar

Chapter 2 provides an introduction to passive radar, and thus outlining how passive radar

functions. In order to gain full understanding, a brief introduction to some important general

radar concepts is also provided.

1.5.2 Chapter 3 Signal Acquisition

Chapter 3 discusses the non-digital design aspects. These include receiver selection, site

selection and antenna selection. The factors which influence the performance of a passive

radar are discussed here and strategies on how to approach these challenges are presented.

1.5.3 Chapter 4 Processing Platforms

Chapter 4 introduces the processing platforms which were investigated for the

implementation of the passive radar. The differences between and structures of CPUs and

© University of Pretoria

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 8

University of Pretoria

GPUs are discussed. Their general operation is also discussed as an understanding thereof is

required to effectively optimise their use.

1.5.4 Chapter 5 Processing Chain

Chapter 5 discusses the digital signal processing chain used for passive radar. Algorithms

and applicable optimizations are presented and evaluated. Each processing chain is discussed

in terms of its effectiveness and performance on each of the processing platforms.

1.5.5 Chapter 6 Results

Chapter 6 demonstrates the functionality of a radar system designed and implemented using

the principles presented in the previous chapters. The system was deployed and its output

was recorded. The detection capability, accuracy, and financial implications of the

implemented system are evaluated in this chapter using the recorded data.

1.5.6 Chapter 7 Conclusion and Future Work

Chapter 7 presents a summary of the study and its achievements as well as improvements

which may be implemented in the future.

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

2.1 INTRODUCTION

Radar is defined as “an electromagnetic system for the detection and location of objects that

operates by transmitting electromagnetic signals, receiving echoes from objects (targets)

within its volume of coverage, and extracting location and other information from the echo

signal” [19]. While this indeed describes a traditional active radar, radars have expanded

beyond this meaning. At their essence, however, radars still remain systems which use

electromagnetic signals reflected off objects to detect the object’s presence.

A passive radar, rather than transmitting signals which then reflect off objects and are

received, receives the reflections from transmissions of opportunity [9] (much like the

human eye uses light originating from the sun). While various designs for passive radar exist,

the scope for this research is on a separated reference architecture, as this is the simplest

form of passive radar, requiring the least hardware and processing, and which aligns well

with the goal of a low-cost passive radar.

2.2 BASIC PASSIVE RADAR ARCHITECTURE

In its simplest form, the separated reference architecture uses two antennas and receiver

channels [5]. A passive radar does not have direct access to the transmitted signal, which is

required for coherent processing. Instead, an approximation of the transmitted signal is

received via one of the receiver channels, i.e. the reference channel. Ideally, only the

transmitted signal is received, but this is not achievable in practical systems [20].

When the transmitter of opportunity is transmitting certain digital signals, such as DAB+,

the reference channel can be extracted from the surveillance channel via the use of a channel

model. In this case, a separate reference antenna is not required. However, this study does

not include this case, as the signals considered useable by the system are FM analogue

signals (see Section 1.3).

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 10

University of Pretoria

The purpose of the other receiver channel, the surveillance channel, is to receive the signals

reflected off of objects of interest (and ideally nothing else). In practice, only a small portion

of the signals reflected from targets ever reach the surveillance antenna [12]. Without careful

design, these signals would fall below the SFDR of the receiver and not be detectable [8].

The reason that SFDR is generally a larger problem than receiver sensitivity, is due to the

relatively large amount of energy which is received directly from the transmitter of

opportunity [1]. Even with careful design extensive signal processing is required to suppress

DPI and detect targets [9].

Figure 2.1 System diagram of an analogue passive radar.

A conceptual diagram of a generalised passive radar is shown in Figure 2.1. Data Acquisition

concerns the process of receiving useful signals and manipulating them to the point where

they can be processed. Signal processing is the process of manipulating the received data

channels such that targets may be detected.

A typical processing chain is shown in Figure 2.2. In active radar, the cross-correlation and

Doppler processing stage comprises the majority of processing [21], although, due to the

control which active radar has over the transmitted signal, this processing stage is

Signal Processing

Reference
Channel

Analogue to
digital

conversion

Surveillance
Channel

Data Acquisition

Processing
platform

Processing
chain

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 11

University of Pretoria

implemented differently to how it is performed in passive radar [12]. This description of the

matched filter is expanded on in Section 2.6.1.

Figure 2.2 Typical passive radar processing chain.

An additional step, which active radar does not typically include, is the removal of DPI. This

step is required to remove large signals the sidelobes of which would otherwise mask any

targets [5]. The functionality of this processing block is covered in Section 2.6.2.

Lastly, a target detection scheme is required to automatically detect targets. This normally

comprises, but is not limited to, a CFAR detector. However, due to some of the unique

aspects of passive radar, the implementation of the detector differs somewhat from

conventional active radar [5]. This is discussed in Section 2.6.3. Finally, the raw detections

need to be associated with their respective targets. This is performed by a tracking filter.

2.3 PASSIVE RADAR IN CONTEXT

In this section passive radar is contextualised and classified within the field of radar.

2.3.1 Transmitter/receiver orientation

The vast majority of radars are monostatic [21], i.e. the distance between the transmitter and

receiver is negligible and can be considered to be in the same location. Many pulse radars

go further than this and use the same antenna for transmitting and receiving.

Alternatively, the transmitter and receiver can be separated creating a bistatic system. Most

passive radars are bistatic systems, with the receiver in one location and the transmitter in

 Reference
Channel

 Surveillance
Channel

Adaptive
Direct-path

Cancellation

Cross-
correlation &

Doppler
Processing

CFAR/Target
Detection

Detected
Targets

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 12

University of Pretoria

another [22]. There are also passive radars which use multiple receiver or transmitter sites.

This is termed a multistatic system [22].

2.3.2 Continuous and pulse radar

Pulsed radar operates by transmitting a short pulse, and remaining silent while listening for

echoes [21], as shown in Figure 2.3. This architecture has been widely adopted as it reduces

the dynamic range of the system by only receiving when the transmitter has stopped

transmitting. Unfortunately, it also means that the echoes received from targets cannot be

integrated over the entire CPI. Instead, each pulse can only be integrated for as long as its

duration [21]. Thus, pulsed radars typically have a higher peak-to-average transmission

power than continuous radar.

Figure 2.3 Diagram of pulsed radar signal strength.

Continuous radar transmits and receives signals simultaneously. This allows the echoes to

be integrated over the entire CPI, thus allowing for reduced peak transmit power. One of the

major challenges in CW radar is reducing the leak through from the transmitter to the

receiver channel, which degrades the radar’s performance [23].

Passive radar is a special case of bi/multistatic CW radar. DPI is a major design challenge in

active CW, where the designer has control over the receiver and transmitter. In passive radar,

where one cannot control the transmitter, DPI becomes a critical performance limiting factor.

Si
gn

al
 p

o
w

er
 (

d
B

)

Time (s)

Transmitting

Receiving

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 13

University of Pretoria

2.4 HISTORY OF FM-BASED PASSIVE RADAR

The first passive radar was developed as a by-product of the development of radar. This was

during the Daventry experiment in 1935 [4]. This radar detected a Heyford bomber at a

distance of 8 km using a shortwave radio transmitter. Other passive radar systems were also

deployed by the German armed forces, which exploited the transmissions of the British

Chain Home Radars [4].

After WWII little interest remained in passive radar until the advent of high performance

digital signal processing hardware. In 1986 an experiment was conducted using television

broadcasts [24], which were chosen due to their resemblance to a pulsed wave form. Due to

the limitations posed by the available ADC hardware, the system was unable to successfully

detect targets. However, the experiment uncovered the major challenges in passive radar

(such as dynamic range), and thus opened the door to future work.

A further system was developed, in 1997 that exploited television broadcasts [25]. This

system was able to detect aircraft at a range of 260km (with a direct path distance of 150km).

While the system was able to detect aircraft at a vastly improved range, it was only able to

determine their Doppler shift and bearing.

Further investigation into passive radar [26] was conducted in the 1990’s [4]. The

investigation found potential in broadcast transmitters as transmitters of opportunity, as well

as an additional motivation for passive radar in that it holds potential for stealth mitigation.

FM-based passive radar was first introduced in 2005 [1]. A detailed design of the system

was presented, which used SDRs to digitise the signal, and used a computing cluster to

achieve real-time processing. The system was able to detect targets at up to a range of 150km,

with a direct path distance of approximately 50 km. In the same year the theoretical

performance of FM-based passive radar was published [27]. In this work, the radar range

equation was derived in the context of passive radar.

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 14

University of Pretoria

In 2007 FM signals were analysed for their role in passive radar [28]. Here it was shown that

the range resolution of the system is dependent on the standard deviation and kurtosis of the

transmitted signal.

This led to an investigation into improving this limit, which in turn led to a method being

developed that combined multiple FM-channels [29]. In the same work, a comparison

between super heterodyne and direct receiver architectures was conducted. It found that,

while comparable, the direct sampling architecture yielded performance advantages over the

super-heterodyne architecture.

In 2010 an airborne passive radar demonstrator [30] was experimented. The system was able

to detect high velocity airborne targets at ranges (as shown in the publication) up to 35 km.

However, the signal had to be recorded and processed at a later stage.

A passive radar based on an SDR and using generic processing software was demonstrated

in 2011 [10]. However, the system was only able to detect targets with a bistatic range of 63

km, with a direct path distance of approximately 47 km. The system was also unable to

operate in real-time, and processing was performed on recorded signals.

A long-range FM-based passive radar was demonstrated in 2012 [31]. This was able to detect

targets up to a range of 300 km, while 60 km from the transmitter. It was shown that a high

dynamic range is essential for long range detection, and that a greater direct path distance

lessens the required dynamic range requirement of the system.

In 2014, a generalised processing architecture for passive radar was presented [13]. Here the

term “separated reference architecture” was coined, and an exploration into the use of GPU’s

was investigated.

A system [11] using an SDR with a custom fixed frequency RF front-end [7], and an

NVIDIA Jetson TK1 Development Board to process the data was demonstrated. The system

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 15

University of Pretoria

could detect targets up to a range of approximately 100 km, with a direct path distance of

approximately 100 km. The system employed a CGLS filter to perform DPI cancellation,

and was just able to run in real-time.

2.5 COMPONENTS OF THE RECEIVED SIGNALS AND ANTENNA

CONFIGURATION

 Theoretically, signals received by a passive radar’s reference channel are composed of three

major components [5], shown in Figure 2.4. The largest contribution is DPI, which is the

signal received directly from the transmitter [2] (the red signal in Figure 2.4). The second

largest contribution (the yellow signal) typically found in received passive signal consist of

reflections from large stationary objects such as buildings, mountains and hills [2]. The final

component (the green signal) is comprised of reflections from moving objects which are the

reflections of interest [2].

Figure 2.4 Diagram of the signal components received by a passive radar.

A certain level of DPI is required by the passive radar system. However, it is only desirable

in the reference channel [2]. The DPI (in a static system) has approximately no delay and no

Doppler shift and thus approximately resides at a range of 0 km with a Doppler shift of

0 Hz. Clutter is a comparatively large signal, although smaller than the DPI, and is normally

Rx

Tx

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 16

University of Pretoria

characterised by a low Doppler shift, although its range (or delay) may vary. Finally, target

reflections are characterised by a low signal amplitude with a significant Doppler shift

generated by their higher velocities.

2.6 PASSIVE RADAR PROCESSING

In order to detect target reflections among the much larger unwanted reflections, interference

and noise, the signal needs to be filtered and processed. The components of the processing

chain have been widely discussed in literature [11], and these are introduced below.

2.6.1 Matched filtering

In order to increase the SINR, a matched filter is used to determine the probability of a

reflection’s presence. A matched filter is defined as a filter used to maximise the SNR of a

target derived from the transmitted signal [21]. The mathematical description of the filter

starts with the definition of the reference and surveillance channels as vectors 𝑟 and 𝑠

respectively. Given that a CPI consists of 𝑁 samples 𝑠 and 𝑟 are both 𝑁 element vectors.

The filter coefficients for the matched filter are given as

 ℎ(𝑡) = 𝑟̂∗(−𝑡) (2.1)

where

 𝑟̂ is a delayed and/or modulated version of 𝑟, and

 𝑡 is time.

In pulse-Doppler radar this process is carried out in two steps [21]. In the first step each pulse

is compressed by applying a matched filter via correlation. Following this, the second step

uses a DFT on inter pulse samples to extract frequency, i.e. Doppler information. Doppler

processing is one of the most valuable tools available to the radar designer, as it allows

targets of interest (which are generally moving) to be distinguished according to their radial

or bistatic velocity.

In continuous wave and passive radar (which is not taking advantage of a pulsed source)

there are no pulses and, as such, pulse compression and Doppler processing are combined

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 17

University of Pretoria

and performed simultaneously [12]. In passive radar this can be achieved by cross-

correlating the surveillance and modified reference channel in either the time [12] or

frequency domain [5]. These techniques are compared in Section 5.3, but a brief explanation

of the differences is given below.

The time domain method is the closest to the pulse compression technique seen in pulse

radar. In this method, each Doppler index is generated by cross-correlating the surveillance

channel with an appropriately modulated reference channel in the time domain.

𝑦(𝑡) = ∫ 𝑠(𝑡)𝑟̂∗(−𝑡) 𝜕𝑡

∞

−∞

 (2.2)

Frequency correlation is the opposite, where each range index is generated by cross-

correlating the surveillance channel with an appropriately delayed version of the reference

channel in the frequency domain.

Before pulse compression and, therefore, the matched filter, the range resolution of the

system is related to the pulse length. In CW radar this would make the range resolution equal

to the CPI. However, pulse compression decouples these two parameters and instead couples

the range resolution to the bandwidth of the transmitted signal, specifically [21]

 ∆𝑅 =
𝑐0

2𝐵
 (2.3)

where

 𝑐0 is the speed of light in a vacuum, and

 𝐵 is the instantaneous bandwidth of the transmitted signal.

This has been shown to hold true for passive radar where 𝐵 is the instantaneous bandwidth

and Δ𝑅 is the range resolution [32].

Target separation is also achievable in the Doppler dimension. Here the Doppler resolution

is given as

Δ𝑅′ =

1

𝐶𝑃𝐼
. (2.4)

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 18

University of Pretoria

This is clearly more consistent than the range resolution, as it is not dependent on the

transmitted signal, which in passive radar is not controllable or predictable.

2.6.2 DPI cancellation

As a result of the matched filter, the signal space is transformed to an amplitude-range-

Doppler (ARD) map, with the amplitude representing the received signal strength at a range-

Doppler index. However, the sidelobes from strong signal components mask the smaller

desirable reflections [1]. In order to remove the sidelobes, the contribution of the large

unwanted components is estimated and subtracted from the surveillance channel, [9] [2]

 𝑠̂ = 𝑠 − 𝐴𝑥̂ (2.5)

where

 𝑠̂ is the surveillance channel after cancellation,

 𝐴 is a matrix of signal components which are removed, and

 𝑥̂ is a vector of weights estimating the contribution of each of the signal components

in 𝐴.

The estimation can be performed using a linear least-squares algorithm [2], a clean technique

[9], adaptive filters [12] [33], or correlative cancellation.

Studies have previously been conducted into effectiveness of various filters for the

application of DPI cancellation. It has been found that Wiener-Hoph filters achieve near

optimal performance [9], but can be computationally intensive. Some adaptive filters were

found to have satisfactory performance [9], but incurs significant computational cost. CGLS

has been proposed as an alternative to solve the least squares problem [13], with significantly

fewer computations.

The various implementations are compared in Section 5.2, and an introduction to each is

given in Addendum A.

2.6.3 CFAR detection

CFAR is a common and well-studied automatic thresholding scheme used to detect targets

in radar systems [21]. The technique is based on a likelihood ratio hypothesis test [21].

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 19

University of Pretoria

If the interference power is assumed to be Gaussian distributed, the variance of the noise is

known, and a desired probability of false alarm (𝑃𝐹𝐴) is given, a threshold which maximises

the probability of detection (𝑃𝐷) can be defined using the Neyman-Pearson bound [21]

 𝑇 = √−𝐸𝜎𝑛
2ln (𝑃𝐹𝐴) (2.6)

where

 𝜎𝑛
2 is the variance of the interference, and

𝐸 is the energy in the matched filter coefficients.

In practice this is difficult to implement, as the interference level is often unknown and

fluctuating. To compensate for this CFAR is used to estimate the interference variance.

CFAR begins by defining a number of bins that are used to estimate the interference level.

Cell averaging is a simple CFAR technique and uses an average to estimate the interference. The

threshold is then defined as

 𝑇𝐶𝐴 = 𝛼𝐶𝐴𝜎̂𝑁
2 (2.7)

with 𝛼𝐶𝐴 the CFAR constant defined as [21]

 𝛼𝐶𝐴 = 𝑁(𝑃𝐹𝐴
−1/𝑁

− 1). (2.8)

In active radar, the interference bins can be allocated in all dimensions. This is because the

range, angular, and Doppler resolution remain constant. In passive radar, however, the

fluctuating bandwidth [32] in signals, transmitted by the transmitter of opportunity, causes

the range resolution of the radar to fluctuate. This makes the choice of the number of guard

bins in the range dimension difficult to determine and inconsistent. As such, in passive radar

systems, interference estimation is often constrained to the Doppler and angular dimensions.

Alternatively, the range resolution needs to be estimated before the detection stage.

2.7 SUMMARY

FM-based passive radar is an extension of active continuous wave radars. It shares many of

the same principles and performance characteristics. There are however, some additional

challenges to face; key among these is DPI.

© University of Pretoria

CHAPTER 2 PASSIVE RADAR

Department of Electrical, Electronic and Computer Engineering 20

University of Pretoria

Passive radar has been around since the advent of radar, but FM-based passive radar only

became useable in the early 2000s. Since then these systems have become cheaper and have

been slowly maturing, but a successful system built on commercial OTS components has

not been seen.

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

The passive radar system designed is based on a commercial FM transmitter (88 to

108 MHz). The choice of using commercial FM transmitters was made as these transmitters

typically transmit with high power, and coverage is readily present throughout Africa [34]

(where this study was located).

The signal acquisition sub-system of a passive radar, as is depicted in Figure 2.1, can be

broken into multiple sub-sections. The components of the signal acquisition subsystem are

shown in Figure 3.1. Here there are two major divisions.

The first, site and transmitter selection (covered in Section 3.2), concerns receiving the most

desirable analogue signals. The second, the receiver, is responsible for bringing the signals

to baseband and digitising them.

Figure 3.1 System diagram of the signal acquisition sub-system.

3.1 PERFORMANCE FACTORS

Before delving into the sub-systems of signal acquisition, it worth understanding the major

parameters and factors which govern the performance of the signal acquisition sub-system.

Receiver

 Surveillance
Channel

 Reference
Channel

Site and Transmitter Selection

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 22

University of Pretoria

Similar to active radar, the objective of signal acquisition in passive radar is to maximise the

signals received from potential targets and to minimise the signals received from interference

and noise. To this extent, the passive radar may face similar restrictions to a conventional

radar.

Noise is defined as, “an unwanted disturbances superposed upon a useful signal that tend to

obscure its information content” [35]. Within the system there are many sources of noise,

from thermal noise within components to jamming. Most of this noise is combated by using

integration gain. However, there are also coherent sources of noise which must be

intentionally removed. The major performance constraints and the factors which influence

these are discussed below.

3.1.1 Active interference

Active interferers are interferers which emit energy into the system’s antennas within the

band of operation. These interferers can take many forms, from pirate transmitters to

intentional electronic attacks. Such interference reduces the performance of the system and

can even result in false targets being produced.

Active jamming can affect the system in a number of ways, depending on the knowledge the

attacking system has about the radar and the type of jamming implemented. However, in the

context of the experimental system, a deliberate electronic attack is a fairly remote

possibility. A more likely scenario is one where another transmitter is projecting energy in

the band, unintentionally interfering with the radar.

There is little literature on the subject [36]. As such, a rudimentary analysis of the effect of

a pirate transmitter on a passive radar is presented here. The reference signal is modelled as

 𝑟(𝑡) = 𝑝𝑘(𝑡) + 𝑞𝑙(𝑡) + 𝑛(𝑡) (3.1)

where

 𝑘(𝑡) is the normalised signal transmitted by the transmitter of opportunity,

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 23

University of Pretoria

 𝑙(𝑡) is the normalised signal transmitted by the interfering source (assumed to be

uncorrelated),

 𝑛(𝑡) is AWGN, and

 𝑝 and 𝑞 are complex weights which account for the gain of the signals as received

by the reference antenna.

The surveillance signal is modelled as

 𝑠(𝑡) = 𝑟𝑘(𝑡) + 𝑠𝑙(𝑡) + 𝑚(𝑡) + 𝑛(𝑡) (3.2)

where

 𝑚(𝑡) comprises of target echoes received by the surveillance antenna, and

 𝑟 and 𝑠 are complex weights which account for the gain of the signals as received by

the surveillance antenna.

Therefore, in order to allow for successful DPI cancellation, by implementing (5.1),

 𝑝

𝑞
≈

𝑟

𝑠
 (3.3)

must hold.

As there are likely to be spatial differences between sources, it is unlikely that this equality

will hold, and, therefore, the cancellation will be impaired and targets are likely to be masked

by the DPI’s sidelobes. This analysis does not take into account the effect that an additional

in-band transmitter will have on 𝑙(𝑡), as well as the actual representation of targets.

However, given the effect an additional interferer has on the reference signal and

cancellation it can already be established that the presence of an additional, in-band interferer

is highly detrimental to system performance. The high vulnerability is also found in

simulations [36] where a noise jammer with a power output of 1 − 10 W (−77.10 dB to

−57.10 dB compared to the transmitter power) has a dramatically detrimental effect on the

radar. With a jammer transmit power of 10 W, the simulated radar was incapable of detecting

the simulated target.

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 24

University of Pretoria

3.1.2 Sensitivity

Sensitivity of an electronic system can be described as the smallest signal level which can

create a desired output. In a radar, sensitivity can also be termed as a minimum detectable

signal [37]. In terms of the radar system, this level can be governed by a number of factors,

although the level is predominantly governed by the receiver. i.e. the smallest signal which

can be digitized. This level is determined by the receiver’s capability to digitize a signal, as

well as the efficiency with which energy is harvested and delivered to the receiver.

3.1.3 Dynamic range

The dynamic range of the system refers to the smallest signal which can be utilized compared

to the largest. In terms of this specific system, dynamic range refers to the smallest signal

which can be utilized compared to magnitude of the direct path signal (as the direct path

signal can be assumed to be the largest signal present on the system [12].

The dynamic range of any digital system is related to the quantisation of the signal level. In

a fixed point system, this level sets a minimum signal which can be represented relative to

full scale. This level is referred to as the quantisation noise and is given as [38]

 𝑛𝑞 = −6.02𝑏 − 1.76 dBFS (3.4)

where

 𝑏 is the number of bits used for quantisation.

Equation (3.4) is, however, only a true representation when the signal is sampled at the

Nyquist rate. Oversampling can effectively result in a higher dynamic range, or bit depth.

The additional dynamic range in bits achieved by oversampling is [39]

𝑏𝑜𝑠 = log2 (

𝑓𝑠

𝑓𝑁
) (3.5)

where

 𝑓𝑠 is the sampling frequency, and

 𝑓𝑁 is the sampling frequency where 𝑓𝑁 < 𝑓𝑠.

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 25

University of Pretoria

It should be noted that practically a few of the LSBs may not be correctly quantised by the

ADC, and as such the theoretical dynamic range of the quantisation should be considered as

a best-case scenario, rather than the expected value.

Aside from the dynamic range limitation imposed by digitisation, the analogue components

of the receiver impose a limitation known as the SFDR. This limitation defines “the available

signal range as the difference in magnitude between the amplitude of the fundamental and

the amplitude of the largest spurious component in the frequency band of interest” [40]. The

presence of the distortion effectively masks signals less powerful than it and thus limits the

dynamic range. The dynamic range achieved is governed by the smallest of these ranges,

presented above.

3.2 SITE AND TRANSMITTER SELECTION

The primary objective when selecting an appropriate site is to maximise the ratio between

the received power from target and DPI (the reasoning for which is shown later in this

section). Furthermore, due to relaxed filters found in lower end receivers, reducing just-out-

of-band interference is also a consideration [7].

In order to find the optimal orientation/site, an estimation for the power received from a

target and the DPI is required. This kind of estimation has been considered with in-depth

models which take into account the terrain [41] and its effect on EM propagation [5].

However, this information was not available and, as such, a simpler model is considered

where propagation and environmental effects are considered to be negligible.

The layout of the environment is shown in Figure 3.2. In Figure 3.2 the transmitter is located

at Tx and the target at T. The distance between T and Tx is given as 𝑅0. The receiver is

located at Rx with the distance between Rx and T denoted by 𝑅1 and the distance between

Tx and Rx is denoted by 𝑅2, i.e. the baseline distance. The angle between TxT and TxRx is

given as 𝛾.

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 26

University of Pretoria

Figure 3.2 Signals received at a passive radar site.

The power received from DPI can be approximated using the Friss transmission equation

[42],

𝑃𝑟 = 𝑃𝑡𝐺𝑟𝐺𝑡 (

𝜆

4𝜋𝑅
)

2

 (3.6)

where

 𝑃𝑡 is the power transmitted,

 𝐺𝑡 is the gain of the transmission antenna in the direction of transmission,

 𝐺𝑟 is the gain of the receive antenna in the direction of reception,

 𝜆 is the wavelength of the carrier frequency, and

 𝑅 is the distance between the reception and transmission antennas.

In the context of the passive radar environment this becomes

𝑃𝐷𝑃𝐼 = 𝑃𝑡𝐺𝑟2𝐺𝑡 (

𝜆

4𝜋𝑅2
)

2

, (3.7)

while power received from the target can be written by the bistatic radar equation [8] [43],

𝑃𝑟 =

𝑃𝑡𝐺𝑟𝐺𝑡𝜆2𝜎

(4𝜋)3𝑅𝑇𝑥
2 𝑅𝑅𝑥

2 (3.8)

where

 𝑅𝑇𝑥 is the distance from the transmitter to the target, and

Tx

Rx

T

𝑅0
𝑅1

𝑅2

𝛾

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 27

University of Pretoria

 𝑅𝑅𝑥 is the distance from the target to the receiver.

In terms of the environment in Figure 3.2, the power received from the target becomes

𝑃𝑇 =

𝑃𝑡𝐺𝑟1𝐺𝑡𝜆2𝜎

(4𝜋)3𝑅0
2𝑅1

2 . (3.9)

Assuming that the transmission antenna is isotropic, the target to DPI ratio (TDR) becomes

𝑇𝐷𝑅 =

𝐺𝑟1𝑅2
2𝜎

4𝜋𝐺𝑟2𝑅0
2𝑅1

2. (3.10)

For example, it is assumed that a typical direct path distance of 40 𝑘𝑚 is present. The TDR,

for this scenario, is shown in Figure 3.3. Here the TDR is that received at the site and, as

such, both antenna gains are set to unity. The target is also set to exist on the vector

originating at the receiver and crossing through the receiver which is shown in Section 3.2.1

to be the optimal configuration. The RCS of the target is set to be 100 m2 which is

representative of a large passenger aircraft [44].

Figure 3.3 Surveillance to direct path signal ratio.

Even in this near optimal configuration, the ADC has been fully saturated, and if no steps

are taken to remove the DPI prior to digitisation, the maximum detectable bistatic range for

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 28

University of Pretoria

a receiver with a 78 dBc dynamic range is 72.0 km, which results in a 16.0 km distance from

the receiver. It is, therefore, clear that, even in such convenient conditions, the radar would

have a poor detection range for even the largest targets and is limited by the dynamic range

of the receiver.

3.2.1 Optimal position

Setting the objective to maximise the TDR for a given target, 𝑅1is then defined in terms of

𝑅0, 𝑅2, and 𝛾.

 𝑅1
2(𝛾) = 𝑅0

2 − 2𝑅0𝑅2 cos(𝛾) + 𝑅2
2 (3.11)

Therefore, it can be seen that 𝑅1(𝛾) reaches maximum and minimum values

 𝑅1(0) = 𝑅0 − 𝑅2 (3.12)

 𝑅1(𝜋) = 𝑅0 + 𝑅2 (3.13)

with

𝑇𝐷𝑅(0) =

𝐺𝑟1𝜎

4𝜋𝐺𝑟2
 (

𝑅2
2

𝑅0
2(𝑅0 − 𝑅2)2

) (3.14)

𝑇𝐷𝑅(𝜋) =

𝐺𝑟1𝜎

4𝜋𝐺𝑟2
 (

𝑅2
2

𝑅0
2(𝑅0 + 𝑅2)2

). (3.15)

Hence it can be seen that the TDR is maximised for a given range from the receiver when

the site intersects the line between the transmitter and the target, i.e. 𝛾 = 0. Furthermore, it

can be seen that, when 𝛾 = 0, as 𝑅2 increases so does the TDR, though this is intuitive as

this moves the receiver closer to the target and further from the transmitter.

Additionally, the effect that increasing 𝑅2 has on the TDR with a constant 𝑅1, needs to be

determined, i.e. does increasing the direct path distance increase the surveillance range?

Rewriting (3.14) in terms of 𝑅1 results in

𝑇𝐷𝑅(0) =

𝐺𝑟1𝜎

4𝜋𝐺𝑟2
 (

𝑅2

𝑅1(𝑅1 + 𝑅2)
)

2

 (3.16)

which we can analyse using

 𝑅2

𝑅1 + 𝑅2
. (3.17)

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 29

University of Pretoria

The expression in (3.17) begins at 0 when 𝑅2 = 0 and converges to 1 as 𝑅2 → ∞. Hence it

can be seen that the TDR ratio is maximised when 𝛾 = 0 and the baseline distance is

maximised. The same result has been found in literature [31].

3.2.2 Antenna selection

The requirements for a passive radar system differ slightly from conventional radar and

communication systems. This is especially true in the directionless system considered in this

report. The simplicity of the directionless system, does not allow nulls to be arbitrarily

steered towards interference sources. Null steering has been shown to be an effective method

of reducing interference and DPI [45].

3.2.2.1 Surveillance antenna

The surveillance antenna has the primary function of receiving reflection from targets. As

such, it should limit energy received from all other sources of radiation, primarily in-band

sources. However, it should allow a wide beamwidth (in most cases) as to enable detection

of targets from a wider range of angles [43].

There are two performance limiting parameters which a well-designed antenna can improve.

The first is with the minimum signal power required for detection. This parameter is

potentially limited by the sensitivity of the receiver. A higher gain in the direction of a target

results in more energy being delivered to the receiver. The second is DPI rejection, which

can be achieved by introducing nulls and low sidelobe levels in the direction of interference

sources. However, it should be noted that beam width and gain are inversely related, as such

both a wide beamwidth and a high gain cannot be achieved.

In passive radar this is not a common limitation as the minimum signal power required for

detection is typically limited by the dynamic range of the receiver. The instantaneous

dynamic range of the signal can be reduced by not receiving energy from the direct path.

This appears in (3.10). The ratio between these gains,

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 30

University of Pretoria

𝐺𝑝 =

𝐺𝑟1

𝐺𝑟2
, (3.18)

represents the relative antenna gain between the direction of the direct path and the direction

of the target. 𝐺𝑝 can often have a significant influence over the TDR. As such, placing the

antenna such that DPI lies in a null may be more beneficial than selecting an optimum

position.

Therefore, selecting a surveillance antenna optimised for a high front-to-back ratio (or deep

nulls) is more beneficial that an antenna optimised for absolute gain. This conclusion is only

valid where the dynamic range of the receiver is the limiting factor.

3.2.2.2 Reference antenna

The reference antenna is required to receive a copy of the transmitted signal. To this end, the

signal received should match that transmitted as much as possible. However, in practice, it

is found that non-idealities cause this not to be the case.

It was found that the main causes of poor reference signal recreation are multi-path [20] and

antenna modulation. Multipath is caused by the transmitted signal reflecting off objects.

These add additional signal components (similar to those which make up clutter in the

surveillance channel) to the reference channel.

The additional components affect the cancellation filter by ensuring that each column of 𝐴

not only affects its own range-Doppler index, but also those corresponding to the additional

components (with the appropriate offsets). As these additional components are not ideally

weighted, the flexibility of the filter is hindered, and it can no longer reach an optimal

solution.

The matched filter is affected by correlating not only with the range-Doppler bin desired but

also with the additional components. This increases cross-bin dependence and sidelobe

levels.

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 31

University of Pretoria

Antenna modulation is the process where the movement of an antenna creates a modulation

on the received signal. This can be seen on large flexible antennas. While the modulation is

low, due to extremely long CPIs used in passive radar, it can have a large effect on the

accuracy of the transmitted signal’s copy received from the reference antenna.

A highly directional antenna with a narrow beam is desirable in order to limit the multipath

received by the reference antenna. Antenna modulation is reduced by securing the antenna,

or using a stable and inflexible design.

3.2.3 Additional considerations

Beyond the position of the site, DPI rejection can be aided by placing the receiver behind a

large object such as a hill or building, as depicted in Figure 3.1. This is termed DPI shielding.

DPI shielding was found to be more effective than optimising the antenna pattern. It should

be noted though, that large near-field structures alter the effective far-field antenna pattern

of the antennas (although to an extent this is the objective with the DPI shielding).

Consequently, the effectiveness of using a directional antenna can be inhibited. The effective

antenna patterns must, therefore, be considered within their respective operational

environments and not as independent element.

3.2.4 Transmitter selection

Transmitter selection is based on a number of factors but ultimately aims to increase SDR

while ensuring that the transmitted signals remain as powerful as possible. In a system with

poorer analogue filtering, a more powerful transmitter (in comparison to other sources in the

spectral vicinity) is desirable as this improves the ratio between the desired signals and those

of other transmitters, which in turn, results in the ADC being more effectively utilized, and

thus enhancing its performance.

Finally, in the case where TDR is no longer the defining performance factor, a stronger

transmitter increases the distance at which a target’s reflection would fall within the

minimum power receivable by a receiver [43].

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 32

University of Pretoria

3.3 RECEIVER SELECTION

The RF digital receiver, used to sample the reflections, is one of the most vital pieces of

hardware in the system, due to its role sampling the EM spectrum into digital space. The

receiver imposes fundamental limits on the system by defining the dynamic range, being the

source of quantisation and other noise sources [7], and establishing and limiting the

coherency between channels. Essentially, if the receiver fails to capture a signal, or distorts

it, no amount of processing can detect or recreate it.

Table 3.1 Potential receivers.

Receiver ADC

bits/Rx

channels

Operating

Frequency

[MHz]

Analogue

bandwidth

range [MHz]

SFDR

[dBc]

Price per unit [$]

Pervices

Crimson

16/4 0 − 6000 322 40 6750-00

Ettus USRP

N210 (WBX)

14/1 40 − 2200 40 88 1717-00

(480-00)

Ettus USRP

B210

12/2 70 − 6000 0.2 − 56 78 1100-00

Epiq

solutions

sidekiq

12/2 70 − 6000 0.4 − 50 68.7 8000-00

Quadrus

DRU-244A-

2-2-PCI

16/2 𝐷𝐶 − 437 0.0008 − 40 80 1990-00

Airspy 12/1 24 − 1800 6 − 9 80 199-00

HackRF One 8/1 1 − 6000 1.75 − 20 − 299-95

RTL-SDR

Dongle

8/1 24 − 1760 ? −2.8 ~45 19-95

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 33

University of Pretoria

The receiver constitutes a large portion of the system’s cost, as such, keeping the receiver’s

cost to a minimum had a large, positive, benefit on the system’s cost. However, due to the

importance of the receiver within the system, this cost saving had to be balanced against the

receiver’s performance, minimising cost without hindering the system’s operation.

To achieve these goals, a range of SDRs were considered as they allowed for a configurable

system with a software definable bandwidth and frequency, while still residing at a

comparatively low price point. Any receiver considered must be able to operate in a

configuration where at least two channels are synchronously and coherently sampled. The

absence of thereof would render the reference and surveillance channels incoherent,

resulting in any of the subsequent signal processing being ineffective. The receivers which

were found to be potentially suitable for use as a low-cost passive radar receiver are shown

in Table 3.1.

From Table 3.1 it can be seen that while some receivers can support narrow bandwidths, the

majority are designed for wider bandwidth systems. Furthermore, it should be noted that

even when the analogue bandwidth is narrow, due to the design of the RF receiver chain,

full use of the ADC is not possible in congested spectra. An example of a common RF chain

is shown in Figure 3.4. In this receiver chain the AGC is placed before the LPF. This is done

in architectures such as the Ettus B210, Ettus WBX daughter board and Epiq solutions

sidekiq.

Figure 3.4 Super heterodyne RF receiver chain.

LNA

Drive

Amplifier

LO

Mixer AGC LPF

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 34

University of Pretoria

This architecture results in the AGC setting the gain such that the sum of all the mixed down

signals would saturate either the AGC amplifier or the ADC. The issue arises when the

signals of interest are of sufficiently small bandwidth and amplitude that the power of the

signal entering the LPF and leaving the LPF are significantly different. This architecture is

used for its simplicity and to lower noise in wide bandwidth environments.

In the case of passive radar, the surveillance signal is usually smaller than other signals in

the FM band. This results in the above architecture limiting the saturation level of the ADC,

thus decreasing the effective bit depth and SFDR.

Two receivers were then chosen for further investigation. The USRP B210 was chosen as it

allows for both channels to be supported on a single board, with a low price point and

configurable analogue bandwidth. The USRP N210 was chosen as, although it resides at a

higher price point, it has a larger SFDR and bit depth.

The Airspy and RTL-SDR were not chosen as they do not have digital synchronisation, and

as such, significant development and/or processing would be required to ensure synchronous

reception of data from the devices. The Quadrus was also not investigated as it uses direct

sampling and, as such, it requires additional filtering to prevent aliasing, which increases the

development time and cost. The Pervices Crimson and Epiq solutions Sidekiq where not

evaluated as neither offered sufficient performance to justify the cost.

3.3.1 Channel coherency

The coherency between two receiver channels was evaluated. Intra-channel coherency is

required as the processing blocks require that the reference and surveillance channels are

coherent. This requires the channels to keep a constant phase difference and relative

amplitude. It has been previously show that degradation in channel coherency significantly

degrades SNR during processing [46].

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 35

University of Pretoria

The phase stability was evaluated at 94.2 MHz as this corresponds with the frequency of a

local radio station used to implement the radar (see Section 3.2.4). The experimental

configuration is shown in Figure 3.5. A −10 dBm sinusoidal signal was generated using a

signal source and fed through a power splitter directly to the inputs of each Rx channel on

the receiver. This configuration ensured that the signals fed to the Rx channels were as

coherent as possible.

Figure 3.5 Phase stability evaluation configuration for N210.

The sample streams from the receivers were then saved to file and processed offline to

evaluate the coherency of each channel. This methodology ensures that any significant

incoherency was solely resultant from the receiver/s.

Four receiver configurations were evaluated, the means by which synchronisation is

achieved is discussed later in this chapter. The configurations evaluated are:

 2x N210s with WBX daughter boards, synchronised via a MIMO cable,

 2x N210s with WBX daughter boards, synchronised via a PPS system,

 a standalone B210, and

 a B210 using an external reference and PPS source.

Two synchronisation methods are provided by the USRP manufacturer to synchronise

boards. The first is a MIMO cable which is a plug-and-play solution allowing two boards to

share digital and analogue reference signals. The second is the PPS system which requires

that a 10 MHz reference sinusoid and a PPS signal (i.e. a block wave with a period of 1 Hz)

be fed to each board.

−3 dB

USRP 1

USRP 2

To PC

To PC

Synchronization
Input

Signal
Generator

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 36

University of Pretoria

The experimental configuration was set to gather samples at a rate of 200 kS/s for 15

minutes.

3.3.1.1 Metrics

The metrics used to evaluate the data collected are defined below.

Phase Noise

Relative phase is the difference in phase between two samples of the same signal. The phase

error between two samples is calculated as

 𝜙𝑖 = arg(𝑥𝑖𝑦𝑖
∗). (3.19)

The phase noise for the channel is defined as the RMS phase noise between two vectors,

𝜑 = √
1

𝑁
∑ 𝜙𝑖

2
𝑁

𝑖=1
−

1

𝑁
∑ 𝜙𝑖

𝑁

𝑖=1
. (3.20)

Phase drift

Phase drift is defined as the long term deviation in the relative phase between two channels.

The major causes of phase drift in the receivers were found to be PLL slipping/ loss of lock

and oscillator frequency offset. The phase drift was evaluated by fitting a line to the

unwrapped relative phase between the channels. The gradient of that line is then the mean

phase drift. The gradient for the line of best fit for a set of data is given as

𝑚 =

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

 (3.21)

where

 𝑥𝑖 and 𝑦𝑖 are elements of the data coordinates x and y, and

 𝑎̅ represents the mean of a vector 𝑎.

In the context of the phase drift (3.21) becomes

∆𝜙 =

∑ (𝑡𝑖 − 𝑡̅)(𝜙𝑖 − 𝜙̅)𝑁
𝑖=1

∑ (𝑡𝑖 − 𝑡̅)2𝑁
𝑖=1

 (3.22)

where

 𝑡 is a vector containing the times at which the samples were taken, and

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 37

University of Pretoria

 𝜙 is a vector of containing the relative phase between two channels.

3.3.1.2 Synchronisation

Achieving synchronisation between boards is achievable using several methods which

provided by the SDR OEM. Only two of these were relevant to this implementation and are

described below.

MIMO cable

Synchronisation via MIMO cable uses a plug-and-play cable which allows one USRP to act

as a slave to another, piggybacking on the host’s synchronisation and data link to the PC. A

MIMO cable allows a maximum of two SDRs to be synchronised.

PPS

PPS synchronisation uses two input signal to synchronise SDR boards. The first is a 10 MHz

reference which is used to synchronise the PLLs on a board and thus the mixing and

sampling. The second signal is CMOS signal which sends a block wave at 1 Hz. The second

signal is used to synchronise the clocks on the SDRs. This configuration can synchronise

more than two boards.

3.3.1.3 Results

The performance of the receivers was evaluated and the results are shown in Table 3.2.

Table 3.2 Intra-channel coherency of receiver configurations.

Test configuration Phase noise [mrad] Maximum relative

phase deviation

[rad]

Phase drift

[µrad/s]

N210 (MIMO) 15.006

0.368 7.434

N210 (PPS) 12.961 70.18𝑒 − 3 1.135

B210 15.89 55.61𝑒 − 3 −40.34

B210 (PPS) 4.490 𝜋 76.83 × 10−3

© University of Pretoria

CHAPTER 3 SIGNAL ACQUISITION

Department of Electrical, Electronic and Computer Engineering 38

University of Pretoria

As shown in Table 3.2, the USRP B210 with an external reference clock has the lowest

relative phase noise, and phase drift. However, it also experienced the largest maximum

phase deviation. This deviation could be caused by the PLL slipping a cycle (and thus

causing a phase shift) or a loss of samples. Without an external reference the B210 performed

comparably to the N210 and experienced more stability than when fed with an external

reference.

3.3.2 Conclusion

Of the two receivers which were further investigated, the N210 provides larger bit depth and

higher dynamic range, but has a fixed analogue bandwidth, which, in a congested spectrum,

reduces the achievable effective bit depth and dynamic range for the narrowband channel

[7]. This occurs when signals which are not of interest are digitized by the ADC, thus

reducing the signal of interest’s dBFS.

The B210 configuration can therefore remain competitive in effective bit depth and dynamic

range while providing the possibility for more coherent channels with an external reference.

When the lower price is also considered the B210 becomes the obvious choice for a low cost

receiver.

3.4 SUMMARY

The issues concerning signal acquisition for a passive bistatic radar have been discussed.

The major performance limiting factors have been identified. Of these, it has been shown

that target reflection to direct path ratio is the most critical consideration in most cases.

Methods to address this have been explored, including site selection and direct path

shielding.

Finally, a variety of suitable, and currently available, OTS receivers were evaluated for their

suitability with regards to passive radar. It was found that the Ettus USRP B210 is currently

the most suitable for use in a low-cost FM-based passive radar.

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Two general categories of processing platforms were considered, namely CPUs and GPUs.

The basic differences and optimisation focus for each are discussed below. The processing

platform, as it exists in the system, is depicted in Figure 2.1. Once the general concepts of

the processors are presented below, the platforms on which the system was implemented are

presented, and their specifications are compared.

4.1 CENTRAL PROCESSING UNIT

A CPU is the heart of most modern computers and comes in a variety of architectures and

configurations with various performance characteristics. The most common architectures

families are x86, which is a family of 32-bit processor architectures with backward-

compatible CISC instruction sets [47]. A 64-bit variant is also available called x86-64. The

second family of CPUs is the ARM family of processor architectures, which is an

architecture optimised for power efficiency, and as such implements a RISC instruction set.

The x86 architecture family is commonly found in desktop and laptop PCs, as well as in

many servers. The ARM architecture is found in many mobile and embedded devices such

as smart-phones.

Optimisation on the CPU was performed by analysing the nature of the architectures. It

should be noted that the majority of optimisation can be performed by using efficient

algorithms and good programming practice. These are not discussed here, as the focus of

this section is on architectural specific considerations.

4.1.1 Multithreading

Many CPUs have multiple cores. While the conventional programming model uses a single

thread [48], to fully take advantage of a CPU’s processing capabilities, all of its cores should

be utilized [49]. The threading model implemented by CPU’s is a heavy-thread model when

compared to the thread model implemented in GPUs [50].

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 40

University of Pretoria

A heavy-thread model means that each thread is best utilised when computing a heavy work

load. As such, each thread is able to process faster. There are, however, typically fewer

processing cores, and the overhead for the creation, destruction and management of each

thread is significant [49]. This model follows MIMD parallelism, or task parallelism, where

threads can function independently of one another.

In general, a CPU is best utilised when the number of working threads is equal to the number

of physical processing cores, or, if the CPU is hyper-threaded (i.e. has more virtual cores

than physical cores) and the task is suitable, the best performance may be achieved when the

number of active threads is equal to the number of virtual cores. Furthermore, a thread with

a light-thread load may require comparable or more processing to initialise and manage, than

the thread itself would require to execute [49].

For example, consider an 𝑁 iteration loop that could execute in parallel on an 𝑀 core

processor, such that 𝑁 ≫ 𝑀. It would be more efficient to produce 𝑀 threads of which each

computes 𝑁/𝑀 iterations of the loop, than to initiate 𝑁 threads each to compute an iteration

of the thread.

Multithreaded implementation of most functionality is implemented in the linear algebra

functions found in the libraries [51], as well as, the DFT functions found in the DFT libraries

[51]. A common method of implementing this kind of parallelism is to use OpenMP which

is a set of routines and compiler directives which allow for easy implementation of parallel

processing on many common CPU architectures.

4.1.2 SIMD instructions and processor intrinsics

The x86 and ARM CPU architectures come in variants which have intrinsic instructions,

allowing for higher computation rates. These functions are accessed via enhanced instruction

sets [52]. These enhanced instructions allow a program to use dedicated hardware to perform

multiple operations per instruction.

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 41

University of Pretoria

The first variant of these enables SIMD computing. This enables a single instruction to be

applied to multiple pieces of data. Typically, these involve larger registers, such that multiple

pieces of data fit in a register, and dedicated hardware which uses the registers [53]. For

floating point arithmetic, the IEEE 754 floating point model is typically used [47] which

defines a single-precision floating point number with 32 bits, which is henceforth referred

to as a float.

The x86 architecture can come in a variety of extensions including AVX and SSE. SSE2 is

now standardised on x86_64 architectures. The SSE2 standard allows for data to be stored

in 128 bit, registers (i.e. 4 floats). Where each instruction is executed on all 4 floats resulting

in the potential to increase the data throughput of each core of the processor 4 fold.

Figure 4.1 SISD floating point operation.

Figure 4.1 depicts a typical SISD operation where each register holds a single float. An

instruction feeds the data from the two input registers and writes the result to the output

register. Figure 4.2 depicts a typical SIMD operation. Two registers are still used, however,

each is now 128 bits (assuming SSE2 is used). The operation is then completed by additional

ALUs, or a specialised ALU which exist explicitly in hardware.

A common difficulty in implementing SIMD, and prevalent in SSE2, is that the data must

be correctly aligned in memory. If the memory is not aligned a penalty is paid which can

mitigate the benefit of using SIMD. SIMD is also implemented in ARM architectures. The

most common version, NEON, is similar to SSE2 in that it implements 128 bit registers

32-bit float

32-bit float

ALU

32-bit float

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 42

University of Pretoria

which can perform SIMD operations on 4 floats simultaneously. However, NEON, unlike,

SSE2 is not IEEE-754 compliant.

Figure 4.2 SIMD floating point operation.

Further extended instructions are implemented which can combine operations and reduce

processing time. One of the most common is the inclusion of a fused add-multiply instruction

(or multiply-accumulate (MAC) in DSPs). This allows the

 𝑐 = 𝑐 + 𝑎 × 𝑏 (4.1)

operation to be performed in a single instruction. This is commonly used to accelerate

operations such as dot-products and matrix multiplications. The instructions are available on

certain x86 and ARM architectures.

4.2 GRAPHICS PROCESSING UNIT

The GPU is a processor which is designed to rapidly create and manipulate images. Some

GPUs can be separated from this role and be used for general computing tasks. These are

known as GPGPUs [54]. The highly parallel structure of GPUs allows them to achieve a

higher number of FLOPS than CPUs (up to 6.6 TFLOPS) as well as attaining high energy

efficiency. There are a multitude of GPGPU architectures, but there are common

characteristics among most which must be understood to fully utilize the processing power

of a GPGPU.

32-bit float

32-bit float

ALU

32-bit float

32-bit float

32-bit float

ALU

32-bit float

32-bit float

32-bit float

ALU

32-bit float

32-bit float

32-bit float

ALU

32-bit float

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 43

University of Pretoria

4.2.1 Threading model

Unlike the CPU, GPUs use a light-threading model, and are highly parallelisable. Essentially

this means that GPUs can efficiently split tasks into many simple threads without the

incursion of a large overhead [54].

Achieving this level of parallelism does introduce a few drawbacks, specifically with regard

to GPU architecture. It should be noted that the specific architectural design discussed here

applies to NVidia GPUs. Although other GPU architectures may differ in specifics, the

general concepts remain relevant.

Figure 4.3 Diagram of a GPU’s thread structure.

4.2.1.1 Thread structure

In order to introduce mass parallelism, GPU architecture splits the thread space into a

structure which is simpler and easier to manage, as shown in Figure 4.3. Each call to the

GPU is called a kernel. The thread structure of a kernel defines a two level grid. The base

level defines a block of threads [50]. This block can be 3 dimensional, however the number

X grid size

Y
 g

ri
d
 s

iz
e

X block size

Y
 b

lo
c
k
 s

iz
e

Kernel

Block

Thread

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 44

University of Pretoria

of treads in each block is limited by the architecture, and NVidia GPUs limit this to 1024

threads per block [54]. The next level in thread space defines a grid of thread blocks. The

grid can support blocks in 3 dimensions, NVidia GPUs (as of compute capability 3.0) limit

the x dimension of the grid to [231 − 1] blocks and the other two dimensions to 65535 [54].

Each thread can read its own grid and block index as well as the size of the block and grid.

It cannot, however, execute a separate program as is achievable with CPU threads [50],

although, through the use of the threads index, each thread can follow different behaviour

within that program.

Figure 4.4 Diagram of a GPU’s functional components.

It is important to note that whilst mass parallelism is achievable, communication between

threads is limited. Many of the common multithreading tools available to a designer in the

CPU environment are not available or, if they are available, their scope is limited. Some of

the most useful tools are limited within the scope of a block [54]. These include

synchronisation and the use of explicit writeable caches (shared memory). The lack of full

M
e

m
o

ry
 C

o
n

tr
o

lle
r

&
 C

a
c
h

e

In
s
tr

u
c
ti
o
n

 C
o

n
tr

o
lle

r

SM SM

SM SM

SM SM

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 45

University of Pretoria

synchronisation between blocks can affect the operation and performance of typical function

such as reductions.

4.2.1.2 Execution of threads

In order to maximise the utilisation of the hardware, it is important to understand how the

threads and blocks are mapped onto the GPU. The GPGPU operates by dividing the task

load into a scalable problem size [54]. At the highest level, a GPGPU can be seen to contain

a collection of SMs, each of which manage and execute many threads [54]. A functional

diagram of a GPU is shown in Figure 4.4.

Upon a kernel call a number of blocks are defined which must be executed. The instruction

controller (shown in Figure 4.4) on the GPU then allocates blocks to each SM as that SM

becomes vacant. Each SM can handle more than one block concurrently (assuming that there

are enough resources to launch multiple blocks of that type). There is, however, a limit to

the number of blocks which each SM can concurrently execute [54].

A number of factors determine the number of blocks which an SM can concurrently execute.

Firstly, assuming there are sufficient resources available, there is an architectural limit to the

number of blocks that will concurrently execute on an SM. For GPUs with a compute

capability of 3. 𝑥, the limit is 16 blocks per SM, while for GPUs with a compute capability

of 5. 𝑥, the limit is 32 blocks per SM [54].

Secondly, there are a number of resources which a processor must be able to allocate to a

block. As such, a limit in each resource reflects as a limit to the number of blocks which

each SM can handle. Many of these resources are memory related and are discussed in

Section 4.2.2, including registers and shared memory. The SM is functionally depicted in

Figure 4.5 below. The memory related resources are shown in blue.

Aside from memory, there are further restrictions to occupancy of an SM. Each SM has a

maximum number of threads and warps which it can handle. This means that a limited block

size can result in underutilisation of each SM and thus the GPU.

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 46

University of Pretoria

Figure 4.5 Diagram of an SM’s functional units.

Each SM can be broken down into a number of warps. A warp is an instruction which takes

control of a maximum of 32 cores which are executed with SIMT. Within a warp, each group

of threads executes the same instruction which is broadcast by a warp scheduler. This

architecture limits the overhead in dispatching, scheduling, and context scheduling each

thread to the point where it is handled by dedicated on-chip hardware.

One of the issues that arises with this architecture, is the handling of branched code (i.e. if-

else statements). If two threads within a warp reach a condition statement and branch off to

execute different code, the warp would have to issue different instructions to each thread.

To avoid this each condition would run as shown in Figure 4.6.

In
s
tr

u
c
ti
o
n

 C
a

c
h
e

W
a

rp
 S

c
h

e
d

u
le

r
W

a
rp

 S
c
h

e
d

u
le

r
W

a
rp

 S
c
h

e
d

u
le

r

T
e

x
tu

re
 M

e
m

o
ry

C
o
n

s
ta

n
t

M
e

m
o

ry

S
h

a
re

d
 M

e
m

o
ry

L
1

 C
a

c
h

e

Core Core

Core Core

Core Core

Core Core

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 47

University of Pretoria

Figure 4.6 SIMT branch execution.

In Figure 4.6, each thread executes the same instructions in the blue region, then a condition

instruction is met. The threads for which the condition block is true then execute the code in

the branch (green region) while the blocks for which the condition is false do nothing (white

region). When the true branches have returned the false branches execute (yellow region)

while the threads for which the condition was true do nothing. The false branches return and

the threads continue executing the same instructions together again. Note that true branches

do not necessarily execute first, this is merely a demonstrative explanation.

In this manner, branched code can be handled but incurring a significant penalty when

threads on the same warp execute divergent code. It is thus the designer’s task to ensure

inter-warp divergence is limited and that synchronisation between blocks is minimised. This

is because inter-block synchronisation is only achievable through multiple kernel launches.

Furthermore, when optimizing for a specific architecture, the block and grid sizes should be

selected to allow for maximum utilisation of the GPU’s processing performance.

4.2.2 Memory structure

Due to the mass parallelism implemented on GPUs it is possible to achieve extremely high

computational rates. Often though, a major limiting factor is being able to feed the processing

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

True False True True False

T
im

e

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 48

University of Pretoria

cores such that they can continuously process data. In order to feed the cores at a high enough

rate, GPUs implement a complex memory hierarchy which allows designers to cache and

feed data to the processors.

Figure 4.7 Memory transfer from paged memory to global memory on a discrete GPU.

The memory of discrete GPUs differs from that of embedded GPUs, largely because discrete

GPUs have a frame buffer on separate memory hardware to the host CPU, while embedded

GPUs share the same physical memory. A typical memory copy from paged memory to

global memory on a discrete device is shown in Figure 4.7.

As can be seen from Figure 4.7, the transferring from paged memory to the device or global

memory requires copying the paged memory to a cache or buffer of pinned memory. The

GPU driver requires that memory copies to and from the host performed using pinned

memory. The pinned cache is then transferred across a PCIe bus and is copied to global

memory which sits on the device. This can be compared to an embedded GPU where the

CPU and GPU share the same RAM, as shown in Figure 4.8. While the GPU must still access

pinned memory, there is no need to transfer the memory across a slower bus allowing the

CPU and GPU to use the same memory. The disadvantage with this configuration is that the

GPU must access slower CPU memory which can limit the performance of the GPU.

Host Memory

(medium bandwidth)

Paged memory

 Pinned

Memory

Pinned

cache

G
lo

b
al

 m
em

o
ry

(H
ig

h
 b

an
d
w

id
th

)

Device

L
o
ca

l
m

em
o

ry
 (

ca
ch

es
)

S
tr

ea
m

in
g
 m

u
lt

ip
ro

ce
ss

o
rs

PCIe Bus

(low bandwidth)

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 49

University of Pretoria

Figure 4.8 Memory transfer from paged memory to global memory on an embedded GPU.

Due to the limited automatic caching and memory management in GPUs [54], memory

management must be handled/optimised manually. In order to successfully optimise

memory access, the memory model must be understood. The memory types are detailed in

Addendum B.

4.3 COMPARING GPU AND CPU PROCESSORS

From the previous section it is clear that many similarities exist between CPUs and GPUs,

and that many problems can be solved using either one. This section serves to highlight the

differences between the two processing platforms with regard, to the processors’ suitability

in solving different problems.

It should be noted that a GPU cannot operate independently of a host CPU, and as such, on

a system with a GPU non suitable problems can be handed off to the other processor,

although in the case of a discrete GPU there is a transfer cost which must be taken into

account.

4.3.1 Task and data parallelism

The first and probably most crucial concept to grasp when deciding between processing

platforms is the difference between task and data parallelism. Task parallelism refers to a

task’s capability to be separated into different parts which are processed concurrently [49].

Host Memory

Paged memory

Pinned Memory

CPU

GPU

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 50

University of Pretoria

Each part, or thread, can process the same data or different data, and can execute the same

task or different tasks. Data parallelism refers to the same task being performed on different

data concurrently [49]. As such, data parallelism is more restrictive than task parallelism;

however, many computing operations still exhibit behaviour which can be data parallelised.

The CPU is an example of a processor which can utilise task parallelism using threads. Each

thread can operate independently and threads can run concurrently (assuming a multi-core

CPU). CPUs can take further advantage of data parallelism within each thread. This is

predominantly performed using SIMD instructions. Furthermore, in the case of a serial task,

the CPU is more suited as its heavy-thread structure and typically higher clock speed result

in higher FLOPS/core. Thus, when processing a serial task that can only use one core, a CPU

would normally outperform a GPU.

GPUs, on the other hand, cannot easily take full advantage of task parallelism (as discussed

in Execution of threads), as task parallelism is executed serially instead of in parallel within

a warp, and outside of that, task parallelism will often impair memory coalescing [49], thus

slowing the execution of kernels. Rather, GPUs are generally more suited to data parallelism,

and even more so, mass data parallelism, where all the cores can be utilised.

4.3.2 Latency and throughput

Assuming the task is efficiently implemented on both processors, task suitability can be

decided by other factors such as latency. Even if a GPU is well utilised, the memory transfers

required and driver calls which kernels must pass through, generally result in a higher latency

(time between issuing the task and processing to start, including the time after completion

of processing to fetch the results) than a CPU [55].

On the other hand, when computational requirements are limiting execution time and

sufficient data parallelism exists, GPUs can achieve higher throughput. In operations

requiring sufficient computation, the increase in throughput can compensate for the latency

experienced in issuing the task to a GPU.

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 51

University of Pretoria

In general GPUs are more suited to large computationally intensive tasks which can tolerate

high latency. Conversely CPUs are suited to tasks with lower latency but also lower

throughput. Although not considered in this study, it should be noted that FPGAs and DSPs

generally exhibit even lower latency than CPUs.

4.4 IMPLEMENTATION HARDWARE

Two processing platforms were used to evaluate the computational performance of the

design. Both platforms were chosen to be mobile and to have CUDA capable GPUs to allow

for the easy transportation and implementation of the system. Mobile systems were chosen

as mobility compliments the concept of a low-cost passive radar, by allowing a disposable

[56] or low-cost system to deploy in remote regions where power or access restrictions could

cripple conventional radar.

4.4.1 Mobile system

The mobile system in this context refers to an OTS laptop which was used as the host for the

receiver and to perform processing. The laptop used Windows 8.1 as an operating system

and CUDA 7.5 was used to implement the GPU aspects of the system. The host code (C++)

was compiled using MSCV12.0. The host specifications for the mobile section are shown in

Table 4.1.

Table 4.1 Mobile system host specifications.

CPU # Cores Memory / BW SIMD

Extensions

Processor

TDP

Intel® Core™

i7-4710MQ

4 (8 threads) @

2.5 GHz (3.5

GHz boost)

16GB DDR3

1600 MHz /

38.4 GB/s

SSE4.1/4.2,

AVX2

47 W

The specifications for the GPU on the mobile system are shown in Table 4.2. The peak

FLOPS of the mobile GPU is 3104 GFLOPS while the mobile CPU has 27.76 GFLOPS. It

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 52

University of Pretoria

can therefore be seen that the raw processing power of the GPU far exceeds that of the CPU.

However, utilising that capability is difficult.

Table 4.2 Mobile system device specifications.

GPU # CUDA Cores Memory / BW Compute

capability

Processor

TDP

GeForce GTX

880m

1536 @ 954

MHz

8GB GDDR5

@ 2500 MHz /

160 GB/s

3.0 122 W

An example of this can be seen when the memory bandwidths are compared. The CPU has

a memory bandwidth of 38.4 GB/s which given a 4-byte float translates to 9.6 Gfloats/s and

a theoretical compute performance of 27.76 GFLOPS, which translates to a 2.89 times higher

compute to memory ratio.

The GPU with a compute performance of 3104 GFLOPS and a memory bandwidth of 40

Gfloats/s has a compute to memory ratio of 77.6. Therefore, minimising global memory

access is critical when designing high performance kernels.

4.4.2 Embedded system

The embedded system was an NVidia Jetson TK1 development board [57] designed for low

power mobile computing. The development board was used to host the receiver as well as

perform all the signal processing. The embedded system ran Jetson TK1 DevKit L4T OS as

the operating system, essentially a modified version of Ubuntu for ARM. CUDA 6.5 was

used for all GPU aspects, as later versions of CUDA are not supported for the development

board. Host code was compiled using g++ 4.9. The host specifications for the embedded

system are shown in Table 4.3.

© University of Pretoria

CHAPTER 4 PROCESSING PLATFORMS

Department of Electrical, Electronic and Computer Engineering 53

University of Pretoria

Table 4.3 Embedded system host specifications.

CPU # Cores Memory / BW SIMD

Extensions

Processor

TDP

“4-plus-1” core

ARM cortex-

A15

4 @ 2.32 GHz 2GB DDR3L

@ 933MHz /

14.93 GB/s

NEON <11 W (entire

board)

The specifications for the device are shown in Table 4.4. The Jetson TK1’s GPU has a

theoretical maximum floating point calculation rate of 326 GFLOPS. This is much lower

than the mobile processor but requires only 11 W for the entire development board, while

the mobile systems GPU and CPU alone require 169 W. The embedded system is thus a low

power, low cost, low performance system when compared to the mobile system.

Table 4.4 Embedded system device specifications.

GPU # CUDA Cores Memory / BW Compute

capability

Processor

TDP

Tegra TK1

192 @ 852

MHz

2GB DDR3L

@ 933MHz /

14.93 GB/

3.2 <11 W (entire

board)

4.5 SUMMARY

Two processing platforms are considered. It was shown that GPUs are suited to

arithmetically intense tasks that exhibit massive data parallelism. On the other hand, CPUs

are best suited to more complex memory accessing patterns and serial algorithms.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

The processing chain takes the raw samples of the electromagnetic energy received by the

antennas and processes them to extract usable information. The processing chain is broken

down into blocks. The operation of the processing chain, and hence the association between

the blocks which are discussed later in this chapter, is shown in Figure 5.1.

Figure 5.1 Detailed Processing chain.

The metrics used in the evaluation of the processing chain are detailed in Addendum C.

5.1 INITIAL EVALUATION

In order to gain basic understanding into the passive radar processing chain, and to initially

evaluate where improvements could be made, a processing chain was developed, based on

literature [12] and fed with a second of captured data. The processing chain was implemented

in MATLAB on the mobile platform. In the literature [12], an adaptive lattice filter was used

to remove the direct path and clutter. A 50 stage filter was used in the literature. It was found,

however, that in order to cancel all the significant clutter, a 200 stage filter was required. In

other literature it has been shown that a Wiener-Hoph filter is optimal [9]. As such, a Wiener-

Hoph filter was also implemented.

Two methods for implementing a matched filter are presented. The first uses FDC, while the

second uses a decimating filter followed by FDC. The decimating method requires fewer

computations than straight FDC, however it results in sub-optimal correlation due to

Start

Capture
CPI

Copy
buffer

DPI
cancellation

Matched
Filter

Copy
buffer

Detection and
collation

State Smoothing
Filter

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 55

University of Pretoria

aliasing. All other parameters were kept equivalent to those specified in [12]. The average

runtimes of the simulations are shown in Table 5.1.

Table 5.1 Average execution time of processing blocks for the preliminary investigation.

Function Average Execution Time (s)

Wiener-Hoph Filter 13.09

Adaptive Lattice Filter 23.65

FDC 2.754

Decimated FDC 3.045

CFAR 7 × 10−3

As can be seen from Table 5.1, the adaptive filters take far longer to execute than the matched

filters. Additionally, it was found that the execution time of these processing blocks is not

directly related to the number of computations, but is also dependant on the processing

block’s ability to effectively use the processing platform’s hardware.

In order to realise a real-time system on either of the platforms, it is clear that a more efficient

processing chain is required. As the adaptive filters are the most demanding, the process

began and mainly focused on reducing the execution time of the DPI and clutter cancellation

filter. The matched filters also require a reduction in execution time. However due to the

highly optimised FFT algorithms already available in many libraries there is limited

improvement which can be made aside from implementing the most optimised variant and

streamlining memory access.

The Matlab implementation was no longer used, and an operational system was developed

based on C++ and CUDA.

5.2 CANCELLATION FILTER

The cancellation filter interacts with the remainder of the processing chain as depicted in

Figure 5.1. The cancellation filter operates by removing specified components from the

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 56

University of Pretoria

surveillance signal, namely the direct path and clutter. These components create sidelobes

on the ARD region where targets exist, thus preventing the targets from being detected. The

resultant surveillance channel is defined by

 𝑠̂ = 𝑠 − 𝑤̂ (5.1)

where

 𝑠 is the surveillance channel, and

 𝑤̂ is the filters estimate of the direct path and clutter components in 𝑠.

Alternatively, in range-Doppler space, (5.1) can be written as

 𝑠̂ = 𝑠 − 𝐴𝑥̂ (5.2)

where

 𝑥̂ is a vector containing the estimated filter weights, and

 𝐴 is defined in Section 5.2.1.

The cancellation filter, as an adaptive filter is described functionally in Figure 5.2.

Figure 5.2 Functional Diagram of cancellation filter.

From Figure 5.2, it can be seen that the DPI and clutter cancellation filter is essentially an

adaptive interference cancellation filter. The difference between a conventional interference

filter and a DPI cancellation filter is that the cancellation region is less strictly defined.

5.2.1 Choice of cancellation region

The region where cancellation should be applied is where the DPI and clutter lie. This area

is defined with regard to the cancellation filter by defining a matrix 𝐴 which is an 𝑀 × 𝑁

matrix. 𝑁 defines the length of the surveillance and reference channels over which

cancellation applies, and M defines the number of ARD bins which are cancelled as well as

+ 𝑠n
∑

𝑤̂n − Adaptive
Filter

𝑟𝑛

𝑠̂n

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 57

University of Pretoria

the degrees of freedom allocated to the filter. It should be noted that, due to the long CPI

resultant from a desired SNR gain, it is assumed that 𝑁 ≫ 𝑀.

The cancellation region is, therefore, selected by the choice of the columns of 𝐴. Each

column of 𝐴 is created by delaying 𝑟 by the number of samples corresponding to range index

desired, and modulating that result with respect to the Doppler index required.

Ideally the clutter and DPI would exist solely without a Doppler shift; in practice this is

rarely the case. Clutter spread can be caused by non-stationary antennas, moving clutter such

as trees and imperfect coherency between channels. In order to consistently remove the DPI

and clutter, the cancellation needs to be widened to include additional Doppler indices. Two

methods can be used to achieve this.

The first method is simply to include the additional ARD bins into A. The result is that 𝑀

becomes larger, thus increasing the computational requirements. The second method [2]

involves breaking the reference and surveillance channels into batches of equal size and

applying the filter to each batch. The effective cancellation width in Doppler is then

𝐵𝑑 =

𝐹𝑠𝑃

𝑁
 (5.3)

where

 𝐹𝑠 is the sampling frequency, and

 𝑃 is the number of batches.

The batch length is then given by

𝑁′ =

𝑁

𝑃
. (5.4)

This is obviously only an option when 𝑃 is a factor of 𝑁.

Several methods can be used to estimate the filter weights. The most applicable methods are

grouped into three categories and discussed below.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 58

University of Pretoria

5.2.2 Wiener-Hoph Filter

The Wiener-Hoph filter is a linearly optimum filter [58] which can be applied to

stochastically stationary processes. The filer can find the optimal least squares solution.

However, it is normally regarded as computationally cumbersome [59] and ill-suited to real-

time applications [9]. The filter is defined by solving the Wiener-Hoph equations [58],

∑ 𝑥̂𝑖

∞

𝑖=0

Ε[𝑟𝑛−𝑘𝑟𝑛−𝑖
∗] = Ε[𝑟𝑛−𝑘𝑠𝑛

∗] (5.5)

where

 Ε[𝑥] is the statistical expectation of 𝑥,

 𝑛 is the current sample number,

 𝑥̂𝑖 is the 𝑖th filter weight,

 𝑥∗ is the complex conjugate of 𝑥, and

 𝑘 = 0,1,2, … , ∞.

The filter described by (5.5) is infinitely long and requires infinite statistical information,

which is clearly impractical. For the case when the number of filter weights is finite, the

filter can be rewritten as

∑ 𝑥̂𝑖

𝑀−1

𝑖=0

Ε[𝑟𝑛−𝑘𝑟𝑛−𝑖
∗] = Ε[𝑟𝑛−𝑘𝑠𝑛

∗] (5.6)

where

 𝑘 = 0,1,2, … , 𝑀 − 1.

The filter can now be expressed in matrix form by defining the 𝑀 × 𝑀 auto-correlation

matrix,

 𝐶 = Ε[𝑢(𝑛)𝑢𝐻(𝑛)] (5.7)

where

 𝑢(𝑛) is a vector of the filter’s inputs (defined by the selection of the cancellation

region) at sample 𝑛.

Next a cross-correlation vector is defined as

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 59

University of Pretoria

 𝑑 = Ε[𝑢(𝑛)𝑠𝑛
∗]. (5.8)

The filter is then written as

 𝐶𝑥̂ = 𝑑. (5.9)

The auto-correlation matrix, 𝐶, is now an 𝑀 × 𝑀 matrix and 𝑑 is an 𝑀 element vector. The

square system can now be solved via a number of numerical linear equation solvers which

are suited to square matrices. However, the statistical properties of the system are unknown

and thus the statistical expectation cannot be calculated. Instead, it is estimated.

𝐶 and 𝑑 may be estimated from the inputs to the filter. The estimations are known as sample

covariance matrices. The estimate of 𝐶 is found using

 𝐶̂ = 𝐴𝐻𝐴 (5.10)

and the estimate of 𝑑 is found using

 𝑑̂ = 𝐴𝐻𝑠. (5.11)

It should be noted that the estimates in (5.10) and (5.11) need to be scaled by 1/𝑁. However,

in (5.9) the two constants cancel and, as such, there is no need to calculate and scale these

values.

The approximate computational complexities for a variety of common solvers are shown in

Table 5.2, these are derived in Addendum A. Where the 𝑁𝑀2 term is related to the formation

of 𝐶, and the 𝑁3 term is related to the factorisation.

Table 5.2. Computational cost of Wiener filters

Solver Time cost Flop count

𝐋𝐔 2

3
𝑀3 + 2𝑁𝑀2

8

3
𝑀3 + 16𝑁𝑀2

𝐋𝐃𝐋 1

3
𝑀3 + 2𝑁𝑀2

4

3
𝑀3 + 8𝑁𝑀2

𝐂𝐡𝐨𝐥𝐞𝐬𝐤𝐲 1

3
𝑀3 + 2𝑁𝑀2

4

3
𝑀3 + 8𝑁𝑀2

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 60

University of Pretoria

5.2.3 Linear least squares

Linear least squares solves the system of linear equation

 min
𝑥

‖𝑏 − 𝐴𝑥‖ (5.12)

There are a number of methods which can be used to directly solve the least squares problem.

Assuming that 𝐴 is invertible, the solution is given by

 𝑥 = (𝐴𝐻𝐴)−1𝐴𝐻𝑏. (5.13)

However, due to numerical limitations and stability the inverse is rarely ever calculated. A

few methods for solving (5.12) are introduced in Addendum A. The computational

complexities for these are also derived in Addendum A, and the approximate computational

complexities are shown in Table 5.3.

Table 5.3. Computational cost of least squares filters

Filter Time cost Flop count

𝐐𝐑 2𝑁𝑀2 8𝑁𝑀2

𝐂𝐆𝐋𝐒 4𝑁𝑀(𝐾 + 1) 16𝑁𝑀(𝐾 + 1)

5.2.4 Miscellaneous Filters

Several other filters have been explored in literature. These include the CGLS filter, and the

Gradient adaptive lattice filter. These are introduced in Addendum A, where their

computational complexities are defined. Another method is introduced below, called

correlative cancellation. The approximate computational complexities are shown in Table

5.4.

Table 5.4. Computational cost of miscellaneous filters

Filter Time cost Flop count

CLEAN 2𝑁𝑀2 8𝑁𝑀2

Correlative 4𝑁𝑀(𝐾 + 1) 16𝑁𝑀(𝐾 + 1)

Gradient Adaptive Lattice 26𝑁𝑀 69𝑁𝑀

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 61

University of Pretoria

Additional filters are also explored in literature, however, many of them require careful

tuning to achieve suitable cancellation results [33]. These filters were, therefore, not further

explored.

5.2.4.1 Correlative cancellation

Correlative least squares is an algorithm intended to allow sufficient, but not optimal, DPI

cancellation with minimal time cost and FLOP count. The algorithm operates by iteratively

removing the DPI and clutter components relating to each row of 𝐴.

This algorithm can be seen to operate similarly to a CLEAN algorithm except, instead of the

algorithm determining which column of 𝐴 is the largest contributor, the algorithm uses

approximations to predetermine which column of 𝐴 to remove. As such, compared to the

CLEAN algorithm, the computational cost of removing each component is comparatively

low.

The algorithm has two loops. The inner loop runs for each column of 𝐴, i.e. 𝑖 ∈ 1,2, … 𝑀.

First, the component of the 𝑖th column of A in 𝑏 is estimated by

𝑥𝑖𝑗 =

𝑏̂𝑖𝑗 ∙ 𝐴𝑖
∗

‖𝐴𝑖
∗‖

2 (5.14)

where

 𝑏̂𝑖𝑗 is the resultant surveillance channel after iteration 𝑖𝑗.

While ‖𝐴𝑖
∗‖2 is required it can be approximated by |𝐴𝑖| = |𝐴0| and as such only needs to be

calculated once. The update is calculated using

 𝑏̂(𝑖+1)𝑗 = 𝑏̂𝑖𝑗 − 𝑥𝑖𝑗𝐴𝑖. (5.15)

The outer loop runs over 𝐾 iterations such that 𝑗 ∈ 1,2, … , 𝐾.

5.2.5 Optimisation

What optimisation is available for the general operations used in the cancellation filters, is

already implemented in mature libraries. These libraries were used for the realisation of the

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 62

University of Pretoria

filters. In order to reduce the algorithmic requirements, the generality of the system must be

reduced.

Firstly, the assumption is placed that the DPI clutter exists where the reference signal is

unmodulated, i.e. the DPI and clutter are centred on the zero Doppler index. Secondly, it is

assumed that a widening in the cancellation region in the Doppler dimension (as described

in Section 5.2.1) results in 𝐴 consisting of delayed versions of the reference channel. The

problem is then further restricted by defining each row of 𝐴 as

 𝐴𝑖 = 𝑟2−𝑖:𝑁−𝑖 (5.16)

where

 𝑟 is the reference channel vector, and

 𝑖 ∈ 1,2 … , 𝑀.

The elements of 𝑟 where 𝑖 < 1 are samples received before the start of the surveillance

channel. Hence, 𝐴 is now defined as a sampled tapped delay line.

5.2.5.1 Algorithmic optimisation

When analysing the time cost and FLOP count required, it can be seen that for the group of

reduced linear solvers (refer to Table 5.2), the majority of the processing is required to reduce

the system, primarily (5.10), with a time cost of 2𝑁𝑀2 operations.

The first, and obvious step, would be to take advantage of the Hermitian structure of 𝐶.

Doing so allows only the upper or lower triangular sections to be explicitly calculated, while

the remaining entries can be filled in as the conjugate of the corresponding element such that

 𝐶𝑗,𝑖
∗ = 𝐶𝑖,𝑗 (5.17)

where

 𝑖 ≠ 𝑗.

This reduces the time cost to 𝑁𝑀(1 + 𝑀) operations.

Secondly, the standard matrix multiplication algorithm calculates each element of 𝐶 as,

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 63

University of Pretoria

𝐶𝑖,𝑗 = ∑ 𝐴𝑖,𝑘𝐴𝑘,𝑗
𝐻

𝑁

𝑘=1

= ∑ 𝐴𝑖,𝑘𝐴𝑗,𝑘
∗

𝑁

𝑘=1

. (5.18)

Given that 𝐴 is described by (5.16) and

 𝑟𝑖 = 0 ∀ 𝑖 ∈ 𝑍 < 1 (5.19)

each element of 𝐶 where 𝑖 ≥ 𝑗 is given by

 𝐶𝑖,𝑗 = 𝑟𝑖:𝑁+𝑖 ∙ 𝑟𝑖−𝑗+1:𝑁+𝑖−𝑗+1
∗ (5.20)

for all elements of 𝐶 there exists only 𝑁𝑀 + 𝑀2 unique products. The matrix can then be

filled by calculating the elements 𝐶𝑀,1:𝑀 (essentially a matrix-vector product) and filling the

diagonals as shown in Figure 5.3.

Figure 5.3 Optimised matrix fill algorithm.

Once the unshaded elements (𝐶𝑀,1:𝑀) are calculated, the matrix is populated by sequentially

applying (5.21) in the direction of the arrows (shown in Figure 5.3).

 𝐶𝑖+1,𝑗+1 = 𝐶𝑖,𝑗 + 𝐴𝑖,𝑖+𝑁+1𝐴𝑗,𝑖+𝑁+1
∗ − 𝐴𝑖,𝑖𝐴𝑗,𝑖

∗ (5.21)

The time cost is therefore reduced to 2𝑁𝑀 + 2/3𝑀2 and the FLOP count to 8𝑁𝑀 + 8/3𝑀2.

5.2.5.2 GPU optimisation

The GPU allows for a high number of FLOPS to be processed. Utilizing this potential,

however, requires careful design and specific strategies. In many of the functions above, the

computational complexity is in the order of the size data. For example, 𝑠 = 𝐴𝑥 has a time

cost of 2𝑁𝑀, but to execute this the processor must access 𝑁𝑀 data pieces. This generally

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 64

University of Pretoria

results in a bottle neck where the processors spend the majority of the application runtime

waiting for the information which they require.

However, if the restrictions to the problem are kept in mind, many of the data dimensions

can be reduced to 𝑁 instead of 𝑁𝑀. This allows for an increase in the processing to memory

access ratio. The strategies and principles followed in order to implement this are discussed

in Section 4.2.

It should be noted that by replacing the library implementations of the functions with those

discussed in this section, the cancellation filter’s dependence on 𝐴 is removed and it no

longer needs to be explicitly calculated. This allows for a reduction in both memory usage

and processing.

Matrix-vector multiplication

In this function the matrix 𝐴 (𝑁 × 𝑀) is multiplied by an 𝑀 × 1 column vector 𝑥 resulting

in an 𝑁 × 1 column vector 𝑦. The required operation for each element of 𝑦 is

 𝑦𝑖 = 𝑥 ⋅ 𝑟𝑖−𝑀+1:𝑖. (5.22)

Firstly, parallelism can be established by allowing each thread to calculate each element of

𝑦. Access redundancy in 𝑥 and in sections of 𝑟 are evident. In order to reduce the number of

accesses to global memory, shared memory is used. This is achieved by loading a block of

𝑟 and 𝑥 elements in to shared memory. The operations which use those elements execute,

and once completed, the next blocks are loaded in. This technique provides acceleration

because it reduces the latency when elements are accessed multiple times within a thread

block. However, in situations where elements are not accessed numerous times, this would

not provide any performance gain and may even result in degradation.

The library (gemv2N) [60] and optimised (shiftvec_AB) kernels were then profiled using

the final implementation configuration, i.e. 𝑁′ = 4000, and 𝑀 = 256, on the mobile system.

The results are shown in Table 5.5.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 65

University of Pretoria

Table 5.5 y=Ax kernel profiles.

Kernel name Execution time (µs) Occupancy (%) Achieved GFLOPS

gemv2N 741.17 56.25 117.32

shiftvec_AB 166.00 100 492.44

As seen in Table 5.5, there is a marked improvement in both execution time and achieved

FLOPS. The optimised algorithm ran 4.46 times faster and achieved 4.20 the FLOPS.

Matrix-transpose vector multiplication

In this function the matrix 𝐴𝐻 (𝑀 × 𝑁) is multiplied by an 𝑁 × 1 column vector 𝑥, resulting

in an 𝑀 × 1 column vector 𝑦. The required operation for each element of 𝑦 is

 𝑦𝑖 = 𝑥 ⋅ 𝑟𝑖−𝑀+1:𝑖. (5.23)

Parallelism could be achieved by allowing each thread to calculate an element of 𝑦, but as

𝑀 is typically a relatively small dimension, this would not fully utilize the GPU. Instead, 𝐴

was divided into shorter pieces such that each thread could calculate a section of an element

of 𝑦, which were later consolidated to form the elements of 𝑦.

The library (gemv2T) and optimised (shiftvec_2AtB) kernels were then profiled using the

final implementation configuration, i.e. 𝑁′ = 4000, and 𝑀 = 256, on the mobile system.

The results are shown in Table 5.6.

Table 5.6 y=AHx kernel profiles.

Kernel name Execution time (µs) Occupancy (%) Achieved GFLOPS

gemv2T 917.01 75 99.121

shiftvec_2AtB 176.59 50 462.56

As seen in Table 5.6, there is a marked improvement in both execution time and achieved

FLOPS. The optimised algorithm ran 5.19 times faster and achieved 4.67 the FLOPS.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 66

University of Pretoria

When comparing the profiles of shiftvec_2AtB and shiftvec_AB, it can be seen that there is

a large deviation in occupancy. However, the achieved FLOPS remains fairly constant. This

would indicate that memory access remains the bottle-neck and further improvement is

required to effectively utilize the GPU.

Matrix multiplication with its transpose

The optimization of 𝐶 = 𝐴𝐻𝐴, was implemented using the reduced algorithm discussed in

Section 5.2.5.1. Parallelism was achieved by allowing each thread to calculate each diagonal.

Global memory access was reduced through the use of shared memory.

The library(cgemm) and optimised (CeAhA and CeAhA_upper) kernels were then profiled

using the final implementation configuration, i.e. 𝑁′ = 4000, and 𝑀 = 256, on the mobile

system. The results are shown in Table 5.7.

Table 5.7 C=AHA.

Kernel name Execution time (ms) Occupancy (%) Achieved GFLOPS

cgemm 19.287 50 1087.36

CeAhA 2.044 75 40.357

CeAhA_upper 1.791 75 45.586

Table 5.7 shows three kernels, cgemm which is a library matrix multiplication function,

CeAhA which is an optimised function which writes out the whole of 𝐶, and CeAhA_upper

which is an optimised function but only writes out the upper triangular entries, which can be

used for the LDLT and Cholesky factorisation.

From Table 5.7 it can be seen that an improvement in execution time can be found between

the library functions and the optimised functions requiring 9.436 and 10.769 times less time

to execute for CeAhA and CeAhA_upper kernels, respectively.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 67

University of Pretoria

The decrease in FLOPS is largely as a result of the decrease in parallelism between the

library algorithm and the optimised algorithm. In the current configuration, only 256 of the

1536 processing cores available (which is 16.67% of the total GPU capacity).

Furthermore, it can be seen that the writing out the entire matrix requires a further 14.13%

of the required execution time. This reduction in execution time may be utilized by a

Cholesky or LDLT factorisation over a factorisation which requires the entire matrix to be

filled, such as LU factorisation.

5.2.6 Experiments and results

In order to compare the performance of the filters, a case study was held on a typical set of

data. From this set, the performance of each algorithm was evaluated in terms of

computational performance and the cancellations’ effectiveness.

5.2.6.1 Cancellation effectiveness

The effectiveness of the cancellation was evaluated by analysing a typical set of recorded

data (described below). The data was processed using each of the filters discussed in Section

5.2.

In some experiments, an estimate of the noise or noise floor is required. Due to the nature of

real data, the noise floor is not analytically determinable. Instead, an empirical noise floor

was determined. This was calculated by selecting a section of the ARD where no targets, or

clutter, are present (determined by analysing the ARD produced by QR least squares) and

averaging that region such that

𝐴𝑁 = √
1

𝑁
∑ 𝑧𝑖𝑧𝑖

∗

𝑁

𝑖=1

 (5.24)

where

 𝐴𝑁 is the amplitude of the noise floor,

 𝑁 is the number of bins in the cancellation region, and

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 68

University of Pretoria

 𝑧𝑖 is the 𝑖th bin used to estimate the noise floor.

The effectiveness of the two iterative techniques can be largely based on the estimate of the

filter weights. Two cases were, therefore, examined. The first case was using a poor estimate

which was found by injecting a zero vector as the initial estimate. The second case examined

the effectiveness of the filters when a good estimate was available. This estimate was derived

by applying a QR least squares to the previous CPI of data. The least squares filter is solved

using QR decomposition, while the Wiener-Hoph filter is solved for via LU decomposition.

Figure 5.4 Signal space of data used for analysis.

Dataset

The dataset used for the analysis was sampled from a commercial FM radio transmitter

transmitting at 93.46 MHz. The baseline distance between the transmitter and receiver was

74.46 km, and the receiver was set to receive at a sample rate of 200 kS/s.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 69

University of Pretoria

The configuration of the filters was equivalent to that of the final implementation and is

detailed in Table 5.8, unless otherwise stated. The dataset used for the analysis of the

effectiveness of the cancellation filters contains three targets highlighted in Figure 5.4.

Targets 1 and 2 have low bi-static ranges and are located at a range of 87.17 km and at a

Doppler shift of 5.5 Hz (Target 1), and at a range of 102.2 km and a Doppler shift of 18.5 Hz

(Target 2). Target 3 is further from both the DPI and clutter and is located at a range of

216.1 km and a Doppler shift of 117.5 Hz.

Table 5.8 Cancellation filter configuration.

Parameter Symbol Value

CPI length 𝑁 800 × 103

Batch Length 𝑁′ 40 000

Number of Batches 𝑃 20

Number of bins cancelled 𝑀 256

Number of iterations 𝐾 30

Doppler resolution ∆𝐷𝑜𝑝 0.25 Hz

Minimum range resolution ∆𝑅 1.5 km

Magnitude of cancellation region bins

The magnitude of the ARD bins in cancellation region was evaluated, as this is the region

where the filters have the greatest influence. The magnitude is determined by

𝑅𝑀𝑆𝑐 = √
1

𝑃
∑ 𝑧𝑖𝑧𝑖

∗

𝑃

𝑖=1

, (5.25)

where 𝑧𝑖 is the 𝑖th bin in the cancellation region, and 𝑃 is the number of ARD bins which

form the cancellation region. The results found for the non-iterative filters are shown in

Table 5.9.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 70

University of Pretoria

Table 5.9 Magnitude of cancellation region bins for non-iterative filters.

Algorithm Magnitude of cancellation region bins (dB)

No Cancellation 116.1

Least squares filter −52.30

Wiener-Hoph filter −52.30

GAL filter 56.32

Figure 5.5 DPI and Clutter return for non-iterative cancellation filters.

As can be seen from Table 5.9, the least squares filter, which is theoretically the most

numerically accurate of the methods investigated [61], performs well and reduces the clutter

region by 168.38 dB. The Wiener-Hoph filter provides the same reduction of the

cancellation region as the least squares filter (168.38 dB). The GAL filter did provide some

reduction, however, it is significantly less than the other two filters in Table 5.9 (59.68 dB).

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 71

University of Pretoria

Figure 5.6 Magnitude of cancellation region bins for iterative filters.

The GAL filter’s clutter region (shown in Figure 5.5), although lower than the unfiltered

signal, has residual elements which are 73 dB above the noise floor. These residual elements

can still result in the masking of targets. The direct path, present at 74.46 km, is shown to

be supressed. However, the GAL algorithm was unable to supress some of the strong clutter

returns.

The results for the iterative methods when fed a poor estimate are shown in Figure 5.6 along

with the empirical noise floor. As can be seen in Figure 5.6, the correlative filter converges

faster than the CGLS solution. It can be seen that the iterative filters perform far better with

a good estimate, achieving a cancellation below the optimal noise floor (the noise floor after

an optimal filter is used). Without an estimate after 40 iterations, the cancellation region does

not reach the optimal noise floor for either iterative filter. When a good estimate is provided,

the correlative filter takes 8 iterations to achieve an RMS cancellation region of 1 dB short

of the optimal, while CGLS takes 10 iterations.

In the first iteration, the CLEAN algorithm provided good cancellation, but the cancellation

subsequent iterations diminished. This results from the low number of components that

CLEAN algorithm cancels each iteration. As such, when there is a single strong component

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 72

University of Pretoria

(such as DPI) it effectively cancels it. However, when there are multiple components with

similar amplitudes (such as clutter), cancelling a single component has a diminished effect.

Euclidian norm of surveillance channel

In order to evaluate filter performance based on the LS filter’s cost function (5.12), the norm

of the filtered surveillance channel is evaluated. The norm ‖𝑥‖, is calculated as

‖𝑥‖2 = ∑ 𝑥𝑖𝑥𝑖

∗

𝑁

𝑖=1

 (5.26)

Figure 5.7 Norm of surveillance channel after iterative filters.

The resultant norms after the non-iterative filters were applied are shown in Table 5.10.

Table 5.10 Norm of surveillance channel for non-iterative cancellation filters.

Algorithm Norm of surveillance channel (dB)

No Cancellation 34.05

Least squares filter −9.30

Wiener-Hoph filter −9.30

Gal filter 8.787

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 73

University of Pretoria

For the non-iterative methods, a similar trend is found for the surveillance channel norm as

with the cancellation region. The least squares and Wiener-Hoph filter both perform

identically, and far better than the GAL filter. Their similarity is not unexpected due to the

similarities between the filter equations. The equation for Wiener-Hoph filter, (5.9) , is

expanded to,

 𝐴𝐻𝐴𝑥̂ = 𝐴𝐻𝑠. (5.27)

This is then simplified to

 𝐴𝑥̂ − 𝑠 = 0. (5.28)

The resemblance to the least squares filter is therefore clear, by comparing (5.12) and (5.28).

As such, it can be expected that the filters will have approximately identical results, with

differences being caused primarily by numerical inaccuracies.

The results for the iterative filters are shown in Figure 5.7. The resultant Euclidian norm of

the surveillance channel after the iterative filters are applied, follows the trends from

Figure 5.6. Here the Correlative filter continues to perform better than the CGLS solution.

The improvement, however, is only significant when there is poor estimation. The clean

algorithm displayed performance in between the CGLS and correlative algorithms without

estimation. Once again initially converging quickly, but with quickly diminishing returns.

Noise floor

An empirical estimation of the noise floor clutter was taken, as given by (5.25). The region

used for estimation was set away from targets and clutter. The noise floor was analysed as it

gives a good indication of the effect of sidelobes on the signal space as well as the direct

effect DPI and clutter cancellation has. The estimated noise floors achieved for each of the

non-iterative solvers are shown in Table 5.11.

The empirical noise floor for the iterative cancellation filters is shown in Figure 5.8. The

results for the empirical noise floor displays the same trends as seen in the previous two

experiments. The optimal filters result in a 48.11 dB reduction in the noise floor, while the

GAL filter results in a 26.93 dB reduction.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 74

University of Pretoria

Table 5.11 Estimated noise floor after non-iterative cancellation filters.

Algorithm Empirical noise floor (dB)

No cancellation filter 24.63

Least squares filter −23.48

Wiener-Hoph filter −23.48

GAL filter −2.308

Figure 5.8 Empirical noise floor of iterative cancellation filters.

The empirical noise floor found after applying the iterative filters follows the trends found

in the above cases. This demonstrates how the DPI and clutter’s sidelobes contribute

significantly to the noise floor.

Once again, the correlative filter outperforms the CGLS filter, but the difference is not

significant when a good estimate is provided. The difference between the optimal, LS

solution and the iterative solutions is smaller than with the cancellation region and noise.

The Correlative algorithm requires 5 iterations to come within 0.05 dB of the optimal noise

floor while the CGLS algorithm requires 7. The CLEAN algorithm shows similar trends as

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 75

University of Pretoria

the first two metrics, performing in between the CGLS and correlative filters without

estimation.

SNR of target

The SNR was calculated by taking the magnitude of Target 3’s bin and dividing it by the

empirical noise floor. The empirical SNR for the non-iterative methods is shown in

Table 5.12.

Table 5.12 Empirical SNR of non-iterative cancellation filters.

Algorithm Empirical SNR (dB)

No cancellation filter −8.616

Least squares filter 18.76

Wiener-Hoph filter 18.76

GAL filter 6.166

In Table 5.12, it can be seen that the empirical SNR of all the cancellation filters results in a

positive SNR. A clear target, however, was only exposed when the Weiner-Hoph and the

Least-Squares filters were used. The components which make up the empirical SNR estimate

are

SNR𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =

𝑆𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙

𝑁𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
=

𝑆𝑎𝑐𝑡𝑢𝑎𝑙 + 𝑛(𝑡)

𝑁𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
 (5.29)

where

 𝑆𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 is the power of the sampled signal,

 𝑁𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 is the power of the sampled noise,

 𝑆𝑎𝑐𝑡𝑢𝑎𝑙 is the power of the actual signal, and

 𝑛(𝑡) is a noise signal.

As can be seen in (5.30), the empirical signal power is the sum of the signal and noise. As

such, the empirical SNR is only a good approximation of the actual SNR when the actual

SNR is large. In situations where the SNR is low, such as the case without filtering or the

GAL filter, the empirical SNR is mainly a function of the fluctuations in 𝑛(𝑡) and, as such,

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 76

University of Pretoria

a poor indication of the actual SNR. Furthermore, the vast differences in the empirical noise

floor support the hypothesis that the actual SNR without cancellation, and using the GAL

filter, is far lower than the empirical SNR would estimate.

The practical implications for the reduced performance achieved with the GAL filter are that

all but the strongest targets will be obscured. Due to this lack in performance, the GAL filter

was no longer considered a viable alternative, and was not pursued any further.

Figure 5.9 Empirical SNR for iterative cancellation.

The empirical SNR achieved by the iterative filters is shown in Figure 5.9. The Correlative

filter is shown to achieve a higher SNR than the equivalent CGLS filter. While the filter

achieves the SNR of the QR solution when a good estimate is provided there is still a 3.32 dB

deficit after 40 iterations between the Correlative filter and the QR filter when no estimate

is given. The CLEAN initially performs better than the CGLS algorithm without estimation,

but after 32 iterations, the CGLS filter outperforms the CLEAN filter.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 77

University of Pretoria

Discussion of results

It can be seen from the results above that, in practice, the difference in cancellation is

insignificant between the least squares and Wiener-Hoph filters. It can also be seen that when

an iterative approach is adopted, and a poor estimate is used, sub-optimal cancellation is

achieved and detection is impaired. Hence, it is evident that iterative techniques are only a

good design choice when a good estimate is available. This is especially apparent where

processing is restricted and the number of iterations would be limited.

The correlative and CGLS filters, with a good estimate reached within 3 dB of the optimal

solution within 3 iterations co-insides with results found in literature [13]. This provides a

solution that would require far less computation than a full solver.

The CLEAN filter performed well when there was significant DPI but poorly once some

cancellation was applied. As such, it did not provide sufficient cancellation and could not

effectively use prior cancellation. It was therefore, found that the CLEAN filter was not a

suitable design choice and it was no longer pursued as a design choice. The GAL filter

displayed inadequate cancellation of clutter and was excluded as a design option. This could

be a result of the tuning sensitivity of adaptive filters [33], however, more successful

parameters were not found.

Other literature [9] [33] has also found that the least square or Wiener filters are most

successful, along with some well-tuned adaptive filters. They also found that the majority of

adaptive filters are less than optimal, which coincides with the finding here.

5.2.6.2 Computational performance

The computational performance of each filter was measured by running the filter over an

11 minute recording, which results in 165 CPIs where a CPI is 800 × 103 samples. Each

CPI was processed in 20 batches, resulting in a filter length of 40 × 103 samples. The

execution of the test procedure is detailed in Figure 5.10.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 78

University of Pretoria

The mobile platform used the Intel MKL library [51] for CPU BLAS, solver, and DFT

functions. The MKL library is a highly optimised and parallelized library for Intel

processors. The matrix-matrix and matrix-vector library functions were sourced from

cuBLAS [60]. cuBLAS is an optimised library which implements BLAS functions on CUDA

GPU kernels. The solver on the GPU was implemented via cuSolver [62]; a library for

implementing linear algebra solvers via CUDA GPU kernels. GPU based DFTs were

implemented using the cuFFT library [63]; a library for implementing optimized DFTs as

CUDA GPU kernels.

The embedded system used the same libraries for the GPU implementations. As the CPU

was not an Intel device or based on the x86 instruction set, the MKL libraries could not be

used. Instead, the DFTs were implemented via FFTW [64]; a fast implementation of DFTs.

The BLAS and solver functions wee sourced from ATLAS [65]; a library of linear algebra

functions which is tuned/optimised for each device.

The timings were recorded via a system clock and the average time was taken by dividing

the total time by the number of CPIs. The filters were set up as described in Table 5.8, unless

otherwise stated. Hence, the average times are for each CPI or 20 filter runs.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 79

University of Pretoria

Figure 5.10 Testing procedure for compute performance.

Average execution time for CGLS

The achieved average execution time for the CGLS cancellation filter implemented on the

mobile platform when K was 15 is given in Figure 5.11.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 80

University of Pretoria

Figure 5.11 Average execution time for CGLS filter of varying filter size.

As can be seen from Figure 5.11, the optimised GPU filter outperforms the CPU filter

for 𝑀 > 21, and continues to outperform the library based GPU filter for the entire range of

the test. At the design size of 𝑀 = 256, the optimised filter had an average execution time

of 223.2 ms which is 3.91 time faster than the library GPU based filter (which took an

average of 871.9 ms to execute) and 15.69 times faster than the CPU filter (which took an

average of 3 502 ms to execute).

The optimised filter here used the architecturally optimised matrix-vector operations as

discussed in Section 5.2.5.2. The GPU implementation used the equivalent functions found

in CUDA BLAS, and the CPU implementation used equivalent functions found in MKL

BLAS.

Average execution time for LU

The average execution times found for each of the LU cancellation filters when implemented

on the mobile platform are shown in Figure 5.12. In this figure the optimised LU filter and

both hybrid filters use the matrix-matrix and matrix-vector algorithms as discussed in

Section 5.2.5.2. The hybrid algorithms transfer the data back to the host CPU and solve the

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 81

University of Pretoria

reduced problem using the MKL libraries. The CPU algorithm uses the algorithmic

optimisation discussed in Section 5.2.5.1, and solves the reduced problem using the MKL

libraries. The GPU LU cancellation filter and optimised cancellation filters both solve the

reduced system on the GPU using the cuSolver library. The GPU LU cancellation filter

implements all other matrix-vector and matrix-matrix functions from the CUDA BLAS

library.

Figure 5.12 Average execution time for LU cancellation filters.

As can be seen from Figure 5.12, the LDLT generally filter takes longer to solve, even

though the algorithm takes advantage of the Hermitian form of 𝐶. For this reason, it was not

investigated further, although, for much larger 𝑀 it may be an attractive choice.

It can be seen that as filter sizes become larger, the deficit between the hybrid and optimised

LU cancellation filters diminishes. This demonstrates a typical trend in GPU computing;

performing comparatively better for large problem sets [55].

At the design size of 𝑀 = 256, the hybrid LU cancellation filter performs best requiring an

average of 44.60 ms to execute while the optimised implementation took 260.0 ms (5.83

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 82

University of Pretoria

times slower than the hybrid LU cancellation filter). The GPU LU cancellation filter took

797.9 ms (17.89 times slower than the hybrid LU cancellation filter), and the CPU filter

took an average of 2 124 ms to execute (47.63 times slower than the hybrid LU solver).

Figure 5.13 Average execution time for Cholesky cancellation filters.

Average execution time for Cholesky

The average execution times found for the implementations of the Cholesky cancellation

filter are shown in Figure 5.13.The CPU implementation implements the 𝐴𝐻𝐴 algorithm

discussed in Section 5.2.5.1, and matrix-vector and solver functions found in the MKL

library. The GPU Cholesky cancellation filter uses matrix-matrix and matrix-vector

functions from the CUDA BLAS library, and solver functions from the cuSolver library.

The optimised Cholesky cancellation filter solves the reduced system using the cuSolver

library, but uses the optimised functions discussed in Section 5.2.5.2.

The hybrid Cholesky filter proved to be the fastest over the majority of the test range. An

interesting observation that is apparent in Figure 5.13, is that the difference between the

hybrid and optimal implementations is minimal. Also where 𝑀 > 804 the optimal

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 83

University of Pretoria

implementation executes more quickly. This is as a result of the Cholesky algorithm not

requiring pivoting to obtain a factorisation and, as such, is more parallelisable and

subsequently better suited to the GPU.

At the design filter size of 𝑀 = 256, the hybrid implementation takes an average of

37.64 ms to execute, while the optimised implementation takes 55.69 ms. The GPU

implementation takes 791.1 ms (which is 21.01 times slower than the hybrid Cholesky

filter), while the CPU filter took an average of 2163 ms to execute (which is 56.74 times

slower than the hybrid Cholesky filter).

Average execution time for non-optimised cancellation filters

The last two filter categories analysed are ones which could not be optimised via the methods

described in Section 0. The first is the correlative filter, which was implemented on the GPU

using the CUDA BLAS libraries, and on the CPU using MKL libraries.

The second method implemented was the QR cancellation filter which was implemented on

the GPU via the cuSolver library, and on the CPU via the MKL library.

The average execution time achieved when running the QR and correlative cancellation

algorithms on the mobile platform is shown in Figure 5.14. In Figure 5.14 it can be seen that

the CPU correlative filter executed quickest for the entire range.

An interesting observation here is that the GPU correlative filter is nearly consistently slower

than the CPU implementation. This is a result of the reduction operation which is serially

executed. As such, it cannot take full advantage of the GPU’s parallelism. The GPU QR

implementation is also slower than the CPU implementation for the majority of the test

range. This demonstrates how the QR cancellation filter, in its current implementation, is

not well suited for implementation on the GPU when used to solve highly rectangular

problems.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 84

University of Pretoria

Figure 5.14 Average execution time for miscellaneous cancellation filters.

At the design size of 𝑀 = 256, the CPU correlative filter took 1.108 s, the GPU correlative

filter took 8.318 s, the CPU QR filter took 8.591 s, and the GPU QR filter took 13.605 s.

As the CPI is 4 s long, none of these filters could run in real-time on the mobile platform,

except for the CPU based correlative filter.

5.2.7 Conclusion

Of the methods the best performers are shown in Figure 5.15. Of these, the optimised

Cholesky and hybrid LU filters perform the best. For 𝑀 ≫ 1000 it is possible that the CGLS

algorithm will be the best performer, for the fixed value of 𝐾, however that is out of the

scope of this study.

While the Cholesky filters are the fastest, they do not provide a numerically stable solution,

and so are not suitable for all applications. It was, however, found that the algorithm used in

the hybrid Cholesky filter was more stable than the algorithm used in the GPU Cholesky

solver. If the GPU Cholesky solver was used on a semi-definite/indefinite matrix, the

algorithm would return NaN, The CPU implementation, however, returns poorly estimated

filter weights.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 85

University of Pretoria

Figure 5.15 Average execution time of best performing cancellation filters.

Nonetheless, it was found that the hybrid LU filter was able to provide the best performance

while allowing for equally efficient cancellation as for the other non-iterative algorithms.

Figure 5.16 Average throughput of best performing cancellation filters.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 86

University of Pretoria

The average throughput found for the best performing filters is shown in Figure 5.16. These

are the same results as previously presented, but they are presented in this format for easier

comparison. Figure 5.16 depicts similar findings to those in Figure 5.15. The hybrid LU filter

is still the best performing stable filter, with an average throughput of 17.94 MS/s at the

design size of 𝑀 = 256. The hybrid Cholesky filter was the best overall with average

throughput of 21.25 MS/s

It was found that, when using library functions, the sub-optimal CGLS algorithm out

performs the other filters, these results were also in literature [9] [13]. However, once the

matrix operations were optimised, the Wiener filters ended up being the fastest solution, as

well as being more accurate than the CGLS algorithm.

5.3 MATCHED FILTER

The matched filter combines pulse compression and Doppler filtering into a single

processing block. The matched filter is depicted within the processing chain in Figure 5.1.

The matched filter’s implementation becomes computationally intensive as the reference

signal must be correlated with the surveillance signal in both time and frequency.

The matched filter converts the reference and surveillance vectors of length 𝑁 into a Range-

Doppler map with 𝑁𝐷𝑜𝑝 Doppler indices and 𝑁𝑅 range indices.

5.3.1 Time correlation

Time correlation [38] correlates the signal in time. However, in order to reproduce the

necessary Doppler spectrum, the surveillance signal must be correlated with a correctly

Doppler modulated signal for each Doppler index [12]. The Doppler modulated reference

vector is given by

𝑟𝑖

′(𝑓) = 𝑟𝑖𝑒
𝑗

𝑖𝑓
𝐹𝑠 (5.30)

where

 𝐹𝑠 is the sampling frequency.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 87

University of Pretoria

The correlation can then be performed by a series of dot products between a shifted 𝑟′(𝑓)

and the surveillance channel, i.e. each Range-Doppler bin if formed by

 𝑅𝐷𝑖𝑗 = 𝑠 ⋅ 𝑟2−𝑖:2−𝑖+𝑁
′ (𝑓𝑗). (5.31)

Hence, assuming 𝑟′(𝑓𝑗) is pre-calculated, the creation of each bin has a time cost of 2𝑁, and

a FLOP count of 8𝑁.

Alternatively, correlation can be performed in the frequency domain, occasionally referred

to as fast convolution [66]. This method performs correlation in the time domain by

exploiting the time-frequency duality between multiplication and convolution (i.e. time

convolution is performed by multiplying in the frequency domain).

Each signal is taken to the frequency domain using a DFT. The surveillance channel needs

only to be converted once while each modified reference vector (corresponding to each

Doppler index) must be converted to the frequency domain such that,

𝑆 = ℱ{𝑠}

𝑅𝑖̂(𝜔) = ℱ{𝑟𝑖̂}.

 It is important to note that, in the form above, circular convolution is performed. However,

as conventional convolution is required, the reference and surveillance vectors should be

zero-padded before converting to the frequency domain, such that the new vectors are 𝑁 +

𝑁𝑅 − 1 elements long.

Each modified surveillance channel, now in the frequency domain conjugated and multiplied

with the reference channel (also in the frequency domain).

 𝑌𝑖 = 𝑆𝑅𝑖̂
∗
(−𝜔) (5.32)

 Once the multiplication is performed, all the resultant vectors are brought back to the time

domain and the relevant elements are then kept as the elements of the ARD map.

The algorithm requires 2𝑁𝐷𝑜𝑝 + 1 DFTs (including conversion back to the time domain) on

𝑁 + 𝑁𝑅 − 1 element vectors, which will be denoted as 𝑁𝑅𝑁. An additional 𝑁𝐷𝑜𝑝𝑁𝑅𝑁

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 88

University of Pretoria

complex operations are required to perform (5.32). If it is assumed that an FFT is used to

perform the DFT, and that the time cost of an FFT for an 𝑁 element vector is 2𝑁log2(𝑁),

the time cost for the matched filter is 𝑁𝑅𝑁𝑁𝐷𝑜𝑝 + 𝑁𝑅𝑁(4𝑁𝐷𝑜𝑝 + 2) log2(𝑁𝑅𝑁).

5.3.2 Frequency correlation

The next option is to perform correlation in frequency [5, 12]. In this approach the time-

frequency duality between multiplication and convolution is once again exploited to perform

correlation. In this case the correlation takes place in the frequency domain, i.e. over the

Doppler dimension.

Each range index is formed by multiplying the modified surveillance channel (in this case it

is just delayed) with the reference channel such that

 𝑦𝑖 = 𝑟∗𝑠̂𝑖 (5.33)

The Doppler index of the ARD is then created by using a DFT to transform 𝑦𝑖 to the

frequency domain. Equation (5.33) requires 𝑁 multiplications, and each DFT requires

2𝑁log2(𝑁) operations. Therefore, the application of the matched filter has a time cost of

𝑁𝑅[𝑁 + 2𝑁log2(𝑁)].

Table 5.13 Algorithmic complexity of matched filters.

Matched Filter Time cost FLOP count

Time-domain time

correlation (TDTC)

2𝑁𝑅𝑁𝐷𝑂𝑃𝑁 8𝑁𝑅𝑁𝐷𝑂𝑃𝑁

Frequency-domain time

correlation (FDTC)

𝑁𝑅𝑁𝑁𝐷𝑜𝑝

+ 2𝑁𝑅𝑁(2𝑁

+ 1) log2(𝑁𝑅𝑁)

6𝑁𝑅𝑁𝑁𝐷𝑜𝑝

+ 8𝑁𝑅𝑁(2𝑁𝐷𝑜𝑝

+ 1) log2(𝑁𝑅𝑁)

Frequency-domain

correlation (FDC)

𝑁𝑅𝑁[1 + 2𝑙𝑜𝑔2(𝑁)] 𝑁𝑅𝑁[6 + 8𝑙𝑜𝑔2(𝑁)]

The algorithmic cost for each matched filter is shown in Table 5.13. It can be seen from

Table 5.13 that the optimal selection for the matched filter algorithm depends on the problem

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 89

University of Pretoria

size. It has been proposed [13] that FDTC is a more suitable option when 𝑁𝑅 > 𝑁𝐷𝑜𝑝. This

is supported by the results in Table 5.13. The minimum 𝑁𝑅: 𝑁𝐷𝑜𝑝 ratio required for FDTC

to have less computational complexity than FDC is shown in Figure 5.17.

Figure 5.17 𝑵𝑹 to 𝑵𝑫𝒐𝒑 ratio required for FDTC to have less computational complexity than

FDC.

From Figure 5.17 it can be seen that for most practical ARD dimensions, FDTC is a suitable

choice when 𝑁𝑅 > 2.5𝑁𝐷𝑜𝑝. For TDFC to have a lower time cost than FDC 𝑁𝑅(1 +

2 log2 𝑁) > 𝑁𝐷𝑜𝑝(10 + 8 log2 𝑁).

5.3.3 Reduced computation filters

A number of matched filter approaches which exhibit reduced computational load have been

explored in literature, such as the Batches algorithm [67]. However, it has been found [11]

that, in order for these methods to remain accurate, they must be carefully tuned. These

methods are therefore undesirable, due to this unreliability, and are not further considered.

5.3.4 Matched filter performance

The performance of the matched filter was evaluated using FDC. This was chosen, as the

low bandwidth FM signals used as the transmissions for this study result in a much finer

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 90

University of Pretoria

Doppler resolution than range resolution, and as such 𝑁𝐷𝑜𝑝 ≫ 𝑁𝑅. This lends itself well to

the FDC.

The implemented FDC matched filter was implemented on the CPU and GPU and

configured with 𝑁𝐷𝑜𝑝 = 1207 and 𝑁𝑅 = 150. The filter was run over an 11 minute data set

using the procedure detailed in Figure 5.10.

The matched filters were run starting with a CPI length of 8 in powers of 2 until 224. The

embedded system only ran to 223 as it was limited by available memory. The FFTs were

implemented on the mobile host using the MKL library and FFTW was used on the

embedded CPU. The FFTs on both GPUs were taken from the cuFFT library.

The average execution time is shown in Figure 5.18. Here it can be seen that the mobile CPU

implementation has a lower execution time for 𝑁 < 7060, while the mobile GPU

implementation executes, on average, faster for data lengths greater than 7060. The

embedded GPU requires a CPI length greater than 8656 to outperform the embedded CPU.

Figure 5.18 Execution time of matched filters.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 91

University of Pretoria

Figure 5.19 Average throughput of matched filters.

The average throughput of the matched filters is shown in Figure 5.19. As can be seen, the

filters require a minimum length to achieve a high throughput, and, once a peak is reached,

average throughput gradually decreases as the data length increases. However, this trend is

not found in the embedded CPU implementation, as after the peak is reached, performance

decreases rapidly.

For the mobile CPU implementation, the peak was reached when 𝑁 = 91.70 × 103 and with

a peak throughput of 782.9 kS/s. The mobile GPU implementation did not reach its

maximum throughput in the scope of the experiment. The maximum length tested was 224 ≈

16.78 × 106 which relates to a CPI of approximately 84 s. Using such long CPI lengths

(assuming the sampling rate is near the Nyquist rate) cause range and Doppler gate

mitigation which have the effect of mitigating processing gain by spreading the received

reflection power over multiple bins. As such, it is not practically valuable to investigate the

performance of the filters any further.

Nevertheless, the mobile GPU implementation achieved its maximum throughput at 𝑁 =

224 which was 11.57 MS/s. At a more suitable CPI of 4 s (800 × 103 samples) the mobile

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 92

University of Pretoria

implementations were re-run. The mobile GPU implementation could manage an average

throughput of 7.764 MS/s, while the CPU implementation achieved 589 kS/s. At typical FM

passive radar matched filter sizes, the mobile GPU implementation achieved 13.18 times

the throughput of the CPU implementation.

The embedded GPU implementation peaked at 𝑁 = 800 × 103 with a throughput

of 1.084 MS/s. The embedded CPU reached a maximum throughput at 𝑁 = 2270 with rate

of 299.1 kS/s. The embedded GPUs maximum throughput was only 3.62 times higher than

the maximum of the embedded CPU implementation. At a conventional CPI for a real system

of 𝑁 = 800 × 103, the throughput of the embedded is 24.08 times faster than the embedded

CPU, which had an average throughput of 45.02 kS/s.

5.4 TARGET DETECTION AND EXTRACTION

The ARD produced by the matched filter then needs to be processed to determine whether a

bin contains interference or interference as well as a reflection from a target.

5.4.1 Detection

Automated detection was performed using a CFAR algorithm as described in section 2.6.3.

The censored mean CFAR [21] was used as it provides some tolerance for intra-target

interference. The censored mean CFAR creates the interference statistic by sorting the

interference cell by their magnitude, and excluding the 𝑁𝐶 largest interference samples. The

assumption is that the largest interference samples are the most likely to contain a reflection

from a target, and should, therefore, be excluded from the estimate.

The drawback with this method is that when the number of interference samples containing

reflections from targets is less than 𝑁𝑐 the CFAR loss (i.e. the loss in detection probability

as a result of the threshold set by the CFAR algorithm being higher than the Neyman-Person

bound for a specific PFA) is higher than the equivalent ca-CFAR [21]. This issue results

from the interference statistic being estimated with fewer interference samples.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 93

University of Pretoria

It is possible to determine the PFA and 𝑃𝐷 for a given threshold, assuming that the noise in

the system is AWGN. The PFA for a given CFAR constant (𝛼) under these assumptions is

given for censored CFAR as

𝑃𝐹𝐴 = ∏ 𝛾𝑖(𝛼)

𝑁−𝑁𝐶

𝑖=1

 (5.34)

where

 𝛾𝑖(𝛼) =
𝑢𝑖

𝑢𝑖 + 𝛼
 (5.35)

where

𝑢𝑖 =

𝑁 − 𝑖 + 1

𝑁 − 𝑁𝑐 − 𝑖 + 1
. (5.36)

5.4.2 Target extraction

Target extraction is the process of grouping bins which pass the detector into targets and

estimating their position within the signal space such that a set of targets may be passed to

the state smoothing filter. This was accomplished by using the binary signal space produced

by the detector. This binary signal space represents ARD bins which contain a reflection

from a target with a 1 and bins with only interference as a 0.

While this signal space can be passed directly to the state smoothing filter, targets may be

represented by more than one bin, and as such the system will interpret this as the existence

of multiple targets in close proximity. Due to the type of target (i.e. large passenger and

commercial aircraft, which typically would avoid close proximity with other aircraft), it was

assumed that this would be far less likely than a single target occupying multiple adjacent

bins. This spreading can be caused by a number of factors including range and Doppler gate

migration, micro-Doppler effects, or a reduction in the source signal’s effective bandwidth

over the CPI. The latter is a common occurrence in passive radar.

Extraction of these target bins was performed by using collation. This grouped all connected

targets. This allowed targets which occupy multiple bins to be interpreted as one target. It

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 94

University of Pretoria

also, however, means that targets in close proximity will be interpreted as a single target. A

connected components labelling algorithm was used to group any positive bins with 8

degrees of connectivity together. The degrees of connectivity define which adjacent bins are

considered candidates for connectivity. This is shown in Figure 5.20, which demonstrates

that for a two-dimensional signal space eight degrees of connectivity defines all adjacent

bins as candidates, while four degrees excludes the diagonals.

Figure 5.20 Four (left) and eight (right) degrees of connectivity.

The grouping of targets also compensates for some of the target smearing that may occur.

Target smearing can easily occur over the Doppler dimension due to the fine Doppler

resolution and long CPI. Target smearing is also seen in range when the instantaneous

bandwidth of the transmitted signal is reduced. This can occur during speech and periods of

silence. When this does occur, the range resolution increases [32] and a target can occupy

multiple bins in the range dimension. This reinforces the concept that connected bins are

more likely to be a single large or smeared target than it is to be multiple, closely packed,

targets.

Once the bins where grouped, their bistatic range and bistatic range rate were estimated. This

was performed using a simple weighted mean scheme.

The bistatic range was estimated as

𝑅𝑖 =

∑ ‖𝑧𝑖𝑗‖𝑟𝑖𝑗
𝑁𝑖
𝑗=1

∑ ‖𝑧𝑖𝑗‖
𝑁𝑖

𝑗=1

 (5.37)

where

 𝑅𝑖 is the bistatic range of the 𝑖th group of connected detections,

 𝑁𝑖 is the number of connect bins in the 𝑖th group of connected detections,

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 95

University of Pretoria

 𝑧𝑖𝑗 is the value of the 𝑗th bin in the 𝑖th group of connected detections, and

 𝑟𝑖𝑗 is the range of the 𝑗th bin in the 𝑖th group of connected detections.

The bistatic range rate was similarly estimated as

 𝜕𝑅𝑖

𝜕𝑡
=

∑ ‖𝑧𝑖𝑗‖𝑑𝑖𝑗
𝑁𝑖
𝑗=1

∑ ‖𝑧𝑖𝑗‖
𝑁𝑖

𝑗=1

𝜆 (5.38)

where

 𝑑𝑖𝑗 is the Doppler frequency of the 𝑗th bin in the 𝑖th group of connected detections in

Hz, and

 𝜆 is the wavelength of the carrier frequency.

5.5 TARGET STATE SMOOTHING

The state smoothing filter has the task of determining which detected targets (received from

the target extractor) belong to the same physical target, if any, as well as predicting and

refining the position of the raw detections. Unlike the previous processing steps, the state

smoothing filter is the first which concerns historical information, and operates beyond a

single CPI of time [68].

Tracking filters which only use Doppler information have been suggested [68]. This is done

due to the poor range resolution (and coupled accuracy) achieved with FM signals. For this

implementation it was decided that while inaccurate, useful information still exists in the

bistatic range measurements. Hence, the state smoothing filter incorporates this data, but

with far less emphasis compared to the Doppler measurements. Other methods explored in

literature include: Kalman filters [17], as well as the extended Kalman filter coupled with a

particle filter [69].

5.5.1 Target model

The first step in predicting and refining a target’s position, is the need to create and define a

model which can predict the target’s trajectory. The nature of this problem has led to many

solutions, ranging from FIR filters to deep learning algorithms.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 96

University of Pretoria

The problem with the design of complex models is that they require detailed models of the

environment off of which the filter’s behaviour is defined. For example, a Kalman filter

requires a model of the measurement noise or error [70]. These filters have been shown to

outperform simpler architectures, but only when the models are valid. The generation of

accurate noise models was outside of the scope of this study, and as such filters which require

noise or environment models are not considered. Machine learning algorithms are also out

of the scope of this study, as the amount and diversity of data required to train a filter which

could be consistently and generally used was not available.

As such, the filter model was loosely based around an alpha-beta tracking filter [71] as this

could be hand-tuned and would still provide consistent and valuable results. Due to the

comparatively static flight paths of commercial airlines (which were the subjects of this

study) a constant velocity model was originally investigated, as it had previously been used

in passive radar target tracking [68]. It was found, however, that while the trajectory of the

targets may be relatively constant, the translation to bistatic range resulted in that assumption

being poor.

Instead a constant acceleration model was adopted. This allowed the target movement to be

a quadratic estimation This defines a target in terms of its bistatic range (𝑅(𝑡)), bistatic

velocity (𝑅′(𝑡)) and bistatic acceleration (𝑅′′(𝑡)). As 𝑅′′(𝑡) is constant, the predicted state

of the target ∆𝑡 seconds into the future from a time 𝑡𝑘 is easily found via integration such

that

 𝑅′′(𝑡𝑘, ∆𝑡) = 𝑅′′(𝑡𝑘) (5.39)

 𝑅′(𝑡𝑘, ∆𝑡) = 𝑅′(𝑡𝑘) + ∆𝑡 𝑅′′(𝑡𝑘) (5.40)

 𝑅(𝑡𝑘, ∆𝑡) = 𝑅(𝑡𝑘) + ∆𝑡 𝑅′(𝑡𝑘) + ∆𝑡2 𝑅′′(𝑡𝑘). (5.41)

5.5.2 Model estimation

In order to predict the position of a target, information is required to estimate the model

parameters. This data is derived from the detections sourced from the target extraction. The

model parameters could be set by the latest detection such that 𝑅(𝑡𝑘) = 𝑅𝑖, 𝑅′(𝑡𝑘) =
𝜕𝑅𝑖

𝜕𝑡
,

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 97

University of Pretoria

and 𝑅′′(𝑡𝑘) = 0. However, this strategy would discard the historical information which is

already known about the target. In order to incorporate this information, the form of an

alpha-beta filter was adapted. At time step 𝑘 the target’s state is updated by defining

 Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 (5.42)

where

 𝑡𝑘−1 is the time at which the target’s state was last updated.

The targets current state is then estimated using

 𝑅𝑒𝑠𝑡 = 𝑅(𝑡𝑘−1, Δ𝑡) (5.43)

 𝑅𝑒𝑠𝑡
′ = 𝑅′(𝑡𝑘−1, Δ𝑡). (5.44)

Error terms are then defined for each state such that

 𝑅𝐸 = 𝑅𝑖 − 𝑅𝑒𝑠𝑡 (5.45)

𝑅′𝐸 =

𝜕𝑅𝑖

𝜕𝑡
− 𝑅′

𝑒𝑠𝑡. (5.46)

The state of the track is then updated such that

 𝑅(𝑡𝑘) = 𝑅(𝑡𝑘−1) + 𝛼𝑅𝐸 + 𝛽𝑅𝐸
′ Δ𝑡 (5.47)

𝑅′(𝑡𝑘) = 𝑅′(𝑡𝑘−1) + 𝜖

𝑅𝐸

Δ𝑡
+ 𝛾𝑅𝐸

′ (5.48)

𝑅′′(𝑡𝑘) = 𝑅′′(𝑡𝑘−1) + 𝜁

𝑅𝐸
′

Δ𝑡2
+ 𝜂

𝑅𝐸
′

Δ𝑡
 (5.49)

where

 𝛼, 𝛽, 𝜖, 𝛾, 𝜁, and 𝜂 are filter coefficients and are ≤ 1.

The smaller a coefficient is, the less effect that error will have on the updated state parameter.

Controlling these parameters allows for different filter profiles. Each filter configuration can

filter out more measurement error, but it must sacrifice the ability to efficiently track target

manoeuvres. Alternatively, the filter can allow a track to closely follow a manoeuvring target

but include more measurement error in the positional estimation.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 98

University of Pretoria

5.5.3 Detection association

Consequently, determining which detections received from target extraction belongs to a

track, which are new targets, and which are false detections, becomes important. This

process was realised by defining a range error model function

𝐸 = (

𝑅𝑒𝑠𝑡 − 𝑅𝑖

𝑅𝑡
)

2

+ (
𝑅𝑒𝑠𝑡

′ − 𝑅𝑖
′

𝑅𝑡
′)

2

 (5.50)

where

 𝑅𝑡 and 𝑅𝑡
′ are thresholds which determine the maximum error allowable in each

dimension.

In (5.50), 𝐸 ≥ 1 represents an error that exceeds the limits, which ultimately define an

ellipsoid in the signal space wherein potential targets must lie.

Figure 5.21 Processing of detections in state smoothing filter.

Receive
detections

Create error matrix
for tracks

Find minimum
error

Is error < 1

Update corresponding
track and detection

Remove row and
column of error

matrix

Are any rows or
columns left

Yes

Yes

Create error matrix
for potential tracks

Find minimum
error

Is error < 1

Create track using
detections

Remove row and
column of error

matrix

Are any rows or
columns left

Yes

Yes

Add left over
detections as

potential tracks

Clean up and remove
old tracks and

potential tracks
No

No

No

No

Start

End

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 99

University of Pretoria

The process of associating raw targets to tracks was executed sequentially by assigning a

maximum of one detection to each track per CPI. Once a detection was found to belong to a

track, it would no longer be considered a candidate for any other tracks. The association

process is shown in Figure 5.21. This approach is adapted from that given in literature [17].

The association process, shown in Figure 5.21, begins by creating an error matrix 𝐸 which

calculates the error between each track and detection. 𝐸𝑖𝑗 is the error between the 𝑖th detection

and the 𝑗th track, determined using (5.50).

Once the error matrix is calculated the minimum element is found (𝐸𝑚𝑖𝑛) and checked to

ensure that it is below the threshold. If 𝐸𝑚𝑖𝑛 is smaller than the threshold, the track is updated

with the corresponding detection using the process described in Section 5.5.2. The row and

column of the Error matrix is removed to remove the track and detection as candidates for

further iterations. This process continues until the Error matrix is empty, or 𝐸𝑚𝑖𝑛 exceeds

the threshold.

Once this occurs, a new Error matrix is formed. However instead of using tracks, the

potential tracks are used. The same process is followed as above in order to update the

potential tracks. Once the error fails the threshold or the error matrix is empty, the remaining

detections are appended to the vector of potential tracks, such that

𝑅(𝑡𝑘) = 𝑅𝑖

𝑅′(𝑡𝑘) = 𝑅𝑖
′

𝑅′′(𝑡𝑘) = 0

The final operation required is to determine when a potential track should be upgraded to a

track, and when a track is no longer active. This was achieved by defining a health system,

where each track and potential track has a health value which is increased when the track is

updated, and decreased if it is not updated during an association procedure. In the

implementation a 3-2 weighting is used where an update increases the health of a track by 3

and not updating decreases the track’s health by 2. A potential track was upgraded to a track

when the health ≥ 7 and destroyed when the health ≤ 0.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 100

University of Pretoria

5.6 SYSTEM OUTPUT

The output of the system is therefore a set of targets, and their trails. Each target has an

associated bistatic range and bistatic velocity. However, this data alone is not enough to

position a target. Rather each bistatic range, assuming a 2D model, describes an oval of

Cassini [43]. Therefore, in order to locate a target, either an angle of arrival in azimuth is

required or another sensor.

If a 3D position is required, an azimuth and elevation angle is required. Alternatively, the

measurements from three sensors are required [43]. The data from the matched filter can be

easily combined with other coherent systems to allow for phased coherent processing.

Alternatively, a multi-site system can be established, with each node being a radar as

described in this report.

5.7 SUMMARY

The elements of the passive radar processing chain were investigated, and the performance

critical elements were discussed. These included the cancellation filter, matched filter, target

detection and state smoothing.

Different methods for implementing the cancellation filter were investigated, and it was

found that by exploiting redundancy in the calculation of a sample covariance matrix, a

Wiener filter with an LU solver is the most suited to a PCL using FM signals. In cases where

an occasional failure to converge is tolerable, a Cholesky solver can be used to increase the

filter throughput even further.

It was shown that three main options exist to realise the matched filter. Of these, it was

shown that, generally, where the number of range bins is 2.5 times greater than the number

of Doppler bins, the FDTC algorithm has a lower computational complexity. However, when

the number of Doppler bins is greater than the number of range bins, FDC has the lowest

computational complexity.

© University of Pretoria

CHAPTER 5 PROCESSING CHAIN

Department of Electrical, Electronic and Computer Engineering 101

University of Pretoria

An initial processing architecture was built based on those found in literature. Using this

system, it was found that the cancellation filter required more computation time than the

matched filter. After moving to a real-time and optimised system, it was found that the

matched filter now took 16.6 times longer to execute than the hybrid LU filter.

A target extraction scheme was introduced which was optimised for sparse targets. A state

smoothing filter scheme was developed to refine the bistatic range and velocity

measurements, as well as associating detections to a target. The state smoothing filter

operated on a constant acceleration model, and used an alpha-beta like scheme to update the

target states.

© University of Pretoria

CHAPTER 6 RESULTS

The results of tests performed using the implemented system are presented and evaluated in

this section. The configuration of the test system is described below. Then the detection,

state smoothing, and processing performance is evaluated, and compared to existing and

comparable systems.

The deployment was held with the aim of monitoring the airspace over OR Tambo

International Airport. The results of the system are compared to ADSB data. From this, the

detection and state smoothing performance is derived. The cost of the system is then

presented along with the final performance of the system. Finally, the system is compare

with two other systems presented in literature.

6.1 CONFIGURATION AND IMPLEMENTATION

In this section the deployment and the design choices are discussed in detail.

6.1.1 Deployment site

The deployment site is depicted in Figure 6.1. The goal for this passive radar was to monitor

the air space around OR Tambo International Airport. In order to achieve this goal a suitable

transmitter was selected. This transmitter was the Gelukstroom transmitter (Tx in Figure 6.2,

at 25°41′21.00"𝑆 and 27°59′2.00"𝐸) and was chosen because of its high transmit power

(110 kW at 94.2 MHz) and favourable orientation and distance from the area of interest.

The general area of interest is highlighted by the yellow ellipse. The passive radar used a

separated reference architecture which means it used two antennas. The first is a reference

antenna, which was pointed towards the receiver (depicted by the red arrow in Figure 6.1.

The second antenna is the surveillance antenna, which is aimed towards the area of interest,

and is depicted in Figure 6.1 by the blue arrow.

The choice of receiver sites was largely limited by accessibility. Of these, the sites closest to

the direct path between the area of interest and the transmitter were investigated. The final

site was chosen by measuring the DPI at each site and ensuring unobstructed reception from

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 103

University of Pretoria

the area of interest. The site chosen is shown as Rx in Figure 6.2, at 25°52′27.39"𝑆 and

28°14′12.18"𝐸. As shown in Figure 6.1, the distance between the transmitter and the

receiver is 32.68 km while the distance from the receiver to OR Tambo International Airport

is 28.90 km. The bistatic distance from transmitter to OR Tambo International Airport and

back to the receiver is 84.13 km.

It was found that the site ultimately produced good results because of two complementary

factors. Firstly, the site was on a hill facing towards OR Tambo International Airport. This

enabled the unobstructed reception of signals when they originated from a source with an

elevation above approximately 4°. Secondly, the site was located such that the direct path

was blocked by the hill itself, with a steep embankment providing shielding from the direct

path. The site is shown in Figure 6.2. It should be noted that the surveillance antenna was

installed in an array as the deployment was used for multiple experiments.

Figure 6.1 Over head diagram of passive radar deployment.

52.1°

28.9 km

Rx

Tx

OR Tambo

182°

32.6 km

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 104

University of Pretoria

The reference antenna used for the deployment is shown in Figure 6.2. It is an 8 element

Yagi-Uda antenna with a boom length of 2.4 m and a forward gain of 10 dBi [72]. This

antenna was chosen for its narrow 3 dB beamwidth which is approximately 15° in elevation

and 13° in azimuth.

Figure 6.2 Image of deployment site.

The surveillance antenna is a 3-element Yagi-Uda antenna, with a boom length of 1.3 m and

a forward gain of 6 dBi [72]. It was chosen to supply a wide beamwidth, while still providing

attenuation for sources originating outside of the area of interest. This was chosen to

maximise the probability of intercept of a target while decreasing DPI and clutter. The 3 dB

beamwidth of this antenna is approximately 60° in elevation and 35° in azimuth. The

surveillance antenna reaches a 10 dB beamwidth in azimuth at approximately 60° and nulls

at ±90°.

Given the beam pattern, the probability of detection is impaired when a target is out of the

main beam and is further impaired as the azimuth angles converge to the nulls. Figure 6.1

can be updated and is shown in Figure 6.3. Here the green region represents the angles where

Reference Antenna

Surveillance Antenna

Steep Embankment

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 105

University of Pretoria

there is a high 𝑃𝐷, yellow represents the angles of impaired 𝑃𝐷, and red where there is a low

𝑃𝐷.

6.1.2 Configuration

The configuration parameters for the radar itself are shown in Table 6.1.

Figure 6.3 Angle versus probability of detection for radar deployment.

The CPI was chosen to be 4 s [5, 13]. This CPI was chosen to maximise the processing gain

(and thus the SNR) while limiting target smearing, in both range and Doppler, to a

manageable level. This resulted in a Doppler bin size of 0.25 Hz. This long CPI length was

only possible due to the targets of interest; as commercial aircraft tend to fly on slow,

relatively constant trajectories. If the targets of interest were more agile, then a shorter CPI

would be required, although this would result in a lower 𝑃𝐷.

52.1°

28.9 km

Rx

Tx

OR Tambo

182°

32.6 km

60°

35°

90°

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 106

University of Pretoria

The sample rate was chosen at 200 kS/s as this was somewhat above the bandwidth of the

signal, as well as a factor of the digital clock on the receiver, which is a requirement for this

specific receiver. The baseline distance, maximum bandwidth, and operating frequency are

all resultant from the choice of transmitter and location, as has been discussed in previous

sections.

Table 6.1 Radar configuration.

Symbol Description Value

𝐂𝐏𝐈 CPI 4 s

𝐅𝐬 Sample rate 200 kS/s

𝐁𝐖 Maximum bandwidth of source signal 150 kHz

𝐑𝟎 Direct path distance 32.6 km

𝐍 CPI length 800 000

𝐅𝟎 Operating frequency 94.2 MHz

𝐏 Number of blocks 10

𝐍′ Block length 80 000

𝐌 Cancellation filer length 256

𝐊 Number of CGLS iterations 30

𝐍𝐑 Number of range bins 150

𝐍𝐃 Number of Doppler bins 1001

The number of blocks was chosen to select the cancellation width in the Doppler dimension.

It was observed that the majority of clutter existed within 5 m/s which translates to a Doppler

offset of 1.57 Hz. This results in a lock length of 0.637 s or 6.28 blocks. This was increased

to 10 to round-off the number of the blocks, block length, and other variables in subsequent

operations.

The cancellation filter length was set to 256, which cancelled 383.7 km of clutter. This value

was chosen as it cancelled all significant clutter without requiring excessive processing.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 107

University of Pretoria

The number of range bins (𝑁𝑅) was chosen to extend just past the distance receivable by the

maximum range at which targets were detectable (which was empirically found). The

maximum bistatic range at which a target was detectable was just below 200 km. The 150

range bins, in this configuration, results in a maximum detectable bistatic range of

approximately 225 km (see Table 6.2) which leaves room for detections past where they

were detected during the evaluation of the radar.

The number of Doppler bins was chosen to be able to detect, at least, the fastest commercial

aircraft, which (for a Boeing 747-8) has a maximum velocity of around 988 km/h

(274.5 m/s). As there is negligible computational cost in computing further Doppler bins

using FDC, this was extended in the eventuality that other, faster, aircraft could also be

detected.

From these design choices, some of the basic parameters of the radar can be defined and are

shown in Table 6.2.

Table 6.2 Performance limits of radar configuration.

Description Formula Value

Doppler resolution 1

𝐶𝑃𝐼

0.25 Hz / 0.796 m/s

Bistatic range resolution 𝑐0

𝐵𝑊
 1998.6 m

Maximum Bistatic range 𝑅0 + 𝑁𝑅

𝑐0

𝐹𝑠
 224.88 km

Maximum Bistatic range

rate
(

(𝑁𝐷 − 1)

2
) (

𝜆

𝐶𝑃𝐼
)

397.8 m/s

Range bin size 𝑐𝑜

𝐹𝑠
 1498.96 m

Doppler bin size 1

𝐶𝑃𝐼

0.25 Hz / 0.796 m/s

The configuration for target detection and extraction is shown in Table 6.3.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 108

University of Pretoria

Table 6.3 Detection and state smoothing configuration.

Symbol Description Value

𝑵𝑺 Number of CFAR interference samples 30

𝑵𝒈 Number of CFAR guard bins 8

𝑵𝑪 Number bins used for CFAR censoring 2

𝑷𝑭𝑨 Probability of false alarm 10−8

𝜶 Alpha parameter of state smoothing filter 0.4

𝜷 Beta parameter of state smoothing filter 0.1

𝝐 Epsilon parameter of state smoothing filter 0.4

𝜸 Gamma parameter of state smoothing filter 0.8

𝜻 Zeta parameter of state smoothing filter 0

𝜼 Eta parameter of state smoothing filter 0.02

𝑳+ State smoothing filter health increment 3

𝑳− State smoothing filter health decrement 2

𝑳𝒎𝒂𝒙 Maximum health value for a track 50

Many of these were empirically tuned so as to provide better performance in this

environment. The 𝑃𝐹𝐴, however, was chosen specifically for the purpose of demonstrating

the results in a report. To that end, the 𝑃𝐹𝐴 was chosen to minimise false detections such that

the generated results and figures more easily illustrate the underlying concepts. This decision

has an adverse effect on the 𝑃𝐷, as selecting a low 𝑃𝐹𝐴 increases the detection thresholds,

and thus, lowers the 𝑃𝐷. The state smoothing filter was able to successfully operate and filter

out the false detections in the case of a higher 𝑃𝐹𝐴. In operation, a 𝑃𝐹𝐴 of 10−6 would be

more appropriate, as this strikes a more favourable balance between 𝑃𝐹𝐴 and 𝑃𝐷. The FAR

achieved when 𝑃𝐹𝐴 = 10−8 is 1.50 × 10−3 𝐹𝐴/𝐶𝑃𝐼.

Another observation made was that the theoretical 𝑃𝐹𝐴 selected (with a threshold calculated

as described in Section 5.4.1) did not result in the correct 𝑃𝐹𝐴. This indicates that the

assumption that the noise is AWGN is not entirely valid. However, this is not entirely

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 109

University of Pretoria

unexpected, as previously established, the main source of noise in the system is DPI which

does not conform to AWGN.

The state smoothing filter parameters were tuned to support slow manoeuvres, but also to

bridge gaps in detection. In this configuration, the accuracy of the bistatic range rate is

significantly better than the accuracy of the bistatic range. The bistatic range rate’s influence

over the track’s state was, therefore, emphasised resulting in more accurate state smoothing.

The system’s digital processing was implemented on an embedded platform using an NVidia

Tegra K1 processor. The radar used an Ettus USRP B210 SDR as a digital receiver. The

hardware configuration is shown in Figure 6.4.

Figure 6.4 Hardware configuration.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 110

University of Pretoria

6.2 DETECTION CAPABILITY

In order to assess the detection capability of the system, the system was deployed and set to

record for 27 minutes. The recording was then processed to characterise the system.

6.2.1 Control data

In order to determine the metrics above, as well as the function of the radar, the real positions

of the targets were required. This was obtained via ADS-B transmissions which were

recorded by a server. ADS-B [73] is a system which many commercial aircraft have installed

which continuously broadcasts information about the aircraft, including its position, altitude,

velocity and heading.

The specific information which was used is transmitted over an extended squitter which has

a data block described in Figure 6.5.

Figure 6.5 ADS-B extended squitter. Adapted from [73], with permission.

The format for a Mode-S position is 17 or 100012. The ADS-B data block is also broken

into a number of message types with a 5-bit sub-format code being the first 5 bits of the

ADS-B data. The two position squitters transmitted are ground and airborne positions. Both

record the position as geodetic coordinates and are encoded into CPR format.

It should be noted that it was found that a delay of approximately 8 seconds existed on the

data. This was removed when the data was compared. The ADS-B detections recorded over

the experiment are shown in Figure 6.6.

Published by Elsevier B.V.

Preamble

(11001100)

Format

(5 bits)

Capability

(3bits)

ICAO ID

(24 bits)

ADS-B Data

(56 bits)

Parity

(24 bits)

8 μs 112 μs

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 111

University of Pretoria

Figure 6.6 Bistatic range of ADS-B detections versus time.

Figure 6.6 demonstrates that, a total of 11 targets were detected with ADS-B transceivers. A

number of these either begin or end at a bistatic range of approximately 90 km which

corresponds to a local airport (OR Tambo International Airport) where many flights either

began or ended.

The angle of the ADS-B targets is shown in Figure 6.7. From Figure 6.7 it can be seen that

many of the tracks either end or originate at 0°. This is expected as the surveillance antenna

was set to point towards OR Tambo.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 112

University of Pretoria

Figure 6.7 Relative angle of ADS-B targets.

6.2.2 Detection probability

Detection probability refers to the probability that a target will be detected by the radar once

it enters a specific range. This value was empirically determined by comparing the time

where a target was present and the amount of time it was detected by the system.

It is assumed that a target was detectable half a CPI before and after a detection, such that it

was present for the entire CPI. The empirical probability of detection is therefore given as

𝑃̃𝐷 = ∑
𝑡(𝑅𝑖 ≤ 𝑅0)

𝑡(𝑅̂𝑖 ≤ 𝑅0)

𝑁

𝑖=1

 (6.1)

where

 𝑅𝑖 is the range of the 𝑖th target,

 𝑅̂𝑖 is the detected range of the 𝑖th target,

 𝑁 is the number of targets,

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 113

University of Pretoria

 𝑅0 is the range threshold, and

 𝑡(𝑥 ≤ 𝑥0) is the amount of time that 𝑥 ≤ 𝑥0.

The detections received from target extraction are shown in Figure 6.8.

Figure 6.8 Passive radar detections compared to ADSB tracks.

In Figure 6.8 it can be seen that 10 of the 11 ADSB targets were detected during the test

interval. The only ADS-B track that was not detected, never had a bistatic range lower than

196.6 km and a monostatic distance of 91.28 km. It can also be seen that there were no

detections with a range below 40 km. While there were detections below that threshold, there

was significant DPI interference and, as a result, many false detections. Note that the

minimum bistatic range a target can exist at is the baseline distance, as this would represent

a target on the line between the transmitter and receiver. In this case that is 32.6 km. In order

to compensate for the DPI, a clutter notch was established for the first 7.5 km of bistatic

range (which is potentially only 3.7 km from the receiver).

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 114

University of Pretoria

Two of the ADS-B targets (the blue and turquoise tracks) were not originally detected,

however, both of these targets originated from the right with azimuth angles greater than

90°. However, as each entered the main beam of the antenna it was detected. The blue ADS-

B target (purple in Figure 6.7) was detected once it reached 77.86°, which is far beyond the

beamwidth of the antenna. The turquoise track (blue in Figure 6.7) was detected once it

reached 78.08°, which is also beyond the beamwidth of the surveillance antenna.

The furthest confirmed detection (i.e. confirmed with ADS_B data with the furthest bistatic

range) had a bistatic range of 198.2 km, and a monostatic range of 88.2 km. The confirmed

detection with the furthest monostatic range, had a range of 90.35 km and a bistatic range

of 194.5 km.

In terms of angle, the furthest detection left occurred at −103.8°, which is completely out

of the main beam. The furthest detection right was at 83.61° which is at approximately

−20 dB on the surveillance antenna.

From these an area of operation is defined such that targets are only considered detectable

when they have an azimuth between −103.8 and 83.61. The 𝑃𝐷 per CPI was empirically

calculated for ADS-B targets in the area of operation. The empirical 𝑃𝐷 per CPI for a target

within a certain bistatic range is shown in Figure 6.9.

As can be seen from Figure 6.9, the 𝑃𝐷 per CPI begins at 0.48 for a target in the range of 41

to 43 km, and ends with a 𝑃𝐷 per CPI of 0.421 for a target in the range of 41 to 210 km.

The maximum 𝑃𝐷 per CPI was 0.84 for a target between 41 to 69.6 km.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 115

University of Pretoria

Figure 6.9 Empirical probability of detection per CPI within a given bistatic range.

Figure 6.9 can be broken into three main sections. The first region is before 46.4 km. In this

region it can be seen that the probability of detection is low. However, this section of the

statistic was not built on a large sample, as only one target entered this region over the test

period. Furthermore, that target had an angle outside of the main beam of the surveillance

antenna and is, therefore, expected to have a reduced probability of detection.

The second region lies between 46.4 km and 84.8 km. This region is categorised by

fluctuations and a steadily, although slowly, increasing 𝑃𝐷. This increase is unexpected when

taking into account the radar range equation (3.8). A possible explanation would be that

targets in this region were obscured by uncancelled components of DPI. This end value,

however, does coincide with the distance of the airport at which the majority of ADS-B

targets converge. Moreover, the 𝑃𝐷 around the airport is smoother than the fluctuating area.

This suggests that the fluctuation is due to the small sample size and the large number of

variables which are not accounted for, such as RCS and direction.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 116

University of Pretoria

The third region exists from 84.8 km to the end range of 210 km. Here a fairly constant

decline in 𝑃𝐷 is visible which conforms to a linear profile. This decrease in 𝑃𝐷 is expected,

as the power received from a target is expected to decrease as range increases. With that

decrease in power, comes a decrease in SNR, and finally a decrease in 𝑃𝐷.

𝑃𝐷 per CPI remains above 0.5 in the range 52 to 175.7 km. At a bistatic range of 52 km the

closest detection reached a monostatic range of 10.0 km. At a bistatic range of 159 km the

furthest detection was at a range of 68.6 km.

Figure 6.10 Empirical probability of detection per CPI of a target at a given range.

Figure 6.10 shows the empirical probability of detection per CPI (for a target within the area

of operation), where each value is the probability calculated using all tracks within 1 km of

the centre point. It should be noted that the there is insufficient data to form reliable statistics,

but rather broad trends. Figure 6.10 demonstrates that certain range regions have a relatively

high probability of detection, while others are apparent blind spots. The most prominent of

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 117

University of Pretoria

these is from 159 − 180 km where almost no targets were detected. Conversely 48.5 −

52 km and 54 − 63.5 km detected nearly all ADS-B targets while in that range.

6.2.3 Location error

The location error is the RMS error between the measured position of a target compared to

its actual position. This was determined by

𝑅𝐸 = √
1

∑ 𝑃𝑖
𝑁
𝑖=1

∑ ∑ (𝑅̂𝑖(𝑡𝑘) − 𝑅𝑖(𝑡𝑘))
2

𝑃𝑖

𝑘=1

𝑁

𝑖=1

 (6.2)

where

 𝑅̂𝑖(𝑡) is the measured bistatic range of the 𝑖th target at time 𝑡,

 𝑅𝑖(𝑡) is the actual bistatic range of the 𝑖th target at time t,

 𝑃𝑖 is the number of detections for the 𝑖th target, and

 𝑡𝑘is the time at the 𝑘th detection for a given target.



In order to determine the location error two separate metrics are used. The first was to

analyse the location error of the raw detections and the second was to use the state smoothing

filter’s estimation.

6.2.3.1 Raw detections

The raw detections were passed through the state smoothing filter in order to group the

detections. All grouped detections are shown in Figure 6.11.mOf these the groups, the target

groups corresponding to ADS-B targets were retained and used to evaluate the accuracy.

The retained groups are shown in Figure 6.12. The absolute estimation error of the groups is

shown in Figure 6.13. Here it is shown that the maximum error was 3.24 km. The RMSE for

the detections is 0.950 km or 63% of a range bin’s width.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 118

University of Pretoria

Figure 6.11 All grouped detections.

Figure 6.12 Grouped detections used for error estimation.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 119

University of Pretoria

Figure 6.13 Absolute error of target groups.

6.2.3.2 State smoothing filter estimation

In order to evaluate the estimation error of the state smoothing filter, conditions were applied

to only evaluate the tracking estimation while a target was being successfully tracked. A

successful track was defined as a track which, once established, has had sufficient time for

the filter to settle (which was set to 3 more consecutive detections) and while tracking there

is no more than one miss. If consecutive misses occur the settling criteria is reset.

The error of the successful tracks is shown in Figure 6.14. The RMSE of the predicted

position does not decrease by much to only 0.927 km. This is largely a result of the error’s

form.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 120

University of Pretoria

Figure 6.14 The location error of successful tracks.

The largest contributors to the error are depicted in Figure 6.14. These sections have a lower

frequency component compared to what the state smoothing filter was set to reject and, as

such, little error rejection occurs. Furthermore, the state smoothing filter here was configured

in such a way that target grouping and gap filling were prioritized over estimation accuracy

(i.e. the filter was configured such that tracking of targets were prioritized, but sacrificing

noise rejection).

The tracks’ error plots do not oscillate around zero as would be expected from a

measurement noise, but rather have an offset bias. This implies that the measurement noise

does not have a zero mean. As each track has a unique offset, the measurement error could

either result from an error in the estimation of the bistatic range from the ADS-B data, or

other sources of inaccurate data. Examples are the positions of the transmit and receive

antennas.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 121

University of Pretoria

Nonetheless, even a strict filter (as it essentially acts as a high pass filter) would be

ineffective at rejecting this type of measurement error.

 An example of gap filling as performed by the state smoothing filter is shown in Figure

6.15. Here it can be seen that the detections are intermittent. However, the state smoothing

filter successfully predicts the state of the target and allows for the track to be continued over

the turn. The success of the track estimation is resultant from the accurate Doppler

measurement rather than the position estimate. Furthermore, state smoothing was also found

to be more accurate in Doppler than it is in range.

Figure 6.15 State smoothing filter gap filling and prediction.

6.3 PROCESSING PERFORMANCE

The processing performance was evaluated using the procedure described in Figure 5.10.

The metrics used for measurement are the same as posited in Addendum C.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 122

University of Pretoria

6.3.1 Mobile platform

The mobile system was tested over a number of cancellation filter sizes (𝑀) and data lengths

(𝑁). For this set of experiments only the hybrid LU processing chain was considered as,

from the results in Figure 5.16, it executed the quickest. Its CPU based counterpart was

included for comparison. The optimised CGLS solver was also included as it is an iterative

algorithm based purely on the GPU, which may result in better performance on some systems

or with some configurations. The average throughput when 𝑀 = 256 is shown in Figure

6.16.

Figure 6.16 Average throughput of mobile processing chains.

In Figure 6.16 it is shown that the hybrid LU processing chain outperforms the other

methods, as expected. The Hybrid LU processing chain reaches a maximum throughput

when 𝑁 = 224, with a throughput of 9.747 MS/s. At the chosen CPI length of 𝑁 = 800 000,

the hybrid LU processing chain achieved a throughput of 6.192 MS/s.

This was far greater than the CPU implementation which achieved a maximum at 𝑁 = 3300

of 274.9 kS/s. The CPU LU processing chain was 26.45 times slower than the hybrid

processing chain when 𝑁 = 800 000.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 123

University of Pretoria

The CGLS processing chain achieved a maximum throughput when 𝑁 = 224, with a

throughput of 4.597 MS/s. At the chosen CPI length of 𝑁 = 800 000, the CGLS processing

chain achieved a throughput of 2.781 MS/s.

6.3.2 Embedded platform

The processing performance of the embedded platform was evaluated adopting the same

technique as for the mobile system. However, due to memory restrictions, the CPU LU

implementation could not be effectively implemented.

Figure 6.17 Average throughput for embedded processing chains.

The achieved throughput of the embedded system is shown in Figure 6.17. When compared

to the results of the mobile system, it is evident that the trends seen are different. Unlike the

mobile system, the LU processing chain reached maximum throughput at 𝑁 = 1.37 × 106

When configured for the implementation i.e. 𝑁 = 800 000, the throughput of the LU

processing chain was found to be 786.9 kS/s. The CGLS processing chain achieved an

average throughput of 432.9 kS/s at 𝑁 = 800 000. For the implementation the LU

processing chain was 45.0% faster than the CGLS processing chain.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 124

University of Pretoria

6.4 COST

The hardware cost to implement each system is shown in Table 6.4.

Table 6.4 Hardware cost of systems.

Item Mobile Embedded

Antennas and masts $335.05*

Cables and Misc. RF

connectors

$40.23*

Receiver $1100.00

Processing Platform $1849.99 $192.00

Total $3325.27 $1667.28

* Converted from Rand incl. VAT at an exchange rate of 13.49 R/$

6.5 DISCUSSION OF RESULTS

6.5.1 Detection capability

The radar demonstrated the capability to detect most of the ADS-B targets, only failing to

detect 1 out of 11 targets. However, it is also clear, as shown in Figure 6.8 and Figure 6.11,

that a number of other aircraft-like targets appear that have no ADS-B tracks. Although these

could not be confirmed, there are 9 additional long tracks which exhibit the behaviour of

aircraft.

Additionally, one of these targets, the purple track from 2.37 minutes to 9.8 minutes in

Figure 6.11, displays propeller modulation [74]. This could be resultant from either a

propeller driven aircraft or a helicopter (a rotating wing). The modulation is shown in Figure

6.18, the red ellipses indicate the target as well as the propeller modulation. What can also

be seen (highlighted in the green rectangle) is the residual DPI which can cause false targets.

The difference in frequency between the propeller targets and the aircraft itself is 81.61 Hz

which results in a propeller speed of 4896.6 RPM.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 125

University of Pretoria

Figure 6.18 Snap shot of propeller modulation.

The probability of detection was estimated using recorded data, while the amount of data

used is not sufficient to derive accurate statistics about the radar installation, it can be used

to identify strong trends. This is compounded by the lack of information regarding the RCS

of targets as well as their orientation, although the orientation can be roughly estimated by

analysing the targets flight path. While this information would be vital to characterise the

system, the primary purpose of this study is to demonstrate the function, feasibility and

design procedures encountered in a low-cost passive radar system, and not that of developing

a statistical understanding of its operation.

By referring to Figure 6.6, it can be seen that only one target was available from which to

gather information before a bistatic range of 67 km. This target had a particularly poor rate

of detection. This had a direct impact on the probability of detection below 67 km in bistatic

range (Figure 6.9). However, what is visible in Figure 6.11 is that there are an additional 4

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 126

University of Pretoria

unconfirmed tracks in that region. Thus, indicating that there were additional aircraft in

operation whom were not transmitting ADS-B data.

Looking back at Figure 6.9, it can be seen that, as other aircraft are considered, the

probability of detection improves significantly. It is then shown in Figure 6.10 that a blind

spot between 159 and 185 km of bistatic range was observed between which no targets were

detected. Approximating the orientation from the target’s flight path offers an explanation

for this blind spot. By analysing Figure 6.8, it can be seen that in this dead spot the bistatic

range rate of targets was always fairly large and negative. This would suggest that the aircraft

were orientated with their front/rear perpendicular to the range ellipsoid, and therefore would

have a smaller RCS than when the aircraft’s broadside/flank is perpendicular.

From 69 km to 210 km, the general observation is that probability of detection fell as bistatic

range increased. This trend is expected given equation (3.8).

The accuracy of the radar was found to be within one range bin with an RMSE of 0.950 km.

The state smoothing filter resulted in little improvement, producing an RMSE of 0.927 km,

which is a mere 2.48% improvement. However, the state smoothing filter did successfully

group targets together and was capable of bridging gaps in certain scenarios. Furthermore,

the errors found were not consistent with zero mean additive noise and, therefore, the filter

was not successful in reducing the location error.

6.5.2 Processing performance

From the results in Section 6.3, it is clear that the system was capable of operating in real-

time on both the mobile and embedded platforms. The hybrid LU solution was most effective

for the mobile system, reducing processing latency to 185.2 ms while the CGLS algorithm

had a processing latency of 460.5 ms. On the embedded system this was not the case where

the CGLS algorithm was most effective with a processing latency of 2.741 s, the hybrid LU

system had a processing latency of 3.064 s.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 127

University of Pretoria

This discrepancy in results originates from the relative processing power of the CPU and

GPU on each platform. On the mobile platform, the relative CPU power is far closer to the

GPU than on the embedded system, and so the advantages seen through hybrid processing

on the mobile platform is not experienced to such a degree as on the embedded platform.

The significant difference in performance between the mobile and embedded system was

expected when considering the difference in cost and power consumption between systems.

The embedded system cost 50.14% less but achieved only 6.76% of the performance of the

mobile system. However, the embedded system requires less than 12 W to operate, which

may be a more crucial factor in certain scenarios. The use of the mobile platform was shown

to result in a more versatile system, being able to handle up to approximately 2 MHz signal,

or be able to process 21 channels in a multi-channel system.

6.5.3 Comparison to existing systems

The system developed in this study is comparable to two other approaches in literature. The

first [11], implements a passive radar using an Ettus SDR coupled with a custom built RF

front-end. The processing is handled by an NVIDIA Jetson TK1 Development Board. The

second system [10], feeds the captured signals directly into an Ettus SDR, and then processes

the signals offline on a PC. A comparison between these systems and the one in this study

is shown in Table 6.5. Here the system was configured to match that of Tong’s [11] as closely

as possible to allow for the best comparison.

From Table 6.5 it can be seen that the system proposed here is able to process a CPI

approximately four times faster than the Tegra system [11] using a similar hardware

configuration. Furthermore, the proposed system(i.e. the embedded system presented in this

study) used an optimal least-squares solver, while the Tegra system (Tong’s [11]) used a

sub-optimal CGLS algorithm.

The bistatic detection range achieved by the proposed system is far greater than the SDR

system [10].

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 128

University of Pretoria

Table 6.5 Comparison of existing systems.

Matched Filter Tegra System [11] SDR System [10] Proposed System

CPI Length 800 × 103 Unknown 800 × 103

Cancellation filter

algorithm

CGLS Unknown Hybrid LU Wiener

Number of Bins

Cancelled

150 30* 150

Number of cancellation

batches

Unknown Unknown 20

Number of Range Bins 150 30* 150

Number of Doppler

Bins

1601 Unknown 1601

Direct path distance 90 km** 48.3 km 28.6 km

Maximum bistatic

detection range

250 km 65 km 198.2 km

Maximum detection

range from receiver

100 km Unknown 90.35 km

Cost excluding

antennas

$5260.00 $700 (receiver

only

$1332.23

Average processing

time

≲ 4 s Not real-time 959.84 ms

* Estimated from Fig. 9. in [10]

** Estimated from Fig. 7. in [11]

The Tegra [11] system achieved a much higher bistatic detection range, but a very

comparable range from the receiver. This is due to much longer direct-path used by the Tegra

system [11]. As discussed in Section 3.2.1, an increase in direct path distance should increase

the detection range from the receiver. However, due to the differences in sites, targets, and

other environmental factors, these results cannot be directly compared. In order to do so, the

systems would need to be deployed and run alongside one another.

© University of Pretoria

CHAPTER 6 RESULTS

Department of Electrical, Electronic and Computer Engineering 129

University of Pretoria

It should however be noted, that a similar system [7] has also been presented by some of the

developers of the Tegra system [11]. This system was not limited by real-time aspects, and

instead focused on the performance of the receiver. In this case the maximum bistatic

detection range was 383 km, which (with an estimated direct path distance of 90 km)

requires 196 range bins to detect such targets. Hence, it stands to reason that the performance

limiting factor of the Tegra system [11] is the processing power. With 200 range bins, the

proposed system would require 1.593 s to process the results for each 4 s CPI. This means

that employing the processing chain proposed in this study would allow the full range to be

processed in real-time and even allow for overlapping CPIs. The system depicted in Fig 12.

of [7] shows the use of two Tegras to enable the processing. By using the processing chain

presented in this study, both channels could be processed on one board.

The hardware of the proposed system cost 3.95 times less than the hardware of the Tegra

system [11], while managing to achieve comparable detection performance and improved

processing performance.

6.6 SUMMARY

 It was shown that the system was able to detected all aircraft with ADSB transceivers,

except one target which did not come closer than 91 km of the receiver site. The system

achieved a detection accuracy of 0.95 km. The system extracted those detections and

successfully associated them with the correct targets. Once a state smoothing filter was

applied, the system achieved a tracking accuracy of 0.927 km.

The system operated in real time. On the mobile platform the system required 129.2 ms to

process a 4 s CPI, while the embedded system required 1.017 s. The total hardware cost for

the mobile system was $3325.67, while the embedded system cost $1667.28.

When compared to other systems in literature it was found that the system cost

approximately four times less, required approximately a quarter of the processing time, but

achieved a detection range 9.65% shorter than that of the most comparable system.

© University of Pretoria

CHAPTER 7 CONCLUSION AND FUTURE

WORK

7.1 CONCLUSION

Passive radar is an emerging technology but its theoretical usefulness in low cost scenarios

is subdued by requirements for processing performance and specialized hardware. In order

to evaluate the practical potential for passive radar as a low cost radar, the factors which

limit passive radar performance were investigated, identified and evaluated. The

predominant factors were found to be related to dynamic range and direct path interference.

General design practices were also investigated and developed from findings in literature.

A low cost passive radar was designed and implemented on a mobile PC as well as on an

embedded processor. The detection capabilities of the radar were demonstrated, key stress

points in the processing chain were evaluated and several strategies were developed which

were required to enable real-time processing in the processing restrictive environments in

which the radar was implemented. The radar was thus successfully implemented and tested.

The main findings of the study are detailed below.

7.1.1 Passive radar performance

It was found that a general limiting factor in passive radar performance is dynamic range

and not sensitivity [8], as is generally the case in active radar.

7.1.2 Optimum position

It was found that without knowledge of the terrain and its influence on EM propagation, the

optimum position for a passive radar is between the area which it is intended to survey and

the receiver. Furthermore, it was found that the longer the base line between the transmitter

and the receiver, the further the range of the radar will be, assuming that signals’ powers

remain above the receiver’s sensitivity.

© University of Pretoria

CHAPTER 7 CONCLUSION AND FUTURE WORK

Department of Electrical, Electronic and Computer Engineering 131

University of Pretoria

7.1.3 Antenna and transmitter selection

It was found that the surveillance antenna for a passive radar should prioritise a high front-

to-back gain ratio or should place nulls in the direction of the transmitter. This should be

prioritized over forward gain.

The transmitter should be chosen to provide sufficient transmission power; such that

dynamic range is the limiting performance factor rather than sensitivity.

7.1.4 Cancellation filter schemes

Several cancellation schemes were investigated. It was found that significant acceleration

could be achieved by migrating the processing to a GPU, which executed up to 4.01 times

faster than the equivalent CPU implementation.

By applying some restrictions to the definition of the cancellation filter, it was found that the

memory requirements could be dramatically reduced by removing the need to explicitly store

the cancellation matrix. Furthermore, this allowed the optimization of some functions and

generally reduced the memory transfer requirements of functions. This allowed for execution

time to be decreased by up to a further 21.01 times over the standard GPU implementation.

7.1.5 Matched filter processing

Various schemes were investigated for matched filter processing. It was shown under which

conditions each is preferred. It was found that the matched filter could be migrated to the

GPU and achieved a performance increase of up to 13.18 times faster than the CPU

implementation.

7.1.6 Radar performance

A passive radar system was implemented using OTS hardware on an embedded processor

as well as a laptop PC. Both systems were able to run in real time, i.e. they could process

data as fast as/faster than it arrived. The laptop PC produced a significantly lower processing

latency, but also resulted in a costlier system with significantly higher power requirements.

© University of Pretoria

CHAPTER 7 CONCLUSION AND FUTURE WORK

Department of Electrical, Electronic and Computer Engineering 132

University of Pretoria

The radar was able to detect a target up to 90.35 km (bistatic range of 194.5 km) from the

receiver. Of the 11 aircraft which had ADS-B transceivers (typically large passenger aircraft)

and entered the maximum range of the radar, 10 were detected by the radar. The estimation

error and probability of detection were estimated from data gathered. It was found that the

radar had a bistatic range RMSE of 0.950 km which was less than the range resolution. It

was found that the probability of detection for a target entering the maximum detectable

range was 0.367 per CPI. The probability of detecting a target, within a specified bistatic

range, dropped below 0.5 when the bistatic range was greater than 137.2 km.

The proposed system to other systems in literature and it was found that the proposed system

cost approximately a quarter, had an 8. 72% shorter detection range, and required

approximately a quarter of the processing time of the most comparable system

It was, therefore, shown that with careful design and deployment, a low cost passive radar

can be built using OTS components and can achieve reasonable performance. While the

performance was not that of an active radar, or high performance passive radar, a low cost

passive radar has been shown to be an alternative where power and cost are limiting factors.

7.2 FUTURE WORK

While a low cost passive radar system has been shown to be functional, its probability of

detection was less than optimal. Improvements and future considerations are shown below.

7.2.1 Analogue DPI cancellation

The digital DPI and clutter cancellation implemented is near optimal in its ability to remove

DPI and clutter. The system, however, is now limited by the quality of the sampled data. To

this end, further cancellation needs to take place before conversion to the digital domain. In

order to accomplish this objective, adaptive analogue DPI cancellation is required. If

integrated into the system, analogue cancellation would result in improved performance,

robustness and versatility by decreasing the dynamic range of signal components fed to the

receiver.

© University of Pretoria

CHAPTER 7 CONCLUSION AND FUTURE WORK

Department of Electrical, Electronic and Computer Engineering 133

University of Pretoria

7.2.2 Improved filtering

As discussed in Section 3.3, OTS receivers are not generally optimised for or support narrow

analogue bandwidths. As such, improved pre-AGC analogue filters would allow the receiver

to better utilize the ADC and improve the effective dynamic range achievable. Such an

implementation has been addressed in literature [7]

7.2.3 Unambiguous target position

Currently the system is only capable of detecting the bistatic range, and bistatic range rate

of a target. On its own, this information in not particularly valuable in real world scenarios.

The bistatic range defines the position of a target on an ellipsoid [42]. In order to determine

the position of a target, its direction from the receiver is also required. This can be achieved

by incorporation direction finding or by employing a multistatic system [16].

7.2.4 Independent channel gain

On the current receiver, the gain of each channel has to be set to the same level. The issue

arises when two channels have vastly differing amplitudes. Such a case exists between the

reference and surveillance channels. As such, the surveillance channel’s ADC could not be

fully utilized without clipping the reference channel. Independent gain control would

alleviate this issue and result in better digitisation of the surveillance channel.

© University of Pretoria

REFERENCES

[1] P. Howland, “Editorial: Passive radar systems,” IEE Proceedings - Radar, Sonar and

Navigation, pp. 105-106, 2005.

[2] F. Colone, D. O'Hagan, P. Lombardo and C. Baker, “A Multistage Processing

Algorithm for Disturbance Removal and Target Detection in Passive Bistatic Radar,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 2, pp. 698-722,

2009.

[3] J. Palmer, D. Cristallini and H. Kuschel, “Opportunities and current drivers for passive

radar research,” in 2015 IEEE Radar Conference, 2015.

[4] H. Kuschel and D. O'Hagan, “Passive radar from history to future,” in 11-th

INTERNATIONAL RADAR SYMPOSIUM, 2010.

[5] M. Inggs, C. Tong, R. Nadjiasngar, G. Lange, A. Mishra and F. Maasdorp, “Planning

and design phases of a commensal radar system in the FM broadcast band,” IEEE

Aerospace and Electronic Systems Magazine, vol. 29, no. 7, pp. 50-63, 2014.

[6] D. O’Hagan, H. Kuschel, J. Heckenbach and M. Ummenhofer, “Signal reconstruction

as an effective means of detecting targets in a DAB-based PBR,” in 11th International

Radar Symposium (IRS), 2010.

[7] M. Inggs, R. Geschke, J. Coetser and D. O'Hagan, “High sensitivity fixed tuned direct

conversion receiver for FM band commensal radar,” in 2015 IEEE Radar Conference,

2015.

[8] H. Harms, J. E. Palmer, S. J. Searle and L. M. Davis, “Impact of quantization on

passive radar target detection,” in IET International Conference on Radar Systems

(Radar 2012), 2012.

[9] J. Palmer and S. Searle, “Evaluation of adaptive filter algorithms,” in 2012 IEEE Radar

Conference (RADAR), 2012.

[10] S. Heunis, Y. Paichard and M. Inggs, “Passive radar using a software-defined radio

platform and opensource software tools,” in 2011 IEEE RadarCon (RADAR), 2011.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 135

University of Pretoria

[11] C. Tong and J. Coetser, “A minimal architecture for real-time, medium range aircraft

detection using FM-band illuminators of opportunity,” in 2015 IEEE Radar

Conference (RadarCon), 2015.

[12] P. Howland, D. Maksimiuk and G. Reitsma, “FM radio based bistatic radar,” IEE

Proceedings - Radar, Sonar and Navigation, vol. 152, no. 3, pp. 107-115, 2005.

[13] C. A. Tong, “A Scalable Real-time Processing Chain for Radar Exploiting Illuminators

of Opportunity,” University of Cape Town, Cape Town, 2014.

[14] K. Kulpa, “Multi-static entirely passive detection of moving targets and its

limitations,” IEE Proceedings - Radar, Sonar and Navigation, vol. 152, no. 3, pp. 169-

173, 2005.

[15] M. Duan and W. Koch, “Multistatic target tracking for non-cooperative illumination

by DAB/DVB-T,” in RADAR '08. IEEE Radar Conference, 2008., 2008.

[16] M. Inggs and Y. Paichard, “Multistatic Passive Coherent Location radar systems,” in

EuRAD 2009. European Radar Conference, 2009., 2009.

[17] P. E. Howland, “Target tracking using television-based bistatic radar,” IEE

Proceedings - Radar, Sonar and Navigation, vol. 146, no. 3, pp. 166-174, 1999.

[18] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser and M. Sarrafzadeh, “Energy-aware

high performance computing with graphic processing units,” 2008.

[19] “IEEE Standard Radar Definitions,” IEEE Std 686-1997, pp. i-35, 1998.

[20] F. Colone, R. Cardinali, P. Lombardo, O. Crognale, A. Cosmi, A. Lauri and T.

Bucciarelli, “Space-time constant modulus algorithm for multipath removal on the

reference signal exploited by passive bistatic radar,” IET Radar, Sonar & Navigation,

vol. 3, no. 3, pp. 253-264, 2009.

[21] M. Richards, J. Scheer, J. Scheer and W. Holm, Principles of modern radar, SciTech

Publishing, Incorporated, 2010.

[22] P. Falcone, F. Colone, A. Macera and P. Lombardo, “Two-dimensional location of

moving targets within local areas using WiFi-based multistatic passive radar,” IET

Radar, Sonar Navigation, vol. 8, no. 2, pp. 123-131, 2014.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 136

University of Pretoria

[23] P. Beasley, “The Influence of Transmitter Phase Noise on FMCW Radar

Performance,” in 2006. EuRAD 2006. 3rd European Radar Conference, 2006.

[24] H. D. Griffiths and N. R. W. Long, “Television-based bistatic radar,” IEE Proceedings

For Communications, Radar and Signal Processing, vol. 133, no. 7, pp. 649-657,

December 1986.

[25] P. E. Howland, “Television based bistatic radar,” University of Birmingham,

Birmingham, 1997.

[26] NATO Defense Research Group, in Symposium on ‘passive and noise radar'.

[27] H. D. Griftiths and C. J. Baker, “Passive coherent location radar systems. Part 1:

performance prediction,” IEE Proceedings - Radar, Sonar and Navigation, vol. 152,

no. 3, pp. 153-159, 2005.

[28] A. Lauri, F. Colone, R. Cardinali, C. Bongioanni and P. Lombardo, “Analysis and

Emulation of FM Radio Signals for Passive Radar,” in 2007 IEEE Aerospace

Conference, 2007.

[29] C. Bongioanni, F. Colone and P. Lombardo, “Performance analysis of a multi-

frequency FM based Passive Bistatic Radar,” in 2008 IEEE Radar Conference, 2008.

[30] J. Brown, K. Woodbridge, A. Stove and S. Watts, “Air target detection using airborne

passive bistatic radar},” Electronics Letters, vol. 46, no. 20, pp. 1396-1397, 2010.

[31] M. Malanowski, K. S. Kupla, P. Samczynski, J. Misiurewicz and J. Kupla, “Long range

FM-based passive radar,” in IET International Conference on Radar Systems (Radar

2012), 2012.

[32] H. Griffiths and C. Baker, “Measurement and analysis of ambiguity functions of

passive radar transmissions,” in 2005 IEEE International Radar Conference, 2005.

[33] L. J. Garry, G. E. Smith and C. J. Baker, “Direct signal suppression schemes for passive

radar,” in Signal Processing Symposium (SPSympo), 2015, 2015.

[34] M. Meyers, “Radio and Development in Africa.,” International Development Research

Centre (IDRC) of Canada, 2009.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 137

University of Pretoria

[35] Institute of Electrical and Electronics Engineers, Radatz, J. and IEEE Computer

Society. Standards Coordinating Committee, The IEEE Standard Dictionary of

Electrical and Electronics Terms, IEEE, 1997.

[36] M. Inggs, C. Tong, D. O'Hagan, U. Böinger, U. Siegenthaler, C. Schüpbach and H.

Pratisto, “Noise jamming of a FM band commensal radar,” in 2015 IEEE Radar

Conference, Johannesburg, 2015.

[37] A. Haeff, “Minimum Detectable Radar Signal and Its Dependence upon Parameters of

Radar Systems,” Proceedings of the IRE, vol. 34, no. 11, pp. 857-861, 1946.

[38] E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Approach, 2nd

ed., Prentice Hall, 2002.

[39] B. Lathi and Z. Ding, Modern Digital and Analog Communication Systems, 4th ed.,

Oxford, 2009.

[40] IEEE, “IEEE Standard for Terminology and Test Methods of Digital-to-Analog

Converter Devices,” IEEE Std 1658-2011, pp. 1-126, 2012.

[41] M. Inggs, G. Lange and Y. Paichard, “A quantitative method for mono- and multistatic

radar coverage area prediction,” in 2010 IEEE Radar Conference, 2010.

[42] F. Ulaby, E. Michielssen and U. Ravaioli, Fundamentals of Applied Electromagnetics,

6th ed., New Jersey: Pearson Education, 2010.

[43] N. J. Willis and H. D. Griffiths, Advances in bistatic radar, vol. 2, SciTech Publishing,

2007.

[44] A. David, C. Brousseau and A. Bourdillon, “Simulations and measurements of a radar

cross section of a Boeing 747-200 in the 20–60 MHz frequency band,” Radio Science,

vol. 38, no. 4, pp. n/a-n/a, 2003.

[45] M. Malanowski and K. Kulpa, “Digital beamforming for Passive Coherent Location

radar,” in RADAR '08. IEEE Radar Conference, 2008., 2008.

[46] C. Tong, M. Inggs and F. Maasdorp, “Performance improvements using the separated

reference configuration for a multi-static FM broadcast band radar system,” in 2013

International Conference on Radar, 2013.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 138

University of Pretoria

[47] Intel, “Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:

System Programming Guide, Part 1,” 2015.

[48] L. B. Das, The X86 Microprocessors: Architecture and Programming (8086 To

Pentium), Pearson Education, 2010.

[49] K. Jotwani and N. Hwang, Advanced Computer Architecture Parallelism, Scalability,

Programmability, New Delhi: Mc Graw Hill Education, 2011.

[50] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming,

Pearson Education, 2013.

[51] Intel Corporation, “User's Guide for Intel® Math Kernel Library 11.3 Update 1 for

Windows* OS,” 2015. [Online]. Available: https://software.intel.com/en-us/mkl-for-

windows-userguide. [Accessed 10 February 2016].

[52] Intel, “Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2

(2A, 2B & 2C): Instruction Set Reference, A-Z,” Intel, 2015.

[53] R. Y. Kain, Advanced computer architecture A systems design approach, New Jersey:

Prentice-Hall inc., 1996.

[54] Nvidia, “CUDA C Programming guide,” 1 September 2015. [Online]. Available:

https://docs.nvidia.com/cuda/cuda-c-programming-guide. [Accessed 12 October

2015].

[55] C. Gregg and K. Hazelwood, “Where is the data? Why you cannot debate CPU vs.

GPU performance without the answer,” in 2011 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2011.

[56] W. du Plessis, “Disposable EW – Keeping Pace with Rapid Advances,” in Proceedings

of the Aardvark Roost Biennial International EW Conference 2015, Pretoria, 2015.

[57] Nvidia Corporation, “Jetson TK1 Development Kit Spesification,” 2014.

[58] S. Haykin, Adaptive Filter Theory, 4th ed., Pearson Education, 2008.

[59] S. Searle, L. Davis and J. Palmer, “Signal processing considerations for passive radar

with a single receiver,” in 2015 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2015.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 139

University of Pretoria

[60] Nvidia, “cuBLAS Library,” September 2015. [Online]. Available:

http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf. [Accessed 13 February

2016].

[61] L. Trefethen and D. Bau, Numerical Linear Algebra, Society for Industrial and Applied

Mathematics, 1997.

[62] Nvidia, “cuSOLVER Library,” 1 September 2015. [Online]. Available:

http://docs.nvidia.com/cuda/pdf/CUSOLVER_Library.pdf. [Accessed 17 February

2016].

[63] Nvidia, “cuFFT Library User's Guide,” 1 September 2015. [Online]. Available:

http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf. [Accessed 17 February 2016].

[64] M. Frigo and S. G. Johnson, “FFTW,” 25 November 2012. [Online]. Available:

http://www.fftw.org/fftw3.pdf. [Accessed 17 February 2016].

[65] R. C. Whaley and J. J. Dongarra, “Automatically Tuned Linear Algebra Software

(ATLAS),” in Proceedings of the 1998 ACM/IEEE conference on Supercomputing,

1998.

[66] O. Rioul and P. Duhamel, “Fast algorithms for discrete and continuous wavelet

transforms,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 569-586,

1992.

[67] M. Cherniakov, “FMCW like approach,” in Bistatic Radars: Emerging Technology,

Wiley, 2008, pp. 301-303.

[68] F. D. V. Maasdorp, M. R. Inggs and R. Nadjiasngar, “Target tracking using Doppler-

only measurements in FM broadcast band commensal radar,” Electronics Letters, vol.

51, no. 19, pp. 1528-1530, 2015.

[69] A. Benavoli and A. Di Lallo, “Why should we use particle filtering in FM band passive

radars?,” in European Radar Conference, 2008. EuRAD 2008, 2008.

[70] H. Li, X. Ji and G. Zhao, “TOA-based target tracking using improved particle filter in

passive bistatic radar with glint noise,” in 6th International Congress on Image and

Signal Processing (CISP), 2013, 2013.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 140

University of Pretoria

[71] D. Tenne and T. Singh, “Optimal design of α-β- (γ) filters,” in Proceedings of the 2000

IEEE American Control Conference, 2000., 2000.

[72] Radio Frequency Industries, “Broadcast Band Yagi Base Direcional Antennas (88-110

MHz.),” 24 Febuary 2010. [Online]. Available:

http://www.rfind.co.za/broadcast%20band%20yagi%20%20base%20antennas.pdf.

[Accessed 20 October 2015].

[73] D. McCallie, J. Butts and R. Mills, “Security analysis of the ADS-B implementation

in the next generation air transportation system,” International Journal of Critical

Infrastructure Protection, vol. 4, no. 2, pp. 78--87, 2011.

[74] F. Maasdorp, J. Cilliers, M. Inggs and C. Tong, “Simulation and measurement of

propeller modulation using FM broadcast band commensal radar,” Electronics Letters,

vol. 49, no. 23, pp. 1481-1482, 2013.

[75] G. H. Golub and C. F. Van Loan, “Symmetric Indefinite Systems,” in Matrix

Computations, Johns Hopkins University Press, 1996, pp. 161-174.

[76] Z. Zlatev and H. B. Nielsen, “Solving large and sparse linear least-squares problems

by conjugate gradient algorithms,” Computers & Mathematics with Applications, vol.

15, no. 3, pp. 185 - 202, 1988.

[77] R. Fry and D. Gray, “CLEAN deconvolution for sidelobe suppression in random noise

radar,” in 2008 International Conference on Radar, 2008.

[78] B. Friedlander, “Lattice filters for adaptive processing,” Proceedings of the IEEE, vol.

70, no. 8, pp. 829-867, 1982.

© University of Pretoria

ADDENDUM A DERRIVATION OF

COMPUTATIONAL COMPLEXITIES

Relevant linear algebra routines are introduced and derived below.

A.1. LU FACTORIZATION

LU factorization can be used to solve a system of equations by factorising a matrix into an

upper and lower triangular form, such that

 𝐶 = 𝐿𝑈 (A.1)

where

 𝐿 is a lower triangular matrix, and

 U is an upper triangular matrix which as diagonal elements equal to one.

The LU factorisation can be performed using Gaussian elimination [61], where the

elimination matrices are stored and used to determine 𝑈. However, this is potentially

numerically unstable, as a divide by zero (or even by a small number) causes numerical

errors.

An example of this is described here. Assume the factorisation of

𝐶 = [

25 5 1
64 12.8 1

144 12 1
] (A.2)

into LU form by replacing 𝐶 with 𝐿. The process is initialised by calculating the elimination

matrix for the first iteration (𝑖 = 1),

𝐸𝑖 = 𝐼 −

1

𝐶𝑖𝑖
𝐶𝑖+1:𝑚,𝑖 (A.3)

𝐸1 = [

1 0 0
−2.56 1 0
−5.76 0 1

]. (A.4)

By multiplying the elimination with 𝐶 with 𝐸𝑖 C is updated such that

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 142

University of Pretoria

𝐶 = [

25 5 1
0 0 −1.56
0 −16.8 −4.76

]. (A.5)

The second elimination matrix becomes undefined as

𝐸2 [

1 0 0
0 1 0
0 −𝐶32/𝐶22 1

], (A.6)

which results in a divide by zero error. 𝑈 is calculated by

𝑈 = (∏ 𝐸𝑖

𝑀−1

𝑖=1

)

−1

. (A.7)

The non-diagonal elements of 𝑈 can alternatively be calculated by

 𝑢𝑖𝑗 = −𝑒𝑖𝑗 (A.8)

where

 𝑢𝑥𝑦 is an element of 𝑈, and

 𝑒𝑥𝑦is an element of 𝐸𝑦.

In order to remedy the numerical instability in LU factorisation, the factorisation is modified

to [61]

 𝑃𝐶 = 𝐿𝑈 (A.9)

where,

 𝑃 is a perturbation matrix.

This can be solved via Gaussian elimination with partial pivoting. In this method a row

interchange is performed so that the magnitude of the elimination multiplier is minimised.

This is performed by performing row interchanges such that 𝐶𝑖𝑖 in each step is maximised.

This modified LU factorisation is both more stable and more numerically accurate.

 The factorization of 𝐶 has an approximate time cost of
2

3
𝑀3. Using Gaussian elimination

this requires
1

3
𝑀3 − 𝑀2 +

2

3
𝑀 multiplications and the same number of additions. The

number of divisions required is
1

2
𝑀2 −

1

2
𝑀. The flop count for LU Factorization is therefore

8

3
𝑀3 − 𝑀2 −

5

3
𝑀 .

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 143

University of Pretoria

Forward substitution is then used to solve for a vector 𝑧 in

 𝐿𝑧 = 𝑑 (A.10)

𝑥 is then found by backward substituting

 𝑈𝑥 = 𝑧. (A.11)

Finally, the filter output is found by

 𝑏̂ = 𝑏 − 𝐴𝑥 (A.12)

The algorithmic cost for LU factorization least squares is given in Table A.A.1.

Table A.A.1 Algorithmic cost for LU factorisation least-squares.

Equation Time cost Flop count

𝒅 = 𝑨𝑯𝒃 2𝑁𝑀 8𝑁𝑀

𝑪 = 𝑨𝑯𝑨 2𝑁𝑀2 8𝑁𝑀2

𝑳𝑼 = 𝑪 2

3
𝑀3

8

3
𝑀3 − 𝑀2 −

5

3
𝑀

𝑳𝒛 = 𝒅 𝑀2 8𝑁𝑀

𝑼𝒙 = 𝒛 𝑀2 8𝑁𝑀2

𝒃̂ = 𝒃 − 𝑨𝒙 2𝑁𝑀 + 𝑁 8𝑁𝑀 + 2𝑁

Total 2

3
𝑀3 + 2𝑁𝑀2 + 4𝑁𝑀 +

2𝑀2 + 2𝑁

8

3
𝑀3 + 16𝑁𝑀2 +

24𝑁𝑀 + 2𝑁 − 𝑀2 −
5

3
𝑀

A.2. CHOLESKY FACTORIZATION

The Cholesky factorisation factorises a positive-definite Hermitian matrix [61] such that

 𝐴 = 𝐿𝐿𝐻 (A.13)

where

 𝐿 is a lower triangular matrix.

The factorisation therefore has a time cost of
1

3
𝑀3 +

1

2
𝑀2 +

1

6
𝑀, which is approximated

as
1

3
𝑀3. The number of multiplications required are

1

6
𝑀3 +

1

2
𝑀2 +

1

3
𝑀, and the number of

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 144

University of Pretoria

additions are
1

6
𝑀3 −

1

6
𝑀. The total FLOPs required for Cholesky factorisation is

therefore
4

3
𝑀3 + 3𝑀2 +

5

3
𝑀.

The filter weight vector, 𝑥, is then found by following a similar methodology to LU

factorisation least squares, where 𝑈 is replaced by 𝐿𝐻. The algorithmic cost for Cholesky

factorisation is shown in Table A.2.

Table A.2 Algorithmic cost of Cholesky factorisation least squares.

Equation Time cost Flop count

𝒅 = 𝑨𝑯𝒃 2𝑁𝑀 8𝑁𝑀

𝑪 = 𝑨𝑯𝑨 2𝑁𝑀2 8𝑁𝑀2

𝑳𝑳𝑯 = 𝑪 1

3
𝑀3

4

3
𝑀3 − 𝑀2

𝑳𝒛 = 𝒅 𝑀2 4𝑀2 + 10𝑀

𝑼𝒙 = 𝒛 𝑀2 4𝑀2 + 10𝑀

𝒃̂ = 𝒃 − 𝑨𝒙 2𝑁𝑀 + 𝑁 8𝑁𝑀 + 2𝑁

Total 1

3
𝑀3 + 2𝑁𝑀2 + 4𝑁𝑀 +

3

2
𝑀2 + 𝑁

8𝑁𝑀2 +
4

3
𝑀3 + 16𝑁𝑀 +

7𝑀2 + 2𝑁

It should be noted that with real data, 𝐶 is not guaranteed to be positive-semidefinite (within

numeric precision). Hence, another factorisation method is required to ensure a solution can

be found. Alternatives include LU or LDLT factorisation.

A.3. LDL FATORIZATION

LDL factorisation [75] factorises a Hermatian matrix into

 𝐴 = 𝐿𝐷𝐿𝐻 (A.14)

where

 𝐿 is a unit lower triangular matrix, and

 𝐷 is a diagonal matrix.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 145

University of Pretoria

The factorisation can be completed with approximately 1/3𝑁3 complex operations.

However, in order to ensure numerical stability a pivoting technique is required [75]. This

can be achieved using Baunch-Kaufman diagonal pivoting. This increases the computational

requirements by 𝑂(𝑁2) complex operations, and decreases the arithmetic intensity of the

factorization.

A.4. QR FACTORIZATION

The least squares problem can be solved using the QR factorization [61],

 𝐴 = 𝑄𝑅 (A.15)

where

 𝑄 is an orthogonal matrix such that 𝑄−1 = 𝑄𝐻, and

 𝑅 is an upper triangular matrix.

QR least squares is possibly the most common numerical linear least squares solver used by

libraries when solving for rectangular linear least squares. It is implemented by, LAPACK

and MATLAB as the default solver for rectangular systems. This is, however, primarily due

to its numerical stability and accuracy.

The QR decomposition can be calculated using the Householder algorithm [61]. 𝑅 is found

by sequentially updating 𝐴 with 𝑘 = 1,2, … , 𝑀 by defining

 𝑔 = 𝐴𝑘:𝑁,𝑘 (A.16)

then 𝑣𝑘 is defined as

 𝑣𝑘 = sign(𝑔1)‖𝑔‖𝑒1 + 𝑔 (A.17)

where

 𝑒1 is a 𝑚 − 𝑘 element vector with the first element equal to one, and the rest equal

to zero.

𝑣𝑘 is then normalised by

 𝑣𝑘 =
𝑣𝑘

‖𝑣𝑘‖
 (A.18)

and 𝐴 is updated by

 𝐴𝑘:𝑁,𝑘:𝑀 = 𝐴𝑘:𝑁,𝑘:𝑀 − 2𝑣𝑘(𝑣𝑘
𝐻𝐴𝑘:𝑁,𝑘:𝑀). (A.19)

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 146

University of Pretoria

Once the algorithm is completed 𝑅 is written in place of 𝐴, and the reflection vectors

𝑣1, 𝑣2, … , 𝑣𝑀 are stored.

In order to calculate the least-squares solution, a vector 𝑑 is defined as

 𝑑 = 𝑄𝐻𝑏. (A.20)

Finally, x is found via backward substituting

 𝑅𝑥 = 𝑑. (A.21)

Given that the only place 𝑄 is needed for the algorithm is in (A.20), 𝑄 does not need to be

explicitly calculated. Instead 𝑑 can be calculated by sequentially applying

 𝑏𝑘:𝑁 = 𝑏𝑘:𝑁 − 2𝑣𝑘(𝑣𝑘
𝐻𝑏𝑘:𝑁) (A.22)

for 𝑘 = 1,2, … , 𝑛, after which 𝑏 has been overwritten by 𝑑.

A.4.1 Computational cost

The computational cost of QR least squares commences with the computational cost of

(A.17). In the interest of clarity, 𝑙 = 𝑁 − 𝑘 + 1 and 𝑙1 = 𝑀 − 𝑘 + 1 is defined. Determining

‖𝑔‖ requires 2𝑙 operations, with half of those being composed of magnitude operations and

half additions. As 𝑒1 has only one non-zero element, only 1 multiplication and addition is

required to form 𝑣𝑘. However, the entire g vector does need to be copied requiring 𝑙

operations. Therefore, (A.17) requires 3𝑙 + 2 operations to execute. Summing this over the

𝑛 iterations results for 𝑘 = 1,2, … , 𝑀 results in 3 (𝑀𝑁 −
1

2
𝑀2) +

7

2
𝑀 operations.

The normalisation of 𝑣𝑘 then requires the calculation of the norm of 𝑣𝑘 which requires 2𝑙

operations, and a division which can be represented as one division and 2𝑙 multiplications.

When this is completed for all 𝑀 iterations, the total time cost is 4𝑁𝑀 − 2𝑀2 + 3𝑀

operations.

The bulk of the work in QR factorisation is performed by (A.19). First 𝑣𝑘
𝐻𝐴𝑘:𝑁,𝑘:𝑀 requires

the multiplication between a 1 × 𝑙 vector and an 𝑙 × 𝑙1 results in a 1 × 𝑙1 vector. This

operation has an approximate time cost of 2𝑙1𝑙, of which half are multiplications and half

are additions. The multiplication between that vector and 𝑣𝑘 requires a further 𝑙 × 𝑙1

operations, resulting in a 𝑙 × 𝑙1 matrix. The scalar multiplication and addition requires a

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 147

University of Pretoria

further 𝑙, and 𝑙 × 𝑙1 operations respectively. In total (A.19) requires 4(𝑙 × 𝑙1) + (𝑙)

operations, of which 2(𝑙 × 𝑙1) are complex multiplications, 2(𝑙 × 𝑙1) are complex additions,

and 𝑙 are scalar multiplications.

 Summing this over the 𝑀 iterations results in a time cost of 2𝑁𝑀2 −
2

3
𝑀3 + 3𝑀𝑁 −

1

2
𝑀2 +

7

6
𝑀 . The total QR factorisation using the Householder algorithm therefore, has a

time cost of 2𝑁𝑀2 + 10𝑀𝑁 −
2

3
𝑀3 − 4𝑀2 +

23

3
𝑀.

The calculation of 𝑑 using the implicit 𝑄, is performed by applying (A.22). This operation

requires 2𝑙 operations to perform 𝑣𝑘
𝐻𝑏𝑘:𝑁, a further 𝑙 to multiply the result with 𝑣𝑘. A further

𝑙 operations are required to perform the update. The scalar multiplication can be performed

by applying the multiplication to the result of 𝑣𝑘
𝐻𝑏𝑘:𝑁 which requires a single operation. Each

iteration therefore has a time cost of 4𝑙 + 1. Summing these overall 𝑛 iterations results in a

time cost of 4𝑛𝑚 − 2𝑛2 + 3𝑛.

Equation (Rx=d) has a time cost of 𝑀2. This requires 𝑀 divisions, 𝑀(𝑀 − 1)/2

multiplications and 𝑀(𝑀 − 1)/2 subtractions. Thus, the backward substitution requires

4𝑀2 + 10𝑀 FLOPs.

The filter output requires calculating (5.1) which has a time cost of 2𝑁𝑀 + 𝑁. This requires

𝑁𝑀 multiplications, 𝑁𝑀 additions and 𝑁 subtractions for a FLOP count of 8𝑁𝑀 + 2𝑁.

The time cost and flop count for QR factorisation least squares is shown in Table A.3.

.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 148

University of Pretoria

Table A.3 Arithmetic cost of QR factorisation least squares.

Equation Time cost FLOP count

𝑸𝑹 = 𝑨
2𝑁𝑀2 + 10𝑀𝑁 −

2

3
𝑀3 −

4𝑀2 +
23

3
𝑀

8𝑁𝑀2 + 37𝑁𝑀 −
8

3
𝑀3 −

29

2
𝑀2 +

115

6
𝑀

𝒅 = 𝒃𝑸𝑯 4𝑁𝑀 − 2𝑀2 + 3𝑀 16𝑁𝑀 − 8𝑀2 + 14𝑀

𝑹𝒙 = 𝒅 𝑀2 4𝑀2 + 10𝑀

𝒃̂ = 𝒃 − 𝑨𝒙 2𝑁𝑀 + 𝑁 8𝑁𝑀 + 2𝑁

Total
2𝑁𝑀2 + 16𝑁𝑀 −

2

3
𝑁3 −

5𝑁2 +
32

3
𝑁 + 𝑁

8𝑁𝑀2 −
8

3
𝑀3 + 61𝑁𝑀 −

37

2
𝑀2 + 2𝑁 +

259

6
𝑀

A.5. CONJUGATE GRADIENT LEAST SQUARES

Conjugate gradient least squares is an iterative least-squares algorithm which can be efficient

for well-defined or large matrices [76]. This algorithm can be used to form an approximation

of the filter coefficients with fewer computations than other algorithms [76] (such as

factorisation). It has previously been implemented to reduce the computational load as

opposed to a least squares algorithm [13].

The CGLS requires initialization which follows the procedure

 𝑟0 = 𝑏 − 𝐴𝑥0 (A.23)

 𝑠0 = 𝑟0𝐴𝐻 (A.24)

 𝛾0 = norm2(𝑠0) (A.25)

 𝑝0 = 𝑠0 (A.26)

where

 𝑥0 is the initial estimate for 𝑥.

The time cost and flop count for each of equations (A.23) to (A.26) is shown in Table A.4.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 149

University of Pretoria

Table A.4 Algorithmic cost of CGLS initialization.

Equation Time cost FLOP count

𝒓𝟎 = 𝒃 − 𝑨𝒙𝟎 2𝑁𝑀 + 𝑁 8𝑁𝑀 + 2𝑁

𝒔𝟎 = 𝒓𝟎𝑨𝑯 2𝑁𝑀 8𝑁𝑀

𝜸𝟎 = 𝐧𝐨𝐫𝐦𝟐(𝒔𝟎) 2𝑀 4𝑀

𝒑𝟎 = 𝒔𝟎 𝑀 2𝑀

Total 4𝑁𝑀 + 2𝑁 + 2 𝑀 16𝑁𝑀 + 4𝑁 + 4𝑀

Each iteration then refines the estimate of 𝑥 and the remainder, i.e. the filter output on the 𝑖th

iteration is stored in 𝑟𝑖. The iteration is carried out by [76]

𝑞𝑖 = 𝐴𝑝𝑖−1 (A.27)

𝛿𝑖 = norm2(𝑞𝑖) (A.28)

𝛼𝑖 =
𝛾𝑖−1

𝛿𝑖
 (A.29)

𝑥𝑖 = 𝑥𝑖−1 + 𝛼𝑖𝑝𝑖−1 (A.30)

𝑟𝑖 = 𝑟𝑖−1 + 𝜖𝑖𝑞𝑖 (A.31)

𝑠𝑖 = 𝑟𝑖𝐴
𝐻 (A.32)

𝛾𝑖 = norm2(𝑠𝑖) (A.33)

𝛽𝑖 =
𝛾𝑖

𝛾𝑖−1
 (A.34)

𝑝𝑖 = 𝑠𝑖 + 𝛽𝑝𝑖−1. (A.35)

The time cost and flop count for equations (A.27)-(A.35) is given in Table A.5. If the

algorithm is run for 𝐾 iterations such that 𝑖 ∈ 1,2 … 𝐾. The total time cost can be seen to be

4𝑁𝑀 + 2𝑁 + 2𝑀 + 𝐾(4𝑁𝑀 + 4𝑁 + 6𝑀 + 2). The total FLOP count can be seen to

be 16𝑁𝑀 + 4 𝑁 + 4 𝑀 + 𝐾(16𝑁𝑀 + 12𝑁 + 20𝑀 + 28).

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 150

University of Pretoria

Table A.5 Algorithmic cost of a CGLS iteration.

Equation Time cost FLOP count

𝒒𝒊 = 𝑨𝒑𝒊−𝟏 2𝑁𝑀 8𝑁𝑀

𝜹𝒊 = 𝒏𝒐𝒓𝒎𝟐(𝒒𝒊) 2𝑁 4𝑁

𝜶𝒊 =
𝜸𝒊−𝟏

𝜹𝒊
 1 14

𝒙𝒊 = 𝒙𝒊−𝟏 + 𝜶𝒊𝒑𝒊−𝟏 2𝑀 8𝑀

𝒓𝒊 = 𝒓𝒊−𝟏 + 𝝐𝒊𝒒𝒊 2𝑁 8𝑁

𝒔𝒊 = 𝒓𝒊𝑨
𝑯 2𝑁𝑀 8𝑁𝑀

𝜸𝒊 = 𝒏𝒐𝒓𝒎𝟐(𝒔𝒊) 2𝑀 4𝑀

𝜷𝒊 =
𝜸𝒊

𝜸𝒊−𝟏

1 14

𝒑𝒊 = 𝒔𝒊 + 𝜷𝒑𝒊−𝟏

2𝑀 8𝑀

Total 4𝑁𝑀 + 4𝑁 + 6𝑀 + 2 16𝑁𝑀 + 12𝑁 + 20𝑀 + 28

A.6. CLEAN CANCELLATION

The CLEAN algorithm [77] operates by iteratively deconvolving the surveillance channel

with the strongest component in the ARD. While simple to implement, it has been found to

be ineffective as a cancellation scheme in literature [33]. Within the context of the

cancellation filter, deconvolution is performed with the strongest column of 𝐴. The steps of

the algorithm are

1. Set 𝑠̂ = 𝑠.

2. Create a return profile by using

 𝑤 = 𝐴𝐻𝑠̂. (A.36)

3. Select the largest return using

 𝑤max = max(|𝑤|). (A.37)

4. Subtract the normalised component from 𝑠̂ using

 𝑠̂ = 𝑠̂ −
𝑤max

‖𝐴max‖2 𝐴max (A.38)

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 151

University of Pretoria

where

 𝐴𝑖 is the 𝑖th column of 𝐴.

5. Test for stop condition (possibly number of iterations). If passed exit, else return to

step 2.

The CLEAN algorithm therefore operates in a loop defined by steps 2 to 5. The algorithmic

cost of the loop is shown in Table A.6.

Table A.6 Algorithmic cost of CLEAN cancellation loop.

Equation Time cost FLOP count

𝒘 = 𝑨𝑯𝒔̂ 2𝑁𝑀 8𝑁𝑀

𝒘𝐦𝐚𝐱 = 𝐦𝐚𝐱(|𝒘|) 2𝑀 4𝑀

𝒔̂ = 𝒔̂ −
𝒘𝐦𝐚𝐱

‖𝑨𝐦𝐚𝐱‖𝟐
𝑨𝐦𝐚𝐱 2𝑁 + 1 8𝑁 + 14

Total 2𝑁𝑀 + 2𝑁 + 2𝑀 + 1 8𝑁𝑀 + 8𝑁 + 4𝑀 + 14

The calculation of ‖𝐴max‖2 can be reduced to the calculation of ‖𝐴i‖
2 for 𝑖 = 1,2, … , 𝑀,

which can be calculated before the loop. The calculation of these normalisation weights has

a time cost of 2𝑁𝑀 and has a FLOP count of 4𝑁𝑀.

Given 𝐾 iterations of the loop, the time cost of the CLEAN algorithm is 2𝐾𝑁𝑀 + 2𝑁𝑀 +

2𝐾𝑁 + 2𝐾𝑀 + 𝐾. The FLOP count is 8𝐾𝑁𝑀 + 4𝑁𝑀 + 8𝐾𝑁 + 4𝐾𝑀 + 14𝐾.

A.7. CORRELATIVE CANCELLATION

The computational complexity for Correlative cancellation is derived below. The time cost

and FLOP count for each iteration are shown in Table A.7.

Table A.7 Algorithmic cost of correlative cancellation inner loop.

Equation Time cost FLOP count

𝒙𝒊𝒋 = |𝒃𝟎|(𝒃̂𝒊𝒋 ∙ 𝑨𝒊
∗) 2𝑁 + 1 8𝑁 + 4

𝒃̂(𝒊+𝟏)𝒋 = 𝒃̂𝒊𝒋 − 𝒙𝒊𝒋𝑨𝒊 2𝑁 8𝑁

Total 4𝑁 + 1 16𝑁 + 4

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 152

University of Pretoria

The total time cost required to apply the correlative cancellation filter is therefore 4𝐾𝑁𝑀 +

𝐾𝑀 + 2𝑁, and a FLOP count of 16𝐾𝑁𝑀 + 4𝐾𝑀 + 6𝑁.

A.8. GRADIENT ADAPTIVE LATTICE FILTER

The GAL filter is a joint estimator made up of two parts [12] [78],

 an 𝑀 stage lattice predictor, and

 an adaptive NLMS tapped delay line.

The filter follows the form shown in Figure 5.2. The lattice predictor section has a structure

depicted in Figure A.1 [78].

Figure A.1 Diagram of a lattice predictor. Adapted with permission of IEEE, from [78];

permission conveyed through Copyright Clearance Center, Inc.

As can be seen from Figure A.1, the forward prediction error can be expressed as [58],

 𝑓𝑚(𝑛) = 𝑓𝑚−1(𝑛) + 𝑘𝑚
∗ 𝑏𝑚−1(𝑛 − 1), (A.39)

where

 𝑓𝑚(𝑛) is the 𝑚th forward prediction error for the 𝑛th sample,

 𝑏𝑚(𝑛) is the 𝑚th backward prediction error for the 𝑛th sample, and

 𝑚 = 1,2, … , 𝑀.

The backward prediction errors can be expressed as

 𝑏𝑚(𝑛) = 𝑏𝑚−1(𝑛 − 1) + 𝑘𝑚𝑓𝑚−1(𝑛). (A.40)

∑

∑

𝑘1

𝑘1
∗

𝑟𝑛

𝑏0(𝑛)

𝑓0(𝑛)

𝑏1(𝑛)

𝑓1(𝑛)
⋯

⋯

∑

∑

𝑘1

𝑘1
∗

𝑏𝑀−1(𝑛)

𝑓𝑀−1(𝑛)

𝑏𝑀(𝑛)

𝑓𝑀(𝑛)

𝑧−1 𝑧−1

Copyright © 1982, IEEE

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 153

University of Pretoria

The backward prediction errors are then fed to the tapped delay line. In order to update the

filter weights an energy estimate is required and is defined as [58],

 𝜖𝑚−1(𝑛) = 𝛽𝜖𝑚−1(𝑛 − 1) + (1 − 𝛽)(|𝑓𝑚−1(𝑛)|2 + |𝑏𝑚−1(𝑛 − 1)|2) (A.41)

where

 𝛽 is a scalar constant such that, 0 < 𝛽 < 1 which allows the filter to handle the non-

stationary stochastic processes.

The reflection coefficients (𝑘𝑚) are updated using [58]

𝑘𝑚(𝑛) = 𝑘𝑚(𝑛 − 1) −

𝜇

𝜖𝑚−1(𝑛)
(𝑓𝑚−1

∗ (𝑛)𝑏𝑚(𝑛) + 𝑏𝑚−1(𝑛 − 1)𝑓𝑚
∗ (𝑛)).

(A.42

)

Once the backward errors are calculated, they are fed to the tapped delay line. The output of

the tapped delay line taps are

 𝑦𝑚(𝑛) = 𝑦𝑚−1(𝑛) + ℎ𝑚
∗ (𝑛)𝑏𝑚(𝑛) (A.43)

where

 ℎ𝑚(𝑛) is the 𝑚th tap weight, and

 𝑦0(𝑛) = 0.

The output of the filter is defined as

  𝑤̂𝑛 = 𝑦𝑀(𝑛). (A.44)

In order to adjust the tap weights error terms are then defined as

 𝑒𝑚(𝑛) = 𝑠𝑛 − 𝑦𝑚(𝑛). (A.45)

Next a normalizing factor is defined

 ‖𝒃𝑚(𝑛)‖2 = ‖𝒃𝑚−1(𝑛)‖2 + |𝑏𝑚(𝑛)|2. (A.46)

The filter weights are then adjusted via [58],

 ℎ𝑚(𝑚 + 1) = ℎ𝑚(𝑚) +
𝜇

‖𝒃𝑚(𝑛)‖2
𝑏𝑚(𝑛)𝑒𝑚

∗ (𝑛). (A.47)

The computational complexity of the algorithm can be analysed by separating the filter into

its two parts. The computational complexity for each stage of the lattice filter (including

reflection coefficient update) is shown in Table A.8.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 154

University of Pretoria

Each stage is calculated 𝑀 times for each sample and each of 𝑁 samples must pass through

the lattice predictor. As such, the calculations in Table A.8 need to be repeated 𝑁𝑀 times.

The lattice predictor has a time cost of 17𝑁𝑀 and a FLOP count of 45𝑁𝑀.

Table A.8 Algorithmic cost of an adaptive lattice stage.

Equation Time cost FLOP count

(A.39) 2 8

(A.40) 2 8

(A.41) 6 10

(A.42) 7 19

Total 17 45

The algorithmic cost for each tap for each sample is shown in Table A.9.

Table A.9 Algorithmic cost of an adaptive NLMS tapped line.

Equation Time cost FLOP count

(A.43) 2 8

(A.45) 1 2

(A.46) 2 4

(A.47) 4 10

Total 9 24

As the calculation of each tap must be repeated 𝑀 times and for each of 𝑁 samples, the totals

in Table A.9 should be multiplied by 𝑁𝑀. The total time cost of the filter is, therefore, 26𝑁𝑀

and the flop count is 69𝑁𝑀.

It was found that simpler adaptive filters, such as a NLMS filter [58], were completely

ineffective at removing DPI and clutter. This result coincides with other similar studies in

literature [12].

© University of Pretoria

ADDENDUM B GPU MEMORY TYPES

B.1. PAGED MEMORY

Paged memory exists on the host. This is the standard memory type allocated by host

programs. Paged memory refers to the memory’s property of being able to be paged out.

This allows the operating system to move the memory to a new address (normally to make

space for large arrays that would otherwise not fit), or if memory runs out, the memory can

be moved to another storage device such as the hard drive.

B.2. PINNED MEMORY

Pinned memory is an alternative form of host memory, but unlike paged memory, it cannot

be moved or swapped out. This allows the GPU drivers to use this memory directly using

dedicated hardware called direct memory access (DMA). The disadvantage of pinned

memory is that the allocation of large amounts of pinned memory can cause system

instability.

The use of pinned memory allows for the acceleration of copying memory from the host to

a discrete device. Using pinned memory also allows for a wider range of access schemes

such as zero-copy memory. This allows the GPU to access the host memory directly, without

an explicit copy. There are very few motivations for doing this with a discrete GPU. In an

embedded system, however, as depicted in Figure 4.8, the use of pinned memory can

increase performance and reduce memory usage by avoiding memory copying. Pinned

memory on an embedded system can reduce memory requirements by avoiding explicitly

storing a copy of the data in global memory.

B.3. GLOBAL MEMORY

Global memory sits on the device memory (on the GPU card in a discrete system) and is

typically high bandwidth memory, when compared to host memory types, which uses long

bus lengths to increase memory bandwidth. This is the default memory allocated for the

device.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 156

University of Pretoria

Global memory is the default read and write memory space for kernels, and as such, efficient

accessing of global memory can yield significant performance gains in memory-bound

kernels. Global memory access attempts to group memory requests such that bus usage is

maximised. This allows for the number of requests to the DRAM to be minimised, thus

maximising the effective bandwidth achieved. The process of grouping memory requests in

this way is known as coalescing, and is an important consideration when writing GPU

kernels.

B.4. SHARED MEMORY

Shared memory exists on the GPU chip as an explicitly managed cache. It has the scope of

a single thread block, and can be used to efficiently share information across threads, and to

minimise global memory access.

The shared memory exists physically as a block per SM. The shared memory on each SM is

divided into banks, 32 on all current compute capabilities [54]. Each bank can only handle

one memory request (although broadcasting is supported). As such, bank conflicts can

reduce access efficiency and degrade performance.

B.5. REGISTERS

A large register block is available on each SM, from which registers are allocated to each

thread. This is the fastest form of memory available to a thread running on a kernel, but is a

limited resource and its scope is only for a single thread.

Registers often limit the number of concurrent blocks which can reside on an SM for a given

kernel, and so it is advised to minimise register usage and prefer alternative memory sources,

such a shared memory [54].

B.6. CONSTANT MEMORY

Constant memory exists in the device memory, and is cached in a dedicated cache on each

SM. Constant memory is limited in size (64 KB for all current compute capabilities [54]),

but can be read by all threads in a kernel. As such, constant memory is optimised for

broadcasting data to threads, but cannot be written to inside a kernel.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 157

University of Pretoria

B.7. TEXTURE MEMORY

Texture memory resides in device memory, and like constant memory is read only, cached

on chip in a dedicated cache, and can be read by all threads. The main advantage of using

texture memory is the way in which it is optimised.

Unlike global and constant memory, texture memory is not optimised for linear memory

access (coalesced access), but rather for spatially near accessing with regard to a 2D array.

This memory type is primarily used for the efficient rendering of textures (which are

generally stored in a 2D array), however certain applications may find benefit in the non-

linear access optimization.

© University of Pretoria

ADDENDUM C EVALUATION METRICS

Before evaluating the algorithms to be used, the algorithm requirements and performance

limiting factors are defined on three levels.

C.1. ARITHMETIC METRICS

These metrics define the requirements of the algorithm from an arithmetic perspective, i.e.

the number of arithmetic operations required to perform a function.

Time cost

Here we define the complex operation, which is an elementary operation between two

complex numbers or between a complex number and a real number. These include, but are

not limited to: addition, subtraction, multiplication, division, exponents and magnitude

operations. It is these basic operations which form the base of complex algorithms. Time

cost has little bearing on execution time due to the differences in the implementation of these

operations.

FLOPs

FLOPs refers to the number of floating point operations. Here the complex operation itself

is not recognised, but rather the scalar operations required to perform a complex operation.

In most floating point architectures these operations require one instruction, and as such is

an indication of the number of instructions required to perform an operation.

C.2. ARCHITECTURAL METRICS

Architectural metrics include the typical performance limiting characteristics on processor

architectures. These include memory requirements, register, and processor specific

limitations. While this applies to the CPU implementations, the purpose of these metrics

serves to provide insight into what facets of the algorithm limit its effectiveness on a GPU.

Registers per thread/block

This refers to the number of hardware registers the driver needs to allocate per thread/block.

This can limit the size of the possible block, or the occupancy of the GPU.

© University of Pretoria

REFERENCES

Department of Electrical, Electronic and Computer Engineering 159

University of Pretoria

Shared memory per block

Shared memory is a cache local to each block of threads. It is a limited resource and as such

can limit the occupancy or prevent the execution of a kernel.

Implementative metrics

Implementative metrics refer to the performance achieved in an implementation of each

algorithm. As such the results are unique to each hardware configuration.

Execution time

This is the average time taken to apply the algorithm. This includes (if applicable) the time

required to transfer memory to the processing platform.

Maximum throughput

This is the theoretical maximum sample rate at which the algorithm could process data in

real-time.

FLOPS

FLOPS is the floating point operations per second. This refers to the average achieved

FLOPS for an algorithm or kernel by a particular implementation. Note that this differs from

FLOPs as FLOPs is the plural of FLOP while FLOPS represents the number FLOPs per

second.

Occupancy

Occupancy refers to the average percentage of a GPU which is utilized. Thus occupancy is

a form of measuring the efficiency with which the GPU is utilized, an important

consideration when optimizing an implementation for a specific platform.

© University of Pretoria

	CHAPTER 1 Introduction
	1.1 Problem statement
	1.1.1 Context of the problem
	1.1.2 Research gap

	1.2 Research objective and questions
	1.3 Scope
	Transmitter
	Mobility
	Direction finding
	Targets
	Processors

	1.4 Research contribution
	1.5 Overview of study
	1.5.1 Chapter 2 Passive Radar
	1.5.2 Chapter 3 Signal Acquisition
	1.5.3 Chapter 4 Processing Platforms
	1.5.4 Chapter 5 Processing Chain
	1.5.5 Chapter 6 Results
	1.5.6 Chapter 7 Conclusion and Future Work

	CHAPTER 2 Passive Radar
	2.1 Introduction
	2.2 Basic passive radar architecture
	2.3 Passive radar in context
	2.3.1 Transmitter/receiver orientation
	2.3.2 Continuous and pulse radar

	2.4 History of FM-based passive radar
	2.5 Components of the received signals and antenna configuration
	2.6 Passive radar processing
	2.6.1 Matched filtering
	2.6.2 DPI cancellation
	2.6.3 CFAR detection

	2.7 Summary

	CHAPTER 3 Signal Acquisition
	3.1 Performance Factors
	3.1.1 Active interference
	3.1.2 Sensitivity
	3.1.3 Dynamic range

	3.2 Site and transmitter selection
	3.2.1 Optimal position
	3.2.2 Antenna selection
	3.2.2.1 Surveillance antenna
	3.2.2.2 Reference antenna

	3.2.3 Additional considerations
	3.2.4 Transmitter selection

	3.3 Receiver selection
	3.3.1 Channel coherency
	3.3.1.1 Metrics
	Phase Noise
	Phase drift

	3.3.1.2 Synchronisation
	MIMO cable
	PPS

	3.3.1.3 Results

	3.3.2 Conclusion

	3.4 Summary

	CHAPTER 4 Processing Platforms
	4.1 Central Processing Unit
	4.1.1 Multithreading
	4.1.2 SIMD instructions and processor intrinsics

	4.2 Graphics Processing Unit
	4.2.1 Threading model
	4.2.1.1 Thread structure
	4.2.1.2 Execution of threads

	4.2.2 Memory structure

	4.3 Comparing GPU and CPU processors
	4.3.1 Task and data parallelism
	4.3.2 Latency and throughput

	4.4 Implementation hardware
	4.4.1 Mobile system
	4.4.2 Embedded system

	4.5 Summary

	CHAPTER 5 Processing Chain
	5.1 Initial evaluation
	5.2 Cancellation filter
	5.2.1 Choice of cancellation region
	5.2.2 Wiener-Hoph Filter
	5.2.3 Linear least squares
	5.2.4 Miscellaneous Filters
	5.2.4.1 Correlative cancellation

	5.2.5 Optimisation
	5.2.5.1 Algorithmic optimisation
	5.2.5.2 GPU optimisation
	Matrix-vector multiplication
	Matrix-transpose vector multiplication
	Matrix multiplication with its transpose

	5.2.6 Experiments and results
	5.2.6.1 Cancellation effectiveness
	Dataset
	Magnitude of cancellation region bins
	Euclidian norm of surveillance channel
	Noise floor
	SNR of target
	Discussion of results

	5.2.6.2 Computational performance
	Average execution time for CGLS
	Average execution time for LU
	Average execution time for Cholesky
	Average execution time for non-optimised cancellation filters

	5.2.7 Conclusion

	5.3 Matched Filter
	5.3.1 Time correlation
	5.3.2 Frequency correlation
	5.3.3 Reduced computation filters
	5.3.4 Matched filter performance

	5.4 Target Detection and Extraction
	5.4.1 Detection
	5.4.2 Target extraction

	5.5 Target State Smoothing
	5.5.1 Target model
	5.5.2 Model estimation
	5.5.3 Detection association

	5.6 System Output
	5.7 Summary

	CHAPTER 6 Results
	6.1 Configuration and Implementation
	6.1.1 Deployment site
	6.1.2 Configuration

	6.2 Detection capability
	6.2.1 Control data
	6.2.2 Detection probability
	6.2.3 Location error
	6.2.3.1 Raw detections
	6.2.3.2 State smoothing filter estimation

	6.3 Processing Performance
	6.3.1 Mobile platform
	6.3.2 Embedded platform

	6.4 Cost
	6.5 Discussion of results
	6.5.1 Detection capability
	6.5.2 Processing performance
	6.5.3 Comparison to existing systems

	6.6 Summary

	CHAPTER 7 Conclusion and Future Work
	7.1 Conclusion
	7.1.1 Passive radar performance
	7.1.2 Optimum position
	7.1.3 Antenna and transmitter selection
	7.1.4 Cancellation filter schemes
	7.1.5 Matched filter processing
	7.1.6 Radar performance

	7.2 Future Work
	7.2.1 Analogue DPI cancellation
	7.2.2 Improved filtering
	7.2.3 Unambiguous target position
	7.2.4 Independent channel gain

	References
	Addendum A Derrivation of Computational Complexities
	A.1. LU factorization
	A.2. Cholesky factorization
	A.3. LDL Fatorization
	A.4. QR factorization
	A.4.1 Computational cost

	A.5. Conjugate gradient least squares
	A.6. CLEAN cancellation
	A.7. Correlative Cancellation
	A.8. Gradient adaptive lattice filter

	Addendum B GPU Memory Types
	B.1. Paged memory
	B.2. Pinned memory
	B.3. Global memory
	B.4. Shared memory
	B.5. Registers
	B.6. Constant memory
	B.7. Texture memory

	Addendum C Evaluation Metrics
	C.1. Arithmetic metrics
	Time cost
	FLOPs

	C.2. Architectural metrics
	Registers per thread/block
	Shared memory per block
	Implementative metrics
	Execution time
	Maximum throughput
	FLOPS
	Occupancy

