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ABSTRACT

DEVELOPMENT AND COMPARISON OF STRATEGIES FOR THE
RECONSTRUCTION OF FULL AND PARTIAL SKULL GEOMETRIES

by

M.J.R. Schoeman

Supervisor(s): Prof. Schalk Kok
Dr. Nico Wilke

Department: Mechanical and Aeronautical Engineering
University: University of Pretoria

This thesis presents the development and comparison of strategies for the reconstruc-
tion of full and partial surface mesh based skull geometries. The intended application is
to aid the South African Police Service Victim Identification Centre (SAPS VIC) with
forensics, specifically prediction of a mandible when only the cranium is available.

Various methods for the registration of surface meshes are outlined. A new non-rigid
iterative closest point (NR-ICP) algorithm based on an adaptively refined least square
Radial Basis Function (RBF) approximation of the forward and backward nearest
neighbour correspondence is developed. The newly developed non-rigid registration
strategy is demonstrated and characterised for various parameters using an artificial
mandible dataset constructed through Monte-Carlo (MC) sampling of a quadratic
displacement field. Various suitable parameters are shown to result in impercept-
ible visual registration differences, with the correspondence error mainly distributed
in-surface.

Multivariate regression techniques suited to the application of geometry prediction are
considered, specifically for cases where the data is expected to be multi-collinear and
the number of variables are far greater than the number of observations. Two regression
approaches based on spatial information are considered. The first is the classical use of
Procrustes Analysis where the Cartesian coordinates are used directly for regression.
The second is a new Euclidean distance based approach utilizing pair-wise distances
to consistent reference points. The proposed regression methods’ time-space scaling
is investigated to limit system sizes that result in time tractable cross-validation and
model comparison. Pre- and post-processing required for tractability considerations
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are also developed for both approaches.

Proof of concept of the registration based prediction strategies are demonstrated. This
is accomplished through the use of an artificial dataset with embedded covariance and
the use of registration targets without point-wise correspondence. The registration
based prediction strategy is shown to be capable of accurate predictions for data with
strong underlying structure/covariance.

The proposed registration based prediction strategy is demonstrated on a real cranium
and mandible dataset, where the mandible geometry is predicted from the cranium
geometry. Marginal improvement over the geometric mean is obtained. Observation
scaling suggests that model accuracy is improved for increased observations, which
merits expanding the dataset.

The proposed registration strategy has the limitation that it is not capable of registra-
tion of significant partial/incomplete geometries. A new regression-registration hybrid
strategy is developed for use with partial geometries, when a full dataset of the given
geometry is available. The regression-registration hybrid strategy is demonstrated on
a real mandible dataset and mandible fossil.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



ACKNOWLEDGEMENTS

I would like to acknowledge the following persons and entities:

• S. Kok and D.N. Wilke for their supervision.

• The staff from the Anthropology Department at the University of Pretoria for
the logistics management, digitizing and handling of the skulls.

• The staff at the South African National Centre for Radiography and Tomography
for scanning of the Cranium-Mandible dataset.

• The Pretoria Bone Repository for use of the skulls in their collection.

• C. and T. Cronje for proof-reading.

iii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



iv

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Registration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Rigid Point Set Registration . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Principal Component Analysis (PCA) Based Registration . . . . 6
2.3.2 Singular Value Decomposition (SVD) Based Registration . . . . 8
2.3.3 Rigid Iterative Closest Point (R-ICP) Registration . . . . . . . . 10

2.4 Non-Rigid Point Set Registration . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Radial Basis Function (RBF) Interpolation . . . . . . . . . . . . 13
2.4.2 Non-Rigid Iterative Closest Point (NR-ICP) Registration . . . . 16

3 Registration Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Registration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Registration strategy characterisation . . . . . . . . . . . . . . . . . . . 24

3.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Regression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Partial Least Squares (PLS) . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Superset Principal Component (SPC) regression . . . . . . . . . 43

4.2 Regression time complexity . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 PLS Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



4.2.2 SPC regression complexity . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Cartesian space regression . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Euclidean space regression . . . . . . . . . . . . . . . . . . . . . 52

5 Regression Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Registration Results . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 VIC Cranium-Mandible Dataset Application . . . . . . . . . . . . . . 71
6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5 Error vs. observation scaling . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Feature cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Regression-registration hybrid . . . . . . . . . . . . . . . . . . . . . . . 85
7.1 On the proposed registration algorithm . . . . . . . . . . . . . . . . . . 85
7.2 Regression based registration and prediction . . . . . . . . . . . . . . . 86

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1 Remarks and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



LIST OF TABLES

2.1 Point set subscript notation in order of appearance. . . . . . . . . . . . 6
2.2 Various basis functions with local support φ(ξ) and global support φ(d). 15
2.3 Iteration and centre numbers in Figure 2.7. . . . . . . . . . . . . . . . . 20

3.1 Correspondence error distribution properties for each basis function. . . 28
3.2 Nearest neighbour error distribution properties for each basis function. 30

5.1 Error distribution mean and maximums for various registrations. . . . . 60

6.1 Improvements of the predictive CV minimums over the geometric mean
for increasing observations. . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



viii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



LIST OF FIGURES

2.1 Source, target and PCA aligned point-sets. . . . . . . . . . . . . . . . . 8
2.2 Source, target and SVD aligned point-sets. . . . . . . . . . . . . . . . . 10
2.3 Source, target and R-ICP registered points set at iteration number k. . 12
2.4 Sum of squared errors vs. iteration number. . . . . . . . . . . . . . . . 13
2.5 Plots of various RBF functions: (a) Linear, (b) Cubic, (c) TPS, (d) MQB

with ε = 100, (e) IMQB with ε = 100 and (f) G with ε = 0.0025. The
deformed mesh is displayed by the black wire-frame, with the original
mesh given by the semi-opaque red surface. The scattered points reflect
prescribed displacements at the nose and fin tips. . . . . . . . . . . . . 16

2.6 2D Source and target geometries. . . . . . . . . . . . . . . . . . . . . . 19
2.7 Registration result at various iterations, refer to Table 2.3. The black

lines indicate the correspondence between registered and source geomet-
ries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Various error functions vs. iteration number. . . . . . . . . . . . . . . . 21

3.1 (a) Two superimposed mesh representations of the same mandible geo-
metry, (b) Close-up of superimposed meshes. . . . . . . . . . . . . . . . 25

3.2 Monte-Carlo non-linear deformation sample views. (a) Right side view,
(b) Frontal/Anterior view and (c) Isometric View. . . . . . . . . . . . . 26

3.3 Registration error of the MC observation responsible for high true corres-
pondence error, all given in mm. (a) Nearest neighbour correspondence
error εnn, (b) Normal weighted nearest neighbour correspondence error
εnnwn, (c) True correspondence error ε and (d) Registration result (blue)
and target (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Superimposed MC sample. . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Actual correspondence error surface [mm per point] of Linear basis func-

tion for MC sample. The maximum of the distribution is given by the
translucent surface and the mean by the opaque surface. . . . . . . . . 33

3.6 Nearest neighbour error surface [mm per point] of Linear basis func-
tion for MC sample. The maximum of the distribution is given by the
translucent surface and the mean by the opaque surface. . . . . . . . . 33

3.7 Error distribution for various iteration numbers k and number of centres
Nb = 200 for use of the linear basis function on the MC sample. . . . . 34

3.8 Actual correspondence error surface [mm per point] of cubic basis func-
tion for MC sample. The maximum of the distribution is given by the
translucent surface and the mean by the opaque surface. . . . . . . . . 34

ix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.9 Nearest neighbour error surface [mm per point] of cubic basis function for
MC sample. The maximum of the distribution is given by the translucent
surface and the mean by the opaque surface. . . . . . . . . . . . . . . . 35

3.10 Error distribution for various iteration numbers k and number of centres
Nb = 200 for use of the cubic basis function on the MC sample. . . . . 35

3.11 Actual correspondence error surface [mm per point] of TPS basis func-
tion for MC sample. The maximum of the distribution is given by the
translucent surface and the mean by the opaque surface. . . . . . . . . 36

3.12 Nearest neighbour error surface [mm per point] of TPS basis function for
MC sample. The maximum of the distribution is given by the translucent
surface and the mean by the opaque surface. . . . . . . . . . . . . . . . 36

3.13 Error distribution for various iteration numbers k and number of centres
Nb = 200 for use of the TPS basis function on the MC sample. . . . . . 37

3.14 Actual correspondence error surface [mm per point] of Gaussian basis
function for MC sample. The maximum of the distribution is given by
the translucent surface and the mean by the opaque surface. . . . . . . 37

3.15 Nearest neighbour error surface [mm per point] of Gaussian basis func-
tion for MC sample. The maximum of the distribution is given by the
translucent surface and the mean by the opaque surface. . . . . . . . . 38

3.16 Error distribution for various iteration numbers k and number of centres
Nb = 200 for use of the Gaussian basis function on the MC sample. . . 38

4.1 Time-component complexity for PLS with fit t = ca for first 25 com-
ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Time-size complexity for PLS with fit t = anb
Xn

c
Y . . . . . . . . . . . . . 46

4.3 Time-size complexity for SPCR with fit t = anb. . . . . . . . . . . . . . 47
4.4 Time-size complexity for SPCR with fit t = a(nx + nY ). . . . . . . . . . 47
4.5 Sub-sampled cranium and mandible point-sets (blue) with reference co-

ordinates for Euclidean distance regression approach (red). . . . . . . . 51

5.1 Sub-sampled reference cranium/predictor and mandible/response point-
sets (blue) with reference coordinates for Euclidean distance regression
approach (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 (a) Explained and (b) unexplained variance as fraction of total variance
vs. the retained number of principal components. . . . . . . . . . . . . 58

5.3 Registration error distributions for the Cranium MC sample using (a)
Cubic and (b) TPS basis functions. Normal weighted registration error
distributions using (c) Cubic and (d) TPS basis functions. . . . . . . . 61

5.4 Registration error distributions for the Mandible MC sample using (a)
Cubic and (b) TPS basis functions. Normal weighted registration error
distributions using (c) Cubic and (d) TPS basis functions. . . . . . . . 62

5.5 Cranium registration result of an arbitrary observation in the MC sample
for the use of a cubic basis function and Nb, k = 25. . . . . . . . . . . . 63

5.6 Mandible registration result of an arbitrary observation in the MC
sample for the use of a cubic basis function and Nb, k = 25. . . . . . . . 64

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



5.7 Cartesian regression - (a) Mean point wise error and (b) mean normal
weighted point wise error vs. retained number of components. PLS and
SPC regression results are indicated by solid and dashed lines respectively. 66

5.8 Euclidean regression - (a) Mean point wise error and (b) mean normal
weighted point wise error vs. retained number of components. PLS and
SPC regression results are indicated by solid and dashed lines respectively. 68

5.9 Qualitative results for various registrations with targets (red), prediction
(blue) and mean (grey) geometries. . . . . . . . . . . . . . . . . . . . . 69

6.1 Typical cranium-mandible pair registrations with the number of RBF
centres chosen to result in fill-in of missing teeth. The reduced number
of centres still provide qualitatively good visual registrations. . . . . . . 73

6.2 Mean point wise error vs. retained components for Cartesian regression. 76
6.3 Mean point wise error vs. retained components for Euclidean regression. 76
6.4 Best 5 retained components Cartesian SPC prediction of the 11-fold CV

w.r.t. the geometric mean. . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Worst 5 retained components Cartesian SPC prediction of the 11-fold

CV w.r.t. the geometric mean. . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 Mean point-wise error visualisation by scaling the first load vector, yT

L1,
of SPC regression of the full dataset. . . . . . . . . . . . . . . . . . . . 79

6.7 Mean point-wise error vs. number of retained components for five data
sets with increasing number of observations, using LMO CV. . . . . . . 81

6.8 Mean point-wise error vs. the number of observations for geometric mean
and predictive CV minimum models. . . . . . . . . . . . . . . . . . . . 81

6.9 (a) Preserved features and (b) mean point-wise error vs. retained com-
ponents of full and cropped output spaces. . . . . . . . . . . . . . . . . 82

7.1 LOO CV results using the superset mean point-wise error of the simu-
lated partial mandibles. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Reconstruction of a simulated partial mandible using regression based
registration, with full component retention. . . . . . . . . . . . . . . . . 88

7.3 Mandible reconstruction of a Homo Naledi partial mandible fossil, using
regression based registration, with full component retention. . . . . . . 89

xi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



LIST OF ABBREVIATIONS

2D Two-dimensional
3D Three-dimensional
CT Computed Tomography
CV Cross-Validation
CPU Central Processing Unit
GPA Generalised Procrustes Analysis
ICP Iterative Closest Point
LMO Leave-m-out
LOO Leave-one-out
MC Monte Carlo
MMDS Metric Multidimensional Scaling
NR-ICP Non-rigid Iterative Closest Point
PC Principal Component
PCA Principal Component Analysis
PLS Partial Least Squares
RBF Radial Basis Function
R-ICP Rigid Iterative Closest Point
SAPS South African Police Service
SPC Superset Principal Component
SVD Singular Value Decomposition
VIC Victim Identification Centre

xiii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xiv

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



NOTATION

The notation in this study is given as follows:

1. Bold capital letters denote a matrix i.e. X,

2. bold lower-case letters denote a vector i.e. x and

3. all non-bold letters denote scalars i.e. xij denotes the scalar in the ith row and
jth column of matrix X.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The goal of this thesis is to present the development and comparison of strategies for the
registration and prediction of full and partial geometries, represented by triangulated
surface meshes. The South African Police Service Victim Identification Centre (SAPS
VIC) presented a need for predicting missing geometry to aid in forensics, specifically
the prediction of a mandible when only the cranium is available. The SAPS VIC
already acquired a 3D surface scanner for forensic facial reconstruction but do not
have access to medical imaging modalities, which prompted the specific development
of strategies for registration of triangular surface meshes.

Triangular surface mesh representations of geometries generated through surface scan-
ning are generated arbitrarily. The mesh topology varies significantly between scans.
Different scans of the same geometry will thus not have correspondence between
meshes. The method of generating correspondence, which is a requirement for regres-
sion/prediction, is defined as registration. Therefore the thesis starts by developing and
implementing a registration method, followed by regression methods which facilitate
prediction of missing geometry.

Other possible applications for this work include:

1. Forensics identification, where a face (the missing part) can be statistically re-
constructed based on skull shape (the existing part) [1].

2. Human anthropology, especially where the relationship between cranial and
mandibular covariation is studied [2].
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CHAPTER 1. INTRODUCTION

3. Palaeoanthropology where researchers try to reconstruct an incomplete fossil [3,
4].

The work in this study makes part of an inter-disciplinary project. The scope of work
presented in this study is limited to the numerical modelling component. Work outside
this scope was conducted by the University of Pretoria Department of Anthropology
and the SAPS VIC, who can be contacted for any queries regarding these compon-
ents.

1.2 OUTLINE OF THESIS

Chapter 2: Registration Methods

Various registration methods used to generate heuristic correspondence between similar
geometries are documented. Registration is accomplished by transforming a reference
geometry to represent a target geometry, resulting in a mapping with approximated
correspondence. Each registration method is documented and demonstrated by means
of a simplified example.

Chapter 3: Registration Application

A non-rigid iterative closest point (NR-ICP) registration strategy based on the re-
gistration methods in Chapter 2 is proposed. The non-rigid registration strategy is
demonstrated and characterised for various parameters using an artificial mandible
dataset constructed through Monte-Carlo (MC) sampling of a quadratic displacement
field. Various suitable parameters are shown to result in imperceptible visual registra-
tion differences, with the correspondence error mainly distributed in-surface.

Chapter 4: Regression Methods

Multivariate regression techniques suited to the application of geometry prediction are
considered. This requires methods that can handle multi-collinear data and where the
number of predictor and response variables are many more than the number of obser-
vations. Pre- and post-processing, to facilitate regression for the purpose of prediction,
of the registered geometry point-sets are proposed and discussed. The proposed re-
gression methods’ time-space scaling is investigated to limit system sizes that result in
time tractable cross-validation and model comparison.
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1.2. OUTLINE OF THESIS

Chapter 5: Regression Application

Proof of concept of the registration based prediction strategy is demonstrated. An
artificial dataset with embedded covariance is generated, registration targets without
correspondence are simulated and the prediction error due to the heuristically gener-
ated correspondence and regression space approaches/models are evaluated and dis-
cussed.

Chapter 6: VIC Cranium-Mandible Dataset Application

The proposed registration based prediction strategy is demonstrated on a real cranium
and mandible dataset. The objective is to predict a mandible when only a cranium
is made available. This is a specific need of the South African Police Service Victim
Identification Centre (SAPS VIC), who has a growing archive of cases with craniums
without matching mandibles, rendering them unable to perform forensic facial recon-
structions. Feature-cropping, a method proposed for improved prediction results, is
introduced and applied. Observation scaling is performed to estimate model improve-
ment for expansion of the current dataset.

Chapter 7: Regression-Registration Hybrid

The limitation of the proposed registration strategy, to only be capable of registration
of full/complete geometries, is discussed. A new regression based registration and
prediction strategy, for when a fully registered dataset of the geometry is available, is
also proposed and demonstrated. This strategy is shown to be capable of registration
of partial geometries.

Chapter 8: Conclusion

Final remarks and possible future work are discussed.

3
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CHAPTER 2

REGISTRATION METHODS

2.1 CORRESPONDENCE

The ultimate purpose of this dissertation is to develop and compare strategies for the
reconstruction of full and partial skull geometries. These geometries are expressed as
triangular surface meshes, each composed of a point-set of vertices and a list of triangle
connectivity. The goal is to predict a response point-set PY from a prediction point-set
PX . Computationally this requires the point-sets to have one-to-one correspondence
between any 2 observations. Triangular surface meshes used to represent each of the
scanned geometries do not satisfy this condition. This is because the meshes gener-
ated through 3D surface scanning are arbitrary, with varying number of vertices and
connectivity. The mesh registration methods discussed in this chapter are heuristic
techniques for generating one-to-one correspondence. This is because no true one-to-
one correspondence exists and approaches are largely based on the assumption of an
appropriate mappings. This process comprises of transforming a source mesh, with a
fixed number of vertices and known connectivity, to fit a target geometry. This approx-
imated representation with consistent one-to-one correspondence allows for linear al-
gebraic manipulation enabling the use of regression for the purpose of prediction.

2.2 NOTATION

The notation for point-sets of triangular meshes is described in this section. A point-set
is given by

P , {pi}N
i=1, pi ∈ Rm. (2.1)

The meaning of subscripts are explained in Table 2.1.
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CHAPTER 2. REGISTRATION METHODS

Table 2.1: Point set subscript notation in order of appearance.

Designation Description
T or S The designated point-set - Target or Source
A,B,C, .. Different mesh representations of the designated point-set

J The J ’th transformation or approximation of the designated point-set
n Direction/coordinate component n

i or c(i) The i’th or mapped i’th point of the designated point-set
( ) The designated point-set at the iteration number given in brackets

2.3 RIGID POINT SET REGISTRATION

This section describes various methods for the rigid registration of point-sets, which
align point-sets using pure translation and rotation transformations. This section con-
siders source and target point-sets given by PS , {pSi}NS

i=1 and PT , {pT i}NT
i=1 respect-

ively.

2.3.1 Principal Component Analysis (PCA) Based Registration

PCA registration consists of translating and rotating a source point-set such that it’s
principal axes and centroid are aligned with that of a target point-set. This method
does not require correspondence between point-sets and is thus often used as a pre-
alignment of similar geometries when correspondence is not known. The procedure for
PCA registration is set out as follows [5]:

1. Consider a source and target set of points PS and PT with centroid location cS

and cT respectively.

2. Perform principal component analysis of both PS and PT to determine the rota-
tion matrix R that aligns the PCA axes as follows:

(a) Construct PS whose i’th column is given by pSi − cS.

(b) Construct PT whose i’th column is given by pT i − cT .

(c) Evaluate the covariance matrices MS and MT , given by

MS = PSP
T
S and MT = PTP

T
T . (2.2)
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2.3. RIGID POINT SET REGISTRATION

(d) Eigenvalue decompositions of the covariance matricesMS andMT are per-
formed. The eigenvectors represent principal directions of variance. The
eigenvalues indicate the variance along each eigenvector. The loadings LS

and LT are matrices whose columns are the eigenvectors of the respective
source and target point-set covariance matrices.

(e) The rotation matrix R which aligns two sets of PCA axes is evaluated as
follows:

RLS = LT

R = LTL
−1
S . (2.3)

By noting that the eigenvector matrices LS and LT are orthonormal:

R = LTL
T
S . (2.4)

3. The aligned source point-set is evaluated as follows:

p′Si = cT +R(pSi − cS). (2.5)

PCA registration is thus only suitable for geometries of which

1. the principal directions of variation are expected to be consistent,

2. the eigenvalues (amount of variation along each principal direction) are not sim-
ilar (which may lead to inconsistent alignment) and

3. noise does not affect the centroid or principal axes significantly.

Figure 2.1 illustrates an example of 2D source and target point-sets and the correspond-
ing PCA registration. These point-sets do not have point correspondence as source and
target points sets are composed of NS = 50 and NT = 25 points respectively.
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CHAPTER 2. REGISTRATION METHODS
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Figure 2.1: Source, target and PCA aligned point-sets.

2.3.2 Singular Value Decomposition (SVD) Based Registration

SVD based registration consists of finding the optimal alignment when correspondence
between the source and target point-sets is known. After centroid alignment and
rotation by the rotation matrix R, a transformed point-set is given by

p′Si = cT +R(pSi − cS). (2.6)

SVD registration is based on finding the rotation matrix R that minimizes the sum of
the pairwise distances:

R = arg min
R

NS∑
i=1
‖p′Si − pT i‖2

2


= arg min

R

NS∑
i=1
‖cT +R(pSi − cS)− pT i‖2

2

 , (2.7)

with
NS = NT , RTR = Im, det(R) = 1, R ∈ Rm×m.
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2.3. RIGID POINT SET REGISTRATION

An analytical solution for findingR is possible through an equivalent formulation using
the cross-covariance called the orthogonal Procrustes problem [6]:

1. Let PS be a matrix whose i−th column is the vector pSi − cS

2. Let PT be a matrix whose i−th column is the vector pT i − cT

3. The cross-covariance is given by

M = PSP
T
T . (2.8)

4. The equivalence is finding the orthonormal matrix R that maximizes the trace

tr(RM ). (2.9)

5. The solution is given by
R = V UT , (2.10)

where U and V are obtained through the SVD of the cross-covariance M

M = UWV T , (2.11)

where

• U and V are orthonormal matrices (i.e. rotations) and

• W is diagonal matrix of singular values.

Figure 2.2 illustrates an example of 2D source and target point-sets with the corres-
ponding SVD registration.
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Figure 2.2: Source, target and SVD aligned point-sets.

2.3.3 Rigid Iterative Closest Point (R-ICP) Registration

The R-ICP registration algorithm, by Besl and Mckay [7], approaches registration as
a least squares problem. The general ICP algorithm seeks the transformation T that
best aligns source point-set PS to a target point-set PT in Rm:

min
T ,j∈{1,2,...,NT }

NS∑
i=1
‖T (pSi)− pT j‖2

2

 . (2.12)

The R-ICP algorithm seeks the transformation T that consists of a rotation matrix R
and translation vector t:

min
R,t,j∈{1,2,...,NT }

NS∑
i=1
‖(RpSi) + t− pT j‖2

2

 , (2.13)

with
RTR = Im, det(R) = 1, R ∈ Rm×m and t ∈ Rm.

The R-ICP procedure performs two steps iteratively:
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2.3. RIGID POINT SET REGISTRATION

1. Correspondence is built up between the source and target point-set, with corres-
pondence for point pSi(k−1) given by:

ck(i) = arg min
j∈{1,2,...,NT }

(∥∥∥(pSi(k−1) − pT j)
∥∥∥2

2

)
, i = 1, 2, . . . , NS. (2.14)

This may be done using a k − d tree nearest neighbour search algorithm.

2. The rotation matrix R and translation vector t are determined from

(Rk, tk) = arg min
R,t

NS∑
i=1

∥∥∥RpSi(k−1) + t− pT ck(i)

∥∥∥2

2

 , (2.15)

with
RTR = Im, det(R) = 1, R ∈ Rm×m and t ∈ Rm,

and used to update PS before performing another iteration

pSi(k) = RkpSi(k−1) + tk. (2.16)

Shaoyi et al. [8] showed that the translation vector in Equations (2.15) and (2.16) can
be eliminated:

Theorem 2.1 Given two point-sets {pSi}N
i=1 and {pT i}N

i=1 the function F (t) =
N∑

i=1
‖pSi + t− pT i‖2

2 has the minimum when t = 1
N

N∑
i=1
pT i − 1

N

N∑
i=1
pSi.

Proof 2.1 The minimum of F (t) must satisfy dF (t)
dt

= 2
N∑

i=1
(pSi + t− pT i) = 0, from

which t = 1
N

N∑
i=1
pT i − 1

N

N∑
i=1
pSi = cT − cS.

This simplifies Equation (2.15) to

Rk = arg min
R

NS∑
i=1

∥∥∥RpSi(k−1) + cT − cS(k) − pT ck(i)

∥∥∥2

2


= arg min

R

NS∑
i=1
‖cT +R(pSi(k−1) − cS(k−1))− pT ck(i)‖2

 , (2.17)

with
RTR = Im, det(R) = 1, R ∈ Rm×m,
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CHAPTER 2. REGISTRATION METHODS

which is identical to the orthogonal Procrustes problem in Equation (2.7), giving an
analytical solution to the k-th rotation matrix Rk as described in Section 2.3.2.

The use of this algorithm for 20 iterations is demonstrated in Figure 2.3 for a data
set without correspondence. The corresponding sum of squared errors (SSE), as given
by

ε =
NS∑
i=1
‖pSi(k) − pT ck(i)‖2, (2.18)

is shown in Figure 2.4. These point-sets do not have point correspondence as source
and target points sets are composed of NS = 50 and NT = 25 points respectively.
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PS(15)

PS(20)

Figure 2.3: Source, target and R-ICP registered points set at iteration number k.
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Iteration, k
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Figure 2.4: Sum of squared errors vs. iteration number.

2.4 NON-RIGID POINT SET REGISTRATION

This section describes methods for non-rigid registration of meshes. The first method
entails a mesh movement scheme based on Radial Basis Function (RBF) interpolation
between points with known correspondence. The second method consists of a Non-
rigid iterative closest point registration (NR-ICP) algorithm based on an iterative least
squares RBF estimation of the displacement field.

2.4.1 Radial Basis Function (RBF) Interpolation

RBF interpolation is a technique used for the interpolation of scalar fields of which
the values are known at discrete locations [9]. In this work it is used to create an
interpolated displacement vector field, from the known displacement at discrete points
with known correspondence between the source and target meshes.

The interpolation function to describe a component of the displacement vector field is
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CHAPTER 2. REGISTRATION METHODS

approximated by the sum of basis functions:

S(p) =
Nb∑
i=1

αiφ (‖p− pbi‖) + P(p), (2.19)

where pbi
are points with known displacement (centers), P(p) is a polynomial and Nb

is the number of points with known field values. The function φ(d) is a basis function
with respect to the Euclidean norm, d.

The minimal degree of polynomial P(p) depends on the choice of basis function. The use
of conditionally positive definite basis functions of orderm ≤ 2 allows the use of a linear
polynomial, which has the added advantage that rigid body translations are exactly
recovered [9]. This is not an essential feature as rigid-alignment strategies (translation
and rotation transformations) are often employed before non-rigid registration.

The RBF and linear polynomial coefficients, α and β, are determined by solving the
system Mb,b Pb

PT
b 0

αβ
 =

db

0

 , (2.20)

where db is the known displacements and Mb,b is a Nb × Nb matrix containing the
evaluations of the basis function

φbibj
= φ (‖pbi − pbj‖) . (2.21)

Pb is an Nb × 4 matrix with row i given by Pbi
= {1 xbi

ybi
zbi
}. It is also seen in

Equation (2.20) that the extra degrees of freedom are taken up by moment conditions
on α, which is a regularization that guarantees unique coefficients α and β [10]. With
the coefficients solved, displacements at unprescribed locations are evaluated using the
interpolation function in Equation (2.19).

Various radial basis functions are available and can be divided into functions with
global support and functions with local support. Local or compact support functions
are scaled with a chosen support radius r such that ξ = d/r. The original basis function
φ(d) is then replaced with

φr =

φ(ξ) if 0 ≤ ξ ≤ 1,

0 if ξ > 1.
(2.22)

This has the effect of only displacing coordinates in a confined radius about each

14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2.4. NON-RIGID POINT SET REGISTRATION

center pb. Global support functions on the other hand cover the entire interpolation
space, and often have a parameter ε, which controls the overall shape/bandwidth of
the function.

Global support functions, and larger radii for local support functions, generally result
in more accurate results [9]. This results in denser matrix systems which are solved less
efficiently. (Local support functions are generally required for very large system sizes
to result in sparse matrix systems which are efficient to solve.) An example of this is in
the Finite Element Method where meshes with a large number of small elements, i.e.
many points, are used for improved accuracy. The surface meshes used for this study
are coarse in comparison, with fewer prescribed displacements. The computational
overhead is thus small enough to allow the use of global support functions.

Various examples of local and global support functions are given in Table 2.2. The
radial basis functions with global support in Table 2.2 are demonstrated on a dolphin
mesh obtained from the Inria model repository [11] in Figure 2.5. Here the tips of
the dolphin’s nose and tail were displaced vertically by an arbitrary amount, and
zero displacements prescribed at the tips of it’s dorsal and pectoral fins. This clearly
demonstrates how each basis function results in a unique displacement field.

Table 2.2: Various basis functions with local support φ(ξ) and global support φ(d).

Name Function
CP C0 (1− ξ)2

CP C2 (1− ξ)4 (4ξ + 1)
CTPS C0 (1− ξ))5

CTPS C1 1 + 80
3 ξ

2 − 40ξ3 + 15ξ4 − 8
3ξ

5 + 20ξ2 log(ξ)
Linear d

Cubic d3

Thin plate spline (TPS) d2 log(d)
Multi-quadratic bi-harmonic (MQB)

√
ε2 + d2

Inverse multi-quadratic bi-harmonic (IMQB) (ε2 + d2)−
1
2

Gaussian (G) e−(εd)2
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CHAPTER 2. REGISTRATION METHODS

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Plots of various RBF functions: (a) Linear, (b) Cubic, (c) TPS, (d) MQB
with ε = 100, (e) IMQB with ε = 100 and (f) G with ε = 0.0025. The deformed mesh
is displayed by the black wire-frame, with the original mesh given by the semi-opaque
red surface. The scattered points reflect prescribed displacements at the nose and fin
tips.

2.4.2 Non-Rigid Iterative Closest Point (NR-ICP) Registration

Various non-rigid registration algorithms exist [12, 13, 14, 15]. These all differ based on
the assumption of transformations that result in appropriate mappings. A validation
approach which results in a proof of concept is followed in this study. This allowed for
the development of a validated new generic fit-for-purpose registration method similar
to a well-known point matching algorithm [12]. This avoids having to compare many
different methods/implementations, which would be intractable for the purpose this
study. The new Non-Rigid Iterative Closest Point (NR-ICP) method developed in
this study regresses the RBF displacement field U by solving a least squares problem
and resolves correspondence between the source and target point-sets iteratively. It
is important to note that the flexibility of the regressed RBF is adaptively enhanced.
This approach and encompasses evaluating the following steps iteratively:
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2.4. NON-RIGID POINT SET REGISTRATION

1. Correspondence from the source to target point-set is built up, with correspond-
ence for point pSi(k−1) given by:

cSk(i) = arg min
j∈{1,2,...,NT }

(∥∥∥(p′Si(k−1) − pT j)
∥∥∥2

2

)
, i = 1, 2, . . . , NS. (2.23)

2. Correspondence from the target to source point-set is built up, with correspond-
ence for point pT i(k−1) given by:

cT k(i) = arg min
j∈{1,2,...,NS}

(∥∥∥(pT i − p′Sj(k−1))
∥∥∥2

2

)
, i = 1, 2, . . . , NT . (2.24)

3. A number, Nb, of uniformly sampled centres PSb are uniformly selected out of the
source point-set PS. This can be accomplished through Poisson Disk sampling.
These control the number of fitting coefficients and thus the complexity of the
RBF regression surface. Choosing a small number initially results in a displace-
ment field that captures global shape changes (lower complexity fitting), with
the number of centres increased with iterations to allow for better local fitting
(higher complexity fitting).

4. The RBF coefficients are evaluated by solving the following overdetermined sys-
tem:  MS,Sb

MT S,Sb

{αn

}
=

 uSn

−uT n

 , (2.25)

with:

• MS,Sb a NS ×Nb matrix that contains the basis function evaluations of the
source mesh points w.r.t. the RBF centres PSb,

φSiSbj
= φ (‖pSi − pSbj‖) , (2.26)

with
i = 1, 2, . . . , NS; j = 1, 2, . . . , Nb.

• MT S,Sb a NT × Nb matrix that contains the basis function evaluations of
the source mesh correspondence of the target mesh point-set w.r.t. the RBF
centres PSb

φScT iSbj
= φ

(
‖pScT k(i) − pSbj‖

)
, (2.27)
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CHAPTER 2. REGISTRATION METHODS

with
i = 1, 2, . . . , NT ; j = 1, 2, . . . , Nb.

• αn the fit coefficient vector for dimension/direction n

• uSn the source to target mesh correspondence displacement field vector for
dimension/direction n evaluated as

uSn = pT ncSk
− pSn. (2.28)

• uT n the target to source mesh correspondence displacement field vector for
dimension/direction n evaluated as

uT n = pSncT k
− pT n. (2.29)

5. The displacement field estimation is then used to update the registered mesh as
follows

P ′S(k) = PS +
[
MS,Sbα1 . . . MS,Sbαn

]
. (2.30)

6. The iterative method is stopped when the number of iterations, k, reaches the
specified maximum iterations kmax or when the sum of point wise distances of the
registered mesh reaches a specified convergence tolerance

NS∑
i=1

∥∥∥p′Si(k) − p′Si(k−1)

∥∥∥2

2
< εtol. (2.31)

7. Correspondence with obtuse normals may be removed from the approximation
by performing a dot product of the normals for the forward (source to target) and
backward (target to source) correspondences at each iteration. The row entries
may then be removed from Equation (2.25) where the angular difference is more
than a specified threshold θthresh.
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2.4. NON-RIGID POINT SET REGISTRATION

This method is applied here in 2D to register two different parametrised asteroid curves.
The parametric equations for the asteroid geometries are given by

X = (cos t)3 ,

Y = (sin t)3 , (2.32)

with source and target geometries discritised using 1000 points for 0 ≤ t < 2π. The
target geometry is obtained by applying a linear deformation to the source geometry.
The source and target point-sets are given by the following:

PS =
[
X Y

]
,

PT =
[
X Y

] 1.2 0.1
0.1 0.9

 . (2.33)

The resulting source and target geometries are presented in Figure 2.6.
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Figure 2.6: 2D Source and target geometries.

The registration results for application of this method to the generated 2D geometry are
shown for various iterations in Figure 2.7 with the use of a linear basis function.
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Figure 2.7: Registration result at various iterations, refer to Table 2.3. The black
lines indicate the correspondence between registered and source geometries.

Table 2.3: Iteration and centre numbers in Figure 2.7.

Caption Iteration, k Centres, Nb

(a) 1 5
(b) 5 8
(c) 10 13
(d) 20 23
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2.4. NON-RIGID POINT SET REGISTRATION

Three error functions are given at different iteration numbers in Figure 2.8. The first
two errors relate to convergence properties of the method, while the third error relates
directly to the least squares error which is aimed to be minimized:

1. The sum of the point-wise distances between each consecutive iteration

εk−1 =
NS∑
i=1

∥∥∥p′Si(k) − p′Si(k−1)

∥∥∥2

2
. (2.34)

2. The sum of the point-wise distances between the current and final iteration

εkf
=

NS∑
i=1

∥∥∥p′Si(kf ) − p′Si(k)

∥∥∥2

2
. (2.35)

3. The sum of the point-wise distances between the current iteration and the true
position on the target point-set

ε =
NS∑
i=1

∥∥∥pT i − p′Si(k)

∥∥∥2

2
. (2.36)

Iteration, k
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Figure 2.8: Various error functions vs. iteration number.
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CHAPTER 2. REGISTRATION METHODS

The following may be observed from Figure 2.8:

1. The sum of the point-wise distances between each consecutive iteration, Equation
(2.34), is decreasing non-monotonically. It is therefore recommended that the
termination criterion be altered to have the mean of a number of consecutive
final iterations below the convergence tolerance.

2. The sum of the point-wise distances between the current and final iteration, Equa-
tion (2.35), is also decreasing non-monotonically. This shows that the last few
iterations are closer to the final result than the preceding iterations, suggesting
unique convergence.

3. The sum of the point-wise distances between the current iteration and the true
position on the target point-set, Equation (2.36), is initially a decreasing function
with a minimum at around 60 iterations where after it is slightly increasing. This
shows that the approximation does not converge to the target point-set. This
function is however never practically available and only shows that the heuristic
correspondence approximation is non-exact.
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CHAPTER 3

REGISTRATION APPLICATION

3.1 CHAPTER OVERVIEW

Firstly a NR-ICP registration strategy based on the methods in Chapter 2 is proposed.
This strategy is characterized, where the parameter effects of the NR-ICP registration
algorithm are studied. Termination criteria and algorithm parameters for the NR-ICP
registration strategy, to be used for the remainder of the study, are proposed based on
the characterisation findings.

3.2 REGISTRATION STRATEGY

The proposed NR-ICP registration strategy, which will be used in the remainder of
this study, is set out as follows:

1. Manual pre-alignment, where the geometries’ centres are moved to the origin
and roughly rotated consistently along chosen directions. This is because PCA
based registration of the used cranium and mandible geometries result in principal
directions/components with similar eigenvalues, where the geometries are often
aligned incoherently.

2. Rigid registration through R-ICP, Section 2.3.3, where a finer rigid alignment is
obtained.

3. Non-rigid registration through NR-ICP, Section 2.4.2, where the final approxim-
ated geometry with correspondence is obtained.
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CHAPTER 3. REGISTRATION APPLICATION

3.3 REGISTRATION STRATEGY CHARACTERISATION

The intent of this section is to investigate the effect of the NR-ICP parameters on
the resulting generated correspondence. In general NR-ICP registration displacement
field approximations are not unique - several displacement fields/transformations exist
which result in the same perceived geometry i.e. a target geometry can be represented
by different deformations of a source geometry. This is clearly demonstrated in this
section, as a number of configurations of the NR-ICP parameters, with different result-
ing displacement fields, are capable of accurate representations of the target geomet-
ries. The ideal is a registration result with a deformation mapping that is homologous
between different observations i.e. landmarks between observations are represented by
the same vertices/points. Practically this may not be attainable, therefore the intent
is to determine whether some configurations of the NR-ICP registration parameters
are better at approximating true correspondence. In this subsection this is investig-
ated by application of known non-linear displacement fields and evaluating how close
the generated correspondence is compared to known true deformation correspondence.
The NR-ICP parameters studied in this section are:

1. the choice of basis function φ(d),
2. the number of iterations k and
3. the number of RBF centres Nb.

3.3.1 Procedure

1. Two different mesh representations of an arbitrary mandible geometry, described
by point-sets PSA and PSB, are generated. These meshes do not have the same
connectivity, vertex numbers or vertex positions as illustrated in Figure 3.1. Con-
sequently these meshes do not have correspondence, which is representative of
two different surface scans of the same geometry.

2. An artificial dataset is generated where both PSA and PSB are transformed non-
linearly NM = 15 times to generate a Monte-Carlo (MC) sample:

PSA
fJ7−→ PT AJ , PSB

fJ7−→ PT BJ . (3.1)

The non-linear deformation fJ for each sample is given by the following quadratic
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3.3. REGISTRATION STRATEGY CHARACTERISATION

(a)
(b)

Figure 3.1: (a) Two superimposed mesh representations of the same mandible
geometry, (b) Close-up of superimposed meshes.

deformation mapping:

[
x y z

]
=
[
X ◦X 2X ◦ Y 2X ◦ Z Y ◦ Y 2Y ◦ Z Z ◦ Z X Y Z

]
C

(3.2)
with

Cij ∼ U{−0.001, 0.001}, i = 1 . . . 6, j = 1 . . . 3

C72, C73, C81, c83, C91, C92 ∼ U{−0.05, 0.05} (3.3)

C71, C82, C93 ∼ U{0.95, 1.05}

where

x, y, z Column vectors with coordinates of the deformed geometry pT

X, Y, Z Column vectors with coordinates of the undeformed geometry pS

C Matrix containing polynomial deformation constants Cij

◦ Denotes the Hadamard/point-wise product
U{a, b} Sampled from the uniform distribution with bounds a and b

The upper and lower bounds of the uniform distributions, from which the coef-
ficients cij are sampled in Equation (3.3), are chosen so that the resulting de-
formation generates reasonable variations of the chosen mandible geometry. The
superimposed Monte-Carlo samples are given in Figure 3.2.
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CHAPTER 3. REGISTRATION APPLICATION

(a)
(b)

(c)

Figure 3.2: Monte-Carlo non-linear deformation sample views. (a) Right side view,
(b) Frontal/Anterior view and (c) Isometric View.
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3.3. REGISTRATION STRATEGY CHARACTERISATION

3. The source mesh point-set pSA is registered to each target mesh point-set pT BJ

to give p′SAJ .

4. The mean point-wise distance error between the actual transforma-
tion/deformation mapping and registration approximation results (averaged over
the number of registrations/Monte-Carlo samples NM) is used to generate er-
ror distributions for various basis functions with respect to the number of RBF
centres Nb and number of iterations k. The actual correspondence error is given
by

ε(iJ) = ‖(pT AJi − p′SAJi)‖
2
2 . (3.4)

The nearest neighbour correspondence error, nearest point in pT BJi to each point
in p′SAJi, is given by

εnn(iJ) =
∥∥∥(pT BJcS(i) − p′SAJi)

∥∥∥2

2
, (3.5)

with
i = 1, 2, .., NS; J = 1, 2, .., NM .

The nearest neighbour error is included, as it is the only available function during
the registration process. The intent is to determine whether it can be used as
a proxy to the actual correspondence error. The resultant error surfaces are
given in Section 3.3.2 for k ∈ [0; 25; 50 . . . 150], Nb ∈ [25; 50; 75, . . . 200] and the
following commonly used basis functions:

(a) Linear
(b) Cubic
(c) Thin plate spline
(d) Gaussian

Due to the high computational cost of evaluating the error distributions, the
Gaussian basis function is only evaluated for a single value of ε. The Gaussian
half-width h is chosen as the maximum distance from any point towards its closest
centre so as to remain affected by the approximated displacement field, with a
basis function evaluation of at least φ(d) = 0.5. This implies that the Gaussian
function parameter ε is given by

ε =
√

ln 2
h2 . (3.6)
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CHAPTER 3. REGISTRATION APPLICATION

3.3.2 Results

The mean and maximums of the actual correspondence error distributions, Equation
(3.4), are rendered as surfaces in Figures 3.5, 3.8, 3.11 and 3.14 for each respective
basis function. The maximum of the distribution is given by the translucent surface
and the mean by the opaque surface. For a qualitative error comparison consider the
geometry relative size bounding box in Figure 3.4. The following is observed from these
surfaces:

1. The true correspondence error distributions vary with respect to the choice of
basis function φ(d), number of iterations k and number of centres Nb.

2. The correspondence error is generally reduced with increased centres distributed
over an increased number of iterations, regardless of basis function. The max-
imum and mean of the error distributions are given for each respective basis
function in the approximate minimum region at Nb = 200 and k = 200 in Table
3.1. This shows that the mean of the true correspondence error distributions are
comparable, but the maximum error differs significantly between basis functions.

Table 3.1: Correspondence error distribution properties for each basis function.

Basis function mean(ε) [mm] max(ε) [mm]
Linear 0.0658 1.1215
Cubic 0.0517 0.2567
TPS 0.0512 0.3172
Gaussian 0.0768 2.1046

3. The linear and Gaussian basis functions require many more centres and iterations
to achieve comparable maximum error. This behaviour of the Gaussian basis
function may however be an artefact of the choice of the Gaussian half-width.

4. The cubic and thin plate spline basis functions have distinctive transitions from
higher to lower maximum error, illustrating the highly path dependant behaviour
of the NR-ICP algorithm. These transitions are concomitant with the separation
of regions with higher maximum error, due to a larger increase in the number of
fitting centres/degrees of freedom per iteration, and lower maximum error, due to
a lower increase in the number of fitting centres/degrees of freedom per iteration.
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3.3. REGISTRATION STRATEGY CHARACTERISATION

This illustrates that the NR-ICP algorithm is highly dependant on the rate at
which fitting complexity is increased between iterations.

5. The fitting complexity increase between iterations also explains the general de-
crease in true correspondence error for an increase in the number iterations when
a fixed number of centres are considered, and vice versa. This is because higher
fitting complexity between iterations allows too much fitting freedom and shape
change, altering correspondence built up in consequent iterations.

6. The general true correspondence error decrease along unit centre increase per
iteration, Nb = k, may be due to the fact that this is the slowest possible whole
numbered rate at which fitting complexity/degrees of freedom can be increased
per iteration i.e. without repeating the number of fitting centres between itera-
tions.

The mean and maximums of the nearest neighbour error distributions, Equation (3.5),
are rendered as surfaces in Figures 3.6, 3.9, 3.12 and 3.15 for each respective basis
function. The maximum of the distribution is given by the translucent surface and the
mean by the opaque surface. The following is observed from these surfaces:

1. The nearest neighbour error distributions are comparably invariable with respect
to the choice of basis function φ(d), number of iterations k and number of centres
Nb. The mean and maximums of these distributions present as near flat surfaces
except at k = 0 (only rigid alignment). This is because the registration result
at the lowest evaluated iteration number k = 25 already results in a visually
indiscernible difference between the registrations and target geometries. This
suggests that the majority of the nearest neighbour error is in-surface error. (The
mean maximum in-surface error is expected to be approximately half the average
triangle side-width, which is 1.06mm in this instance). The maximum and mean
of the nearest neighbour error distributions are given for each respective basis
function in the approximate minimum region at Nb = 200 and k = 200 in Table
3.2, and shows an insignificant difference:

2. The nearest neighbour error illustrates that it is not a good proxy of the true
correspondence error.

The true correspondence error distributions vs. iterations k, with Nb = 200, are given
for each respective basis function in Figures 3.7, 3.10, 3.13 and 3.16. The following is
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CHAPTER 3. REGISTRATION APPLICATION

Table 3.2: Nearest neighbour error distribution properties for each basis function.

Basis function mean(ε) [mm] max(ε) [mm]
Linear 0.2884 1.7755
Cubic 0.2844 1.7949
TPS 0.2847 1.7887
Gaussian 0.2869 1.7553

observed from these surfaces:

1. The resulting error distributions are of the same overall shape for iterations be-
yond k = 100, regardless of basis function. This justifies using the mean and
maximums of these distributions as error descriptors in the region of minimum
true correspondence error as done earlier.

2. Beyond k = 100 the maximum tail-end is shortened considerably for each basis
function (consider the logarithmic scaling of the error axis).

3. Investigation of these tails shows that the long maximum tail-ends are generally
concomitant with a region of higher true correspondence error for a single re-
gistration result within the MC sample. This is illustrated in Figure 3.3 which
shows the registration error result for NR-ICP parameters Nb = 100, k = 100
and φ(d) = d3. Considering again the mean triangle side-width of 1.06mm, the
nearest neighbour error, in Figure 3.3 (a), with a mean of 0.3mm suggests regis-
tration with largely in-surface true correspondence error, which is corroborated
by not being able to visually discern a difference between the target and regis-
tration result. This is again corroborated in Figure 3.3 (b), where the nearest
neighbour error is weighted by the absolute of the dot-product between the unit
correspondence vector (source to target point) and the target point unit normal.
This weighting approximately removes the in-surface error and retains the per-
ceptible normal error. Comparison with the true correspondence error, (c) in
Figure 3.3 , with a mean of 0.07mm, also corroborates and explains this. The
true correspondence error clearly illustrates that the high in-surface-dominant
error associated with the maximum tail-end is confined to a region of the regis-
tration result. This shows that high in-surface true correspondence errors cannot
be identified from available error measures during registration. Manual visual in-
spection may be an option, but the practicality and success of exhaustive visual
cross validation however remains questionable for the following reasons:

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.3. REGISTRATION STRATEGY CHARACTERISATION

(a) Manual inspection of multiple registrations will be tedious, especially having
to repeat this for the purpose of building a dataset.

(b) There is uncertainty as to whether it would be humanly possible to even
discern the subtle differences of the largely in-surface correspondence errors
(a maximum of 0.69mm in Figure 3.3 (c)).

(c) It is uncertain if a human generated guess would practically be any better
in areas which are not geometrically distinct. It may on the contrary, for
the purpose of regression, be better to describe these through registration,
rather than relying on human perception to enforce biological homology
where it does not strictly exist.

(a) (b)

(c) (d)

Figure 3.3: Registration error of the MC observation responsible for high true cor-
respondence error, all given in mm. (a) Nearest neighbour correspondence error εnn,
(b) Normal weighted nearest neighbour correspondence error εnnwn, (c) True corres-
pondence error ε and (d) Registration result (blue) and target (red).
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CHAPTER 3. REGISTRATION APPLICATION

The errors have thus far only been used comparatively with the magnitudes remaining
unaddressed. A discussion on the relative size of the error w.r.t. the size of the
geometry and shape variation may be insightful at this point. For reference consider the
dimensions of the MC sample given in Figure 3.4. Comparison of the rough maximum
dimensions with the errors in Tables 3.1 and 3.2 serves as indication that the errors
are insignificant even if they were out-of-surface errors i.e. they would remain visually
imperceptible. Comparison with the mean point wise difference, ε = 2.77mm at k =
0 in Figure 3.5, shows that the mean true correspondence errors in Table 3.1 are
small, ε ≈ 0.06mm, with correspondingly small added variance i.e. the variance due to
registration error (largely in-surface error) is roughly 2% compared to the variance due
to shape differences/variation.

Figure 3.4: Superimposed MC sample.
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3.3. REGISTRATION STRATEGY CHARACTERISATION

3.3.2.1 Linear basis function

Figure 3.5: Actual correspondence error surface [mm per point] of Linear basis func-
tion for MC sample. The maximum of the distribution is given by the translucent
surface and the mean by the opaque surface.

Figure 3.6: Nearest neighbour error surface [mm per point] of Linear basis function
for MC sample. The maximum of the distribution is given by the translucent surface
and the mean by the opaque surface.
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CHAPTER 3. REGISTRATION APPLICATION

Figure 3.7: Error distribution for various iteration numbers k and number of centres
Nb = 200 for use of the linear basis function on the MC sample.

3.3.2.2 Cubic basis function

Figure 3.8: Actual correspondence error surface [mm per point] of cubic basis function
for MC sample. The maximum of the distribution is given by the translucent surface
and the mean by the opaque surface.
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3.3. REGISTRATION STRATEGY CHARACTERISATION

Figure 3.9: Nearest neighbour error surface [mm per point] of cubic basis function
for MC sample. The maximum of the distribution is given by the translucent surface
and the mean by the opaque surface.

Figure 3.10: Error distribution for various iteration numbers k and number of centres
Nb = 200 for use of the cubic basis function on the MC sample.
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CHAPTER 3. REGISTRATION APPLICATION

3.3.2.3 TPS basis function

Figure 3.11: Actual correspondence error surface [mm per point] of TPS basis func-
tion for MC sample. The maximum of the distribution is given by the translucent
surface and the mean by the opaque surface.

Figure 3.12: Nearest neighbour error surface [mm per point] of TPS basis function
for MC sample. The maximum of the distribution is given by the translucent surface
and the mean by the opaque surface.
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3.3. REGISTRATION STRATEGY CHARACTERISATION

Figure 3.13: Error distribution for various iteration numbers k and number of centres
Nb = 200 for use of the TPS basis function on the MC sample.

3.3.2.4 Gaussian basis function

Figure 3.14: Actual correspondence error surface [mm per point] of Gaussian basis
function for MC sample. The maximum of the distribution is given by the translucent
surface and the mean by the opaque surface.
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CHAPTER 3. REGISTRATION APPLICATION

Figure 3.15: Nearest neighbour error surface [mm per point] of Gaussian basis func-
tion for MC sample. The maximum of the distribution is given by the translucent
surface and the mean by the opaque surface.

Figure 3.16: Error distribution for various iteration numbers k and number of centres
Nb = 200 for use of the Gaussian basis function on the MC sample.
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3.3. REGISTRATION STRATEGY CHARACTERISATION

3.3.3 Conclusion

The following is concluded from the study in this section:

1. The true correspondence error distributions vary with respect to the choice of
basis function φ(d), number of iterations k and number of centres Nb.

2. The registration procedure requires few centres and iterations to produce visually
indiscernible registration results with regard to the target geometry i.e. the lowest
sample of Nb = k = 25 results in a "good" visual registration regardless of the
basis function used. The numerical error between configurations is largely due to
in-surface error, which is not visually perceptible.

3. The registration algorithm requires many more centres and iterations (basis func-
tion dependant) than what is required for a "good" visual registration to result
in sub-millimetre true correspondence error.

4. The true correspondence error generally decreases along unit centre increase per
iteration i.e. Nb = k for increasing Nb and k, regardless of the basis function used.

5. The available nearest neighbour error measures during registration are not in-
dicative of the true correspondence error and can therefore not be used as a
proxy.

6. The nearest neighbour error is highly invariable in the region of concern Nb, k ≥
25, where the true correspondence error is lowered significantly. This and the
previous point demotivates using this error measure as termination criteria for
the registration algorithm.

Although these results are based on artificial quadratic deformation, which may not be
representative of true shape variation of mandibles or crania, the results may still serve
as a guideline. Ideally cross-validation should be used i.e. different datasets should
be generated using the registration procedure, regressed and the parameters of the
datasets which results in the least error should be used. This process may however
only be computationally tractable for a few configurations of NR-ICP parameters, as
each regression would also first require cross-validation. For the lack of any other
alternative these may be restricted to:
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CHAPTER 3. REGISTRATION APPLICATION

1. Use of only the cubic and thin plate spline basis functions, which resulted in
significantly lower true correspondence error for reduced Nb and k.

2. The number of centres and iterations may be restricted to Nb = k for numbers
which are 1× and 2× the minimum required for a "good" visual registration.
These may then be repeated with doubling until the visual results after regression
differ insignificantly.

It is also important to note that should the magnitudes of the errors in this study
be indicative of true correspondence errors for real data, cross-validation would be
meaningless with imperceptible visual differences. This is because the added variance
related with in-surface error would be insignificant compared to the variance of shape
difference/variation.
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CHAPTER 4

REGRESSION METHODS

Regression requires the use of features/variables with one-to-one correspondence, which
fundamentally requires that a sampled variable consistently represents the same quant-
itative feature. Chapter 2 discussed why raw surface-scan geometry does not fulfil this
requirement and demonstrated how heuristic correspondence may be generated using
proposed registration techniques. This chapter describes how registered point-sets may
be pre- and post-processed to facilitate regression for the purpose of prediction. The
intended application of this work will often be limited to datasets with few observa-
tions due to a culmination of ethical considerations, availability of physical data-sets
(bone-collections) and cost/time/labour of digitisation, manipulation and processing.
Only regression techniques that are suitable for collinear data with few observations
are thus considered and documented.

4.1 REGRESSION

The regression algorithms used in this study are limited to multivariate regression
techniques that are suited to the case where the number of predictor and response
variables are many more than the number of observations nX , nY � n, with high mul-
ticollinearity expected amongst both predictor and response variables. Partial Least
Squares (PLS) regression is a regression technique suited to this application [16]. A
better scaling regression technique based on Principal Components (PC) regression of
a combined superset is also proposed.
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CHAPTER 4. REGRESSION METHODS

4.1.1 Partial Least Squares (PLS)

The PLS algorithm is a statistical method, based on the use of derived input direc-
tions, that models the relationship between predictor and response matrices, X and Y
respectively. This is done by decomposition of bothX and Y into linear combinations
of latent variables and a residual term [17]:

X = TP T +E (4.1)

Y = UQT + F (4.2)

with

T ,U Latent variables
P T ,QT Loading vectors associated with the respective latent variables
E,F Residual terms that remain unexplained by decomposition

The decomposition is done in a manner so as to find directions of maximum covariance
between predictor and response spaces [18]. This work makes use of a PLS implement-
ation based on the SIMPLS algorithm [19]:

1. The covariance S1 is evaluated using

S1 = XT
0 Y0, (4.3)

with zero subscripts indicating centering.

2. The a-th weight vectors ra and qa are determined by

arg max
ra,qa

(
rT

a Saqa

)
, (4.4)

subject to the weights being orthonormal. These are evaluated as the left and
right singular vectors of Sa.

3. Each maximisation results in an a set of weighting vectors, latent vectors and
loading vectors. In addition, latent vectors are required to be orthogonal to
result in more than one solution.

4. The loading vectors are transformed into an orthogonal basis and used to deflate
the covariance before extraction of the next component (repeating from step 2):
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4.1. REGRESSION

Sa+1 = Sa − P (P TP )−1P TSa (4.5)

5. This process may be repeated until the rank of the deflated covariance reduces
to zero i.e. when the number of components, a, equals the lesser of the number
of predictor variables, nX , or the number of observations, n, minus one:

amax = min(nX , n− 1). (4.6)

4.1.2 Superset Principal Component (SPC) regression

This technique is developed for improved computational scaling over PLS, with the
intuitive assumption of two partial sets X and Y forming part of a larger set Z

Z =
[
X Y

]
. (4.7)

The maximal directions of variance or loadings ZL are evaluated as the left singular
vectors of the combined set Z0, which can be decomposed into vector components XL

and YL

ZL =
XL

YL

 . (4.8)

The scores ZS are evaluated from solving:

Z0 = ZSZ
T
L , (4.9)

[
X0 Y0

]
= ZS

XL

YL

T

, (4.10)

which shows that ZS can be solved using only a single subset, i.e. X0(XT
L )+. Assuming

Xn to be a new observation n, corresponding estimations/predictions Ẑn0 and Ŷn0 are
available through:

Ẑn0 = Xn0(XT
L )+ZT

L , (4.11)

and
Ŷn0 = Xn0(XT

L )+Y T
L , (4.12)

where + indicates the pseudo-inverse and zero subscripts refer to centering with means
of corresponding training sets X, Y , and Z.
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CHAPTER 4. REGRESSION METHODS

4.2 REGRESSION TIME COMPLEXITY

The proposed regression methods’ time complexity is now considered. The aim is to
set system size limits that result in timeous/tractable solutions for cross-validation
(especially during prototyping). This is because triangular mesh representation ac-
curacy/complexity is limited by the number of vertices, which is inherently geometry
dependent. This study is based on a maximum of n = 50 observations, which is ex-
pected to be the maximum due to the time, cost and labour involved in acquisition,
digitisation and manipulation of the biological samples obtained from the Pretoria bone
collection for application in Chapter 6, [20]. The maximum system sizes for the respect-
ive regression algorithms are limited so as to result in less than 90% memory usage of
64GB, to prevent any virtual memory usage and associated transfer overhead/paging
time.

4.2.1 PLS Complexity

Time complexity of PLS based on the SIMPLS algorithm is studied in this subsection.
The implementation is based on a sparse SVD solver which only obtains the first
singular value and corresponding singular vectors (Equation (4.4)). This results in
significantly improved time complexity for nX , nY > 5, 000 at the cost of additional
memory.

4.2.1.1 Retained component time complexity

The cumulative time vs. component complexity for the SIMPLS algorithm is given for
nX , nY = 5, 000 and n = 50 in Figure 4.1, with a linear fit for the first 25 components.
It is observed that the behaviour of the algorithm with a sparse SVD solver is initially
linear, whereafter decreased time per component is observed as the number of retained
components approaches the number of observations a→ n− 1. It is assumed that the
sparse solver works more efficiently as the rank of the cross-covariance is significantly
reduced through iterative deflation. Although not entirely realistic, full component
retention is expected to be the worst case scenario. An upper-bound estimate for this
scenario is expected to be tn−1 = t1(n− 1), t1 = 10s.
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4.2. REGRESSION TIME COMPLEXITY

Retained components, a
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Figure 4.1: Time-component complexity for PLS with fit t = ca for first 25 compon-
ents.

4.2.1.2 System size time complexity

The time vs. size complexity for a single evaluated component is given for various
combinations of nX and nY with nX + nY ≤ 50, 000 (memory limitation to prevent
paging) in Figure 4.2. Polynomial scaling of the form t ∝ anb

Xn
c
Y , with b, c ≈ 1 (quad-

ratic polynomial) seems to give a good qualitative approximation of the asymptotic
size complexity. The use of the sparse SVD solver is motivated by the fact that a
direct exact SVD solver exhibits cubic asymptotic time-size complexity of the form
O(min(nXn

2
Y , n

2
XnY )) [21]. Recall that the upper bound for full component retention

is expected to be tn−1 = t1(n−1), with total times of tmax ≤ 49t1 as given in Figure 4.2.
This clearly demonstrates the limitation of PLS in terms of the CPU time required for
the large systems associated with geometric data. Consider that evaluation of a single
PLS component regression of 10,000 points in R3 (nX , nY = 30, 000) for both predictor
and response geometries takes approximately 10 minutes, the worst case scenario of
a = n − 1 with 50 observations results in an upper-bound approximate total time
of 8 hours. This with the use of non-exhaustive k-fold cross-validation using 10 folds
increases run-time to over 3 days, whereas exhaustive leave-one-out cross-validation in-
creases run-time to 3 weeks! This clearly illustrates the need for curvature driven mesh
simplification or sub-sampling to result in timeous/tractable PLS regression models for
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CHAPTER 4. REGRESSION METHODS

geometry data.

Figure 4.2: Time-size complexity for PLS with fit t = anb
Xn

c
Y .

4.2.2 SPC regression complexity

The asymptotic time-size complexity of SPC is given by the asymptotic complexity
of the SVD of Equation (4.7), a n × (nX + nY ) matrix. The theoretical complexity
is given by O(min((nX + nY )n2, (nX + nY )2n)) [21]. Given n << (nX + nY ) for this
study, the asymptotic complexity is given by O((nX + nY )n2). This is verified by the
time-observation complexity in Figure 4.3, where the time complexity fit of the form
t ∝ anb results in exponent b ≈ 2 for nX , nY = 100, 000. The time-size complexity is
given in Figure 4.4, where the time complexity fit of the form t ∝ a(nX +nY ) also gives
a good qualitative approximation of the asymptotic time-size complexity for n = 50.
Note that all components are evaluated through a single decomposition and reduced
rank regression is facilitated through truncation of the loading vectors, whereas for
PLS only the truncated loading vectors are evaluated through iterative deflation.
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Figure 4.3: Time-size complexity for SPCR with fit t = anb.

Figure 4.4: Time-size complexity for SPCR with fit t = a(nx + nY ).
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CHAPTER 4. REGRESSION METHODS

4.2.3 Conclusion

SPC regression results in far more desirable time-size complexity compared to PLS. The
drawback however is that the resulting loading vectors are not evaluated to result in
dually maximised cross-covariance, which depending on the data, may result in inferior
predictions compared to PLS. The superior time-size complexity of SPC regression al-
lows much larger systems to be modelled directly e.g. system sizes of nX , nY = 500, 000
and n = 50 can be regressed in 15 seconds as opposed to 20 times smaller systems:
nX , nY = 25, 000 taking approximately 5 minutes for single component retention using
PLS.

Due to time constraints, the remainder of this study is limited to the use of system
sizes which result in 10-fold cross-validated models executable within 24 hours.

For PLS this equates to system sizes of n = 50 observations with a first component
evaluation time smaller than 3 minutes:

180 ≥ (4.512× 10−7)nXnY

nXnY . 400× 106 (4.13)

nX , nY ≈ 20, 000.

This implies roughly 6,500 predictor and response geometry points in R3. PLS may
in some instances, depending on the geometry, require the use of simplification/sub-
sampling to meet this constraint.

SPC regression may equivalently, however improbable, be limited to full component
extraction times of approximately 2.5 hours:

8640 ≥ (1.378× 10−5)(nX + nY )

nX + nY . 600× 106 (4.14)

nX , nY ≈ 300× 106.

This implies roughly 100 million predictor and response geometry points in R3.
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4.3. DATA PROCESSING

4.3 DATA PROCESSING

This section describes the pre- and post-processing of the point-sets to enable the use
of regression. Two approaches are used for this study:

1. Regression of the raw Cartesian coordinates of the registered point-sets, from
here on referred to as "Cartesian space based regression".

2. Regression of the Euclidean distances of the registered point-sets, from here on
referred to as "Euclidean space based regression". The motivation for this method
is rotation and translation invariance i.e. this method does not require alignment
techniques.

Each of these are outlined in the subsequent sections.

4.3.1 Cartesian space regression

This regression approach is based on using the Cartesian coordinates of the registered
point-sets. This requires the following steps:

1. Pre-processing:

(a) alignment of the registered point-sets (including the test/prediction sets),

(b) sub-sampling of the aligned point-sets and

(c) stacking of the coordinates to form a single row vector for predictor and
response respectively.

2. Regression modelling and prediction.

3. Post-processing of prediction:

(a) alignment of predicted and true sub-sampled point-sets for cross-validation
and

(b) reconstruction of the full geometry from predicted sub-sampled point-set via
interpolation.

49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 4. REGRESSION METHODS

Detailed discussion of these points are given in the relevant subsequent sections.

4.3.1.1 Alignment

Due to the heuristic one-to-one correspondence of the registered geometries, alignment
is facilitated easily through the use of SVD based-alignment (Section 2.3.2). Align-
ment of the dataset, as opposed to only a target and source, is known as Generalised
Procrustes Analysis (GPA). The procedure for GPA is outlined as follows [22]:

1. A reference shape is chosen arbitrarily.

2. All observations are aligned with the reference shape (Section 2.3.2).

3. The mean shape of the superimposed observations are evaluated.

4. The Procrustes distance between the reference shape and mean, computed using
Equation (2.18), is evaluated. If this is not below a threshold, the mean shape is
chosen as the new reference shape and the process is repeated from step 2.

Note that the GPA formulation allows for the removal of isotropic scaling, by modi-
fication of the singular values in Section 2.3.2. Implementation of GPA in this study
does not include explicit isotropic scale removal, as the regression methods employed
implicitly regress/predict isotropic scaling i.e. if scaling contributes significantly to the
total variance, a superposition of dominant loadings will include scaling.

4.3.1.2 Sub-sampling

Sub-sampling in this study is facilitated through using the nearest neighbours of a
simplified mesh representation of the same geometry, generated through quadratic
edge collapse decimation. Low curvature areas can be sub-sampled even more sparsely
by further simplification through user selection. Figure 4.5 illustrates the sub-sampled
points (blue) of a cranium and mandible pair using this method: the number of points
are reduced from 25, 000 → 5, 000 and 12, 500 → 500 for the cranium and mandible
geometries respectively, resulting in nX = 15, 000 and nY = 1, 500 respectively. Note
the sparser sampling around the top and back of the cranium through further manual
simplification. The effect of the level of simplification on accuracy is not included in
this work and may require further study.
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4.3. DATA PROCESSING

Figure 4.5: Sub-sampled cranium and mandible point-sets (blue) with reference
coordinates for Euclidean distance regression approach (red).

4.3.1.3 Stacking

Stacking is used to transform the matrix of coordinates into row vector form to enable
regression. Transformation of the n-th prediction point-set observation into the n-th
row of a dataset matrix is obtained by the transpose of the vec operator [23]

Xn = vec(Pn)T , (4.15)

with the n-th observation point-set

P , {pi}N
i=1, pi ∈ Rm. (4.16)

4.3.1.4 Full Geometry Reconstruction

The full geometry is reconstructed by RBF interpolation, given in Section 2.4.1, of
the reference geometry full point-set, with prescribed displacement at the predicted
sub-sampled point-set locations. The sub-sampled predicted point-sets are assumed to
be dense enough for a linear RBF interpolation to be appropriate/accurate.
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CHAPTER 4. REGRESSION METHODS

4.3.2 Euclidean space regression

This regression approach is based on using Euclidean pairwise distances w.r.t. reference
points of the registered point-sets. This requires the following steps:

1. Pre-processing:

(a) sub-sampling of the point-sets and selection of reference points,

(b) calculation of the pairwise distance matrix w.r.t. reference points and

(c) stacking of the distance matrix to form a single row vector for predictor and
response respectively.

2. Regression modelling and prediction.

3. Post-processing of prediction:

(a) reconstruction of the predicted sub-sampled geometry from the predicted
pairwise distance matrix,

(b) alignment of predicted and true sub-sampled point-sets for cross-validation
and

(c) reconstruction of the full geometry from predicted sub-sampled point-set via
interpolation.

Detailed discussion of these points are given in the relevant subsequent sections.

4.3.2.1 Sub-sampling

Same as described in Section 4.3.1.2.

4.3.2.2 Reference points

Due to the high dimensionality of inter-point distances versus Cartesian coordinates for
a given point-set in R3 ((N2 − N)/2 vs. 3N respectively), regression time complexity
becomes problematic for even small point-sets. Considering Equation (4.13) limits the
number of points for the use of the full inter-point distance matrix to N = 200 for
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4.3. DATA PROCESSING

equal sized predictor and response point-sets nX = nY = (N2 −N)/2 ≈ 20, 000. This
may arguably only be adequate for the representation of simplistic 3D geometries.
It is for this reason that the use of pairwise distances of the sub-sampled point-set
w.r.t. an inclusive reference subset, Nr is rather considered. The number of pairwise
distance entries then reduces to N × Nr − (N2

r − Nr)/2, where the subtractive term
represents the repeated symmetric distances. For Nr � N , the complexity reduces
to approximately linear for the pairwise distances vs. quadratic for the inter-point
distances, N ×Nr vs. N2. With Nr = 10 the maximum number of sub-sampled points
increases tenfold to N ≈ 2, 000 for equal sized predictor and response point-sets. This
proposal is solely implemented due to the necessity to have the capability of handling
more complex geometries/larger sub-sampled point-sets. The number and choice of
reference points and the effect on prediction accuracy is therefore not part of this work
and may constitute work for further study. Selection of the reference points in this
study is done through random MC sampling of Nr reference points of the sub-sampled
point-set and selecting the sample with the largest minimum inter-point distance of
the sampled reference points. This heuristic aims to select the most uniform spread of
reference points in the sub-sampled point-set. Figure 4.5 illustrates Nr = 10 reference
points (red) of the sub-sampled point-set (blue) obtained through this method.

4.3.2.3 Stacking

Stacking is used to transform the pairwise-distance matrix into row vector form to
enable regression. Transformation of the n-th pairwise distance matrix observation
into the n-th row of a dataset matrix is also obtained by the transpose of the vech
operator [23], which only keeps the non-repeated entries:

Xn = vech(Dn)T , (4.17)

with the n-th pairwise distance matrix Dn given by

Dir = ‖pi − pr‖, (4.18)

and i the i-th point and r the r-th reference point in the sub-sampled observation
point-set Pn respectively.
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CHAPTER 4. REGRESSION METHODS

4.3.2.4 Sub-sampled point-set reconstruction from pairwise distances

Once the pairwise distances have been predicted through the regression model, the
sub-sampled point-set of Cartesian coordinates which relates to the same pairwise
distances needs to be generated. This is accomplished through metric multidimensional
scaling (MMDS), which seeks the point-set, P in Rm, through minimisation of a "stress"
function:

σ(P) =
∑
i<j

wij

(
D̂ij − ||pi − pj||

)2
, (4.19)

with D̂ij the predicted inter-point distance matrix. Note that D̂ij, wij = 0 for j 6= r as
only predictions for the pairwise entries Dir of the inter-point distance matrix entries
Dij are available. The "stress" function is minimised through an iterative steepest
descent approach [24].

4.3.2.5 Full geometry reconstruction

Same as described in Section 4.3.1.4.
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CHAPTER 5

REGRESSION APPLICATION

This chapter demonstrates proof of concept for a registration based prediction strategy.
The sequence of steps followed are:

1. Generate a true correspondence dataset with known structure/covariance,

2. simulate the absence of true correspondence by using arbitrary point-sets which
represent the same geometric data as the registration targets and

3. quantitatively and qualitatively evaluate and discuss the prediction error due to

(a) the proposed regression space limitations, which are evident when using true
correspondence, and

(b) the use of heuristically generated registration correspondence.

5.1 PROCEDURE

The procedure for validation of the proposed registration-regression strategy consists
of the following steps:

1. The proposed strategy is tested by means of creating an artificial geometry data-
set, where the underlying structure is embedded/imposed by means of using the
same quadratic deformation mapping of an arbitrarily chosen prediction and cor-
responding response geometry i.e. cranium and mandible.

2. The geometries are generated using Monte Carlo sampling of the same quadratic
deformation mapping given by Equation (3.2) in Chapter 3. The same sampled
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CHAPTER 5. REGRESSION APPLICATION

deformation matrix C is used for the deformation mapping of both the prediction
and response target geometries.

3. Registration of the prediction and response target geometries are performed using
a different mesh configuration of the corresponding geometry. This is to simulate
the absence of true correspondence.

4. Registration is performed for two basis functions i.e. cubic and TPS, for four
choices for the number of centres and iterations: Nb, k = 25, 50, 100, 200. Each of
these registrations are checked to ensure that the resulting geometries are visually
accurate approximations of the target geometry. This is done to investigate the
influence of the in-surface true correspondence errors on the prediction error. The
registration results at the sub-sampled locations are given in Section 5.2.1.

5. The registration results are sub-sampled, as depicted in Figure 5.1, to keep the
cross-validation computationally tractable. This is done using a lower density
mesh of the reference geometry and selecting point indices using a nearest neigh-
bour search of the reference dense mesh. The number of sub-samples are 5000
and 500 for the prediction and response point-sets respectively.

Figure 5.1: Sub-sampled reference cranium/predictor and mandible/response
point-sets (blue) with reference coordinates for Euclidean distance regression

approach (red).
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5.1. PROCEDURE

6. The different sub-sampled registration point-sets are aligned using Procrustes
alignment. Two different datasets are generated using the sub-sampled true cor-
respondence point-set i.e. one with Procrustes alignment and the other unaltered.

7. The Cartesian and Euclidean distance based regression approach datasets are
then generated accordingly for the 8 different registrations’ sub-sampled point-
sets. This is also done for the true correspondence configuration that will serve
as a benchmark.

8. The number of training observations (MC samples) is chosen to be significantly
larger than the expected number of retained components for an exact prediction
of the Cartesian true correspondence dataset (which is expected to be NP C = 27
retained components). This is because the Cartesian true correspondence ar-
tificial geometries are represented by superposition of 27 linearly independent
quadratic polynomial transformations of the geometries’ point-sets in R3. Due
to the non-linear transformation of the Cartesian coordinates, the Euclidean dis-
tance based approach is not expected to be able to produce an exact prediction
i.e. anything other than the full component retention, NP C = Ntrain − 1, will
render an inexact prediction. This is verified by SVD of the cross-covariance
matrix with centered X and Y , X0 and Y0 accordingly, given by:

P = XT
0 Y0. (5.1)

The squared singular values represent the variance explained by each component.
The cumulative explained and unexplained variance as a fraction of the totals
vs. the retained number of components are presented in Figure 5.2 for training
sets of Ntrain = 40 observations. Figure 5.2 clearly shows that, as expected, the
Cartesian based approach only has NP C = rank(PCart) = 27 unique components
whereas the Euclidean distance approach has NP C = rank(PEucl) = Ntrain − 1.
Although it seems tempting to directly compare the explained variance between
the two approaches, direct comparison should only be done in a consistent space,
as done for the prediction results in Section 5.2. Training sets with Ntrain = 40
observations with Cross-Validation (CV) datasets of Ntest = 10 observations are
consequently chosen for the remainder of this study, as Ntrain > NP C , for the
Cartesian true correspondence dataset.
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Figure 5.2: (a) Explained and (b) unexplained variance as fraction of total variance
vs. the retained number of principal components.

9. The datasets are submitted to PLS and SPC regression and corresponding predic-
tions are generated for Ntest = 10 CV test observations. The Euclidean distance
prediction results are transformed back to Cartesian coordinates by means of
MMDS, Section 4.3.2.4, to enable comparison of the two prediction results for
both regression spaces. The Cartesian space, mean point-wise, CV prediction
error estimates for both approaches are presented in Section 5.2.2.
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5.2 RESULTS

5.2.1 Registration Results

The point-wise error distributions for the different registrations of the MC sampled
geometries are given in Figures 5.3 and 5.4 for the sub-sampled point-sets of the cranium
and mandible geometries. The corresponding normal weighted error distributions are
also given. The corresponding mean and maximums of the error distributions for the
different registrations are given in Table 5.1. From these the following observations are
made:

1. The mean of the point-wise and normal weighted error distributions of the cra-
nium and mandible geometries are comparable for the different registration para-
meters. These decrease with increased registration complexity, as expected.

2. The mean of the normal weighted error distributions suggest the out-of-surface
errors account for approximately 20−25% of the overall/un-weighted error. This
results in near imperceptible visual registration difference (< 0.2mm).

3. The maximums of the point-wise error distributions for the different registrations
are not comparable between cranium and mandible geometries i.e. maximums
of 25.0019 and 0.3934mm respectively for the best registrations. There is also
no significant decrease in the maximums of the distributions with increasing
registration complexity. This is attributed to using the same quadratic mapping
coefficients, which results in much larger complex displacements of the cranial
geometries due to their larger relative size (See Figure 5.1). The registration
algorithm results in distorted correspondence in some instances due to the fact
that correspondence is built up using a nearest neighbour search in areas of
large complex displacement. The comparatively large maximums are thus not
unexpected.

4. Although large, the normal weighted error distribution maximums for the cra-
nium registrations are a poor indication of visually perceptible out-of-surface er-
ror. This is because this error weighting is only appropriate for either justifiably
"small" error or regions of near zero curvature, where out-of-plane is approxim-
ately out-of-surface.

59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 5. REGRESSION APPLICATION

For qualitative evaluation consider the comparatively worst considered registration (cu-
bic basis function with Nb, k = 25) for an arbitrary observation cranium and mandible
pair, within the MC sample, in Figures 5.5 and 5.6 respectively. These clearly show
the registrations to be good visual representations of the target geometries relative to
the difference between the source and target geometries.

Table 5.1: Error distribution mean and maximums for various registrations.

Geometry Registration Nb, k
ε [mm] ε · wn [mm]

mean max mean max

Crania

None 0 7.5187 33.2523 − −

Cubic

25 0.7343 25.7047 0.1599 8.3015
50 0.4286 25.5117 0.0705 7.3887
100 0.2717 25.3749 0.0433 7.6515
200 0.1730 25.9126 0.0276 7.2498

TPS

25 0.9433 25.6560 0.2598 7.9734
50 0.5350 24.6643 0.1191 7.0652
100 0.2885 24.2036 0.0572 6.9827
200 0.1543 25.0019 0.0330 5.8906

Mandibles

None 0 3.1997 19.2893 − −

Cubic

25 0.2773 4.9131 0.0513 1.3939
50 0.1003 4.3637 0.0200 0.4283
100 0.0518 3.8805 0.0146 0.3108
200 0.0555 2.8264 0.0142 0.1193

TPS

25 0.3613 4.4665 0.0926 1.4561
50 0.1339 4.0625 0.0409 0.6304
100 0.0689 2.7167 0.0267 0.4118
200 0.0530 0.3934 0.0151 0.2511
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Figure 5.3: Registration error distributions for the Cranium MC sample using (a)
Cubic and (b) TPS basis functions. Normal weighted registration error distributions
using (c) Cubic and (d) TPS basis functions.
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Figure 5.4: Registration error distributions for the Mandible MC sample using (a)
Cubic and (b) TPS basis functions. Normal weighted registration error distributions
using (c) Cubic and (d) TPS basis functions.
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Geometry

Source
Target

Registration

Figure 5.5: Cranium registration result of an arbitrary observation in the MC
sample for the use of a cubic basis function and Nb, k = 25.
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CHAPTER 5. REGRESSION APPLICATION

Geometry

Source
Target

Registration

Figure 5.6: Mandible registration result of an arbitrary observation in the MC
sample for the use of a cubic basis function and Nb, k = 25.
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5.2.2 Prediction Results

The CV results of the Cartesian and Euclidean PLS and SPC regressions are given in
Figures 5.7 and 5.8 respectively, after reconstruction in R3. This is given as the mean
of the point-wise error over the Ntest = 10 test samples vs. the number of retained
components. The results of the Cartesian PLS and SPC regressions in Figure 5.7 are
summarised as follows:

1. PLS and SPC regression of the true correspondence dataset are exact when using
N = 27 retained PLS components, as expected. The result of this dataset is only
included for interest’s sake and will never be available for real data.

2. PLS and SPC regression of the true correspondence Procrustes aligned data-
set have associated error and are unable to exactly predict the solution. This
is attributed to unexplained covariance due to inconsistent alignment between
prediction and response geometries i.e. a cranium and mandible pair will not
undergo the same rotation when being aligned with their respective geometry
datasets using Procrustes alignment. This is presumably only due to shear-like
deformations, which are rotated to result in minimum point-wise variance dur-
ing Procrustes alignment. This is expected to be the theoretical minimum mean
point-wise error of mean(ε) = 0.15mm.

3. All the registered datasets result in minimum error for full component retention.
The prediction accuracy is increased for more complex registrations, as expected,
with mean point-wise error ranging from mean(ε) ≈ 0.5 to 0.25mm for the least
to most complex registrations respectively (Nb, k = 25 and 200).

4. The normal weighted mean point-wise error shows that out-of-surface error, or
visually perceptible error, equals approximately half the unweighed error towards
the respective minimums. Note that this weighting is not completely appropriate
for the relatively larger errors, due to the implicit assumption that in-plane errors
are in-surface errors.

5. The final prediction errors obtained through the registration-regression strategy
are small compared to the imposed deformations, typically 10 − 20% compared
to the mean geometry mean(ε) ≈ 2.75mm (zero retained components).
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CHAPTER 5. REGRESSION APPLICATION
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Figure 5.7: Cartesian regression - (a) Mean point wise error and (b) mean normal
weighted point wise error vs. retained number of components. PLS and SPC

regression results are indicated by solid and dashed lines respectively.
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5.2. RESULTS

The results of the Euclidean PLS and SPC regressions in Figure 5.8 are summarised
as follows:

1. PLS and SPC regression of the true correspondence dataset are not capable of
exactly prediction the solution and plateaus after N = 24 retained components.
This is due to the non-linear transformation of the Cartesian space to Euclidean
distances. The linear deformations are expected to occupy a larger space after
the transformation (higher rank cross-covariance matrices) and thus requires more
training observations/components to better span the space for improved predic-
tions.

2. All the registered datasets result in minimum error at full component retention.
The prediction accuracy is increased for more complex registrations, as expected,
with mean point-wise error ranging from mean(ε) ≈ 0.6 to 0.37mm for the least
to most complex registrations respectively (Nb, k = 25 and 200).

3. Again the normal weighted mean point-wise error shows that out-of-surface er-
ror, or visually perceptible error, equals approximately half the unweighed error
towards the respective minimums.

4. The final prediction errors obtained through the registration-regression strategy
are also small compared to the imposed deformations, all between 15 − 22%
compared to the reconstructed geometry of Euclidean distance mean, mean(ε) ≈
2.75mm (zero retained components).

5. The reconstructed mean point-wise errors of the Euclidean regression predictions
are 10 − 25% higher than the corresponding Cartesian regression based predic-
tions.

Qualitative comparison of the regression prediction results for the quantitatively best
and worst registration datasets are given in Figure 5.9. These are the predictions for
the corresponding arbitrarily chosen cranium and mandible pair in Figures 5.5 and
5.6. The decreased prediction error with increased registration complexity intuitively
results in decreased visual error. This is however barely discernible due to the small
relative magnitude. These are only included for reference, as visual cross-validation is
not realistically tractable.
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CHAPTER 5. REGRESSION APPLICATION
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Figure 5.8: Euclidean regression - (a) Mean point wise error and (b) mean normal
weighted point wise error vs. retained number of components. PLS and SPC

regression results are indicated by solid and dashed lines respectively.
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5.2. RESULTS

Cartesian, Cubic, Nb, k = 25

Euclidean, Cubic, Nb, k = 25

Cartesian, TPS, Nb, k = 200

Euclidean, TPS, Nb, k = 200

Figure 5.9: Qualitative results for various registrations with targets (red),
prediction (blue) and mean (grey) geometries.
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CHAPTER 5. REGRESSION APPLICATION

5.3 CONCLUSION

In this chapter the use of a proposed registration-regression strategy on an artificial
dataset constructed from Monte Carlo sampling of quadratic deformation is demon-
strated. The study found the registration-regression strategy to be capable of good
qualitative and quantitative predictions for at least quadratic deformations. It was
also found that prediction results do not differ significantly for varying degrees of regis-
tration complexity and basis functions. This suggests that the registration complexity
required for a good visual registration to be adequate. This is also beneficial for ap-
plication on real data, as this acts to interpolate in missing and inconsistent regions
of geometries e.g. damage and tooth loss. Although the Cartesian regression space
prediction results were found to be slightly more accurate, this result is specific to this
study, as the embedded covariance was arbitrarily based on deformation mapping of
the Cartesian coordinates. The study also found both PLS and SPC regression to have
similar predictive accuracy.

Comparison of the two regression space approaches is summarised as follows:
The Cartesian regression space based approach is comparatively computationally eco-
nomical, requiring very little pre- and post processing. It is however limited to geo-
metric datasets with small magnitude shear-like deformation, as this results in unex-
plained covariance due to inconsistent rotation alignment. The Euclidean regression
space based approach is rotation invariant, but relies heavily on sub-sampling to re-
main computationally tractable, depending on the regression algorithm. In addition,
the computational cost due to having to reconstruct/reverse-map predictions is signi-
ficant. This approach may also, depending on the data and regression algorithm, result
in additional computational cost due to possible higher rank cross-covariance, which
requires extraction of more components to obtain similar prediction accuracies. More
observations may also be necessary to obtain similar accuracies due to the larger space
spanned following this approach.
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CHAPTER 6

VIC CRANIUM-MANDIBLE DATASET
APPLICATION

This chapter demonstrates the application of the automated mesh registration based
prediction strategy on an actual cranium and mandible dataset. This dataset was
obtained by the University of Pretoria Department of Anthropology with the specific
purpose of mandible reconstruction to aid in forensics. The South African Police
Service (SAPS) Victim Identification Centre (VIC) has a growing archive of cases
with craniums without matching mandibles [25]. This results in most of these cases
remaining unclosed since facial reconstruction cannot to be performed. To facilitate
identification through digital facial reconstruction, the VIC presented a requirement
for a technique to predict mandibles when only the craniums are available.

6.1 DATASET

The dataset was obtained from the Pretoria Bone Repository and consists of 50 skulls
(cranium and mandible pairs) of the South African black male population group [20].
This population group was identified by the SAPS VIC as the most representative group
of their archive demographics [25]. The bone dataset was scanned using Micro-focus
Computed Tomography (CT) at the South African National Centre for Radiography
and Tomography, Necsa [26]. The resulting volume files are converted to a triangulated
mesh format and the outer visible surface is extracted using an ambient occlusion filter
in Meshlab [27]. This is done to simulate a surface scan, which is the only scanning
technology SAPS VIC has procured for digital facial reconstruction [25].
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CHAPTER 6. VIC CRANIUM-MANDIBLE DATASET APPLICATION

6.2 REGISTRATION

The dataset of 50 complete skulls was filtered to exclude cranium and mandible pairs
with significant damage or a majority of missing teeth. Although the least square
RBF registration is less sensitive to locally damaged areas, as compared to full RBF
interpolation, these areas still have to represent an insignificant portion of the squared
global displacement correspondence. A simple way of reduced fitting in these regions
is to reduce the number of RBF centres, which results in reduced approximation com-
plexity. Therefore each registration has it’s own number of RBF centers which results
in the best visual registration. Figure 6.1 illustrates a typical example of a cranium and
mandible pair in the dataset where a lower complexity approximation is used to result
in reduced fitting of missing teeth. A cubic basis function was used for registration of
the dataset with the number of centres varied between 250 ≤ Nb ≤ 400 to obtain the
best visual registration for each observation.

During registration of the crania, significant correspondence distortion was generated
in areas surrounding the nasal cavity in some of the observations. This may be at-
tributed to a combination of physical differences and CT density thresholding that
results in dissimilar structures within the nasal cavity. Either way, the dissimilarities
within the nasal cavity result in distorted correspondence due to the nearest neighbour
correspondence mechanism of the registration technique. Resolving this whilst keeping
the internal nasal structures would require modification of the registration algorithm.
This is not considered in this study due to time considerations and may constitute
work for further study. Removal of the internal nasal structures by post-processing
was initially attempted, but proved to be too time-consuming considering time lim-
itations. Due to only being in the developmental stage of this project for the SAPS
VIC, proof of concept is considered as the primary goal. The number of observations
were thus limited to 33, omitting registrations with correspondence distortion due to
internal nasal cavity structures. A procedural change in the database construction for
the final application may thus include covering the nasal cavity to prevent the surface
scanner from scanning the internal nasal cavity structures. This would prevent the
time consuming process of having to remove these structures through post-processing
to recover undistorted correspondence.
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6.2. REGISTRATION

Geometry

Target
Registration

Figure 6.1: Typical cranium-mandible pair registrations with the number of RBF
centres chosen to result in fill-in of missing teeth. The reduced number of centres still

provide qualitatively good visual registrations.
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CHAPTER 6. VIC CRANIUM-MANDIBLE DATASET APPLICATION

6.3 REGRESSION

The registered geometries are sub-sampled as illustrated in Figure 5.1 to meet the
cross-validation time tractability requirements, as set out in Chapter 4. The coordin-
ates are stacked and submitted to both PLS and SPC regression and cross-validated
by k-fold cross validation with k = 11. An additional model for both PLS and SPC re-
gression is included where each variable/feature is normalised to result in unit variance.
Variance normalisation in this instance equates to obtaining loading vectors through
eigen decomposition of the correlation matrices, as opposed to the covariance matrices.
This aims to prevent relative greater variable/feature variances from dominating the
primary/principal loading vectors.

6.4 RESULTS

The mean point-wise error for the 11-fold cross validation regression results of both
the Cartesian and Euclidean regression models are presented in Figures 6.2 and 6.3
respectively. The following is observed from these figures:

1. All regression models, irrespective of space, result in ≈ 5−9% improvement over
only mean prediction i.e. using no components.

2. For the optimally retained components, the Cartesian based regression models
do consistently better than the optimal Euclidean regression models. These im-
provements are however only marginal and the two methods remain comparable.
This is of great significance as the Euclidean regression models, as described in
Chapter 4, are computationally expensive due to space scaling, as well as further
post-processing in the form point-set reconstruction.

3. Models with normalised unit variance result in marginally improved model per-
formance, except for the PLS regression of the Euclidean based approach.

4. In this application, SPC regression models with normalised unit variance result
in monotonically decreasing mean point-wise errors up to the CV minimum.

5. PLS and SPC regression of the Cartesian space, results in comparable minimum
mean point wise errors, although the optimal number of components may differ
significantly. This is of great significance as SPC regression has insignificant
computational cost compared to PLS for the system sizes of interest.
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6.4. RESULTS

The comparatively best and worst predictions as compared to using the geometric
means, are visualised in Figures 6.4 and 6.5 respectively. These are for Cartesian SPC
regression with normalised unit variance and the 5 retained component 11-fold CV
minimum. The comparatively best is a vast visual improvement over the geometric
mean, while the geometric mean is not a vast improvement over the comparatively
worst. For visual comparison, the mean point wise error is visualised in Figure 6.6
for different scalings of the primary loading vector for Cartesian SPC regression of
the complete dataset. This serves as an overly simplistic gauge for visualising mean
point-wise errors in the expected error range and may not be representative of complex
actual errors.
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CHAPTER 6. VIC CRANIUM-MANDIBLE DATASET APPLICATION
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Figure 6.2: Mean point wise error vs. retained components for Cartesian regression.
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Figure 6.3: Mean point wise error vs. retained components for Euclidean regression.
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6.4. RESULTS

Geometry mean(ε) [mm]

Geometric mean 5.023
SPC prediction 3.005

Target

Figure 6.4: Best 5 retained components Cartesian SPC prediction of the 11-fold CV
w.r.t. the geometric mean.
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CHAPTER 6. VIC CRANIUM-MANDIBLE DATASET APPLICATION

Geometry mean(ε) [mm]

Geometric mean 3.363
SPC prediction 4.055

Target

Figure 6.5: Worst 5 retained components Cartesian SPC prediction of the 11-fold
CV w.r.t. the geometric mean.

78

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



6.4. RESULTS

mean(ε) [mm]
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Figure 6.6: Mean point-wise error visualisation by scaling the first load vector, yT
L1,

of SPC regression of the full dataset.
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CHAPTER 6. VIC CRANIUM-MANDIBLE DATASET APPLICATION

6.5 ERROR VS. OBSERVATION SCALING

This section serves to demonstrate how the model error behaves as the number of ob-
servations in the dataset is increased. The aim is to ascertain to what extent model per-
formance is increased for further expansion of the dataset. This is important due to the
time and financial considerations associated with dataset expansion. This study is con-
ducted by performing 1,000 repeated randomly sampled leave-m-out cross-validations
(LMO CV) of the full dataset, with m chosen to result in the desired number of train-
ing observations n. This investigation is only performed using Cartesian space SPC
regression with normalised unit variance, due to its time tractability when compared to
PLS, whilst resulting in comparable model performance, as shown in Figure 6.2.

The LMO CV results are given in Figure 6.7 and shows that the geometric mean and
predictive model CV minimums result in decreasing mean point-wise error for increas-
ing observations. In addition, the optimal number of components increased from 3 to 5
as the number of observations increased from 10 to 30 in the data set. The mean point-
wise error vs. number of observation are given for the geometric mean and predictive
model CV minimums in Figure 6.8. The mean point-wise error of the geometric mean
is expected to be a convergent quantity as the sample mean approaches the population
mean. The improvement of the predictive CV minimum over the geometric mean is
given in Table 6.1, which suggests a sub-linear relationship.

Table 6.1: Improvements of the predictive CV minimums over the geometric mean
for increasing observations.

Observation, n Improvement [mm]

10 0.121
15 0.167
20 0.206
25 0.243
30 0.274

This result suggests that expanding the dataset from the current size will lower mean
point-wise error for both the mean model and predictive model minimums. Predictive
model improvements over mean models are also expected to increase sub-linearly with
increased observations i.e. doubling model performance w.r.t. the mean model requires
doubling the number of observations at the very least, realistically requiring more.
This indicates that there is merit in increasing the number of observations in the data
set.
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6.5. ERROR VS. OBSERVATION SCALING
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Figure 6.7: Mean point-wise error vs. number of retained components for five data
sets with increasing number of observations, using LMO CV.
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Figure 6.8: Mean point-wise error vs. the number of observations for geometric
mean and predictive CV minimum models.
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CHAPTER 6. VIC CRANIUM-MANDIBLE DATASET APPLICATION

6.6 FEATURE CROPPING

Exclusion of less important features may possibly result in increased explained vari-
ance in primary loadings of the remaining features, resulting in improved prediction
performance. For application of cranio-facial reconstruction, only the outer visible sur-
faces of the mandible are important i.e. everything visible from the frontal/anterior
and side/lateral views. For this demonstration, feature cropping is utilised to result
in an output space consisting of the features relating to these visible areas, illustrated
in Figure 6.9. Due to some observations in the dataset having multiple missing teeth
that could not be "interpolated" during registration, features relating to teeth are also
cropped. The results of an 11-fold CV using normalised Cartesion SPC and PLS re-
gression of the full and feature cropped output spaces are given in Figure 6.9. The
evaluated error is only given at the preserved features/points and shows that negligible
improvement is obtained over the CV minimum. This is because the cropped covariance
does not result in significantly differing output space primary loadings. The feature
cropped error is observed to be lower, when considering the post optimal domain of
between 10 and 25 retained components. This is where the loadings are assumed to
differ more significantly. Although no significant improvements are obtained in this
instance, feature cropping may result in improved predictions on datasets where im-
portant features constitute weaker covariance, compared to less important features.
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Figure 6.9: (a) Preserved features and (b) mean point-wise error vs. retained
components of full and cropped output spaces.
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6.7. CONCLUSION

6.7 CONCLUSION

This chapter demonstrated the use of the developed registration-regression based
strategy on a real cranium and mandible dataset containing 33 observations. The
results are summarised as follows:

1. 11-fold cross-validation shows marginal and comparable prediction improvements
of the proposed regression strategies over using mean models (null component
retention of regression models based on derived latent vectors).

2. The marginal prediction improvements for application on this dataset is not en-
tirely unexpected, since facial features, which are inherently tied to underlying
bone structure, are often employed as biometric indicators [28].

3. The various proposed regression models require greatly varying computational
time for comparable prediction performance. This suggests the most computa-
tionally efficient prediction model, Cartesian SPC regression, to be best suited for
further development. This conclusion may be re-evaluated for expanded datasets.

4. Observation scaling suggests that further dataset expansion, from the current
n = 33, will result in increased model performance. Prediction performance
over mean models improve sub-linearly i.e. doubling model performance w.r.t.
the mean model requires doubling the number of observations at the very least,
realistically requiring many more.

5. Feature cropping does not result in significantly reduced prediction error in this
application.
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CHAPTER 6. VIC CRANIUM-MANDIBLE DATASET APPLICATION
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CHAPTER 7

REGRESSION-REGISTRATION
HYBRID

Registration of geometries could up to this point only be performed on full/complete
geometries. This limitation of the proposed registration strategy is discussed in this
chapter. A new regression based registration and prediction strategy, for when a fully
registered dataset of the geometry is available, is also proposed and demonstrated.
This strategy is shown to also work for partial geometries.

7.1 ON THE PROPOSED REGISTRATION ALGORITHM

The registration algorithm proposed in Chapter 3 can only register full/complete geo-
metries. If a geometry is too dissimilar or has significant missing representation due to
damage (partial geometries), the resulting registration may not be representative. Re-
ferring back to Section 2.4.2, recall that a least square RBF estimation of the spatially
overdetermined forward and backward displacement correspondence is utilised. This
mechanism dictates nearest neighbour correspondence in regions that strictly don’t
have correspondence, resulting in deformation of regions where interpolation is more
suitable. Modification of the registration algorithm may be required to result in inter-
polation of these regions. Possible modifications, that may constitute work for further
study due to limited scope of this study, may include filters to remove correspondence
from the least square RBF displacement field estimation based on:

1. Normal based thresholding, to remove correspondence with obtuse normals.

2. Similarity based thresholding, to remove correspondence of regions that are not
geometrically similar.
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CHAPTER 7. REGRESSION-REGISTRATION HYBRID

7.2 REGRESSION BASED REGISTRATION AND PREDICTION

The proposed modifications to the registration algorithm in the previous section may
in general only act to improve registration of damaged geometries where interpolated
regions equate to small spatial extrapolations. As the spatial extrapolation becomes
greater, the resulting deformation in these regions become an artefact of the chosen
basis function and may in general not be representative of actual biological geometric
variation. This section proposes a technique where the resulting correspondence is built
up through observed deformation. This dictates that geometric differences in missing
regions, that require "spatial extrapolations" of the registration algorithm in Chapter
3, are described by observed geometric differences rather than an arbitrarily chosen
basis function.

The proposed registration strategy is based on regression of a registered dataset of
the given geometry i.e. regression based registration. This strategy results in a single
step registration/prediction for a geometry that does not have correspondence, i.e. if a
dataset for the given geometry is available, registration is explicitly facilitated through
fitting the deformational modes (loadings) of the dataset. A similar approach is used
by Buchaillard et. al. for the reconstruction of teeth [29]. The strategy is set out as
follows:

1. A registered dataset of the given geometry is required.

2. A PCA of the dataset is performed to obtain the associated deformational load-
ings, as discussed in Chapter 4.

3. A numerical optimisation routine is utilised to obtain the scores which best fit the
reconstructed deformational loadings to the target geometry. This is implemented
as follows:

(a) Gradient descent optimization is utilised.

(b) The target geometry is registered to the perturbed geometry through R-ICP,
outlined in Section 2.3.3.

(c) The sum of the squared point-wise distances (Procrustes distance) of the
nearest neighbour correspondence is used as the minimising function.
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7.2. REGRESSION BASED REGISTRATION AND PREDICTION

The aim of this section is solely to demonstrate the concept of fitting deformational
loadings when correspondence is not available. Problem properties, modifications and
alterations to the proposed technique may constitute work for further study.

The proposed technique is demonstrated on two examples that both make use of the
mandible dataset used in Chapter 6. The first example removes an observation in the
dataset and simulates a partial mandible, where a significant portion has been removed.
A leave-one-out cross-validation (LOO CV) is performed to select the number of re-
tained components (deformational modes). The superset, Z, mean point-wise error is
used for this i.e. a combination of both fitting the input space, X, and predicting the
output space, Y . Note that the predictor and response sets constitute approximately
70% and 30% of the superset respectively i.e. nX ≈ 0.7nY and nY ≈ 0.3nZ . This is
done using the registered dataset and results in a full component retention minimum,
as shown in Figure 7.1. The regression-registration result for full component retention
for the simulated partial mandible is given in Figure 7.2. The second example is the
reconstruction of a partial mandible fossil, Homo Naledi [30] obtained from Morpho-
Source [31] with the resulting reconstruction given in Figure 7.3. This is only included
as an interesting application to demonstrate the concept. The resulting reconstruction
may not be representative due to the potentially unsuitable assumption of the same
geometric mean and deformational modes between different species. A more represent-
ative result may be obtained by using a registered dataset of different species within
the Homo genus.
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Figure 7.1: LOO CV results using the superset mean point-wise error of the
simulated partial mandibles.
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CHAPTER 7. REGRESSION-REGISTRATION HYBRID

Geometry

Partial
Target

Registration/Prediction

Figure 7.2: Reconstruction of a simulated partial mandible using regression based
registration, with full component retention.
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7.2. REGRESSION BASED REGISTRATION AND PREDICTION

Geometry

Partial
Registration/Prediction

Figure 7.3: Mandible reconstruction of a Homo Naledi partial mandible fossil, using
regression based registration, with full component retention.
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CHAPTER 8

CONCLUSION

8.1 REMARKS AND FUTURE WORK

An NR-ICP registration method based on a least square RBF approximation of the
displacement field is developed for use with surface meshes. The objective of the
technique is to construct a mapping from one manifold/surface to a similar other. This
is accomplished by deforming the point-set of one to the other by minimising the sum
of the squared point-wise nearest neighbour displacements. The mechanism showed
to be capable of reasonable mappings for most of the considered geometries, but is
highly geometry/manifold and similarity dependant, as convergence of the minimising
function is not guaranteed to result in a representative mapping. This may however be
regularised/corrected by using normals and/or a similarity/probabilistic approach to
only allow reasonable correspondences in the least square approximation, as described
in Section 7.1.

A recent non-peer-reviewed study can be used to sound board the methods and ap-
proach followed throughout this study. This internal technical report provides a com-
parison of suitable non-rigid registration frameworks: Development and Comparison
of Non-Rigid Surface Registration Algorithms and Extensions by Snyders et. al. [15].
They provide several suitable refined frameworks as compared to the generic non-rigid
registration developed in this study. They for example utilise an outlier detection
method, where detected outlier correspondences are interpolated [15]. This method
can be implemented as is in the existing registration where outliers are removed from
the least squares displacement correspondence approximation. Further an iterative
correspondence update is possible by registering the dataset geometric mean shape
towards each observation after each full registration of the dataset [15, 32]. A single
registration step was utilised in this study. The use of a similar update may be invest-
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CHAPTER 8. CONCLUSION

igated and is expected to result in improved correspondence as the total registration
deformation is expected to be lowered i.e. the possibility of registering a lower outlier
to an upper outlier is avoided - these large deformations are expected to result in more
distorted correspondence. Further comparison of this study with that of Snyders et. al.
[15] shows that the registration techniques developed in this study are generic versions
of existing intuitive concepts:

1. Displacement transformation regularisation, in this study, is accomplished
through regression of a chosen RBF displacement.. Snyders et. al. also considered
this transformation regularisation (quasi-interpolation).

2. The issue of large deformation registration which requires protrusion of surfaces,
is dealt with in this study by using a single-step least square approximation of for-
ward and backward displacement correspondences i.e. source to target and target
to source. Snyders et. al. use a multi-step symmetric registration procedure.

3. The study in Chapter 3, that characterised the non-rigid registration algorithm,
showed that the slowest possible registration complexity increase resolves the
optimal correspondence. This is a heuristic manual approach that aims to ac-
complish what the formal framework of deterministic annealing [33] accomplishes
i.e. the convergence of registration is regularised by keeping the registration as
rigid as possible (minimum fitting complexity increase at each iteration).

4. Snyders et. al. also utilise Principle Component Analysis to develop a statistical
based registration technique variant as done in Chapter 7.

The artificial dataset application serves as proof of concept and demonstrated that the
proposed registration-regression approach is capable of reasonable prediction when the
dataset contains underlying linear structure. The real world application demonstrated
that an improvement over using the geometric mean is possible, however marginal. The
use of kernalised regression methods were not investigated due to the relative limited
dataset size, but these methods may be capable of regressing non-linear relationships
when the dataset is expanded vastly.

Cartesian coordinate based alignment is facilitated through standard Generalised Pro-
crustes Analysis (GPA) in this study. Other Cartesian coordinate based alignment
techniques, such as resistant-fit analysis [34], may be investigated. Resistant-fit dif-
fers from GPA by reducing the distribution of high variance regions over the entire

92

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



8.1. REMARKS AND FUTURE WORK

geometry. This is an inherent trait of the least squares approach of GPA.

The characteristics of the proposed regression based registration in Chapter 7
may need further study. Although it was only demonstrated as a registra-
tion/reconstruction/prediction strategy suited for partials, this method may also be
suited to registration of full/complete geometries or at least as an initial correspondence
guess for NR-ICP registration. The registration noise of regression based registration
may be potentially lower for use of the dominant/primary retained modes and associ-
ated fixed linear deformation, when compared to the non-linear deformations possible
through NR-ICP registration, i.e. regression based registration deformation is better
regularised than that of NR-ICP registration. This may result in improved prediction
performance for dataset expansion using this method.
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