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SUMMARY 

 

To improve the reliability of a system, the following two well-known methods are 

used: 

1. Provision of redundant units, and 

2. Repair maintenance 

In a redundant system more units are made available for performing the system 

function when fewer are required actually. The provision of redundant units could be 

performed mainly in three ways, namely, series, parallel and standby. This thesis deals 

with these three types.  

Following are some classical assumptions that are made in the analysis of redundant 

systems. 

1. The life time and the repair time distributions are assumed to be exponential. 

2. The repair rate is assumed to be constant. 

3. There is a single repair facility. 

4. The repair facility will continuously available.  

5. The system under consideration is needed all the time. 

6. The lifetime or repair time of the units are assumed to be independent. 

7. Usage of only conventional methods for the analysis of the estimated reliability 

systems. 

8. Switch is perfect in the sense that the switching device does not fail. 

9. The switchover time required to transfer a unit from the standby state to the 

online state is negligible. 

10. There is no human error when we handle the machines and no common cause 

of failures. 
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11. The repair rate is independent of the number of failed units. 

 

We frequently come across systems where one or more of these assumptions have 

been dropped. 

This is the motivation of the detailed study of the models presented in this thesis.     

We present several models of redundant repairable systems relaxing one or more 

assumptions (1-11) simultaneously. More specifically, it is a study of stochastic 

models of redundant repairable systems with a single repair facility. 

The estimation study of the system measures is focused in some chapters.  Imperfect 

switch, non-instantaneous switchover, variating repair rate and common cause of 

failure with human errors, etc. are some of the aspects focused in the thesis. 

Chapter 1 is essentially an introductory in nature and contains a brief description of 

the mathematical techniques used in the analysis of redundant systems.  

In Chapter 2 assumptions (1), (2) and (4) are relaxed. Here we deal with an n - unit 

warm standby system with varying repair rate. We first consider a model in which the 

repair rate of a failed unit is constant depending on the number of failed units at the 

epoch of commencement of each repair and the vacation period is introduced after 

each repair completion. Introducing a profit function, the optimal number of standby 

units is also determined. A special case is obtained by suspending the vacation period. 

In Chapter 3, we have relaxed an assumption (6). A three unit warm standby system 

with dependent structure, wherein the lifetimes of online unit, standby units and the 

repair time of failed units are governed by quadrivariate exponential law is studied. 

Measures of system performance such as, reliability, MTSF, availability and steady 

state availability are also obtained. A 100(1- α )%  confidence interval for the steady 

state availability of the system and an estimator of system reliability based on 

moments are obtained. Numerical work is carried out to illustrate the behaviour of the 
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system reliability based on moments by simulating samples from quadrivariate 

exponential distribution. Generalization of the above results to a 𝑛(≥ 4) unit warm 

standby system with 𝑜(≥ 2) repair facilities is investigated. 

In Chapter 4, a slight modification of an assumption (4) is studied. This chapter deals 

with the study of three unit system where unit 1 is connected in series and the other 

two units are connected in parallel. The significant feature of this chapter is 

modification of an assumption (4) by assuming the repair facility gives priority to the 

repair of the unit 1 in the sense that whenever the unit 1 fails in the operable state, and 

at that instant if there is already unit 2 or unit 3 under repair, the repair of unit 1     

starts immediately keeping the unit under repair in queue, and the repair of which is 

taken afresh immediately after the repair of unit 1 is completed. 

In Chapter 5, a two unit cold standby system with constant failure rate and two stage 

Erlangian repair is studied. Measures of system performance such as reliability, 

MTSF, availability and steady state availability are obtained. Furthermore confidence 

limits for the steady availability of the system, ML estimator of system reliability and 

Bayes estimator of MTSF are derived. Numerical illustration is carried out to study the 

performance of the Bayes estimator of MTSF.  

A three unit series-parallel system with preparation time is studied in Chapter 6.   

Unit 1 is given a priority over unit 2 and 3 for repair as it is connected to a series 

system. The expressions for system measures like availability and reliability are 

obtained.  

In Chapter 7, two unit warm standby system with imperfect switch and preparation 

time is studied. The switching device will have a head-of-line priority over the units 

for repair. Assuming various arbitrary distributions for some of the random variables 

involved, MTSF and 𝐴∞ are obtained. 
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1.1 INTRODUCTION 
 

Some of the most important characteristics of a reliable person are consistency, 

loyalty, dependability, honesty, truthfulness and trustworthiness. Assuming a world 

without these significant human attributes is itself a peculiar supposition. This is the 

reason that industry, commerce and generally society wish to associate most with the 

reliable persons. Humanity desires for things which are consistent and predictable. 

Much as human beings treasure reliability in human behaviour, it is hard to define its 

characteristics or to be able to measure it with precision. In practice, there is no hard 

and fast rule to judge a person who is reliable and the one who happens not to be. 

However, a judgment can be made whether an individual is reliable or not on the basis 

of definite human functions. For example the reliability of an individual working with 

an organization may be assessed on the basis of punctuality of arriving at work or 

participation in the activities of the organization. 

 

Reliability in a general sense may be regarded as a measure of performance. Persons 

who are able to finish their work on time are described as reliable.  Those people who 

keep time i.e., they are at the right place at the right time may be considered reliable as 

well as they fulfil their commitments. Reliability of human beings therefore depends 

on time at which or in which they perform any particular task and hence may be taken 

as an important measure. 

 

Reliability does not only apply to man's activities but also to tools and machinery he 

uses. We have seen that reliability has been applied to man's actions but when it comes 

to the objects he has made or invented, expectations of reliability are even higher. This 

is because it does not only frustrate his/her feelings but wastes time, money and 
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endangers life. According to Green and Bourne (1978), the consequences of 

unreliability have led to man's greater interests in reliability and more desire to acquire 

or use more reliable products. 

 

Advancements in information, communications technology and military systems have 

made systems even more complicated. These complications and intricacies have 

attracted the attention of number of researchers and scientists from various disciplines 

especially the system engineers, software engineers and applied probabilists. These 

developments have resulted in the emergence of reliability theory another scientific 

discipline dealing with methods and techniques to ensure maximum effectiveness of 

systems (from known qualities of their components). This theory has now become one 

of the important areas in operational research and system engineering. 

 

Gnedenko et al (1969) pointed out that reliability theory assigns quantitative indices to 

qualities of production which are computed from the design stage through 

manufacturing process to use and storage of manufactured goods and operating 

systems. Increased reliability of manufactured goods and operating systems is a 

challenge to governments, engineers and scientists. According to Lloyd and Lopow 

(1962) unreliability costs money, time wasted and inconveniences the users, in some 

cases may jeopardize personal and national security. The year 1963 saw the birth of 

the journal on reliability known as IEEE-Transactions on Reliability. 

 

Mathematical models help the system designers who are faced with the problems of 

evaluation of several measures of system performance, methods of improving them 

and determination of optimum preventive maintenance schedule. These models 

explain the various operational and theoretical features of the system under 
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consideration taking into account its essential features. Since unavailability and 

breakdowns of a system are becoming more and more unacceptable, the demand for 

systems that perform better but cost less is on the increase. It is common knowledge 

that repairing failed units and providing redundancy are two important methods of 

improving the performance of a system. 

 

Reliability theory is multidisciplinary in nature since problem handling requires 

methods of probability theory and mathematical statistics such as in information 

theory, queuing theory, linear and nonlinear programming, mathematical logic, the 

methods of statistical simulation on electronic computers, demography, etc. Reliability 

theory has been applied in contemporary medical science, software systems,             

geo astronomy, irregular interactions of physiological systems, spontaneous single 

neon discharge, phase dependence of population growth, fluctuation in business 

investments, etc. In addition, mathematical models relying on probability theory and 

stochastic processes are used in making realistic modelling for mobility of individuals 

and industrial labour, advancement in education and diffusion of information. 

According to Watson and Galton (1874) biological sciences stochastic models were 

first introduced in the study of extinction of families. This was followed by its 

application in population genetics, branching process, birth and death processes, 

recovery, relapse, cell survival irradiation, the flow of particles through organs, etc. 

These analytical models have been used in the purchasing behaviour of the individual 

consumer, credit risk and term structures, income determination etc. The traffic flow 

studies have also used the theory of stochastic models for traffic of pedestrians, 

freeways, parking lots, intersections, etc. 
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Various problems have emerged in the design of highly reliable technical systems 

which include: the creation classes of probability-statistical models which may be used 

in description of the reliability behaviour of the system, and the development 

mathematical methods for the assessment of the reliability characteristics of system. 

 

These problems encouraged the development of high-accuracy methods of reliability 

analysis. Gnedenko et al (1969), Barlow (1984), Gertsbakh (1989), Kovalenko et al 

(1997) and El- Sherbeny (2010) considered redundant systems and the classical 

examples are the methods of Markov processes with finite sets of states such as birth 

and death processes. Cox (1962) studied renewal process method and Cinler (1975) 

studied semi-Markov process method and its generalizations, Rubinstein (1981) 

generalized semi markov process (GSMP) method while Aven (1996) looked at 

special models for coherent systems. Ozekici (1996), Finkelstein (1999 a,b,c) and 

Chandrasekhar et al (2005) studied systems with random environment. 

 

In many areas of research, a suitable form of reliability may be introduced. Stochastic 

analysis is based on good probability models with ultimate aim of giving numerical 

estimates of reliability characteristics. Reliability theory also offers solutions to a 

number of problems not handled by the usual standard probability theoretical 

approach. According to Gertsbakh (1989) reliability of a system depends on the 

reliability of its components, provides a mathematical expression of aging process, 

offers well-developed method of renewal theory, introduces redundant systems to 

optimize the performance of standby components. Gnedenko et al (1969), provides the 

theory of optimal preventive maintenance and is also a study of inferential statistics 

often of censored data. 
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Reliability theory of technical objects and survival analysis of biological entities are 

similar with the exceptions of notations. Therefore the term "lifetime" is applicable to 

engineering systems, components, units etc., and to the disciplines like biological, 

financial etc., with minor modifications. 

 
1.2 FAILURE 
 
Failure is one of the basic and useful concepts of reliability theory. The ability of a 

unit not to have failures throughout specified period of time is called failure free 

operation. According to Gertsbakh (1989), failure is a result of joint action of many 

unpredictable, random processes going on inside the operating system as well as in the 

environment in which the system itself is operating. Failure is stochastic in nature and 

its operation gets seriously impeded or completely stopped at a certain point in time. 

Determination of failure may be easily detected in some cases just through observation 

known as well-defined failure but in others it is very difficult since these units 

deteriorate continuously and the actual moment of failure is not as easy to determine 

(known as partial or relative failure). A typical example of a component having well 

defined failure is an electric bulb which has two states: either working or not working 

at all. However in some cases, the concept of failure is extremely relative. Failure of 

electronic component such as resistor is an example of a partial failure. We assume 

that failure is exactly observable in this thesis and failure is known as a 

disappointment or a death. When a system fails it enters a down state which may also 

be called a system breakdown (Finkelstein (1999a)). According to Zacks (1992): data 

is of two types: from continuously monitored units for failure and from observation of 

failure made at discrete points in time. 
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Villemeur (1992) cited a number of possible failures and their causes, which fall into 

two categories: random individual independent failures and interdependent failures. 

Failures are either catastrophic or drift depending on whether their parameters fall 

sharply or gradually as a result of wear and fatigue. 

 
1.3 REPAIRABLE SYSTEMS 
 
In case of failure of a unit, it is renewed. The renewal can assume various forms: it can 

be replaced with a new unit that is identical to it or it can be subjected to maintenance 

or repair that completely restores all its original properties. Although the replacement 

of a failed units of a system with new ones is a good option, repair is always more 

feasible because of the cost involved in buying new ones. Some systems are repairable 

while others are not. 

 

Repairable system is the system which may be made operable by a repair facility once 

it is in a down state as a result of a failure. A renewed system has its service time 

increased as a result of its reliability increased. In case the repair facility is not free 

then the failed units queue up for repair. 

 

In this thesis the lifetime of a unit while on line, standby or under repair are considered 

both independent and dependent variables. We assume that the distributions of these 

random variables are known with probability density functions. Investigations of 

repairable systems have been there for ages. 
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The random variables considered in these investigations are as below: 

 

1.   Availability and reliability 

2.   Time necessary for repair 

3.   Repair (numbers) that can be handled 

4.   Switchover time for the repair facility 

5.   Possibility of a vacation time for repair facility 

 

The repair facility problems have much in common with queuing problems       

(Barlow (1962)). The problems of locating an optimum value of m out of n: G system 

of maximum reliability was conducted by Rau (1964). Ascher (1968) mentioned some 

inconsistencies in modelling of repairable system of renewal theory. 

 

Buzacott (1970), Shooman (1968), Barlow and Porschan (1965, 1975), Sandler 

(1963), and Doyan and Berssenbrugge (1968) and many others used continuous time 

discrete state Markov process model for modelling the behaviour of repairable system. 

 

Despite the simplicity of these systems conceptually, their practicability in large 

number of states is not feasible. A semi-Markov process was used for computation of 

reliability of a system with exponential failures by Gaver (1963), Gnedenko et al 

(1969), Srinivasan (1966), and Osaki (1970a). Osaki (1969) used signal flow graphs to 

analyse a two unit system while Kumagi (1971) applied a semi Markov process to 

determine the impact of different failures distribution on availability through 

numerical computation. 
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A semi- Markov process was used by Branson and Shah (1971) to study a repairable 

system with arbitrary distributions. Srinivasan and Subramanian (1980), 

Venkatakrishnan (1975), Ravichandran (1979), Natarajan (1980) and Sarma (1982) 

applied regeneration point techniques to study repairable systems using arbitrary 

distributions. 

 

A number of papers have been written in this field and related topics as seen in    

Subba Rao and Natarajan(1970), Osaki and Nakagawa (1976), Pierskalla and Voelker 

(1976), Lie et al (1977), Kumar and Agarwal (1980), Birolini (1985), Yearout et al 

(1986) and Finkelstein (1993a, 1993b). In order to improve the efficiency of the 

system, Jain and Jain (1994) introduced the regulation of up and down times of 

repairable systems. 

 

1.4 REDUNDANCY AND DIFFERENT TYPES OF 
        REDUNDANT SYSTEMS 
 
Redundancy is one of the basic methods to increase system reliability. This is 

introduced in a system by building into it more units than is actually required for the 

system to perform properly. There are two types of redundancy namely parallel and 

standby redundancy. Parallel redundancy is when the units form part of the system 

from the start while in a series redundancy a standby system does not form part of the 

system until when it is required. 

 

1.4.1 PARALLEL SYSTEMS 
 
A parallel redundant system is defined as one with n-units which are all functioning 

concurrently, despite the fact that system operation needs at least one unit to be in 
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operation. That is, the system works as long as even a single component is still alive. 

In this case system failure occurs only when all the components have failed. 

 

Let k be a non-negative integer such that 𝑘 ≤  𝑛, counting the number of units in        

n-unit system. This system is normally referred to as a k-out-of-n system. 

 

K-out-of-n: F-System 

A k-out-of-n: F system is a redundant system composed of n-units and the system fails 

if k units fail in a k-out-of-n system. Sfakianakis and Papastavridis (1993) pointed out 

that the functioning of a minimum number of units ensures that the system is operating 

and Chao et al (1995) surveyed such systems. 

 

K-out-of-n: G-System 

A k-out-of-n: G system is a redundant system composed of n-units and the system 

functions if and only if at least k units out of the n-units of the system are operational.  

Zhang and Lam (1998) and Liu (1998) have recently studied such systems, for 

example a radar network system has n radar control stations. Covering a certain area in 

which the system can be operable if and only if at least k of these stations are operable 

in this case a minimum number of units, k is essential for the functioning of the 

system. 

Attention has shifted to load - sharing of k-out-of-n: G systems of late, where serving 

units share the load and the failure rate of components is affected by the magnitude of 

the load it shares. 
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n-out-of-n: G-System 

An n-out-of-n G-system is basically a series system that consists of n-units and failure 

of any one unit causes the system to fail. This type of system is not really redundant 

since all the units are in series and have to be operational for the system to operate 

however; it is still called a special case of a k-out-of-n system. 

 

Scheuer (1988) looked at reliability of shared-load in k-out-of-n: G systems and 

pointed out that there is an increasing failure rate in survivors, assumed identically 

distributed components with constant failure rates. Shao and Lamberson (1991) 

introduced imperfect switching to the same case. A paper by Liu (1998) considered the 

influence of work-load sharing in non-identical, non-repairable components, each 

having an arbitrary failure time distribution. His assumptions were that failure time 

distribution of the components may be represented by an accelerated failure time 

model, which happens to be a proportional hazards model when Weibull base-line 

reliability is used. 

 
1.4.2 STANDBY REDUNDANCY 
 
Standby redundancy is one of the basic methods of increasing reliability. Standby 

redundancy consists of an attachment to an operating unit one or more redundant 

(standby) units, which, when failure occur, take the place of basic operating unit and 

fulfil its function. These units may be classified as cold, warm or hot (Gnedenko et al 

(1969)). 

 

1. A cold standby is not hooked up hence completely inactive, it cannot in (theory) 

fail until it is put to use by replacing a primary unit. Assume that since it is not in 

operation its reliability will not change when it is put into operation. 
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2. A warm standby is when a unit is partially energized hence has a diminished load. 

The on-line unit and standby unit are not subject to the same loading conditions. The 

failure of standby unit is attributable to some extraneous random influence. The 

probability of failure of the warm standby unit is smaller than the probability of failure 

of the on-line unit. This is the most general type of standby due to the high failure rate 

of the hot standby unit and possible lapse before it is operable in the case of the cold 

standby unit. 

 

3. A hot standby is fully energized and active in the system although redundant and 

the possibility of failure of a hot standby is the same as that of an operating unit in the 

standby state. A hot standby's reliability is independent of the instant at which it takes 

place in the operable unit. 

 

1.4.3 SERIES SYSTEM  
 

A series system is an arrangement of components such that the failure of any of the 

system component results the entire system failure. That is, a system in which all the 

components have to work for the system to work. A simple computer consists of a 

processer, a bus and a memory, chains made out of links; highways that maybe closed 

to traffic due to accidents at different locations, the food chains of certain animal 

species and layered company organizations in which information is passed from one 

hierarchical level to the next are some examples of a system in series.  
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Following is a graphical description of a series system: 

 
 

 

In a series system of n component the success of the system is equivalent to the success 

of every individual component and hence series system’s reliability decreases as the 

number of component increases. The reliability of series system is easily calculated 

from the reliability of its components. If there are n components in series where the 

reliability of i-th component is 𝑅𝑖 the system reliability is 𝑅𝑠 = 𝑅1 × 𝑅2 × … × 𝑅𝑛. 

The implications of the above equation are that the combined availability of n 

components in series is always lower than the availability of its individual components. 

As a matter of fact a series system is one that is as weak as its weakest link.  

 

1.5 MEASURES OF SYSTEM PERFORMANCE 
 
The aim of this section is to discuss some important measures of system performance 

as applicable in different situations (Barlow and Proschan (1965), Gnedenko et al 

(1969)). 

 

1.5.1 RELIABILITY 
 
The study of reliability has attracted the attention of engineers, mathematicians, 

economists and industrial managers over the past decades mainly because of the 

development of the high risk and complex system (Tijms (1988), Beichelt and Fatti 

(2002)). Reliability is a kind of quantitative measure of operational efficiency. The 

reliability of a product is therefore a measure of its ability to perform its functions 

Component 1 Component 2 Component 3 
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expected, when it is required, for a specific time, in a particular environment. It is 

measured in terms of probability and comprises of four parts, namely:  

 

1.   System expected function 

2.   System operating environment (climate, packaging,  

      transportation, storage, installation, pollution) 

3.   Time which is often negatively correlated with reliability 

4.   Probability, which is time dependent 

  

There are two types of reliability namely: 

1. Mission reliability is when a device is made for the performance of one mission   

     only.  

2. Operational reliability is when a system is turned on and of intermittently for the 

     purpose of performing a certain specified function. 

 

The latter case is known as an intermittently used system (Kapur and Kapoor (1978)), 

Kapoor and Kapur (1980). Ordinarily the period of time intended for use in (0, t] is 

called a need period. 

 

Let {𝜓(𝑡) ∶  𝑡  ≥   0} be the performance process of the system. 

For fixed t, 𝜓(𝑡) is a binary random variable which takes on the value 0 if the system 

operates satisfactorily at time t and takes value 1 otherwise. 

Reliability 𝑅(𝑡) is then given as 

𝑅(𝑡)  =  𝑃 {𝑜𝑦𝑜𝑡𝑒𝑚 𝑖𝑜 𝑢𝑝 𝑖𝑛 (0, 𝑡]} 

                        =  𝑃 {𝜓(𝑢)  =  0 𝑓𝑜𝑜 𝑎𝑙𝑙 𝑢 ∈  (0, 𝑡]}. 
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The performance measure for the interval of reliability in case the number of system 

failures in the interval (t, t +x] is considered as 

𝑅 (𝑡, 𝑥)  =  𝑃 {𝜓(𝑢)  =  0 𝑓𝑜𝑜 𝑎𝑙𝑙 𝑢 ∈  (𝑡, 𝑡 + 𝑥]}. 

 

When 𝑡 = 0, the interval reliability becomes the reliability 𝑅(𝑥). The limiting interval 

reliability is the limit of 𝑅 (𝑡, 𝑥) as 𝑡 → ∞ and it is indicated as 𝑅∞(𝑥). 

 

The mean time to system failure (MTSF) is the expectation of random variable 𝜓 (𝑡). 

It represents the duration of the time measured from the point the systems commences 

operation until the instant when it fails for the first time and it can be computed from 

𝑅(𝑡) as given below 

𝑀𝑇𝑆𝐹 = ∫ 𝑅(𝑢)𝑑𝑢𝑡
0 . 

 

1.5.2   AVAILABILITY 
 
Availability is also a measure of system performance, which is the probability that the 

system will be operational (in operable condition or available for use) at the given time 

𝑡. It implies that the system is either in active operation or is able to operate if required 

and consists of aspects of reliability, maintainability and maintenance support. 

 

Availability is applicable only to systems which undergo repair and are restored after 

failure. In theory availability 𝐴(𝑡) should be 100 % but in practice, even equipment 

coming directly out of storage may be defective. Availability is very important and 

high availability may be obtained either by increasing the average operational time 

until the next failure, or by improving maintainability of the system. 
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Pointwise availability is a point function which describes the probability that a system 

will be able to operate at a given instant of time (Gnedenko and Ushakov (1995)). 

Klaassen and Van Peppen (1989), Beasley (1991).  

In symbols 

𝐴 (𝑡)  =  𝑃{𝜓(𝑡)  =  0 }. 

 

According to Barlow and Proschan (1965) steady state or asymptotic availability is a 

limiting availability 𝐴∞ and it is defined as expected fraction of time that the system 

operates satisfactorily in the long run. 

𝐴∞ = lim𝑡→∞ 𝐴(𝑡). 

 

The joint availability is the probability that the system is operating at t and t +τ, that is, 

we have 

𝐴 (𝑡, 𝜏)  =  𝑃 {𝜓(𝑡)   =  0,𝜓 (𝑡 + 𝜏)   =  0}. 

 

Just as reliability and interval reliability are related availability and joint availability 

satisfies the following relation 

𝐴 (𝑡)  =  𝐴 (0, 𝑡). 

The expected number of visits by the repair facility is a widely used concept in 

queuing theory of the server taking vacations and a lot of research has been done on 

server vacation models (see, for example Doshi (1986),  Kella (1989)). The server 

takes vacations according to some specified assumptions, whenever the busy period of 

service station terminates. We assume that the cost structure whenever the server starts 

its busy cycle. We consider the idea of server vacation in reliability modeling and 

compute the expected number of visits by the repair facility in the arbitrary interval of 
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time by supposing that repair facility takes vacation whenever the repair facility 

becomes free and that it returns back only at the epoch of the next failure. 

 

In addition to estimating some of the above measures, a few other interesting, 

important and useful performance measures characteristics to each model are also 

derived in this thesis. 

 
1.6 COST FUNCTION 
 
There are a number of constraints facing the designer of a system. Some consideration 

has to be made system's reliability and availability, its usefulness and effectiveness. 

Due to the complexity of the present-day systems, measures such as reliability, 

availability etc. alone are not sufficient. In addition, cost and profit have become the 

guiding principles in every industrial and social management endeavor. Hence cost 

optimization has become one important criterion for system designers. 

 

We shall focus, in this thesis to the construction of comprehensive cost function for 

each of the models considered. Since they are highly nonlinear, analytical optimization 

of these functions become impracticable, if not impossible. Hence we resort to 

numerical optimization; assuming that the control parameters are within certain 

specific intervals, we obtain numerically their optimal values. 

 
1.6.1 MEAN NUMBER OF EVENTS IN (𝟎, 𝒕] 
 
Let 𝑁(𝑎, 𝑡)  denotes the number of a particular type of an event such as a 

disappointment, system recovery, system down, etc., in (0, 𝑡]. The mean number of 

events in (0, t] is shown below 
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𝐸[𝑁(𝑎, 𝑡)] = � ℎ1(𝑢)𝑑𝑢,
𝑡

0
 

where h₁ (u) is the first order product density of the events (defined in section 1.7.4). 

The mean stationary rate of occurrence of these events is 

 

𝐸[𝑁(𝑎)] = lim
𝑡→∞

𝐸[𝑁(𝑎, 𝑡)]
𝑡

. 

 
1.6.2 CONFIDENCE LIMITS FOR THE STEADY STATE 
           AVAILABILITY 
 
𝐴 100 (1 − 𝛼) % confidence interval for 𝐴∞ is stated as 

𝑃 [𝑎 <  𝐴∞  <  𝑏]  =  1 −  𝛼 . 

Appropriate statistical tables are used to determine the numbers a and 𝑏 (𝑎 <  𝑏). 

𝐴∞ is a function of parameters of operating time distribution, repair time, need and no 

need period distributions (Yadavalli et al (2002, a, b), Yadavalli et al (2001), 

Yadavalli et al (2005)). 

 

1.7 STOCHASTIC PROCESSES USED IN THE 
         ANALYSIS OF REDUNDANT SYSTEMS 
 
In previous section, different types of redundant system and the various measures of 

system performance were studied. The purpose of this section is to discuss some 

techniques used in the analysis of redundant repairable systems. 

 
1.7.1 RENEWAL THEORY 
 
In renewal theory we are interested in the lifetime of the unit, there exists times 

commonly random from which onward the future of the process is probabilistic replica 
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of the original process. At the beginning 𝑡 =  0 a repairable unit is put into operation 

and functioning. The unit is replaced by a new one of the same type and subjected to 

maintenance that completely restores it to an as good as new condition upon failure. 

This process is repeated upon failure and a replacement time is considered negligible. 

These results in a sequence of life times and this study is restricted to these renewal 

points. The number of renewals 𝑁𝑡 upto some time 𝑡 is the probability object in these 

sums of non-negative i.i.d. random variables. 

 

A number of researchers have studied specific reliability problems using renewal 

processes. The homogeneous Poisson process has received considerable attention and 

happens to be the simplest renewal process. The time parameter may be taken as either 

discrete or continuous. A proper lead for the discrete case was conducted by Feller 

(1950) followed by a very lucid account of Cox (1962) for the continuous case (he 

provided an introduction to renewal theory in the case of a repair facility not being 

available and failed units queuing up for repair). 

 

Barlow (1962) applied in his research on repairable systems queuing theory. Some 

operating characteristics of a one unit system were studied by Srinivasan (1971) while 

Gnedenko et al (1969) worked out the mean time to system failure of a two unit 

standby system. Some priority redundant systems were studied by Buzacott (1971). 

 

In renewal systems the system starts a new cycle after each renewal which is 

independent of the previous ones despite its possibility of taking on different forms. In 

case of repair time which is both random variables with individual distributions repair 

time may be considered as a fixed time) this process is known as: 
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1.  An ordinary renewal process if the time origin is the initial installation of the 

system and the repair time is taken as negligibly small in comparison with the life 

time of the unit renewal is taken as instantaneous or 

2. A general renewal process if the time origin is some point after the initial 

installation of the system (Cox (1962)). Hoyland and Rausand (1994) named this 

a modified renewal process, while Feller (1957) calls this process considering the 

residual life time of a system at an arbitrary chosen time origin as a delayed 

renewal process. 

 

(a) Ordinary renewal process: Instantaneous renewal 

This is when a basic model of continuous operation is considered whose unit begins 

operating at instant 𝑡 = 0 and stays operational for a random time 𝑇1 and then fails. At 

this instant the unit is replaced by a new and statistically identical unit which operates 

for a length of time 𝑇2 then fails and is again replaced etc. These random components 

life lengths 𝑇1,𝑇2,𝑇3…𝑇𝑟 … of the identical units are independent, nonnegative and 

identically distributed that constitute ordinary renewal process. 

 

Let 

𝑃[𝑇𝑖 ≤ 𝑡] = 𝐹(𝑡);  𝑡 > 0, 𝑖 = 1,2, … 

 

be considered as an underlying distribution of the renewal process. The time taken 

until the 𝑜𝑡ℎ- renewal is given by 

𝑡𝑟 = 𝑇1 + 𝑇2+. . . +𝑇𝑟 = ∑ 𝑇𝑖𝑟
𝑖=1 . 
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Let 𝑁(𝑡)  be a random variable where 𝑁(𝑡)  = 𝑚𝑎𝑥{𝑜: 𝑅𝑟 ≤  𝑡}  which denotes the 

number of time the renewal takes place in the interval  (0, 𝑡], then the number of 

renewal in an arbitrary time interval (𝑡₁, 𝑡₂] is equal to  

𝑁 (𝑡₂)  − 𝑁 (𝑡₁). 

 

A renewal function 𝐻 (𝑡) which is the expected value of 𝑁 (𝑡) in the time interval 

(0, 𝑡] can now be defined as 

                  𝐻 (𝑡)  =  𝐸[𝑁(𝑡)] 

                             = ∑ 𝐹(𝑟)∞
𝑟=1 (𝑡)   

                   =  𝐹 (𝑡)  + ∫ 𝐻𝑡0 (𝑡 − 𝑥) 𝑑(𝐹(𝑥),  

where 𝐹(𝑟)(. ) is the r- fold convolution of F 

The renewal density function is 

ℎ (𝑡)  = �𝑓𝑟(𝑡)
∞

𝑛=1

 

and these renewal density function h(t) satisfies the equation 

 

ℎ (𝑡)  =  𝑓(𝑡) + ∫ ℎ𝑡0 (𝑡 − 𝑥)𝑓(𝑥)𝑑𝑥. 

 

It indicates that the renewal density ℎ(𝑡) basically differs from the hazard rate ℎ⁰(𝑡) as 

 

ℎ0(𝑡) = 𝑓(𝑡)
𝑅(𝑡)

= 𝑓(𝑡)
1−𝐹(𝑡)

. 
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(b) Random renewal time 

In case the time for renewal is not instantaneous but it is taken as a random variable 

that is included in the subsequent time period, or cycles, of the system performance, 

each cycle will then comprise of a time for the failure or the time for repair. 

 

The failure or repair time will both be stochastic in nature. The instant of failure and 

cycles of renewal can be determined.  

Let 𝐹(𝑡)  be the life time distribution and 𝐺(𝑥)  be the repair time function with 

respective probability density function 𝑓(𝑡) and 𝑔(𝑥). Therefore the density function 

of a cycles C of the life time, say 𝑘(𝑡) is estimated using the convolution formula 

𝑘(𝑡) = ∫ 𝑓(𝑥)𝑔(𝑡 − 𝑥)𝑑𝑥𝑡
0 . 

 

Let 𝑁𝐹(𝑡)  count the number of failures and  𝑁𝑅(𝑡)  the number of repairs in the 

interval (0, 𝑡], define 

             𝑊(𝑡) = 𝐸�𝑁𝐹(𝑡)�,  𝑉(𝑡) = 𝐸(𝑁𝑅(𝑡)) and let  

            𝑄(𝑡)   = 𝑊(𝑡) − 𝑉(𝑡),          for all   𝑡,  

assuming that 𝑤(𝑡) = 𝑊′(𝑡) and 𝑣(𝑡) = 𝑉′(𝑡). 

 

The failure and repair intensities can then be respectively be defined as 𝜆(𝑡) = 𝑤(𝑡)
𝐴(𝑡)

), 

where 𝐴(𝑡) is availability function, and 

𝜇(𝑡) = 𝑣(𝑡)
𝑄(𝑡)

,      where   𝑄(𝑡)  ≠  0. 

 

(c) Alternating renewal processes 

Takacs (1957) was the first to study in details alternating renewal processes and then 

many text books have discussed it further (Ross (1970)). A generalization of the 
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ordinary renewal process discussed previously follows where the state of the unit is 

given by the binary variable 

 

𝑋(𝑡) = � 0, 𝑖𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑖𝑜 𝑓𝑢𝑛𝑜𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡,
 1,         𝑜𝑡ℎ𝑒𝑜𝑤𝑖𝑜𝑒.                                                    

 

The two alternating states may be taken as ‘system up’ and ‘system down’. If these 

alternating independent renewal processes are distributed according to F(x) and G(x), 

there are two renewal processes embedded in them for the different transitions from 

‘system up’ to ‘system down’. Usually one-item repairable structure are considered as 

alternating renewal processes under the assumption that after each repair the item is as 

good as new. 

 

(d) Age and Remaining life time of a unit 

Let 𝑡𝑟 indicates the random component life time, that is, 

𝑡𝑟 = 𝑇1 + 𝑇2 +...+𝑇𝑟 = ∑ 𝑇𝑖𝑟
𝑖=1 . 

Let 𝑅𝑟 , 𝑜 ∈  𝑁, represent the length of the 𝑜𝑡ℎ - repair time, then the sequence T₁, 

𝑅1,T₂, 𝑅2, … form an alternating renewal process. Define 

𝑡𝑛 = 𝑇1 + ∑ (𝑅𝑟 + 𝑇𝑟+1); 𝑛−1
𝑟=1 𝑛 𝜖 𝑁    and 

𝑡𝑛0  = ∑ (𝑅𝑟 + 𝑇𝑟) 𝑛
𝑟=1  and set 𝑡0 = 𝑡00 = 0. 

 

This sequence 𝑡𝑛 generates a delayed renewal process. 

If 𝐵1(𝑡) denotes the forward recurrence time at time t, then  

𝐵1(𝑡) = 𝑡𝑁𝑡+1 − 𝑡,   or 

 𝐵1(𝑡) = 𝑡𝑁𝑡0+1 − 𝑡. 
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Hence  

• 𝐵1(𝑡) equals the time to the next failure time if the system is up at time t, or 

• 𝐵1(𝑡) equals the time to complete the repair if the system is down at time t. 

Also, 

• 𝐵2(𝑡) equals the age of the unit if the system is up at time t, or 

• 𝐵2(𝑡) equals the duration of the repair if the system is down at time t. 

 

Feller (1941) defined the elementary renewal theorem as an ordinary renewal process 

with underlying exponential distribution (parameter λ and 𝐻 (𝑡)  = 𝜆 𝑡). 

 

lim
𝑡→∞

𝐻(𝑡)
𝑡

=
1
𝜇

 

with 𝜇 = 𝐸(𝑇𝑖) = 1
λ
,  the mean life time. 

 

In case the renewal match the component failure, the mean number of failure in (0, t] 

is approximately (for t large). 

 

𝐻(𝑡) = 𝐸�𝑁(𝑡)� 

                 ≈  
1
𝜇

=
1

𝑀𝑇𝑆𝐹
 . 

 
 
1.7.2 SEMI MARKOV AND MARKOV RENEWAL 
              PROCESSES 
 
We shall study the general description of a process where a system 

• Moves from one state to another with random sojourn times in between 

• The successive states visited form a Markov chain 
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• The sojourn times have a distribution which depends both on the present state 

and the next state. 

It is considered a Markov chain if all the sojourn times are equal to one and a Markov 

process if the distribution of the sojourn times are all exponential and independent of 

the next state. It is renewal process if there is only one state allowing an arbitrary 

distribution of the sojourn times. 

 

The state space may be denoted by the set of non- negative integers {1,2, …} and 

transition probabilities by  𝑝𝑖𝑗 ; 𝑖, 𝑗 = 0,1,2, … . If 𝐹𝑖𝑗(𝑡), 𝑡 > 0  is the conditional 

distribution of the sojourn time in state i, given that the next transition will be into the 

state j, let 

𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡), 𝑖, 𝑗 = 0,1,2, …. 

 

Denote the probability that the process makes a transition into state j in an amount of 

time less than or equal to t, given that it just entered state i at t=0. The functions 𝑄𝑖𝑗(𝑡) 

satisfy the conditions which follow: 

⎩
⎪
⎨

⎪
⎧
𝑄𝑖𝑗(0) = 0,𝑄𝑖𝑗(∞) = 𝑝𝑖𝑗
𝑄𝑖𝑗(𝑡) ≥ 0;  𝑖, 𝑗 = 0,1,2, …

�𝑄𝑖𝑗(𝑡)
∞

𝑗=0

= 1.
 

Denote initial state and the state after the 𝑛𝑡ℎ  transition occurs by 𝐽0  and 𝐽𝑛 

respectively. The embedded Markov chain {𝐽𝑛,𝑛 = 0,1,2, … }  then becomes the 

Markov chain with transition probabilities 𝑝𝑖𝑗. 
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If 𝑁𝑖(𝑡) represents the number of transitions into state i in (0, t] and 

N(t) = �Ni(t)
∞

i=0

. 

 

A semi Markov process (SMP) is a stochastic process {𝑋(𝑡), 𝑡 ≥ 0} with 𝑋(𝑡) = 𝑖 

representing the process in state i at time t and it indicates that 𝑋(𝑡) = 𝐽𝑁(𝑡). A SMP is 

a pure jump process and all the states are regenerative states. The subsequent states 

form a time homogenous Markov chain process without memory at the transition point 

from one state to the next. A Markov renewal process (MRP) is a vector stochastic 

process {𝑁1(𝑡),𝑁2(𝑡), … } 𝑓𝑜𝑜 𝑡 ≥ 0. A SMP records the state process at each time 

point while the MRP is a counting process keeping track of the number of visits to 

each state. 

 

Suppose the time interval in which the random variable 𝑋(𝑡) continues to remain in 

the n-point state are independently distributed such that 

 

        lim
∆→0

𝑃[𝑋(𝑡 + 𝑥) = 𝑗,   𝑋(𝑡 + 𝑢) = 𝑖: ∀ 𝑢 ≤ 𝑥 |𝑋(𝑡) = 𝑖,𝑋(𝑡 − ∆) ≠ 𝑖] 

                                     = 𝑓𝑖𝑗 , 𝑖, 𝑗 = 1,2, … ,𝑛. 

                                  

A Markov chain with a randomly transformed time scale is called a MRP, if the 

transition 𝑋(𝑡) is characterised by a change of state and the qualities 𝑓𝑖𝑖(. ) are zero 

functions. 

 

In order to remove 𝑓𝑖𝑖(. ) = 0, another definition of a MRP can be given, namely 

considering it as regenerative stochastic process {𝑋(𝑡)} in which the epochs at which 
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𝑋(𝑡) visits any member of a certain countable set of states are regenerative points, the 

visits become regenerative events. 

 

In order to obtain more powerful tool than either a Markov chain or a renewal process 

the two are combined to form a SMP. Levy (1954) and Smith (1955) introduced SMP 

independently. Pyke (1961 a, b), Cinler (1975) and Ross (1970) have used both SMP 

and MRP extensively while Barlow and Proschan (1965) applied these processes to 

determine the MTSF of a two unit system. In their discussion of certain reliability 

problems, Cinler (1975), Osaki (1970 a, b), Arora (1976 a, b), Nakagawa and Osaki     

(1976) and Nakagawa (1974) have used the theory of SMP. 

 

1.7.3 REGENERATIVE PROCESSES 
 
A sequence 𝑡0, 𝑡1, … of stopping times such that 𝑡 = {𝑡𝑛:𝑛 ∈ 𝑁} is a renewal process 

in a regenerative stochastic process 𝑋(𝑡). In case a point of regeneration occurs at 

𝑡 = 𝑡1, then the knowledge of the history of the process prior to 𝑡1 loses its predictive 

value; the future of the process is totally independent of its past. It therefore implies 

that 𝑋(𝑡) regenerates itself repeatedly at these stopping times and the times between 

consecutive renewals are known as regeneration times. Renewal theory is an important 

tool in elementary probability theory because of its application to regenerative 

processes. 

 

Delayed renewal process is stated as follows: if 𝑡̂ = {𝑡𝑛 − 𝑡0;𝑛 ∈ 𝑁}  is a renewal 

process such that 𝑡0 ≥ 0 is independent of 𝑡̂ which implies that the time 𝑡0 of the first 

renewal is not necessarily the time origin. A delayed renewal process is formed by a 

delayed regenerative process which is a process with a sequence 𝑡 = {𝑡𝑛 ;𝑛 ∈ 𝑁} of 
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stopping times. For instance for any initial state 𝑖, the times of subsequent entrances to 

a fixed state 𝑗 in a Markov process become a delayed process. 

 

In general non-exponentially distributed repair times and/ or failure free operating 

times lead to processes with only a few regenerations states (or even to non-

regenerative processes) with the exception of few cases when it may lead to semi 

Markov processes. The focus of recent research is on Brownian motion with interest in 

the random set of all regeneration times and on the excursions of the process between 

generations. 

 
1.7.4 STOCHASITC POINT PROCESS 
 
Point processes are widely used in reliability theory to model the appearance of events 

in time among discrete stochastic processes. A renewal process is used as a 

mathematical model to describe the flow of failures in time. It is a point process 

known to be with restricted memory and each event is a regeneration point. In 

practical applications to reliability problems, the interest is focused on the behavior of 

a renewal process in a stationary regime, that is, when 𝑡 → ∞, as repairable systems 

enter an almost stationary regime very quickly. Alternating renewal process is a 

generalization of a renewal process, which comprises of two types of i.i.d. random 

variables alternating with each other in turn. 

 

Point processes have been defined by different individuals in the different areas of 

application since recurrent events has had applications in a number of fields including 

physics, biology, management sciences, cyber metrics and many other areas. Wold 

(1948) and Bartlett (1954) first studied the properties of stationary point processes to 

which we attribute the current terminology. Moyal (1962) provided a formal and well-
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knit theory of the subject and even extended it to cover non Euclidean spaces. 

Srinivasan (1974), Srinivasan and Subramanian (1980) and Finkelstein (1998, 1999c) 

applied extensively point processes in reliability theory. 

Our concern in point processes majors on those applications which, in general, lead to 

the development of multivariate point processes. In this particular case, a point process 

can be defined as a stochastic process whose realization are related to the series of 

point events occurring in a continuous one- dimensional parameter space ( such as, 

time, etc.). The time series {𝑡𝑛}  are the renewal epochs which generate the point 

process. The two random variables of concern are the number of points that fall in the 

interval (𝑡, 𝑡 + 𝑥] and the time that has lapsed since the 𝑛𝑡ℎ point after (or before) 𝑡. 

 

Characterization property of stationarity applies certain point processes, such as the 

density function of the number of observed events in a time interval which does not 

depend on its position on the time axis, but only on the length of the interval 

(Srinivasan and Subramanian (1980)). Point process models for software reliability are 

studied by Finkelstein (1999c)  

 

(a)  Multivariate point processes 

Multivariate stationary processes have been applied in many fields and the properties 

of these processes have been investigated widely by Cox and Lewis (1970). A 

stationary point process is obtained by relaxing the constraint of independent it results 

in a multivariate stationary point process. 

 

The product density technique as a sophisticated tool for the study of point processes 

was developed, analyzed and perfected by Ramakrishnan (1954). A point process is 

denoted by the triplet (∅,𝐵,𝑃), where P is a probability distribution on some 𝜎 − field 
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B of subsets of the space ∅ of all states. A point x of a fixed set of points X describes 

the state of a set of objects. 

Suppose for X is the real number line for this discussion and define 𝐴𝑘 as intervals and 

𝑁(.) as a counting measure which is uniquely associated with a series of point {𝑡} such 

that 

 

                       𝑁(𝐴)   =  the number of points in the sequence {𝑡𝑖: 𝑡𝑖 ∈ 𝐴}, 

                  𝑁(𝑡, 𝑥)   =  the number of points ( events) in the interval (𝑡 ∶ 𝑡 +  𝑥] 

𝑁(𝑡, 𝑥)  =  the number of points ( events) in (𝑡 + 𝑥, 𝑡 + 𝑥 + ∆]. 

  

The central quality of interest in the product density technique is this 𝑁′(𝑡, 𝑥), 

representing the number of entities with parametric values between 𝑥  and 𝑥 + ∆ at 

time 𝑡. 

 

Resulting the factorial moment distribution the product density of order 𝑛 , which 

denotes the probability of an event in each of the intervals  (𝑥1, 𝑥1 + ∆1), (𝑥2, 𝑥2 +

∆2),,… , (𝑥𝑛 , 𝑥𝑛 + ∆𝑛), can be defined. It is symbolized by the product of the density 

of expectation measures at different points as shown below, 

ℎ𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = lim∆1,∆2,…∆𝑛
𝐸[∏ 𝑁(𝑥𝑖,∆𝑖)𝑛

𝑖=1 ]
∆1∆2 …∆𝑛

; 𝑥1 ≠ 𝑥2 ≠ ⋯ ≠ 𝑥𝑛. 

 

Or, equivalently  

ℎ𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = lim
∆1,∆2,…∆𝑛

𝑃[𝑁(𝑥𝑖,∆𝑖) > 1, 𝑖 = 1,2, … ,𝑛]
∆1∆2 …∆𝑛

; 𝑥1 ≠ 𝑥2 ≠ ⋯ ≠ 𝑥𝑛. 
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The density ℎ𝑛(… ) is known as a product density because it is essentially a product of 

the density of expectation measures at different points. The renewal function 𝐻(𝑡) is 

the expected number of random points in the interval (0, 𝑡]. Revise the process by 

allocation of all integral values to {𝑡𝑖} and suppose a matching sequence of points on 

the real line. The resultant point process generated by the random variables {𝑡𝑖}, the 

counting process 𝑁(𝑡, 𝑥) denotes the number of points in the interval (𝑡, 𝑡 + 𝑥] and the 

product density is 

ℎ𝑚(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐸[𝑁′(𝑡, 𝑡1),𝑁′(𝑡, 𝑡2) …𝑁′(𝑡, 𝑡𝑚) ]. 

 

A product density of degree m is defined as follows: 

 

ℎ𝑚(𝑡, 𝑡1, 𝑡2, … , 𝑡𝑚) = 𝐸[ℎ1(𝑡, 𝑡1),ℎ( 𝑡2 − 𝑡3) … ℎ( 𝑡𝑚 − 𝑡𝑚−1)(𝑡1 < 𝑡2 < ⋯ < 𝑡𝑚).                                                
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CHAPTER 2 

  
 
 
 
 

Maintenance Analysis of an n-Unit Warm 
Standby System with Varying Repair Rate and 

Vacation Period for the Repair Facility  
 
 
 
 
 
 
 

Modified version of this chapter has been published as book chapter in Lecture Notes in 

Mechanical Engineering, DOI 10.1007/978-3-319-15536-4_19 
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2.1 INTRODUCTION 
 

 

In the last four decades there has been an increasing need for the development of 

complex systems containing large number of units and hence it has become necessary 

to study multiple unit systems. Though various types of two - unit systems have been 

studied extensively in the past, multiple unit redundant systems have not received 

sufficient attention. This is due to the complexity of the analysis of these systems in 

contrast with the analysis of two – unit systems. 

Initially MTSF or equivalently reliability was considered as the measure of system 

performance. However it was found to be an incomplete measure of effectiveness 

because it could not take into consideration of maintainability – another important 

aspect of system performance. Also the total system failure is a catastrophe in such 

cases and hence an infinite cost is associated with a system failure. With increasing 

complexity and the resulting high operation and maintenance costs, greater emphasis 

is placed on reducing cost of system maintenance while improving reliability. 

Operating characteristics like the expected number of repairs completed and system 

recoveries over an arbitrary interval are important measures. These quantities also play 

an important role in the study of cost structure / profit analysis of the system. While 

point wise availability has received considerable attention, (Srinivasan and Gopalan 

(1973a, b) ) Birolini(1974,1975), [Osaki and Nakagawa (1976), Kumar and Agarwal 

(1980), Subramanian and Natarajan (1981), Subramanian et al (1984), Lie et al (1977), 

Huang et al (2006), El-Sherbeny (2012), Trivedi (2002)], Yuan and Xu (2011a, b), 

Yadavalli et al (2002 a, b) studied the reliability analysis or the maintenance 

optimization with a consideration of vacation period for the repair facility for a two 

unit cold standby system. Subramanian et al, (1984) have performed a profit analysis 
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for an n-unit system with a constant repair rate without vacation period for repair 

facility.   

It is generally assumed that repair facility will remain available every time without 

rest. In practical situations the repair facility also needs to prepare itself for the next 

repair. This vacation period occurs after each repair completion.  Also, the repair rate 

of a unit depends on the number of failed units at the epoch of the commencement of 

the repair.   

Hence an attempt is made in this chapter to consider a model in which, the repair 

facility is not available for a random time after each repair completion.  

 

The aim of this chapter is to study maintenance analysis of an n-unit warm standby 

system with varying repair rate and the vacation period for the repair facility. The life 

time of a unit while on line is arbitrarily distributed random variable, while in standby 

has a constant failure rate. 

 

Identifying suitable regeneration points, expressions for the availability, reliability and 

the profit function are derived. 

This chapter contributes to the study of maintenance systems in two ways: (1) the 

introduction of vacation period (i.e., the vacation for the repair facility will be given 

just after the completion of each repair). (2) Varying repair rate (the repair rate 

depends on the number of failed units). A numerical example provided to illustrate the 

results obtained. 
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2.2 SYSTEM DESCRIPTION AND ASSUMPTION 
 

 

In this section, we set the following assumptions and notations needed in the sequel. 

 

1. The system consists of n identical units; one operates online and the others are warm 

standbys. 

 

2. There is a single repair facility and the repairs are taken up in FIFO order. 

 

3. The repair facility may be on vacation for some time. 

 

4. Each unit is new after repair. 

 

5. Switch is perfect and switchover is instantaneous. 

 

6. At 𝑡 =  0 there is a system recovery; i.e. system entering the upstate from the down 

state. This event is denoted by the symbol  𝐸. 

 

7. The failure rate of a unit while in standby is a constant denoted by 𝑏. 

 

8. The life time of a unit while online is an arbitrary distributed random variable with pdf 

𝑓(.). 
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9. The repair rate of a failed unit is a constant which depends upon the number of failures 

at the epoch of commencement of a repair. If there are j failed units at the epoch of 

commencement of repair, the repair rate is 𝜇𝑗. We also define 𝜇0  =  0. 

 

10. The vacation time for the repair facility (RF) is an exponentially distributed random 

variable with parameter ν. 

 

Following notations are also needed in the sequel: 

 

𝑍(𝑡)   =   𝑗  is state of the repair facility  at a time  𝑡 , if the repair rate of the unit under 

                  repair  is µ𝑗,  𝑍(𝑡) =  0  implies that the  repair facility (RF) is free and can 

                  see any unit for repair as and when it fails.       

 𝑍 (𝑡)    =  𝑛, if RF is under vacation at time 𝑡. 

𝑁 (𝜂, 𝑡) = Number of 𝜂 events in (0, 𝑡]. 

𝑅 (𝑡)     =  𝑃 [system is up in (0, 𝑡] | 𝐸 𝑎𝑡 𝑡 =  0]. 

𝐴 (𝑡)     = 𝑃 [system is available at 𝑡 | 𝐸 𝑎𝑡  𝑡 = 0]. 

λ𝑖          =   (𝑛 −  1 −  𝑖) 𝑏. 

©          =  Convolution symbol. 

𝐶(𝑛)(𝑡)  =  𝑛 – fold convolution of the function 𝑜 (𝑡). 

𝐶 (𝑡)      =   1 −   ∫ 𝑜𝑡0  (𝑢) 𝑑𝑢. 

Ø∗(𝑜)     = Laplace Transform of an arbitrary function Ø (𝑡). 
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2.3 THE SUBSYSTEM   
 
 

 

When one unit is continuously operating online, the behavior of the other units can be 

studied independently. We call the system consisting of all the units other than the one 

operating online and the repair facility as the subsystem. If  𝑌(𝑡) denotes the number 

of failed units at time t in the subsystem then its state at any time t can be described by 

the ordered pair (𝑖, 𝑗), where   𝑌(𝑡) = 𝑖, 𝑍(𝑡)  =  𝑗.   If there are 𝑖  failed units and 

repair facility is under vacation; i.e.,  𝑌(𝑡)  = 𝑖, 𝑍(𝑡)  =  𝑛.  The state space of the 

stochastic process describing the behavior of the subsystem is as follows: 

Let      

𝐴 =  𝐴1 ⋃ 𝐴2 ⋃ 𝐴3,  

Where 

 𝐴1    =    {(0, 0)}, 

  𝐴2   =  {(𝑖, 𝑗);     1 ≤  𝑗 ≤  𝑖 ≤  𝑛 –  1},                                                                      

   𝐴3  =  �(𝑖,𝑛);    0 ≤  𝑖 ≤  𝑛 –  1�.                                                                        (2.3.1)                                                    

 

We note that A is the state space of the stochastic process describing the subsystem.  

A contains 𝐾 =   𝑛 (𝑛+1)
2

  +  1 elements. 

Now let 𝐵 be the set of positive integers less than or equal to 𝐾, we define a bijective 

mapping 𝜋: 𝐴 → 𝐵  as follows 

                      𝜋 (𝑖, 𝑗 )    =    𝑖 ( 𝑖−1 )
2

       +     𝑗    +  1.                                               (2.3.2)                                                                            

The function 𝜋−1 (. ) is determined from the following rule; 

            

                          𝜋−1 (𝑘)   =  (0, 0)  𝑖𝑓  𝑘 = 1 .                                                        (2.3.3)   
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If    𝑘   >  1, find the smallest positive integer i such that 𝑘 ≤   𝑆𝑖   +  1 where   

                         𝑆𝑖       =  
𝑖 ( 𝑖 + 1 )

2
 .                                                                       (2.3.4) 

This fixes 𝑖; then j is determined from the relation 

                                  𝑗 =     𝑖 +  𝑘 ‒  1 ‒  𝑆𝑖                                                                 (2.3.5)   

 

Let, for fixed t, 

     

          𝑊(𝑡)  =  𝜋 ( 𝑖, 𝑗 )  𝑖𝑓  𝑌(𝑡) = 𝑖, 𝑍(𝑡) =  𝑗.                                                  (2.3.6) 

    Then  

           𝑊(𝑡)  =  𝑘 ⇒ 𝑌(𝑡)   =  𝑖, 𝑍(𝑡)   =   𝑗,  

 

 Where  𝜋−1(𝑘)  =  ( 𝑖 , 𝑗 ) .  It is clear that the behavior of the subsystem is also 

described by the stochastic process {𝑊 (𝑡), 𝑡 ≥ 0}. 

For studying the behavior of the system, the following auxiliary functions are required, 

which will be considered only during the period of operation of an online unit or part 

thereof   

                  𝑝𝑘𝑘′(𝑡)    =   𝑃 [𝑊(𝑡)   =  𝑘′  | 𝑊(𝑡)   =   𝑘  ],𝑘,𝑘′  ∈   𝐵          (2.3.7) 

                       𝑝𝑘𝑇(𝑡)   =  [𝑝𝑘1(𝑡),𝑝𝑘2(𝑡), … ,𝑝𝑘𝐾(𝑡) ]. 

 
THEOREM:  
  
For   𝛼,𝛽 ∈  𝐵 , 𝑙𝑒𝑡   𝜋‒ 1( 𝛼 ) =  ( 𝑖1 , 𝑗1 ) 𝑎𝑛𝑑   𝜋‒1(𝛽) = (𝑖2 , 𝑗2  ). Then the 

functions 𝑝𝑘(𝑡) are given by  

 𝑝𝑘(𝑡) =  𝑒𝑥𝑝 (𝐷𝑡)𝑝𝑘 (0)  where   𝑝𝑘 (0)   =  𝑒𝑘  is the column vector whose 𝑘𝑡ℎ 

element is one and all the others are zero, and 𝐷 =  [𝑑𝛼 𝛽 ] is a  𝐾 ×  𝐾 matrix. 
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The elements of D are given by 

𝑑 𝛼,𝛼 =  — � 𝜆𝑖1  +  𝜇𝑖1  � ;  𝛼  =  1,2,3, … ,𝐾                                                             (2.3.8)                                                          

For 𝛼 ≠    𝛽,  

𝑑𝛼 ,𝛽 =  � 𝜆𝑖1      𝑖𝑓  𝑖2   =  𝑖1  +  1 𝑎𝑛𝑑  𝑗2        = 𝑗1   � 

=  {  𝜇𝑗1     𝑖𝑓   𝑖2       =  𝑖1    ‒    1   𝑎𝑛𝑑  𝑗2   =  𝑛 𝑜𝑜  𝑗1   =  𝑛 𝑎𝑛𝑑 𝑖1  =  𝑖2  =  𝑗2 }.  

                                                                                                                                                (2.3.9)  

 

PROOF:  
   
 

We observe that 

𝑃 [𝑌 (𝑡 +  ∆)  =  𝑖2  ,𝑍 (𝑡 + ∆)  =  𝑗2    | 𝑌 (𝑡)  =  𝑖1  𝑍 (𝑡)  =   𝑗1] 

 

=   𝜆𝑖1   ∆  +  𝑜 (∆)  𝑖𝑓  𝑖2  = 𝑖1  +  1   𝑎𝑛𝑑 𝑗2  =  𝑗1, 

 

=   𝜇𝑗1  ∆  +  𝑜 (∆)   𝑖𝑓  𝑖2  =  𝑖1 ‒  1  𝑎𝑛𝑑 𝑗2  =  𝑛 𝑜𝑜 𝑗1    =   𝑛  𝑎𝑛𝑑  𝑖1  =    𝑖2     =   𝑗2 

 

=  1 ‒  �𝜆𝑖1    + 𝜇𝑗1   �∆  +   𝑜(∆)  𝑖𝑓  𝑖2     =  𝑖1 𝑎𝑛𝑑  𝑗2    =   𝑗1 

 

=  𝑜 (∆)   𝑓𝑜𝑜 𝑜𝑡ℎ𝑒𝑜 𝑣𝑎𝑙𝑢𝑒𝑜 𝑜𝑓 𝑖2 𝑎𝑛𝑑 𝑗2.                                                                    (2.3.10) 

 

𝐹𝑜𝑜   𝑖1 =   0 =  𝑗1 

 

      𝑃 [𝑌 (𝑡, 𝑡 +  ∆)  =    𝑖2  ,𝑍 (𝑡, 𝑡 + ∆)  =   𝑗2| 𝑌(𝑡)  = 0 ,𝑍(𝑡)  = 0] 

 

 =  (𝑛 –  1) 𝑏 +  𝑜(∆) 𝑖𝑓  𝑖2  =  1 𝑎𝑛𝑑   𝑗2  =  1 
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=  1 – (𝑛 –  1) 𝑏 +  𝑜(∆) 𝑖𝑓  𝑖2  =  0  =    𝑗2 

       

                                     = 𝑜(∆) 𝑓𝑜𝑜 𝑜𝑡ℎ𝑒𝑜 𝑣𝑎𝑙𝑢𝑒𝑜 𝑜𝑓 𝑖2 𝑎𝑛𝑑 𝑗2.                                (2.3.11)                                                                   

 

Using these observations and considering the behavior of the subsystem in the 

interval (𝑡, 𝑡 +  ∆) , we arrive at the following matrix differential equation: 

                   
𝑑
𝑑𝑡
𝑝𝑘(𝑡)  =  𝐷 𝑝𝑘(𝑡).                                             (2.3.12) 

 

The solution of this matrix differential equation is  

𝑝𝑘(𝑡)   =   𝑒𝑥𝑝 (𝐷𝑡)𝑝𝑘 (0). 

 

Having identified the subsystem, we are now in a position to analyze the main system. 

 
 
2.4 THE MAIN SYSTEM 

 
 

The subsystem taken together with the unit operating online will be called the main 

system.  To study its behavior, we define the following events. 

    𝐸𝑖𝑗   at 𝑡 ∶  event that one unit is just online  at 𝑡 and 𝑌(𝑡 +)   =  𝑖 , 

𝑍(𝑡 +)    =  𝑗;  𝑎𝑛𝑑  (𝑌 (𝑡 +),𝑍 (𝑡+))   ∈    𝐴. 

 

We also require the following auxiliary functions h (𝑡, 𝑖′, 𝑗′ | 𝑖, 𝑗)  to describe the 

behavior of the main system when it is in upstate. 

ℎ (𝑡 , 𝑖′, 𝑗′ | 𝑖 , 𝑗 )  =  𝑙𝑖𝑚
∆→0

𝑃𝑜 [ 𝐸𝑖′,𝑗′   𝑖𝑛 ( 𝑡 , 𝑡 +  ∆),      

                             𝑜𝑦𝑜𝑡𝑒𝑚 𝑖𝑜  𝑢𝑝 𝑖𝑛 (0 , 𝑡 ] | 𝐸𝑖𝑗  ] / ∆. 
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Next we derive the equation satisfied by   ℎ (𝑡, 𝑖′, 𝑗′ | 𝑖, 𝑗).   

For convenience we let 

𝑃 (𝑡 , 𝑖′ , 𝑗′ | 𝑖 , 𝑗)  =  𝑝𝑘𝑘′  (𝑡), 

where (𝑖 , 𝑗)  =  𝑘  𝑎𝑛𝑑 (𝑖′, 𝑗′)  =  𝑘′. 

 

Observe that ℎ (𝑡, 𝑖′, 𝑗′ | 𝑖, 𝑗) ∆ is the probability of occurrence of an 𝐸𝑖′,𝑗′   event in 

(𝑡, 𝑡 + ∆ ) given an  𝐸𝑖𝑗   at 𝑡 =  0.   

Hence for the occurrence of 𝐸𝑖′,𝑗′  in (𝑡 , 𝑡 +  ∆), the unit which is operating online 

must fail in (𝑡, 𝑡 +  ∆). This failure may be the one which was put on line at 𝑡 =  0, 

or a subsequent one. 

 

For  all  ( 𝑖 , 𝑗 )  𝜖 𝐴  𝑎𝑛𝑑  ( 𝑖′ , 𝑗′ )  𝜖 𝐶 ,𝑤𝑒  ℎ𝑎𝑣𝑒 

 

ℎ ( 𝑡 , 𝑖′ , 𝑗′ | 𝑖 , 𝑗 )  =  𝑓(𝑡) 𝑝 (𝑡 , 𝑖′ ‒  1 , 𝑗′ | 𝑖 , 𝑗 )   

 

                                + � 𝑓(𝑡)
(𝑖2,𝑗2)∈𝐶

 𝑝( 𝑡 , 𝑖2 , 𝑗2 | 𝑖 , 𝑗 )©ℎ (𝑡, 𝑖′, 𝑗′ | 𝑖2 + 1 , 𝑗2),    (2.4.1) 

 

where 

   𝐶1  =  { ( 0 , 0 ) }, 

   𝐶2  =  { ( 𝑖 , 𝑗 ) ;  1 ≤  𝑗 ≤  𝑖 <   𝑛 ‒  1 } 𝑎𝑛𝑑    

   𝐶3  =  { ( 𝑖 , 𝑛 ) ;   0  ≤   𝑖  <   𝑛 ‒  1 } 

and                                                

   𝐶 =  𝐶1 𝑈 𝐶2 𝑈 𝐶3.                                                                                                        (2.4.2) 
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For fixed (𝑖′, 𝑗′)  above equation can be solved for ℎ∗(𝑜, 𝑖′, 𝑗′ | 𝑖, 𝑗)  by Laplace 

transform technique. 

 

2.5 RELIABILITY OF THE SYSTEM  
 

We now drive an expression for the reliability R (t) of the system. Considering the 

mutually exclusive and exhaustive cases that the unit which was put online at t = 0,  

(1) Does not fail up to time  

(2) Fails before the time t, we obtain the expression 

 

           𝑅 (𝑡)  =  𝐹�(𝑡)  +  � ℎ(𝑡 , 𝑖 , 𝑗
(𝑖,𝑗)∈𝐶

|𝑛 − 1,𝑛)© 𝐹�(𝑡),                                    (2.5.1) 

The mean time to system failure (MTSF) can be obtained using the relation R*(0). 

 

 
2.6   AVAILABILITY OF THE SYSTEM 
 

While computing the expression for the availability of the system, we have to permit 

system downs also. Hence we have to introduce some auxiliary functions. Suppose 

that  

 

Ø(𝑡) =  𝑙𝑖𝑚
∆→0

𝑃𝑜 [𝐸 𝑖𝑛 (𝑡 , 𝑡 + ∆ ) ,𝑁( 𝐸 , 𝑡 ) =  0| 𝐸 𝑎𝑡 𝑡 =  0 ] 

and 

ɸ � (𝑡)  =  1 ‒∫ ∅(𝑢)𝑑𝑢𝑡
0 . 
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The expression for  ∅(𝑡)  is derived by considering the fact that system may or may 

not enter the down state in (0, 𝑡]; 

 ɸ�(𝑡) = 𝑅(𝑡) + � ℎ( 𝑡 , 𝑖 , 𝑗 |𝑛 − 1 ,𝑛 )©
( 𝑖 ,𝑗 )∈𝐶

[  � 𝑓(𝑡)𝑝(𝑡,𝑛 − 1 ,𝑘 |𝑖 , 𝑗 )
𝑛 −1

𝑘=1  

© 𝑒−𝜇𝑘𝑡  

+ 𝑓 (𝑡) 𝑝(𝑡,𝑛 –  1,𝑛 | 𝑖, 𝑗)©{  𝑒−𝜇𝑘𝑡 +  𝑒−𝛾𝑡 © 𝑒−𝜇𝑘𝑡}]  

                                                                                                                                                (2.6.1) 

                                         

Noting that the interval (0, 𝑡] may be intercepted by an event 𝐸 or not, the availability 

of the system is obtained as 

               

                        𝐴 (𝑡)  =  𝑅 (𝑡)  +  ∑ ∅(𝑛)∞
𝑛=1 (𝑡) © 𝑅 (𝑡).                                            (2.6.2) 

 

The steady state availability 𝐴∞ can be obtained from the relation 

 

𝐴∞ = lim
𝑡→∞

𝐴(𝑡) = lim
𝑠→0

𝑜𝐴∗ (𝑜). 

 

From equation (2.6.2) we get 

𝐴∞ =  𝑅
∗(0)

ɸ ∗����(0)
  . 

 
 
2.7 PROFIT ANALYSIS  
 
In this section we calculate the profit from the system per unit time, when the system 

has reached the steady state. 

Let   ‘𝑜’ be the return rate from the system when it is operable. Then the gross return 

from the system per unit time is 𝐴∞ × 𝑜. 
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Next we consider the expenditure incurred per unit time. Let ‘𝑑’ be the fixed cost per 

unit time associated with each of the unit in the system.  Then the fixed expenditure 

per unit time is 𝑛 ×  𝑑. 

Since the repair rate of a unit depends on the number of failed units at the epoch of 

commencement of its repair, the cost incurred for a repair should also depend on the 

repair rate.  This repair rate is likely to be different for different repairs. In order to 

give due weightage to this fact, we define the event  𝐸𝑗 as follows. 

𝐸𝑗 : Event that the repair for a unit commences and the number of failed unit is ‘𝑗’, 

where,  𝑗  =   1 , 2 , 3 , … ,𝑛. 

 

Let 𝑁 (𝐸𝑗) be the stationary rate of the 𝐸𝑗events and 𝐶𝑗 be the cost associated with its 

occurrence. Then the expenditure per unit time corresponding to the repairs is         

𝐶𝑗 ×  𝑁 (𝐸𝑗).    

The net profit function   

 

𝜓( 𝑛 ) = 𝑜.  𝐴∞ − ��N�𝐸𝑗�.𝑑𝑗  

∞

𝑗=1

+  𝑛.𝑑� .                                                               (2.7.1) 

 

To determine 𝜓 (𝑛), it remain for us to find an expression for  𝑁 (𝐸𝑗). 

 

For this purpose define, 

∅𝑗 (𝑡)  =  lim
∆→0

Pr[ 𝐸𝑗  in (t , t + ∆ ),  𝑁(𝐸, 𝑡) = 0| 𝑎𝑡 𝑡 = 0] /∆. 

 

Note that ∅𝑗(𝑡) is the first order product density. To obtain an expression for ∅𝑗 (𝑡) 

we make use of the following auxiliary function; 
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   𝐷∅𝑗 (t)  =    [1 −  𝛿𝑗 ,𝑛 −1  �𝑃( 𝑡 , 𝑗 + 1 ,𝑘  |𝑛 − 1 ,𝑛 ) 𝜇𝑘

𝑗+1

𝑘=1

 

 

+ 𝑝(𝑡 , 𝑗 ,𝑛 |𝑛 −  1 ,𝑛 )𝛾 ]  𝐹� (𝑡)   +  � ℎ ( 𝑡 , 𝑖′ , 𝑗′ 
 ( 𝑖′,   𝑗′) ∈𝐶

| 𝑛 ‒  1 ,𝑛 ) 

 

© [( 1 ‒  𝛿 𝑗 ,𝑛 −1  ) ∑ 𝑝 ( 𝑗+1
𝑘=1 𝑡 , 𝑗 +  1 ,𝑘|𝑖′, 𝑗′ )𝛾]𝐹�(𝑡)   + 𝛿𝑗 1 [{ 𝑝 ( 𝑡 , 0, 0 | 𝑛 −  1,𝑛 ) 

 

(𝑛 −  1 ) 𝑏 +  𝑝 ( 𝑡 , 1 ,𝑛 | 𝑛 −  1,𝑛 )𝛾}𝐹�(t) 

 

+ � ℎ ( 𝑡 , 𝑖′ , 𝑗′ 
 ( 𝑖′,   𝑗′) ∈𝐶

| 𝑛 ‒  1 ,𝑛 ) ©{ 𝑝 (𝑡 ,0,0| 𝑖′,   𝑗′ )(𝑛 − 1)𝑏 

 

+ 𝑝( 𝑡 , 1 ,𝑛 | 𝑖′, 𝑗′ ) 𝛾}𝐹� (𝑡)]    + 𝛿𝑗𝑛  [𝑝 (𝑡, 𝑛– 1,𝑛)𝑓(𝑡)©𝛾 𝑒−𝛾𝑡 

 

+ � ℎ ( 𝑡, 𝑖′
(𝑖′,𝑗′)∈𝐶

, 𝑗′|   𝑛 −  1 ,𝑛 )©𝑝(𝑡,𝑛 −  1 ,𝑛 | 𝑖′ , 𝑗′)𝑓(𝑡)© 𝛾 𝑒−𝛾𝑡 .             (2.7.2) 

                                                                                                        

The above expression 𝐷∅𝑗 (t) is obtained by considering the following mutually 

exclusive and exhaustive cases: 

(i) The online unit does not fail up to 𝑡. 

(ii) The online unit fails before 𝑡. 
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Next we drive the following expression for ∅𝑗 (𝑡) by considering the fact that a system 

recovery has occurred   or not in (0, 𝑡]: 

 

∅𝑗 (𝑡) = 𝐷∅𝑗 (t) +  𝛿𝑗 ,𝑛 −1∅ (𝑡) + � ∅(𝑛)(𝑡)©
∞

𝑛 =  1
[𝐷∅𝑗 (𝑡)  + 𝛿𝑗 ,𝑛 −1 ∅𝑗 (𝑡)].  (2.7.3) 

 

The expected number of  𝐸𝑗 events in (0, 𝑡]    is given by 

 

𝐸 �𝑁𝑗  (𝑡)� = ∫ ∅𝑗 (𝑢)𝑡
0 𝑑𝑢. 

 

The stationary rate of occurrence of  𝐸𝑗  events is given by 

                      𝐸 [𝑁𝑗]  =   lim𝑡→∞
𝐸[𝑁𝑗(𝑡)]

𝑡
               

                                   =   𝑙𝑖𝑚𝑠→0 𝑜∅∗ (𝑜) 

=   
𝐷∅𝑗  ∗(0)
ɸ    �����∗(0)

 .                                                                                (2.7.4) 

 

 
 

2.8 PARTICULAR CASE  
 

 

When µ𝑗 =  µ and 𝜈 →  ∞, we get the results corresponding to the system in which 

the repair rate of a unit is constant.  In this case the model is in agreement with the 

model developed in [Subramanian et al (1984)].  
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CHAPTER 3 

  
 
 
 
 

Applications of Quadrivariate Exponential 
Distribution to a Three Unit Warm Standby 

System with Dependent Structure 
 

 
 
 
 
 
 
 
 
 
 
Modified version of this chapter has been accepted for publication in Communications 

In Statistics-Theory and Methods, DOI: 10.1080/03610926.2015.1134576   
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3.1 INTRODUCTION 
 

 

Two unit warm standby systems have been elaborately dealt with in the literature. 

However, the study of standby systems with more than two units, though very relevant 

in state-of-art practical situations, has received little attention because of mathematical 

intricacies involved in analysing them. Also, such systems have been studied assuming 

(i) the lifetime or repair time of the units to be exponential or (ii) the lifetime and 

repair time to be independent. 

 

As pointed out by Srinivasan and Subramanian (2006), the study of three unit warm 

standby systems is challenging because of the built-in intricacies involved in their 

analysis. Several authors have extensively studied two unit standby redundant systems 

in the past. Osaki and Nakagawa (1976) gave a bibliography of the work on two unit 

systems. Most of the studies on two unit warm standby systems are confined to 

obtaining expressions for various measures of system performance and do not consider 

the associated inference problems. Chandrasekhar and Natarajan (1994), Yadavalli et 

al (2002a) have considered a two unit cold standby system and obtained the exact 

confidence limits for the steady state availability of the system under the assumption 

that the lifetime of online unit and the repair time of a failed unit are independent. 

Subsequently asymptotic confidence limits for a two-unit parallel system was studied 

by Yadavalli et al (2002b) 

 

In general, the failure time and repair time need not be independent always.  A system 

or a component that fails frequently within a short time interval has to be analysed 

thoroughly and the time taken to repair such a system will be more. The dependency 

between life time / failure time and repair time can be modelled by assuming a suitable 
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form of a bivariate density function. In the past, a number of bivariate exponential 

distributions have been proposed and studied well in the literature. But the bivariate 

exponential distribution of Marshall and Olkin (1967) is widely accepted among many 

bivariate exponential distributions proposed in the statistical literature because of its 

nice properties.  

 

The present work is an attempt to analyse a three unit warm standby system under the 

assumption that the joint distribution of the lifetimes of online unit, standby units and 

the repair time of a failed unit in the system is quadrivariate exponential. Further, it is 

assumed that the lifetimes of the units kept in standby are identical. The model and the 

assumptions, expressions for reliability, availability and associated statistical inference 

together with numerical illustration are discussed in detail in this chapter. 

 

The present contribution is an improvement in the state-of-art in the sense that three 

unit warm standby systems with dependent structure is shown to be capable of 

comprehensive analysis.   

 

In this chapter, the system reliability and availability are studied. An associated 

statistical inference for a three unit warm standby system with dependent structure is 

also discussed. The work presented in this chapter is an extension of the results 

obtained by Chandrasekhar et al (2013) for a two unit warm standby system with 

dependent structure. 
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3.2.   THE MODEL AND ASSUMPTIONS  
 

 

The system under consideration is a three unit warm standby system with a single 

repair facility.  

Fig 3.2.1 
 
 
 

 
                                
 

 

System Configuration: Three unit warm standby system with repair. 

Precisely the following are the assumptions. 

(i) The units are similar and statistically not independent. One unit is operating 

online and other two units are kept as warm standby. The three units have 

constant failure rates say (𝜆1 + 𝜆4)  while online and (𝜆2 + 𝜆4)  while in 

standby. Further, each failed unit has a constant repair rate say(𝜆3 + 𝜆4).   

(ii) There is only one repair facility. 

(iii) Let 𝑇1,𝑇2 and 𝑇3denote the lifetimes of the three units and R the repair time of 

a failed unit in the system. As the system consists of three units with single 

repair, it is appropriate to consider the following Marshall-Olkin (1967) 

quadrivariate exponential (QVE) distribution for 𝑇1,𝑇2  ,𝑇3  and 𝑅  with the 

survival function given by  

 

 

 

 

Online Standby Repair Facility 

𝑇1~exp(𝜆1 + 𝜆4) 

 

𝑇1,𝑇2~exp(𝜆2 + 𝜆4) 

 

𝑅~exp(𝜆3 + 𝜆4) 
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𝐹�(𝑡1, 𝑡2, 𝑡3, 𝑡4) = 𝑒−[𝜆1𝑡1+∑ 𝜆2𝑡𝑖+𝜆3𝑡4+𝜆4.𝑚𝑎𝑥 (𝑡1,𝑡2,𝑡3,𝑡4)]3
𝑖=2 ,  

𝑡𝑖 > 0,   𝑖 = 1,2,3,4; 𝜆𝑖 > 0,                 

                                                      𝑖 = 1,2,3; 𝜆4 ≥ 0                                          (3.2.1)   

 

and is denoted by 

(𝑇1,𝑇2,𝑇3,𝑅)~QVE(𝜆1,𝜆2, 𝜆2, 𝜆3, 𝜆4). 

See Marshall and Olkin (1967). 

(iv) Each unit is new after repair  and  

(v) Switch is perfect and the switchover is instantaneous. 

Note: 

1.   The lifetimes of units 𝑇1,𝑇2 and 𝑇3 are exponential random variables each with 

the parameters (𝜆1 + 𝜆4), (𝜆2 + 𝜆4)  and (𝜆2 + 𝜆4) respectively. 

2. The repair time R is exponential with the parameter (𝜆3 + 𝜆4). 

  𝟑.    E(𝑇1)   =
1

(𝜆1 + 𝜆4)  

           E(𝑇𝑖)   =
1

(𝜆2 + 𝜆4) , 𝑖 = 2,3    and  

             E(R)  =
1

(𝜆3 + 𝜆4)  

            Var(𝑇1) =
1

(𝜆1 + 𝜆4)2    

             Var(𝑇𝑖) =
1

(𝜆2 + 𝜆4)2  , 𝑖 = 2,3   and     

              Var(R) =
1

(𝜆3 + 𝜆4)2  . 
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4. The joint distribution of (𝑇1,𝑇𝑗), 𝑗 = 2,3 is bivariate exponential (BVE) with the 

parameters (𝜆2,𝜆2, 𝜆4) and joint distribution of (𝑇2,𝑇3) is bivariate exponential 

(BVE) with the parameters (𝜆2, 𝜆2, 𝜆4). Similarly, the joint distribution of (𝑇1,𝑅) 

is BVE with the parameters (𝜆1, 𝜆3, 𝜆4) and that of  (𝑇𝑖,𝑅), 𝑖 = 2,3 is also BVE 

with the parameters (𝜆2,𝜆3, 𝜆4). 

5. The covariance between 𝑇1and 𝑇𝑗is given by  

Cov(𝑇1,𝑇𝑗) =
λ4

(λ1 + λ4)(λ2 + λ4)(λ1 + λ2 + λ4) , 𝑗 = 2,3. 

Similarly, the following results can be established. 

Cov(T2, T3) =
λ4

(λ2 + λ4)2(2λ2 + λ4) 

Cov(T1, R) =
λ4

(λ1 + λ4)(λ3 + λ4)(λ1 + λ3 + λ4) 

Cov(Ti, R) =
λ4

(λ2 + λ4) (λ3 + λ4)(λ2 + λ3 + λ4) , i = 2,3. 

 

6. The lifetimes 𝑇1, 𝑇2 and  𝑇3 and the repair time R are independent if and only if  

λ4 = 0. 

7. If (𝑋𝑖,𝑌𝑖), 𝑖 = 1,2, … ,𝑛  is a random sample of size 𝑛  from a BVE population 

with parameters (𝜆1,𝜆2, 𝜆3), then covariance between the sample means 𝑋� and 𝑌� 

is given by  

Cov(X�, Y�) =
λ3

𝑛(λ1 + λ3)(λ2 + λ3)(λ1 + λ2 + λ3)  . 

 

8. The joint distribution of (𝑇1,𝑇2,𝑇3)  is trivariate exponential (TVE) with the 

parameters (𝜆1,𝜆2, 𝜆3, 𝜆4). Further, the joint distributions of �𝑇1,𝑇𝑗 ,𝑅�, 𝑗 = 2,3 
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and (𝑇2,𝑇3,𝑅) are (TVE) with the parameters (𝜆1,𝜆2, 𝜆3, 𝜆4) and (𝜆2, 𝜆2, 𝜆3, 𝜆4) 

respectively. 

 

3.3  ANALYSIS OF THE SYSTEM 
 

 

To analyse the behaviour of the system, define 𝑋(𝑡) as the number of failed units at 

time  𝑡 . The stochastic process {𝑋(𝑡), 𝑡 ≥ 0}  with the state space given by 𝐸 =

{0,1,2,3} denotes the state of the system at time 𝑡. Since quadrivariate exponential 

distribution has exponential marginals and satisfies lack of memory property, it 

follows that the stochastic process describing the behaviour of the system is a Markov 

process with infinitesimal generator 𝑄 given by  

 0 

 

1 

 

2 

 

3 

 

0 −(λ1 + 2λ2  + 3λ4) ( λ1 + 2λ2 + 3λ4) 0 0 

     

1 (λ3 + λ4) 
−(λ1 + λ2 + λ3

+ 3λ4) 

(λ1 + λ2

+ 2λ4) 
0 

     

2 0 (λ3 + λ4) 
−(λ1

+ λ3+2λ4) 
(λ1 + λ4) 

     

3 0 0 (λ3 + λ4)    −(λ3 + λ4) 

 

(3.3.1) 
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It may be noted that the system upstates are 0, 1, 2, while state 3 is the system 

downstate. Let 𝑝𝑖(𝑡) = Pr[𝑋(𝑡) = 𝑖] ∀ 𝑖 ∈ 𝐸 represent the probability that the system 

is in state 𝑖 at time 𝑡 with the initial condition  𝑝0(0) = 1. We assume that initially all 

the three units are operable and obtain the measures of system performance as follows: 

 

3.4 SYSTEM RELIABILITY 
 

The system reliability 𝑅(𝑡) is the probability of failure free operation of the system in 

(0, 𝑡] .To derive an expression for the reliability of the system, we restrict the 

transitions of the Markov process to the upstates namely 0, 1 and 2. Using the 

infinitesimal generator of the process given in (3.3.1), pertaining to these upstates, we 

derive the following differential–difference equations: 

 

 
𝑑𝑝0(𝑡)
𝑑𝑡

= −(𝑎 + 2𝑏)𝑝0(𝑡) + 𝑜𝑝1(𝑡)                                                                             (3.4.1) 

                   

𝑑𝑝1(𝑡)
𝑑𝑡

= (𝑎 + 2𝑏)𝑝0(𝑡)  − (𝑎 + 𝑏 + 𝑜)𝑝1(𝑡) + 𝑜𝑝2(𝑡)                                           (3.4.2) 

    

 
𝑑𝑝2(𝑡)
𝑑𝑡

= (𝑎 + 𝑏)𝑝1(𝑡)   − (𝑎 + 𝑜)𝑝2(𝑡),                                                                    (3.4.3) 

       

Where 

 𝑎 = (𝜆1 + 𝜆4),𝑏 = (𝜆2 + 𝜆4) and 𝑜 = (𝜆3 + 𝜆4).  
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Let 𝐿𝑖(𝑜) be the Laplace transform of 𝑝𝑖(𝑡), 𝑖 = 0,1,2. Taking Laplace transforms on 

both sides of the differential-difference equations given in (3.4.1), (3.4.2) and (3.4.3), 

solving for 𝐿𝑖(𝑜), 𝑖 = 0,1,2  and inverting, we get 𝑝0(𝑡) , 𝑝1(𝑡)  and 𝑝2(𝑡) .Thus the 

system reliability is given by 

 

𝑅(𝑡) = 

     �
𝑒𝛼𝑖𝑡 �[𝛼𝑖

2 + (2𝑎 + 𝑏 + 2𝑜)𝛼𝑖 + (𝑎2 + 𝑎𝑏 + 𝑎𝑜 + 𝑜2)] + [(𝑎 + 2𝑏)(𝛼𝑖 + 𝑎 + 𝑜)]
+[(𝑎 + 𝑏)(𝑎 + 2𝑏)] �

∏ �𝛼𝑖 − 𝛼𝑗�3
𝑗=1,𝑗≠𝑖

,

3

𝑖=1

 

   (3.4.4) 

where 𝛼1, 𝛼2 and 𝛼3 are the roots of the cubic equation 

 

s3 + (3a + 3b + 2c)s2 + (3a2 + 2b2 + c2 + 6ab + 2bc + 2ca)s + a(a2 + 3ab + 2b2) = 0 

 

3.5 MEAN TIME TO SYSTEM  FAILURE (MTSF) 
 

 

The system MTSF is the expected or average time to failure and is given by  

 

𝑀𝑇𝑆𝐹 = 𝑅∗(0) = 𝐿0(0) + 𝐿1(0) + 𝐿2(0), 

 

where 𝑅∗(𝑜) is the Laplace transform of 𝑅(𝑡) at 𝑜.  

 

Hence,   

 

      𝑀𝑇𝑆𝐹 =
(3𝑎2 + 2𝑏2 + 𝑜2 + 6𝑎𝑏 + 2𝑏𝑜 + 2𝑜𝑎)

𝑎(𝑎2 + 3𝑎𝑏 + 2𝑏2)
 .                                       (3.5.1) 
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3.6 SYSTEM AVAILABILITY 
 

 

The system availability 𝐴(𝑡) is the probability that the system operates within the 

tolerances at a given instant of time 𝑡 and is obtained by solving for 𝑝𝑖(𝑡), 𝑖 ∈ 𝐸. The 

following system of differential–difference equations are obtained by using the 

infinitesimal generator given in (3.3.1). 

 

𝑑𝑝0(𝑡)
𝑑𝑡

= −(𝑎 + 2𝑏)𝑝0(𝑡) + c 𝑝1(𝑡)                                                                             (3.6.1) 

𝑑𝑝1(𝑡)
𝑑𝑡

= (𝑎 + 2𝑏)𝑝0(𝑡)   − (𝑎 + 𝑏 + 𝑜)𝑝1(𝑡) +  c 𝑝2(𝑡)                                        (3.6.2) 

𝑑𝑝2(𝑡)
𝑑𝑡

= (𝑎 + 𝑏)𝑝1(𝑡)   − (𝑜 + 𝑎)𝑝2(𝑡) + c 𝑝3(𝑡)                                                   (3.6.3) 

𝑑𝑝3(𝑡)
𝑑𝑡

= 𝑎𝑝2(𝑡)   − c 𝑝3(𝑡)                                                                                            (3.6.4) 

 

Using Laplace transform on both sides of the above differential-difference equations 

and solving, the expressions for 𝑝𝑖(𝑡), 𝑖 = 0,1,2,3 are obtained respectively as  

 

−𝑜3

𝛼1𝛼2𝛼3
 + 𝑜(𝑎 + 2𝑏)�

[𝛼𝑖2 + (𝑎 + 2𝑜)𝛼𝑖 + c2]
𝛼𝑖(𝛼𝑖 + 𝑎 + 2𝑏)∏ �𝛼𝑖 − 𝛼𝑗�3

𝑗=1,𝑗≠𝑖
𝑒𝛼𝑖𝑡

3

𝑖=1
                  (3.6.5) 

                                                                                           

−(𝑎 + 2𝑏)c2

𝛼1𝛼2𝛼3
 + (𝑎 + 2𝑏)�

[𝛼𝑖2 + (𝑎 + 2𝑜)𝛼𝑖 + c2]
𝛼𝑖 ∏ �𝛼𝑖 − 𝛼𝑗�3

𝑗=1,𝑗≠𝑖
𝑒𝛼𝑖𝑡

3

𝑖=1
                               (3.6.6) 

                                                                                                         

−(𝑎 + 𝑏)(𝑎 + 2𝑏)𝑜
𝛼1𝛼2𝛼3

 + (𝑎 + 𝑏)(𝑎 + 2𝑏)�
(𝛼𝑖 + c)

𝛼𝑖 ∏ �𝛼𝑖 − 𝛼𝑗�3
𝑗=1,𝑗≠𝑖

𝑒𝛼𝑖𝑡
3

𝑖=1
          (3.6.7) 
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−𝑎(𝑎 + 𝑏)(𝑎 + 2𝑏)
𝛼1𝛼2𝛼3

 + 𝑎(𝑎 + 𝑏)(𝑎 + 2𝑏)�
1

𝛼𝑖 ∏ �𝛼𝑖 − 𝛼𝑗�3
𝑗=1,𝑗≠𝑖

𝑒𝛼𝑖𝑡        (3.6.8)
3

𝑖=1
  

                                                                                             

where 𝛼1,𝛼2 and 𝛼3 are the roots of the equation  

 𝑜3 + 3(𝑎 + 𝑏 + 𝑜)𝑜2 + [( a + 2c )(a+2b+c) + (𝑎 + 𝑏)(2𝑎 + 2𝑏 + 𝑜) + 𝑜2] 𝑜 

                 +[c3 + (𝑎 + 2𝑏)(𝑎2 + 𝑜2 + 𝑎𝑏 + 𝑏𝑜 + 𝑜𝑎)]   =   0. 

 

Hence, the system availability is given by  

𝐴(𝑡) = 𝑝0(𝑡) + 𝑝1(𝑡) + 𝑝2(𝑡).                                                                       (3.6.9) 

 

3.7 STEADY STATE AVAILABILITY  
 

The system steady state availability is the expected fractional amount of time in a 

continuum of operating time that the system is in upstate and is given by  

 

  𝐴∞  =   limt→∞ 𝐴(𝑡) 

  

=  
c[ 𝑜2 + (a + 2b)(𝑎 + 𝑏 + 𝑜)]

[𝑜3 + (a + 2b)(𝑎2 + 𝑜2 + 𝑎𝑏 + 𝑏𝑜 + 𝑜𝑎)]
 .                                                      (3.7.1) 

 

3.7.1 Particular Case 
 

 

The equations for system reliability, MTSF, system availability and steady state 

availability when the lifetimes of online and standby units and the repair time of a 

failed unit are independent can be obtained by taking  λ4 = 0 in (3.4.4), (3.5.1), (3.6.9) 

and (3.7.1), respectively. 
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3.8 CONFIDENCE INTERVAL FOR STEADY 

STATE AVAILBILITY OF THE SYSTEM 
 
Let (𝑌1𝑖,𝑌2𝑖,𝑌3𝑖 ,𝑌4𝑖), 𝑖 = 1,2, … ,𝑛  be a random sample of size 𝑛  drawn from a 

quadrivariate exponential lifetimes and repair time population with the survival 

function given by (3.2.2). It is clear that 𝑌�1,𝑌�2,𝑌�3(= 𝑌�2) and 𝑌�4  are the moment 

estimators of 
1

(λ1+λ4)
, 1

(λ2+λ4)
, 1

(λ2+λ4)
 and 

1
(λ3+λ4)

 respectively, where 𝑌�1,𝑌�2,               

𝑌�3 (= 𝑌�2) and 𝑌�4 are the sample means of lifetimes of online and standby units and 

repair time of a failed unit respectively. 

 

Let 𝜃𝑖 = 1
(λ𝑖+λ4)

, 𝑖 = 1,2,3 . Using 𝜃𝑖 , 𝑖 = 1,2,3  in (3.7.1) and substituting its 

corresponding moment estimators, the estimator of the steady state availability of the 

system 𝐴∞ based on moments is obtained as  

𝐴̂∞ =
𝑌�1[𝑌�1

2𝑌�2
2 + 𝑌�4(2𝑌�1 + 𝑌�2)(𝑌�1𝑌�2 + 𝑌�2𝑌�4 + 𝑌�4𝑌�1)]

[ 𝑌�1
3𝑌�2

2 + 𝑌�2
2𝑌�4

3 + 𝑌�4𝑌�1(𝑌�4+𝑌�1) �2𝑌�4𝑌�1 + 𝑌�2
2 + 3𝑌�2𝑌�4� + 2 𝑌�1

3𝑌�2𝑌�4]
      (3.8.1) 

 

It may be noted that 𝐴̂∞  given in (3.8.1) is a real valued function in 𝑌�1,𝑌�2 and 𝑌�4, 

which is also differentiable. Consider the following multivariate central limit theorem. 

See Radhakrishna Rao (1974). 
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3.8.1 Multivariate Central Limit Theorem 
 

 

Suppose   𝑇1′,  𝑇2′, 𝑇3′, … are independent and identically distributed k-dimensional 

random variables such that 

𝑇𝑛′ = (𝑇1𝑛,𝑇2𝑛, … ,𝑇𝑘𝑛),   𝑛 = 1, 2, 3, … 

 

having the first and second order moments 𝐸(𝑇𝑛) = 𝜇 and var(𝑇𝑛) = ∑. Define the 

sequence of random variables  

 𝑇�𝑛
′ = (𝑇�1𝑛,𝑇�2𝑛, … ,𝑇�𝑘𝑛),𝑛 = 1, 2, 3, …, 

 

Where 

𝑇�𝑖𝑛 = 1
𝑛

kiT
n

j
ij  ,...,2 ,1,

1
=∑

=

. 

Then  

√𝑛(𝑇�𝑛 − 𝜇) →d 𝑁𝑘(0,∑) as  n ∞→ . 

 
3.8.2 CONSISTANTLY ASYPMTOTIC NORMAL (CAN) 
           ESTIMATOR 
 

 

By applying the multivariate central limit theorem given in section 3.8.1, it is seen that 

 

√𝑛[(𝑌�1,𝑌�2,𝑌�2,𝑌�4) − (𝜃1,𝜃2,𝜃2, 𝜃3)] →d 𝑁4(0,∑), as 𝑛→ ∞, 
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where the dispersion matrix ∑ = (�σ𝑖𝑗�) is given by 

 

                               𝑌�1                                        𝑌�2                                           𝑌�3(= 𝑌�2)                                       𝑌�4 

            𝑌1�                        𝜃12             λ4𝜃12𝜃22

(𝜃1+𝜃2−λ4𝜃1𝜃2)                λ4𝜃12𝜃22

(𝜃1+𝜃2−λ4𝜃1𝜃2)                      λ4𝜃12𝜃32

(𝜃1+𝜃3−λ4𝜃1𝜃3) 

            𝑌�2     
λ4𝜃12𝜃22

(𝜃1 + 𝜃2 − λ4𝜃1𝜃2)                𝜃22                       
λ4𝜃23

(2 − λ4𝜃2)                  
λ4𝜃22𝜃32

(𝜃2 + 𝜃3 − λ4𝜃2𝜃3) 

 𝑌�3(= 𝑌�2)  
λ4𝜃12𝜃22

(𝜃1 + 𝜃2 − λ4𝜃1𝜃2)       
λ4𝜃23

(2 − λ4𝜃2)                         𝜃22                           
λ4𝜃22𝜃32

(𝜃2 + 𝜃3 − λ4𝜃2𝜃3) 

            𝑌�4    
             λ4𝜃12𝜃32

(𝜃1+𝜃3−λ4𝜃1𝜃3)              λ4𝜃22𝜃32
(𝜃2+𝜃3−λ4𝜃2𝜃3)                         λ4𝜃22𝜃32

(𝜃2+𝜃3−λ4𝜃2𝜃3)                                                      𝜃32
 

                                                                                                                               (3.8.2) 

Thus, 

√𝑛�𝐴̂∞ − 𝐴∞� →d 𝑁4�0,𝜎2(𝜃)�, 

 

where 𝜃 = (𝜃1,𝜃2,𝜃2,𝜃3). 

And 

𝜎2(𝜃) = �𝜃12 �
𝜕𝐴∞
𝜕𝜃1

�
2

+
4𝜃22

(2 − λ4𝜃2) �
𝜕𝐴∞
𝜕𝜃2

�
2

+ 𝜃32 �
𝜕𝐴∞
𝜕𝜃3

�
2

� 

 

+4λ4𝜃22 �
𝜃12

(𝜃1 + 𝜃2 − λ4𝜃1𝜃2) �
𝜕𝐴∞
𝜕𝜃1

� �
𝜕𝐴∞
𝜕𝜃2

� +
𝜃32

(𝜃2 + 𝜃3 − λ4𝜃2𝜃3) �
𝜕𝐴∞
𝜕𝜃2

� �
𝜕𝐴∞
𝜕𝜃3

�� 

 

                   

                                +2
λ4𝜃12𝜃32

(𝜃1 + 𝜃3 − λ4𝜃1𝜃3) �
𝜕𝐴∞
𝜕𝜃1

� �
𝜕𝐴∞
𝜕𝜃3

� .                                              (3.8.3) 
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By substituting for the partial derivatives  �𝜕𝐴∞
𝜕𝜃𝑖

� , 𝑖 = 1,2,3  in (3.8.3), we get an 

expression for 𝜎2(𝜃). Thus 𝐴̂∞ is a CAN estimator of 𝐴∞.  

 

3.8.3 CONFIDENCE INTERVAL FOR THE STEADY 
                STATE AVAIABILITY OF THE SYSTEM 
 

 

Let )θ̂(σ2  be an estimator of ( )θσ2  obtained by replacing θ by a consistent estimator 

θ̂  namely θ̂  =(𝑌�1,𝑌�2,𝑌�2,𝑌�4). Let 2σ̂ = 2σ ( θ̂ ). Since ( )θσ2  is a continuous function of 

θ, 2σ̂ is a consistent estimator of 𝜎2(𝜃) . i.e.  𝜎�2
𝑃
→ 𝜎2(𝜃) 𝑎𝑜 𝑛 → ∞  . By Slutsky 

theorem, we have 

√n(A�∞ − A∞)
σ�

 
d
→  N(0,1) 

 

that is,  

Pr�−kα
2

<  
√n(A�∞ − A∞)

σ�
 < −kα

2
� = (1 − α), 

 

where kα
2
  is obtained from normal tables. Hence a 100(1 − α )% confidence interval 

for A∞ is given by
n

σ̂kÂ
2
α±∞ , where σ̂  is obtained from (3.8.3). 
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3.8.4 AN ESTIMATOR OF SYSTEM RELIABILITY 
              BASED ON METHOD OF MOMENTS 
 

 

We have already seen that  𝑌�1,𝑌�2,𝑌�2 and 𝑌�4  are the moment estimators of 1
(λ1+λ4) ,

1
(λ2+λ4) , 1

(λ2+λ4)   and  1
(λ3+λ4)  respectively, where 𝑌�1,𝑌�2,𝑌�2 and 𝑌�4are the sample means 

of life time of online unit, lifetimes of standby units and repair time of a failed unit 

respectively. Hence an estimator of system reliability can be obtained by using the 

moment estimators in (3.4.4) and is given by  

 

                                𝑅�(𝑡) = 𝑝̂0(𝑡) + 𝑝̂1(𝑡) + 𝑝̂2(𝑡),                                                     (3.8.4) 

 

where 

𝑝̂0(𝑡) =  
1

𝑌�1
2𝑌�2𝑌�4

2�

�
𝛼�𝑖2 �𝑌�1

2𝑌�2𝑌�4
2�+ 𝑌�1𝑌�4(2𝑌�4𝑌�2 + 𝑌�4𝑌�1 + 2𝑌�1𝑌�2)

+ �𝑌�1𝑌�4
2 + 𝑌�1

2𝑌�2 + 𝑌�2𝑌�4
2 + 𝑌�1𝑌�2𝑌�4�

�

∏ �𝛼�𝑖 − 𝛼�𝑗�3
𝑗=1,𝑗≠𝑖

𝑒𝛼�𝑖𝑡   (3.8.5)
3

𝑖=1
 

 

 

𝑝̂1(𝑡) =
(2𝑌�1 + 𝑌�2)

(𝑌�1
2𝑌�2𝑌�4)

�
[𝛼�𝑖𝑌�1𝑌�4 + 𝑌�4 + 𝑌�1]
∏ �𝛼�𝑖 − 𝛼�𝑗�3
𝑗=1,𝑗≠𝑖

𝑒𝛼�𝑖𝑡 
3

𝑖=1
                                                    (3.8.6) 

 

 

𝑝̂2(𝑡) =
(𝑌�1 + 𝑌�2)(2𝑌�1 + 𝑌�2)

(𝑌�1𝑌�2)2
�

1
∏ �𝛼�𝑖 − 𝛼�𝑗�3
𝑗=1,𝑗≠𝑖

𝑒𝛼�𝑖𝑡 
3

𝑖=1
                                    (3.8.7) 
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where 𝛼�1,𝛼�2 and 𝛼�3are the roots of 

 

  𝑌�1
3𝑌�2

2𝑌�4
2
𝑜3 + 𝑌�1

2𝑌�2𝑌�4(2𝑌�1𝑌�2 + 3𝑌�1𝑌�4 + 3𝑌�2𝑌�4)𝑜2   

 

 +𝑌�1 �𝑌�1
2𝑌�2

2 + 3𝑌�2
2𝑌�4

2 + 2𝑌�1
2𝑌�4

2 + 6𝑌�1𝑌�2𝑌�4
2 + 2𝑌�1

2𝑌�2𝑌�4 + 2𝑌�1𝑌�2
2𝑌�4� 𝑜 

 

+𝑌�4
2 �2𝑌�1

2 + 3𝑌�1𝑌�2 + 𝑌�2
2�   =  0. 

  

3.9 NUMERICAL ILLUSTRATION 
 
 

In this section, numerical illustration of the behaviour of the reliability of the system is 

provided by generating random samples of size 𝑛 = 10000  each from the 

quadrivariate exponential distribution using R language version 3.0.2 by fixing the 

values of the various parameters as 𝜆1 = 2, 𝜆2 = 3, 𝜆3 = 3 and 𝜆4 = 1  respectively. 

The estimated values of the system reliability (𝑅�(𝑡)) based on moments given in 

(3.8.4) is evaluated for various choices of time periods 𝑡 = 1.6, 1.4, … , 3.2.  The 

following are the values of 𝑅�(𝑡) obtained for various choices of 𝑡. 
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The line plot of (𝑡,𝑅�(𝑡)) is shown below. 

 

Fig 3.9.1:  Line plot of the estimated values of the system reliability 

                  based on moments. 

It is evident from the plot that as 𝑡 increases, the value of 𝑅�(𝑡) decreases agreeing with 

the theoretical results. 

 

𝑡 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 

𝑅�(𝑡) 0.00398 0.00332 0.00267 0.00211 0.00164 0.00126 0.00097 0.00074 0.00056 
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CHAPTER 4 

  
 
 
 
 

A Three Unit Series-Parallel System 
With Pre-emptive Priority Repair 

 

 
 
 
 
 
 
 
 
 
 
Modified version of this chapter has been published in Communications In 

Dependability and Quality Management. An international Journal 

Volume 18, Number 4, 2015, pp 120-132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



74 
 

4.1.   INTRODUCTION 
 
 

Two unit standby redundant systems have been studied extensively in the past (see 

Nakagawa and Osaki (1976), Kumar and Agarwal (1980), Srinivasan and 

Subramanian (1980), Birolini (1985), Yearout et al (1986) and Dhillon (1993)). 

However the study of n (≥ 3) unit standby redundant systems, though very important, 

has received much less attention, possibly because of the built-in difficulties in 

analysing such systems. Subba Rao and Natarajan (1970) have investigated the 

reliability characteristics of a single unit system with spares and repair facilities. 

Kistner and Subramanian (1974) considered an n - unit warm standby redundant 

system with a single repair facility and their results were extended to cover the case of 

several repair facilities by Subramanian et al (1976). Its dual problem, viz., the n- unit 

system in which the p.d.f. of the repair time is arbitrary, was studied by Gopalan 

(1975).  

 

Kalpakam et al (1987) have considered a multi-component system in which n identical 

units connected in series are needed for the system function, there being m spares and 

a single repair facility. Gupta et al (1986) have studied the cost-benefit analysis of a 

single server three unit redundant system with inspection, delayed replacement and 

two types of repairs. Gupta and Bansal (1991) have analysed a cost function in the 

case of a three unit standby system subject to random shocks and linearly increasing 

failure rates. Subramanian and Anantharaman (1995) obtained several system 

measures for a three unit cold standby system. 
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Further in a three unit system, the units can be connected in series or they can be 

connected in parallel or one on line unit with two standbys or two online units with 

one standby or one unit connected in series with the two units which are connected in 

parallel and so on. There are many applications of these systems; for example, in a 

music system an amplifier may be connected in series with two speakers which are 

connected in parallel. Such systems have not been studied in detail, probably because 

of the complex nature of the underlying stochastic processes. Only a few authors have 

studied 3-unit systems (see Nakagawa (2008)). Abuelma’atti and Qamber (1997) have 

considered a broadcasting system formed of two transmitters which are connected 

from a common power supply unit (with no provision for repair of the failed units). 

SPICE circuit simulation program was developed and the state probabilities are 

obtained.  

 

The three unit system considered by Birolini (1985) consists of a single unit connected 

in series to a two unit parallel system with a single repair facility and the failed units 

are taken up for repair in the order in which they arrive. He considered two models. In 

one model all the units have constant failure rates and constant repair rates. In the 

other, the repair time of a failed unit has an arbitrary distribution. Expressions are 

obtained for the reliability and availability of the system. In both models, the system 

will be in the down state whenever the single unit connected in series is in the failed 

state. Hence it is not desirable to keep this unit to wait for repair whenever it is in the 

failed state. It can be noticed that by adopting pre-emptive priority policy for the repair 

of this unit (see Jaiswal (1968)), the system down time can be reduced and the system 

availability can be increased. Study of the 3-unit series parallel system with this 

assumption thus becomes very essential to describe more realistic models. 
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The aim of this chapter is to consider a 3-unit system in which unit 1 is connected in 

series and the other two units, unit 2 and unit 3 are connected in parallel. The life-

times of all the units are assumed to be exponentially distributed. There is a single 

repair facility. Whenever a unit fails, the repair for it commences immediately if there 

is no unit under repair already in the repair facility. However the repair facility gives 

priority to the repair of the unit 1. That is, whenever the unit 1 fails in the operable 

state, and at that instant if there is already a unit (either unit 2 or unit 3) under repair, 

the repair of unit 1 commences immediately keeping the unit under repair in queue, 

and the repair of which is taken afresh immediately after the repair of unit 1 is 

completed.  

The repair times are exponentially distributed. All the units are assumed to be cold. 

The reliability and availability of the system are examined. A numerical illustration is 

also provided. 

 

4.2 SYSTEM DESCRIPTION 
 

 

We consider a 3-unit system in which unit 1 is connected in series and the other two 

units, unit 2 and unit 3 are connected in parallel as described in the block diagram given 

below. 

 
 
      
 
 

Fig.4.2.1: Block diagram of the series-parallel system 
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We assume here that the life-times of the unit 1, unit 2 and unit 3 are exponentially 

distributed with parameters 𝜆1, 𝜆2 and 𝜆3 respectively. There is a single repair facility.  

We assume that the repair times of the units, unit 1, unit 2 and unit 3 are exponentially 

distributed with parameters µ1, µ2  and µ3  respectively. In order to have the system 

operable, the system requires at least one of the units unit 2 or unit 3 in the up-state 

and the unit 1 in the up-state. We assume that no unit can fail in the system down state. 

Whenever a unit fails, the repair for it commences immediately if there is no unit 

under repair already in the repair facility. But the repair facility gives priority to the 

repair of the unit 1 in the sense that whenever the unit 1 fails in the operable state, and 

at that instant if there is already a unit (either unit 2 or unit 3) under repair, the repair 

of unit 1 commences immediately keeping the unit under repair in queue, and the 

repair of which is taken afresh immediately after the repair of unit 1 is completed. This 

type of repair-priority is known in the literature as pre-emptive priority repair (see 

Jaiswal (1968)). At any instant of time, the priority unit is either in the operable state 

or in the down state undergoing repair while a non-priority unit is either in the 

operable state or in the failed state waiting for repair or in the failed state undergoing 

repair. 

  

4.3 RELIABILITY OF THE SYSTEM 
 

 
We observe that the failure of unit 1 causes a system down. Hence, we observe that for 

the continuous operation of the system, unit 1 should not fail. Accordingly, to find the 

reliability of the system, we first consider the reliability of the subsystem consisting of 

unit 2 and unit 3. This subsystem is a two unit parallel system with constant failure 

rates and constant repair rates. We define 
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 𝑅0(𝑡) :  The reliability of the subsystem given that both the units are operable at time 

                 0. 

𝑅2(𝑡)  :  The reliability of the subsystem given that the unit 3 is in the operable state 

                  and the unit 2 is in the failed state at time 0. 

𝑅3(𝑡)  :  The reliability of the subsystem given that the unit 2 is in the operable state 

                  and the unit 3 is in the failed state at time 0. 

                  Then, using probabilistic arguments, we obtain 

 

𝑅0(𝑡) = 𝑒−(𝜆2+𝜆3)𝑡 + 𝜆2𝑒−(𝜆2+𝜆3)𝑡©𝑅2(𝑡) + 𝜆3𝑒−(𝜆2+𝜆3)𝑡©𝑅3(𝑡)                  (4.3.1) 

 

𝑅2(𝑡) = 𝑒−(𝜆3+µ2)𝑡 + µ2𝑒−(𝜆3+µ2)𝑡©𝑅0(𝑡)                                                            (4.3.2) 

 

𝑅3(𝑡) = 𝑒−(𝜆2+µ3)𝑡 + µ3𝑒−(𝜆2+µ3)𝑡©𝑅0(𝑡)                                                            (4.3.3) 

 

Taking Laplace transformations of the equations (4.3.1), (4.3.2) and (4.3.3), we get 

 

                              𝑅0∗(𝑜) = 1
𝑠+𝜆2+𝜆3

+ 1
𝑠+𝜆2+𝜆3

{𝜆2𝑅2∗(𝑜) + 𝜆3𝑅3∗(𝑜)},                  (4.3.4)     

                              

                              𝑅2∗(𝑜) =
1

𝑜 + 𝜆3 + µ2
+

µ2𝑅0∗(𝑜)
𝑜 + 𝜆3 + µ2

,                                         (4.3.5) 

 

                               𝑅3∗(𝑜) =
1

𝑜 + 𝜆2 + µ3
+

µ3𝑅0∗(𝑜)
𝑜 + 𝜆2 + µ3

.                                        (4.3.6) 

 

Solving the equations (4.3.4), (4.3.5) and (4.3.6) for  𝑅0∗(𝑜), we obtain 
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           𝑅0∗(𝑜)  =    

�
1 −𝜆2 −𝜆3
1 𝑜 + 𝜆3 + µ2 0
1 0 𝑜 + 𝜆2 + µ3

�

�
𝑜 + 𝜆2 + 𝜆3 𝜆2µ2 𝜆3µ3

1 𝑜 + 𝜆3 + µ2 0
1 0 𝑜 + 𝜆2 + µ3

�

.                    (4.3.7)  

        

Taking inverse Laplace transform of (4.3.7), we get 𝑅0(𝑡). Let all the units be operable 

at time t=0 and let the reliability of the main system be 𝑅(𝑡). Then using the 

probabilistic arguments, we get  

                                                   

                                                     𝑅(𝑡) = 𝑒−𝜆1𝑡𝑅0(𝑡).                                                (4.3.8)  

 

Taking Laplace transformation of (4.3.8), we get 

 

𝑅∗(𝑜) = 𝑅0∗(𝑜 + 𝜆1)

=  

�
1 −𝜆2 −𝜆3
1 𝑜 + 𝜆1 + 𝜆3 + µ2 0
1 0 𝑜 + 𝜆1 + 𝜆2 + µ3

�

�
𝑜 + 𝜆1 + 𝜆2 + 𝜆3 𝜆2µ2 𝜆3µ3

1 𝑜 + 𝜆1 + 𝜆3 + µ2 0
1 0 𝑜 + 𝜆1 + 𝜆2 + µ3

�

                         (4.3.9) 

                                                                                                                                   

Inversion of equation (4.3.9) yields 𝑅(𝑡). We can easily obtain the Mean time to 

system failure (MTSF) as follows. Since the (MTSF) is given by 

 

𝑀𝑇𝑆𝐹 = � 𝑅(𝑡)𝑑𝑡 = lim
𝑠→0

� 𝑒−𝑠𝑡𝑅(𝑡)𝑑𝑡 = 𝑅∗(0).
∞

0

∞

0
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We have  

 𝑀𝑇𝑆𝐹 =
(𝜆1 + 𝜆2 + 𝜆3 + µ2)(𝜆1 + 𝜆2 + 𝜆3 + µ3) − 𝜆2𝜆3

(𝜆1 + 𝜆2 + 𝜆3 + µ2 + µ3)(𝜆12 + 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3) + 𝜆1µ2µ3
.      (4.3.10)  

         

When 𝜆3 = 𝜆2 and  µ3 = µ2 = 𝜇, we have  

 

𝑀𝑇𝑆𝐹 =
(𝜆1 + 3𝜆2 + 𝜇)(𝜆1 + 𝜆2 + 𝜇)

(𝜆1 + 2𝜆2 + 2𝜇)(𝜆1 + 𝜆2)2 + 𝜆1𝜇2
 

 

                                 =
𝜆1 + 3𝜆2 + 𝜇

𝜆1
2 + 𝜆1(3𝜆2 + 𝜇) + 2𝜆2

2  .                                          (4.3.11) 

 

Further, when 𝜆1 = 𝜆2 = 𝜆, we have 

                        

                                           𝑀𝑇𝑆𝐹 =
4𝜆 + µ

𝜆(6𝜆 + µ)                                                    (4.3.12) 

Now we proceed to provide the availability analysis. 
 
 

 
 
4.4. AVAILABILITY ANALYSIS  
 

 
We denote by 0 the up-state of a unit and by 1 the down-state of a unit undergoing 

repair. The failed state of a non-priority unit waiting for repair is denoted by 2. We 

observe that, when a non-priority unit is in state 2, either the unit 1 or the other non-

priority unit is in state 1. The state space of unit 1 is {0,1} and that of a non-priority 

unit is {0,1,2}. Let 𝑋𝑖(𝑡)  represent the state of unit i at time t, i = 1, 2, 3. Then, for the 

priority unit 1, we have 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



81 
 

𝑋1(𝑡) = �0 𝑖𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 1 𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑝𝑒𝑜𝑎𝑏𝑙𝑒 𝑜𝑡𝑎𝑡𝑒;
1 𝑖𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 1 𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑒𝑑 𝑜𝑡𝑎𝑡𝑒,    

 

and for the non- priority units 

𝑋𝑖(𝑡) = �
0 𝑖𝑓𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑝𝑒𝑜𝑎𝑏𝑙𝑒 𝑜𝑡𝑎𝑡𝑒;                                       
1 𝑖𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑒𝑑 𝑜𝑡𝑎𝑡𝑒 𝑢𝑛𝑑𝑒𝑜𝑔𝑜𝑖𝑛𝑔 𝑜𝑒𝑝𝑎𝑖𝑜;   
2 𝑖𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑜 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑒𝑑 𝑜𝑡𝑎𝑡𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑓𝑜𝑜 𝑜𝑒𝑝𝑎𝑖𝑜,    

  

 

where i = 2, 3.  Now the state of the system is described by the vector stochastic 

process 

𝜉(𝑡) =  (𝑋1(𝑡),𝑋2 (𝑡),𝑋3(𝑡)). 

 

We observe that the state space S of the process 𝜉(𝑡) is given by  

 

S = {(0,0,0), (0,0,1), (0,1,0) , (1,0,0) , (0,1,2), (0,2,1) , (1,2,0) , (1,0,2)}. 

 

The system up-states are given by 

 

𝑆𝑈  = {(0,0,0), (0,0,1), (0,1,0)} 

 

and the system down-states by 

 

𝑆𝐷  = {(1,0,0), (1,2,0), (1,0,2), (0,1,2), (0,2,1)}. 
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The state transition diagram is shown below: 

 

 
 
 
 
 
 
 
 
 
 
Fig. 2: State transition diagram of the series-parallel system. 

 

The probability mass function of the vector process 𝜉(𝑡) is defined by  

 

𝑝𝑖,𝑗,𝑘(𝑡) = Pr{𝜉(𝑡) = (𝑖, 𝑗, 𝑘)} = Pr{𝑋1(𝑡) = 𝑖,𝑋2(𝑡) = 𝑗,𝑋3(𝑡) =  𝑘} , (𝑖, 𝑗,𝑘) ∈ 𝑆. 

 

Let 𝑍(𝑡) be the stochastic process defined by 

 

𝑍(𝑡) = �0   𝑖𝑓𝑡ℎ𝑒 𝑜𝑦𝑜𝑡𝑒𝑚 𝑖𝑜 𝑢𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡;          
1   𝑖𝑓 𝑡ℎ𝑒 𝑜𝑦𝑜𝑡𝑒𝑚 𝑖𝑜 𝑑𝑜𝑤𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡.    

 

The probability mass function Z(t) is defined by 

𝑞𝑖(𝑡) = Pr{𝑍(𝑡) = 𝑖} , 𝑖 = 0, 1.  

 

Since we have 

{𝑍(𝑡) = 0} = Pr{𝜉(𝑡) ∈ 𝑆𝑈}, 

{𝑍(𝑡) = 1} = Pr{𝜉(𝑡) ∈ 𝑆𝐷}. 

 

(1,0,2) (0,0,1) 
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Thus, we obtain that 

𝑞0(𝑡) = 𝑝0,0,0(𝑡) + 𝑝0,1,0(𝑡) + 𝑝0,0,1(𝑡), 

𝑞1(𝑡) = 𝑝1,0,0(𝑡) + 𝑝1,2,0(𝑡) + 𝑝1,0,2(𝑡) + 𝑝0,1,2(𝑡) + 𝑝0,2,1(𝑡). 

 

It is clear that 𝑞0(𝑡) represents the probability that the system is available; that is, the 

system is in the operable state at time t. Accordingly the availability function A(t) of 

the system is given by 

                                                       𝐴(𝑡) = 𝑞0(𝑡), 𝑡 > 0.                                                 (4.4.1)  

 

To obtain 𝐴(𝑡), we assume that all the units are in the operable state at time 𝑡 = 0 so 

that  

                                𝑝𝑖,𝑗,𝑘(0) = �1    𝑖𝑓 𝑖 = 𝑗 = 𝑘 = 0;
0    𝑜𝑡ℎ𝑒𝑜𝑤𝑖𝑜𝑒 ,                                                    (4.4.2) 

 

and A(0)=1. We now proceed to derive a system of differential equations satisfied by 

the functions 𝑝𝑖,𝑗,𝑘(𝑡), (𝑖, 𝑗,𝑘) ∈ 𝑆. 

 

Using the laws of probability theory and the state transition diagram in Fig. 2, we 

obtain for the system’s up states  

 

𝑝0,0,0(𝑡 + ∆𝑡) = 𝑝0,0,0(𝑡)[1 − (𝜆1 + 𝜆2 + 𝜆3)∆𝑡] + 𝑝1,0,0(𝑡)µ1∆𝑡 

                  +𝑝0,1,0(𝑡)µ2∆𝑡 + 𝑝0,0,1(𝑡)µ3∆𝑡 + 𝑜(∆)                                               (4.4.3) 

 

𝑝0,1,0(𝑡 + ∆𝑡) = 𝑝0,1,0(𝑡)[1 − (µ2 + 𝜆1 + 𝜆3)∆𝑡] + 𝑝0,0,0(𝑡)𝜆2∆𝑡 

                    +𝑝1,2,0(𝑡)µ1∆𝑡 + 𝑝0,2,1(𝑡)µ3∆𝑡 + 𝑜(∆)                                              (4.4.4) 
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𝑝0,0,1(𝑡 + ∆𝑡) = 𝑝0,0,1(𝑡)[1 − (𝜆1 + 𝜆2 + µ3)∆𝑡] + 𝑝0,0,0(𝑡)𝜆3∆𝑡 

                      +𝑝1,0,2(𝑡)µ1∆𝑡 + 𝑝0,1,2(𝑡)µ2∆𝑡 + 𝑜(∆)                                            (4.4.5) 

 

Similarly, for the systems down states, we have 

 

𝑝1,0,0(𝑡 + ∆𝑡) = 𝑝1,0,0(𝑡)[1 − µ1∆𝑡] + 𝑝0,0,0(𝑡)𝜆1∆𝑡 + 𝑜(∆)                            (4.4.6) 

 

𝑝1,2,0(𝑡 + ∆𝑡) = 𝑝1,2,0(𝑡)[1 − µ1∆𝑡] + 𝑝0,1,0(𝑡)𝜆1∆𝑡 + 𝑜(∆)                                 (4.4.7) 

 

𝑝1,0,2(𝑡 + ∆𝑡) = 𝑝1,0,2(𝑡)[1 − µ1∆𝑡] + 𝑝0,0,1(𝑡)𝜆1∆𝑡 + 𝑜(∆)                                 (4.4.8) 

 

𝑝0,1,2(𝑡 + ∆𝑡) = 𝑝0,1,2(𝑡)[1 − µ2∆𝑡] + 𝑝0,1,0(𝑡)𝜆3∆𝑡 + 𝑜(∆)                               (4.4.9) 

 

𝑝0,2,1(𝑡 + ∆𝑡) = 𝑝0,2,1(𝑡)[1 − µ3∆𝑡] + 𝑝0,0,1(𝑡)𝜆2∆𝑡 + 𝑜(∆).                               (4.4.10) 

 

Simplifying equations (4.4.3) to (4.4.10), we have 

 

𝑝′0,0,0(𝑡) = −(𝜆1 + 𝜆2 + 𝜆3)𝑝0,0,0(𝑡) + 𝑝1,0,0(𝑡)µ1 + 𝑝0,1,0(𝑡)µ2 + 𝑝0,0,1(𝑡)µ3  

                                                                                                                                             (4.4.11) 

 

𝑝′0,1,0(𝑡) = −(µ2 + 𝜆1 + 𝜆3)𝑝0,1,0(𝑡) + 𝑝0,0,0(𝑡)𝜆2 + 𝑝1,2,0(𝑡)µ1 + 𝑝0,2,1(𝑡)µ3  

                                                                                                                                             (4.4.12) 

 

𝑝′0,0,1(𝑡) = −(𝜆1 + 𝜆2 + µ3)𝑝0,0,1(𝑡) + 𝑝0,0,0(𝑡)𝜆3 + 𝑝1,0,2(𝑡)µ1 + 𝑝0,1,2(𝑡)µ2  

                                                                                                                                             (4.4.13) 
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𝑝′1,0,0(𝑡) = −µ1𝑝1,0,0(𝑡) + 𝑝0,0,0(𝑡)𝜆1                                                                       (4.4.14) 

 

𝑝′1,2,0(𝑡) = −µ1𝑝1,2,0(𝑡) + 𝑝0,1,0(𝑡)𝜆1                                                                       (4.4.15) 

 

 𝑝′1,0,2(𝑡) = −µ1𝑝1,0,2(𝑡) + 𝑝0,0,1(𝑡)𝜆1                                                                   (4.4.16) 

 

 𝑝′0,1,2(𝑡) = −µ2𝑝0,1,2(𝑡) + 𝑝0,1,0(𝑡)𝜆3                                                                      (4.4.17) 

 

𝑝′0,2,1(𝑡) = −µ3𝑝0,2,1(𝑡) + 𝑝0,0,0(𝑡)𝜆2                                                                        (4.4.18) 

 

Taking Laplace transform on both sides of (4.4.14) to (4.4.18) and using the initial 

condition (4.4.2), we obtain 

 

  𝑝∗1,0,0(𝑜) =
𝜆1

𝑜 + µ1
 𝑝0,0,0
∗  (𝑜)                                                                                       (4.4.19) 

 

 𝑝∗1,2,0(𝑜) =
𝜆1

𝑜 + µ1
 𝑝0,1,0
∗  (𝑜),                                                                                       (4.4.20) 

 

 𝑝∗1,0,2(𝑜) =
𝜆1

𝑜 + µ1
 𝑝0,0,1
∗ (𝑜),                                                                                        (4.4.21) 

 

  𝑝∗0,1,2(𝑜) =
𝜆3

𝑜 + µ2
 𝑝0,1,0

∗ (𝑜),                                                                                       (4.4.22) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



86 
 

   𝑝∗0,2,1(𝑜) =
𝜆2

𝑜 + µ3
 𝑝0,0,1
∗ (𝑜).                                                                                      (4.4.23) 

    

Taking Laplace transform on both sides of (4.4.11) to (4.4.13) and using the initial 

condition (4.4.2) and the equations (4.4.19) to (4.4.23), we obtain 

 

�(𝑜 + 𝜆1 + 𝜆2 + 𝜆3) −
µ1𝜆1
𝑜 + µ1

� 𝑝∗0,0,0(𝑜) − µ2𝑝∗0,1,0(𝑜) − µ3𝑝∗0,0,1(𝑜) = 1     (4.4.24) 

 

−𝜆2 𝑝∗0,0,0(𝑜) + �(𝑜 + 𝜆1 + 𝜆3 + µ2) −
µ1𝜆1
𝑜 + µ1

� 𝑝∗0,1,0(𝑜) −
µ3𝜆2
𝑜 + µ3

𝑝∗0,0,1(𝑜) = 0 

                                                                                                                                             (4.4.25) 

  

−𝜆3 𝑝∗0,0,0(𝑜) −
µ2𝜆3
𝑜 + µ2

𝑝∗0,1,0(𝑜) +  �(𝑜 + 𝜆1 + 𝜆2 + µ3) −
µ1𝜆1
𝑜 + µ1

� 𝑝∗0,0,1(𝑜) = 0. 

                                                                                                                                               (4.4.26) 

 

Solving the simultaneous equations (4.4.24) to (4.4.26), we obtain explicit expressions 

for 𝑝∗0,0,0(𝑜), 𝑝∗0,1,0(𝑜) and 𝑝∗0,0,1(𝑜) and inverting them, we obtain time-dependent 

expressions for the up-state probabilities 𝑝0,0,0(𝑡), 𝑝0,1,0(𝑡) and 𝑝0,0,1(𝑡). Then the 

availability is given by 

                    𝐴(𝑡) =  𝑝0,0,0(𝑡) +  𝑝0,1,0(𝑡) + 𝑝0,0,1(𝑡)                                                   (4.4.27) 

 

The first order product density of unit 1-failure is given by 

 

                            { 𝑝0,0,0(𝑡) +  𝑝0,1,0(𝑡) + 𝑝0,0,1(𝑡)} 𝜆1.                                                (4.4.28)  
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Also, the first order product density of system failure is given by 

 

                   𝑝0,0,0(𝑡)𝜆1 +  𝑝0,1,0(𝑡)(𝜆1 + 𝜆3) + 𝑝0,0,1(𝑡)(𝜆1 + 𝜆2).                        (4.4.29) 

 

As the calculations are quite unwieldy, we provide the steady state analysis in the next 

section. 

 
 
4.5 STEADY STATE ANALYSIS 
 

First, we proceed to obtain the steady state expressions for the state probabilities. To 

this end, we define  

                                             𝑃((𝑖, 𝑗,𝑘)) = lim
𝑡→∞

𝑝𝑖,𝑗,𝑘(𝑡),  (𝑖, 𝑗,𝑘) ∈ 𝑆.                        (4.5.1) 

 

By Tauberian theorem, we have 

 

lim
𝑡→∞

𝑝𝑖,𝑗,𝑘(𝑡) = lim
𝑠→0

𝑜𝑝∗𝑖,𝑗,𝑘(𝑜)     

 

Consequently, we obtain from the equations (4.4.24), (4.4.25) and (4.4.26),  

              �
𝜆2 + 𝜆3 −µ2 −µ3
−𝜆2 𝜆3 + µ2 −𝜆2
−𝜆3 −𝜆3 𝜆2 + µ3

��
𝑃((0,0,0))
𝑃((0,1,0))
𝑃((0,0,1))

� = �
0
0
0
� .                            (4.5.2)       

 

The equation (4.5.2) reduces to  

                         �
𝜆2 + 𝜆3 −µ2 −µ3
−𝜆2 𝜆3 + µ2 −𝜆2

0 0 0
��

𝑃((0,0,0))
𝑃((0,1,0))
𝑃((0,0,1))

� = �
0
0
0
� .                     (4.5.3) 
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Hence we obtain  

 

   
𝑃((0,0,0))

 𝜆2µ2 + µ3(𝜆3 + µ2)
=

𝑃((0,1,0))
𝜆2µ3 + 𝜆2(𝜆2 + 𝜆3)

=
𝑃((0,0,1))

𝜆3(𝜆2 + 𝜆3 + µ2)
= 𝛼.       (4.5.4) 

 

From the equations (4.4.19) to (4.4.23), we obtain 

 

 𝑃�(1,0,0)� =
𝜆1
µ1
𝑃�(0,0,0)�                                                                                   (4.5.5) 

 

𝑃�(1,2,0)� =
𝜆1
µ1
�(0,1,0)�                                                                                       (4.5.6) 

 

 𝑃�(1,0,2)� =
𝜆1
µ1
𝑃�(0,0,1)�                                                                                   (4.5.7) 

 

 𝑃�(0,1,2)� =
𝜆3
µ2
𝑃�(0,1,0)�                                                                                  (4.5.8) 

 

 𝑃�(0,2,1)� =
𝜆2
µ3
𝑃�(0,0,1)�                                                                                  (4.5.9) 

 

From (4.5.4) to (4.5.9), we obtain 

 

𝑃�(0,0,0)� = 𝛼{𝜆2µ2 + 𝜆3µ3 + µ2µ3}                                                                       (4.5.10) 

 

𝑃�(0,1,0)� = 𝛼�𝜆2µ3 + 𝜆2
2 + 𝜆3𝜆2�                                                                         (4.5.11) 
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𝑃�(0,0,1)� = 𝛼�𝜆3𝜆2 + 𝜆3
2 + 𝜆3µ2�                                                                         (4.5.12) 

 

𝑃�(1,0,0)� =
𝜆1
µ1
𝛼{𝜆2µ2 + 𝜆3µ3 + µ2µ3}                                                                 (4.5.13) 

 

𝑃�(1,2,0)� =
𝜆1
µ1
𝛼�𝜆2µ3 + 𝜆2

2 + 𝜆2𝜆3�                                                                    (4.5.14) 

 

𝑃�(0,1,2)� =
𝜆3
µ2
𝛼�𝜆2µ3 + 𝜆2

2 + 𝜆2𝜆3�                                                                    (4.5.15) 

 

𝑃�(1,0,2)� =
𝜆1
µ1
𝛼�𝜆2𝜆3 + 𝜆3

2 + 𝜆3µ2�                                                                    (4.5.16) 

 

𝑃�(0,2,1)� =
𝜆2
µ3
𝛼�𝜆2𝜆3 + 𝜆3

2 + 𝜆3µ2�                                                                    (4.5.17) 

 

Using the condition ∑ 𝑃�(𝑖, 𝑗,𝑘)� = 1(𝑖,𝑗,𝑘)∈𝑆 , we obtain  

 

𝛼 = �(𝜆2µ2 + 𝜆3µ3 + µ2µ3) �1 + 𝜆1
µ1
� + (𝜆2µ3 + 𝜆2

2 + 𝜆3𝜆2� �1 + 𝜆1
µ1

+ 𝜆3
µ2
� +

�𝜆3𝜆2 + 𝜆3
2 + 𝜆3µ2�(1 + 𝜆1

µ1
+ 𝜆2

µ3
))}−1. 

 

Now we consider three particular cases. 

Case 1:  When the non-priority units have the same life-time and the same repair rate, 

we have 

𝜆3 = 𝜆2 𝑎𝑛𝑑 µ2 = µ3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



90 
 

Hence we obtain 

𝑃((0,0,0)) =
µ1µ22

µ1µ2(𝜆2 + µ2) + (𝜆1µ2 + 𝜆2µ1)(2𝜆2 + µ2)
 

 

𝑃�(0,1,0)� = 𝑃(0,0,1) =
𝜆2µ1µ2

µ1µ2(𝜆2 + µ2) + (𝜆1µ2 + 𝜆2µ1)(2𝜆2 + µ2)
 

 

𝑃((1,0,0)) =
𝜆1
µ1
𝑃((0,0,0)) 

 

𝑃�(1,2,0)� = 𝑃�(1,0,2)� =
𝜆1
µ1
𝑃((0,1,0)) 

 

𝑃�(0,1,2)� = 𝑃�(0,2,1)� = 𝜆2
µ2
𝑃((0,1,0))}. 

 

The mean stationary rate of occurrence of failure of unit 1 is given by  

 

Ɵ1 = �𝑃�(0,0,0)� + 𝑃�(0,1,0)� + 𝑃�(0,0,1)��𝜆1 

 

=
𝜆1µ1µ2(2𝜆2 + µ2)

µ1µ2(𝜆2 + µ2) + (𝜆1µ2 + 𝜆2µ1)(2𝜆2 + µ2)
.                                                         (4.5.18) 

 

We note that Ɵ1 is also the mean stationary rate of occurrence of system failure due to 

the failure of unit 1. On the other hand, the mean stationary rate of occurrence of 

system failure due to the failure of unit 2 or unit 3 is given by 
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 Ɵ2 = �𝑃�(0,1,0)� + 𝑃�(0,0,1)��𝜆2 

=
2𝜆2

2µ1µ2 
µ1µ2(𝜆2 + µ2) + (𝜆1µ2 + 𝜆2µ1)(2𝜆2 + µ2)

.                                                         (4.5.19) 

 

The mean stationary rate of occurrence of system revival is  

 

Ɵ3 = �𝑃�(1,0,0)� + 𝑃�(1,2,0)� + 𝑃�(1,0,2)��µ1 + �𝑃�(0,1,2)� + 𝑃�(0,2,1)��µ2 

 

     = �𝑃�(0,0,0)� + 2𝑃�(0,1,0)��𝜆1 + 2𝑃�(0,1,0)�𝜆2 

 

      =
µ1µ2 {𝜆1(2𝜆2 + µ2) + 2𝜆2

2}
µ1µ2(𝜆2 + µ2) + (𝜆1µ2 + 𝜆2µ1)(2𝜆2 + µ2)

 .                                                  (4.5.20) 

 

Case 2:  When the non-priority units have the same life-time and the repair times of 

all the units both priority and non-priority units are same, we have 

𝜆3 = 𝜆2 𝑎𝑛𝑑 µ1 = µ2 = µ3 = µ 

 

Consequently, the equations (4.4.13) to (4.4.17) yield  

 

   𝑃�(0,0,0)� =
µ2

µ(𝜆2 + µ) + (𝜆1 + 𝜆2)(2𝜆2 + µ)
                                                     (4.5.21) 

 

   𝑃�(0,1,0)� = 𝑃(0,0,1) =
𝜆2µ

µ(𝜆2 + µ) + (𝜆1 + 𝜆2)(2𝜆2 + µ)
                               (4.5.22) 
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   𝑃�(1,0,0)� =
𝜆1µ

µ(𝜆2 + µ) + (𝜆1 + 𝜆2)(2𝜆2 + µ)
 ,                                                   (4.5.23) 

 

  𝑃�(1,2,0)� = 𝑃�(1,0,2)� =
𝜆1𝜆2

µ(𝜆2 + µ) + (𝜆1 + 𝜆2)(2𝜆2 + µ)
                            (4.5.24) 

                                 

  𝑃�(0,1,2)� = 𝑃�(0,2,1)� =
𝜆2

2

µ(𝜆2 + µ) + (𝜆1 + 𝜆2)(2𝜆2 + µ)
 .                          (4.5.25) 

                 

The rates Ɵ1 , Ɵ2 and Ɵ3 are given by  

 

 Ɵ1 =
𝜆1µ(2𝜆2 + µ)

µ(𝜆2 + µ) + (𝜆1 + 𝜆2)(2𝜆2 + µ)                                                                    (4.5.26) 

 

 Ɵ2 =
2𝜆2

2µ
µ(𝜆2 + µ) + (𝜆1 + 𝜆2)(2𝜆2 + µ)                                                                     (4.5.27) 

 

 Ɵ3 =
µ{𝜆1(2𝜆2 + µ) + 2𝜆2

2}
µ(𝜆2 + µ) + (𝜆1 + 𝜆2)(2𝜆2 + µ)                                                                      (4.5.28) 

 

Case 3:   When all the units (both priority and non-priority units) have the same life-

time and the repair times of all the units are same, we have 

 

𝜆1 = 𝜆2 = 𝜆3 = 𝜆 𝑎𝑛𝑑 µ1 = µ2 = µ3 = µ 
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In this case we have 

 

 𝑃�(0,0,0)� =
µ2

4𝜆2 + 3µ𝜆 + µ2
                                                                                      (4.5.29) 

 

𝑃�(0,1,0)� = 𝑃(0,0,1) = 𝑃(1,0,0) =
𝜆µ

4𝜆2 + 3µ𝜆 + µ2
                                          (4.5.30)  

                            

 𝑃�(1,2,0)� = 𝑃�(1,0,2)� = 𝑃�(0,1,2)� = 𝑃�(0,2,1)� =
𝜆2

4𝜆2 + 3µ𝜆 + µ2
 ,      (4.5.31) 

 

The rates 𝜃1 , 𝜃2 and 𝜃3 are given by  

 

𝜃1 =
𝜆µ(2𝜆 + µ)

µ(𝜆 + µ) + 2𝜆(2𝜆 + µ)                                                                                          (4.5.32) 

 

𝜃2 =
2𝜆2µ

µ(𝜆 + µ) + 2𝜆(2𝜆 + µ)                                                                                         (4.5.33) 

 

𝜃3 =
µ{𝜆(2𝜆 + µ) + 2𝜆2}

µ(𝜆 + µ) + 2𝜆(2𝜆 + µ)                                                                                         (4.5.34) 
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4.6 COST ANALYSIS 
 

 
In this section, we follow the notations given below. 

𝑒: Event of occurrence of system failure when the failure is due to the failure of unit 1; 

𝑓: Event of occurrence of system failure when the failure is due to the failure of unit 2 

     or unit 3; 

𝑁1(𝑡): The number of e- events that have occurred in the interval (0, 𝑡]; 

𝑁2(𝑡): The number of f- events that have occurred in the interval (0, 𝑡]; 

𝐶1:  The cost of occurrence of an e-event; 

𝐶2:  The cost of occurrence of an f-event. 

 

The total cost 𝐶(𝑡) due to system failure at time t is given by  

                                     𝐶(𝑡) = �𝐶1𝑑𝑁1(𝑢) + �𝐶2𝑑𝑁2(𝑢).
𝑡

0

𝑡

0

                                     (4.6.1) 

 

Then the expected value of 𝐶(𝑡) is given by 

                             𝐸 [𝐶(𝑡)] = 𝐶1 �ℎ1𝑒(𝑢)𝑑𝑢 + 𝐶2 �ℎ1𝑓(𝑢)𝑑𝑢
𝑡

0

𝑡

0

,                              (4.6.2) 

 

where ℎ1𝑒(𝑡) is the first order product density of the point process of e-events and 

ℎ1𝑓(𝑡) is the first order product density of the point process of f-events. We observe 

that first order product densities are given by  

 

                         ℎ1𝑒(𝑡) = { 𝑝0,0,0(𝑡) +  𝑝0,1,0(𝑡) + 𝑝0,0,1(𝑡)} 𝜆1,                               (4.6.3) 
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                             ℎ1𝑓(𝑡) = 𝑝0,1,0(𝑡)𝜆3 + 𝑝0,0,1(𝑡) 𝜆2.                                                (4.6.4) 

 

We now proceed to obtain the mean-stationary rate of the cost which is given by 

𝐶∞ = lim
𝑡→∞

𝐸 �
𝐶(𝑡)
𝑡
� .    

 

Using Tauberian theorem, we have  

 

𝐶∞ = 𝐶1 lim
𝑡→∞

1
𝑡
�ℎ1𝑒(𝑢)𝑑𝑢 + 𝐶2 lim

𝑡→∞

1
𝑡
�ℎ1𝑓(𝑢)𝑑𝑢.
𝑡

0

𝑡

0

    

 

 = 𝐶1 lim
𝑡→∞

ℎ1𝑒(𝑡) + 𝐶2 lim
𝑡→∞

ℎ1𝑓(𝑡)                                                                                   (4.6.5) 

 

= 𝐶1�𝑃�(0,0,0)� + 𝑃�(0,1,0)� + 𝑃�(0,0,1)��𝜆1 + 𝐶2�𝑃�(0,1,0)�𝜆3 + 𝑃�(0,0,1)�𝜆2� 

 = 𝐶1𝜃1 + 𝐶2𝜃2. 

 

4.7 NUMERICAL ILLUSTRATION 

 

In the particular case 𝜆1 = 𝜆2 = 𝜆3 = 𝜆, µ1 = µ2 = µ3 = µ, we have 

𝐶∞ =
𝜆µ{(2𝜆 + µ)𝐶1 + 2𝜆𝐶2}

µ2 + 3𝜆µ + 4𝜆2
. 

From the condition  

𝑑𝐶∞
𝑑𝜇

= 0, 
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we observe that the optimum value of µ is given by the cubic equation 

 

(2𝐶2 − 𝐶1)µ2 − 8𝜆𝐶1µ − 8𝜆2(𝐶1 + 𝐶2) = 0. 

 

As an illustration, choosing 𝜆 = 0.5, 𝐶1 = 50, 𝐶2 = 150, the optimum valued of 𝜇 is 

1.727 and the corresponding cost is 37.6179. 
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CHAPTER 5 

  
 
 
 
 

Classical And Bayesian Estimation Study of  
Standby System with An Erlangian Repair 

 

 
 
 
 
 
 
 
 
 
 
 
Modified version of this chapter is accepted in Pakistan Journal of Statistics.     
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5.1   INTRODUCTION 
 
 

Reliability theory is concerned with statistical description of various measures of 

system performance such as reliability, MTSF, point availability, steady state 

availability and so on and have been studied in detail using their respective failure 

time and repair time density functions. The failures and repairs in any system are 

influenced by several factors such as system configuration, the environmental 

conditions under which the system operates and the varying failures (minor and major) 

and so on, which cannot be controlled or assessed well in advance. For a detailed 

study of systems operating in random environments, see Chandrasekhar and Natarajan 

(2001) and Chandrasekhar et al (2005). There is an urgent need to avail the sample 

information in order to draw valid inference about the measures of system 

performance. System configurations in Reliability Theory are often used in the design 

and analysis of telecommunication systems, traffic systems and so on. In real life 

situations, in the problems involving system configurations, it is essential to carry out 

a practical analysis of measures of system performance. These problems often require 

the applications of statistical tools such as point estimation, interval estimation, 

hypotheses testing and Bayesian inference. The subjective Bayesian inference is very 

recent; An important aspect of Reliability Theory is to estimate lifetime and repair 

time parameters for which both classical and Bayesian approaches are useful. It is 

often the case that some information is available on the parameters of lifetime and 

repair time distributions from prior experiments or prior analysis of the lifetime or 

repair time data. Bayesian approach provides the methodology for the formal 

incorporation of the prior information with the current data. Analysis of several 

systems in these directions has not received much attention in the past. 
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In recent times, there has been great interest in analysing the system from a Bayesian 

perspective (see Yadavalli et al (2001), Yadavalli et al (2005)). However, all the 

Bayesian research work till date has been on the usual constant failure and service 

rates. Our interest in this chapter is on statistical inference procedures of a standby 

system with two stage Erlangian repair. The choice of the Erlangian distribution is 

motivated by the fact that an Erlangian variate with shape parameter k is the sum of k 

independent and identically distributed (iid) exponential variates. Hence, an Erlangian 

repair model can be thought of as a model with repair in k exponential phases, where 

repair at each phase is exponential with rate μ.  

 

In our model, we perform a simple experiment by observing m lifetimes and n repair 

times. Given this experiment, the likelihood is of the form  

 

L(parameters |data)  =  λme-λu � μ2n

Γ(2)n e-μv ∏ yj
n
j=1 �     

         =   μ2ne-(λu+μv)λm ∏ yj
n
j=1        ,                                              (5.1.1)                                      

 

where u and v are the sums of m observed lifetimes and n repair times respectively. 

For the system under consideration, we have described maximum likelihood and 

Bayesian procedures. Flexible priors for lifetime and repair time parameters are 

introduced under the assumption that priors for life time and repair time parameters 

are independent. By using these conjugate prior distributions, we evaluate the 

posterior distributions along with Bayes estimators. 
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Several authors have studied extensively two unit standby redundant systems in the 

past. Osaki and Nakagawa (1976) gave a bibliography of the work on two unit 

systems.  

 

In this chapter, we discuss in detail a two unit cold standby system with constant 

failure rate λ  and constant repair rate μ (both unknown) and two repair stages. 

Measures of system performance such as reliability, mean time to system failure 

(MTSF), point availability and steady state availability of a two unit cold standby 

system with constant failure rate and two stage Erlangian repair time distribution are 

obtained. Further maximum likelihood estimator (MLE) of the system reliability, 

asymptotic confidence limits for steady state availability of the system and Bayes 

estimator of MTSF are derived. 

 

The model and the assumptions, expressions for system reliability, MTSF, availability 

and associated statistical inference together with numerical illustration are discussed in 

detail in the following sections.   

 

 
5.2 THE MODEL AND ASSUMPTIONS 
 

 

The system under consideration is a two unit cold standby system with a single repair 

facility. Precisely, we have the following assumptions: 

(i) The units are similar and statistically independent. Each unit has a constant failure 

rate, say λ. 

(ii) A unit in standby will not fail. In other words, the failure rate of the standby unit is 

zero. 
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(iii) There is only one repair facility and the repair time distribution is a two stage 

Erlangian with probability density function (pdf) given by  

 

g(t) = μ2 𝑡 e-μt, 0 < t < ∞, μ > 0.                                                     (5.2.1)                                       

 

It may be noted that the density given in (5.2.1) corresponds to the sum of two iid 

exponential varieties each with the parameter μ. 

(iv) Each unit is new after repair. 

(v)  Switch is perfect and the switchover is instantaneous.  

 

5.3  ANALYSIS OF THE SYSTEM 
 
To analyse the behaviour of the system, we note that any time t, the system will be 

found in any one of the following mutually exclusive and exhaustive states 

Si , i=0,1,…,4. 

 

State 0 (S0):  One unit is operating online and the other is kept in the standby.  

State 1 (S1):  One unit is operating online and the other unit is in the first stage of 

repair. 

State 2 (S2): One unit is operating online and the other unit is in the second stage of 

repair. 

State 3 (S3):  One unit is in the first stage of repair and the other unit is waiting for 

repair. 

State 4 (S4): One unit is in the second stage of repair and the other unit is waiting for 

repair. 
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Since the two stage Erlangian distribution corresponds to the sum of two iid 

exponential variates and exponential distribution satisfies lack of memory property 

(LMP), it follows that the stochastic process describing the behaviour of the system is 

a Markov process with the infinitesimal generator given by 

 

                                                                                               

                                                                                                                                                   (5.3.1)

  

It may be noted that the system upstates are 0,1 and 2, while the state’s 3 and 4 are the 

system down states. Let pi(t) be the probability that the system is in state Si , i=0,1,…,4 

at time t with the initial condition p0(0)=1. We assume that initially all the two units are 

operable and obtain the measures of system performance as follows. 

 
 
5.4 SYSTEM RELIABILITY  
 
The system reliability R(t) is the probability of failure free operation of the system in 

(0, t]. To derive an expression for R(t), we restrict the transitions of the Markov process 

to the upstates namely 0,1 and 2. Using the infinitesimal generator of the process given 

          0 1 2 3   4 

              0 −𝜆 𝜆 0 0 0 

              1 0 −(𝜆 + 𝜇) 𝜇 𝜆 0 

      Q =  2 𝜇 0 −(𝜆 + 𝜇) 0 𝜆 

              3 0 0 0 −𝜇 𝜇 

              4 0 𝜇 0 0 −𝜇 
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in (5.3.1), pertaining to these upstates, we derive the following differential – difference 

equations. 

 

 
dp0(t)

dt
 =  -λp0(t) + μp2(t)                                                                                                (5.4.1) 

 

 
dp1(t)

dt
 =  λp0(t)-(λ+μ)p1(t)                                                                                              (5.4.2) 

 

 
dp2(t)

dt
 =  μp1(t)-(λ+μ)p2(t)                                                                                              (5.4.3) 

 

Let Li(s) denote the Laplace transform of pi(t), i=0,1,2. Taking Laplace transform on 

both the sides of differential – difference equations given in (5.4.1) – (5.4.3), solving for 

Li(s), i=0,1,2 and inverting, we get pi(t), i=0,1,2 as follows. 

 

               p0(t)  = �
(αi+λ+μ)2

∏ (αi-αj)3
j=1,j≠i

3

i=1

eαit                                                                         (5.4.4) 

 

               p1(t)  =  λ�
(αi+λ+μ)

∏ (αi-αj)3
j=1,j≠i

3

i=1

eαit                                                                          (5.4.5) 

 

              p2(t)  =  λμ�
1

∏ (αi-αj)3
j=1,j≠i

3

i=1

eαit                                                                     (5.4.6) 
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Thus, the system reliability R(t) is given by  

                                R(t)  =  p0(t) + p1(t) + p2(t)                                                                (5.4.7)   

 

where αi, i = 1, 2, 3 are the roots of the cubic equation  

 

s3+(3λ+2µ)s2+(3λ2+4λµ+µ2)s+λ2(λ+2µ)=0. 

 

5.5   MEAN TIME TO SYSTEM FAILURE  
 

 

The system MTSF is the expected or average time to failure and is given by  

               𝑀𝑇𝑆𝐹 =   L0(0) + L1(0) + L2(0)    

                          = (2λ2+4λμ+μ2)
λ2(λ+2μ)

.                                                              (5.5.1) 

 
 

5.6 SYSTEM AVAILABILITY 
 

 

The system availability A(t) is the probability that the system operates within the 

tolerances at a given instant of time and is obtained as follows. From the infinitesimal 

generator given in (5.3.1), we have the following system of differential – difference 

equations. 

 

dp0(t)
dt

= -λp0(t)+μp2(t)                                                                                                   (5.6.1)  

 

dp1(t)
dt

= λp0(t)-(λ+μ)p1(t)+μp4(t)                                                                                  (5.6.2)  
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dp2(t)
dt

= μp1(t)-(λ+μ)p2(t)                                                                                              (5.6.3)  

 

dp3(t)
dt

= λp1(t)-μp3(t)                                                                                                      ( 5.6.4)  

 

dp4(t)
dt

= λp2(t) + μp3(t)-μp4(t).                                                                                      (5.6.5) 

 

Solving the system of differential – difference equation (5.6.1) – (5.6.5) using the fact 

that ∑ pi
4
i=0 (t)=1, we obtain the solution as follows. 

 

p0(t) = 
μ4

∏ αi
4
i=1

+ λμ2 �
(αi+μ)2

αi(αi+λ)∏ (αi-αj)4
j=1,j≠i

eαit                                                         (5.6.6)
4

i=1

 

 

p1(t)=
λμ2(λ+μ)
∏ αi

4
i=1

+λ�
(αi+μ)2(αi+λ+μ)
αi ∏ (αi-αj)4

j=1,j≠i
eαit                                                                     (5.6.7)

4

i=1

 

 

p2(t)=
λμ3

∏ αi
4
i=1

+λμ�
(αi+μ)2

αi ∏ (αi-αj)4
j=1,j≠i

eαit                                                                       (5.6.8)
4

i=1

 

 

p3(t)=
λ2μ(λ+μ)
∏ αi

4
i=1

+λ2 �
(αi+μ)(αi+λ+μ)
αi ∏ (αi-αj)4

j=1,j≠i
eαit                                                                    (5.6.9)

4

i=1

 

 

p4(t)=
λ2μ(λ+2μ)
∏ αi

4
i=1

+λ2μ�
[λ + 2(αi+μ)]
∏ (αi-αj)4

j=1,j≠i
eαit                                                                    (5.6.10)

4

i=1
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where αi, i=1,2,3,4 are the roots of the equation  

 

      s4+(3λ+4μ)s3+�3λ2+10λμ+6μ2�s2+(λ3+8λ2μ+9λμ2+4μ3)s 

                             +μ(2λ3+4λ2μ+2λμ2+μ3) =  0. 

 

Hence, the system availability is given by  

 

A(t) = p0(t)+p1(t)+p2(t) 

          =  
𝜇2(𝜆 + 𝜇)2

∏ αi
4
i=1

+ λμ2 �
(αi+μ)2

αi(αi+λ)∏ (αi-αj)4
j=1,j≠i

eαit

 

4

i=1

 

 

+λ�
(αi+μ)2(αi+λ+μ)
αi ∏ (αi-αj)4

j=1,j≠i
eαit

4

i=1

+ λμ�
(αi+μ)2

αi ∏ (αi-αj)4
j=1,j≠i

eαit
4

i=1

.                                               (5.6.11) 

   

5.7 STEADY STATE AVAILABILITY 
 

The system steady state availability is the expected fractional amount of time in a 

continuum of operating time that the system is in an upstate and is given by  

 

           A∞= lim
t→∞

A(t) = 
μ(λ+μ)2

(2λ3+4λ2μ+2λμ2+μ3)
,                                                   (5.7.1) 

which is in agreement with Chandrasekhar and Natarajan (1994). 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



107 
 

5.8 ML ESTIMATOR OF SYSTEM RELIABILITY  
 

 

Let X1,X2,…,Xn and Y1,Y2,…,Yn be two random samples each of size n drawn from 

exponential failure and two stage Erlangian repair time populations with the pdf given 

by (5.1.1). It is clear that X� and Y
�

2
 are the ML estimators of 1

λ
 and 1

μ
  respectively, where 

X�  and Y�  are the sample means of failure times and repair times of a failed unit 

respectively. Hence, the ML estimator of system reliability is given by  

 

R�(t) = �
[(2X� + Y� + 𝛼�iX ���Y�)2 + Y�(4X� + Y� + 𝛼�iX ���Y�)]

(X�  Y�)2 ∏ (αi-αj)3
j=1,j≠i

3

i=1

e𝛼�it                                   (5.8.1) 

 

where 𝛼�i, i=1,2,3 are the roots of the cubic equation 

 

  X�3Y�2s3+X�2Y�(4X�+3Y�)s2+X�(2X�+Y�)(2X�+3Y�)s+Y�(4X�+Y�)=0.                                (5.8.2)     

 

 
5.9 CONFIDNECE INTERVAL FOR STEADY 

STATE AVAILABILITY OF THE SYSTEM  
 

 

In section 5.8, we have seen that X� and Y
�

2
 are the ML estimators of 1

𝜆
 and 1

μ
 

respectively. Let θ1= 1
λ
 and θ2= 1

μ
 . Clearly, the steady state availability of the system 

given in (5.7.1) is simplified to 

 

    A∞=
θ1(θ1+θ2)2

(θ1
3+2θ1

2θ2+4θ1θ2
2+2θ2

3)
                                                                                             (5.9.1) 
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and hence ML estimator of A∞ is given by  

 

A�∞=
X�(2X�+Y�)2

(4X�3+4X�2Y�+4X ���Y�2+Y�3)
 .                                                                                           (5.9.2) 

 

It may be noted that A�∞ given in (5.9.2) is real valued function in X� and Y�, which is 

also differentiable. By applying the multivariate central limit theorem (See 

Radhakrishna Rao (1974)), it is seen that 

 

              √n ��X� , Y�

2
� -(θ1,θ2)�

d
→N2(0,Σ) as n→∞,  

 

where the dispersion matrix Σ= ��σij�� is given by Σ=diag(θ1, 𝜃2
2

2
).  

 

Again from Radhakrishna Rao (1974), we have 

                √n�A�∞-A∞�
d
→N(0,σ2(θ)) as n→∞, 

where θ=(θ1,θ2) and 

 

σ2(θ)=θ1
2(

∂A∞

∂θ1
)
2

+
θ2

2

2
(
𝜕𝐴∞
𝜕𝜃2

)2                                                                                              (5.9.3) 

 

It may be noted that the partial derivatives ( ∂A∞
∂θi

), i=1,2 are given by 

 

(
∂A∞

∂θ1
) = 

2θ2
2(3θ1

3+6θ1
2θ2+4θ1θ2

2+θ2
3)

(θ1
3+2θ1

2θ2+4θ1θ2
2+2θ2

3)
2                                                                                   (5.9.4) 
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(
∂A∞

∂θ2
) = 

-2θ1θ2(3θ1
3+6θ1

2θ2+4θ1θ2
2+θ2

3)

(θ1
3+2θ1

2θ2+4θ1θ2
2+2θ2

3)
2                                                                             (5.9.5) 

 

Substituting (5.9.4) and (5.9.5) in (5.9.3) and simplifying, we get 

 

σ2(θ) = 
6θ1

2θ2
4(3θ1

3+6θ1
2θ2+4θ1θ2

2+θ2
3)

2

(θ1
3+2θ1

2θ2+4θ1θ2
2+2θ2

3)
4 .                                                                              (5.9.6) 

 

Thus, A�∞ is a CAN estimator of A∞. There are several methods for generating CAN 

estimators and the method of moments and the method of maximum likelihood are 

commonly used to generate such estimators, see Sinha (1986). 

 

Let σ2(θ�) be an estimator of σ2(θ) obtained by replacing θ by a consistent estimator 

namely, θ� = �X� , Y�

2
�. Further, let 𝜎2� = σ2(θ�). Since σ2(θ) is a continuous function of 

θ, 𝜎2�  is a consistent estimator of σ2(θ). i.e., 𝜎2�  
𝑃
→ σ2(θ) as n→∞. By Slustky theorem, 

we have √𝑛[𝐴�∞−𝐴∞]
𝜎�

d
→N(0,1). Hence a 100�1-α�% confidence interval for 𝐴∞ is given 

by 𝐴̂∞ ± 𝑘𝛼  
2

𝜎�
√𝑛

 ,where 𝑘𝛼  
2

 is the upper 100 �1- 𝛼
2
�%  quantile of standard normal 

distribution and 𝜎� is obtained from (5.9.6) and is given by 

 

σ�=�
3X�2 Y�4(24X�3+24X�2 Y�+8X ���Y�2+Y�3)

2

2(4X�3+4X�2 Y�+4X ���Y�2+Y�3)
4                                                            (5.9.7) 

In the next section, Bayes estimator of MTSF under squared error loss function is 

obtained using the same sample observations as in section 5.3  
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5.10 BAYES ESTIMATION OF MTSF IN A TWO 
UNIT STANDYBY SYSTEM  

 

In this section, we derive the Bayes estimator of MTSF by considering Gamma 

distributions with parameters (α,β)  and (δ,ω)  as natural conjugate priors for the 

lifetimes and repair times respectively. In other words, λ and μ have the following 

prior distributions with the probability density functions as follows. 

      

τ1(λ|α,β)=
αβ

Γ(β)
e-αλλβ-1, 0 < λ < ∞; α, β > 0,                                                                      (5.10.1) 

       

τ2(μ|𝛿,𝜔)=
δω

Γ(ω)
e-δμμω-1, 0 < μ < ∞; δ, ω > 0.                                                                   (5.10.2) 

 

Bayes estimator is usually obtained by minimizing the expected loss function, where 

the expectation is taken with respect to the joint distribution of sample observations 

and the parameters. Point estimators, which are known as Bayes estimators in the 

Bayesian framework are the expected values of posterior distribution under squared 

error loss function (SELF). Bayes estimators are usually obtained under (i) SELF (ii) 

entropy loss function (ELF) and (iii) precautionary loss function (PLF).  

It can be shown that the posterior distributions of λ and μ  given the sample 

observations X1, X2,…,Xm and Y1, Y2,…,Yn are respectively given by 

 

q1(λ|x1, x2,…,xm) =
(α+u)m+β

Γ(m+β)
e-λ(α+u)λ(m+β)-1, 0 < λ < ∞; α, u, m, β > 0,            (5.10.3) 
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q2�μ�y1, y2,…,yn� =
(δ+v)2n+ω

Γ(2n+ω)
e-μ(δ+ v)μ(2n+ω)-1,  0 <μ < ∞; δ, v, n, ω > 0 .         (5.10.4) 

 

In other words, λ and μ are distributed as Gamma with parameters (α+u, m+β) and 

(δ+v, 2n+ω) respectively. 

Bayes estimator of MTSF say MTSF*, given the sample observations is defined as  

MTSF* = E [MTSF | sample observations] 

 

=� �
(2λ2+4λμ+μ2)

λ2(λ+2 μ)
 q1(λ|x1,𝑥2…,xm)q2�μ�y1,…,yn� dλ

∞

0

∞

0
dμ                             (5.10.5)   

 

=� � (
1
μ

+
2
λ

+
μ

2λ2 ) �
(-1)j

2j

∞

j=0

(
λ
μ

)
j

q1(λ|x1,x2,…,xm) q2�μ�y1,y2,…,yn� dλ dμ,

                   

∞

0

∞

0
  

λ<μ                 

 

=
1

Γ(m+β)Γ(2n+ω)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �

(-1)j

2j
(δ+v)j+1

(α+u)j

∞

j=0

 Γ(m+β+j)Γ(2n+ω-j-1)

+2�
(-1)j

2j
(δ+v)j

(α+u)j-1

∞

j=0

 Γ(m+β+j-1)Γ(2n+ω-j)

+
1
2
�

(-1)j

2j
(δ+v)j-1

(α+u)j-2

∞

j=0

 Γ(m+β+j-2)Γ(2n+ω-j+1)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                     (5.10.6) 

                                    

                                          

5.11 NUMERICAL ILLUSTRATION 
 
In this section, the performance of the Bayes estimate of MTSF i.e., MTSF* is 

illustrated through simulated data. The estimates are obtained using (5.10.4). Monte 

Carlo integration method is used to evaluate the integrals in (5.10.4) in two steps. 
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First, the inner integral is evaluated by generating random samples using the posterior 

density of λ treating μ as unknown. The outer integral is then evaluated using random 

samples generated from the posterior density of μ. The values of hyper parameters in 

the posterior density functions are fixed as m = n = 50; α = 2.5; β = 3.0;  δ = 0.75; 

ω = 1.5. u and v are determined by taking the sums of iid samples of sizes m and n 

generated from exponential and Erlangian distributions respectively as given in pdf 

(5.2.1). For generating samples, the following choices of λ and μ are used namely, 

λ = 3, 6, 9, 12 and μ = 2, 4, 6, 8. The results of the simulation based on 10,000 Monte 

Carlo runs are presented below.  

 
Table 5.11.1: Bayes estimate of MTSF 

μ λ        3.0       6.0       9.0      12.0 

        2.0 0.01662 0.03390 0.07491 0.11261 

        4.0 0.02634 0.05689 0.14142 0.15921 

        6.0 0.02723 0.11658 0.16159 0.26393 

        8.0 0.03311 0.14515 0.26254 0.39131 

     

From the above table, it can be observed that for fixed repair rate (μ), the Bayes 

estimate of MTSF increases as the failure rate (λ) increases. Similarly, for fixed λ, the 

Bayes estimate of MTSF increases as μ increases. In other words, whenever the two unit 

cold standby system with single repair facility under consideration exhibits high failure 

and repair rates, then the associated mean time before failure is also high.  

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



113 
 

 
 
 
 

 
 
 

 

 
CHAPTER 6 

  
 
 
 
 

Three Unit Series-Parallel System with 
Preparation Time for the Repair Facility 
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6.1   INTRODUCTION 
 

 

 

Two unit standby redundant systems remained under the focus of several researchers 

working in various fields such as industry and system engineering.  A bibliography of 

the work on two unit system is given by Osaki and Nakagawa (1976) (see also, Kumar 

and Agarwal (1980), Srinivasan and Subramanian (1980), Birolini (1985), Yearout et 

al (1986) and Dhillon (1993)).  However the study of n (≥3) unit standby redundant 

systems, though very important, has received less attention, possibly because of the 

built-in difficulties in analysing such systems. Further in a three unit system, the units 

can be connected in series or they can be connected in parallel or one on line unit with 

two standbys or two online units with one standby or one unit connected in series with 

the two units which are connected in parallel and so on. There are many applications 

of these systems; for example, in a music system an amplifier may be connected in 

series with two speakers which are connected in parallel. Such systems have not been 

studied in detail, probably because of the complex nature of the underlying stochastic 

processes. Only a few authors have studied 3-unit systems (see Nakagawa (2008)).   

 

Abuelma’atti and Qamber (1997) have considered a broadcasting system formed of 

two transmitters which are connected from a common power supply unit (with no 

provision for repair of the failed units). SPICE circuit simulation program was 

developed and the state probabilities are obtained. A 3-unit series parallel system was 

considered by Birolini (1985). The system considered by him consists of a single unit 

connected in series to a two unit parallel system with a single repair facility and the 

failed units are taken up for repair in the order in which they arrived. He considered 

two models. In one model all the units have constant failure rates and constant repair 

rates.  In the other, the repair time of a failed unit has an arbitrary distribution. 
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Sarma and Pervez (1984) studied a three unit system in which all the distributions are 

assumed to be discrete. Muller (2005) studied a three unit standby system when the 

lifetime and repair time distributions are assumed to be arbitrary, and obtained 

expressions for reliability and availability. In all the above models, it is clear that they 

have assumed that the repair facility is continuously available to attend the repair of 

the failed unit (Bon and Paltanea (2001), Krishnamoorthy et al (2002), Frostig and 

Levikson (2002), Ke and Pearn (2004), Wang et al (2009), Wang et al (2011). 

 

But it is reasonable to expect that a preparation might be needed to get the repair 

facility ready before the next repair could be taken up. If this preparation is started 

only when a unit arrives for repair, it is easy to solve the problem, since the 

preparation time plus the actual repair time may be taken as total repair time. But this 

preparation time starts immediately after each repair completion, so that the facility 

becomes available at the earliest. Two unit parallel systems with two-dissimilar units 

and preparation time were studied by Sarma (1982). He assumed that the repair times 

and preparation times are to be non-markovian. The confidence limit for a two-unit 

parallel system was subsequently studied by Yadavalli et al (2002a, b). 

 

A 3-unit system is considered in which unit 1 is connected in series and the other two 

units, unit 2 and unit 3 are connected in parallel. The life-times of all the units are 

assumed to be exponentially distributed. There is a single repair facility. That is, 

whenever a unit fails, the repair for it commences immediately if there is no unit under 

repair already in the repair facility. However, it is reasonable to expect that a 

preparation might be needed to get the repair facility ready before the next repair could 

be taken up.  In this chapter, a three units series parallel system is studied in which the 

repair facility is not available for a random time after each repair completion.  
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The reliability and availability of the system are examined.  

 

 
 

6.2   SYSTEM DESCRIPTION AND NOTATION  
 
 

A three unit series parallel system in which one unit is connected in series with a 2-unit 

parallel system is considered. The configuration of the system is given in Figure 6.2.1. 

 

  

 

  

 

 

Fig. 6.2.1: Block diagram of the series parallel system 

  

We assume here that the life-times of the unit 1, unit 2 and unit 3 are exponentially 

distributed with parameters λ1, λ2 and λ3   respectively.  There is a single repair 

facility. We assume that the repair times of the units, unit 1, unit 2 and unit 3 are 

exponentially distributed with parameters µ1, µ2 and µ3   respectively.   In order to 

have the system operable, the system requires at least one of the units unit 2 or unit 3 

in the up-state and the unit 1 in the up-state. We assume that no unit can fail in the 

system down state. There is a single repair facility (RF) and failed units are repaired.  

After completion of each repair of a failed unit preparation time is required for the 

commencement of repair of the next failed unit. On completion of the preparation time 

RF  becomes free to take up any failed unit for repair. If a unit fails during the 

preparation time of the RF the failed unit will wait in a queue till RF becomes ready to 
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Unit 3 

Unit 2 
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take up repair.  This preparation time is assumed to be an exponentially distributed 

random variable with parameter ν. whenever a unit fails, the repair for it commences 

immediately if there is no unit under repair already in the repair facility and the RF is 

ready to take up a repair. But the repair facility gives priority to the repair of the unit 1 

in the sense that whenever the unit 1 fails, and at that instant if there is already a unit 

(either unit 2 or unit 3) is under repair, the repair of unit 1 commences immediately 

keeping the unit under repair in queue, and the repair of which is taken afresh 

immediately after the repair of unit 1 is completed.  However preparation time is 

required at the commencement of repair of that unit.  This type of repair-priority is 

known in the literature as pre-emptive priority repair (see Jaiswal (1968)). If the repair 

of unit 2 or unit 3 is stopped in the middle unit 1 will be taken up for repair 

immediately and no preparation time is required. However if the RF  is under 

preparation time period at the epoch of failure of unit 1 then unit 1 will also wait and 

will be taken up for repair immediately as soon as the RF becomes ready to take up a 

repair. We proceed to find the reliability and availability of the system. 

 
6.3 THE RELIABILITY OF THE SYSTEM 
 
 

We observe that the failure of unit 1 causes a system down. Hence, we observe that 

for the continuous operation of the system, unit 1 should not fail.  Accordingly, to 

find the reliability of the system, we first consider the reliability of the subsystem 

consisting of unit 2 and unit 3. This subsystem is a two unit parallel system with 

constant failure rates, constant repair rates and preparation time for the repair facility.  
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We define the following: 

 

𝑹𝟎(𝒕) :   The reliability of the subsystem given that both the units are operable at time 

0 and the preparation time just commences for the repair facility. 

𝐑𝟐(𝐭) ∶   The reliability of the subsystem given that the unit 3 is in the operable state 

and unit 2 is in the failed state at time 0 and repair just commences for it. 

𝐑𝟑(𝐭) ∶   The reliability of the subsystem given that the unit 2 is in the operable state 

and unit 3 is in the failed state at time 0 and repair just commences for it.  

 

Then, using probabilistic arguments, we obtain 

 

𝑅0(t) = 𝑒−(λ2 +λ3 )t + 𝑒−λ3𝑡[λ2𝑒−λ2𝑡(1 − 𝑒−𝑣𝑡) + 𝑣𝑒−𝑣𝑡(1− 𝑒−λ2𝑡)©𝑅2(t)]        

       

+𝑒−λ2𝑡[λ3𝑒−λ3𝑡(1− 𝑒−𝑣𝑡) + �𝑣𝑒−𝑣𝑡�1 − 𝑒−λ3𝑡�©𝑅3(t)�                             (6.3.1) 

 

𝑅2(t) = 𝑒−(λ3+ µ2)𝑡 + µ2𝑒−(λ3+ µ2)𝑡©𝑅0(t)                                                               (6.3.2)    

                                            

𝑅3(t) = 𝑒−(λ2+ µ3)𝑡 + µ3𝑒−(λ2+ µ3)𝑡©𝑅0(t).                                                              (6.3.3) 
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Taking Laplace transformations of the equations (6.3.1), (6.3.2) and (6.3.3), we get 

 

𝑅0∗(𝑜) =
1

𝑜 + 𝜆2 + 𝜆3

+ �λ2 �
1

s + λ2 + λ3
−

1
s + λ2 + λ3 + v

�

+ v �
1

s + λ3 + v
−

1
s + λ2 + λ3 + v

��R2
∗ (s)

+ �λ3 �
1

s + λ2 + λ3
−

1
s + λ2 + λ3 + v

�

+ v �
1

s + λ2 + v
−

1
s + λ2 + λ3 + v

��R3
∗ (s)                      (6.3.4) 

 

                                                                                                                           

𝑅2∗(𝑜) =
1

𝑜+ 𝜆3 + µ2
+

µ2𝑅0∗(𝑜)
𝑜+ 𝜆3 + µ2

                                                      (6.3.5) 

                                                                    

 

 𝑅3∗(𝑜) =
1

𝑜+ 𝜆3 + µ3
+

µ3𝑅0∗(𝑜)
𝑜+ 𝜆3 + µ3

                                                      (6.3.6) 
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Solving the equations (6.3.4), (6.3.5) and (6.3.6) for R∗(0), we obtain 

 

R0
*(s) =

�

�

�

�
1

))((
))(2(

332

322

vsvs
svv

+++++
+++
λλλ
λλλ

))((
))(2(

232

233

vsvs
svv

+++++
+++
λλλ
λλλ

23 µλ ++s 23 µλ ++s 0

32 µλ ++s 0 32 µλ ++s

32 λλ ++s
))((

))(2(

332

322

vsvs
svv

+++++
+++
λλλ
λλλ

))((
))(2(

232

233

vsvs
svv

+++++
+++
λλλ
λλλ

2µ− 23 µλ ++s 0

3µ− 0 32 µλ ++s
�

�

�

�

                                                                                                                                        

                                                                                                                                                   (6.3.7) 

Taking inverse Laplace transform of (6.3.7), we get R0(t). 

Now we consider the main system. Let all the units be operable at time t =  0 and 

preparation time commences for the repair facility.  Let the reliability of the main 

system be R(t). Then, using the probabilistic arguments, we get 

                                          𝑅(𝑡) = 𝑒−𝜆1𝑡𝑅0(𝑡).                                                                  (6.3.8)        

 

Taking Laplace transformation of (6.3.8), we get  

R∗(s) =  𝑅0∗(𝑜 +  𝜆1) 

=

�

�

�

�
1

))((
))(2(

31321

3122

vsvs
svv

+++++++
++++

λλλλλ
λλλλ

))((
))(2(

21321

2133

vsvs
svv

+++++++
++++

λλλλλ
λλλλ

231 µλλ +++s 231 µλλ +++s 0

321 µλλ +++s 0 321 µλλ +++s

321 λλλ +++s
))((

))(2(

31321

3122

vsvs
svv

+++++++
++++

λλλλλ
λλλλ

))((
))(2(

21321

2133

vsvs
svv

+++++++
++++

λλλλλ
λλλλ

2µ− 231 µλλ +++s 0

3µ− 0 321 µλλ +++s
�

�

�

�

 

                                                                                                                                            (6.3.9) 
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Inversion of the equation (6.3.9) yields R(t). We can easily obtain the Mean time to 

system failure (MTSF) as follows. Since the (MTSF) is given by 

         𝑀𝑇𝑆𝐹 = ∫ 𝑅(𝑡)𝑑𝑡 = lim𝑠→0 ∫ 𝑒−𝑠𝑡𝑅(𝑡)𝑑𝑡∞
0

∞
0 = 𝑅∗(0). 

 

 
6.4 THE AVAILABILITY OF THE SYSTEM 
 
 

For convenience we assume 𝜆3   =  𝜆2  and µ3  =  µ2 and define 

𝐗 (𝐭) = State of the units at time ’t’ represented as 0,1,2 ,3,4 

       =  0 ⇒ all the three units are operable 

       =  1 ⇒ unit 1 is operable and one of the units in the subsystem       

                  is in the failed state 

     = 2 ⇒ unit 1 is operable and both the units in the subsystem  

                  are in failed state 

      =  3 ⇒ unit 1 is in the failed state and the other two units are     

                 operable 

     =  4 ⇒ unit 1 is in the failed state and one of the units in the  

                 subsystem is in the failed state. 

 

𝐘 (𝐭)   = State of the repair facility at time ’t’ represented as 0,1    

           = 0  RF is available  

           =  1  RF is under preparation period. 
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Z (t)  the vector process {X (t), Y (t)} representing the State of the system at time t. 

We note that the stochastic process Z (t) is a Markov process with state space. 

𝐸 =  {(𝑖, 𝑗): 𝑖 =  0, 1, 2, 3, 4 ∶  𝑗= 0, 1}.  

 

Also we write 𝐸 = 𝐸1 ∪ 𝐸2 where 

 𝐸1  =   {(𝑖, 𝑗): 𝑖  =   0,1: 𝑗  =   0, 1}.   

And 

𝐸2 = {(𝑖, 𝑗): 𝑖 =  2,3,4 ∶  𝑗 =  0, 1}. 

 

𝐸1  represents the system up states and E2  the set of down system states. Now we 

consider the different states and the possible transitions from them. 

 

State (0,0): all the three units are operable and the RF is available. The possibilities 

for a transition from this state are (i) one of the units unit 2 or unit 3 fails or (ii) unit 1 

fails. That is a transition to state (1,0) occurs with rate 2λ2 or a transition to state (3,0) 

occurs with rate λ1. 

Similarly we consider all other states and the possible transitions from them and give 

the results in the following table. For convenience the state (𝑖, 𝑗) is denoted as (𝑖𝑗) ;   
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Transition table 6.4.1. 

From State To State Rate 

 

(0,0) 

 

(1,0) 

 

2𝜆2 

(0,0) (3,0) 𝜆1 

(1,0) (0,1) µ2 

(1,0) (2,0) 𝜆2 

(1,0) (4,0) 𝜆1 

(2,0) (1,1) µ2 

(3,0) (0,1) µ1 

(4,0) (1,1) µ1 

(0,1) (1,1) 2𝜆2 

(0,1) (3,1) 𝜆1 

(0,1) (0,0) 𝜈 

(1,1) (1,0) 𝜈 

(1,1) (2,1) 𝜆2 

(1,1) (4,1) 𝜆1 

(2,1) (2,0) 𝜈 

(3,1) (3,0) 𝑣 

(4,1) (4,0) 𝑣 

 

We also get the reliability of the system when λ2   =  λ3   and µ3  =  µ2  directly. 

Assume that the system has entered state (01) initially at time t =  0. Define 

Rij (t) = Pr{the system is up in (0, t] | the system has entered 

                state (i, j)  at t =  0 }, (i, j)  ∈  E1. 
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We now derive equation for the reliability of the system 

 

𝑅00(𝑡) = 𝑒−(𝜆1+2𝜆2)𝑡 + 2𝜆2𝑒−(𝜆1+2𝜆2)𝑡©𝑅10(𝑡)                                              (6.4.2) 

 

𝑅10(𝑡) = 𝑒−(𝜆1+𝜆2+µ2)𝑡 + µ2𝑒−(𝜆1+𝜆2+µ2)𝑡©𝑅01(𝑡)                                        (6.4.3) 

 

      𝑅01(𝑡) = 𝑒−(𝜆1+2𝜆2)𝑡+𝑣+2𝜆2𝑒−(𝜆1+2𝜆2+𝑣)𝑡©𝑅11(𝑡)

+ 𝑣𝑒−(𝜆1+2𝜆2+𝑣)𝑡©𝑅00(𝑡)                                                                    (6.4.4) 

    

        𝑅11(𝑡) = 𝑒−(𝜆1+𝜆2+𝑣)𝑡 + 𝑣𝑒−(𝜆1+𝜆2+𝑣)𝑡©𝑅10(𝑡).                                              (6.4.5) 

 

Solving the set of equations (6.4.2)  − (6.4.5) after taking Laplace transforms we get 

the Laplace transform R01
∗ (s) of the reliability of the system.  This result is in 

agreement with equation (6.3.9) if λ 3 and µ3  are respectively replaced with λ2  and 

µ2  and simplified. 

 
6.5 AVAILABILITY  
 
 

 

Define 

𝐴𝑖𝑗 (𝑡) =  𝑃𝑜{𝑡ℎ𝑒 𝑜𝑦𝑜𝑡𝑒𝑚 𝑖𝑜 𝑢𝑝 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 | 𝑡ℎ𝑒 𝑜𝑦𝑜𝑡𝑒𝑚    

                ℎ𝑎𝑜 𝑒𝑛𝑡𝑒𝑜𝑒𝑑 𝑜𝑡𝑎𝑡𝑒 (𝑖, 𝑗) 𝑎𝑡 𝑡 =  0 } , (𝑖, 𝑗)  ∈  𝐸. 
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We now derive equation for the availability of the system 

 

𝐴00(𝑡) = 𝑒−(𝜆1+2𝜆2)𝑡 + 2𝜆2𝑒−(𝜆1+2𝜆2)𝑡©𝐴10(𝑡) + 𝜆1𝑒−(𝜆1+2𝜆2)𝑡©𝐴30(𝑡)          (6.5.1) 

 

  𝐴10(𝑡) = 𝑒−(𝜆1+𝜆2+µ2)𝑡 + µ2𝑒−(𝜆1+𝜆2+µ2)𝑡©𝐴01(𝑡) 

   𝜆2𝑒−(𝜆1+𝜆2+µ2)𝑡©𝐴20(𝑡) + 𝜆1𝑒−(𝜆1+𝜆2+µ2)𝑡©𝐴40(𝑡)                                            (6.5.2) 

    

𝐴01(𝑡) = 𝑒−(𝜆1+2𝜆2)𝑡+𝑣 + 2𝜆2𝑒−(𝜆1+2𝜆2+𝑣)𝑡©𝐴11(𝑡) + 𝑣𝑒−(𝜆1+2𝜆2+𝑣)𝑡©𝐴00(𝑡)

+ 𝜆1𝑒−(𝜆1+𝜆2+𝑣)𝑡©𝐴31(𝑡)                                                                     (6.5.3) 

                                                                                                                                          

𝐴11(𝑡) = 𝑒−(𝜆1+𝜆2+𝑣)𝑡 + 𝑣𝑒−(𝜆1+𝜆2+𝑣)𝑡©𝐴10(𝑡) 

                + 𝜆1𝑒−(𝜆1+2𝜆2+𝑣)𝑡©𝐴41(𝑡) + 𝜆2𝑒−(𝜆1+𝜆2+𝑣)𝑡©𝐴21(𝑡)                           (6.5.4) 

                                                                                                                                        

 

 

𝐴20(𝑡) = µ2𝑒−µ2𝑡©𝐴11(𝑡)                                                                                              (6.5.5) 

𝐴30(𝑡) = µ1𝑒−µ1𝑡©𝐴01(𝑡)                                                                                                 (6.5.6)  

𝐴40(𝑡) = µ1𝑒−µ1𝑡©𝐴11(𝑡)                                                                                              (6.5.7) 

𝐴21(𝑡) = 𝑣𝑒−𝑣𝑡©𝐴20(𝑡)                                                                                                (6.5.8) 

𝐴31(𝑡) = 𝑣𝑒−𝑣𝑡©𝐴30(𝑡)                                                                                                (6.5.9) 

𝐴41(𝑡) = 𝑣𝑒−𝑣𝑡©𝐴40(𝑡).                                                                                               (6.5.10) 
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After taking Laplace transforms the set of equations (6.5.1)-(6.5.10) can be solved for 

A01
∗ (s) which gives the Laplace transform of the availability of the system. 

 
6.6 STEADY STATE AVAILIBILITY  
 
 

 

Let 

𝑃𝑖𝑗 (𝑡)  =  Pr {𝑍 (𝑡)  =  (𝑖, 𝑗)|𝑍 (0)  =  (0, 1)} 

and let 

 𝑙𝑖𝑚
𝑡→∞

𝑃𝑖𝑗(𝑡) = 𝑃𝑖𝑗 . 

 

Using the principle of flow we have 

 

(𝜆1 + 2𝜆2)𝑃00 = 𝑣𝑃01                                                                                                      (6.6.1)  

 

 (𝜆1 + 2𝜆2)𝑃01 = µ1𝑃30 + µ2𝑃10                                                                                   (6.6.2) 

 

 (𝜆1 + 𝜆2 + µ2)𝑃10 = 𝑣𝑃11                                                                                              (6.6.3) 

 

(𝜆1 + 𝜆2 + 𝑣)𝑃11 = µ1𝑃40 + µ2𝑃20 + 2𝜆2𝑃01                                                            (6.6.4)  

 

 µ2𝑃20 = 𝜆2𝑃10 + 𝑣𝑃21                                                                                                     (6.6.5)

  

𝑣𝑃21 = 𝜆2𝑃11                                                                                                                          (6.6.6)

  

µ1𝑃30 = 𝜆1𝑃10 + 𝑣𝑃31                                                                                                      (6.6.7)
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 vP31 = λ1P01                                                                                                                          (6.6.8) 

  

µ1P40 = λ1P00                                                                                                                         (6.6.9)  

 

vP41 = λ1P11                                                                                                                           (6.6.10)

        

The set of equations can be solved for 𝑃𝑖𝑗 and state availability is given by 

 

𝐴∞ = � 𝑃𝑖𝑗
(𝑖𝑗)∈𝐸1

. 
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CHAPTER 7 

  
 
 
 
 

Two Unit Standby Systems with Imperfect 
Switch and Preparation Time 
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   7.1 INTRODUCTION 

 
Two unit standby redundant systems have been studied extensively, as can be seen 

from the following published bibliographies, Osaki and Nakagawa (1976), Lie et al 

(1977), Kumar and Agarwal (1980), Sarma (1982). 

If the system is automatically controlled then the system must include a switching 

device that will detect when the online unit has failed and will switch the standby 

unit, if operable, online. The repair facility will then, when available repair the 

failed unit. Gnedenko (1969) in an expository text discussed several reasons why the 

switching device might also fail. Mathematical modelling of such two-unit standby 

systems with an imperfect switch has been done by several researchers, in some 

models the switching  device and the units are repaired by the same repair facility 

and in others each has its own repair facility ( Sarma (1982), Pan (1998), Jain 

(2016),  Jain and Rani (2013), Wang et al (2012), Osaki (1972) ). 

Even if the switch does not fail the switch over time might not be negligible such 

models with non-instantaneous switch over time have been investigated by Khalil 

(1977), Sarma (1982), Botha (2000). 

Sarma (1982), Botha (2000), Yadavalli et al, (2005) considered the situation 

whereby the repair facility might not always be available. In their models, after each 

repair, either of a switching device or of a unit, the repair facility will be unavailable 

for a period of time which is called preparation time. 
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Following kendall’s notations in queuing theory A|B|C where 

A: Online life time distribution 

B: Life time distribution of the standby unit 

C: Repair time distribution we apply them to reliability models 

M: Exponential distribution 

G: General / arbitrary distribution 

 
 
7.2 MODEL (G|M|M SYSTEM WITH IMPERFECT 
        SWITCH AND PREPARATION TIME) 
 

 
7.2.1 SYSTEM DISCRIPTIONS AND NOTATION; 

 

1. The system consists of 2 identical units; either unit perform the system function 

satisfactorily. When one unit is operating online and the other unit is kept 

standby. 

2. At 𝑡 = 0 the new unit is just put online and another new unit is kept in standby. 

The repair facility is just available and switching device is operable. 

3. The unit and the switching device share the repair facility and they are new after 

each repair. 

4. Switchover is instantaneous. 

5. After each time point, the switch is repaired and the repair facility is not 

available for random time which is denoted as preparation time. 

6. If the switch device and a unit are both in the failed state then the switching 

device will be given head-of-line priority ( Jaiswal (1968)) for repair over the 

unit. 
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7. The life of a unit while operating on line is an arbitrarily distributed r.v. with 

p.d.f.  f(.). 

8. The life time of a unit while in standby the repair time of a unit, the life time and 

the repair time of a switching device for a repair facility is exponentially 

distributed r.vs with parameters 𝜆𝑏 , µ, 𝜆𝑠, µ𝑠 𝑎𝑛𝑑 𝑑 respectively. 

 
 
7.2.3 SUBSYSTEM 
 
In order to obtain subsystem measure for the main system, which consists of two units, 

the switching device and the repair facility the following subsystem will be considered. 

When one unit is operating online continuously, the subsystem will consist of off line 

unit, the switching device and the repair facility. The state of the subsystem is denoted 

by the stochastic process {𝑍 (𝑡);  𝑡 > 0}. There are different exhaustive states that 𝑍(𝑡) 

can take, depending on the state of the offline unit, the switching device and the repair 

facility as shown in the table 7.2.1. The following auxiliary function is defined to 

facilitate the study of the behaviour of the process {𝑍 (𝑡);  𝑡 > 0}. 
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Table 7.2.1 

States of Subsystem 

 

Where o : operable; r : under repair; q.r : queering for repair; a : available; na : not 

available.  

Table 7.2.2 

J.o : Just online. 

State Off line Unit State of Switching Devices Repair facility 

0 o o A 

1 r o A 

2 q.r o Na 

3 q.r q.r Na 

4 q.r r A 

5 r q.r A 

6 o o Na 

7 o r A 

8 o q.r Na 

Event One Unit State of Other Unit Switching Device Regenerative Results 

𝐸0 J.o o o A 

𝐸1 J.o r o A 

𝐸2 J.o q.r o Na 
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𝑃𝑖𝑗(𝑡) = 𝑃[𝑍(𝑡) = 𝑗 | 𝑍(0) = 𝑖]                                                                                 (7.2.1) 

𝑃𝑖𝑗(0) = 𝛿𝑖𝑗 = �1, 𝑖𝑓 𝑖 = 𝑗
0, 𝑖𝑓 𝑖 ≠ 𝑗�                                                                                 (7.2.2) 

 

The difference - differential equations are obtained by using the state transition diagram 

Figure 7.2.1 and the Chapman-Kolmogorov equations 

𝑃𝑖𝑗(𝑡 + ∆) = � 𝑃𝑖𝑘(𝑡)𝑃𝑘𝑗(∆)  
𝑘𝜖𝑍(𝑡)

                                                                              (7.2.3) 

𝑃𝑖0′ (𝑡) = −(𝜆𝑠 + 𝜆𝑏)𝑃𝑖0(𝑡) + 𝑑𝑃𝑖0(𝑡) + 𝜇𝑃𝑖1(𝑡)                                                   (7.2.4) 

𝑃𝑖1′ (𝑡) = −(𝜇 + 𝜆𝑠)𝑃𝑖1(𝑡) + 𝜆𝑠𝑃𝑖0(𝑡) + 𝑑𝑃𝑖2(𝑡)                                                   (7.2.5) 

𝑃𝑖2′ (𝑡) = −(𝑑 + 𝜆𝑠)𝑃𝑖2(𝑡) + 𝜇𝑠𝑃𝑖4(𝑡) + 𝜆𝑏𝑃𝑖6(𝑡)                                                 (7.2.6) 

𝑃𝑖3′ (𝑡) = −𝑑𝑃𝑖3(𝑡) + 𝜆𝑠𝑃𝑖2(𝑡) + 𝜆𝑏𝑃𝑖8(𝑡)                                                               (7.2.7) 

𝑃𝑖4′ (𝑡) = −𝜇𝑠𝑃𝑖4(𝑡) + 𝜆𝑏𝑃𝑖7(𝑡) + 𝑑𝑃𝑖3(𝑡)                                                               (7.2.8) 

𝑃𝑖5′ (𝑡) = −𝜇𝑃𝑖5(𝑡) + 𝜆𝑠𝑃𝑖1(𝑡)                                                                                    (7.2.9) 

𝑃𝑖6′ (𝑡) = −(𝜆𝑠 + 𝑑 + 𝜆𝑏)𝑃𝑖6(𝑡) + 𝜇𝑠𝑃𝑖7(𝑡)                                                               (7.2.10) 

𝑃𝑖7′ (𝑡) = −(𝜆𝑏 + 𝜇𝑠)𝑃𝑖7(𝑡) + 𝜆𝑠𝑃𝑖0(𝑡) + 𝜇𝑃𝑖5(𝑡) + 𝑑𝑃𝑖8(𝑡)                                 (7.2.11) 

𝑃𝑖8′ (𝑡) = −(𝜆𝑏 + 𝑑)𝑃𝑖8(𝑡) + 𝜆𝑠𝑃𝑖6(𝑡)                                                                          (7.2.12) 

𝑖 = 0,1,2, … 
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Figure 7.2.1 

                                                                                                                          

 

 

 

             

                                               𝜇 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 

3 

2 4 

8 

6 

7 

5 

1 

𝑑 

𝑑 

𝑑 

𝜆𝑠 

𝜆𝑠 

𝜆𝑏 

𝜆𝑠 

𝜆𝑏 

𝜆𝑏 

𝑑 

𝜆𝑠 

𝜆𝑏 

𝜇 

𝜇𝑠 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



135 
 

7.2.4 AVAILABILITY ANALYSIS 

 
The regenerative events given in table 7.2.2 are required for the availability analysis, 

and Figure 7.2.2 gives various mutually exclusive and exhaustive possibilities used to 

derive the availability equations 𝐴𝑖(𝑡), 𝑖 = 0,1,2, … 

 

𝐴𝑖(𝑡) = 𝐹�(𝑡) + [𝑓(𝑡)𝑃𝑖0(𝑡)]©𝐴1(𝑡) + [𝑓(𝑡)𝑃𝑖6(𝑡)]©𝐴2(𝑡)

+ �[𝑓(𝑡)𝑃𝑖𝑗(𝑡)]©𝛱𝑗0(𝑡)©𝐴1(𝑡)
8

𝑗=1
𝑗≠6

+ ��𝑓(𝑡)𝑃𝑖𝑗(𝑡)�©𝛱𝑗6(𝑡)©𝐴2(𝑡)                                                     (7.2.13)
8

𝑗=1
𝑗≠6

 

Where 

Π10(𝑡) = 𝜇𝑒−(𝜇+𝜆𝑠)𝑡 + �𝜇𝑒−𝜇𝑡�1 − 𝑒−𝜆𝑠𝑡��©Π70(t)                                                 (7.2.14) 

Π16(𝑡) = �𝜇𝑒−𝜇𝑡�1 − 𝑒−𝜆𝑠𝑡��©Π46(t)                                                                         (7.2.15) 

 Π20(𝑡) = 𝑑𝑒−(𝑑+𝜆𝑠)𝑡©�𝜇𝑒−𝜇𝑡�1 − 𝑒−𝜆𝑠𝑡��©Π70(t) + 𝑑𝑒−(𝑑+𝜆𝑠)𝑡©𝜇𝑒−(𝜇+𝜆𝑠)𝑡             

             +�𝑑𝑒−𝑑𝑡�1 − 𝑒−𝜆𝑠𝑡��©Π40(t)                                                                           (7.2.16) 

Π26(𝑡) = 𝑑𝑒−(𝑑+𝜆𝑠)𝑡©𝜇𝑒−(𝜇+𝜆𝑠)𝑡©Π76(t) 

             +�𝑑𝑒−𝑑𝑡�1 − 𝑒−𝜆𝑠𝑡��©Π46(t)                                                                           (7,2,17) 
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Figure 7.2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Π30(𝑡) = 𝑑𝑒−𝑑𝑡©Π40(t)                                                                               (7.2.18) 

Π36(𝑡) = 𝑑𝑒−𝑑𝑡©Π46(t)                                                                                (7.2.19) 

Π40(𝑡) = 𝜇𝑠𝑒−𝜇𝑠𝑡©Π20(t)                                                                              (7.2.20) 

Π46(𝑡) = 𝜇𝑠𝑒−𝜇𝑠𝑡©Π26(t)                                                                             (7.2.21) 

Π50(𝑡) = 𝜇𝑒−𝜇𝑡©Π70(t)                                                                                 (7.2.22) 

Π56(𝑡) = 𝜇𝑒−𝜇𝑡©Π76(t)                                                                                  (7.2.23) 

 

𝐸𝑖 occurs the 
online unit 

Subsystems enters 
state 6 before t, 𝐸2 

occurs 

𝑖 = 1,2,3,4,5,6,7,8 
𝑖, where  

 

Fails at 𝑢,𝑢 < 𝑡. At u, 
the subsystem is in 

state 

Does not fail before 𝑡 

Subsystems enters 
state 0 before t, 𝐸1 

occurs 

𝐸2 occurs, 6 

𝐸1 occurs, 0 
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Π70(𝑡) = 𝜇𝑠𝑒−𝜇𝑠𝑡�1− 𝑒−𝜆𝑏𝑡�©Π20(t)                                                          (7.2.24) 

Π76(𝑡) = 𝜇𝑠𝑒−𝜇𝑠𝑡�1 − 𝑒−𝜆𝑏𝑡�©Π26(t) + 𝜇𝑠𝑒−(𝜇𝑠+𝜆𝑏)𝑡                                 (7.2.25) 

Π80(𝑡) = 𝑑𝑒−(𝑑+𝜆𝑏)𝑡©Π70(t) + 𝑑𝑒−𝑑𝑡�1 − 𝑒−𝜆𝑏𝑡�©Π40(t)                      (7.2.26) 

Π86(𝑡) = 𝑑𝑒−(𝑑+𝜆𝑏)𝑡©Π76(t) + 𝑑𝑒−𝑑𝑡�1 − 𝑒−𝜆𝑏𝑡�©Π46(t)                       (7.2.27) 

 

By the Laplace transform technique the equation (7.2.13) can be solved. The steady 

state availability 𝐴∞ can be obtained from the relation 

𝐴∞ = lim
𝑡→∞

𝐴𝑖(𝑡) = lim
𝑠→0

𝑜𝐴𝑖∗(𝑜) =
𝑁
𝐷

 

Where 

N = {[1 − 𝑈10∗ (0) + 𝑈00∗ (0)][1 − 𝑈26∗ (0) + 𝑈16∗ (0)] − [𝑈00∗ (0) − 𝑈20∗ (0)] [𝑈06∗ (0)

− 𝑈𝑖6∗ (0)]}� 𝑡𝑓(𝑡)𝑑𝑡
∞

0

 

𝐷 = −𝑈26∗
′ (0)[1 − 𝑈10∗ (0)]− 𝑈10∗

′ (0)[1 − 𝑈26∗ (0)]− 𝑈16∗ (0)𝑈20∗
′ (0) − 𝑈20∗ (0)𝑈16∗

′ (0) 

𝑈𝑖𝑗∗
′(0) =

𝑑
𝑑𝑜
𝑈𝑖𝑗∗ (𝑜)�

s=0
 

𝑈𝑖𝑗∗ (𝑜) = 𝑉𝑖𝑗∗(𝑜) + �𝑉𝑖𝑘∗ (𝑜)Π𝑘𝑗∗ (𝑜)                                    𝑖 = 0,1,2 
                                  𝑗 = 0,6.

8

𝑘=1
𝑘≠6

 

𝑉𝑖𝑗(𝑡) = 𝑓(𝑡)𝑃𝑖𝑗(𝑡), 𝑖, 𝑗 = 0,1,2, … ,8. 
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7.2.5 RELIABILITY ANALYSIS 

 
The reliability equation can easily be found from the availability equations by noting 

that there must not be a system failure in (0,t], and omitting those terms where the 

system is in down state 

𝑅𝑖(𝑡) = 𝐹�(𝑡) + [𝑓(𝑡)𝑃𝑖0(𝑡)]©𝑅1(𝑡) + [𝑓(𝑡)𝑃𝑖6(𝑡)]©𝑅2(𝑡)                                   (7.2.28) 

By taking Laplace transform for the equations (7.2.28) we can solve for 𝑅0∗(𝑜). 

The mean time to system failure can be obtained by the relation on 

𝑀𝑇𝑆𝐹 = 𝑅0∗(0) =
𝑁𝑅
𝐷𝑅

. 

𝑁𝑅 = [{1 − 𝑉𝑖0∗ (0) + 𝑉00∗ (0)}{1 − 𝑉26∗ (0) + 𝑉16∗ (0)}

− {𝑉00∗ (0) − 𝑉20∗ (0)}{𝑉06∗ (0) − 𝑉16∗ (0)}]� 𝑡𝑓(𝑡)𝑑𝑡
∞

0

 

𝐷𝑅 = [1 − 𝑉10∗ (0)][1 − 𝑉26∗ (0)] − 𝑉16∗ (0)𝑉20∗ (0). 

 

7.2.6 PARTICULAR CASE 
 

When we take 𝜆𝑠 = 0, i.e., the switching device is perfect. This means that 𝜇𝑠 = 𝑑 = 0 

(a perfect switching device does not need repair and the preparation time only occur 

after the switch is repaired). 
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𝐴∞ =
∫ 𝑡𝑓(𝑡)𝑑𝑡∞
0

∫ 𝑡𝑓(𝑡)𝑑𝑡∞
0 + 𝜆𝑏 + 𝜇𝑓∗(𝜇 + 𝜆𝑏)

𝜇(𝜇 + 𝜆𝑏)

. 

𝑀𝑇𝑆𝐹 = (𝜇+𝜆𝑏)[1−𝑓∗(𝜇+𝜆𝑏)]
𝜆𝑏+𝜇𝑓∗(𝜇+𝜆𝑏) ∫ 𝑡𝑓(𝑡)𝑑𝑡∞

0 , 

which is in agreement with Subramanian (1975). 

 

7.3 MODEL 2 (DUAL MODEL OF 1) 
M|M|G system with imperfect switch and preparation time. 

7.3.1 SYSTEM DESCRIPTION AND NOTATION  
Assumptions 1-6 of section 7.2.1 will also hold for model 2. Assumptions 7 and 8 will 

be as follows: 

7: The lifetime of the online unit, offline unit and the switching device are exponentially 

distributed r.vs. 

𝟖: The repair time of a unit of the switching device and preparation time of the repair 

facility  after repairing the switch are arbitrarily distributed r.vs with probability density 

function 𝑔 (.), 𝑔𝑠(.) and 𝑘(.) respectively. 
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7.3.2 AVAILABILITY ANALYSIS 
 

In order to find the availability analysis of the system, the regenerative events in Table 

7.3.1 are required 

 Table 7.3.1 

 

O : operable; q.r : queuing for repair; a : available; J.R : repair just started; J.na : just 

not available. 

 

 

Event Outline Unit State of Offline Unit Switching Device Repair facility 

E0 o o O a 

E1 o o O J.na 

E2 o o J.R a 

E3 o J.R O a 

E4 o q.r O J.na 

E5 o q.r J.R a 

E6 q.r J.R O a 

E7 q.r q.r O J.na 

E8 q.r o J.R a 

E9 q.r q.r J.R a 
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To derive the availability equations 𝐴0(𝑡), the following exhaustive and mutually 

exclusive events in (0, t] are considered. 

1. Neither unit nor switching device fails before 𝑡. 

2. The online unit fails first. 

3. The offline unit fails first. 

4. The switching device fails first. 

The set of exhaustive and mutually exclusive events in (0,t] used to find Ai(t) are 

given below (on next page).  Figures 7.3.1 and 7.3.2 give various possibilities to be 

considered while deriving the equations for 𝐴2(𝑡) 𝑎𝑛𝑑 𝐴3(𝑡).  
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Figure 7.3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Completed at u, 
𝑢 < 𝑡, online unit 

𝐸𝑖   occurs the 
preparation time 

Is not over at 𝑡, 
online unit 

Does not 
fails, up to 𝑢  

Fails 
before 𝑢 and 
at this epoch 

of failure, 
the offline 

unit 

Has failed and 
switching device 

has failed. 𝐸9  
occurs. 

Does not 
fails, up to 𝑡 

Fails at 𝑢,𝑢 < 𝑡, At 
𝑢 offline unit and 
switching device 

are operable. Unit 
switch over occurs. 

Online unit 

Does not 
fail up to 𝑡 

Is operable and 
switching device 

Has failed and 
switching device 

Is operable 
𝐸0  occurs 

Has failed 
𝐸2  occurs Is 

operable 
𝐸3  occurs 

Has failed 
𝐸5 occurs 

Is operable and 
switching device 
has failed. At 𝑢 

offline unit 

Is operable and 
switching device is 
operable. Unit switch 
over occurs. At 𝑢 
online unit and 
switching device 

Has failed, 
𝐸9 occurs. 

Are both 
operable, 𝐸3 
occurs 

Has failed 
and is 
operable, 𝐸6 
occurs 

Is operable 
and has 
failed, 𝐸5 
occurs 

Has failed 
and at 𝑢, 

switching 
device is, 

Is 
operable 
𝐸8   occurs 

Operable 
𝐸6  occurs 

Has failed, 
𝐸9 occurs 

Not operable 
𝐸9  occurs 
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Figure 7.3.2 

 

 

 

 

 

            A0(t) = e−(λ+λb+λs)t + λe−(λ+λb+λs)t©A2(t)                                              (7.3.1) 

A1(t) = k�(t)[e−λt + λe−(λ+λb+λs)t©e−λt] + �k(t)e−(λ+λb+λs)t�©A0(t)

+ �k(t)e−(λ+λb)t�1− e−λst��©A2(t)

+ �k(t)e−(λ+λs)t�1− e−λbt��©A3(t)

+ �k(t)e−λt�1− e−λst��1− e−λbt��©A5(t)

+ �k(t)�λe−(λ+λs+λb)t©e−(λ+λs)t��©A9(t)

+ �k(t){λe−(λ+λs+λb)t©e−λst�1 − e−λt��©A6(t)

+ �k(t){λe−(λ+λs+λb)t©e−λt�1 − e−λst��©A5(t)

+ �k(t) �λe−(λ+λs+λb)t©�1− e−λst��1− e−λt���©A9(t)

+ �k(t) �λe−(λ+λb)t�1 − e−λst�©�1 − e−λbt���©A9(t)

+ �k(t)�λe−(λ+λb)t�1 − e−λst�©e−λbt��©A8(t)

+ �k(t){λe−(λ+λs)t�1 − e−λbt�©�1 − e−λst�}�©A9(t)

+ �k(t){λe−(λ+λs)t�1 − e−λbt�©e−λst}�©A6(t)

+ �k(t){λe−λt©�1 − e−λst��1 − e−λbt�}©1�©A9(t)  

 (7.3.2) 

E2 𝑜𝑜𝑜𝑜𝑜𝑜.                              
Switching device repair 

Competed at u,  u < t , 
then,  

Not completed at t , and the 
online unit does not fail up to t 

Online unit and 
standby unit do 
not fail up to u.  
𝐸1 𝑜𝑜𝑜𝑜𝑜𝑜.    

Online unit operates 
but standby unit fails 
before u.  𝐸4 𝑜𝑜𝑜𝑜𝑜𝑜. 

Standby unit operates 
but online unit fails 
before u.  𝐸4 𝑜𝑜𝑜𝑜𝑜𝑜. 

 

Both online and 
standby unit fail before 
u. 𝐸7 𝑜𝑜𝑜𝑜𝑜𝑜. 
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           A2(t) = Gs���(t)e−λt + �gs(t)e−(λ+λb)t�©A1(t) + �gs(t)e−λt�1− e−λbt��©A4(t)

+ �gs(t)e−λbt�1 − e−λt��©A4(t)

+ �gs(t)�1 − e−λbt��1 − e−λt��©A7(t).                                 (7.3.3) 

 

            A3(t) = Gs���(t)e−λt + �g(t)�1 − e−λt��1− e−λst��©A8(t)

+ �g(t)e−(λ+λs)t�©A0(t) + �g(t)e−λt�1− e−λst��©A2(t)

+ �g(t)e−λst�1 − e−λt��©A3(t).                                                   (7.3.4) 

 

            A4(t) = k�(t)e−λt + �k(t)e−λt�1 − e−λst��©A5(t)

+ �k(t)e−λst�1 − e−λt��©A6(t) + �k(t)e−(λ+λs)t�©A3(t)

+ �k(t)e−λst�1 − e−λt��1 − e−λst��©A9(t).                                (7.3.5) 

 

           A5(t) = Gs���(t)e−λt + �gs(t)e−λt�©A4(t)

+ �gs(t)�1 − e−λt��©A7(t).                                                             (7.3.6) 

 

           A6(t) = �g(t)e−λst�©A9(t) + �g(t)�1 − e−λst��©A8(t).                           (7.3.7) 

 

            A7(t) = �k(t)e−λst�©A6(t) + �k(t)�1 − e−λst��©A9(t).                          (7.3.8) 
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             A8(t) = �gs(t)e−λbt�©A4(t) + �gs(t){1 − e−λbt}�©A7(t).                      (7.3.9) 

              A9(t) = gs(t)©A7(t).                                                                                          (7.3.10) 

 

7.3.3 RELIABILTY ANALYSIS 

 
The reliability equations can easily be found from the availability equations by noting 

that there must not be a system down in (0, 𝑡], and omitting those terms which imply 

that a system failure has occurred. 

          𝑅0(𝑡) = 𝑒−(𝜆+𝜆𝑠+𝜆𝑏)𝑡 + 𝜆𝑒−(𝜆+𝜆𝑠+𝜆𝑏)𝑡©𝑅2(𝑡).                                              (7.3.11) 

            𝑅1(𝑡) = 𝑘�(𝑡)�𝑒−𝜆𝑡 + 𝜆𝑒−(𝜆+𝜆𝑠+𝜆𝑏)𝑡©𝑒−𝜆𝑡� + �𝑘(𝑡)𝜆𝑒−(𝜆+𝜆𝑠+𝜆𝑏)𝑡©𝑅0(𝑡)�

+ �𝑘(𝑡)𝜆𝑒−(𝜆+𝜆𝑏)𝑡{1 − 𝑒−𝜆𝑠𝑡}�©𝑅2(𝑡)

+ �𝑘(𝑡)𝜆𝑒−(𝜆+𝜆𝑏)𝑡{1 − 𝑒−𝜆𝑏𝑡}�©𝑅3(𝑡)

+ �𝑘(𝑡)𝑒−𝜆𝑡{1 − 𝑒−𝜆𝑏𝑡}{1 − 𝑒−𝜆𝑠𝑡}�©𝑅5(𝑡)

+ �𝑘(𝑡)�𝑒−(𝜆+𝜆𝑠+𝜆𝑏)𝑡©𝑒−(𝜆+𝜆𝑠)𝑡��©𝑅9(𝑡)

+ �𝑘(𝑡) �𝜆𝑒−(𝜆+𝜆𝑠+𝜆𝑏)𝑡©�𝑒−𝜆𝑡�1 − 𝑒−𝜆𝑠𝑡����©𝑅5(𝑡).                (7.3.12) 

                                                                                                                                                                 

          𝑅2(𝑡) = 𝐺𝑠���(𝑡)𝑒−𝜆𝑡 + �𝑔𝑠(𝑡)𝑒−(𝜆+𝜆𝑏)𝑡�©𝑅1(𝑡)

+ �𝑔𝑠(𝑡)𝑒−𝜆𝑡�1 − 𝑒−𝜆𝑏𝑡��©𝑅4(𝑡).                                                    (7.3.13) 

 

          𝑅3(𝑡) = 𝐺𝑠���(𝑡)𝑒−𝜆𝑡 + �𝑔(𝑡)𝑒−(𝜆+𝜆𝑠)𝑡�©𝑅0(𝑡) + �𝑔(𝑡)𝑒−𝜆𝑡�1 − 𝑒−𝜆𝑠𝑡��©𝑅2(𝑡)

+ �𝑔(𝑡)𝑒−𝜆𝑠𝑡�1 − 𝑒−𝜆𝑡��©𝑅3(𝑡).                                                      (7.3.14) 
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𝑅4(𝑡) = 𝑘�(𝑡)𝑒−𝜆𝑡�𝑘(𝑡)𝑒−𝜆𝑡�1 − 𝑒−𝜆𝑠𝑡��©𝑅5(𝑡) + �𝑘(𝑡)𝑒−(𝜆+𝜆𝑠)𝑡�©𝑅3(𝑡).     (7.3.15) 

 

𝑅5(𝑡) = 𝐺𝑠���(𝑡)𝑒−𝜆𝑡 + �𝑔𝑠(𝑡)𝑒−𝜆𝑡�©𝑅4(𝑡).                                                                   (7.3.16) 

 

These equations can be solved by using Laplace transforms and the MTSF can be 

obtained by the relation,  

𝑀𝑇𝑆𝐹 = 𝑅0∗(0). 
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