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SUMMARY
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A generic plant-wide control structure is proposed for the optimal operation of a grinding mill circuit.

An economic objective function is defined for the grinding mill circuit with reference to the economic

objective of the larger mineral processing plant. A mineral processing plant in this study consists of a

comminution and a separation circuit and excludes the extractive metallurgy at a metal refinery. The

comminution circuit’s operational performance primarily depends on the mill’s performance. Since

grindcurves define the operational performance range of a mill, the grindcurves are used to define

the setpoints for the economic controlled variables for optimal steady-state operation. For a given

metal price, processing cost, and transportation cost, the proposed structure can be used to define

the optimal operating region of a grinding mill circuit for the best economic return of the mineral

processing plant. The plant-wide control structure identifies the controlled and manipulated variables

to ensure the grinding mill circuit can be maintained at the desired operating condition.

The plant-wide control framework specifies regulatory and supervisory control aims which can be

achieved by means of non-linear model-based control. An impediment to implementing model-based

control is the computational expense to solve the non-linear optimisation function. To resolve this
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issue, the reference-command tracking version of model predictive static programming (MPSP) is

applied to a grinding mill circuit. MPSP is an innovative optimal control technique that combines

the philosophies of Model Predictive Control (MPC) and approximate dynamic programming. The

performance of the proposed MPSP control technique, is compared to the performance of a standard

non-linear MPC (NMPC) technique applied to the same plant for the same conditions. Results show

that the MPSP control technique is more than capable of tracking the desired set-point in the presence

of model-plant mismatch, disturbances and measurement noise. The performance of MPSP and NMPC

compare very well, with definite advantages offered by MPSP. The computational speed of MPSP

is increased through a sequence of innovations such as the conversion of the dynamic optimization

problem to a low-dimensional static optimization problem, the recursive computation of sensitivity

matrices, and using a closed form expression to update the control. The MPSP technique generally

takes only a couple of iterations to converge, even when input constraints are applied. Therefore,

MPSP can be regarded as a potential candidate for on-line applications of the NMPC philosophy to

real-world industrial process plants.

The MPSP and NMPC simulation studies above assume full-state feedback. However, this is not always

possible for industrial grinding mill circuits. Therefore, a non-linear observer model of a grinding mill

is developed which distinguishes between the volumetric hold-up of water, solids, and the grinding

media in the mill. Solids refer to all ore small enough to discharge through the end-discharge grate,

and grinding media refers to the rocks and steel balls. The rocks are all ore too large to discharge from

the mill. The observer model uses the accumulation rate of solids and the discharge rate as parameters.

It is shown that with mill discharge flow-rate, discharge density, and volumetric hold-up measurements,

the model states and parameters are linearly observable. Although instrumentation at the mill discharge

is not yet included in industrial circuits because of space restrictions, this study motivates the benefits

to be gained from including such instrumentation. An Extended Kalman Filter (EKF) is applied

in simulation to estimate the model states and parameters from data generated by a grinding mill

simulation model from literature. Results indicate that if sufficiently accurate measurements are

available, especially at the discharge of the mill, it is possible to reliably estimate grinding media,

solids and water hold-ups within the mill. Such an observer can be used as part of an advanced process

control strategy.
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OPSOMMING

BEHEER VAN MAALMEULKRINGBANE VANUIT ’N AANLEGWYE

BEHEERPERSPEKTIEF

deur

Johan Derik le Roux

Studieleier: Prof I. K. Craig

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Philosophiae Doctor (Elektroniese Ingenieurswese)

Sleutelwoorde: Aanlegwye beheer, maalmeul, mineraalprosessering, model gebaseerde

voorspellende beheer, model gebaseerde voorspellende statiese program-

mering, optimale beheer, prosesbeheer, toestand en parameter afskatting,

vergruising, waarneembaarheid

’n Generiese aanlegwye beheerstruktuur vir die optimale beheer van ’n maalmeulkring word voorge-

hou. ’n Ekonomiese doelwitfunksie is gedefinieer vir die maalmeulkringbaan met verwysing tot die

ekonomiese doelwit van die groter mineraalverwerkingsaanleg. ’n Mineraalverwerkingsaanleg bestaan

in hierdie studie slegs uit die vergruisings- en skeidingskringbane. Die ekstraktiewe metallurgie by

die metaal raffinadery word uitgesluit. Die vergruisingskringbaan se operasionele werksverrigting is

hoofsaaklik van die maalmeul se werksverrigting afhanklik. Aangesien maalkurwes die bereik van

die maalmeul se werksverrigting beskryf, kan die maalkurwes gebruik word om die stelpunte van die

ekonomiese beheerveranderlikes te definieer vir werking by optimale gestadigde toestand. Gegewe

’n bepaalde metaalprys, bedryfskoste, en vervoerkoste, kan die voorgestelde struktuur gebruik word

om die optimale werksgebied vir die maalmeulkring te definieer vir die beste ekonomiese gewin van

die algehele mineraalverwerkingsaanleg. Die aanlegwye beheerstruktuur omskryf die beheerveran-

derlikes en manipuleerbare veranderlikes wat benodig word om die maalmeulkring by die gewenste

werksgebied te handhaaf.
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Die aanlegwye beheerstruktuur spesifiseer regulatoriese en toesighoudende beheer doelwitte. Hierdie

doelwitte kan bereik word deur gebruik te maak van nie-lineêre model gebaseerde beheer. Die probleem

is dat die bewerkingskoste om nie-lineëre optimeringsfunksies op te los ’n struikelblok is om model

gebaseerde beheer op industriële aanlegte toe te pas. Ter oplossing hiervan, word die stelpunt-volg

weergawe van model gebaseerde voorspellende statiese programmering (MVSP) toegepas op ’n

maalmeulkringbaan. MVSP is ’n innoverende optimale beheertegniek, en bestaan uit ’n kombinasie

van die filosofieë van model gebaseerder voorspellende beheer (MVB) en aanpassende dinamiese

programmering. Die verrigting van die voorgestelde MVSP beheertegniek word vergelyk met die

verrigting van ’n standaard nie-lineëre MVB (NMVB) tegniek deur beide beheertegnieke op dieselfde

aanleg vir dieselfde toestande toe te pas. Resultate dui aan dat die MVSP beheertegniek in staat is

om die gekose stelpunt te midde van model-aanleg wanaanpassing, steurnisse, en metingsgeraas te

volg. Die verrigting van MVSP en NMVB vergelyk goed, maar MVSP bied duidelike voordele. Die

bewerkingspoed vir MVSP word vinniger gemaak deur die dinamiese optimeringsprobleem in ’n lae-

orde statiese optimeringsprobleem te omskep, die sensitiwiteitsmatrikse rekursief uit te werk, en deur

’n geslote uitdrukking ter opdatering van die beheeraksie te gebruik. Die MVSP beheertegniek benodig

normaalweg slegs ’n paar iterasies om tot ’n oplossing te konvergeer, selfs indien beperkings op die

insette toegepas word. Om die rede word MVSP as ’n potensiële kandidaat beskou vir aanlyntoepasings

van die NMVB filosofie op industriële aanlegte.

Die MVSP en NMVB simulasie studies hierbo neem aan dat volle toestandterugvoer moontlik is.

Hierdie is nie altyd moontlik vir industriële maalmeulkringbane nie. Om die rede is ’n nie-lineêre

waarnemingsmodel van ’n maalmeul ontwikkel. Die model onderskei tussen die volumetriese ho-

eveelheid water, vaste stowwe, en maalmedia in die meul. Vaste stowwe verwys na alle erts wat klein

genoeg is om deur die uitskeidingsif aan die ontslagpunt van die meul te vloei. Maalmedia verwys

na rotse en staalballe in die meul, met rotse wat te groot is om deur die uitskeidingsif te vloei. Die

waarnemingsmodel maak gebruik van die ontslaantempo en die opeenhopingstempo van vaste stowwe

as parameters. Indien die meul se ontslagvloeitempo, ontslagdigtheid, en totale volumetriese aanhoud-

ing gemeet word, is alle toestande en parameters van die waarnemingsmodel lineêr waarneembaar.

Alhoewel instrumentasie by die meul se ontslagpunt as gevolg van ruimte beperkings nog nie op

industriële aanlegte ingesluit word nie, dui hierdie studie die voordele aan wat verkrygbaar is deur

sulke instrumentasie in te sluit. ’n Verlengde Kalman Filter (VKF) word in simulasie gebruik om

die model se toestande en parameters af te skat. ’n Bestaande maalmeul simulasie model vanuit die

literatuur word gebruik om die nodige data vir die VKF te genereer. Resultate dui aan dat indien die
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metings akkuraat genoeg is, veral by die ontslagpunt van die meul, betroubare afskattings van die

volumetriese hoeveelheid maalmedia, vaste stowwe, en water in die meul gemaak kan word. So ’n

afskatter kan vorentoe gebruik word as deel van ’n gevorderde prosesbeheer strategie.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



ACKNOWLEDGEMENTS

I would like to thank Prof Radhakant Padhi from the Indian Institute of Science Bangalore (India) for

teaching me the fundamentals of Kalman filtering, as well as the basics of MPSP. During his visit to

the University of Pretoria in 2013, his passion for his work and research will always remain a source

of inspiration.

Through the University of Pretoria’s Staff Exchange Bursary Programme, and the Vice-Chancellor’s

Academic Development Grant, I had the privilege to visit Europe during the first half of 2015. I had

the honour to study at the Vienna University of Technology (Austria) under Dr Andreas Steinböck

and Prof Andreas Kugi. I deeply appreciate the time they afforded me, even amid their demanding

schedules. No question was ever laughed at, and no problem was ever too trivial. They taught me the

fundamentals of model analysis, model development, and observer design. Since I shared an office

with Dr Steinböck, I also express my gratitude for his friendship during my visit to Austria.

After my visit to Vienna, I had the opportunity to spend time under Prof Sigurd Skogestad at the

Norwegian University of Science and Technology (NTNU) in Trondheim (Norway). It is not without

reason that he is regarded as an expert in plant-wide control, but what is more striking is his true

humility.

The following few words will not do justice to the gratitude I owe my supervisor, Prof Ian Craig. Who

I am today as researcher and control engineer is a direct consequence of his guidance and mentorship.

I have achieved more than I ever thought possible under his supervision.

Finally, I am truly blessed to be part of a loving and supportive family. This work is in honour of my

mother and father, and my sisters and their husbands, who supported me throughout. Who I am as

person is their fault, and I am deeply grateful.

“In the beginning God created the heavens and the earth.” This work is submitted with gratitude for the

capacity He gave me to explore and study His glorious creation.

“Isn’t it funny how day by day nothing changes, but when you look back, everything is different...”

Clive Staples Lewis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 CONTRIBUTION AND PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . 12

1.3 ORGANISATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC

OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 COMMINUTION PROCESS: SINGLE-STAGE GRINDING MILL CIRCUIT . . . 16

2.1.1 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Controlled and manipulated variables . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Additional circuit variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4 Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 RELATIONSHIP BETWEEN COMMINUTION AND SEPARATION . . . . . . . . 27

2.2.1 Separator concentrate grade and recovery . . . . . . . . . . . . . . . . . . . 29

2.2.2 Effect of cyclone product flow-rate (CPF) and density (CPD) on recovery-

grade curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Effect of cyclone product particle size estimate (PSE) on recovery-grade curve 31

2.3 MINERAL PROCESSING PLANT REVENUE . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Net smelter return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Comminution and separation cost . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 3 PLANT-WIDE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 TOP DOWN ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.1.1 Operational economic objective . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Optimal steady-state operation: Grindcurves . . . . . . . . . . . . . . . . . 41

3.1.3 Primary (economic) controlled variables . . . . . . . . . . . . . . . . . . . . 47

3.1.4 Location of throughput manipulator . . . . . . . . . . . . . . . . . . . . . . 48

3.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 BOTTOM-UP ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Regulatory control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Supervisory control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING . . . . . . . . . . 56

4.1 MILLING CIRCUIT MODEL DESCRIPTION . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Mill model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Sump model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.3 Hydrocyclone model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 OUTPUT TRACKING USING MODEL PREDICTIVE STATIC PROGRAMMING 64

4.2.1 Algorithm derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.2 General procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 NON-LINEAR MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 MPSP and NMPC implementation details . . . . . . . . . . . . . . . . . . . 74

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL 84

5.1 OBSERVER MODEL FOR A GRINDING MILL . . . . . . . . . . . . . . . . . . . 85

5.1.1 Process dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.2 Process output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 OBSERVABILITY OF STATES AND PARAMETERS . . . . . . . . . . . . . . . . 92

5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.2 Analysis of observer model . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



5.2.3 Model reduction and linear observability . . . . . . . . . . . . . . . . . . . 94

5.3 OBSERVER DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 Simulation scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.2 Simulation scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

CHAPTER 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 PLANT-WIDE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 MODEL PREDICTIVE STATIC PROGRAMMING . . . . . . . . . . . . . . . . . 111

6.3 STATE AND PARAMETER ESTIMATION . . . . . . . . . . . . . . . . . . . . . . 112

6.4 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Plant-wide Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 Model Predictive Static Programming . . . . . . . . . . . . . . . . . . . . . 116

6.4.3 State and Parameter Estimation of Grinding Mill Conditions . . . . . . . . . 117

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 1 INTRODUCTION

The series of operations in a mineral processing plant to produce a valuable metal product from mined

ore is illustrated in Fig. 1.1. The first process in the mineral processing plant, comminution, consists of

a sequence of crushing, grinding, and classification. Crushing reduces the particle size of run-of-mine

ore through compression against rigid surfaces for the ore to be within a manageable size for subsequent

grinding. Grinding is achieved by mills where the metals are liberated from gangue through impact,

abrasion, and attrition breakage. The classification process returns ore requiring further breakage to

the grinding process. The combination of the grinding and classification process is generally referred

to as a grinding mill circuit, or milling circuit. The aim of comminution is to convert run-of-mine ore

into fine particles in order to liberate valuable metals within the ore (Wills 2006, Sbarbaro and del

Villar 2010).

The subsequent separation process shown in Fig. 1.1 receives the comminution product and separates

the valuables metals from waste (gangue). Two streams exit the separation process: a concentrate of

Separation

Metal Product

Concentrate

Metal Refinery

Grinding

Classification

Comminution

Tailings

FeedUndersize

Oversize

Crushing

Run-of-mine Ore

Figure 1.1. The chain of processes in a mineral processing plant. (The metal refinery is excluded from

the mineral processing plant.)
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CHAPTER 1 INTRODUCTION

valuables and a stream of gangue to be discarded (tailings). A mineral processing plant in this study

excludes the extractive metallurgy at a metal refinery and comprises only of the comminution and

separation processes. The mineral processing plant sells the concentrate to a metal refinery where the

metal is extracted from the concentrate through pyro-, hydro, or electro-metallurgy to produce the final

marketable metal product. A common refinery method is the pyrometallurgy process of smelting. If

the run-of-mine ore is processed directly by the smelter, the cost of smelting will outweigh the product

value in the ore. Therefore, the objective of the mineral processing plant is to maximise the economic

value of the separator concentrate sold to the smelter by reducing the bulk of ore and increasing the

contained value of the ore (Hodouin, Jämsä-Jounela, Carvalho and Bergh 2001, Wills 2006).

Given the crucial part a grinding mill circuit plays in the energy and cost-intensive comminution

process of extracting valuable metals and minerals from mined ore, the ability of downstream processes

to extract the greatest benefit from milled ore is dependent on the metal liberation in the product

that leaves the mill. In order to achieve the desired product specification in terms of quality and

production rate, adequate control of the milling circuit is required. The general control objectives for

a milling circuit are to improve the quality of the product, to maximise the throughput, to decrease

the power consumption, to reduce the usage of grinding media and to improve process stability.

However, these objectives are interrelated and necessitate certain trade-offs to be made (Craig and

MacLeod 1995, Edwards, Vien and Perry 2002).

y
Raw

measure-
ments

Set-
pointsBlock 1:

Steady-state
optimizer

Block 2:
Controller

Block 3:
Process

Block 6:
Estimated time

averaged variables
for optimisation

Block 7:
Estimated dynamic
variables for control

Block 4:
Measurement

Block 8:
Observers

Block 5:
Fault detection
and isolation

d

x

u

Control model
Economic
objectives

Optimisation
model

Observation
model

Figure 1.2. Generalised control loop for mineral processing. (Adapted from Hodouin (2011) with

permission.)
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CHAPTER 1 INTRODUCTION

The generalized control loop shown in Fig. 1.2 indicates the flow of data between the process, the

controller, and various peripheral control tools (Hodouin 2011). It provides a structural separation

between the various aspects to be considered to achieve a specific control objective. However, within the

structure of Fig. 1.2, three issues needs to be resolved (Qin and Badgwell 2003, Dochain, Marquardt,

Won, Malik, Kinnaert and Lunze 2008, Craig, Aldrich, Braatz, Cuzzola, Domlan, Engell, Hahn,

Havlena, Horch, Huang, Khanbaghi, Konstantellos, Marquardt, McAvoy, Parisini, Pistikopoulos,

Samad, Skogestad, Thornhill and Yu 2011):

• The realistic approach to system analysis and synthesis for complex systems.

• The development of advanced control strategies which can be implemented with relative ease.

• The design of accurate process models to be used for model-based control and observer design.

Developing economic objectives and incorporating them within a steady-state optimiser (Block 1)

can be associated with the first issue of system analysis and synthesis. This also requires correct

differentiation between variables required for optimisation (Block 6) compared to variables required

for control (Block 7). Once desired set-points have been identified, the second issue of advanced

controller design (Block 2) can be addressed. For model-based advanced process control, the third

issue of developing accurate control-relevant process models needs to be addressed. Tied to this is

observer design for state and parameter feedback (Block 8) using the relevant process models and plant

measurements (Block 4).

This thesis aims to address these issues for a single-stage grinding mill circuit in the order they are

listed above. A realistic approach to plant-wide control synthesis is developed, which defines the

requirements for an advanced process control strategy. An advanced model-based control strategy

with reduced computational cost is subsequently developed. For state-feedback, an observer model is

developed with states which can be realistically estimated from measurements commonly available on

industrial plants.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context

1.1.1.1 Plant-wide control synthesis

In general, the objective of comminution is to produce a product with a consistent fineness while

maximising throughput, whereas the objective of separation is to maintain a constant concentrate grade

while trying to maximise metal recovery. The value of the concentrate sold to the smelter depends on

the relationship between the recovery and grade of the concentrate. The recovery is the fraction of

total valuable metals in the concentrate recovered from the separator feed. (A recovery of 0.85 means

that 85% of the minerals in the feed is recovered in the concentrate and 15% is lost in tailings.) The

concentrate grade is the fraction marketable product content in the concentrate. (A concentrate grade

of 0.01 means there is 10 kg of valuable content in 1 tonne of concentrate.)

Optimisation of the comminution and separation objectives individually may lead to a sub-optimal

solution. Because the concentrate produced by the separation process is the main revenue generator of

the plant, economic optimisation of the comminution circuit only makes sense if done with reference

to the separation circuit. In the case of McIvor and Finch (1991), a size-by-size analysis of the

recovery of metals in a separation circuit is used to estimate the recoverable value of metals distributed

throughout the comminution circuit product size distribution. This is then used to define the steady-

state target grind size for the comminution circuit to improve economic performance of the metal

processing plant. In a similar study, Sosa-Blanco, Hodouin, Bazin, Lara-Valenzuele and Salazar (2000)

provide a step-wise procedure to optimally tune a comminution circuit to maximise the economic

efficiency of a separation circuit. An empirical relationship is used to describe the comminution circuit

product ore size distribution to the separation metal recovery. To address the effect of the dynamics of

the comminution circuit on the separation circuit, Munoz and Cipriano (1999) propose a predictive

controller which optimises an economic objective function based on metallurgical performance indices.

The economic objective function describes the income generated by the plant as a function of the

comminution feed ore grade, the separator tailings grade, and the metal refinery recovery per tonne of

ore processed. Wei and Craig (2009a) make use of an economic performance function based on the

relation between the comminution product quality to separation concentrate recovery to compare the
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CHAPTER 1 INTRODUCTION

economic performance of non-linear Model Predictive Control (NMPC) to single-loop Proportional-

Integral-Derivative (PID) control for a comminution circuit. In all the cases mentioned above, a

relationship between the comminution product particle size and the concentrate recovery and grade is

used to define the revenue generated from selling the concentrate to a metal refinery (see also Matthews

and Craig (2013)).

Optimisation of the economic objective function for the grinding mill circuit depends on the operating

range of the grinding mill circuit. The comminution product particle size which will optimise the

economic objective function for different market conditions may not necessarily be achievable by

the grinding mill circuit. The model used to describe the grinding mill circuit needs to be capable of

capturing the range of feasible operating conditions of the grinding mill. The non-linear population

balance models used in the optimisation studies above remain limited to a relatively small region

of operation. The model parameters need to updated for different feasible operating regions of the

grinding mill circuit.

The grindcurves of Van der Westhuizen and Powell (2006) are quazi-static descriptions of the operable

regions of the grinding mill. It relates the mill’s performance indicators - power draw, grind size, and

discharge flow-rate - to the mill’s filling and its rotational speed. The grindcurves therefore provide the

feasible operating conditions for the grinding mill to achieve a specific product size specification. The

grindcurves can be regarded as a mechanism for optimisation of the mill as a unit (Powell, van der

Westhuizen and Mainza 2009). Consequently, it enables optimisation of the economic objective

function over a larger range of mill operating conditions without the need to update the mill’s model

parameters.

However, once the operating condition which will optimise the economic objective function is defined,

the regulatory and supervisory control layer needs to be able to maintain the circuit at the desired

operating condition. This raises additional questions, such as which variables should be controlled

apart from the product particle size, which should be manipulated, which should be measured, what

links should be made between them, and which set-points are appropriate for the controlled variables?

The plant-wide control analysis of Skogestad (2004) answers these questions by providing a struc-

tured approach to construct a control architecture capable of achieving the demands specified by the

optimisation of the economic objective function. This assists achieving the final goal of this industry:

plant-wide economic optimisation (Hodouin et al. 2001).
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CHAPTER 1 INTRODUCTION

1.1.1.2 Computational cost of model-based control

Regulatory and supervisory control of a grinding process face the following challenges: strong

coupling between variables, large time delays, uncontrollable and unmeasured disturbances, variation

of parameters over time, non-linearities in the process, and instrumentation inadequacies (Chen, Li and

Fei 2008, Coetzee, Craig and Kerrigan 2010). Although process industries, in general, have benefited

considerably from advanced process control to resolve similar challenges, the mineral processing

industry, in particular, has yet to take full advantage of model-based advanced process control (Craig

et al. 2011).

Traditionally milling circuits are controlled by decentralized PID controllers (Wei and Craig 2009b)

despite the multivariable nature of the circuits (Pomerleau, Hodouin, Desbiens and Gagnon 2000).

Significant improvement in product quality, throughput and power consumption is possible through

multivariable control techniques. This is illustrated by the industrial implementation of a multivariable

controller on a run-of-mine ore grinding circuit documented in Hulbert, Craig, Coetzee and Tudor

(1990) and Craig, Hulbert, Metzner and Moult (1992), the robust controller applied to an industrial semi-

autogenous (SAG) mill in Craig and MacLeod (1995) and Craig and MacLeod (1996), and the linear

model predictive control for an industrial ball mill circuit in Chen, Zhai, Li and Li (2007). The industrial

controller applications mentioned above are based on linear process models. Because of the slow time-

varying nature of the process and the large process disturbances, the controllers are limited to a narrow

range of process operation. Although non-linear model-based control is preferable, an impediment

to applying non-linear control to grinding mill circuits is the computational burden to minimise a

non-linear controller objective function (Coetzee et al. 2010, Wolf and Marquardt 2016).

The computational burden of detailed fundamental non-linear models with large parameter sets and

large state vectors increases the difficulty of developing feasible non-linear model based controllers.

Linearized models are generally used when applying optimal control in the form of Model Predictive

Control (MPC) to grinding mill circuits (Ramasamy, Narayanan and Rao 2005, Chen et al. 2008, Apelt

and Thornhill 2009), but the use of NMPC with fundamental non-linear models is more desirable

because of the highly non-linear nature of the grinding process. Even though the modelling of

comminution processes improved over the past years (Powell and Morrison 2007), many of the

available fundamental non-linear models are not necessarily suitable for process control. These non-
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CHAPTER 1 INTRODUCTION

linear models are mainly used for steady-state plant design and for a better understanding of load

behaviour, breakage mechanisms and energy dissipation (Hodouin et al. 2001).

The non-linear model in (Le Roux, Craig, Hulbert and Hinde 2013b) of a single-stage closed grinding

mill circuit was developed to produce reasonably accurate model responses using as few parameters and

states as possible. This makes the model well suited for control purposes. Coetzee et al. (2010) made

use of this model to apply robust NMPC in simulation to a grinding mill circuit. Although excellent

regulatory results were achieved in the presence of large disturbances and parameter uncertainties, the

robust NMPC controller was not regarded suitable for on-line application unless computational time

was significantly reduced.

As noted in the review by Wolf and Marquardt (2016), a vast array of NMPC schemes based on fast

updated methods are available. The fast update approximates the solution to the parametric non-linear

program obtained when the optimal control problem is discretized. In the case of regulatory NMPC,

recursive feasibility alone suffices to guarantee stability for these methods (Scokaert, Mayne and

Rawlings 1999). The basis for these fast NMPC methods were NMPC schemes where the model is

linearised and only a few quadratic-program iterations are conducted. These schemes are generally

developed for quadratic objective functions with box path constraints and no endpoint constraints. Li

and Biegler (1989) and De Oliveira and Biegler (1995) provide examples of regulatory NMPC schemes

based on linearisation of the system. A first-order correction of the outputs is iteratively computed

beginning with the reference solution until the change in the objective function is below a certain

threshold. The first iteration uses the control applied previously to the process as the reference for the

entire time horizon.

Alternatively, explicit MPC evaluates the state of a linear system at every sampling instance and

looks up the corresponding optimal control input from a pre-computed map of critical regions. The

computational effort of solving the optimisation problem is thereby moved off-line (Bemporad, Borrelli

and Morari 2002a, Summers, Jones, Lygeros and Morari 2011, Rivotti and Pistikopoulos 2015).

However, there is a rapid increase in the computational burden to solve the off-line optimisation

problem as the prediction horizon increases. Also, explicit MPC is generally only suited to small-scale

problems (Bemporad, Morari, Dua and Pistikopoulos 2002b). As a possible solution to these problems,

Pannocchia, Rawlings and Wright (2007), and Wang and Boyd (2010) combine explicit MPC with

online optimisation methods.
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CHAPTER 1 INTRODUCTION

A suboptimal control design technique called Model Predictive Static Programming (MPSP) was

developed by Padhi and Kothari (2009) for finite-horizon non-linear problems with terminal constraints.

This technique combines the philosophies of MPC and approximate dynamic programming to reduce

a dynamic optimisation problem to a low dimensional static optimisation problem. This strategy

borrows from explicit MPC, where the optimisation problem is reduced to an explicit function

(Bemporad et al. 2002a), and borrows also from NMPC methods where the system is linearised so that

only a few quadratic-program iterations are required (De Oliveira and Biegler 1995). Additionally,

numerical values of the sensitivity matrices are calculated recursively, similar to the robust explicit

multi-parametric MPC of Kouramas, Panos, Faisca and Pistikopoulos (2013). Finally, even though

the sensitivity matrices used in the optimisation problem can be calculated off-line in symbolic form,

MPSP is executed on-line (Wang and Boyd 2010).

Therefore, MPSP is one technique among many which attempts to reduce computational complexity

for real-time application of NMPC (Chawla, Sarmah and Padhi 2010). The particular attractiveness of

MPSP is that it only makes use of matrix algebra calculations, and is therefore relatively simple to

understand and implement. The computational effectiveness of MPSP is well attested in the aerospace

industry, e.g. Padhi and Kothari (2009), Oza and Padhi (2012), Joshi and Padhi (2013), Maity, Oza and

Padhi (2013), Bhitre and Padhi (2014), and Halbe, Raja and Padhi (2014).

However, MPSP is yet to be extended to regulatory control for output tracking. Applying the MPSP

technique with a receding horizon mechanism for output tracking problems may provide a viable control

solution for industrial comminution circuits where computational complexity limits the implementation

of advanced process control (Coetzee et al. 2010). As far as the author is aware, fast MPC techniques

has yet to be applied to comminution circuits.

1.1.1.3 State and parameter estimation

Apart from the concern of computational complexity, another impediment to implementing model-

based control in grinding mill circuits, is the lack of sufficient real-time measurements to estimate the

necessary model states and parameters for state-feedback (Hodouin et al. 2001, Edwards et al. 2002).

The number of available real-time measurements on industrial circuits are generally far less than

the size of the state vector to be measured (Wei and Craig 2009b). Therefore, the peripheral tools
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CHAPTER 1 INTRODUCTION

of the control loop such as observers and soft sensors become as important as the controller itself

(Hodouin 2011, Olivier, Huang and Craig 2012).

In general terms, the grinding performance of a mill depends on the hold-up of steel balls, ore and

water. Consequently, estimation of these three hold-ups is desirable. Although the total mill hold-up

is generally measured in industrial circuits (Wei and Craig 2009b), the steel ball, ore, and water

hold-ups cannot be measured directly with the currently available instrumentation. Measurement of

these three mill inventories, which influence the product throughput and product quality of the mill,

can significantly improve plant performance if used to inform a control loop. Steel balls form very

effective grinding media because of their higher density and hardness compared to ore. The balls

enhance impact breakage to quickly break the coarser rocks which would otherwise have been broken

through the slower abrasion and attrition processes. A very low level of balls in the mill reduces the

rate at which coarse ore is broken through impact breakage, and a too high level of balls reduces

the amount of coarse ore necessary to produce a fine ore product through abrasion and attrition. If

the ball level is increased to very high levels, the impact on the fineness of the product is reduced,

but considerably more power is required to turn the mill because of the high mass of balls. It is also

necessary to maintain the correct ratio between ball and ore hold-up. If the ore hold-up is significantly

less than the ball hold-up, the mill-liners become too exposed to the steel balls and the mill-liner

life-time is consequently reduced. Furthermore, with regards to the ore hold-up, a harder ore causes an

increase in ore hold-up as more time is required to break the harder ore, and vice-versa for a softer

ore. In the case of SAG mills, the harder ore generally produces a finer grind at a lower throughput,

whereas a softer ore produces a coarser grind at a higher throughput. Finally, the water in the mill

is responsible for transporting the broken media through the mill. If the water hold-up is too high, a

slurry-pool forms at the bottom of the mill absorbing the breaking power of the falling balls and rocks.

On the other hand, a too low water hold-up causes the build-up of a thick non-flowing mud which also

reduces the efficiency of ore breakage (Napier-Munn, Morrell, Morrison and Kojovic 2005).

The model structure used to describe a comminution process has a significant impact on the success of

state and parameter estimation. Models aimed at plant design are generally not suited for model-based

control, and vice-versa. Steady-state phenomenological models, a combination between theoretical and

empirical models, are well established and are valuable for comminution plant design and steady-state

optimisation (King 2001, Napier-Munn et al. 2005, Gupta and Yan 2006). The model parameters are

generally divided into the ore to be processed and the comminution unit processing the ore. Laboratory
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CHAPTER 1 INTRODUCTION

drop-weight and pendulum-breakage tests provide the ore specific parameters, and sampling campaigns

provide the processing unit’s parameters (Napier-Munn et al. 2005). Since the characteristics of run-

of-mine ore fed to industrial mills change over time, results from laboratory tests used to estimate ore

specific parameters do not necessarily reflect the range of ore breakage conditions in the industrial

mill (Powell and Morrison 2007). Also, sampling campaigns used to estimate the processing unit’s

parameters assume steady-state operation at a specific operating point, but steady-state is difficult

to guarantee over a long period given the variation of run-of-mine ore characteristics. It is usually

assumed the functions describing the milling environment can be expressed as simple equations with

parameters that can be estimated from sampling campaign data through back-calculation. Because

of the heavy reliance on back-calculation, small measurement errors can lead to large variances in

parameters (Hinde and Kalala 2009). With the advancements in computing power, computational fluid

dynamics (CFD) and discrete element method (DEM) models have provided valuable insight into

the charge motion of grinding processes. A difficulty associated with these fundamental models is

the correct estimation of the force contact model’s parameters as ore characteristics vary over time

(Morrison, Shi and Whyte 2007). Additionally, fundamental models remain too computationally

intensive to be used in advanced process control strategies (Mishra 2003a, Mishra 2003b).

The mathematical models of comminution circuits proving most useful for industrial automatic control

so far are developed on-line (Wills 2006). These empirically derived linear-time-invariant transfer

function models have been successfully applied in model-based controller strategies to industrial

circuits, e.g. by Hulbert et al. (1990), Craig and MacLeod (1996), Chen et al. (2007), and Chen et

al. (2008). However, these linear models are restricted to the domain around the nominal operating

point of the plant and require constant management to accommodate variations in grinding conditions

(Hodouin et al. 2001, Desbiens, Najim, Pomerleau and Hodouin 1997). System identification is

particularly difficult given the inherent uncontrollable disturbances, measurement noise and high

tonnage operation (Hodouin 2011). Ideally, real-time measurements should be used to estimate model

states and parameters.

Considerable work has been done to estimate grinding mill process variables using different modelling

approaches (Herbst, Pate and Oblad 1992). A very simple model along with power and bearing

pressure measurements is used by Herbst, Pate and Oblad (1989) to estimate mill filling and rock

hardness. This work is extended in Herbst and Pate (1996) to estimate ore, water, and ball inventories.

A commercialised soft-sensor is described by Herbst and Pate (1999) to estimate mill inventories
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CHAPTER 1 INTRODUCTION

and breakage rates. The soft-sensor assumes the parameters used to describe the measurements are

known and remain constant. In all cases above, a Kalman filter is used to estimate the unknown state

vector. Although the filters capture the qualitative trend of the unknown states, the studies above do not

explicitly include observability analyses to indicate if the filters can produce reliable solutions.

A linear observability test is included in the inferential measurement work of Apelt, Asprey and

Thornhill (2002a). The SAG mill model of Napier-Munn et al. (2005) was used to describe the

grinding process, along with a novel ball charge model and a mill-liner model. Using measurements of

the mill charge weight and size-by-size solids discharge, Apelt et al. (2002a) used 29 measurements

to estimate 37 states and 7 parameters with an Extended Kalman Filter (EKF). However, the rank of

the observability matrix of the linearised system was only 20, which meant a unique solution for the

parameters and states was not available.

As shown by Le Roux and Craig (2016), it is theoretically possible to uniquely fit the simplified

non-linear grinding mill circuit model of Le Roux et al. (2013b) to real-time plant measurements.

However, the algebraic fitting procedure is too sensitive to uncertainties in measurements as the

procedure involves the calculation of first and second order time-derivatives from noisy data. Although

a relatively simple model is used, there are so many parameters to be defined that the value of this

procedure is limited.

The model of Le Roux et al. (2013b) is used by Olivier et al. (2012) to estimate the mill inventories

and grinding environment parameters in simulation. Assuming measurements of the mill discharge are

available, a dual particle filter is used to estimate the hold-up of balls, rocks, solids, fines, and water as

states, and the fraction of rock entering the circuit and the power needed per tonne of fines produced as

parameters. The technique achieves good quantitative estimation if constant rock abrasion rates, ball

abrasion rates, and step disturbances are assumed, but these assumptions may not necessarily hold true

for industrial operation.

To ensure efficient model-plant mismatch rejection and integral action for MPC, correct state and

parameter feedback is required (Meadows and Rawlings 1997, Qin and Badgwell 2003, Olivier and

Craig 2013). The aim is therefore to construct an observer model for a SAG mill with states and

parameters which can be realistically estimated from commonly available real-time measurements on

industrial circuits (Wei and Craig 2009b).
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CHAPTER 1 INTRODUCTION

1.1.2 Research questions

Therefore, the research questions listed below are addressed in this thesis:

• How should the output of the comminution circuit be related to the economic objective of the

mineral processing plant?

• Given the plant-wide economic objective, how should the control framework of the comminution

circuit be structured to enable the plant to achieve its optimum economic performance?

• Once the optimal operating conditions for the comminution circuit is defined, can MPSP be

used to provide a non-linear model-based controller with sufficient computational simplicity for

industrial application?

• For state-feedback for model-based control, which states and parameters can be observed and

estimated from commonly available real-time measurements on industrial circuits, or at least

from measurements which can be realistically made on industrial circuits?

1.2 CONTRIBUTION AND PUBLICATIONS

The contribution envisioned by this research is listed below:

• An economic objective of the comminution circuit in relation to the economic objective of the

larger mineral processing plant is defined (Chapter 2).

• A plant-wide control framework (Skogestad 2004) capable of maintaining the comminution

circuit at its optimal operating condition is developed (Chapter 3).

• Grindcurves (Van der Westhuizen and Powell 2006, Powell et al. 2009) are used within the

larger plant-wide control framework to define the range of feasible operating conditions of the

grinding mill (Chapter 3).
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CHAPTER 1 INTRODUCTION

• MPSP (Padhi and Kothari 2009) is applied to a grinding mill circuit in simulation to assess the

viability of industrial application (Chapter 4).

• The MPSP controller’s performance is compared to an NMPC controller’s performance for the

same operating conditions (Chapter 4).

• An observer model with states and parameters which are linearly observable from measure-

ments of the mill’s inflow, discharge flow-rate, discharge density, and total volumetric filling is

developed (Chapter 5).

• The observer model is applied in simulation through an EKF to estimate the states and parameters

of a SAG mill (Chapter 5).

In terms of publications, the plant-wide control framework is to be submitted as:

• Le Roux, J.D., Skogestad, S. and Craig, I.K. (2016). Plant-wide control of a single-stage closed

grinding mill circuit, To be submitted to Control Engineering Practice

The application of the MPSP controller was published in:

• Le Roux, J.D., Padhi, R. and Craig, I.K. (2014). Optimal control of grinding mill circuit using

model predictive static programming: A new non-linear MPC paradigm, J. Process Control 24:

29-40

The observer model and its simulation application is to be submitted as:

• Le Roux, J.D., Steinboeck, A., Kugi, A. and Craig, I.K. (2016). An EKF observer to estimate

semi-autogenous grinding mill hold-ups, To be submitted to J. Process Control

The non-linear model of the grinding mill circuit used in this study was previously published in:

• Le Roux, J.D. Craig, I.K. Hulbert, D.G. and Hinde, A.L. (2013). Analysis and validation of a

run-of-mine ore grinding mill circuit model for process control, Minerals Eng. 43-44: 121-134
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CHAPTER 1 INTRODUCTION

The model is also used in the following control study where an NMPC structure uses a non-linear state

estimator for state feedback:

• Le Roux, J.D., Olivier, L.E., Naidoo, M.A., Padhi, R. and Craig, I.K. (2016). Throughput and

product quality control for a grinding mill circuit using non-linear MPC, J. Process Control 42:

35-50

The conference articles listed below are a result of this study:

• Le Roux, J.D., Craig, I.K. and Padhi, R. (2013). State and parameter estimation for a grinding

mill circuit from operational input-output data, Proc. 10th IFAC Symposium Dynamics Control

Process Systems, Mumbai, India, pp. 178-183, doi: 10.3182/20131218-3-IN-2045.00046

• Le Roux, J.D., Craig, I.K. and Padhi, R. (2014). Output Tracking for a Milling Circuit using

Model Predictive Static Programming, Proc. 19th Int. IFAC World Congress, Cape Town, South

Africa, pp. 9792-9797, doi: 10.3182/20140824-6-ZA-1003.01902

• Le Roux, J.D., Steinböck, A., Kugi, A. and Craig, I.K. (2016). Non-linear observability of

grinding mill conditions, Proc. 17th IFAC Symposium Mining Mineral Metal Processing, Vienna,

Austria, (Accepted)

• Le Roux, J.D., and Craig, I.K. (2016). State and parameter identifiability of a non-linear grinding

mill circuit model, Proc. 17th IFAC Symposium Mining Mineral Metal Processing, Vienna,

Austria, (Accepted)

• Le Roux, J.D., Skogestad, S., and Craig, I.K. (2016). Plant-wide control of grinding mill circuits:

Top-down analysis, Proc. 17th IFAC Symposium Mining Mineral Metal Processing, Vienna,

Austria, (Accepted)
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CHAPTER 1 INTRODUCTION

1.3 ORGANISATION

The organisation of this thesis addresses the research questions in the order in which the questions are

listed above:

1. Chapter 2 describes the economic objectives of the mineral processing plant in terms of the

product of the comminution circuit.

2. Chapter 3 constructs a control strategy to achieve the operational goals determined by the

economic objective of the larger mineral processing plant.

3. Chapter 4 investigates the application of MPSP to the grinding mill circuit to achieve the

regulatory and supervisory control aims specified by the plant-wide control framework at reduced

computational cost.

4. Chapter 5 develops an observer model a SAG mill with states and parameters that are linearly

observable from mill inflow, discharge flow-rate, discharge density, and total volumetric filling

measurements, and applies the observer model to a SAG mill in simulation using an EKF.

5. Chapter 6 concludes the thesis.
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CHAPTER 2 COMMINUTION: PROCESS

DESCRIPTION AND ECONOMIC

OBJECTIVES

The aim of this section is to describe the comminution process, specifically a single-stage closed

grinding mill circuit, and develop the economic objectives of the comminution circuit with reference

to the mineral processing plant. This provides a mechanism to develop a control strategy for the

comminution circuit to achieve the plant-wide economic objectives. The work below is organised as

shown below:

1. Section 2.1 describes the operation and the control challenges of the comminution process

considered.

2. Section 2.2 addresses the effect of comminution on the separator concentrate sold to the refinery.

3. Section 2.3 describes the revenue of a mineral processing plant in terms of the grade and recovery

of the separator concentrate.

4. Section 2.4 concludes the chapter.

2.1 COMMINUTION PROCESS: SINGLE-STAGE GRINDING MILL CIRCUIT

The survey by Wei and Craig (2009b) shows the prevalence of equipment type and configurations of

milling circuits in mineral processing plants:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

• Mill type: ball mills (54%), followed by SAG and autogenous (AG) mills (38%). (For ball mills

only balls contribute to the grinding media; for SAG mills both balls and ore contribute to the

grinding media; for AG mills only ore is used as grinding media.)

• Mill discharge type: grates (40%), followed by over-flow (22%).

• Circuit configuration: single-stage closed circuit (37%), followed by two-stage with the first

open and then a closed mill circuit (30%).

• Classification type: cluster cyclone (37%), followed by single cyclones (27%) and screens

(22%).

A single-stage grinding mill circuit closed by a cyclone, as shown in Fig. 2.1, is used throughout

this study. The three main elements in the circuit are a SAG mill, a sump, and a cyclone. The

motivations for using a SAG mill in a mineral processing plant are: low operating costs compared

to conventional grinding, the increased demand to process large amounts of low-grade ore, reduced

grinding media consumption, and the capability to handle larger sized ore which reduces preceding

crushing requirements (Salazar, Magne, Acuña and Cubillos 2009).

Mill Feed Ore
(MFO)

Mill Inlet
Water
(MIW )Mill Feed Balls

(MFB)

Mill Filling
(JT )

Mill

Mill Speed
(φc)

Sump

Sump Feed
Water
(SFW )

Cyclone

Particle Size Estimate (PSE)

Slurry
Volume
(SVOL)

Cyclone
Feed Flow

(CFF)

Throughput (T P)

Ball Filling
(JB)

Cyclone Product Flow (CPF)

Cyclone Product Density (CPD)

Cyclone Feed
Density
(CFD)

Mill Power
(Pmill )

Figure 2.1. A single-stage closed grinding mill circuit.
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

2.1.1 Process description

The variables of the circuit in Fig. 2.1 are listed in Table 2.1. The mill receives four streams: mined ore

(MFO) (t/h), water (MIW ) (m3/h), additional steel balls (MFB) (t/h) to assist with the breakage of ore,

and underflow from the cyclone. The mill charge constitutes a mixture of grinding media and slurry.

Grinding media refers to the steel balls and large rocks used for breaking the ore, and slurry refers to

the mixture of fine ore material and water such that the mixture exhibits the same flow characteristics

as water. The fraction of the mill filled with charge is denoted by JT , and the fraction of the mill filled

with balls by JB.

The mill is rotated along its longitudinal axis by a motor. As shown in Fig. 2.2, the charge in the

mill is lifted by the inner liners on the walls of the mill to a certain height from where it cascades

down, only to be lifted again by the liners through the rotating action of the mill. If the rotational

speed is sufficiently fast the material in the charge will become airborne after reaching the top of

its travel on the mill shell. The uppermost point where material leaves the mill shell is called the

shoulder of the charge. The airborne particles follow a parabolic path reaching a maximum, called

the charge head, and making contact again with the mill charge at the bottom of the mill, called the

charge toe. The cascading motion of the charge causes the ore to break through impact breakage,

abrasion, and attrition. The mill grind (ψ) is the fraction of material in the discharge of the mill below

the specification size and indicates the efficiency of the mill to break the ore. The power draw (Pmill)

(kW) of the motor turning the mill is an indication of the kinetic and potential energy imparted to the

charge. The rotational speed of the mill is generally expressed as a fraction of the critical mill speed

Charge and
slurry shoulder

Charge
toe

Charge
head

Rocks

Balls

Solids

Rotation

Slurry
toe

Figure 2.2. Cross-section of a SAG mill.
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

(φc), where the critical mill speed is the rotational speed where the centrifugal acceleration of a particle

at the mill shell is equal to its gravitational acceleration.

The ground ore in the mill mixes with the water to create a slurry. The slurry in a mill begins to form at

the shoulder of the charge. The toe of the slurry starts to grow downwards towards the toe of the charge

as the slurry flow-rate through the mill increases. While the toe of the slurry is less than or equal to the

Table 2.1. Description of comminution circuit variables.

Variable Unit Description

Manipulated Variables

MFB [t/h] Feed-rate of steel balls to the mill

MFO [t/h] Feed-rate of ore to the mill

MIW [m3/h] Flow-rate of water to the mill

SFW [m3/h] Flow-rate of water to the sump

CFF [m3/h] Flow-rate of slurry to the classifier

φc [-] Fraction of critical mill speed

Controlled Variables

JT [-] Fraction of mill volume filled by total charge

PSE [-] Particle size estimate, i.e. fraction of particles < 75 µm in cyclone overflow

SVOL [m3] Volume of slurry in sump

Additional Circuit Variables

CFD [t/m3] Cyclone feed density

CPD [t/m3] Cyclone product density

CPF [m3/h] Cyclone product flow-rate

JB [-] Fraction of mill volume filled with balls

Pmill [kW] Mill power draw

Q [m3/h] Mill discharge flow-rate

QS [t/h] Mill solids discharge flow-rate

QW [m3/h] Mill water discharge flow-rate

ρQ [t/m3] Mill slurry density

T P [t/h] Solids throughput, i.e. mass flow-rate of solids at cyclone overflow

ψ [-] Mill grind, i.e. fraction of particles in mill discharge < 75 µm
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

toe of the charge, discharge occurs via the grinding media. When the toe of the slurry exceeds the toe

of the charge, a slurry pool forms at the bottom of the mill. Slurry discharge is then a combination of

flow via the grinding media and the slurry pool (Latchireddi and Morrell 2003). Slurry pool conditions

should be avoided as they decrease the mill power draw and the breakage rate by cushioning material

falling from the charge shoulder to the charge toe.

The slurry is discharged through an end-discharge grate where the aperture size of the end-discharge

grate limits the particle size of the discharged slurry. Ore larger than the discharge-grate aperture are

referred to as ‘rocks’, and ore smaller than the aperture size as ‘solids’. The flow-rate of slurry at the

mill discharge is given by Q (m3/h), where QS (t/h) denotes the solids component of Q, and QW (m3/h)

denotes the water component of Q. It is assumed the in-mill slurry density is equal to the discharge

slurry density (ρQ) (t/m3).

The discharged slurry is collected in a sump. The total volume of slurry in the sump is represented

by SVOL (m3). The slurry in the sump is diluted with water (SFW ) (m3/h) before it is pumped to the

cyclone via a variable-speed pump. The flow-rate of slurry from the sump to cyclone is given by CFF

(m3/h) and the density of the cyclone feed by CFD (t/m3).

The cyclone is responsible for the classification of material discharged from the sump. The lighter

and smaller particles in the slurry pass to the overflow of the cyclone, while the heavier and larger

particles pass to the underflow. The ‘cut-size’ of the cyclone is defined as the size which divides

equally to overflow and underflow, and the efficiency of the cyclone refers to the sharpness of the cut.

The underflow is passed to the mill for further grinding. The overflow is the cyclone product passed

to the downstream separation process. The fraction of particles in the product flow smaller than a

specification size, i.e. the product particle size estimate (PSE), defines the quality of the product. Ore

smaller than the specification size are referred to as ‘fines’, and ore larger than the specification size

but smaller than the discharge-grate aperture size as ‘coarse’ ore. Solids are the combination of coarse

ore and fines. The mass flow-rate of solids in the overflow is the throughput (T P) (t/h) of the circuit

and is equal to MFO at steady-state operation of the circuit. The cyclone product density and flow-rate

is given by CPD (t/m3) and CPF (m3/h) respectively (Stanley 1987, Napier-Munn et al. 2005).
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

2.1.2 Controlled and manipulated variables

2.1.2.1 Fraction of the mill filled with charge (JT )

The combined mass of the mill and mass of the charge inside the mill is generally measured using

either load cells or bearing pressure. Because this is not a direct measurement of JT , the relation

between JT and a mass measurement needs to be determined whenever a mill survey is performed

(Powell and Mainza 2006). For different mill charges, accurate mill filling measurements after mill

stops can be used to calibrate the relationship between the mass measurement and JT . The calibration

exercise should be repeated at reasonable intervals as the loss of liner mass through wear and tear will

cause a drift in the accuracy of the relationship. Once the drift in the data is quantified, an empirical

liner wear model can be constructed to predict the service life of liners and adjust the relationship

between the mass measurement and JT over time. With careful planning, the mass to JT relationship

can easily be checked within half an hour from mill stop to start (Powell et al. 2009).

When plants choose the set-point for JT , the efficiency of power consumption is the primary factor,

followed by the stability of the system (Wei and Craig 2009b). If JT is too high the mill needs to be

stopped and the load manually reduced. The stoppage interrupts production and the additional human

resources required increases operational cost. If JT is too low in relation to JB, the power applied to

turn the mill is wasted on the energy transfer between ball-ball contact and ball-liner contact. This

causes unnecessary liner damage, increases ball abrasion, and reduces QS. As no solids are added

to the system at the sump, QS is split by the cyclone. The solids overflow at the cyclone (i.e. T P) is

therefore a function of QS. If JT is too low, it reduces QS which in turn reduces T P.

A primary prerogative of any controller is to stabilize the slow integrating action of the mill on its

contents. To achieve this industrial plants primarily manipulate JT by adjusting MFO, otherwise by φc

if a variable speed drive is fitted, or as a last option by manipulating MIW . Control of JT by MFO is

relatively straightforward as an increase or decrease in MFO results in a direct increase or decrease

in JT . In case MFO is not available as a manipulated variable, a decrease in φc will reduce the rate

at which ore is broken and more ore is allowed to accumulate within the mill. On the other hand,

by increasing φc the ore is broken quicker as more energy is imparted to the charge. Once the ore is

broken small enough it discharges from the mill which causes a decrease in JT . Finally, because water
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

is the main transporting medium of ore through the mill, an increase in MIW will wash material out of

the mill and reduce JT . Conversely, a reduction in MIW increases the density of the slurry in the mill

which reduces the fluidity of the slurry. This causes a build up of slurry in the mill which results in an

increase in JT .

2.1.2.2 Sump slurry volume (SVOL)

Because of the fast integrating action of the sump and the relatively small volume of the sump, care

should be taken not too overflow or run the sump dry. In the case of slurry overflow, there is not only a

loss of potential valuable product, but also a waste in the energy spent to produce the fine material in

the lost slurry. Often sumps are not well mixed and a build-up of solids occur at the bottom. In the

case of an almost dry sump, the pump may not only start to cavitate, but some of the build-up may be

sucked in by the pump causing spikes in CFD. This not only damages the pump and piping, but causes

the cyclone to pass a very coarse product to the downstream process. The variations in the underflow

as a result of cavitation reduces the stability of the circuit.

An undesired increase in SVOL can be countered by reducing SFW to maintain a constant SVOL. How-

ever, if the increase in SVOL was as a result of increased solids discharge from the mill, the reduction

in SFW will cause CFD to increase, PSE to decrease, and CPD to increase. The undesired increase

in SVOL can also be countered by increasing CFF , but this will cause PSE to increase. A controller

must manage the loop interactions between SVOL at the sump and PSE at the cyclone. In industrial

plants SFW is used more frequently than CFF to control SVOL (Wei and Craig 2009b).

Because the sump acts as a buffer between the mill and the cyclone, the available volume between

overfill and underfill can be used to manipulate the desired CFD and CFF such that PSE is not affected.

This requires a multi-variable controller capable of decoupling the dependencies between the variables

(Hulbert et al. 1990, Coetzee et al. 2010, Le Roux, Olivier, Naidoo, Padhi and Craig 2016a).

2.1.2.3 Cyclone feed density (CFD)

The downstream separation process requires CPD to be within a specific range for correct operation.

The CFD can be used to correct for CPD as they are directly proportional. However, CFD influences
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

both CPD and PSE. A low CFD increases PSE as less coarse ore report to the overflow. A high CFD

has the opposite effect. At a critically high CFD, the underflow at the cyclone apex will change from

a wide ‘umbrella’ spray shape to a high density rope. The high density rope impedes flow to the

underflow, i.e. the cyclone underflow chokes. The cyclone then functions as a T-pipe where CFF

splits between the under- and overflow with the majority of CFF reporting to the cyclone overflow.

This causes PSE to drop and CPD to rise beyond acceptable limits. If CFD is too high, the cyclone

underflow will choke and the entire CFF will report to the cyclone overflow. Therefore, the operating

range of CFD is chosen based on system stability, avoiding roping conditions, and the PSE and CPD

set-points.

As mentioned above, CFD can easily be manipulated by SFW . A more indirect change can be made

by changing MFO as this changes the solids content in the circuit. Similarly, MIW can also be used to

alter CFD. The order in which the manipulated variables were listed - SFW , MFO and MIW - is the

order of preference for plants to control CFD (Wei and Craig 2009b).

2.1.2.4 Cyclone product particle size estimate (PSE) and cyclone product throughput

(T P)

There are two general philosophies when controlling a grinding mill circuit:

• Maintain a specified PSE and maximize T P.

• Maintain a specified T P and minimize deviation of PSE from its desired set-point.

In the second control philosophy above where T P is fixed, it is tempting to mirror the first philosophy

and write the secondary control objective aim as maximising PSE. However, grinding the ore too fine

may result in unnecessary losses of valuable material in the tailings as many separation circuits cannot

separate too fine material from gangue. It is also necessary to consider the energy cost of grinding

material too fine. Although a desired PSE may be specified, the circuit may not necessarily be able to

achieve it for the T P required. Naturally, there is a limit to the degree of coarseness in the slurry for

the separation circuit to operate efficiently. In these cases it may be necessary to sacrifice T P simply to

maintain a minimum allowable PSE.
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

At steady-state T P is equal to the MFO. The availability of ore from the mine provides a practical

upper limit for T P and MFO. Also, the physical structure of the mill limits the volume of ore the mill

can grind efficiently and provides an additional constraint on T P. The cyclone may also be a limiting

factor of T P. Given the size of the spigot and vortex finder, the cyclone limits the maximum CPF .

This also translates to an upper limit on CFF . Since the manufacturing, maintenance and operation

costs associated with a cyclone are very low compared to a mill, a well-designed circuit should not

allow the cyclone to dictate the circuit’s throughput capacity.

At the cyclone PSE is a function of both CFD and CFF . The effect of a higher CFF is to reduce the

cyclone cut size and consequently increase PSE. The capacity of the cyclone limits the maximum

CFF that may be applied, and the lower bound of CFF is determined by the minimum cyclone inlet

pressure allowed to keep the cyclone within its operable region. It is important that the pump at the

sump discharge is correctly sized to achieve the desired CFF .

Although CFF and CFD can alter the cut-size of the cyclone, the cyclone does not break material.

The achievable PSE depends on ψ . A significant increase in PSE is achieved through a significantly

improved ψ . Manipulation of MFO can alter ψ , but the effect on JT and T P should not be neglected.

An increase in MFO increases JT and the overall T P of the circuit, but it decreases ψ and therefore the

achievable PSE. A lower JT produced by a lower MFO is more conducive to producing a higher ψ

and a better PSE, but it sacrifices T P and consequently reduces the mass of tradable final concentrate

product.

2.1.3 Additional circuit variables

A control strategy should be informed by process measurements generally and readily available

at industrial circuits. The survey of Wei and Craig (2009b) indicates that Pmill , JT , and CFD are

commonly measured variables, whereas CPD and the ore feed size distribution are less commonly

measured. The variables CPF , T P, ψ , Q, ρQ, and JB are not explicitly included as real-time measured

variables for any of the plants surveyed.

Assuming steady-state operation, CPF should be equal to the sum of MFO
ρO

, MIW , and SFW , where ρO

(t/m3) is the density of the ore. Also, at steady-state T P should equal MFO by definition. Because
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steady-state is rarely achieved by a circuit, real-time measurements of CPF and CPD are desirable to

control the dynamics of the process. T P does not necessarily need to be measured in real-time as it

can be inferred from measurements of CPF and CPD. Real-time measurements are difficult because

of the amount of air in the cyclone overflow pipe. A possible solution would be to pass the cyclone

overflow through a U-shaped pipe to create an airless volume of flowing slurry of which the flow-rate

can be measured more easily.

Because of space restrictions at the discharge trommel of the mill, inclusion of flow, density and particle

size instrumentation at the mill discharge is not yet a viable reality (Napier-Munn et al. 2005). Through

careful planning and design of greenfield comminution circuits it should be possible to install existing

flow, density and particle size measurement instrumentation technology at a mill discharge trommel.

In the case where the mill discharges into a sump, both ρQ and Q can be back-calculated from a

flow-balance around the sump if accurate measurements of SVOL, SFW , CFF , and CFD are available.

In a similar manner, ψ can be back-calculated if a particle size measurement is made at either the

outflow of the sump or at the overflow of the cyclone. However, the accuracy of the back-calculations

are sensitive to errors in the measurements and in the modelling of the process units.

In general MIW is kept at a constant ratio of MFO to maintain ρQ within reasonable bounds. A very

high density slurry will result in a non-flowing thick mud which reduces Q. On the other hand, a very

high water content in the mill may cause a low-density slurry pool to form at the toe of the charge. The

slurry pool absorbs the impact energy of falling material. This not only reduces Pmill , but also the rate

at which fines are produced. If the discharge-grate conditions are such that no slurry pooling occurs, an

increase in MIW will reduce the residence time of solids in the mill and increase Q. These conditions

are typically a high fractional open area of the discharge grate, high relative radial position of the open

area, and high relative radial position of the outermost grate aperture (Apelt et al. 2002a).

SAG mills are usually designed with a constant JB in mind. Because accurate real-time measurement

of JB is generally not available, JB is difficult to include in control schemes to manipulate ψ and Q.

JB can be approximated inferentially using models and measurements of Pmill or JT (Apelt, Asprey

and Thornhill 2001), assuming the model parameters are correctly fitted to process data. In practice,

a linear proportionality between the rock volume and the energy required per tonne of steel balls

consumed (κB) (kWh/t) is assumed, although this is not necessarily always the case. This assumption

allows for the calculation of MFB to maintain an approximately constant JB in terms of the ton of ore
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

milled. At steady-state this relates to MFB being a constant fraction of MFO.

A consistent ψ can be achieved through a high JB (as in the case of a ball mill), but the heavy balls

increase the power required to turn the mill and consequently increase the energy cost. κB depends

on the ore characteristics, the mill liner type, the ball material, the ore grinding media hold-up, and

JB. A high JB increases κB as there is more ball-ball and ball-liner contact rather than ball-ore contact.

Although a low JB reduces κB, it also reduces the grinding ability of the mill. For a very high mill

rotational rate the balls may collide with exposed liners causing unnecessary liner wear and a higher

κB.

The survey by Wei and Craig (2009b) indicates most plants desire better measurement instruments

rather than more actuators. However, the one actuator most plants do desire is a variable speed drive

to manipulate φc. Because this variable has a large impact on the operating region of a mill (Powell

et al. 2009), care should be taken when changing φc. Viklund, Albertsson, Burstedt, Isaksson and

Soderlund (2006) show how φc is used to change the grinding efficiency of a mill processing different

types of ore. Since φc and Pmill are approximately linearly related, the maximum available power

provides the upper limit for φc (Van der Westhuizen and Powell 2006).

2.1.4 Disturbances

The equilibrium of the mill is perturbed when MFO, the ore feed size distribution, or the ore feed

hardness varies. The effect of the variations in these variables on the behaviour of the grinding mill

requires time to decay. Although it is desirable to control all three of these disturbances, only MFO can

be controlled. Any grinding mill circuit contends with the feed size distribution or the feed hardness

as disturbances. These two disturbances vary both in the short and long term. If the disturbances

are not rejected effectively by a control system, there is a lower recovery of valuable product in the

downstream processes.

Variations in the feed size distribution will result in changes in the grinding media size distribution

affecting the breakage characteristics in the mill. An increase in the size distribution of the feed

ore means more rocks are available to assist with breakage, but the critical sized material in the mill

responsible for fines production is reduced. Conversely, a reduction in the size distribution of the feed
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

ore reduce the availability of rocks for impact breakage (Valery and Morrell 1995). A manner of feed

size distribution control is possible if run-of-mine ore is not used (Steyn 2011).

Variation of the hardness of the ore will cause Pmill to vary. An increase in the hardness of the ore

means more energy is required to break ore in the mill, which means fines are produced at a slower

rate. If the throughput is not altered through changes in MFO, an increase in the hardness of the ore

can result in an increase in JT . The increase in JT requires more power to rotate the charge at the

desired speed. If the hardness decreases, more fines can be produced at a quicker rate and JT can

potentially decrease. This decrease causes a reduction in Pmill . It should be noted that changes in MFO

and feed hardness do not directly change Pmill . Rather, the feed hardness and MFO change JT which

consequently alters Pmill (Napier-Munn et al. 2005).

2.2 RELATIONSHIP BETWEEN COMMINUTION AND SEPARATION

Efficient comminution is essential for efficient separation of valuable elements and gangue. The

degree of liberation by comminution refers to the percentage of minerals occurring as free particles

in the ore in relation to the total mineral content. The desired degree of liberation depends on the

ore properties and the separation method. If there is a pronounced difference in density or magnetic

susceptibility between the particles and the gangue, separation is possible through gravimetric and

magnetic separation even when valuable minerals are completely locked inside gangue. In the case

of chemical leaching some part of the surface of a valuable component locked in gangue needs to be

exposed to achieve separation. For effective separation through froth flotation the valuable particle’s

surface needs to be as large as possible, but if the particle is too small it is lost in the tailings. Although

the low degree of liberation sufficient for magnetic or gravimetric separation is less energy intensive,

more gangue may possibly report to the concentrate. Less gangue may report to the concentrate in

the case of froth flotation and leaching, but the higher degree of liberation required is more energy

intensive (Wills 2006). Throughout the rest of this study it is assumed separation is achieved through

froth flotation as this is the most common separation technique employed.

The comminution circuit has only limited influence on the variables that determine the performance of

a separation circuit. Laurila, Karesvuori and Tiili (2002) suggest a number of key variables to control

the flotation process:
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

• Slurry feed-rate and density

• Particle size distribution, shape, and degree of mineral liberation

• Mineral concentrations in the feed, concentrate, and tailings

• Mineralogical composition of ore

• Electrochemical parameters

• Chemical reagents and their addition rate

• Cell pulp levels and air inlet flow-rates

• Froth properties and wash water rate

Variations in the content of valuable metals or minerals in the ore, CPF , CPD, and PSE are considered

the main disturbances to the flotation circuit, of which only the latter three disturbances can be

influenced by the comminution circuit. Should the comminution circuit be controlled efficiently, there

should be minimal variations in CPF , CPD, and PSE (Shean and Cilliers 2011). Although this study

assumes flotation as the method used for separation, the same disturbances apply to a gold leaching

plant (Hodouin 2011).

An overview of stabilizing flotation control is given in Laurila et al. (2002). The review of Shean and

Cilliers (2011) considers current and future trends in the instrumentation, base level control, advanced

control and optimisation control of flotation circuits. The simulation studies of Desbiens, Hodouin,

Najim and Flament (1994), Bergh and Yianatos (2011) and Putz and Cipriano (2015) use different types

of process models to develop predictive controllers for flotation circuits. An example of an industrial

application of a simple single-input/single-output generalized predictive controller is shown in Suichies,

Leroux, Dechert and Trusiak (2000). As shown by Craig and Koch (2003), monetary benefits can be

achieved by reducing the variation of the flotation level around a particular set-point. An economic

performance comparison between a multi-variable controller and a single-loop proportional-integral

(PI) controller at an industrial flotation circuit is given by Craig and Henning (2000). It is reported

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

that improved level control improved metal recovery by 1%, which translated to an increase in yearly

revenue of approximately $ 830k. However, since the recovery is affected by a number of variables

which are not under the control of the experimenter, a valid statistically significant comparison between

controllers can only made after correct experimental design (Craig and Koch 2003).

2.2.1 Separator concentrate grade and recovery

The concentrate grade (γC) and recovery (ϒ), depicted in Fig. 2.3, are accepted measures of the

metallurgical performance of a mineral processing plant, but are not measures of the economic

performance by themselves. Rather, the optimal economic operation of the separation process is

determined by establishing the most profitable region on the grade-recovery curve. As shown in Fig.

2.4, if a very high γC is desired from the separation process, a large quantity of valuable metals will

report to the tailings which reduces ϒ. If a high ϒ is required, more gangue may report to the final

Table 2.2. Nomenclature for mineral processing plant.

Parm Unit Description

Csep [t/h] Separator concentrate mass flow-rate

Tsep [t/h] Separator tailings mass flow-rate

γROM [-] Run-of-mine ore grade

γC [-] Separator concentrate grade

γT [-] Separator tailings grade

γT P [-] Comminution circuit throughput grade

ϒ [-] Recovery

NSR [$/h] Net smelter return

P$p [$/t] Processing cost

P$t [$/t] Transportation cost

P$s [$/t] Cost of steel

P$v [$/t] Metal Price

P$W [$/kWh] Energy cost

κB [kWh/t] Energy required per tonne of steel balls consumed

κ1−6 [-] Constants
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

concentrate which reduces γC. The challenge is to improve both γC and ϒ through process control

(Wills 2006).

If only one metal is extracted from the separator concentrate, the material balance for the separation

process at steady-state operation can be expressed as

Fsep =Csep +Tsep (2.1)

where Fsep, Csep, and Tsep (t/h) are the separator feed, concentrate, and tailings respectively. The

valuable concentrate balance is

γFFsep = γCCsep + γT Tsep (2.2)

where γF and γT are the separator feed and tailing grades respectively. It is assumed the product of the

comminution circuit is fed directly to the separation circuit, i.e. T P = Fsep and γT P = γF where γT P is

the grade of the comminution circuit product. Using (2.1) and (2.2) it is possible to express ϒ as

ϒ =
γCCsep

γT PT P
=

γC (γT P− γT )

γT P (γC− γT )
. (2.3)

The nomenclature is shown in Table 2.2.

2.2.2 Effect of cyclone product flow-rate (CPF) and density (CPD) on recovery-grade

curve

The throughput capacity of the flotation plant should be designed to match the throughput capacity of

the milling circuit. Assuming the cyclone product of the milling circuit is fed directly to the flotation

circuit, variations in CPF cause disturbances in the slurry levels of the flotation cells. The flotation

circuit cell capacity therefore constrains CPF . Given adequate flotation control and no violation of

the CPF constraint, it is assumed CPF has negligible effect on the recovery-grade relationship of the

flotation circuit.

Separation

Metal Product

Concentrate

Metal Refinery

Csep
γC
ϒ

Tailings
Tsep
γTFsep

γT P

Feed

Run-of-mine Ore
γROM

Comminution

Figure 2.3. The flow-rates and grades of the various streams in the mineral processing plant.
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

CPD describes the split between water and solids content in CPF . Increased dilution in the flotation

feed lowers the mean residence time of particles in the flotation circuits. This disturbance can be

handled if the capacity of the flotation circuit is large enough, but if the disturbance is too large it

may require the use of a dewatering process prior to flotation (Sosa-Blanco et al. 2000). If maintained

within constraints, it is assumed that under good flotation circuit control CPD has negligible effect on

the recovery-grade relationship of the flotation circuit.

2.2.3 Effect of cyclone product particle size estimate (PSE) on recovery-grade curve

The ϒ as a function of particle size for a flotation circuit is shown in Fig. 2.5. The particle size should

not be confused with PSE, where the former is measured in millimeter and the latter represents the

percentage of ore passing a given size. The particles in the flotation feed are roughly divided into three

sizes: very small, intermediate and large. Because the very small particles have low momentum and

a low rate of collision with bubbles, the probability of adhesion and subsequent flotation is reduced.

With an increase in particle size, the degree of hydrophobicity necessary for a high level of flotation

increases. For large particles, the rapid consumption of reagents by smaller particles leads to less

complete surface coverage of the large particles and results in less floatable particles. The relationship

between ϒ and the ore particle size is relatively independent of moderate changes in PSE, CPD, and

the mineral content (Trahar 1981).

From Fig. 2.5 it is clear that the aim of a comminution circuit is to maintain a narrow distribution of

intermediately sized particles to maximise the separation capability through flotation. Grinding material

Concentrate Grade (γC)

Recovery
(ϒ)

Control Objective

Figure 2.4. Typical concen-

trate grade (γC) and concen-

trate recovery (ϒ) curve.

Particle size (mm)

Recovery
(ϒ)

Very small Intermediate Large

Figure 2.5. Typical concen-

trate recovery (ϒ) of a separ-

ation circuit as a function of

the flotation feed particle size

distribution.

PSE

Recovery
(ϒ)

Figure 2.6. Concentrate recov-

ery (ϒ) as a function of the

particle size estimate (PSE).
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

too fine not only reduces flotation capability, it also translates to unnecessary energy expenditure to

achieve the high grind. Grinding material too coarse drastically reduces separation capabilities.

In the case where PSE deviates to above/below set-point (overgrind/undergrind), the impact is to

decrease/increase γC and increase/decrease ϒ of the separation circuit. If the separation plant operates

at the optimum recovery-grade ratio in terms of the refinery return, any deviation in PSE reduces the

return from selling the concentrate to the smelter (McIvor and Finch 1991).

As shown in Fig. 2.6, the relationship between ϒ and PSE is a simple second order polynomial (Wei

and Craig 2009a). Although flotation is considered here, a similar relationship between ϒ and PSE

as shown in Fig. 2.6 is seen for leaching plants (Craig et al. 1992). The corresponding γC can be

determined from the grade-recovery relationship depicted in Fig. 2.4. Therefore, both ϒ and γC are

empirically defined in terms of PSE as

ϒ(PSE) = κ1 · (PSE)2 +κ2 ·PSE +κ3 (2.4)

γC(PSE) =
κ4

ϒ(PSE)−κ5
+κ6 ; ϒ(PSE)< κ5 (2.5)

where the constant parameters κ1,2,...6 can be fitted to process data.

2.3 MINERAL PROCESSING PLANT REVENUE

A mineral processing plant generates revenue by selling the separator concentrate to a smelter. The

revenue should cover the mineral processing cost of comminution and separation for the plant to be

economically viable. The revenue is approximated as

Mineral Processing Revenue = Net Smelter Return− (Comminution Cost+Separation Cost) (2.6)

2.3.1 Net smelter return

The price a smelter would be willing to pay for a concentrate depends on the metal recovery, metal

prices, operating costs, capacity constraints, deleterious elements, transport issues, metal premiums

and discounts, types of flotation concentrates, processing capital costs, metal grades etc. A thorough

comprehension and appreciation of market conditions, the characteristics of the concentrate, and the

abilities of potential buyers to process the concentrate is required to negotiate the best possible contract

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

between the smelter and the mineral processing plant (Cramer 2008). Although simplified, a basic

contract may stipulate the items listed below:

• Valuation P$v ($/t): pay the lowest market price per ton of metal recoverable from the concentrate

• Transport P$t ($/t): cost for transport per ton of concentrate between mineral processing plant

and refinery

• Process P$p ($/t): cost per ton of concentrate processed by the smelter

The net smelter return (NSR) ($/h) can therefore be expressed as

NSR = Concentrate Metal Value − (Transport cost+Process cost)

= P$v · (Concentrate Metal Mass) −
(
P$t +P$p

)
· (Concentrate Total Mass)

= P$v ·Csep · γC −
(
P$t +P$p

)
·Csep.

(2.7)

It is assumed the metal content of the ore fed to the separation process is equal to the metal content

of the unprocessed run-of-mine ore fed to the comminution circuit. In other words, the grade of the

run-of-mine ore fed to the comminution circuit (γROM), also known as the mill-head grade, is equal to

the grade of the separator feed (γT P). Using (2.3) to (2.5), NSR in (2.7) can be expressed in terms of ϒ,

γROM, γC and PSE as

NSR = P$v ·ϒ(PSE) · γROM ·T P−
(
P$t +P$p

)
·ϒ(PSE)

γROM

γC(PSE)
·T P. (2.8)

Given possible improvements in the separation of gangue from valuable minerals, a company may

decide to reprocess tailings. Because the ore has already been broken, there is no energy cost if the

particle size distribution is already within specification (Wills 2006). The economic value in the

tailings is given by

Tailing Value = P$v · (1−ϒ(PSE)) · γROM ·T P. (2.9)

The NSR depends on the trade-off between ϒ and γC as illustrated by Fig. 2.4. A high γC is less costly

to smelt, but the lower ϒ yields a lower return on the final product. A low γC with high ϒ is costly

to smelt but returns more final product. If the metal price is high, a low γC can be targeted by the

separation circuit to improve ϒ and increase return. For the low γC and high ϒ, the comminution circuit

may need to run at a constant and high T P at the cost of a consistently correct ψ . If the metal price

decreases, the separation circuit may target a higher γC at the cost of ϒ. In this case the comminution
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

circuit may need to focus on achieving a correct and constant ψ while sacrificing a consistently high

T P. In the case of a high grade ore, the comminution circuit may aim to maintain a consistently correct

ψ while maximising T P to extract the maximum value. If a low grade ore is processed, the aim may

be to operate at a constantly high T P while attempting to maintain ψ as close as possible to its desired

value.

2.3.2 Comminution and separation cost

The cost of comminution accounts for approximately 50% of the operational cost of the mineral

processing plant, followed by the cost of separation at less than 20% of the operational cost (Joe

1979, Wills 2006). The main operating cost for the separation circuit is the cost of reagents added to

separate gangue and minerals. A constant separation process cost is assumed as the economics of the

separation circuit falls outside the scope of this study. These costs can be included if a sufficient model

of the flotation process is available (Seppälä, Sorsa, Paavola, Ruuska, Remes, Kumar, Lamberg and

Leiviskä 2016). The high comminution cost is due to the high power required to turn the grinding mill

(Matthews and Craig 2013). The consumption of steel balls as grinding media is the second largest

operational cost of comminution, but is only a small fraction of the milling power cost. The pumping

energy cost in the comminution circuit itself is negligible compared to the power used by the mill

(Halbe and Smolik 2002). If P$W ($/kWh) is the cost of energy, and P$s ($/t) is the cost of steel balls, the

comminution circuit operating cost ($/h) can be approximated as (Munoz and Cipriano 1999)

Comminution cost = Pmill · (P$W +P$s/κB) . (2.10)

2.4 CONCLUSION

This chapter aims to formulate the economic impact of a comminution circuit’s product on the

mineral processing plant revenue. This provides a mechanism to define the operational goals of the

comminution circuit in terms of the economic objectives of the mineral processing plant. The revenue

of the mineral processing plant is defined in terms of the output variables of the grinding mill circuit

by relating the grade and recovery of the separator concentrate to the product quality and quantity

of the comminution circuit. It is assumed the control of the separation circuit is such that a constant

functional description can be used to relate the comminution circuit’s output to the separation circuit’s

output. Once the operational goals of the comminution circuit are defined, a sufficient control structure
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CHAPTER 2 COMMINUTION: PROCESS DESCRIPTION AND ECONOMIC OBJECTIVES

needs to be constructed for the comminution circuit to achieve these goals. Such a control structure is

proposed in the next chapter.
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CHAPTER 3 PLANT-WIDE CONTROL

Reflecting on chemical process control of the 1970’s, the seminal review article by Foss (1973) deplored

the gap which existed between the theory of process control and its application. The significant

theoretical advances made during that time in optimal control and state estimation were successfully

translated for application in the aerospace industry, but these advances were not yet translatable to

the chemical process industry. Kestenbaum, Shinnar and Thau (1976) demonstrated how a classical

PID controller applied to a chemical process performed better than prevalent optimisation-based

design methodologies in the presence of model uncertainties, unmeasured process disturbances, and

changing process parameters. The main thesis of Foss (1973) and Kestenbaum et al. (1976) was that

the theoretician and not the practitioner was responsible for closing the gap between control theory

and the more stringent and rigorous demands of industrial process control. Furthermore, apart from

addressing issues such as inclusion of process dynamics and uncertainty in the controller design, the

main and most critical issue for theoreticians and practitioners to address for industrial processes

was the configuration of the control system. For successful control of any plant, they stated that

a systematic framework was required to guide qualitative and quantitative decisions regarding the

variables to measure, manipulate, and control (control objective), as well as the relationship between

these variables to achieve a specific control objective (control structure) (Stephanopoulos 2014).

The unit-based approach of Umeda, Kuriyama and Ichidawa (1978) decomposes the plant into in-

dividual units of operation, generates a control structure for each unit, combines the structures, and

then eliminates possible conflicts in the combined control structure. However, as the size of the plant

grows, this procedure becomes impractical given the number of conflicts which arise. Also, it does not

provide a framework to capture the broad range of objectives for the plant as a whole.

As a response to the need for systematic control structure configurations which considers the plant-wide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 3 PLANT-WIDE CONTROL

objectives, Morari, Arkun and Stephanopoulos (1980) cast the problem in a multi-layer multi-echelon

decomposition framework. In the vertical, multi-layer decomposition, the control tasks are decomposed

into a series of control tasks with different frequencies. This is similar to the common hierarchical

separation of control tasks starting with base layer control, supervisory control, optimisation, and

process planning (Seborg, Edgar and Mellichamp 2004). The use of hierarchy representations reduces

the complexity of the problem by allowing the designer to address process goals within different

ranges of a time-horizon. In Morari et al. (1980), the scope of each layer is determined by a series

of quantitative criteria reflecting the sensitivities of the operating objectives to various variables. In

the horizontal, multi-echelon decomposition, the control tasks are organized according to different

segments of the process. This is based on the sensitivity conveyed by Lagrangian multipliers associated

with the interconnections among process sub-systems. The structure of these hierarchical control tasks

provide the boundaries of regulatory control tasks (Ng and Stephanopoulos 1996, Stephanopoulos and

Ng 2000).

Rather than following a mathematically orientated approach as in Morari et al. (1980), a process

orientated approach to control structure configuration is proposed by Luyben, Tyreus and Luyben

(1997). Their plant-wide procedure, specifically for chemical process plants, is listed below:

1. Establish control objectives, i.e. determine the controlled variables.

2. Determine the control degrees of freedom by counting the number of independent valves.

3. Establish energy inventory control to remove the exothermic heats of reactions and to prevent

propagation of thermal disturbances.

4. Set the production rate using a variable which can increase the reaction rate in the reactor.

5. Ensure product quality and handle safety, operational and environmental constraints.

6. Do inventory control and fix the flow in liquid recycle loops.

7. Check component balances, and return to Step 4 if required.
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CHAPTER 3 PLANT-WIDE CONTROL

8. Control individual unit operations.

9. Use the remaining control degrees of freedom to optimise economics or improve dynamic

controllability.

The rationale for the order of these steps is as follows: Steps 1 and 2 determine the objectives and the

available degrees of freedom. Since the methods of heat removal are intrinsic to heat reactor design,

and reactors are considered the heart of any process, Step 3 ensures heat generated by an exothermic

reaction is efficiently dissipated. Step 4 determines where the production rate is set. Step 5, where

product quality is set, follows Step 4 as the control of product quality is of higher priority than inventory

control in Step 6. Variability in inventories is not as critical as ensuring the variability in product quality

is as small as possible. After the total process mass balance is satisfied, the individual component

balances can be checked in Step 7. If in Step 7 it is evident the choice of throughput manipulator is

invalid given other plant-wide control considerations, it is necessary to return to Step 4. The plant-wide

control issues are accomplished when Step 7 is completed, such that Step 8 can be used to improve

performance of unit operations, and Step 9 can be used to address higher level concerns.

From a review of the mathematically and process orientated approaches to plant-wide control, Larsson

and Skogestad (2000) proposed a plant-wide control design framework using elements of both these

approaches. The framework, which was expanded by Skogestad (2004), distinguishes between

economic control and regulatory control by dividing structural decisions into two parts: a top-down

and a bottom-up analysis. The aim of the top-down analysis is to define an economic supervisory

control structure that achieves close-to-optimal steady-state economic operation (Le Roux, Skogestad

and Craig 2016b). The aim of the bottom-up analysis is to define a stable and robust regulatory control

structure capable of operating under the conditions imposed by the economic supervisory layer. In

comparison to Luyben et al. (1997), Skogestad (2004) combines Steps 1 and 9 since the selection of

controlled variables should depend on the plant economics. The procedure is given below:

1. Top-down analysis (to address steady-state operation)

(a) Define the operational economic objective, and determine the steady-state degrees of

freedom.
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CHAPTER 3 PLANT-WIDE CONTROL

(b) Determine the optimal steady-state operation.

(c) Select the primary controlled variables influencing the economic cost function.

(d) Select the variable responsible for manipulating the process throughput.

2. Bottom-up analysis (to address dynamic operation)

(a) Select the regulatory control structure.

(b) Select the supervisory control structure.

(c) Select the the real-time optimisation structure.

(Additional guidelines on decisions specific to each step are provided by Minasidis, Skogestad and

Kaistha (2015).)

The plant-wide control design framework of Skogestad (2004) is applied by Downs and Skogestad

(2011) to industrial processes operated by the Eastman Chemical Company. It is noted that since the

dawn of the holistic approach to process control design, the variety of frameworks to address the design

problem illustrates the difficulty in finding a unified approach. At least from the industrial perspective

of J. Downs, one of the original proposers of the “Tennessee Eastman challenge problem” (Downs and

Vogel 1993), the procedure outlined by Skogestad (2004) is adequate to design a controller capable of

optimising the process economics of a plant (Downs and Skogestad 2011).

The aim of this chapter is to construct a control strategy for a comminution circuit to achieve operational

goals determined by the economic objectives of the larger mineral processing plant. The control strategy

is developed according to the plant-wide control design procedure outlined by Skogestad (2004). The

chapter is organised according to the top-down and bottom-up analysis steps listed above.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 3 PLANT-WIDE CONTROL

3.1 TOP DOWN ANALYSIS

3.1.1 Operational economic objective

The questions to answer in this step are: what is the scalar cost function which defines the economic

objective of operation, and what are the available dynamic and steady-state degrees of freedom to

achieve this economic objective? Given the mineral processing plant economic objective defined in

(2.6), the comminution process economic scalar cost function is defined in terms of (2.8) and (2.10)

as

Jcomm = ϒ(PSE) · γROM ·T P ·
(

P$v−
P$t +P$p

γC(PSE)

)
−Pmill ·

(
P$W +

P$s

κB

)
. (3.1)

The cost function in (3.1) is constrained by downstream operation requirements and by operating

limits.

The economics of the plant are primarily determined by its steady-state behaviour. In general the

steady-state degrees of freedom are the same as the economic degrees of freedom. Identifying the

dynamic degrees of freedom is generally easier than identifying the economic (steady-state) degrees

of freedom. However, it is the number of economic degrees of freedom (NSS) and not the variables

themselves which is important to determine. NSS gives the number of controlled variables to be selected

in the third step of the top-down analysis (Skogestad 2012).

NSS is determined by subtracting the number of manipulated and controlled variables with no economic

steady-state effect (N0) from the number of dynamic degrees of freedom (ND). Since there are six

manipulated variables, it means ND = 6:

• Mill ore feed-rate (MFO)

• Mill inlet water flow-rate (MIW )

• Mill ball feed-rate (MFB)

• Sump feed water flow-rate (SFW )
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CHAPTER 3 PLANT-WIDE CONTROL

• Cyclone feed flow-rate (CFF)

• Mill rotational speed (φc)

The liquid levels in tanks generally form part of the variables with no economic steady-state effect.

There are four levels throughout the circuit to consider:

• Total charge filling in the mill (JT )

• Ball filling in the mill (JB)

• Mill slurry volume

• Sump slurry volume (SVOL)

As discussed in Section 2.1, JT , JB and the mill slurry volume can all affect T P, PSE and Pmill .

Therefore, these three levels in the mill remain crucial steady-state degrees of freedom to define. At

the sump, SVOL has no economic steady-state effect and can be controlled through either SFW or

CFF . This means N0 = 1. Consequently, there are five steady-state degrees of freedom

NSS = ND−N0 = 6−1 = 5.

3.1.2 Optimal steady-state operation: Grindcurves

Once the cost function is identified, the question is what are the operational conditions for optimal

steady-state operation? In other words, how should the set-points be chosen for optimal circuit

operation? The optimal steady-state of operation for the single-stage grinding mill circuit is primarily

determined by the operating performance of the mill. The main mill performance indicators are Pmill ,

QS and ψ . The quazi-static curves of Pmill , QS and ψ as functions of JT and φc are called grindcurves

and can be used to determine the optimal steady-state operating region of a mill (Van der Westhuizen

and Powell 2006, Powell et al. 2009).
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CHAPTER 3 PLANT-WIDE CONTROL

Van der Westhuizen and Powell (2006) developed grindcurves of an industrial open-circuit SAG

mill with a ball filling of 7.9%. These grindcurves were developed assuming JB and ρQ remained

constant for all equilibrium conditions produced by different combinations of JT and φc. It is possible

to maintain JB relatively constant by setting MFB at a constant ratio of MFO. Similarly, MIW is

generally set at a constant ratio of MFO to maintain a constant ρQ. Grindcurves should not necessarily

be defined only in terms of two degrees of freedom: JT and φc. Adequate manipulation of JB and

ρQ within system constraints can allow the grindcurves to be defined in terms of four degrees of

freedom.
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Figure 3.1. Mill grindcurves for an open circuit SAG mill. (Re-created from data in Van der Westhuizen

and Powell (2006).)
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CHAPTER 3 PLANT-WIDE CONTROL

Fig. 3.1 illustrates the general parabolic shape of the grindcurves in Van der Westhuizen and Powell

(2006) for JT in the range of 0.18 to 0.45 and φc in the range of 0.60 to 0.75. Certain conclusions can

be drawn from the grindcurves:

• The peaks of QS and Pmill do not coincide.

• QS increases with φc.

• The curve shapes are dramatically changed by φc.

• The peak values change according to changes in φc.

• QS becomes coarser as φc increases, implying ψ reduces as φc increases.

The grindcurves provided by Van der Westhuizen and Powell (2006) are for an open-circuit grinding

mill. If the circuit is closed, the grindcurve peaks move slightly relative to the open-circuit case,

but the curve shapes do not change (Powell et al. 2009). Although not labelled as such, Craig et al.

(1992) developed grindcurves for a closed-circuit single-stage grinding mill at a single fixed speed.

The circuit was controlled by the multi-variable Inverse Nyquist Array controller of Hulbert et al.

(1990). The steady-state data showed a clear parabolic relationship between T P and JT . The peak of

T P occurred at a lower JT as the peak of Pmill . Therefore, the results of the open-circuit grindcurves

can be extrapolated to the closed-circuit case. Also, it can be assumed that for the closed-circuit case

the cyclone maintains a consistent cut-size and water recovery to underflow, and that the variations in

CFF to maintain a consistent cut-size and water recovery has a negligible effect on the grindcurves. If

the cyclone maintains a consistent cut-size and recovery, the following relations apply

T P = κT PQS

PSE = κPSEψ

(3.2)

where κT P and κPSE are constants. Therefore, the grindcurves in terms of JT and φc can be used to

define the circuit’s performance in terms of PSE and T P.
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CHAPTER 3 PLANT-WIDE CONTROL

3.1.2.1 Description of grindcurves in terms of JT and φc

The data in Table 3.1 as provided by Van der Westhuizen and Powell (2006) can be used to construct

functions of the mill performance indicators, Pmill , QS and ψ , where JT and φc are independent variables.

As noted by (Powell et al. 2009), second order polynomials are best suited to fit the data where φc is

fixed and JT is an independent variable. Therefore, the grindcurves as functions of JT for a fixed φc are

defined as

Y = κaJ2
T +κbJT +κc (3.3)

where Y = [Pmill,QS,ψ]T , κa and κb are vector constants, and κc = [PNL,0,0]. It is assumed that at

zero mill filling both QS and ψ is equal to zero and Pmill is equal to the no-load power draw (PNL).

Table 3.1 provides the location of the grindcurve peaks for different φc. Therefore, for a specific φc the

constants can be written as

κa =
Ypeak

J2
Tpeak

(3.4a)

κb =−2κaJTpeak (3.4b)

where Ypeak is the peak value of the performance indicator, and JTpeak is the value of JT at Ypeak. Since

the peaks are given in Table 3.1 in terms of φc, the peaks can be fitted to low order polynomials with

φc as independent variable.

Ypeak = f (φc) (3.5a)

JTpeak = g(φc) (3.5b)

Table 3.1. Data of grindcurve peaks from Van der Westhuizen and Powell (2006). (∗ - indicates peaks

that are extrapolated to above 50% mill filling.)

Mill Speed Power Peak Discharge Peak Grind Peak

φc JT Pmill JT QS JT ψ

0.60 0.54∗ 3603∗ 0.18 261 0.63∗ 1.00∗

0.65 0.55∗ 3931∗ 0.23 252 0.58∗ 0.94∗

0.70 0.47 4028 0.31 326 0.37 0.69

0.75 0.39 4037 0.35 424 0.33 0.56
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CHAPTER 3 PLANT-WIDE CONTROL

In summary, φc is used in (3.5) to define the peaks of the performance indicators, the peak locations in

turn define the vector constants in (3.4), and the vector constants define the grindcurves in (3.3). Using

the data in Table 3.1, the mill performance indicators as functions of JT and φc are shown in Figs. 3.2

to 3.4. A brief discussion of the surface shapes is provided below.

3.1.2.2 Power (Pmill) for different mill fillings (JT ) and speeds (φc)

Since Pmill is an indication of the rate of kinetic and potential energy imparted to the charge, Pmill is

determined by JT . An increase in JT means an increase in mass in the mill which allows more charge

to absorb the energy available from the rotating mill. This increase in JT results in a higher Pmill . At

very high JT the movement of the centre of mass of the charge towards the centre of the mill dominates

the increase in mass, which reduces the torque of the mill. At the same time, the increase in JT lifts the

toe of the charge which reduces the potential energy imparted to the charge. Therefore, Pmill peaks

somewhere between low and high JT .

As φc increases, more kinetic and potential energy is imparted to the charge and results in a higher

Pmill . A second order polynomial passing through the origin can be used to describe the relationship

between Pmill and JT . For higher φc, the curve between Pmill and JT is steeper and the peaks are more

pronounced. The peaks move from higher to lower JT as φc is increased (Van der Westhuizen and
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CHAPTER 3 PLANT-WIDE CONTROL

Powell 2006).

The generally held belief by the mineral processing industry is that ψ is maximised when Pmill is at

its maximum (Stanley 1987). The rationale is that since Pmill is an indication of the rate of energy

imparted to the charge, the maximum breakage of ore occurs at maximum Pmill . Plants may therefore

decide to operate at the point where maximum Pmill occurs. However, as seen from the grindcurves,

maximum ψ and QS does not necessarily coincide with maximum Pmill . In most cases the maximum

of Pmill is reached only after the peak of QS and ψ is passed (Borell, Backstrom and Soderberg 1996).

If the difference between the peaks of QS and Pmill in terms of JT is very small, a power-peak-seeking

controller can be used as a relatively simple solution to increase circuit throughput (Craig et al. 1992).

Otherwise, if the difference is significant, operating at maximum Pmill may not be the best operating

strategy.

3.1.2.3 Solids discharge rate (QS) for different mill fillings (JT ) and speeds (φc)

If there are no discharge limitations or slurry pooling, QS is determined by the rate of breakage of

coarse sizes to below the discharge grate size. The breakage rate of coarse material (> 10 mm)

decreases as the mill filling JT increases. Because the coarser material is broken by impact breakage,

the increase in JT lifts the toe of the charge and reduces the drop height from shoulder to toe. However,

the mass breakage rate, which is the total mass of coarse ore multiplied by the coarse ore breakage rate

parameter, determines the value of QS. As JT is increased from a low level, the coarse ore breakage

rate parameter will decrease slower than the mass of coarse ore will increase. The cumulative effect

is therefore a higher QS. At high JT the coarse ore breakage rate constant will decrease faster than

the mass of coarse ore will increase and the consequent effect is a reduced QS. A peak for QS occurs

between these two effects.

For JT in the range 20%-40%, moving from φc = 65% to φc = 75% results in a dramatically higher

QS. Changes in φc below 65% or above 75% does not have the same large influence. The QS peak

shifts to higher JT as φc increases. This is opposite to the Pmill peaks which move to lower JT as φc

increases. Similar to power curves, the QS curves become steeper as φc increases. Mill control at

higher φc becomes more difficult as a small change in JT can have a large impact on QS.
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CHAPTER 3 PLANT-WIDE CONTROL

3.1.2.4 Grind (ψ) for different mill fillings (JT ) and speeds (φc)

The production of fines is influenced by the breakage rate constant of fines and the slurry content of the

mill. Theoretically, for an increased JT the breakage rate of fines and the solids content in the slurry

both increase. Therefore, the total mass breakage rate, which is the product of the slurry solids content

and the fines breakage rate, increases as JT increases.

Although a higher φc results in an increased QS and Pmill , a higher φc also results in a coarser product.

Reducing φc will improve ψ , but this will sacrifice QS. Whereas the Pmill and QS curves are steeper

for a higher φc, the ψ becomes less influenced by JT as φc increases. The ψ is expected to increase as

Pmill increases and QS reduces. As seen in Fig. 3.1, the larger the difference between the Pmill and QS

curves at a high JT , the finer the product will be.

The findings above may suggest that for a finer product the mill must be run at a lower φc. However,

because of the consequent reduction in QS, a lower φc may not increase the discharge rate of fines. The

discharge rate of fines is highest at a high φc even though ψ is lower. (In other words, at high φc the

percentage of material passing 75 µm may be lower, but the tonnes per hour of material passing 75

µm is higher.) The φc should thus be chosen depending on whether QS or ψ is a priority.

3.1.3 Primary (economic) controlled variables

Once optimal operation is defined, the question is which five economic (steady-state) degrees of

freedom should be controlled to maintain optimal operation? These five variables are listed below, if

the grindcurves are used to define the optimal circuit operation:

• Total charge filling in the mill (JT )

• Ball filling in the mill (JB)

• Mill slurry density (ρQ)

• Particle size estimate (PSE)
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CHAPTER 3 PLANT-WIDE CONTROL

• Throughput (T P)

In accordance with the assumptions made in the development of the grindcurves, JB, ρQ, and the

cyclone’s cut are to be kept constant. Consequently, it is suggested to control JT as this determines

QS and ψ which in turn determine T P and PSE. However, QS and ψ are also dependent on φc. The

cost function in (3.1) should therefore be maximised with respect to JT and φc with the grindcurves as

equality constraints.

The prominent economic controlled variable is therefore JT . This is confirmed by the study of Borell

et al. (1996) were a heuristic on/off supervisory controller to maximize the throughput of an industrial

open-circuit AG mill was applied. In their case, JT was adjusted using MFO to optimise the mill power

usage for improved QS.

The maximum of the cost function in (3.1) gives the desired PSE as functions of JT and φc. If the

mill is disturbed through ore hardness or feed size distribution variations, it will affect PSE. These

disturbances can be rejected to some extent by adjusting CFF as long as the sump does not run dry or

overflow. This is in accordance with the demand to keep the cut-size of the cyclone constant for the

grindcurves to be applicable.

Because T P passes through a maximum as given by the grindcurves, it cannot be selected as a

controlled variable. Setting T P at a too high value may lead to an infeasible operating condition.

Rather, a manipulator of T P should be selected and its value chosen based on the operating condition

that produces the maximum of the cost function in (3.1).

3.1.4 Location of throughput manipulator

The location of the manipulator of T P is a dynamic issue, but it has significant economic implications.

There are three options to manipulate throughput: MFO, CFF , or φc. Since T P has a maximum

as given by the grindcurves, using MFO as manipulator for T P may produce unfeasible operation.

Skogestad (2004) suggests locating the throughput manipulator close to the bottleneck of the process,

and in the case of a recycle stream, the throughput manipulator should be located within the recycle

loop. Within the loop, either the mill capacity or the cyclone capacity can constrain T P. Ideally the
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CHAPTER 3 PLANT-WIDE CONTROL

constraint should be determined by the mill as the capacity of cyclones are relatively inexpensive and

easy to adapt. Therefore, the mill is the bottle-neck of the process. For this reason, φc and not CFF is

chosen as the variable responsible for manipulating the throughput. Also, the influence of φc on the

production of solids in the mill is much greater than that of CFF .

The cost function in (3.1) suggests the overall profit can be increased if T P is increased. However, the

inverse relationship between T P and PSE as illustrated by Fig. 3.5 may negate any potential benefits

from the increase in T P (Bauer and Craig 2008). The use of φc as manipulated variable provides a

degree of leverage to increase T P without sacrificing PSE (Le Roux et al. 2016a, Viklund et al. 2006).

As seen from the grindcurves, as φc increases the peak of QS (or equivalently the peak of T P) increases,

and the peak of ψ (or equivalently the peak of PSE) reduces. Thus, optimisation of (3.1) with respect

to φc with the grindcurves as constraint equations already considers the inverse relationship between

PSE and T P.

3.1.5 Summary

In summary, the cost function in (3.1) indicates the economic objective of the grinding circuit with

reference to the final product produced by the mineral processing plant. The cost function is defined

in terms of the product quality (i.e. PSE) and quantity (i.e. T P) of the circuit. Both PSE and T P,

performance measures of the circuit, can be related to the mill’s performance measures, QS and ψ , if

the cyclone is regarded as a classification device with a constant cut. Since grindcurves describe QS

and ψ as functions of JT and φc, the revenue of the plant can be expressed as a function of JT and φc.

The primary economic controlled variable is therefore JT , with φc the manipulator of T P.

PSE

T P

Improvement
through process

control

Figure 3.5. Relationship between throughput (T P) and particle size estimate (PSE).
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CHAPTER 3 PLANT-WIDE CONTROL

3.2 BOTTOM-UP ANALYSIS

3.2.1 Regulatory control

The aim of the regulatory layer is to stabilize the plant generally through simple single-loop PID

controllers. The regulatory layer should ensure that the plant does not drift too far away from its

nominal operating point and that the supervisory layer can handle disturbances on the primary plant

outputs (Skogestad 2004). In light of the top-down analysis in the previous section, the control scheme

listed below is proposed to pair the six available manipulated variables with the control variables to

stabilise the circuit:

• φc is set by the operator to achieve the desired T P.

• MFO is used to control JT .

• MIW is used to maintain a constant ρQ.

• MFB is used to maintain a constant JB.

• SFW is used to reject disturbances in PSE.

• CFF is used to control SVOL.

The slow integrating effect of the mill on JT is managed through MFO. However, MFO can only

adjust the ore content. The water and ball content also needs to be stabilised. As mentioned in Section

2.1.3, if a linear proportionality between the rock volume and ball breakage rate is assumed, a relatively

constant JB can be maintained by setting MFB as a constant fraction of MFO. If ρQ is measured, MIW

can be used to control ρQ. Since ρQ is generally not measured, MIW is set at a constant ratio of MFO

to maintain a relatively constant ρQ.

The fast integrating action of the sump on its contents necessitates regulatory control of SVOL through

either SFW or CFF . As shown in 2.1, since SFW is closer to SVOL and CFF is closer to PSE,
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CHAPTER 3 PLANT-WIDE CONTROL

the natural pairing appears to be SFW ↔ SVOL and CFF ↔ PSE, which is in accordance with the

guidelines in Minasidis et al. (2015) for regulatory control. However, the transfer function model

developed in Craig and MacLeod (1995) from step-tests at an industrial circuit indicates there is a

quicker and larger response between changes in SFW and PSE, than for changes in CFF and PSE.

The mechanism by which SFW affects PSE is by changing CFD (see Section 2.1.2.4). Therefore, as

in the list above, the following pairing is made: SFW ↔ PSE and CFF ↔ SVOL.

The survey of Wei and Craig (2009b) confirms that plants prefer the pairing of SFW ↔ PSE rather

than CFF ↔ PSE. However, the survey also indicates that plants prefer reducing SFW , rather

than increasing CFF , to reduce SVOL. Because of the coupling between these variables, a multi-

variable controller capable of managing the available volume in the sump is recommended to keep

SVOL between extreme limits and reduce the variability in PSE (Hulbert et al. 1990, Coetzee et

al. 2010, Le Roux et al. 2016a).

The regulatory control scheme is illustrated in Fig. 3.6. The level controller (LC) for JT manipulates

MFO. The flow controllers (FC) manipulate MIW and MFB which are set as constant ratios of MFO.

The level controller (LC) for slurry volume manipulates SFW . The analyser controller (AC) for PSE

manipulates CFF . These controllers can be implemented using PID controllers. No distinct connection

is shown in the figure between T P and φc, as this should be set by the operator.

LC

LC

AC

Mill Feed Ore
(MFO)

Mill Inlet
Water
(MIW )

Mill Feed Balls
(MFB)

Mill Filling
(JT )

Mill

Mill Speed
(φc)

Sump

Sump Feed
Water
(SFW )

Cyclone

Particle Size
Estimate

(PSE)

Slurry
Volume
(SVOL)

Cyclone
Feed Flow

(CFF)

Throughput (T P)

FC

Figure 3.6. Plant-wide regulatory control scheme.
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CHAPTER 3 PLANT-WIDE CONTROL

3.2.2 Supervisory control

The supervisory control layer aims to control the primary economic controlled variables using the

set-points to the regulatory layer as manipulated variables. The supervisory layer should preferably

avoid saturation of manipulated variables used for regulatory control. For grinding mill circuits, the

regulatory and supervisory layer are often combined into one layer. The two general alternatives are

advanced single loop control or multi-variable control.

The majority of industrial mineral processing plants make use of SISO PID controllers to achieve

their control objectives even though the success of advanced process controllers in other process

industries are well attested (Wei and Craig 2009b, Craig et al. 2011). Model-based controllers, such

as MPC, provide significant advantages over PID when applied to grinding mill circuits (Niemi,

Tian and Ylinen 1997, Pomerleau et al. 2000, Ramasamy et al. 2005, Remes, Aaltonen and Koivo

2010). The economic performance of PID control compared to non-linear MPC when applied to a

grinding mill circuit was evaluated by Wei and Craig (2009a) and results showed that NMPC can

improve performance with respect to recovered mineral value in downstream flotation circuits. Further

improvements to overall MPC performance can be achieved by incorporating peripheral control

tools such as inferential measurements, disturbance observers or model-plant mismatch detection

(Hodouin 2011, Apelt and Thornhill 2009, Yang, Li, Chen and Li 2010, Olivier and Craig 2013). The

ability of MPC to negotiate strong coupling between variables, long time delays, variable constraints,

and plant non-linearities, qualifies it as a good candidate for a regulatory and supervisory controller

(Darby and Nikolaou 2012).

As seen in Section 3.1.3, the primary economic controlled variables are JT and φc. The set-points of JT

and φc are specified by the optimisation layer. As summarized in Section 3.1.5, these set-points define

the desired PSE and T P. The manipulator to achieve the desired T P is φc. For a specific JT and φc,

disturbances to PSE can be managed through changes to CFF and SFW .

Assuming MPC is used for regulatory and supervisory control, the MPC controller must perform the

tasks delineated for the regulatory controller and the supervisory controller. If MFB and MIW are

constant ratios of MFO, the controller can make use MFO, SFW , and CFF as manipulated variables to

control the primary economic controlled variable JT , as well as the variables SVOL and PSE. Control

of SVOL is required to ensure the sump does not run dry or overflows, and control of PSE is required
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CHAPTER 3 PLANT-WIDE CONTROL

to maintain a constant cut-size at the cyclone amid plant disturbances. Since each of the manipulated

variables impact each of the controlled variables, an adequate plant model is required for the controller

to decouple the variable interaction. Because the sump acts as a buffer between the mill and the

cyclone, it can assist to reduce the effect of feed ore hardness and size distribution disturbances on

PSE. The degree of disturbance rejection depends on the size of the sump and the ability of the MPC

controller to allow SVOL to drift between its minimum and maximum value.

3.2.3 Optimisation

The task of the optimiser is to update the primary controlled variables and to detect changes in the

active constraint regions that require switching of controlled variables. A good example of this is seen

in the demand side management simulation study of Matthews and Craig (2013), where an optimiser

varies the mill power draw depending on the cost of electricity in certain time periods. Over a one

week period, the controller is able to maintain the total required T P for the week and maintain the

specified PSE while reducing the cost of grinding for the week. The increase profit is not a result of

increased T P, but rather the reduction in power consumption. An example of real-time optimisation

using linear programming to maximise T P of a grinding mill circuit is found in Lestage, Pomerleau

and Hodouin (2002).

For this study, the optimisation layer maximises the economic cost function in (3.1) in terms of

the equality constraints defined by the grindcurves in Section 3.1.2. This provides a set-point for

the primary economic controller variables JT and φc. The variables JT and φc need to be updated

whenever there are significant changes in the cost of electricity, the grade of the ore from the mine, the

market price for concentrator product, or the processing and transportation cost of the concentrator

product.

3.3 CONCLUSION

This chapter aims to formulate a control structure capable of achieving the operational economic goals

of the comminution circuit developed in Chapter 2. The operational economic objective is defined by

the cost function in (3.1). The cost function is defined in terms of the performance indicators of the

milling circuit as a whole: PSE and T P. The circuit performance indicators can be related to the mill
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CHAPTER 3 PLANT-WIDE CONTROL

performance indicators - QS and ψ - through (3.2), if it is assumed the cyclone maintains a constant

cut and the variations in CFF to maintain a consistent cut has a negligible effect on the grindcurves.

The grindcurves define the mill performance indicators in terms of JT and φc, if it is assumed JB and

ρQ remains constant for all ranges of JT and φc. The optimisation layer maximises (3.1) in terms of

JT and φc, the primary economic controlled variables, to optimise the revenue the mineral processing

plant can generate. The grindcurves act as equality constraints for the maximisation of (3.1).

The regulatory and supervisory layer aims to control the plant at the operating condition specified

by the optimisation layer. Because the process contains non-linearities, long time delays and strong

interaction between variables, a multi-variable controller such as MPC is well-suited to control the

grinding mill circuit (Chen et al. 2007, Yang et al. 2010, Salazar, Valdez-Gonzalres, Vyhmesiter and

Cubillos 2014). For a target JT at a specific φc, the MPC controller can make use of MFO, SFW , and

CFF to regulate JT , reject disturbances in PSE, and maintain SVOL within operation bounds. The

other two manipulated variables, MFB and MIW , are set as constant fractions of MFO to maintain a

constant JB and ρQ in the mill. The capacity of the circuit, i.e. the final T P, is manipulated by φc as

defined by the optimisation layer.

Advanced process control, which is a mature technology in the broader process industry, is not yet

widely adopted in the mineral processing industry (Craig et al. 2011). Although industrial plants

recognize the plant non-linearities and the coupling between process variables, most appear to remain

satisfied with the performance achievable through single-input-single-output (SISO) PID controllers

(Wei and Craig 2009b). There are a number of examples of industrial applications of multi-variable

control to grinding mill circuits (Hulbert et al. 1990, Craig et al. 1992, Craig and MacLeod 1996,

Bouche, Brandt, Broussaud and Drunick 2005, Chen et al. 2007), but these are mostly linear controllers

based on linear process models. Because of the slow time-varying nature of the process and the

large process disturbances, these linear controllers are limited to a narrow range of process operation.

Non-linear control is the desired option, but one of the main impediments to applying non-linear

process control to grinding mill circuits is the computational burden to minimise a non-linear controller

objective function (Coetzee et al. 2010).

To enable the application of non-linear control on industrial milling circuits, the next chapter develops

a non-linear model-based controller with significantly reduced computational cost. The aim is to

provide a suitable option for non-linear model-based optimal control for output tracking in large
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CHAPTER 3 PLANT-WIDE CONTROL

industrial processes, especially if computational time and complexity is a limiting factor for the

real-time application of a model-based optimal controller.
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CHAPTER 4 MODEL PREDICTIVE STATIC

PROGRAMMING

The aim of this chapter is to develop a non-linear model-based optimal controller capable of achieving

the regulatory and supervisory control goals described in the previous chapter at a reduced computa-

tional cost and complexity.

This chapter describes the mathematical formulation of MPSP for output tracking where the output

is a non-linear function of both the states and the input. The proposed MPSP technique is applied

in simulation to a grinding mill circuit, and is evaluated against conventional NMPC in terms of the

ability to reject noise and disturbances while tracking a desired set-point. The aim is to illustrate the

ability of MPSP to track a desired set-point, where similar control performance to NMPC is achieved,

but without the computational burden associated with NMPC (Le Roux, Padhi and Craig 2014).

The chapter is organized as shown below:

1. Section 4.1 discusses the non-linear model used to describe the grinding mill circuit.

2. Section 4.2 gives an overview of MPSP for non-linear problems.

3. Section 4.3 gives a brief description of the NMPC used in this study.

4. Section 4.4 describes the simulation of both controllers.

5. Section 4.5 discusses the results.
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

4.1 MILLING CIRCUIT MODEL DESCRIPTION

Similar to the MPC studies for grinding mill circuits by Coetzee et al. (2010) and Salazar et al. (2014),

the same non-linear grinding circuit model is used to simulate the plant and develop the controller.

In this study, the continuous time dynamic phenomenological non-linear population balance model

validated by Le Roux et al. (2013b) is used to describe the single-stage closed grinding mill circuit in

Fig. 2.1. The model was developed with the aim to produce reasonably accurate model responses using

as few parameters and states as possible. The input and output variables of the circuit are described in

Table 2.1. Each process unit in the circuit is modelled separately.

The model divides the ore into the three size classes mentioned in Section 2.1.1: rocks, coarse ore and

fine ore. Although only three size classes are used to describe the ore in the circuit, they are sufficient

for the model to produce qualitatively accurate responses (Le Roux and Craig 2013).

The model defines fives states to describe the mill charge volumetric hold-ups: water (xmw), solids

(xms), fines (xm f ), rocks (xmr), and steel balls (xmb). Because of the end-discharge grate, only three

states are necessary to describe the sump slurry volumetric hold-ups: water (xsw), solids (xss), and fines

(xs f ).

For the population balance model equations, V denotes a flow-rate in m3/h and x denotes the states

of the model as volumes in m3. Table 4.1 provides a description of the subscripts for V and x. The

first subscript indicates the module considered (mill, sump or cyclone), the second subscript specifies

which state is considered (rocks, solids, coarse, fines, balls, or water), and in the case of flow-rates

the final subscript indicates an inflow, outflow or underflow. Only a brief overview of the model is

presented here. A detailed description of the model is provided in Le Roux et al. (2013b). The model

nomenclature is shown in Table 4.2.

4.1.1 Mill model

The population volume balance of mill hold-ups - water (xmw), solids (xms), fines (xm f ), rocks (xmr),

and steel balls (xmb) - are defined in terms of the inflow, outflow and generation/consumption of each
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

state

ẋmw =Vmwi +Vcwu−Vmwo (4.1a)

ẋms =Vmsi +Vcsu−Vmso +RC (4.1b)

ẋm f =Vm f i +Vc f u−Vm f o +FP (4.1c)

ẋmr =Vmri−RC (4.1d)

ẋmb =Vmbi−BC (4.1e)

where Vmwi, Vmsi, Vm f i, Vmri and Vmbi (m3/h) are the flow-rates of water, solids, fines, rocks and balls

into the mill respectively; Vmwo, Vmso and Vm f o (m3/h) are the discharge flow-rates of water, solids

and fines respectively; RC, BC and FP (m3/h) are the rock consumption, ball consumption and fines

production respectively; Vcwu, Vcsu and Vc f u (m3/h) represent the cyclone water, solids and fines

underflow flow-rates respectively.

4.1.1.1 Mill feed

The flow of material into the mill is defined as

Vmwi = MIW (4.2a)

Vmsi = (1−αr)MFO/ρO (4.2b)

Vm f i = α f MFO/ρO (4.2c)

Vmri = αrMFO/ρO (4.2d)

Vmbi = MFB/ρB (4.2e)

where ρO (t/m3) is the ore density, ρB (t/m3) is the ball density, and parameters α f and αr represent the

fraction of fines and rocks in MFO respectively. Variations in feed size distribution which perturb the

Table 4.1. Description of subscripts

Subscript Description

x�− m-mill; s-sump; c-cyclone

x−� w-water; s-solids; c-coarse; f-fines; r-rocks; b-balls

V−−� i-inflow; o-outflow; u-underflow
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

Table 4.2. Circuit parameter values and uncertainty

Parm Value Unit ∆ Description

α f 0.055 [-] 50% Fraction fines in the mill feed ore

αr 0.465 [-] 50% Fraction rock in the mill feed ore

αP 1.0 [-] Fractional power reduction per fractional reduction in mill speed

ακ f 0.01 [-] Fractional change in kW/fines produced per change in fractional

mill filling

αsu 0.916 [-] 5% Parameter related to fraction solids in underflow

C1 0.6 [-] Constant

C2 0.7 [-] Constant

C3 4.0 [-] Constant

C4 4.0 [-] Constant

C5 0.6 [-] Constant

δPs 17.5 [-] Power-change parameter for fraction solids in the mill

δPv 17.5 [-] Power-change parameter for volume of mill filled with charge

δPc 0.0 [-] Cross-term for maximum power draw

ρB 7.85 [t/m3] Density of steel balls

ρO 3.20 [t/m3] Density of feed ore

ρW 1.00 [t/m3] Density of water

εsv 0.6 [-] Maximum fraction solids by volume of slurry at zero slurry flow

εc 126.9 [m3/h] 5% Parameter related to coarse split

φc 0.72 [-] Fraction of critical mill speed

κB 90.0 [kWh/t] 5% Energy required per tonne of steel balls consumed

κF 29.5 [kWh/t] 50% Energy required per tonne of fines produced

κR 6.72 [kWh/t] 20% Energy required per tonne of rock consumed

ϕPmax 0.57 [-] Rheology factor for maximum mill power draw

Pmax 1670 [kW] Maximum mill motor power draw

vmill 59.1 [m3] Mill volume

vPmax 0.34 [-] Fraction of mill volume filled for maximum power draw

dH 88.0 [1/h] Volumetric flow per “flowing volume” driving force

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

equilibrium of the mill is represented by changes to αr and α f . The implicit assumption when dividing

by ρO in (4.2b) to (4.2d) is that the ore is non-porous.

4.1.1.2 Mill discharge

The mill discharge flow-rates are defined as

Vmwo = ϕdHxmw

(
xmw

xms + xmw

)
(4.3a)

Vmso = ϕdHxmw

(
xms

xms + xmw

)
(4.3b)

Vm f o = ϕdHxmw

(
xm f

xms + xmw

)
(4.3c)

where dH (1/h) is the discharge rate, and ϕ is an empirical function called the rheology factor. The

rheology factor attempts to incorporate the effect of the fluidity and density of the slurry on the milling

circuit’s performance and is defined as

ϕ =

[
max

(
0,1−

(
1

εsv
−1
)

xms

xmw

)]0.5

(4.4)

where εsv is the maximum fraction of solids by volume of slurry at zero slurry flow. A rheology factor

of unity corresponds to xms
xmw

= 0, indicating the slurry consists only of water. A rheology factor of zero

corresponds to xms
xmw

= εsv
1−εsv

, indicating the slurry is a non-flowing mud.

4.1.1.3 Material consumption and production

The general formulation of the breakage equations finds its parallel in the cumulative breakage rates

expressions in Hinde and Kalala (2009) and Amestica, Gonzalez, Menacho and Barria (1996). The

rock consumption (RC), ball consumption (BC) and fines production (FP) are defined as

RC =
xmrϕPmill

ρOκR (xmr + xms)
(4.5a)

BC =
xmbϕPmill

κB [ρO (xmr + xms)+ρBxmb]
(4.5b)

FP =
Pmill

ρOκF
[
1+ακ f (JT − vPmax)

] (4.5c)

where κR and κB (kWh/t) are the energies required per tonne of rocks and balls consumed respectively,

κF (kWh/t) is the energy required per tonne of fines produced, vPmax is the fraction of the mill filled

at maximum power draw, and ακ f accounts for the change in κF per change in mill filling. The
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

equilibrium of the mill is not only upset through variations of the feed size distribution, but also

variations in ore hardness. This can be simulated through variation of parameters κF and κR.

4.1.1.4 Mill load and power draw

The fraction of the mill filled with charge (JT ) is defined as

JT = (xmw + xms + xmr + xmb)/vmill (4.6)

where vmill (m3) is the total volume of the mill.

The mill power draw is modelled as a quadratic function depending on the total mill charge and the

fluidity and density of the slurry in the mill

Pmill = Pmaxφ
αP
c (1−δPvZ2

x −2δPcδPvδPsZxZr−δPsZ2
r ) (4.7)

where Pmax (kW) is the maximum mill power draw, αP is the fractional power reduction per fractional

reduction from critical mill speed, δPv is the power change parameter for volume of mill filled with

charge, δPs is the power change parameter for the fraction of solids in the mill, and δPc is the cross term

for maximum power draw.

The effect of the total charge on mill power is modelled by the empirically defined function Zx =

JT
vPmax
−1, and the effect of the solids content on the mill power is modelled by the empirically defined

function Zr =
ϕ

ϕPmax
−1 where ϕPmax is the rheology factor at maximum mill power draw.

4.1.2 Sump model

The population volume balance of sump hold-ups - water (xsw), solids (xss), and fines (xs f ) - are defined

as

ẋsw =Vmwo−Vswo +SFW (4.8a)

ẋss =Vmso−Vsso (4.8b)

ẋs f =Vm f o−Vs f o (4.8c)

where Vswo, Vsso and Vs f o (m3/h) are the sump discharge flow-rates of water, solids and fines respectively.

It is assumed the slurry in the sump is fully mixed.
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

The discharge of each state from the sump through the variable speed pump is defined as

Vswo =CFF
xsw

xsw + xss
(4.9a)

Vsso =CFF
xss

xsw + xss
(4.9b)

Vs f o =CFF
xs f

xsw + xss
. (4.9c)

The volume of the sump filled with slurry (SVOL) (m3) and the cyclone feed density (CFD) (t/m3) are

defined as

SVOL = xss + xsw (4.10)

CFD =
ρWVswo +ρOVsso

Vswo +Vsso
=

ρW xsw +ρOxss

xsw + xss
(4.11)

where ρW is the density of water.

4.1.3 Hydrocyclone model

4.1.3.1 Underflow and overflow

Static non-linear models in the form of efficiency curves are often used to model classification units in

minerals processing (Nageswararao, Wiseman and Napier-Munn 2004). The non-linear static cyclone

model presented here aims to model the product size and density by taking the effects of angular

velocity of the particle inside the cyclone, the slurry density, and slurry viscosity into account. The

underflow of coarse material (Vccu) is modelled as

Vccu = (Vsso−Vs f o)

(
1−C1 exp

(
−CFF

εc

))(
1−
(

Fi

C2

)C3
)(

1−PC4
i

)
(4.12)

where Fi =
Vsso
CFF is the fraction solids in the cyclone feed, Pi =

Vs f o
Vsso

is the fraction fines in the feed solids,

εc (m3/h) relates to the coarse split, C1 relates to the split at low-flows when the centrifugal force on

particles is relatively small, C2 normalizes the fraction solids in the feed according to the upper limit

for the packing fraction of solid particles, and C3 and C4 adjusts the sharpness of the dependency on Fi

and Pi.
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

To determine the amount of water and fines accompanying the coarse underflow, the fraction of solids

in the underflow (Fu) must be determined. This is modelled as

Fu =C5− (C5−Fi)exp(−Vccu/(αsuεc)) (4.13)

where C5 is the approximate maximum packing fraction, and αsu relates to the fraction solids in the

underflow.

Therefore, the cyclone underflow flow-rates in (4.1) are defined as

Vcwu =
Vswo (Vccu−FuVccu)

FuVswo +FuVs f o−Vs f o
(4.14a)

Vc f u =
Vs f o (Vccu−FuVccu)

FuVswo +FuVs f o−Vs f o
(4.14b)

Vcsu =Vccu +Vc f u. (4.14c)

These equations follow from the assumption that the fines are not influenced by centrifugal forces.

This implies the ratio of fines to water in the overflow, underflow and feed is equal, and that the fraction

of solids in the underflow can be written as Fu =
Vcsu

Vcsu+Vcwu
. Consequently, the cyclone water overflow

flow-rate (Vcwo), solids overflow flow-rate (Vcso) and fines overflow flow-rate (Vc f o) can be calculated

using a flow balance around the cyclone.

4.1.3.2 Product quality and throughput

The product quality is defined as the fraction of fines to solids in the cyclone overflow, and is represented

by the particle size estimate (PSE). The product throughput (T P) is defined as the mass flow of solids

in the cyclone overflow.

PSE =
Vc f o

Vcso
(4.15)

T P = ρOVcso (4.16)
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

4.2 OUTPUT TRACKING USING MODEL PREDICTIVE STATIC PROGRAM-

MING

4.2.1 Algorithm derivation

The MPSP control technique for output tracking is discussed next. The state dynamics and output

equation of a general discrete non-linear system can be written as

Xk+1 = Fk (Xk,Uk)

Yk = Hk (Xk,Uk)
(4.17)

where X ∈Rn, U ∈Rm, Y ∈Rp represent the states, the input and the output of the system respectively,

and k are time steps.

The primary objective of output tracking by means of MPSP is to find an input projection Uk for time

steps 1 to N so that the output Yk goes to the desired output value Y ∗k for time steps 1 to N, i.e. Yk→Y ∗k

∀ k = 1,2, ...,N. It is important to note that the output Yk is a function of both the states Xk and the input

Uk of the system. The MPSP algorithm predicts the output for N time steps and calculates inputs for N

time steps. Compared to MPC, N represents both the prediction and control horizon for MPSP.

For the control technique presented here, it is necessary to start with a “guess” initial input. Obviously

the method to obtain a good estimate or intelligent guess of the initial input is problem specific. Because

the optimal input will not necessarily be achieved by the guessed input, the input must be improved

by an iterative process where i is the iteration index which increases until the algorithm converges.

Convergence can be measured as ‖Y
i
k−Y ∗k ‖
‖Y ∗k ‖

< εk, ∀ k = 1,2, ...,N, where Y ∗k is the desired output and εk

is a user defined tolerance limit on the output error.

The system shown in (4.17) can now be written as

X i
k+1 = Fk

(
X i

k,U
i
k

)
Y i

k = Hk
(
X i

k,U
i
k

)
.

(4.18)
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

The relationship of variables between consecutive iterations i and i+1 at time step k are

Y i+1
k = Y i

k +∆Y i
k (4.19a)

X i+1
k = X i

k +∆X i
k (4.19b)

U i+1
k =U i

k +∆U i
k. (4.19c)

The output Y i+1
k at time step k and iteration (i+ 1) can be expanded by Taylor series expansion,

retaining only first order terms

Y i+1
k = Hk

(
X i+1

k ,U i+1
k

)
= Hk

(
X i

k +∆X i
k,U

i
k +∆U i

k

)
≈ Y i

k +
[

∂Hk
∂Xk

]
∆X i

k +
[

∂Hk
∂Uk

]
∆U i

k.

(4.20)

Combining (4.20) and the expression for the outputs in (4.19a), it is possible to write

∆Y i
k = Y i+1

k −Y i
k

≈
[

∂Hk
∂Xk

]
∆X i

k +
[

∂Hk
∂Uk

]
∆U i

k

(4.21)

where ∆Y i
k is the error in the output at time k and iteration i.

The state X i+1
k+1 at time step (k+1) and iteration (i+1) can be expanded by Taylor series expansion

retaining only first order terms

X i+1
k+1 = Fk

(
X i+1

k ,U i+1
k

)
= Fk

(
X i

k +∆X i
k,U

i
k +∆U i

k

)
≈ F

(
X i

k,U
i
k

)
+
[

∂Fk
∂Xk

]
∆X i

k +
[

∂Fk
∂Uk

]
∆U i

k

≈ X i
k+1 +

[
∂Fk
∂Xk

]
∆X i

k +
[

∂Fk
∂Uk

]
∆U i

k.

(4.22)

Combining (4.22) and the expression for states in (4.19b), it is possible to write

∆X i
k+1 = X i+1

k+1−X i
k+1

≈
[

∂Fk
∂Xk

]
∆X i

k +
[

∂Fk
∂Uk

]
∆U i

k

(4.23)

where ∆X i
k is the error in the state and ∆U i

k is the error in the input solution at time step k and iteration

i. If small input deviations (∆U i
k = dU i

k), small state deviations (∆X i
k = dX i

k), and small output errors

are assumed (∆Y i
k = dY i

k ), the output error dY i
k in (4.21) can be written in terms of the state and input

error of (4.23) as

dY i
k =

[
∂Hk
∂Xk

]
dX i

k +
[

∂Hk
∂Uk

]
dU i

k

=
[

∂Hk
∂Xk

][
∂Fk−1
∂Xk−1

]
dX i

k−1 +
[

∂Hk
∂Xk

][
∂Fk−1
∂Uk−1

]
dU i

k−1 +
[

∂Hk
∂Uk

]
dU i

k.
(4.24)
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

The state error dX i
k−1 in (4.24) can be expanded further in terms of dX i

k−2 and dU i
k−2. And the state

error dX i
k−2 can be expanded further in terms of dX i

k−3 and dU i
k−3, and so on. This expansion procedure

can continue until state error dX i
1 (where k = 1) is reached. Finally,

dY i
k =

[
Ak
]i

dX i
1 +
[
Bk

1

]i
dU i

1 +
[
Bk

2

]i
dU i

2 + ...+
[
Bk

k−1

]i
dU i

k−1 +
[
Bk

k

]i
dU i

k (4.25)

where [
Ak
]i

=
[

∂Hk
∂Xk

][
∂Fk−1
∂Xk−1

][
∂Fk−2
∂Xk−2

]
...
[

∂F1
∂X1

]
[
Bk

j

]i
=
[

∂Hk
∂Xk

][
∂Fk−1
∂Xk−1

]
...
[

∂Fj+1
∂X j+1

][
∂Fj
∂U j

]
[
Bk

k

]i
=
[

∂Hk
∂Uk

]
.

(4.26)

If it is assumed that with full-state feedback the initial condition of the system is known, i.e. X1 is

known, the error dX i
1 = X i+1

1 −X i
1 has to be zero, i.e. dX1 = 0. Therefore, the error in the output in

(4.25) reduces to

dY i
k =

k

∑
j=1

[
Bk

j

]i
dU i

j. (4.27)

Note that for the derivation of (4.27) the input variables at each time step are independent of the

previous values of the states and/or inputs. The input variables are seen as decision variables and

independent decisions can be made at every point in time. During the implementation of the algorithm,

the entire input projection is computed, but only the first input move is performed. For the next time

step the algorithm repeats, calculates a new input trajectory and again only performs the first input

move of the new trajectory. Feedback is implemented via the cost function, described later in this

section.

Equation (4.27) represent the output sensitivity at time step k with respect to change in the input at all

time steps prior to and including k. It is intuitively clear that the effect of input changes at future time

steps will not change the output vector at the current time step. Therefore,
[
Bk

j

]i
can be defined for all

k = 1,2, ...,N and j = 1,2, ...,N. In order to reduce the computational requirements of the algorithm,[
Bk

j

]i
can be computed recursively.[

φ k
k

]i
= In×n[

φ k
j

]i
=
[
φ k

j+1

]i [
∂Fj
∂X j

]
[
Bk

j

]i
=
[

∂Hk
∂Xk

][
φ k

j+1

]i [
∂Fj
∂U j

]

∀ j < k

[
Bk

j

]i
=
[

∂Hk
∂Uk

]
∀ j = k[

Bk
j

]i
= [0]p×m ∀ j > k

(4.28)
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

The primary objective of the control technique can be defined by the following cost function

Ji = 1
2 ∑

N
k=1
(
Y i+1

k −Y ∗k
)T

Wk
(
Y i+1

k −Y ∗k
)
+ 1

2 ∑
N
k=1
(
U i+1

k −U i
k

)T
Rk
(
U i+1

k −U i
k

)
= 1

2 ∑
N
k=1
(
Y i

k +dY i
k −Y ∗k

)T Wk
(
Y i

k +dY i
k −Y ∗k

)
+ 1

2 ∑
N
k=1
(
dU i

k

)T Rk
(
dU i

k

)
= 1

2 ∑
N
k=1
(
dY i

k −dY ∗ik

)T Wk
(
dY i

k −dY ∗ik

)
+ 1

2 ∑
N
k=1
(
dU i

k

)T Rk
(
dU i

k

) (4.29)

where dY ∗ik = Y i
k −Y ∗k , and Wk and Rk are the output and input weighting matrices respectively. Using

(4.27), the cost function can be written in terms of the input error dUk such that

Ji = 1
2 ∑

N
k=1 β TWkβ + 1

2 ∑
N
k=1
(
dU i

k

)T Rk
(
dU i

k

)
(4.30)

where

β = ∑
k
j=1

[
Bk

j

]i
dU i

j−dY ∗ik . (4.31)

The objective is to minimize the cost function J in (4.30) for dU1,dU2, ...,dUN , which requires the

calculation of the partial derivatives ∂J
∂ (dU1)

, ∂J
∂ (dUl)

, and ∂J
∂ (dUN)

. (The iteration index i is dropped

throughout the rest of this section for the sake of simplicity.) The equation corresponding to ∂J
∂ (dUz)

= 0

can be simplified to

∂J
∂ (dUz)

= ∑
N
k=1

(
Bk

z
TWk ∑

k
j=1 Bk

jdU j

)
−∑

N
k=1 Bk

z
TWkdY ∗k +RzdUz. (4.32)

The first term in (4.32) can be simplified further such that

∑
N
k=1

(
Bk

z
TWk ∑

k
j=1 Bk

jdU j

)
= ∑

N
k=1

(
Bk

z
TWkBk

1dU1 +Bk
z

TWkBk
2dU2 + ... +Bk

z
TWkBk

kdUk

)
=

(
B1

z
TW1B1

1dU1

)
+
(

B2
z

TW2B2
1dU1 +B2

z
TW2B2

2dU2

)
+ ...+(

BN
z

TWNBN
1 dU1 +BN

z
TWNBN

2 dU2 + ... +BN
z

TWNBN
NdUN

)
= ∑

N
l=1 Bl

z
TWlBl

1dU1 +∑
N
l=2 Bl

z
TWlBl

2dU2 + ...+BN
z

TWNBN
N−1dUN

= Cz1dU1 +Cz2dU2 + ...+CzNdUN .

(4.33)

From the simplification above, matrix C ∈ RN×N is defined as

Ce j =
N

∑
l= j

(
Bl

e

)T
WlBl

j (4.34)

for e = 1, ...,N and j = 1, ...,N. Thus, ∂J
∂ (dUz)

= 0 can now be written as

N

∑
k=1

Bk
z

T
WkdY ∗k =Cz1dU1 +Cz2dU2 + ...+CzNdUN +RzdUz. (4.35)

Compiling all the equations for all times steps, the system of equations can be written as

[dUe] = [Ce j +δe jRe]
−1 [be] (4.36)
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

where δe j is the Kronecker-delta function and vector b ∈ RN×1 is defined for e = 1, ...,N as

be =
N

∑
k=1

Bk
e

T
WkdY ∗k . (4.37)

Finally, the updated input at time step k = 1, ...,N is

U i+1
k =U i

k +dU i
k. (4.38)

Because output tracking using MPSP is a relatively new development, issues such as convergence

guarantees and the consolidation of input, state, and output equality, inequality, and rate constraints

remain open for exploration. A possible approach to address state constraints is shown in Bhitre

and Padhi (2014) where slack variables can be used to handle state variable inequality constraints.

However, the technique developed by Bhitre and Padhi (2014) is not for the type of system nor the

type of cost function considered here.

4.2.2 General procedure

The general procedure to implement the receding horizon MPSP control algorithm is described below,

and depicted in Fig. 4.1.

1. Start the iteration procedure of the MPSP algorithm by estimating an initial input trajectory U1
k ,

∀k = 1,2...N. Initialize the iteration index as i = 1.

2. Use the known initial condition X1 and input projection U i
k to propagate the system dynamics in

(4.18). Obtain the state trajectory X i
k, ∀k = 1,2...N.

3. From the state trajectory X i
k determine the output trajectory Y i

k . Use the desired output trajectory

Y ∗k to calculate dY i
k = Y i

k −Y ∗k , ∀k = 1,2...N.

4. Using X i
k and U i

k for all k = 1,2, ...,N, calculate the matrices shown in (4.34) and the result

vector shown in (4.37).

5. Compute the input deviation dU i
k using (4.36). Update the input for the i-th iteration with (4.38),

and apply box constraints to the input.
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

6. Terminate the algorithm if the output error is smaller than the user-defined tolerance value,

i.e. ‖Y i
k−Y ∗k ‖
‖Y ∗k ‖

< εY , ∀k = 1, ...,N, or if the input projection converged, i.e. ‖U i+1
k −U i

k‖∞

‖U i
k‖∞

< εU ,

∀k = 1, ...,N. If either of these conditions are met for i ≥ 1, then use U i
k as the optimal input

projection. Otherwise, increase the iteration index i and return to step 2.

4.3 NON-LINEAR MPC

Given the system described by (4.17), the aim of non-linear MPC can be described as

min
U

J (U,X0) . (4.39)

The controller cost function is defined as

J =
1
2

NP

∑
k=1

(Yk−Y ∗k )
T Wk (Yk−Y ∗k )+

1
2

NC

∑
k=1

(Uk+1−Uk)
T Rk (Uk+1−Uk) (4.40)

where NC is the control horizon, and NP is the prediction horizon. The inputs are constrained between

Ulb <U <Uub where Ulb and Uub are the lower and upper bounds for input U respectively.

Known Condition: X1
Define for all k = 1...N:

Wk , Rk and U1
k

Calculate for all k = 1...N:
X i

k+1 = Fk
(
X i

k,U
i
k

)
dY i

k = Hk
(
X i

k,U
i
k

)
−Y ∗k

Iteration
Index
i = 1

Calculate for k = 1...N, and j = 1...N:[
φ k

k

]i
= In×n[

φ k
j

]i
=
[
φ k

j+1

]i [ ∂Fj
∂X j

]
[
Bk

j

]i
=
[

∂Hk
∂Xk

][
φ k

j+1

]i [ ∂Fj
∂U j

]
 ∀ j < k

[
Bk

j

]i
=
[

∂Hk
∂Uk

]
∀ j = k[

Bk
j

]i
= [0]p×m ∀ j > k

Iteration
Index

i = i+1

Calculate for
e = 1...N and j = 1...N:

Ce j = ∑
N
l= j
(
Bl

e
)T WlBl

j

be = ∑
N
k=1 Bk

e
TWkdY ∗k

[dUe] =
[
Ce j +δe jRe

]−1
[be]

Use U i
k as input

True

Test:
‖Y i

k−Y ∗k ‖
‖Y ∗k ‖

< εY or

‖U i+1
k −U i

k‖∞
‖U i

k‖∞
< εU

Calculate for k = 1...N:
U i+1

k =U i
k +dU i

k

False

Figure 4.1. MPSP procedure.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

When comparing the cost function J above to the cost function for MPSP in (4.29), there is a difference

how the input Uk is evaluated. In (4.29) the difference between the input projections for consecutive

iterations is evaluated (i.e. U i+1
k −U i

k), whereas in (4.40) the change in the control between time steps

is evaluated (i.e. Uk+1−Uk). The effect of the difference in the cost function formulations can be

reduced by increasing the ratio between matrix R and W . If R is much smaller than W , the contribution

by the change in the input to the cost function will be much less than the contribution by the deviation

of the output from set-point to the cost function.

The problem described above is a constrained minimization problem and can be solved using the

fmincon function in MATLAB1. The minimization technique used by fmincon to solve (4.40) was

chosen as sequential quadratic programming. A description of sequential quadratic programming can

be found in Grüne and Pannek (2011). The principal idea is the formulation of a quadratic sub-problem

based on the quadratic approximation of the Lagrangian function. An approximation of the Hessian of

the Lagrangian function using a quasi-Newton updating method is made at each major iteration. This

is used to generate the quadratic programming sub-problem whose solution is used to form a search

direction for a line search procedure.

1MATLABT M is a registered trademark of The Mathworks Inc.

Table 4.3. Operating point of the milling circuit

Variable Nominal Min Max Unit

Input

CFF 374 200 450 [m3/h]

MIW 4.64 0 20 [m3/h]

MFB 5.68 0 10 [t/h]

MFO 65.2 0 100 [t/h]

SFW 140 0 300 [m3/h]

Output

JT 0.33 0.25 0.45 [-]

SVOL 10.0 1.0 20.0 [m3]

PSE 0.67 0.5 0.8 [-]
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4.4 SIMULATION

Using the grinding mill circuit as control problem, the simulation investigates the effect of modelling

errors on the MPSP algorithm, its ability to reject noise and large disturbances, and its computational

efficiency. The same control problem is solved using NMPC to serve as a comparison between the two

control techniques.

4.4.1 Simulation environment

The parameter values, the operating point of the circuit and the initial states can be viewed in Tables 4.2,

4.3, and 4.4 respectively. The data was taken from the sampling campaign of the industrial grinding

mill circuit described in Le Roux et al. (2013b). The state, input and output vectors are defined as

X = [xmw,xms,xm f ,xmr,xmb,xsw,xss,xs f ]
T (4.41a)

U = [MFO, SFW, CFF ]T (4.41b)

Y = [JT , SVOL, PSE]T (4.41c)

4.4.1.1 General conditions

The grinding mill circuit was simulated for both controllers, MPSP and NMPC, with the same general

conditions:

Table 4.4. Initial states for mill and sump

State Value Unit State Value Unit

Mill States Sump States

xmw 4.63 [m3] xsw 6.86 [m3]

xms 4.65 [m3] xss 3.14 [m3]

xm f 0.96 [m3] xs f 0.65 [m3]

xmr 1.99 [m3]

xmb 8.23 [m3]
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• Full-state feedback is assumed. This is a significant assumption as the states in the mill and the

sump cannot be measured directly and need to be estimated. As seen from Wei and Craig (2009b),

the measurements available in industrial grinding mill circuit are limited. Various attempts have

been made to estimate the states and parameters of the plant, which can then be used for feedback

control (Apelt et al. 2002a, Olivier et al. 2012, Le Roux, Craig and Padhi 2013a, Le Roux et

al. 2016a).

• A sampling time of Ts = 10 s is used.

• A simulation time of 4 h, i.e. 1440 time sampling points, is used.

• The ball feed-rate MFB is kept as a constant ratio of 8% of MFO in an attempt to keep the

volume of balls in the mill constant.

• The mill water inlet MIW is a constant ratio of 7% of MFO.

• Model-plant-mismatch between the controller and the plant is achieved by maintaining all the

model parameters constant for the controller, but varying the following plant parameters every 3

minutes according to the respective uncertainties shown in Tables 4.2: α f , αr, αsu, εc, κB, κF ,

κR. Each uncertainty follows a uniform distribution around the nominal value of the parameter to

produce large changes in the parameter. A uniform distribution was chosen instead of a normal

distribution so that the model-plant-mismatch rejection capabilities of the controllers are clearly

visible from the simulation results.

• A constant disturbance in the mill feed size distribution is simulated through a step increase in

αr by 50% of its nominal value. This step is applied between t = 1.2 h and t = 2.8 h, and is

added to the continual variation of αr every 3 minutes.

• A constant disturbance in the ore hardness is simulated through a step increase in κF by 50% of

its nominal value. This change is applied between t = 2.2 h and t = 3.8 h, and is added to the

continual variation of φ f every 3 minutes.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

• The input U is hard-constrained for both MPSP and NMPC between the limits shown in Table

4.3.

4.4.1.2 Simulation scenarios

To evaluate the noise and disturbance rejection of the controllers, two scenarios are simulated:

1. For the first set of simulations, the milling circuit experience parameter variations and disturb-

ances, but no measurement noise is added to the measured states.

2. The same parameter variations and disturbances are used for the second set of simulations, but

now measurement noise with a normal distribution of N
(
0,(0.01X0)

2
)

is added to the measured

states. Because large and fast unexpected changes to the volume of material in the circuit are not

expected, the standard deviation of the noise is kept small.

4.4.1.3 Controller weights

Both controllers made use of the same W and R weighting matrices. The PSE is regarded as the most

important output variable to control as this variable determines performance of the milling circuit.

Therefore, the W weighting matrix for the output variables was determined such that a 1% deviation

from set-point for PSE will produce an error in the cost function equal to a 5% deviation of JT from

set-point and equal to a 20% change in SVOL from set-point, i.e.

W1 (5%JTSP)
2 =W2 (20%SVOLSP)

2 =W3 (1%PSESP)
2 (4.42)

Of the three weighting variables, W2 will be the smallest. Thus, choosing W2 = 1, the output weighting

matrix is defined as

W = 104 diag([1.47, 0.0001, 8.91]) (4.43)

The R weighting matrix for the input variables was determined such that 2% changes of half the ranges

of MFO, SFW , and CFF will produce the same error in the cost function. The R matrix was scaled to

produce 1% of the error compared to the W matrix, i.e.

100R1

(
2%MFOrange

2

)2

=W1 (5%JTSP)
2 (4.44)
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and

R1

(
2%MFOrange

2

)2

= R2

(
2%SFWrange

2

)2

= R3

(
2%CFFrange

2

)2

(4.45)

Therefore, the input weighting matrix is

R = 10−3 diag([10, 4.4, 6.4]) (4.46)

4.4.2 MPSP and NMPC implementation details

The MPSP and NMPC algorithms are simulated for a control horizon TC = 0.1 h. In the case of NMPC

the prediction horizon is set equal to the control horizon. For MPSP the horizon of prediction is by

definition the same as the horizon of control.

Both MPSP and NMPC are applied as receding horizon controllers, i.e. the control is calculated from

time t0 to t0 +TC where TC is the fixed control time and t0 is the current time. Thus, the input trajectory

is always NC = TC/Ts sampling instances long, where Ts is the sampling time. The time sampling

points can be expressed as {t1, t2, ..., tNC}= {t0, t0 +Ts, ..., t0 +NCTs}.

When the controller is initiated, i.e. t0 = 0 s, the initial states of the system are provided as well as an

initial input trajectory of NC sampling instances long. The initial input trajectory is not optimal and has

to be improved iteratively by the MPSP or NMPC algorithm. Once the algorithm determined a new

input trajectory for all the time sampling points when t1 = t0 = 0 s, the input at t1 = 0 s is implemented

and the system moves to the next time step. The time is now at t1 = Ts and the MPSP or NMPC

algorithm repeats. The time series was

{t1, t2, ..., tNC}= {0,Ts, ...,NCTs}

and is now

{t1, t2, ..., tNC}= {Ts,2Ts, ...,(NC +1)Ts}.

A new input trajectory of NC sampling instances has to be defined before the control algorithm can

start again. However, the initial input trajectory for the first minimization routine when t1 = 0 s cannot

be used for the next minimization routine when t1 = Ts. The input trajectory for the first minimization

routine when t1 = 0 s was only defined until time tNC = NCTs. This input trajectory does not define an

input for tNC+1 = (NC +1)Ts when t1 = 0 s. Therefore, the input trajectory for the second minimization

routine requires the definition of an input value for the final time step at tNC = (NC +1)Ts when t1 = Ts.

The input trajectory for the second minimization routine at t1 = Ts is obtained by shifting the input
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trajectory calculated during the first minimization routine at t1 = 0 s one sampling instant to the left

and equating the input at tNC to the input at tNC −Ts.

Termination of the MPSP algorithm occurs if all of the following conditions below are met for the

three outputs

‖ Y (1)i
k−Y (1)∗k ‖/‖ Y (1)∗k ‖ < 0.05

‖ Y (2)i
k−Y (2)∗k ‖/‖ Y (2)∗k ‖ < 0.1

‖ Y (3)i
k−Y (3)∗k ‖/‖ Y (3)∗k ‖ < 0.001.

(4.47)

or if all of the following conditions below are met for the three inputs

‖U(1)i+1
k −U(1)∗k ‖∞/‖U(1)∗k ‖∞ < 0.01

‖U(2)i+1
k −U(2)∗k ‖∞/‖U(2)∗k ‖∞ < 0.01

‖U(3)i+1
k −U(3)∗k ‖∞/‖U(3)∗k ‖∞ < 0.01

(4.48)

If these conditions are not met after 10 iterations, the algorithm terminates automatically.

Termination of the NMPC algorithm occurs if the minimization algorithm reached a feasible minimum

for the cost function in (4.40), or if the cost function values is less than 0.1, or if 10 iterations were
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Figure 4.2. Output of the plant when no measurement noise is added to the states, i.e. X +0. [Top:

mill total charge fraction (JT ). Middle: sump slurry volume (SVOL). Bottom: particle size estimate

(PSE). Legend: YSP is the desired set-point, YMPSP is the output from the MPSP controller (TC = 0.1

[h]), YNMPC is the output from the NMPC controller (TC = 0.1 [h]).]
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completed.

Finally, the partial derivatives of (4.17) necessary for the MPSP algorithm were explicit functions

obtained through symbolic differentiation.

4.4.3 Results

The results of the two simulation scenarios discussed in Section 4.4.1 are shown in Figs. 4.2 to 4.7. To

distinguish between the simulations cases, ‘X +0’ indicates the case where no measurement noise is

added to the states, and ‘X +ν’ indicates the case where measurement noise is added to the states. Figs.

4.2 and 4.3 show the output of the milling circuit when there is no measurement noise and when there

is measurement noise added to the states respectively. Figs. 4.4 and 4.5 show the input to the milling

circuit when there is no measurement noise and when there is measurement noise added to the states

respectively. Fig. 4.6 shows PSE zoomed in between 2 h and 2.5 h for both simulation cases. Fig. 4.7

shows the variation of the parameters every 3 minutes, and also shows the constant disturbances in αr

and κF . Fig. 4.8 shows the frequency of the number of iterations per time step.
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Figure 4.3. Output of the plant when measurement noise is added to the states, i.e. X +ν . [Top: mill

total charge fraction (JT ). Middle: sump slurry volume (SVOL). Bottom: particle size estimate (PSE).

Legend: YSP is the desired set-point, YMPSP is the output from the MPSP controller (TC = 0.1 [h]),

YNMPC is the output from the NMPC controller (TC = 0.1 [h]).]
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4.5 DISCUSSION

Table 4.5 shows the normalized root mean squared error between the output of the controllers and the

desired set-point. The NMRSE was calculated as

NRMSE =
1

λ̄SP

√
∑

N(λ̂ −λSP)2

N

where λSP is the desired set-point, λ̄SP is the mean of the set-point over the period, λ̂ is the process

signal, and N is the number of data points. It is interesting to note that the MPSP controller achieves

better output regulation than the NMPC controller, especially with regards to SVOL. The trends the

outputs follow for the NMPC and MPSP controllers are fairly similar, although there is some difference

in the trends for JT . The large deviation of the outputs from set-point after 3 h occurs because CFF is

constrained to its maximum allowable rate of 450 m3/h, as shown in the plots of the inputs in Figs. 4.4

and 4.5.

The measurement noise added to the states appears to have the greatest effect on PSE at the cyclone

overflow. This is shown in more detail in Fig. 4.6 where the top plot clearly shows the effect of the
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Figure 4.4. Inputs determined by the controllers when no measurement noise is added to the states, i.e.

X +0. [Top: mill feed ore (MFO). Middle: sump feed water (SFW ). Bottom: cyclone feed flow-rate

(CFF). Legend: U0 is the original operating point of the plant, UMPSP is the input from the MPSP

controller (TC = 0.1 [h]), UNMPC is the input from the NMPC controller (TC = 0.1 [h]).]
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parameter variation every 3 minutes and the bottom plot shows the effect of the measurement noise

added to the states. Because of the integrating effect of the charge in the mill and the charge in the

sump, the effect of the high frequency measurement noise added to the states is low-pass filtered for

outputs JT and SVOL. However, PSE is calculated using an algebraic function, and the small variations

in the state have a significant effect on its value. Since the measurement noise added to the mill states

is filtered by the sump, which acts as a buffer between the mill and the cyclone, the noisy states which

Table 4.5. Normalized root mean squared error between desired set-points and outputs for both

controllers. ((X +0) - No measurement noise added to states. (X +ν) - Measurement noise added to

states.)

JT SVOL PSE

X +0
MPSP 0.46% 3.8% 1.7%

NMPC 0.77% 12 % 1.6%

X +ν

MPSP 0.49% 4.4% 2.0%

NMPC 0.89% 14% 1.8%
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Figure 4.5. Inputs determined by the controllers when measurement noise is added to the states i.e.

X + ν . [Top: mill feed solids (MFO). Middle: sump feed water (SFW ). Bottom: cyclone feed

flow-rate (CFF). Legend: U0 is original operating point of the plant, UMPSP is the input from the

MPSP controller (TC = 0.1 [h]), UNMPC is the input from the NMPC controller (TC = 0.1 [h]).]
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

contribute most to the variations in PSE are xsw, xss and xs f respectively. Of specific importance is the

noise added to xs f , since the volume of fines in the sump is the most significant contributor to PSE, as

shown in (4.15). What is apparent from Fig. 4.6 is that both controllers struggle to reject measurement

noise added to the states.

The model-plant mismatch created by varying the plant parameters every 3 minutes does not appear to
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Figure 4.6. A zoomed in plot of (PSE) between 2 h and 2.5 h for both simulation cases. The top plot

clearly shows the effect of the parameter variation every 3 minutes. For the bottom plot, the noise

added to the states dominate the plot.
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Figure 4.7. The variation of parameters α f , αr, αsu, εc, κB, κF and κR every 3 minutes (0.1 h)

according to their respective uncertainties shown in Tables 4.2. The step disturbances in αr between

1.2 h and 2.8 h and κF between 2.2 and 3.8 h can be seen in the graphs of αr and κF respectively.
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

have a detrimental effect on overall plant performance. The mismatch effect can be seen most clearly in

the top plot of Fig. 4.6. Both controllers are able to maintain an acceptable level of plant performance,

but neither controller can fully reject the mismatch.

The step disturbance between 1.2 h and 2.8 h in αr, as shown in Fig. 4.7, does not seem to have a

significant impact on the overall performance of the milling circuit. No significant change in the plant’s

inputs can be seen to compensate for this disturbance. Another contributing factor that may possibly

diminish the effect of this disturbance can be the variation of κR.

The effect of the step disturbance between 2.2 h and 3.8 h in κF can be seen most clearly in the use of

CFF by both controllers. An increase in this parameter simulates a case where the ore hardened and it

takes longer for the ore to grind sufficiently fine. In order to maintain the required PSE, it is necessary

for CFF to increase. However, an increase in CFF will result in a decrease of SVOL. The decrease in

SVOL is negated by increasing the flow of SFW . Because more energy is required to break the ore, it

takes longer to break. As shown in Figs. 4.4 and 4.5, MFO decreases slightly to maintain a constant

JT . Because CFF is constrained after approximately 3 h, as shown in Figs. 4.4 and 4.5, PSE cannot
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Figure 4.8. Algorithm iterations frequency. [(X +0) - no noise added to states. (X +ν) - noise added

to states.]
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

be maintained at set-point, as shown in Figs. 4.2 and 4.3.

Fig. 4.8 shows the frequency of the number of iterations per time step needed by both the MPSP and

NMPC minimization algorithms to reach a solution. It should be remembered that the MPSP and

NMPC routines were limited to a maximum of 10 iterations. As seen from Figs. 4.8, for the simulation

scenarios considered in this paper, 2 iterations of the MPSP routine is usually sufficient to find an

optimal solution. When noise is added to the states, the MPSP algorithm may require a few more

iterations to achieve a feasible solution. On the other hand, the NMPC algorithm usually achieves

convergence within 3 iterations if no noise is added to the states, and between 3 and 6 iterations if

noise is added to the states.

It is regarded as unfair to compare the computational time for the custom programmed MPSP routine to

the NMPC routine implemented with the fmincon function of the Optimization Toolbox of MATLAB.

The custom programmed MPSP routine does not call as many subroutines and error handling routines

as fmincon. However, for interest sake the average computational time required for one iteration of

the MPSP routine was 0.23 s. The average computational time for the fmincon function to complete

one iteration was 2.1 s. Simulations were carried out on a 64-bit system with 8GB RAM and an Intel

Core i7-3450M CPU @ 3.00 GHz in MATLAB R2015a. Obviously the computational time of both

routines can be decreased, but it is encouraging to note that the large number of matrix operations for

the MPSP routine is handled quickly and effectively.

4.6 CONCLUSION

Output tracking using MPSP was successfully applied to a non-linear model of a single-stage closed

grinding mill circuit. The performance of the proposed MPSP controller was evaluated against the

performance of a standard constrained NMPC controller applied to the same plant for the same

conditions. The aim of this work is not to compare the mathematical details of each minimization

algorithm, but rather to show the control abilities of MPSP in the presence of noise, model-plant

mismatch, disturbances and input box constraints.

Results indicate that the performance of the MPSP controller compares favourably to the performance

of an NMPC controller. Compared to NMPC, MPSP achieved improved output regulation in the
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

presence of model-plant mismatch, disturbances and measurement noise. Even if the MPSP algorithm

is limited to two iterations per time step, it is still capable of controlling the plant with adequate accuracy.

The advantage of MPSP is that the computational burden is decreased by converting the dynamic

optimization problem to a low-dimensional static optimization problem, calculating the sensitivity

matrices recursively and using a closed form expression to update the control. Although the prediction

and control horizons are equal in MPSP, this does not lead to substantially increased computational

time. If these horizons are decreased further the computational time should also decrease, but at

the cost of control performance. Further improvements to the computational time of MPSP can be

achieved by using improved matrix operation programming techniques for performing matrix inverses

and multiplication. Future work for MPSP will involve the application of equality and inequality

constraints for states, inputs and outputs in the algorithm formulation, as well as creating a framework

for a robust MPSP controller.

MPSP shows promise as a suitable option for non-linear model-based optimal control for output

tracking in large industrial processes, especially if computational time and complexity is a limiting

factor for the real-time application of a model-based optimal controller.

Because of the limited number of real-time measurements available on industrial circuits, full state

feedback, as used above for the MPSP and NMPC controllers, is rarely possible. A common method

of MPC feedback is a comparison between the measured output and the model prediction at time k to

generate a disturbance estimate. This disturbance term is then added to the output prediction over the

entire prediction horizon when formulating the MPC objective function. The implicit assumption is

that the disturbance estimate is due to an additive step disturbance which persists in the output for the

entire prediction horizon. Although this constant disturbance error model can accurately model setpoint

changes which enter the feedback loop as step disturbances, approximate slowly varying disturbances,

and provide zero offset for step changes in setpoints, it remains sensitive to random fluctuations in

the output. In the case of stable processes, the constant disturbance model provides integral action

for the controller, but for integrating and unstable processes the constant disturbance model fails

because the estimator contains the unstable poles of the process (Meadows and Rawlings 1997, Qin

and Badgwell 2003).

The disadvantages of a constant disturbance model for MPC feedback can easily be addressed by

updating the controller model with state and parameter estimates from a state observer (Olivier and
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CHAPTER 4 MODEL PREDICTIVE STATIC PROGRAMMING

Craig 2013, Le Roux et al. 2016a). However, in the case of grinding mill circuits, only a limited

number of states and parameters can be realistically estimated from measurements commonly found

at industrial circuits. The next chapter investigates which states and parameters can be realistically

estimated from measurements at the inflow and outflow of the mill. Furthermore, an observer model

with states and parameters linearly observable from mill measurements is developed.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION

FOR A GRINDING MILL

The aim of this chapter is to develop an observer for use in model-based control strategies of grinding

mill circuits (Le Roux et al. 2016a, Cortinovis, Mercangöz, Mathur, Poland and Blaumann 2013). An

observer model is developed for a SAG mill with states and parameters that are linearly observable

from mill inflow, discharge, and total volumetric filling measurements. A proof of observability is

provided to indicate which measurements are required for the model to provide a reliable estimation.

A simulation study using an EKF is presented to illustrate the effectiveness of the observer.

The chapter is organized as shown below:

1. Section 5.1 discusses the non-linear observer model used to describe the grinding mill.

2. Section 5.2 describes the observability analysis of the non-linear observer model, and the model

reduction to obtain a model with states which are linearly observable.

3. Section 5.3 gives a brief description of the design of the EKF.

4. Section 5.4 provides a simulation study for the observer.

5. Section 5.5 discusses the results.

6. Section 5.6 concludes the chapter.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.1 OBSERVER MODEL FOR A GRINDING MILL

As depicted in Fig. 5.1, only the SAG mill in the single-stage closed grinding circuit described in

Section 2.1.1 is considered in this chapter. The variables of interest for the SAG mill are shown in

Table 5.1. As discussed in Section 2.1.2, Pmill and JT are commonly measured variables, whereas Q

and ρQ are not generally included as real-time measured variables on industrial plants. To illustrate the

benefits to be gained from including Q and ρQ measurement instrumentation on industrial circuits, it is

assumed measurements of Q and ρQ are available.

This section describes how the observer model is developed. The modelling approach is similar to

the mill model of Le Roux et al. (2013b) described in Section 4.1.1. However, in this case, use is

made of the breakage rate modelling results of Hinde and Kalala (2009), and the discharge flow-rate

modelling results of Morrell and Stephenson (1996), and Latchireddi and Morrell (2003), to develop

the observer model. The aim of the observer is to use the variables listed in Table 5.1 as measured

quantities to estimate the mill states, the discharge rate constant, and the ore and ball breakage rates.

The nomenclature for the model is given in Table 5.2.

The constituents in the mill are modelled as four volumetric quantities: water (xw), solids (xs), rocks

(xr), and balls (xb). The observer model makes use of only two size classes to describe ore in the mill:

Mill Feed Ore
(MFO)

Mill Inlet
Water
(MIW )Mill Feed Balls

(MFB)

Mill Filling
(JT )

Mill Power
(Pmill )

Mill

Mill Speed
(φc)

Discharge Density
(ρQ)

Discharge Flow-rate
(Q)

Classifier Flow

Figure 5.1. A semi-autogenous grinding mill.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

solids includes all ore smaller than the end-discharge grate aperture size, and rocks all ore larger than

the aperture size.

5.1.1 Process dynamics

5.1.1.1 Process feed

Similar to (4.2), the mill feed flow-rates are described as

Vwi = MIW +Vcw (5.1a)

Vsi = MFO(1−αr)/ρO +Vcs (5.1b)

Vri = αrMFO/ρO (5.1c)

Vbi = MFB/ρB (5.1d)

where Vwi, Vsi, Vri, and Vbi (m3/h) are the mill inflow of water, solids, rocks, and balls respectively, and

Vcw and Vcs (m3/h) are the flow of water and solids returned by the classifier respectively. It is assumed

that the flow from the classifier to the mill is known. Parameter αr, which defines the mass fraction of

rocks in MFO, is assumed to be measured as a function of time (Wei and Craig 2009b). The implicit

assumption when dividing by ρO in (5.1b) and (5.1c) is that the ore is non-porous.

Table 5.1. Description of circuit variables assumed to be measured.

Variable Unit Description

MIW [m3/h] Flow-rate of water to the mill

MFO [t/h] Feed-rate of ore to the mill

MFB [t/h] Feed-rate of steel balls to the mill

JT [-] Fraction of mill volume filled with charge

Q [m3/h] Mill discharge flow-rate

ρQ [t/m3] Mill discharge density

Pmill [kW] Mill power draw
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.1.1.2 Population balance

The population balance used to describe the kinetics of the states defined above is

ẋw =Vwi−Vwo (5.2a)

ẋs =Vsi−Vso +RC (5.2b)

ẋr =Vri−RC (5.2c)

ẋb =Vbi−BC (5.2d)

where Vwo and Vso (m3/h) are the discharge of water and solids from the mill respectively, and RC

and BC (m3/h) are the consumption of rocks and balls respectively. Because the mill is fitted with an

end-discharge grate, no rocks or balls are discharged from the mill. It is assumed the mill is a fully

mixed reactor. The rate of ball consumption is considerably slower than for rocks, and its contribution

to solids is regarded as negligible.

Table 5.2. Observer Model Nomenclature

Parm Unit Description

αr [-] Fraction rock in the feed ore

ρB [t/m3] Density of steel balls

ρO [t/m3] Density of feed ore

ρW [t/m3] Density of water

η [h−1m−3] Discharge rate per volume of slurry

Kb [1/h] Ball abrasion rate

Kr [1/h] Rock abrasion rate

vmill [m3] Mill volume

xb [m3] Volume of balls in the mill

xr [m3] Volume of rocks in the mill

xs [m3] Volume of solids in the mill

xw [m3] Volume of water in the mill
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.1.1.3 Breakage rates

The cumulative rates modelling approach assumes only one function is necessary to describe the

grinding kinetics. The cumulative breakage rate function is defined as the rate per unit mass that a

given species coarser than a given size breaks to below that size (Le Roux and Craig 2013). This is

an advantage over other population balance models which require two functions, a breakage rate and

an appearance function, to describe grinding kinetics (Whiten 1974). The cumulative breakage rates

modelling approach was used by Austin, Sutherland and Gottlieb (1993) to model the steady-state

behaviour and by Amestica, Gonzalez, Barria, Magne, Menacho and Castro (1993) and Amestica et

al. (1996) to model the dynamic behaviour of SAG mills. A disadvantage of this approach is that the

cumulative rate of breakage of ore above a given size si is assumed to be unaffected by the grinding

environment and the detailed structure of the size distribution above si. Empirical relationships are

required to relate the parameters of the cumulative breakage rate function to variations in the milling

environment. However, more sophisticated models face similar problems where the parameters of

both the breakage rate and breakage distribution function vary according to changes in the grinding

environment (Hinde and Kalala 2009). The cumulative breakage rate function remains constant

if the ball filling level and the charge level remain relatively constant (Amestica et al. 1993). A

validation study of the cumulative rates model was conducted by Salazar et al. (2009), and a model

predictive controller using the cumulative rates model was investigated in simulation by Salazar et al.

(2014).

Similar to the cumulative rates modelling approach, the consumption of rocks (RC) and balls (BC) in

the population balance of (5.2b) to (5.2d) are described as

RC = xrKr (5.3a)

BC = xbKb (5.3b)

where Kr and Kb (1/h) are the abrasion rates of rocks and balls respectively.

A relatively constant rock abrasion rate Kr can be achieved through a high xb (as in the case of a ball

mill), but the heavy balls increase the power required to turn the mill and consequently increase the

energy costs. The ball abrasion rate Kb depends on the ore characteristics, the mill liner type, the ball

material, xr, and xb. A high xb increases Kb as there is more ball-ball and ball-liner contact rather than

ball-ore contact. Although a low xb reduces Kb, it also reduces the grinding ability of the mill. For a
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

very high mill rotational rate the balls may collide with exposed liners causing unnecessary liner wear

and a higher Kb.

5.1.1.4 Mill discharge

The mill discharge model for the observer is adapted from the model presented in Morrell and Stephen-

son (1996), where the discharge of charge from the mill through the end-discharge grate is viewed as a

product of two mechanisms: the fluid transport through the grate, and the solids classification by the

grate which differentiates between ground particles either returning to the milling chamber for further

grinding or becoming part of the mill discharge stream. In the case of i = 1,2, ...,N ore size classes,

the discharge rate (di) (h−1) of the mill charge is approximated as (Morrell 2004)

di = d0 ; si ≤ sm

di = d0
lnsi−lnsg
lnsm−lnsg

; sm < si ≤ sg

di = 0 ; si > sg,

(5.4)

where si (mm) represents the particle size classes, d0 (h−1) is the specific discharge rate for water

and ore up to particle size sm (mm) (i.e. slurry), and sg (mm) is the effective mesh size of the grate

above which discharge is zero. Since rocks and balls are larger than sg, they have a discharge rate of 0

h−1.

To determine d0, a function relating slurry hold-up to slurry flow (i.e. flow of particles smaller than

sm exhibiting the same flow characteristics as water) out of the mill is required. This function should

account for whether the slurry flow occurs via the grinding media or via a slurry pool. The slurry

flowing through a single grate aperture depends on the following factors: area of the aperture, depth of

the aperture below the free surface of the slurry, gravity and centrifugal forces, and slurry viscosity. By

analysing pilot and industrial mills, Morrell and Stephenson (1996) expressed the relationship between

slurry flow-rate and hold-up for the case where slurry flow occurs via the grinding media and for the

case where slurry flow occurs via the slurry pool. Slurry flow via the grinding media Qm (m3/h) is

expressed as

Qm = kmJ2
pmλ 2.5D0.5

m Aφ−1.38
c ; Jp ≤ Jmax, (5.5)

where km (m0.5/h) is a constant, Jpm is the net fractional slurry hold-up in the grinding media, Dm

(m) is the mill diameter, A (m2) is the total open area of the grate apertures, φc is the fraction of the

critical mill speed, Jp is the net fraction of the mill volume filled with slurry hold-up in the grinding
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

media plus the pool zone, Jmax = 0.5JT − Jpo is the maximum net fractional slurry hold-up within the

interstices of the grinding media, Jpo = 0.33(1− r̄a) is the fractional “dead” slurry hold-up within

the mill (contained between the mill shell and the outer most grate aperture), and r̄a (m) is the radial

position of the outermost row of grate apertures as a fraction of the mill radius rm. The mean relative

radial position of the grate apertures is defined as λ = ∑riai
rm ∑ai

where ai is the open area of all holes at a

radial position ri. Slurry flow via the slurry pool Qt (m3/h) is expressed as

Qt = ktJptλ
2D0.5

m A ; Jp > Jmax ; Jpt = Jp− Jmax, (5.6)

where Jpt is the net fractional hold-up of slurry in the slurry pool, and kt (m0.5/h) is a constant.

It is worth noting the inverse relationship between φc and Qm in (5.5). A possible reason for this

relationship is the increase in the dynamic porosity (void fraction) of the charge as the mill speed

increases (Latchireddi and Morrell 2003). Also, the grinding media thrown from the charge shoulder

overshoots the charge toe because of the higher speed. As a result of the overshoot the number of

high impact breakage events reduces and consequently the fines contributing to the mill slurry reduce.

Morrell and Stephenson (1996) assumed the viscosity effects would be captured by the constants km

and kt without altering the form of (5.5) and (5.6).

Solids between sizes sm and sg also exit the mill and contribute approximately 5-15% to the volumetric

flow-rate depending on the size of the grates. To predict the total flow-rate of slurry out of the mill

Q, the predictions for Qm and Qt need to be increased to account for the additional amount of coarse

material. Therefore

Q = kg(Qm +Qt), (5.7)

where kg is a positive dimensionless factor to account for coarse material. The value of kg varies

depending on the grate aperture size. Morrell and Stephenson (1996) provide guidelines on the choice

of kg.

In the inferential measurement work of Apelt et al. (2002a) it is assumed that no slurry pooling occurs in

the case of a large open area (A), a high relative radial position of the open area (λ ), and a high relative

radial position of the outermost apertures (r̄a) in the end-discharge grate. For this study it was assumed

that the discharge flow is only through the grinding media, i.e. Q = kgQm. Therefore, assuming no

slurry pooling, Q can be approximated as (Kojovic, Powell, Bailey and Drinkwater 2011)

Q = kgkmλ
2.5D0.5

m Aφ
−1.38
c J2

pm. (5.8)
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

As shown in (5.8), Q is quadratically proportional to Jpm if there is no slurry pool. Thus, in terms of

the four states of the observer defined (xw, xs, xr, and xb), it is possible to express Q as

Q = η (xw + xs)
2 (5.9)

where (xw + xs) represents the total slurry hold-up in the mill, and η (h−1m−3) is the discharge rate

per volume of slurry. Since only two size classes are used for the observer model, one size which

discharges completely and one which remains inside the mill, it is implicitly assumed in (5.9) that

sg = sm in (5.4). Therefore, the discharge of the water (Vwo) and solids (Vso) in (5.2a) and (5.2b) can

be expressed as

Vwo = η (xw + xs)xw (5.10a)

Vso = η (xw + xs)xs. (5.10b)

5.1.2 Process output

For this study, it is assumed that measurements of JT , Q and ρQ are available. The implications of

measuring these variables are discussed in Section 2.1.2. These quantities are modelled as

JT =
xw + xs + xr + xb

vmill
(5.11a)

Q = η (xw + xs)
2 (5.11b)

ρQ =
ρOxs +ρW xw

xs + xw
. (5.11c)

The fourth measured output listed in Table 5.1 is Pmill (kW), which is defined by Apelt et al. (2001)

as

Pmill = PNL + kPPC, (5.12)

where PNL (kW) is the no-load power (empty mill power draw), PC (kW) is the mill power draw

attributed to the mill contents, and kP is a lumped power draw parameter to account for heat losses

due to internal friction, energy for attrition and abrasion breakage and rotation of grinding media,

plus inaccuracies associated with the assumptions and measurements of the charge shape and motion

Napier-Munn et al. (2005).

Apelt et al. (2001) models PC as an empirical function of JT and the mill charge density (ρC)

ρC =
ρbxb +ρo (xr + xs)+ρwxw

xb + xr + xs + xw
. (5.13)
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

Ideally ρC could be inferred from the measurement of Pmill using the power draw model in Apelt et

al. (2001). However, to use the model, parameter kP in (5.12) must be fitted to process data. This

fitting process requires ρC to be known. Therefore, the observer model does not make use of Pmill as an

output equation as it only introduces additional parameters to estimate. The same holds true for other

models of Pmill , such as for example the models in Austin (1990) and Le Roux et al. (2013b).

5.2 OBSERVABILITY OF STATES AND PARAMETERS

5.2.1 Background

A multi-input-multi-output control-affine nonlinear state-space model with dim(x) = n and dim(y) = m

can be written as
ẋ = f (x)+g(x)u

y = h(x) .
(5.14)

The system in (5.14) is said to be locally (weakly) observable at x0 if there exists a neighbourhood X0 of

x0 such that for every x1 which is an element of the neighbourhood X1⊂X0 of x0 the indistinguishability

of the states x0 and x1 implies that x0 = x1. The two states x1 and x0 are said to be indistinguishable

if for every admissible input u the output y of (5.14) for the initial state x0 and for the initial state x1

is identical. If the system satisfies the so called observability rank condition, i.e. the observability

codistribution of x0 (Hermann and Krener 1977)

dO= span
{

dh j,dL f h j, . . . ,dLn−1
f h j

}
; j = 1 . . .m (5.15)

has dimension n at x0, then the system is locally (weakly) observable. Note, Lk
f h j refers to the

k-th repeated Lie derivative of the scalar function h j(x) along the vector field f (x), and d is the

exterior derivative (Doyle and Henson 1997). In the linear case, the observability codistribution

corresponds to the observability matrix OT =
[
CT ,ATCT , . . . ,(An−1)TCT

]
where C = ∂h

∂x |x=x0 and

A = ∂

∂x ( f (x)+g(x)u) |x=x0, u=u0 .

5.2.2 Analysis of observer model

For the observer model of the grinding mill, it is assumed that the parameters η , Kr and Kb are unknown

constants, although in practice these parameters may vary slowly. Thus, the observer model described
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

in Section 5.1 can be written in the form of (5.14), such that

ẋ = fO (x)+gO (x)u =



−η (xw + xs)xw

−η (xw + xs)xs + xrKr

−xrKr

−xbKb

03×1


+

 I4×4

03×4

u (5.16a)

y = hO(x) = [JT ,Q,ρQ]
T (5.16b)

where x = [xw,xs,xr,xb,η ,Kr,Kb]
T , u = [Vwi,Vsi,Vri,Vbi]

T and y = hO(x) is given by (5.11). (The

subscript O refers to Observer.)

For the system in (5.16), the dimension of the observability codistribution dO was determined using

Maple1. The dimension of dO at a generic point x0 is 7, which implies that the nonlinear system is

locally (weakly) observable. Thus, a non-linear observer such as a moving horizon estimator (MHE)

could possibly estimate the unknown states and parameters. However, it is necessary to correctly

assume the time-varying nature of the parameters for the MHE to estimate the true state and parameter

values. A longer time horizon for the MHE reduces the validity of modelling the parameters as

constants, but a shorter time horizon may not include sufficient system dynamics for the observer to

estimate the unknown states and parameters.

Linearisation of (5.16) results in the A and C matrices

A =



−η (2xw + xs) −ηxw 0 0 −(xw + xs)xw 0 0

−ηxs −η (xw +2xs) Kr 0 −(xw + xs)xs xr 0

0 0 −Kr 0 0 −xr 0

0 0 0 −Kb 0 0 −xb

03×1 03×1 03×1 03×1 03×1 03×1 03×1


(5.17a)

C =


1

vmill

1
vmill

1
vmill

1
vmill

0 01×2

2η (xw + xs) 2η (xw + xs) 0 0 (xw + xs)
2 01×2

ρW−ρQ
xw+xs

ρO−ρQ
xw+xs

0 0 0 01×2

 . (5.17b)

The observability matrix O formed from (5.17) has rank 5. From an analysis of the eigenvalues

and eigenvectors of the matrix A it can be seen that the three unknown parameters (η , Kr, Kb) each

contribute an integral mode to the linearised system. Because of this repeated mode, two of the

1MapleT M is a trademark of Waterloo Maple Inc.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

three parameters need to be chosen in the linearised model for the other parameter to be linearly

observable.

In an attempt to attain linear observability of the system, the time derivatives of (5.16b) can be

used as additional measurements. However, the addition of J̇T , Q̇, or ρ̇Q, or all of these derivatives

only increases the rank of the observability matrix O from 5 to 6. To achieve full column rank, the

measurement ρC needs to be used along with Q̇, or ρ̇Q, or both (Le Roux, Steinboeck, Kugi and

Craig 2016c). However, direct measurement of ρC is rarely possible. If ρC is estimated from Pmill ,

additional unknown parameters are introduced which negates any benefit of using ρC as an inferred

measured variable. (For further details on the observability analysis, refer to the Appendix.)

5.2.3 Model reduction and linear observability

5.2.3.1 Reduced model

To achieve linear observability, the model in (5.16) is reduced based on the assumption that the

dynamics of the slurry (xw and xs) is much faster than the dynamics of the grinding media (xr and xb).

Therefore,

ẋ = fRM (x)+gRM (x)u =


−η (xw + xs)xw

−η (xw + xs)xs +χ

03×1

+
 I2×2

03×2

u (5.18a)

y = hRM (x,u) =



xw+xs+xrb
vmill

η (xw + xs)
2

ρOxs+ρW xw
xs+xw

(ρO−ρW )(χxw+xwVsi−xsVwi)

(xs+xw)
2

 (5.18b)

where x = [xw,xs,xrb,η ,χ]T , u = [Vwi,Vsi]
T , and y = [JT ,Q,ρQ, ρ̇Q]

T . (The subscript RM refers to

Reduced Model.) The state xrb (m3) represents all grinding media in the mill (sum of rocks and balls)

which is assumed to stay relatively constant compared to xw and xs, and the state χ (m3/h) represents

the accumulation of solids. The output vector in (5.11) is extended in (5.18b) with the addition of

ρ̇q.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.2.3.2 Linear observability

The A and C matrices for the system in (5.18) are

A =


−η (2xw + xs) −ηxw 0 −(xw + xs)xw 0

−ηxs −η (xw +2xs) 0 −(xw + xs)xs 1

03×1 03×1 03×1 03×1 03×1

 (5.19a)

C =



1
vmill

1
vmill

1
vmill

0 0

2η (xw + xs) 2η (xw + xs) 0 (xw + xs)
2 0

ρW−ρQ
xw+xs

ρO−ρQ
xw+xs

0 0 0
(ρO−ρW )(χ+Vsi)

(xw+xs)
2 − 2ρ̇Q

xw+xs

(ρW−ρO)Vwi

(xw+xs)
2 −

2ρ̇Q
xw+xs

0 0 (ρO−ρW )xw

(xw+xs)
2

 . (5.19b)

The observability matrix O of the pair (C,A) has full column rank. Therefore, all states and parameters

are observable from the system outputs. However, at steady-state, ρ̇Q will be equal to zero and the

observability matrix O will no longer have full column rank. (The determinant of the first 5 rows and

columns is det(O1..5,1..5) = (ρO−ρW ) ρ̇Q/v2
mill which reduces to zero at steady-state.) For a reasonable

value of ρ̇Q it is necessary to continuously excite the system.

As seen in (5.18b), the derivative of ρQ is used as a fourth measurement. This is necessary to achieve

linear observability. If J̇T is used instead of ρ̇Q in (5.18b), the observability matrix O does not have

full column rank. Although Q̇ could be used to achieve full column rank, it is a function of η̇ which

is assumed to be equal to zero in (5.18a). Rather than including the assumption that η̇ = 0 in the

measurement model, ρ̇Q is used in (5.18b).

The eigenvalues of A in (5.19a) are

λ = {−2η (xw + xs) ,−η (xw + xs) ,0,0,0} (5.20)

and the associated eigenvectors are

T =



xw
xs
−1 −xw

2η(xw+xs)
2
−xw
2η

0

1 1 xs+2xw

2η(xw+xs)
2

−xs
2η

0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0


. (5.21)
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

The output pole matrix Yλ =CT is

Yλ =



xw+xs
vmillxs

0 1
2η(xw+xs)vmill

−xw−xs
2ηvmill

1
vmill

2η(xw+xs)
2

xs
0 1 0 0

0 ρO−ρW
xw+xs

xw(ρO+ρW )

η(xw+xs)
3 0 0

(ρW−ρO)ρ̇Q
xs

(ρW−ρO)(χ+Vsi+Vwi)

(xw+xs)
2

(ρW−ρO)(xw(3χ+3Vsi+2Vwi−2η(xw+xs)
2)−Vwixs)

2η(xw+xs)
4

ρ̇Q
2η

0


(5.22)

Through the state transformation x = T z, with x as in (5.18a), T as in (5.21), and the transformed

state z, it is seen that the three repeated eigenvalues λ3 = λ4 = λ5 = 0 are associated with the state

xrb and the parameters η and χ . Collecting the eigenvectors associated with the repeated eigenvalues

in the matrix Tλ3..5 (i.e. the last three columns in (5.21)), and the corresponding output pole vectors

in the matrix Yλ3..5 (i.e. the last three rows in (5.22)), shows that the number of observable states

corresponding to eigenvalue λi = 0 is (Skogestad and Postlethwaite 2005)

rank(Tλ3..5)− rank(Yλ3..5) = 3−3 = 0.

This corresponds to the result from evaluating the rank of the observability matrix O. The state xrb

and the parameters η and χ are observable through the integrating mode. The states xw and xs are

observable through the fast and slow modes.

5.3 OBSERVER DESIGN

The trapezoidal rule is used to discretize the reduced observer model presented in continuous-time

form in (5.18). A discrete EKF is used as the non-linear estimator (Simon 2006). The system and

measurement equations are

xk = Fk−1 (xk−1,uk−1,wk−1)

yk = Hk (xk,uk,vk)

wk ∼ (0,Qk) ; vk ∼ (0,Rk)

(5.23)

where the process noise wk is white noise with covariance Qk > 0 and the measurement noise vk is

white noise with covariance Rk > 0.

Between each measurement, the state estimate x̂k and the estimation-error covariance matrix Pk is

propagated according to the known non-linear dynamics of the system:

x̂−k = Fk−1
(
x̂+k−1,uk−1,0

)
P−k = Tk−1P+

k−1T T
k−1 +Lk−1Qk−1LT

k−1

(5.24)
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

where Tk−1 =
∂Fk−1
∂xk−1

|x̂+k−1,uk−1,0 and Lk−1 =
∂Fk−1
∂wk−1

|x̂+k−1,uk−1,0. The state estimate and its covariance is

updated through

Kk = P−k ST
k

(
SkP−k ST

k +Rk
)−1

x̂+k = x̂−k +Kk
[
yk−Hk

(
x̂−k ,uk,0

)]
P+

k = (I−KkSk)P−k

(5.25)

where Sk =
∂Hk
∂x |x̂−k ,uk,0.

Since the trapezoidal rule is used to discretize the system, matrices Lk and Tk are defined as

Tk−1 =
[
I− Ts

2
∂ fRM

∂x |x̂−k ,uk,0

]−1
·
[
I + Ts

2
∂ fRM

∂x |x̂+k−1,uk−1,0

]
Lk−1 = Ts

2

[
I− Ts

2
∂ fRM

∂x |x̂−k ,uk,0

]−1 (5.26)

where Ts is the time step between samples.

5.4 SIMULATION

5.4.1 Simulation setup

The aim of the simulation is to test the effectiveness of the reduced observer model to be used in a

state and parameter estimation scheme. The simulation setup is depicted in Fig. 5.2. The plant, a SAG

mill with an end-discharge grate, is represented by the continuous-time dynamic non-linear model of

Le Roux et al. (2013b) as described in Section 4.1.1. However, in this chapter, the power-draw is given

by the model of Apelt et al. (2001). This representation of the mill is used to simulate the system and

to generate fictitious measurement data. The noisy measurement data is filtered using a Savitzky-Golay

filter, which is also used to determine the derivative ρ̇Q (Savitzky and Golay 1964). A discrete EKF

using the reduced observer model in (5.18) is used as the non-linear estimator.

Model:
ẋ = fP(x,u)+w
y = hP(x,u)

Plant: SAG mill

Model:
ẋ = fRM(x)+gRM(x)u
y = hRM(x)

Observer: EKF

u ỹ

x̂

v

y
+

Noise
Filter

Figure 5.2. Simulation setup.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.4.1.1 Plant model

The plant model divides the ore into the same two size classes as used in the observer model. Therefore,

the mill inflow flow-rates are the same as in (5.1), and the population balance of the model is the same

as in (5.2). The mill discharge flow-rates for water and solids are defined as in (4.3a) and (4.3b), and

the rock consumption (RC) and ball consumption (BC) for the plant model are defined as in (4.5a) and

(4.5b).

The mill power draw model described in Apelt et al. (2001) is used to define Pmill . The mill parameters

and variables necessary to calculate the mill power draw is depicted in Fig. 5.3. Pmill in (5.12) is

described in terms of PNL and PC. The latter can be written as

PC = Pcyl +Pcone (5.27)

where Pcone is the power draw resulting from material in the conical feed end section and Pcyl is the

power draw resulting from material in the cylindrical section of the mill. These are expressed as

Pcyl =πgLmωrmρC
2r3

m−3zr2
mri + r3

i (3z−2)
3(rm− zri)

(sinθS− sinθT )+ (5.28a)

Lmω
3r3

mπ
3
ρC

(rm− zri)
4− (zri− ri)

4

(rm− zri)
3

Pcone =
πgLcωρC

3(rm− rt)

(
r4

m−4rmr3
i +3r4

i
)
· (sinθS− sinθT )+ (5.28b)

2π3Lcω3ρC

5(rm− rt)

(
r5

m−5rmr4
i +4r5

i
)

where g (m/s2) is the acceleration constant, ω = φc
2π

√
g
rm

(Hz) is the rotational rate of the mill, z is a

charge velocity profile parameter, rm (m) is the mill inner radius, ri (m) is the inner charge radius, rt

ri

rm h

dr

Lm

θS

θT

Figure 5.3. Parameters to calculate mill power draw.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

(m) is the mill trunnion radius, Lc (m) is the cone length, θS (rad) is the charge shoulder angle, and

θT (rad) is the charge toe angle. The mill charge toe angle θT and shoulder angle θS are empirically

defined as (Napier-Munn et al. 2005)

θT = 2.5307(1.2796− JT )
(
1− e−19.42(φec−φc)

)
+ π

2

θS = π

2 −
(
θT − π

2

)
[(0.3386+0.1041φc)+(1.54−2.5673φc)JT ]

where φec = 0.35(3.364− JT ) is the experimentally determined fraction of critical mill speed at which

centrifuging is fully established. The empirical relations for z and ri are

z = (1− JT )
0.4532

ri = rm ·
(

1− 2πβJT
2π−θT+θS

)
where β = tc

tc+t f f
is the fraction of the charge that is active. To calculate β , empirical relations are

defined for the mean travel time of particles in the mill from the charge toe to the charge shoulder (tc),

the mean travel time of particles in free fall from the charge shoulder to the charge toe (t f f ), and the

mean radial position of the mill charge r̄.

tc = 2π−θT+θS
πω

t f f =
(

2r̄·(sinθS−sinθT )
g

)0.5

r̄ ≈ rm
2 ·
(

1+
(

1− 2πJT
2π−θT+θS

)0.5
)

Finally, the plant model is written as

ẋ = fP (x,u) =


Vwi−ϕdHxw

(
xw

xs+xw

)
Vsi−ϕdHxw

(
xs

xs+xw

)
+ ϕPmillxr

ρOκr(xr+xs)

Vri− ϕPmillxr
ρOκr(xr+xs)

Vbi− ϕPmillxb
κb[ρO(xr+xs)+ρBxb]

 (5.29a)

y = hP (x,u) =


xw+xs+xr+xb

vmill

ϕdHxw

ρOxs+ρW xw
xs+xw

 (5.29b)

where y = [JT ,Q,ρQ]
T . (The subscript P refers to the plant.)

5.4.2 Simulation environment

Table 5.3 shows the plant model parameter values and Table 5.4 shows the considered initial conditions.

The data is for an industrial single-stage closed grinding mill circuit as in Le Roux et al. (2013b).
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.4.2.1 Plant and observer

The general simulation environment for the plant and observer is described below:

• The plant is integrated using the fourth order Runge-Kutta method at a rate of Ts = 2 s. The full

simulation time is 8 h.

• Measurements are sampled at a rate of Ts = 2 s.

Table 5.3. Model parameter values.

Parameter Value Unit Description

αr 0.47 [-] Fraction of rock in feed ore

dH 88 [1/h] Constant mill discharge parameter

Dm 4.07 [m] Mill inside diameter (Dm = 2rm)

εsv 0.6 [-] Max fraction solids by volume of slurry at zero slurry flow

φc 0.72 [-] Fraction of critical mill speed

g 9.8 [m2/s] Gravity constant

κB 90 [kWh/t] Energy required per tonne of steel balls consumed

κR 6.72 [kWh/t] Energy required per tonne of rocks consumed

kP 0.97 [-] Power draw fitting parameter

Lc 0 [m] Mill cone length

Lm 4.54 [m] Mill cylinder length

PNL 93.73 [kW] Mill power at zero load

ρB 7.85 [t/m3] Steel ball density

ρO 3.2 [t/m3] Ore density

ρW 1 [t/m3] Water density

rt 0.46 [m] Mill feed trunnion radius

Vcs 96.9 [m3/h] Flow of classifier solids to mill

Vcw 112 [m3/h] Flow of classifier water to mill

vmill 59.12 [m3] Mill volume
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

• There is no feedback controller for the mill.

• The plant is excited by sinusoidally varying input MIW with a period of TMIW = 12 minutes and

an amplitude of 8 m3/h around its nominal operating condition. Since the amplitude is greater

than the nominal condition, the boundary MIW ≥ 0 m3/h is applied.

• To show the ability of the observer to track changes in xs, and xrb, inputs MFO and MFB are

varied. Input MFO is sinusoidally varied at a period of TMFO = 4 h and an amplitude of 10 t/h.

Step changes at intervals of 2 h are applied to MFB where the size of step changes are chosen

from the uniform distribution U∼ (−1,1) (t/h).

• Disturbances in the feed-ore size-distribution and the feed-ore hardness are simulated by varying

αr and κr around their nominal values.

– A change in feed size distribution is simulated by applying step-changes to αr at intervals of

1.5 h starting at t = 2.5 h. The size of step-changes are randomly selected from the uniform

Table 5.4. Initial operating conditions.

Variable Value σ Unit

Inputs and Outputs

MIW 4.64 - [m3/h]

MFO 65.2 - [t/h]

MFB 5.68 - [t/h]

JT 0.33 0.006 [-]

Q 234 5 [m3/h]

ρQ 2.10 0.02 [t/m3]

Plant Initial States

xb 8.23 0.04 [m3]

xr 1.88 0.01 [m3]

xs 4.65 0.02 [m3]

xw 4.63 0.02 [m3]
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

distribution U(−0.14,0.14). It is assumed measurement instrumentation is available to

measure αr at the input of the plant (Wei and Craig 2009b).

– A change in feed ore hardness is simulated by applying step-changes to κr at intervals of

1.5 h starting at t = 1.5 h. The size of step-changes are randomly selected from the uniform

distribution U(−2,2) (kWh/t). This parameter is not measured.

• Fig. 5.4 shows the inputs and disturbances to the plant.

For the plant, only the mill simulated. The sump and cyclone is removed from the circuit. However,

since the data used as basis for the simulation of the mill is for a closed grinding mill circuit, the closed

circuit underflow to the mill must be accounted for. The cyclone underflow at the operating point

provided by Le Roux et al. (2013b) is regarded as a constant in the simulations below. This enables a

simulation environment for the mill which is reasonably consistent with the data used as reference. As

seen in Fig. 5.4, the simulated inflow of water to the mill is the sum of MIW and a constant cyclone

water underflow (Vcw in Table 5.3).

The sinusoidal variation of MIW and MFO causes a sinusoidal variation in the mill discharge flow-rate.

This variation in Q can be absorbed by the sump, if the sump volume is large enough to accommodate

this variation. Therefore, a sinusoidal variation in MIW will not necessarily translate to a sinusoidal

variation in CFF , and consequently a sinusoidal variation in the cyclone cut. Should the variational

trends of MIW and MFO translate to similar variational trends in the cyclone underflow and overflow, it

should not affect the observer. Variations in the cyclone underflow flow-rate and density will contribute

to the dynamics in the mill outputs used by the observer to estimate the unknown states and parameters.

However, care should still be taken to ensure the variations in MIW and MFO does not cause the mill

to operate outside its operational constraints.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.4.2.2 Simulation scenarios

For the observer initialisation, the initial state estimate and the state estimate covariance matrix

are

x̂0 =
[
3.5 m3, 4 m3, 9 m3, 3 h−1m−3, 10 m3h−1]T (5.30)

P0 =
(
diag

[
2 m3, 2 m3, 2 m3, 2 h−1m−3, 2 m3h−1])2

. (5.31)

On industrial mills, the mill states are generally estimated through expensive and arduous sampling

campaigns. Since these campaigns are conducted infrequently, and assume a steady-state of operation,

it is doubtful if accurate estimate of the states are always readily available. Therefore, x̂0 is chosen

relatively far from the true initial state provided in Table 5.4, and P0 is chosen relatively large as little

confidence is placed in the initial estimate.

Two simulation scenarios in terms of measurement noise and process noise are considered:

1. No measurement noise or process noise is added. Since perfect measurements of the outputs in

(5.29b) as well as the derivative of ρQ is assumed, Rk in (5.23) is chosen small.

Rk = 10−4×
(
diag

[
1, 1 m3h−1, 1 tm−3, 1 tm−3h−1])2

The covariance matrix Qk is used as a tuning matrix for the EKF and is specified by trail-and-

error.

Qk = 10−1×
(
diag

[
0.2 m3, 0.5 m3, 1 m3, 0.8 h−1m−3, 2 m3h−1])2
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Figure 5.4. Inputs and disturbances for simulation scenarios.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

2. Measurement noise (v) with a normal distribution of N
(
0,σ2

v
)

is added to the outputs of the

plant. The absolute values of the standard deviations of the measurement noise is shown in

the second last column of Table 5.4. The covariance matrix Rk for the EKF aligns with the

covariance of the measurement noise added to the plant outputs (Schneider and Georgakis 2013).

A high covariance is assigned to the measurement of ρ̇Q as this measurement is highly sensitive

to the noise on ρQ.

Rk =
(
diag

[
0.006, 5 m3h−1, 0.02 tm−3, 1.0 tm−3h−1])2

Process noise (w) is added to the plant states with a normal distribution of N
(
0,σ2

w
)
. The

absolute values of the standard deviations of the process noise is shown in the second last column

of Table 5.4.

Similar to the previous simulation scenario, the covariance matrix Qk is used as a tuning matrix

for the EKF and is determined by means of trial-and-error.

Qk =
(
diag

[
0.1 m3, 0.1 m3, 0.1 m3, 0.2 h−1m−3, 2 m3h−1])2

For the second simulation scenario where noise is added, the noisy measurements are filtered using

a Savitzky-Golay digital filter. The filter smooths data by fitting a frame of F data samples with

polynomials of small order N by means of linear least squares. The filter returns a filtered value at the

centre of the frame. For real-time applications this means that the value returned by the filter is delayed

by half the frame length ((F +1)/2). To handle the time delay problem, two consecutive filters are

used:

1. The three measurements described in (5.29b) are filtered with a filter configured to fit a polyno-

mial of order 2 using a frame length of F1 = 35 samples.

2. The first order derivative ρ̇Q is calculated from the delayed filtered ρQ data. A Savitzky-Golay

filter with an order of 2 and a frame length of F2 = 135 is used.

As depicted in Fig. 5.5, the filtered measurements are delayed by 18 samples from the current sample.

Because ρ̇Q is calculated from the filtered data, another 68 samples delay is introduced. The equivalent

delay is 86 samples, i.e. 172 s.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.5 RESULTS AND DISCUSSION

5.5.1 Simulation scenario 1

The results of the simulation scenario where perfect measurements and no process noise are assumed is

shown in Figs. 5.6 and 5.7. As seen from Fig. 5.7, the filter converges within two hours to the correct

state value and is able to track the changes in the states. The effect of the disturbances in parameter κr

in Fig. 5.4, which affects the generation of solids, is clearly visible in the large deviations in χ in Fig.

5.7, which represents the accumulation of solids.

F1+1
2

F2+1
2

kEKF tPlant

Figure 5.5. Filter implementation and management of phase shift.
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Figure 5.6. Output for Simulation Scenario 1.
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Figure 5.8. Output for Simulation Scenario 2. The error shown in the last column is the difference

between the EKF output and the plant output.
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

5.5.2 Simulation scenario 2

The results of the simulation scenario where measurements are filtered to remove noise and to calculate

the derivative of ρQ is shown in Figs. 5.8 and 5.9. As seen in Fig. 5.8, the noise on the measurements

of JT , Q and ρQ are filtered very well, but the derivative of ρQ is not calculated with sufficient accuracy.

The error between the filtered value and the plant output is shown in the last column of Fig. 5.8. The

error in ρ̇Q is almost as large as the signal itself.

The normalised root mean squared error between the actual state and the estimated state in Fig. 5.9 is

shown in Table 5.5 and calculated as

NRMSE =
1
Λ̄

√
∑

N(Λ− Λ̂)2

M

where Λ is the process signal, Λ̄ is the mean of the process signal, Λ̂ is the estimate of the process

signal, and M is the number of data points. Results in Fig. 5.9 and Table 5.5 indicate the EKF filter
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Figure 5.9. States and parameters for Simulation Scenario 2.

Table 5.5. Normalised Root Mean Squared Error

xw xs xrb η χ

NRMSE 6.66% 6.17% 5.14% 12.9% 53.3%
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CHAPTER 5 STATE AND PARAMETER ESTIMATION FOR A GRINDING MILL

is able to track xrb with reasonable accuracy, where xw and xs are estimated with lower accuracy.

Parameters χ and η are used to absorb the uncertainties in the measured data.

5.6 CONCLUSION

The states and parameters of a non-linear grinding mill observer model developed in this chapter are

weakly non-linearly observable, although they are not observable in the linearised case. For linear

observability, a reduced observer model was developed. This reduced model represents the constituents

of the mill using three states: water, solids, and grinding media (sum of rocks and balls). The grinding

environment is modelled using two parameters: a discharge rate and an accumulation rate of solids.

The measurement used are: the mill filling volume, the discharge rate of the mill, the discharge density

of the mill, and the first time derivative of the discharge density.

Milling data is generated from a model different to the observer model. Simulations indicate that

with accurate mill discharge measurements it is possible to estimate the system states and parameters

using a discrete EKF. The main challenge is to accurately calculate the first time derivative of the mill

discharge density.

Since industrial mills rarely include measurement instrumentation at the mill discharge, this work aims

to motivate the inclusion of accurate discharge measurements in light of the information about mill

inventories to be gained. This would require careful consideration of mill discharge trommel designs to

allow sufficient space to install the required instrumentation. Future work involves using the observer

to provide state feedback for an advanced process controller for a grinding mill circuit.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

108

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 6 CONCLUSION

The aim of this work is to developed a control structure for a single-stage closed grinding mill circuit

following the systematic plant-wide control design procedure in Skogestad (2004). It provides a

structural approach to resolve essential questions such as which variables should be controlled, which

variables should be manipulated, what links should be made between the two, and which set-points are

appropriate for the controlled variables. Subsequently, an MPSP controller is developed to implement

the regulatory and supervisory aims of the plant-wide control structure. Since the MPSP controller

requires state-feedback, an observer is developed with states and parameters which can be estimated

from plant measurements.

6.1 PLANT-WIDE CONTROL

The initial step in any control design study is the definition of the economic operational objectives of

the mineral processing plant (Hodouin 2011). Because the concentrate produced by the separation

process is responsible for the revenue generated by the plant, optimal economic operation occurs when

operating at the most profitable region on the concentrate’s grade-recovery curve. This region on the

curve is determined by the purchase contract between the mineral processing plant and the smelter.

Therefore, given the contract stipulations, the net smelter return can be described in terms of the grade

and recovery of the separator concentrate (Wills 2006). To optimise the economic return of the mineral

processing plant, individual optimisation of the grinding mill circuit and separation circuit may lead

to a sub-optimal result (Sosa-Blanco et al. 2000). As shown in Chapter 2, the economic operational

objectives of the mineral processing plant can be related to the grinding mill circuit by expressing

the separator concentrate grade and recovery in terms of the grinding mill circuit’s product quality,

throughput, and grade (McIvor and Finch 1991, Wei and Craig 2009a). Optimisation of the economic
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CHAPTER 6 CONCLUSION

objective can therefore be done in terms of the characteristics of the grinding mill circuit’s product

characteristics.

Given the description of the economic operational objective of the mineral processing plant in terms of

the grinding mill circuit’s product quality, throughput, and grade, it is necessary to define a control

structure for the grinding mill circuit to achieve these economic goals. As discussed in Chapter 3, the

top-down analysis provides a control structure to address steady-state operation, whereas the bottom-up

analysis develops a control structure to address dynamic operation.

For the top-down analysis, the operational economic objective developed in Chapter 2 can be used to

formulate a scalar cost function for the grinding mill circuit. Although there are six dynamic degrees

of freedom available - mill ore feed-rate, mill inlet water flow-rate, mill ball feed-rate, sump feed water

flow-rate, cyclone feed flow-rate, and mill rotational speed - there are only five steady-state degrees of

freedom available to achieve the operating point determined by optimisation of the cost function. This

is because the sump slurry volume has no economic steady-state effect.

Once the cost function is defined, it is necessary to formulate the constraint function which defines the

range of optimal steady-state operating conditions of the circuit. Since optimal steady-state operation

for grinding mill circuits is primarily determined by the operating performance of the mill, the mill

performance indicators - mill power draw, mill throughput, and mill grind - are used to define the

optimal steady-state operation. The mill performance indicators can be described as functions of the

mill filling and the mill rotational speed. These relations are called grindcurves (Van der Westhuizen

and Powell 2006, Powell et al. 2009). Although the mill performance indicators show a parabolic

relation to mill filling, the peaks for the indicators occur at different mill fillings. Consequently, if

a mill operates at maximum mill power draw, this does not necessarily guarantee optimal grind and

maximum mill throughput. For closed circuit operation, the grindcurves are developed assuming the

cyclone maintains a consistent cut-size and water recovery to underflow (Craig et al. 1992). This can be

achieved if the cyclone feed flow-rate has sufficient range of operation, and the cyclone’s capacity is not

exceeded (Botha, Craig and Roux 2015). Therefore, the grinding mill circuit’s product throughput and

quality can be defined as constant functions of the mill performance indicators. Since the grinding mill

circuit’s product throughput and quality can be defined as functions of the mill filling and mill rotational

speed by means of the mill performance indicators, the cost function is optimised with respect to the

mill filling and the mill rotational speed. Therefore, the main economic controlled variable is the mill
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CHAPTER 6 CONCLUSION

filling (Borell et al. 1996), and the mill rotational speed is the throughput manipulator of the grinding

mill circuit. If the grinding mill does not have a variable speed drive to alter the mill’s rotational speed,

one degree of freedom is removed. In this case, independent control of the circuit’s throughput and the

circuit’s product quality is no longer feasible (Viklund et al. 2006, Bauer and Craig 2008, Le Roux et

al. 2016a).

In light of the top-down analysis, the pairing shown below between controlled and manipulated

variables for regulatory control is suggested in the bottom-up analysis:

• The mill rotational speed is used to set the desired circuit product throughput.

• The mill ore feed-rate is used to control the mill filling.

• The cyclone feed flow-rate is used to reject disturbances on the circuit product quality.

• The mill inlet water flow-rate is used to maintain a consistent mill slurry density.

• The mill ball feed-rate is used to maintain a consistent mill ball filling.

• The sump feed water flow-rate is used to control the sump slurry volume.

Because of the significant advantages offered by MPC over PID control for grinding mill circuits

(Pomerleau et al. 2000, Remes et al. 2010), an MPC controller is suggested for the regulatory and

supervisory layer. The optimisation layer specifies set-points for the mill filling and the mill rotational

speed based on optimisation of the cost function. The grindcurves act as equality constraints for the

optimisation.

6.2 MODEL PREDICTIVE STATIC PROGRAMMING

One of the main impediments to applying non-linear process control for regulatory and supervisory

control, is the computational burden associated with minimising the non-linear controller objective

function (Coetzee et al. 2010, Wolf and Marquardt 2016). To address this issue, Chapter 4 develops
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an MPSP controller capable of achieving the regulatory and supervisory control goals described in

the plant-wide analysis. The advantage of the MPSP controller is that the computational burden is

decreased by converting the dynamic optimization problem to a low-dimensional static optimization

problem, calculating the sensitivity matrices recursively and using a closed form expression to update

the control.

When applied in simulation to a non-linear model of a single-stage closed grinding mill circuit,

comparison of the performance of the MPSP controller to a regular NMPC controller indicated that

MPSP achieved improved output regulation in the presence of model-plant mismatch, disturbances and

measurement noise. Although the prediction and control horizons are equal in MPSP, computational

time was significantly reduced. MPSP is presented as a suitable option for non-linear model-based

optimal control for output tracking in large industrial processes, especially if computational time and

complexity is a limiting factor for real-time applications.

6.3 STATE AND PARAMETER ESTIMATION

The difficulty with applying non-linear model-based control such as MPSP or NMPC to grinding mill

circuits, is the estimation of the states for state feedback. Because of the limited number of real-time

measurements available on industrial circuits (Wei and Craig 2009b), full state feedback is rarely

possible. To reject model-plant mismatch and disturbances, it is important for states and parameters to

be estimated correctly.

Chapter 5 develops a non-linear observer model with states and parameters which are non-linearly

(weakly) observable from measurements of the mill filling, mill discharge flow-rate and the mill

discharge density. However, the states of the linearised model are not observable. Although a

non-linear observer such as MHE is a preferable solution, it requires the correct modelling of the

time-varying nature of the parameters. The ore breakage rate and the ball breakage rate vary according

to unmeasured changes in ore hardness and grinding conditions in the mill, but is modelled as constants

by the model. This approximation is valid over a short period, especially when compared to the quick

dynamics of the water and solids over the same period. But for longer periods the approximation

cannot hold. The discharge rate parameter used for the observer model is also modelled as a constant.

As seen from (5.5), which is used as basis to model the discharge, the discharge rate parameter lumps
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together factors such as the mill diameter, grate aperture open area, mill speed, and the relative radial

position of grate apertures. Since these factors remain constant, the assumption that this parameter

remains constant is valid only if the mill speed remains constant. For a mill with varying speed, the

change in mill discharge can be modelled using the relation between discharge and speed shown in

(5.5). Therefore, if a long time horizon is used for MHE, the validity of assuming constant ore and ball

breakage reduces, but a shorter time horizon may not contain sufficient process dynamics for MHE to

provide reasonable estimates.

The non-linear observer model is reduced so that the states and parameters are linearly observable

from measurements of the mill filling, mill discharge flow-rate, the mill discharge density, and the time

derivative of the mill discharge density. The states included in the model are the mill water hold-up, the

mill solids hold-up and the mill grinding media hold-up. The parameters include the discharge rate per

volume of slurry, and the accumulation rate of solids. A linear observer, such as an EKF, can provide

one-step-ahead prediction for the states and parameters. Therefore, the validity of approximating the

grinding media as constant over each approximation step holds.

A simulation study was conducted where milling data is generated from a model different to the

observer model. The observer model is then incorporated in an EKF observer to estimate the states and

parameters. As expected, with no measurement noise, all states and parameters are estimated correctly.

In the case of noisy measurements, the EKF filter is able to track the grinding media hold-up with

reasonable accuracy, and the water and solids hold-ups with less accuracy. The parameters absorb the

uncertainties in the measured data.

Although industrial circuits are not designed to include flow and density measurement instrumentation

at the discharge trommel of the grinding mill, this work shows that mill inventories can be estimated with

reasonable accuracy if these measurements are made. This would require careful consideration of the

mill discharge trommel design to allow sufficient space to install the required instrumentation.
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6.4 FUTURE WORK

6.4.1 Plant-wide Control

The plant-wide control strategy views the mineral processing plant as the combination of a commin-

ution circuit and a separation circuit. In this study, the operation of the separation circuit, which is

assumed to be a flotation circuit, is not included in the plant-wide strategy. It is assumed the flotation

circuit maintains a consistent relationship between the comminution product quality and the separator

concentrate recovery. This assumption is used by Munoz and Cipriano (1999), Sosa-Blanco et al.

(2000), and Wei and Craig (2009a) to define the control objectives of the comminution circuit to

optimise the economic performance of the mineral processing plant. Yet, for a truly plant-wide control

strategy, the dynamics and operation of the flotation circuit should also be considered. Given the

large number of variables available to influence the flotation’s circuits performance, and the complex

non-linear interactions of the process, modelling the process remains challenging (Seppälä et al. 2016).

Therefore, including the flotation circuit in a plant-wide control strategy of a mineral processing plant

is not a trivial task (Shean and Cilliers 2011, Bergh and Yianatos 2011).

A simulation study of the plant-wide control strategy, which is not done in this thesis, will assist to

determine the economic benefit the plant-wide control strategy can provide to a mineral processing

plant. For such a study, a simulation platform capable of reproducing the steady-state operating

conditions specified by the grindcurves, while accurately representing the dynamics of the plant,

is required. This enables consideration of the economic impact of common disturbances such as

variations in ore hardness (Bueno, Kojovic, Powell and Shi 2013), ore composition (Shi and Napier-

Munn 2002, Tungpalan, Manlapig, Andrusiewicz, Keeney, Wightman and Edraki 2015), and ore size

distribution (Morrell and Valery 2001).

A simulation platform for analysis of the plant-wide control strategy requires adequate process unit

models. The SAG mill model of Le Roux et al. (2013b) presented in Section 4.1, is adequate to capture

the dynamics of the mill around a specific operating condition, but is not suited to capture the range

of steady-state operating conditions specified by the grindcurves in Section 3.1.2. Although detailed

phenomenological models of SAG mills are available (Valery and Morrell 1995, Morrell 2004, Hinde

and Kalala 2009, Salazar et al. 2009), it is not clear if these models can reproduce the grindcurves
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as they do not predict breakage kinetics changes for large variations in operating conditions. The

model parameters are generally fitted to a specific steady-state operating condition through laborious

sampling campaign and laboratory test work. Therefore, similar to Le Roux et al. (2013b), the available

fundamental models are limited to specific operating conditions. Although a parameter update scheme

can be developed to ensure a model is suitable over a wider range of conditions, it is not clear how

this should be done. DEM simulations may provide further options as to how breakage kinetics

can be adapted to accommodate wider operating regions (Delaney, Cleary, Morrison, Cummins and

Loveday 2013).

Depending on the industrial test data used during parameter fitting, fundamental hydrocyclone models

are applicable over fairly wide operating regions. However, similarly to mills, significant sampling

campaign work is required to use these models for simulation purposes, as the model parameters

are dependent on the type of ore being processed and the range of operating conditions considered

(Nageswararao et al. 2004, Narasimha, Mainza, Holtham, Powell and Brennan 2014).

The net smelter return described in Section 2.3.1 assumes a single metal component. However, mineral

processing plants often produce a concentrate with a variety of metals. The value of each metal can

easily be added to the net smelter return calculation, but the incorporation of each metal component in

a simulation model is not trivial. Multi-component models can be used (Hinde and Kalala 2009), but

this significantly increases parameter estimation efforts. Additional modelling effort is also required

for the separator concentrate to account for the different grade and recovery relationships for each

metal type (Sosa-Blanco et al. 2000).

If it is known that a plant will soon process ore with a significant change in mineralogical characteristics,

a feed-forward controller can be used to ensure the grinding environment is suitably changed to meet

the new breakage requirements. This requires dynamic models which considers how important

mineralogical characteristics of the ore influence the plant’s performance (Tungpalan et al. 2015).

For example, the ore mineralogy influences the rheology of the slurry created by the ore which

in turn influences breakage characteristics (Shi and Napier-Munn 2002). However, quantifying

the effect of slurry rheology on milling performance remains a challenge (Bazin and B-Chapleau

2005). Alternatively, if sufficient sampling campaign data is available, mineralogical changes can be

empirically related to the breakage functions (Bueno et al. 2013).
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Since the grindcurves are quasi-static curves, a steady-state operating condition is represented at each

point along the curve. It is assumed the grinding conditions remain the same as one moves along

the curve, i.e. the ore and the mill characteristics remain unchanged at each point along the curve.

However, as seen from the grindcurves in Craig et al. (1992) and Van der Westhuizen and Powell

(2006) fitted to industrial data, there is an inherent uncertainty and variance in the grindcurves. This is

not to say there are no distinct relationships between the mill’s performance indicators and the mill’s

filling and speed, only that a degree of uncertainty should be accounted for when the grindcurves are

used as equality constraints in the optimisation of the economic objective function.

6.4.2 Model Predictive Static Programming

Although the MPSP controller is well suited to meet the regulatory and supervisory control aims, the

algorithm does not explicitly include state constraints. A slack-variable approach, where a constrained

optimisation problem is transformed into an unconstrained optimisation problem (Jacobson and

Lele 1969), is used by Bhitre and Padhi (2014) to allow state constraints for finite horizon MPSP

problems. Alternatively, since the sensitivity matrices calculated in the MPSP algorithm are explicit

functions of the process states, constraints could potentially be applied directly to the sensitivity

matrices.

A limitation of the MPSP simulation environment is that the same model is used to represent the

plant and to develop the controller. For linear MPC studies, a non-linear model is often used to

represent the plant, and the controller is developed from the linear version of the model (Pomerleau et

al. 2000, Ramasamy et al. 2005, Le Roux and Craig 2013). This provides a degree of model-plant

mismatch between the true plant and the time-invariant model developed from process data (Craig and

MacLeod 1995, Chen et al. 2007). However, given the inherent non-linearity of the plant, the models

used by linear MPC for grinding mill circuits require frequent parameter updates.

Since non-linear models of grinding mill circuits describe a larger range of operation compared to linear

models, it is preferable to use non-linear models in advanced process controllers. In the non-linear

MPC simulations studies for grinding mill circuits of Coetzee et al. (2010) and Salazar et al. (2014),

where the same model is used to represent the plant and develop the controller, model-plant mismatch
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is introduced by varying the parameters of the plant. This is a relatively simple method to evaluate the

characteristics of the control strategy, and is also followed in this thesis.

For industrial applications, model-plant mismatch is expected as the model used for control rarely

captures all the process dynamics. Other than varying parameters in a single model as mentioned above,

inherent model-plant mismatch can be created in simulation if the plant is modelled in a different

manner compared to the model used for control. Variations in modelling the grinding mill circuit can

be introduced with respect to size classes (Le Roux and Craig 2013), ore breakage (Apelt, Asprey and

Thornhill 2002b, Hinde and Kalala 2009), mill power draw (Austin 1990, Apelt et al. 2001), slurry

discharge (Latchireddi and Morrell 2003), sump mixing, and cyclone classification (Nageswararao et

al. 2004, Narasimha et al. 2014).

6.4.3 State and Parameter Estimation of Grinding Mill Conditions

The reduced observer model was developed to include only states and parameters which can be

reasonably estimated from limited measurements. The main difficulty remains accurate calculation

of the derivative of the discharge density, especially if there is not sufficient variation in the density.

Therefore, to observe the states and parameters, a degree of plant excitation is required. For industrial

applications, where the aim is to maintain steady-state operation, excitation is unwelcome. However,

the process noise may be sufficient excitation for the states and parameters to be estimated. If this is

not sufficient, acceptable excitation conditions for accurate estimation needs to be specified.

The EKF observer assumes time-invariant process noise characteristics. However, for varying process

dynamics and operating conditions, the noise statistics are time-varying. Since fixed noise statistics

can lead to deteriorating filter performance, a more systematic approach should be considered to select

and update the noise statistics. Valappil and Georgakis (2000) present two approaches to estimate the

process noise covariance on-line. Assuming the non-linear process model uncertainty is quantified

by a parameter covariance matrix, the first approach linearly approximates the dependence of the

model predictions on the model parameters. The second approach, which considers the non-linear

dependence of model predictions on parameters, involves Monte Carlo simulations. The difficulty with

this approach is that the parameter error covariance matrix may change over time, or may be unknown.

Alternatively, Bavdekar, Deshpande and Patwardhan (2011) propose two methods for constructing the
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maximum likelihood estimates of process and measurement noise covariance matrices from operating

data. For disturbances modelled as either structured or unstructured noise, the first approach minimises

the negative of the log likelihood function associated with the innovation sequence generated by the

EKF. The second approach, which extends the expectation-maximisation algorithm of Dempster,

Laird and Rubin (1977), uses the joint likelihood function of all available data to compute the next

iterate of the decision variables for the optimisation problem. As an alternative to the EKF observer,

constrained unscented Kalman filters (Teixeira, Torres, Aguirre and Bernstein 2010) or particle filters

(Zhao, Huang and Liu 2014, Olivier et al. 2012) can also be considered to improve the observer’s

performance (Psiaki 2013).

Although the model used to generate fictitious plant data is different to the observer model, both models

assume a sharp cut between rocks not passing through the discharge screen and solids remaining in

the mill. For further simulation studies, more ore size classes can be used such that the discharge rate

of size classes is given by the log-linear relationship in (5.4). Additionally, the observer presented in

this study assumes the discharge grate is such that no slurry pooling occurs. The discharge of slurry is

only via the grinding media, as modelled in (5.5). The observer can potentially be extended to identify

slurry pooling conditions, using the discharge via the slurry pool as modelled in (5.6).

This work motivates the inclusion of discharge density and flow-rate measurement instrumentation

at mill. However, the mill’s discharge density and flow-rate can potentially be estimated using a

flow-balance at the sump, where flow-rate and density measurement instrumentation is easier to include

(Le Roux et al. 2016a). This assumes that the sump is not also fed by unmeasured spillage or underflow

from other process units. Since the time derivative of the sump volume is required to estimate the mill’s

discharge flow-rate (Le Roux and Craig 2016), this can potentially introduce significant noise and

uncertainty in the estimates. Therefore, the accuracy of the measurement instrumentation at the sump

needs to be specified such that the observer at the sump can provide sufficiently accurate information

to the observer at the mill.

The observer should be tested on a real circuit, as the aim is to produce a tool which can be readily

applied in industry. A pilot-plant, with adequate density, flow and mill filling measurements, provides

a good test platform. The challenge at the pilot-plant is to track the mill’s constituents for validation

against the estimates provided by the observer. Tracking the constituents independent of the observer

requires careful sampling campaign planning (Napier-Munn et al. 2005). A further challenge is to
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use the observer as part of a model-based control loop (Le Roux et al. 2016a). As an expansion of

the observer model, it would be interesting to note what further information could be estimated if the

particle size at the mill discharge is measured.
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APPENDIX A

NON-LINEAR OBSERVABILITY ANALYSIS

This section describes the observability analysis completed in Section 5.2.2 of the non-linear observer

model. The non-linear observer model can be written as

ẋ = f (x)+g(x)u =



−η (xw + xs)xw

−η (xw + xs)xs + xrKr

−xrKr

−xbKb

03×1


+

 I4×4

03×4

u

y = h(x) =


xw+xs+xr+xb

vmill

η (xw + xs)
2

ρOxs+ρW xw
xs+xw


where x = [xw,xs,xr,xb,η ,Kr,Kb]

T , u = [Vwi,Vsi,Vri,Vbi]
T and y = [JT ,Q,ρQ]

T . It is assumed that the

parameters η , Kr and Kb are unknown constants, although in practice these are slow time-varying

parameters.
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ADDENDUM APPENDIX A

The repeated Lie derivatives of the system output with respect to the system dynamics are collected in

a single vector, as shown below.


h

L f h

L2
f h

 =



xw+xs+xr+xb
vmill

η (xw + xs)
2

ρOxs+ρW xw
xs+xw

−η(xs+xw)
2+Kbxb

vmill

−2η2 (xs + xw)
3 +2ηKrxr (xs + xw)

xwxrKr(ρo−ρw)

(xw+xs)
2

2η2(xs+xw)
3−2ηKrxr(xs+xw)+K2

b xb
vmill

6η3 (xs + xw)
4−8η2Krxr (xs + xw)

2 +2ηK2
r xr (xr− xs− xw)

xwxrKr(ρo−ρw)(η(xs+xw)
2−2Krxr−Krxs−Krxw)

(xw+xs)
3



The exterior derivative is applied to obtain the following matrices. Note, for display purposes, the

transpose of matrices dh and dL f h is shown, whereas the transpose of the rows of dL2
f h is shown.

dh =



1
vmill

2η (xw + xs)
ρW−ρQ
xw+xs

1
vmill

2η (xw + xs)
ρO−ρQ
xw+xs

1
vmill

0 0
1

vmill
0 0

0 (xw + xs)
2 0

0 0 0

0 0 0



T

dL f h =



−2ηxs+2ηxw
vmill

−6η2 (xs + xw)
2 +2ηKrxr

xrKr(ρo−ρw)(−xw+xs)

(xw+xs)
3

−2ηxs+2ηxw
vmill

−6η2 (xs + xw)
2 +2ηKrxr −2xwxrKr(ρo−ρw)

(xw+xs)3

0 2ηKr (xs + xw)
(ρo−ρw)xwKr
(xw+xs)2

− Kb
vmill

0 0

− (xs+xw)
2

vmill
−4η (xs + xw)

3 +2Krxr (xs + xw) 0

0 2ηxr (xs + xw)
xwxr(ρo−ρw)
(xw+xs)2

− xb
vmill

0 0



T
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ADDENDUM APPENDIX A

dL2
f h1,1..7 =



6η2(xs+xw)
2−2ηKrxr

vmill

6η2(xs+xw)
2−2ηKrxr

vmill

−2η(xw+xs)Kr
vmill

K2
b

vmill

4η(xw+xs)
3−2Krxr(xw+xs)
vmill

−2xrη(xw+xs)
vmill

2xbKb
vmill



T

dL2
f h2,1..7 =



24η3 (xs + xw)
3−16η2Krxr (xs + xw)−2ηK2

r xr

24η3 (xs + xw)
3−16η2Krxr (xs + xw)−2ηK2

r xr

−8η2Kr (xw + xs)
2 +2ηK2

r (2xr− xs− xw)

0

18η2 (xs + xw)
4−16ηKrxr (xs + xw)

2 +2K2
r xr (xr− xs− xw)

−8η2xr (xs + xw)
2 +4ηKrxr (xr− xs− xw)

0



T

dL2
f h3,1..7 =



xrKr(ρo−ρw)(ηxs(xs+xw)
2−2Krxr(xs−2xw)−Kr(x2

s+x2
w))

(xw+xs)
4

−xwxrKr(ρo−ρw)(η(xs+xw)
2−2Kr(3xr+xs+xw))

(xw+xs)
4

xw(ρo−ρw)Kr(η(xw+xs)
2−Kr(4xr+xs+xw)

(xw+xs)
3

0
xwxrKr(ρo−ρw)

xw+xs
xwxr(ρo−ρw)(η(xw+xs)

2−2Kr(2xr−xs−xw))
(xw+xs)

3

0



T

Two observability codistributions are defined:

dO1 = span
{

dh,dL f h
}

dO2 = span
{

dh,dL f h,dL2
f h
}
.

The rank of dO1, which has 6 rows and 7 columns, is 6. The rank of dO2, which has 9 rows and 7

columns, is 7. Since full rank is achieved for dO2, the addition of further Lie derivatives is not necessary.

The determinant of the first 7 rows and columns of dO2 is 2xwxrxbK2
b η2(xw+xs)(ρo−ρw)

2

v3
mill

. Therefore, all 7

system states are locally (weakly) observable from the available measurements.
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ADDENDUM APPENDIX A

LINEAR OBSERVABILITY ANALYSIS

This section describes the observability analysis completed in Section 5.2.2 for the linearised observer

model. Linearisation of the non-linear observer model gives the following A and C matrices:

A =



−η (2xw + xs) −ηxw 0 0 −(xw + xs)xw 0 0

−ηxs −η (xw +2xs) Kr 0 −(xw + xs)xs xr 0

0 0 −Kr 0 0 −xr 0

0 0 0 −Kb 0 0 −xb

03×1 03×1 03×1 03×1 03×1 03×1 03×1



C =


1

vmill

1
vmill

1
vmill

1
vmill

0 01×2

2η (xw + xs) 2η (xw + xs) 0 0 (xw + xs)
2 01×2

ρW−ρQ
xw+xs

ρO−ρQ
xw+xs

0 0 0 01×2

 .

The eigenvalues of A are

λ = {0, 0, 0, Kr, Kb, −η (xs + xw) , −2η (xs + xw)}

and the corresponding eigenvectors collected as columns are given by

T =



0 0 − xw
2η

−ηxwKr

2η2(xs+xw)
2−3ηKr(xs+xw)+K2

r
0 −1 xw

xs

0 0 − xs
2η

Kr(ηxs+2ηxw−Kr)

2η2(xs+xw)
2−3ηKr(xs+xw)+K2

r
0 1 1

0 − xr
Kr

0 1 0 0 0

− xb
Kb

0 0 0 1 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0


.

The output pole matrix Yλ =CT is

Yλ =


− xb

vmillKb
− xr

vmillKr

−xw−xs
2vmillη

2η(xw+xs)
(2η(xs+xw)−Kr)vmill

1
vmill

0 xw+xs
vmillxs

0 0 0 2η(xw+xs)Kr
2η(xs+xw)−Kr

0 0 2η(xw+xs)
2

xs

0 0 0 (ρo−ρw)xwKr
(η(xs+xw)−Kr)(xw+xs)2 0 ρo−ρw

xw+xs
0

 .

Introduce the new state vector

z = T−1x ; x = T z.
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ADDENDUM APPENDIX A

Since the eigenvectors are independent, T−1 exists. Therefore, the matrix A may be diagonalised

as

Λ = T−1AT = diag [0, 0, 0, Kr, Kb, −η (xs + xw) , −2η (xs + xw)] . (.1)

The linearised system can now be written as

ż = Λz+T−1Bu

y = CT z
(.2)

As seen from the transformed system, the repeated integrating mode (λ = 0) is associated with the

transformed states z1 = Kb, z2 = Kr and z3 = η . These three parameters respectively indicate the rate

at which the ball level, the rock level, and the slurry level increases or decreases. It is expected that the

three aforementioned parameters are associated with the integrating modes, as levels in tanks represent

integrating processes.

As seen from the new output matrix CT , the states z1, z2, and z3 are only visible in the first output

measurement JT . Therefore, if the integrating mode is excited in the system, it is not possible to

distinguish the individual contribution of each state (z1, z2, and z3) to the measurement of JT . Two of

the states need to be defined for the third state to be observable. Therefore, only 5 of the 7 states are

observable for the linearised system.

This result that the linearised system’s parameters and states are not observable is not surprising

considering neither the rocks or balls exit the mill. Apart from the measurement JT , where these states

appear as a linear combination, no further information is available. However, the observability analysis

of the non-linear system indicates that if sufficient dynamics are visible in the output, and a non-linear

observer is used, the individual contribution of the rocks and balls to JT is distinguishable.

Although a non-linear observer such as MHE is a preferable solution, it requires the correct modelling

of the time-varying nature of the parameters. The ore breakage rate and the ball breakage rate vary

according to unmeasured changes in ore hardness and grinding conditions in the mill, but is modelled

as constants by the model. This approximation is valid over a short period, especially when compared

to the quick dynamics of the water and solids over the same period. But for longer periods the

approximation cannot hold.

The discharge rate is also modelled as a constant, which is a valid assumption over long periods since

this parameter lumps together constant factors such as mill diameter, grate aperture open area, and the
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ADDENDUM APPENDIX A

relative radial position of the grate apertures. However, for a mill where the rotational speed changes,

the discharge rate needs to account for this variation in speed as shown in (5.5). Therefore, if a long

time horizon is used for MHE, the validity of the model reduces with regards to the ore and ball

breakage, but a shorter time horizon may not contain sufficient process dynamics for MHE to provide

reasonable estimates of the states and parameters.
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APPENDIX B

An overview of the work is provided in the slides below.

Grinding mill circuit control from a 

plant-wide control perspective

2016

Johan Derik le Roux
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ADDENDUM APPENDIX B

Context

• Mineral processing plant
– Comminution: liberation of valuable particles from ore
– Separation: removal of valuable particles from waste

• Separator concentrate sold to refinery

Comminution SeparationRun-of-mine 
ore

Tailings

Concentrate

Context

• Mineral processing plant
– Comminution: liberation of valuable particles from ore
– Separation: removal of valuable particles from waste

• Separator concentrate sold to refinery 

How should the comminution circuit be operated 
to improve the value of the separator concentrate?

Comminution SeparationRun-of-mine 
ore

Tailings

Concentrate
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ADDENDUM APPENDIX B

Comminution: Single-stage grinding mill circuit

Plant-wide control1 – Top-down analysis

• Operational economic objective
– Separator concentrate grade ( ) and recovery ( ) expressed in terms of 

comminution’s product throughput ( ) and quality ( ) 
– Revenue expressed as function of and 

1 Skogestad, S. (2004). Control structure design for complete chemical plants, Computers Chem. Eng. 28: 219–234.

Comminution SeparationRun-of-mine 
ore

Tailings

Concentrate
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ADDENDUM APPENDIX B

Plant-wide control1 – Top-down analysis

• Operational economic objective
– Separator concentrate grade ( ) and recovery ( ) expressed in terms of 

comminution’s product throughput ( ) and quality ( ) 
– Revenue expressed as function of and 

How should the grinding mill circuit’s operating point 
be chosen to achieve a specific and ?

1 Skogestad, S. (2004). Control structure design for complete chemical plants, Computers Chem. Eng. 28: 219–234.

Comminution SeparationRun-of-mine 
ore

Tailings

Concentrate

Plant-wide control – Top-down analysis

• Optimal steady-state operation
– Grindcurves2 define mill performance
– Using grindcurves, both and are defined in terms of

• mill filling ( )
• mill speed ( )

2 Craig, I.K., Hulbert, D.G., Metzner, G., and Moult, S.P. (1992). Optimized multivariable control of an industrial run-of-
mine milling circuit. J. S. Afr. Inst. Min. Metall., 92(6), 169-176.
Powell, M.S., van der Westhuizen, A.P., and Mainza, A.N. (2009). Applying grindcurves to mill operation and optimisation. 
Minerals Eng., 22(7-8), 625-632.
Van der Westhuizen, A. and Powell, M.S. (2006). Milling curves as a tool for characterising SAG mill performance. In 
Proceedings of SAG 2006, Vancouver, B.C., Canada, 217-232.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

144

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



ADDENDUM APPENDIX B

Plant-wide control – Top-down analysis

• Optimal steady-state operation
– Grindcurves2 define mill performance
– Using grindcurves, both and are defined in terms of

• mill filling ( )
• mill speed ( )

Which variables should be controlled
to achieve the economic goal, and

which variable should manipulate throughput?

2 Craig, I.K., Hulbert, D.G., Metzner, G., and Moult, S.P. (1992). Optimized multivariable control of an industrial run-of-
mine milling circuit. J. S. Afr. Inst. Min. Metall., 92(6), 169-176.
Powell, M.S., van der Westhuizen, A.P., and Mainza, A.N. (2009). Applying grindcurves to mill operation and optimisation. 
Minerals Eng., 22(7-8), 625-632.
Van der Westhuizen, A. and Powell, M.S. (2006). Milling curves as a tool for characterising SAG mill performance. In 
Proceedings of SAG 2006, Vancouver, B.C., Canada, 217-232.

Plant-wide control – Top-down analysis

Primary controlled variables:
– Product particle size ( )
– Throughput ( )
– Mill filling ( )
– Ball filling
– Mill slurry density

Manipulation of throughput:
– Mill speed ( )
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ADDENDUM APPENDIX B

Plant-wide control – Top-down analysis

Primary controlled variables:
– Product particle size ( )
– Throughput ( )
– Mill filling ( )
– Ball filling
– Mill slurry density

Manipulation of throughput:
– Mill speed ( )

Which control structure should be chosen?uld be chosen?

Plant-wide control – Bottom-up analysis
Regulatory layerg y y
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ADDENDUM APPENDIX B

Plant-wide control – Bottom-up analysis
Regulatory layerg y y

Supervisory control?

Plant-wide control – Bottom-up analysis
Supervisory layer: MPSP

• Challenge is to reduce computational time for NMPC applications3

• Model Predictive Static Programming
– Computational complexity is reduced by

• Linearising system for every time step4

• Reducing feedback law to an explicit function5

– MPSP achieves similar performance to NMPC when applied to the 
grinding mill circuit

3 Coetzee, L. C., Craig, I. K. and Kerrigan, E. C. (2010). Robust nonlinear model predictive control of a 
run-of-mine ore milling circuit, IEEE Trans. Control Syst. Technol. 18(1): 222–229.
4 De Oliveira, N. M. C. and Biegler, L. T. (1995). An extension of Newton-type algorithms for non-linear 
process control, Automatica 31(2): 281–286
5 Bemporad, A., Borrelli, F. and Morari, M. (2002). Model predictive control based on linear 
programming - the explicit solution, IEEE Trans. Automatic Control 47(12): 1974–1985.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

147

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



ADDENDUM APPENDIX B

Plant-wide control – Bottom-up analysis
Supervisory layer: MPSP

• Challenge is to reduce computational time for NMPC applications3

• Model Predictive Static Programming
– Computational complexity is reduced by

• Linearising system for every time step4

• Reducing feedback law to an explicit function5

– MPSP achieves similar performance to NMPC when applied to the 
grinding mill circuit

How to achieve state feedback for controller?

3 Coetzee, L. C., Craig, I. K. and Kerrigan, E. C. (2010). Robust nonlinear model predictive control of a 
run-of-mine ore milling circuit, IEEE Trans. Control Syst. Technol. 18(1): 222–229.
4 De Oliveira, N. M. C. and Biegler, L. T. (1995). An extension of Newton-type algorithms for non-linear 
process control, Automatica 31(2): 281–286
5 Bemporad, A., Borrelli, F. and Morari, M. (2002). Model predictive control based on linear 
programming - the explicit solution, IEEE Trans. Automatic Control 47(12): 1974–1985.

Plant-wide control – Bottom-up analysis
Supervisory layer: State Feedback

• Challenge is to estimate hold-ups inside mill
• A non-linear observer model is developed with states observable from 

linearized system
• An EKF is used to estimate the states and parameters

– States and parameters:
• Solids
• Water
• Grinding media
• Discharge rate
• Solids accumulation rate

– Measurements:
• Mill filling
• Mill discharge flow-rate
• Mill discharge density
• Discharge density time-derivative
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ADDENDUM APPENDIX B

Summary

• Plant-wide control strategy
– Economic objective defined in terms of grindcurves
– Future challenge is to incorporate more complex models of down-

stream processes

• Model Predictive Static Programming
– Predictive controller with low computational complexity
– Future challenge is to include state constraints

• State and Parameter estimation
– Model is developed such that grinding mill conditions can be estimated
– Future challenge is accurate measurement/calculation of derivative of 

discharge density

THANK YOU.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

149

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



“The value and interest of life is not so much to do conspicuous things... as to do ordinary things with

the perception of their enormous value.”

-Pierre Teilhard de Chardin
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