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Abstract

to arbitrary motion. In this context arbitrary motion was defined as the unsteady translation and
rotation of an object.

Research objectives were developed from the gaps in knowledge as defined during the literature sur-
vey. The objectives were divided into three main activities; mathematical formulations for non-inertial
bulk flow and boundary layer equations, implementation of said formulations in a numerical solver and
simulations for various applications in arbitrary motion.

Mathematical formulations were developed for the bulk flow and boundary layer equations in arbi-
trary motion. It was shown that the conservation of momentum and energy equations remains invariant
in the non-inertial forms. The conservations of momentum equation can at most have six fictitious terms
for unsteady arbitrary motion. The origin of the terms were found to be from transformation of the ma-
terial derivative to the non-inertial frame. All fictitious terms were found to be present in the boundary
layer equations, none could be eliminated during an order of magnitude analysis.

The vector form of the non-inertial equations were implemented in a novel OpenFOAM solver. The
non-inertial solver requires prescribed motion input and operate on a stationary mesh. Validation of the
solver was done using analytical solutions of a steady, laminar flat plate and rotating disk respectively.

Numerical simulation were done for laminar flow on a translating plate, rotating disk and rotating
cone in axial flow. A test matrix was executed to investigated various cases of acceleration and decel-
eration over a range of 70 g to 700 000g. The boundary layer profiles, boundary layer parameters and
skin friction coefficients were reported.

Three types of boundary layer responses to arbitrary motion were defined. Response Type 1 is vis-
cous dominant and mimics the steady state velocity profile. In Response Type II certain regions of the
boundary layer are dominated by viscosity and others by momentum. Response Type 11l is dominated
by momentum. In acceleration the near-wall velocity gradient increases with increasing acceleration. In
deceleration separation occurs at a result of momentum changes in the flow.

The mechanism that causes these responses have been identified using the developed boundary layer
equations. In acceleration the relative frame fictitious terms become a momentum source which results
in an increase in velocity gradient at the wall. In deceleration the relative frame fictitious terms become
a momentum sink that induced an adverse pressure gradient and subsequently laminar separation.

This thesis was aimed developing a fundamental understanding of the boundary layer response

Keywords
Non-Inertial Reference Frames, Fictitious Forces, Boundary Layer Equations, OpenFOAM, Laminar

Flat Plate, Laminar Rotating Disk, Rotating Cone in Axial Flow.
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Abstrak

reaksie op arbitrére beweging. In hierdie konteks word arbitrére beweging gedefinieer as die
ongestadigde translasie en rotasie van 'n voorwerp.

Navorsingsdoelwitte is ontwikkel uit die gapings soos omskryf in die literatuuroorsig. Die doel-
witte is verdeel in drie hoof aktiwiteite; wiskundige formulerings vir ongestadigde vloei en grenslaag
vergelykings, implementering van hierdie formulerings in 'n numeriese kode en simulasies vir verskeie
gevalle van arbitrére beweging.

Wiskundige formulerings is ontwikkel vir die vloei en grenslaag vergelykings in arbitrére beweg-
ing. Daar is bewys dat die behoud van massa en energie vergelykings onveranderd in die nie-inertiéle
vorms bly. Die behoud van momentum vergelyking kan hoogstens ses fiktiewe terme vir ongestadigde,
arbitrére beweging hé. Die oorsprong van die terme is vanuit die transformasie van die ongestadigde
en adveksie terme (aan die linker kant van die momentum vergelyking) na die nie-inerti€le raam. Alle
fiktiewe terme is teenwoordig in die grenslaag vergelykings.

Die vektor vorm van die nie-inerti€le vergelykings is in 'n nuwe OpenFOAM oplosser geimple-
menteer. Die nie-inerti€le oplosser vereis voorgeskrewe beweging insette en werk op 'n stilstaande
rooster. Die oplosser is getoets teen analitiese oplossings van 'n gestadigde, laminére plaat plaat en
'n roterende skyf, onderskeidelik.

Numeriese simulasies is gedoen vir laminére vloei op 'n translerende plaat, roterende skyfen roterende
konus in aksiale vloei. 'n Toets matriks is gebruik om ondersoek in te stel na gevalle van versnelling en
vertraging oor 'n verskeidenheid van 70 g tot 700 000 g. Die grenslaag proficle, grenslaag parameters
en oppervlak wrywingskoéffisiénte is aangemeld nie.

Drie tipes grenslaag reaksies op arbitrére beweging is gedefinieer. Reaksie Tipe I is viskeus dom-
inant en boots die bestendige snelheidsprofiel na. In reaksie Tipe Il sekere dele van die grenslaag is
oorheers deur viskositeit en ander deur momentum. Reaksie Tipe III word in totaliteit oorheers deur
momentum. In versnelling die snelheid helling teen die objek neem toe met toenemende versnelling. In
vertraging is 'n negatiewe snelheidsprofiel waargeneem as gevolg van momentum veranderinge in die
vloei.

Die meganisme wat hierdie reaksies veroorsaak is geidentifiseer deur die grenslaag vergelykings. In
versnelling word die fiktiewe terme 'n bron van momentum. Dit lei tot 'n toename in snelheid helling op
die objek. In vertraging word die fiktiewe terme 'n momentum gebruiker wat 'n negatiewe drukgradiént
veroorsaak en gevolglik laminére vloei wegbreking veroorsaak.

Hierdie tesis is gerig op die ontwikkeling van 'n fundamentele begrip aangaande die grenslaag
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Résumé

couche limite au mouvement arbitraire. Dans ce contexte, le mouvement arbitraire a été défini
comme la traduction instationnaire d'un objet.

Les objectifs ont été divisés en trois parties principales; formulations mathématiques pour I'écoulement
dans un repére non-inertiel, mise en ceuvre desdites formulations dans un solveur numérique et diverses
applications en mouvement arbitraire.

Les formulations mathématiques ont été développées pour le flux de masse et les équations de la
couche limite en mouvement arbitraire. Il a é&t€ montré que la conservation de masse et d'énergie restent
invariantes sous les formes non inertielles. La conservation de I'équation met en exergue six termes
inertiels en mouvement arbitraire instable.

La forme vectorielle des équations non-inertielles ont ét€ mis en ceuvre dans le code OpenFOAM.
Ce code nécessite des conditions initiales de quantité de mouvement prescrites et un maillage fixe. La
validation du code a été effectuée a l'aide de solutions analytiques pour une plaque plane laminaire
stable et un disque en rotation.

Les simulations numériques ont été réalisées pour un écoulement laminaire sur une plaque en trans-
lation, un disque en rotation et un cUne en rotation-translation. Les effets d'un écoulement en accéléra-
tion et décélération ont été étudiés entre 70 g et 700000 g. Les paramétres de la couche limite et des
coefficients de frottement de paroi ont été déterminés.

Trois types de réponse pour la couche limite dans un mouvement arbitraire ont été définis.

La réponse de type 1 : la viscosité est dominante et le profil de vitesse est similaire a celui de I'état
d'équilibre. La réponse de type 2 : Certaines régions de la couche limite sont dominées par les effets
de viscosité et d'autres par la quantité de mouvement. La réponse type 3 est dominée par la quantité de
mouvement. Avec l'augmentation de 1'accélération de I'écoulement, le gradient de vitesse proche de la
paroi augmente. Dans le cas de la décélération, une séparation de la couche limite se produit a la suite
des changements des quantités de mouvement dans I'écoulement.

Le mécanisme qui provoque ces phénomeénes a été identifié en analysant la couche limite. Les termes
de l'accélération deviennent une source d'impulsion qui se traduit par une augmentation du gradient
de vitesse sur la paroi. Les termes dus a la décélération deviennent un puit d'énergie de quantité de
mouvement induisant un gradient de pression négative et par la suite une séparation.

Cette these avait pour but de développer une compréhension fondamentale de la réponse de la
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AOCTpaKTHbIE

TOT Te3UC ObUT HalpaBlieH pa3padoTKa PyHAaMEHTAIFHOTO NOHUMAaHHS PEAKIHH IIOTPaHUYHOTO
CJIOSI Ha TIPOM3BOJIBHBIE JIBHIKEHUS. B 3TOM KOHTEKCTE MPOU3BOIFHOE IBM)KEHUE OBLTO OIpere-
JICHO KaK HEyCTaHOBHBILEMCS CIIBUTA U BpAIlEHUS OOBEKTa.

Lemm uccnenoBanmst ObUTH pa3pabOTaHBI HA OCHOBE MPOOETOB B 3HAHUSX, KaK 3TO OMPEACICHO B
XO0Jle MiccIIeToBaHus TuTepaTyphl. Llenn Obln pa3ieseHbl Ha TpU OCHOBHBIX HAIlPaBICHHUN JesTeIhbHO-
CTH; MaTeMaTH4eckue (popMyIHpOBKH A HEMHEPIIMAIHHONH 00BEMHOTO IMOTOKA M ypaBHEHHUH Morpa-
HUYHOTO CIIOSI, peajn3anus YKa3aHHBIX KOMITO3UIMA B YUCIEHHOM pelIaTelss 1 MOACITHUPOBAHUS JIIS
pa3IMYHBIX IPUMEHEHUH B IPOU3BOIBHOM JBI)KEHHUH.

Maremarndeckrie penaparsl ObutH pa3paboTaHbI IS TOTOKA CHITYYHX U YPaBHEHUI MOTPaHUIHO-
IO CJI0S B IPOM3BOJIEHOM JBIKEHUH. bbITI0 MOKa3aHo, 4TO COXpaHEeHHE UMITYJIbCA U SHEPTUH YPaBHEHU I
OCTaeTcsl HEM3MEHHOM B HEMHEPIHATbHBIX (popMax. B KOHCEpBHPOBAaHMS ypaBHEHHS UMITYIBCA MOXK-
HO camMoe OoJibliee MeCTb PUKTUBHBIX YCIOBHUS AT IPOU3BOIBHOTO HEYCTAHOBUBILETOCS JBIKCHUSI.
ObUTH HalICHBI TIPOMCXOXKACHNE TEPMUHOB, YTOOBI OBITH OT MPEBpAIIEHHUS TPOM3BOJHOTO MaTepuaia
K HEMHepIaabHOU. Bece oHM ObUTH TIPpU3HAHBI GPUKTUBHBIMH TEPMUHBI IPUCYTCTBOBATh B YPAaBHEHUSX
MTOTPAHUYHOTO CIIOSI, HU O/THA HE MOXET ObITh yCTpaHEeHa B TEUEHHUE MOPSAIKA aHAIN3a BETHIUHBI.

BekTop popma HemHepIHATBLHBIX YpaBHEHUH ObUTH pean3oBaHbl B HOBo OpenFOAM pemrarens.
HeuneprmaneHyto pemarens TpeOyeT MPeANHCaHHOTO BXOJHOTO JBWXEHHS U JCWCTBYIOT Ha CTallU-
oHapHO# ceTkoil. [IpoBepka pemarens OBIJIO CAETAHO C MCIIONB30BAHUEM aHATUTHUYECKUX PeIleHHH
YCTOMYMBOM, JIJAMHHAPHOTO IUIOCKOM IJIACTUHBI ¥ BPAIAIOLIETOCs IUCKA COOTBETCTBEHHO.

UmncieHHoe MOAETHUPOBAHNE TPOBOIIINCEH IS TAMHHAPHOTO NIOTOKA Ha TIEPEBOTYECKOH TTACTHHE,
BpallAIOIIMHCS JUCK U BpalllaloIIMiicsl KOHyC B OCEBOM IOTOKe. TecT MaTrpulla Obljla BBITOJIHEHA IS
HCCIEIOBAaHHBIX PA3JIMYHBIX CIIy4acB YCKOPEHHs M 3aMeasieHus B nuanaszone ot 70 r mo 700 000 r.
[Mpodunm norpaHUYHOTO 1051, OBLIM MPEACTABICHBI TAPAMETPhI TOTPAHUYHOTO CII0S U KO3 QUIIEHTHI
TPEHHUS KOXH.

Bbutn omnpenenieHsl TpH THIIA OTBETOB TIOIPAHIUYHOTO CIIOS MTPOU3BONIBHOTO ABKeHHd. OTBer Tum
I BsI3kas TOMUHHUPYIOIMMH U MUMHKY YCTAHOBUBIIHICS TPOQIIL CKOPOCTH. B THIle pearnpoBaHus
11 onpeneneHHbIe 001aCTH MOTPAHUYHOTO CJIOSI PEO0IIAIaloT BA3KOCTH U ApyTHe 1Mo uHepiyn. OTBeT
tuna Il npeobnanaror nmmysbca. [Ipu yCkopeHnH MPUCTEHHBIX IPaJHeHTa CKOPOCTH BO3PACTAET C yBe-
JTUYeHueM yckopeHus. [Ipu 3ameyieHun pa3aeneHne MPOUCXOIUT B pe3yiibTare U3MEHEHUsT UMITYIIbCa
B MTOTOKE.

MexaHn3M, KOTOPBIX BBI3BIBAET 3TH PEAKINH ObUTH HACHTHU(HUIIPOBAHBI C NCTIONB30BAaHIEM pa3pa-
00TaHHBIX ypaBHEHHI HorpaHu4Horo cios. [Ipu yckopenun OTHOCHTENBHBIN KapKacHbIE (PUKTUBHBIC
TEPMUHBI CTAHOBSITCSI HCTOYHUKOM HMITYJIECA, KOTOPBIA MPHUBOIUT K YBEIMUSHHUIO TPAJHEHTa CKOPO-
CTH y cTeHKU. B 3amennennn OTHOCHTENBHBIHN Kaipa QUKTUBHBIC YIEHBI CTAHOBSITCS CTOKOM UMITYJIbC,
KOTOPBIH MHIYNIMpPYeTCs HeOIaronpusTHBIN TpaIueHT AaBJICHN, a 3aTeM JJAMIHAPHBIN pa3/ieeHune.
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Chapter

Introduction

he aim of this research is to investigate the response of the boundary layer on the surface of an
aero-ballistic airframe subjected to arbitrary motion. In this context arbitrary motion is defined
as unsteady acceleration and deceleration respectively, in both translation and rotation. The re-

search question for this project is defined as:

? Research Question
How does the boundary layer on an airframe in arbitrary motion respond the unsteady flow con-

ditions?

1.1 Background

There are significant gaps in the body of knowledge with regards to studies in arbitrary motion. The
few studies that investigate these effects, rely mostly on steady motion and therefore do not activate
the non-inertial effects (Biedron and Thomas [1], Gardi [2], Limache [3] There are some cases that
consider pre-scribed motion and transient effects, however most fail to realise the importance of the
boundary layer. It makes use of inviscid formulations of the standard Navier-Stokes equations and slip
wall conditions (Inoue et al. [4], Roohani and Skews [5]).

The standard Navier-Stokes equation cannot capture the relative flow properties involved in ar-
bitrary motion. This form of the equations resolves the flow problem in an inertial reference frame
(Batchelor [6], Greenspan [7]). In rotational flow problems, the symmetry between the inertial frame
and the non-inertial frame is broken. The mathematical model in the inertial frame cannot account for
the observed behaviour. This can be accounted for by the inclusion of non-inertial effects that present

as fictitious forces on the right hand side of the non-inertial momentum equation (Meriam and Kraige
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[8], White [9]). Solving the system from the non-inertial perspective leads to enhanced simulation re-
sults that are capable of quantifying the acceleration terms.

In this work two observational reference frames are considered: an inertial and a non-inertial frame
of reference. The inertial frame is tied to the stationary state of motion of the observer (Eulerian per-
spective) where all the laws of physics take the simplest form. In the non-inertial frame (Lagrangian
perspective) the simplest form does not prevail; the observer is no longer stationary and fictitious forces
must be introduced to account for observer motion. This is illustrated through Newton's Second Law of

Motion (Meriam and Kraige [8]). In the case of an inertial frame the equation is:

2F; =ma; (1.1)

The subscript "i" indicates that the vectors are described in the inertial coordinate system. In the

case on a non-inertial frame the equation becomes:

2F, + z:Ffictitious =mar (1.2)

In this equation the subscript "r" indicates that the vectors are described from the non-inertial co-
ordinate system.
A rotating reference frame is a special case of a non-inertial reference frame. This frame rotates

relative to an inertial frame (Figure 1.1).

Figure 1.1: Rotating Reference Frame Depicting the Motion of the Moving Earth

Yr

Rotational
Frame
7/

Inertial Frame

An everyday example is the surface of the earth. The effect of the rotating reference frame can be

illustrated by utilizing a Foucault pendulum (Hart et al. [10], Somerville [11]). The rotation of the Earth

2
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causes the pendulum to change its plane of oscillation (fixed in space) with respect to its surroundings
(moving with the Earth). The explanation of the apparent change in orientation from an Earth-bound
(non-inertial) frame of reference requires the introduction of the fictitious Coriolis force (associated with
a rotational reference frame). In an inertial frame outside the Earth, no such fictitious force is necessary.
Therefore, fictitious forces do not arise from any physical interaction but rather from the acceleration
of the non-inertial frame itself.

The fictitious forces at play here - Coriolis, Euler and Centrifugal forces (Persson [12]) - are pro-
portional to the mass of the fluid element. The Coriolis force acts in a direction perpendicular to the
rotational axis and to the velocity of the body in the rotating frame. The centrifugal force acts outward
in the radial direction and is proportional to the distance of the body from the axis of the rotating frame.
Both these forces are proportional to the angular velocity of the mass in the rotating frame. The Euler
force appears when the rotational speed of the frame is not constant. It is therefore proportional to the
mass as well as the angular acceleration.

Apart from the fictitious forces that are observed in the non-inertial frame, there are a number of
body effects that influences the trajectory of airframes executing arbitrary motion. One such effect, that
is high applicable in the aerospace and defence environment, is the Magnus effect (Magnus [13]). This

occurs due to the rotation of the object around its own axis while in forward motion (Figure 1.2).

Figure 1.2: Relation between the Inertial and Non-Inertial Reference Frames

Yr

Non-Inertial
Frame
/

Yi
Inertial Frame

Xi

This rotation is used as a stabilization method since launched airframes are inherently unstable

during the initial stages of flight. Positive attitude (a combination of the pitch and yaw angles) must
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be maintained either through fin or spin stabilization of the projectile. High rates of change in angular
acceleration, along with the changes in airframe attitude, influence the aecrodynamic properties of the
airframe significantly (Costello and Sahu [14], DeSpirito and Heavy [15]).

Aerodynamic characteristics, such as drag and lift coefficients, are transient parameters required
as input to computational performance models. Examples in the defence environment are trajectory
codes, missile manoeuvring codes and combustion codes. Most of these applications occur in arbitrary
motion. The accuracy of the result of the simulations depends on the confidence of the aerodynamic
characteristics (Costello and Sahu [14], Sahu [16, 17], Silton [18]).

Current methods of characterizing aerodynamic coefficients are through empirical methods, wind
tunnel measurements, spark range testing and computational models (Davis et al. [19], Pettersson et al.
[20], Wernert et al. [21]). In specialized cases, i.e. where accelerating flow is present, neither of these
methods (with the exception of spark range testing which is costly and complicated) provides an accurate
representation of reality. Conventional wind tunnels are limited by its inability to control the temperature
of the airflow. The exact flow conditions, whether it is for internal or external flow, cannot be accurately
mimicked. A further drawback that the test piece remains stationary, therefore the rotational effects are
not taken into account.

Simulation techniques fail to obtain accurate results since the physics associated with variable ro-
tational and accelerating flow is not fully accounted for. Flow that is in acceleration further requires
specialised discretization and meshing techniques that allow for a stable solution.

No case could thus far be found where the simulation was conducted in the relative frame with
inclusion of the boundary layer. Some studies accounted for the non-internal effects by the artificial
addition of mass (Gledhill et al. [22], Roohani and Skews [5]). Although this method is recommended
by certain commercial codes it cannot accurately describe the response of the boundary layer to the
arbitrary acceleration in the bulk flow. Other studies do derive the non-inertial terms but makes use a
hybrid method in the absolute frame in order to neglect these non-inertial sources terms. This makes the
matrices significantly easier to solve (with a reduced stiffness in comparison with matrices containing
the source terms) with conventional numerical schemes. Most studies, however, works exclusively from
the absolute frame and thus avoid the overhead of resolving the flow in the relative frame.

Investigating the response of boundary layers in arbitrary accelerating flow conditions requires an
in-depth understanding of the underlying flow physics. This is be accomplished though the development
of'a complete mathematical model from first principles. The origin of the fictitious terms, (Coriolis, Eu-
ler and centrifugal as well as acceleration of the relative frame with respect to the absolute frame), are
seated within the relativity of the non-inertial frame and can be properly evaluated through mathemat-
ical derivation (Kageyama and Hyodo [23]). This method can be extended to compressible, viscous
derivation of the non-inertial Navier-Stokes equation for arbitrary motion.
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1.2. RESEARCH APPROACH

In order to clearly define the scope of this research, the following gaps in the literature are addressed

within this work:

» Mathematical derivation of non-inertial Navier-Stokes and boundary layer equations. A rigorous

and formalized approach are followed and documented.

» Implementation of a non-inertial Navier-Stokes formulation in OpenFOAM. To the best knowl-
edge of the applicant no solver has been written that makes provision for all the acceleration

terms.

* Response of the boundary layer to arbitrary motion. Most boundary layer response studies fo-
cussed on linear acceleration while aero-ballistic airframes require investigation into arbitrary

motion.

1.2 Research Approach

The research question is:

How does the boundary layer on an airframe in arbitrary motion respond to the unsteady flow con-

ditions?

The research approach used is depicted in Figure 1.3. The phases of the thesis and corresponding ob-
jectives are shown. The novelties, competencies built and outcome of each objective is depicted. The

objectives address the gaps in knowledge as identified in the literature survey:

* Objective 1: Derive the non-inertial Navier-Stokes bulk flow and boundary layer equations. The
outcome of this phase is the mathematical formulations for the bulk flow and boundary layer
in arbitrary motion. This is accomplished by the development of an Eulerian method for non-
inertial equation derivation. The boundary layer equations are derived using an order of magnitude

analysis.

* Objective 2: Implement the non-inertial Navier-Stokes equations in a solver in OpenFOAM. The
outcome of this phase is the development of a solver for prescribed, arbitrary motion in the non-

inertial reference frame, implemented in OpenFOAM.

* Objective 3: Conduct numerical simulations to determine the response of the boundary layer to
arbitrary motion. The outcome of this phase is to provide insight into the response of the boundary

layer to arbitrary motion. This is accomplished through analysis of the simulation results.
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1.3. THESIS OVERVIEW

1.3 Thesis Overview

The introduction, Chapter 1, provides the background to the work conducted in this research. It discusses
the research approach that is followed and gives an overview of the thesis. The literature survey is
discussed in Chapter 2.

In Chapter 3 the non-inertial equations are derived in the vector form. This is done for pure rotation
both in constant and variable rotation. The Eulerian method established is extended to derive the non-
inertial equations for full arbitrary motion. The equations established here were implemented in the
non-inertial solver in OpenFOAM.

The component form of the equations derived in Chapter 3 is obtained in Chapter 4. Equations
are described in the Cartesian, Cylindrical and Curvilinear co-ordinates systems respectively. These
formulations are used in Chapter 5 where the boundary layer equations are derived using a order of
magnitude analysis.

The non-inertial boundary layer equations of Chapter 5 is used in Chapters 7, § and 9 to devise a
mechanism for the response of the boundary layer to arbitrary motion.

In Chapter 6 the non-inertial equations are implemented in a solver. The code implementation, the-
oretical formulations, case set-up and validation results for this solver is discussed in this chapter.

Chapters 7, 8 and 9 provides the simulation results for arbitrary motion of a flat plate, rotating disk
and rotating cone in axial flow respectively. The response of the boundary layer to arbitrary motion is
determined in each case. A mechanism is proposed to explain the response of the velocity profile, shape
factor and skin friction coefficient in each case.

This study is concluded with Chapters 10. In this chapter the contributions of this work is discussed.
Further work and alternative applications of the methods is indicated.

The thesis has two appendixes. In Appendix A proof of the identities used in the derivations are
given. Appendix B depicts the code formulations for the Accelerating Reference Frame solving utility

designated ARFrhoPimpleFoam.

© University of Pretoria



b

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Q= YUNIBESITHI YA PRETORIA

© University of Pretoria



oot
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

Chapter

Literature Survey

he literature survey focussed on studies that implemented accelerating flow conditions, deriva-
tions of the non-inertial Navier-Stokes equations and investigations that resolved the boundary
layer for various cases. In this thesis the laminar flat plate, laminar rotating disk and rotating

cone in axial flow are used as validation and implementation cases.

2.1 Accelerating Flow Implementation

It has only been in recent years that arbitrary acceleration of airframes had been investigated (Roohani
and Skews [5], Gledhill et al. [22]). Studies were previously limited to steady state conditions (DeSpir-
ito and Heavy [15], Garibaldi et al. [24]) and in the small number of cases that considered acceleration,
constant properties both in translation and rotation was assumed (Limache [3], Biedron and Thomas [1],
Gardi [2]). This can be attributed to the difficulty in obtaining experimental results to for validation pur-
poses, the level of difficulty to implement and resolve the formulations of the non-inertial equations and
the high expense in computational resources. The recent advances in and availability of computational
resources, along with the increased cost of experimentation, has seen to an increase in the requirement
and feasibility for high validity Computational Fluid Dynamic (CFD) studies of a more advanced nature.
This literature survey has shown that, although the mathematical models that describe arbitrary accel-
eration have been developed in the 19th century, there are still gaps in published literature concerning
this topic.

The derivation of the Navier-Stokes equation in a non-inertial frame (Batchelor [6], Greenspan
[7]) has been the foundation for the finite volume formulation. The implementation and application
of these equations has been done in various manners in the literature (Biedron and Thomas [1], Gardi
[2], Gledhill et al. [22], Inoue et al. [4], Limache [3], Roohani and Skews [5]).

9
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Gledhill et al. [22] made use of the formulation of Forsberg [25], where a hybrid method is developed
from the perspective of the absolute frame utilizing co-rotating velocities. This method negates the
detrimental effect of the source terms where the properties of the numerical scheme are affected and the

conservative character is lost (2.1).

Figure 2.1: The Fixed and Relative Frame as Described by Forsberg [25]

Fixed Coordinates

F 3

Moving Coordinatt—:-s:é

r' -

A J

Although the use of the relative velocities serves to reduce the inaccuracies arising from the trun-
cation error in the solution, the matrix increases in stiffness with the addition of the non-inertial source
terms. The hybrid method is further significantly easier to implement into a moving grid. This study
investigated acceleration effects on missiles at sharp turns, but the hybrid method does not allow for
variable rotational velocities.

Roohani and Skews [5] made use of the standard Navier-Stokes formulation (without the accelera-
tion terms in the non-inertial frame) and accounted for the acceleration effects through time-dependant
boundary conditions and user-defined functions for mass addition. This methodology artificially intro-
duces the lumped effect of acceleration without quantifying the terms involved. Comparisons where
made between the steady state values, acceleration and retardation effects on aerofoils and it was found

that there is a significant change in the position of the shock wave location (and hence the aerodynamic

10

© University of Pretoria



-
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

2.1. ACCELERATING FLOW IMPLEMENTATION

performance) at the same Mach number for steady state and transient acceleration with the greatest
effects occurring in the transient regime.

Limache [3] investigated the implementation of non-inertial frame for the purpose of acrodynamic
modelling (Figure 2.2).

Figure 2.2: Reference Frames of an Aircraft Flying in Arbitrary Motion (Limache [3])

He briefly describes the formulations of the non-inertial Navier-Stokes equations with arbitrary
acceleration, but implements the equations in its steady form (aerodynamic steady motion) for inviscid
applications (Euler equations).

Biedron and Thomas [1] also describe the formulation of the non-inertial Navier-Stokes Equation,
but implement the equations in a manner similar than Gledhill et al. [22] in the absolute frame for steady
aerodynamic motions. It is noted in this work that using the absolute-velocity formulation allows for
more accurate evaluation of the fluxes in a finite-volume scheme. It is described in this paper as a
conservative manner of handling the equations. The energy equation in Biedron and Thomas [1] in the
relative frame is implemented without the source terms associated with the acceleration effects. This is
in contrast with the formulations of Gardi [2] and Limache [3].

Gardi [2] investigated the differences between the Moving Reference Frame and Arbitrary La-
grangian Eulerian approaches to the study of moving domains. He very briefly touches on the derivation

of the material acceleration in a non-inertial reference frame using a Lagrangian approach. But, as is

11
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the case with this approach, it is more intuitive (utilizing Newton’s second law) than rigorously math-
ematical. In this study all the non-inertial acceleration terms were implemented and partially validated
against theoretical results. In the last validation case that concerned the flutter on a NACA0012 aerofoil,
preference was given to an inviscid solution with slip wall boundaries.

Inoue et al. [4] investigates the focusing of shock waves generated by the linear acceleration of
projectiles. The main contribution of the paper is through the simulation of an unsteady flow field past
a projectile in parabolic motion and linear acceleration. The acceleration terms are not included in the
formulation of the momentum equations and the viscous (diffusion) terms are neglected. In supersonic
flow conditions the tendency of most studies is to neglect the viscous terms from the Navier-Stokes
equations.

Studies such as Garibaldi et al. [24] and DeSpirito and Heavy [15] investigates spinning bodies
in the absolute frame. The non-inertial acceleration effects is not taken into account, inclusion thereof
enhance the understanding of the observed effects during flight and result in more accurate prediction

of aerodynamic coefficients.

2.2 Derivation of Non-Inertial Navier-Stokes Equations

It is apparent from the literature that very few studies derived the equations from first principles. Instead
the equation is just implemented in the form it is obtained in from the citations listed in the references.
A proper understanding of the meaning of terms can be obtained through derivation of the equations.
In some instances it is difficult to differentiate between the terms in the absolute frame and the relative
frame, understanding the origin of the terms negates such confusions. The studies that do derive the
equations (Forsberg [25]) generally make use of the Lagrangian fluid parcel concept. As an alternative
method, adopting an Eulerian approach to the derivation of the non-inertial Navier-Stokes equations

Kageyama and Hyodo [23] has the following advantages:

* This approach is general and can be used for any vector field even in cases where the fluid parcel

concept is not relevant.

* The physical meaning of this type of derivation is clear as it makes use of local Galilean and

rotational transformations.

+ This approach is mathematically rigorous.

2.3 Boundary Layers in Unsteady Flow

Studies (Brinich and Neumann [26]), Yuan and Piomelli [27], Back [28], Escudier et al. [29], Webster
and Eaton [30]) have shown that in favourable pressure gradients (associated with accelerating flow) the
structure of the turbulent boundary layer undergo significant changes and resembles the characteristics

of a laminar boundary layer. This is referred to re-laminarization of the turbulent boundary layer. The
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physics of the boundary layer can be adequately described by laminar boundary layer theory if the
acceleration parameter exceeds 3x107 (Escudier et al. [29], Yuan and Piomelli [27], Webster and Eaton
[30]). In the low velocity, laminar near-wall region the viscous components of the flow are orders larger
than the momentum components. The flow in the near wall region can therefore not be approximated
with either slip wall conditions or Euler equations. Proper resolution of the laminar boundary layer is
required both for studies that investigate far-field shock structures and wall-bounded shock interactions
(Pirozzoli et al. [31]).

There are a few studies that investigated acceleration effects within the boundary layer (Moore [32],
Brinich and Neumann [26],Vleggaar [33],Back [28], Back and Cuffel [34], Bogolepov and Lipatov
[35],Dala and Lipatov [36], Samad & Garret (2010)). The majority of the studies took place in the
seventies and made use of analytical approaches, mainly the asymptotic methods. This was before com-
putational power was developed at a level that allowed for flow to be solved by means of computational
fluid dynamics. There is a gap in the literature with regards to asymptotic methods in acceleration that
extends from the late 70’s to the late 90’s. During this period boundary layers in accelerating flow was
either neglected or approximated with wall functions. In recent years, the analytical methods were rein-
troduced as studies have shown that wall functions cannot adequately describe the response of boundary
layers to acceleration effects. The asymptotic methods are a useful tool that enhances understanding of

the flow physics.

Moore [32] stated that unsteady laminar boundary layer flow in bodies starting from rest was used
by Blasius [37] to investigate the onset of separation and transient effects of impulsive start. He pointed
out that those studies only accounted for the earliest phase of motion and that studies were required to
investigate unsteady boundary layer flow for longer times elapsed since start and higher at speeds. His
applications related to rocket-driven missiles where the boundary layer effects such as skin friction and
heat transfer are unsteady for entire ballistic trajectory. Moore further discussed the assumption (Kay
[38]) that at high speeds the boundary layer responds with no time lag to changes in stream velocity. The
boundary layer would therefore be given the same properties at any instance as it would be in a steady
simulation. The question that arises from this: is there a delay in the response of the boundary layer
to external stimulus and how does the temporal changes in the bulk flow propagate into the boundary
layer? From Roohani and Skews [5] it can be seen that there is a delay in the response of the terminal
shock to external flow changes. If the boundary layer in this case were to respond immediately, while
the terminal shock is delayed, it will result in interactions between the boundary layer and the shock
system. This can not be ignored as it not only influence the aerodynamic performance of the airframe,

but it also have an impact on the bulk flow.

In Moore [32] a compressible, laminar flow over semi-infinite flat plate in rectilinear accelerated
flight through still air — which is an idealization of missile flight — investigated through asymptotic
methods. His work concluded that in comparison with a quasi-steady state the constant acceleration
case results in a thinner boundary layer with greater skin friction coefficient and lower wall temperature.

The results indicate that boundary layers in arbitrarily accelerating flow do not respond in the same

13
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manner as a steady state boundary layer. Therefore there is a temporal effect in the response that must
be considered. It cannot be assumed without investigation that the response of the boundary layer and
the shock system are within the same temporal phase. It is possible that there is some differences in the
mechanisms of temporal transportation of information from the bulk flow to the boundary layer and

across a terminal shock respectively. Interactions between the boundary layer and the shock wave will

then appear.
Back [28] investigated the structure of laminar boundary layer analytically over a large range of

flow acceleration, surface cooling (Figure 2.3) and flow speeds (Figure 2.4).

Figure 2.3: Surface Cooling Effect on the Boundary Layer Profile (Back [28])
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The focus was on the influence of the variable parameters on skin friction and heat transfer para-
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Figure 2.4: Flow Speed Effect on the Boundary Layer Profile (Back [28])
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meters as well as boundary layer thickness. The effects of acceleration, cooling and flow speed were
found to be significant in aero-ballistic applications. Back [28] noted that due to surface cooling, ac-
celeration and lower Reynolds numbers associated with higher altitude flights or higher internal flow
temperatures, laminar boundary layer pockets are found over increasingly larger portions of the surface.
Even turbulent boundary layers have been found to revert towards laminar boundary layers in regions
of flow acceleration under certain conditions. He further noted that studies on the effects of accelera-
tion and cooling on the structure of laminar boundary layers were becoming more important at the time.
In his work it was found that velocity and total enthalpy profiles are steepened near the surface due

to acceleration and cooling, while flow speed (compressibility) effects react opposite to this. Boundary
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layer thicknesses are strongly dependent on acceleration, cooling and flow speed while friction and heat
transfer increased with acceleration and decreased with cooling. This study was extended to include the
compressibility effects (Back and Cuffel [34]), in laminar boundary layers with large acceleration and
cooling with application on a supersonic nozzle.

Vleggaar [33] investigated the heat transfer and momentum transfer to accelerating surfaces. He
followed a systematic approach of formulating the conservation equation for the asymptotic method
both in rectangular co-ordinates as well as cylindrical. Three types of cases were considered: acceler-
ation on finite surfaces and continuous surface with and without acceleration and rotation. Vleggaar
[33] concentrated on the method to the extent that almost no comments were made with regards to the
results obtained. His results on a continuous flat surface have the same tendency as the results from
Back [28]; with acceleration shear stress and heat flux increase, while displacement, momentum and
boundary layer thicknesses decrease. On the continuous cylindrical surfaces a rotation component is
added, yet all accelerations are constant. Momentum transfer increase with acceleration and rotation. It
is however curious that the heat transfer decrease with acceleration, but show increase when adding the
rotation component. Momentum and displacement thicknesses decrease with acceleration and rotation
and the boundary layer reacts in a similar manner.

The most recent study that was found is from Samad and Garrett [39] who investigated the laminar
boundary-layer flow over rotating spheroids. The numerical solution and an asymptotic method for
determining the laminar boundary was compared with one another. They noted very few studies have

been done at that point on laminar flow over spheroids.

2.4 Boundary Layers in Rotating Flow

Two cases in this study have been selected for analysing unsteady rotational flow. The first is the laminar,
rotating disk and the second is the rotating cone in axial flow. These cases are of interest not only
for their fundamental interest, but for the practical applications as well. Applications of interest in the
turbo-machinery and aeronautical where flow control relies on accurate prediction of boundary layer
disturbance propagation and transitions (Kohama [40]).

An analytical solution for the laminar, rotating disk were derived by von Karman [41] an discussed
in detail by Schlichting [42]. The limit for laminar flow were determined by Imayama [43] and Schmid
and Henningson [44]. The flow can generally be assumed laminar on a smooth disk for a Reynolds
number below 500.

The velocity profiles (Ram [45]) and spiral vortex visualization (Kobayashi et al. [46]) is shown in
Figure 2.5 below. The tangential velocity component of the rotating disk assume the velocity of the disk
in the near-wall region and approaches zero velocity further away from the disk. This is as observed
from the absolute frame where the flow in the far-field is stationary and the disk is in motion. The flow
has a radial component due to the Coriolis and Centrifugal forces acting in the radial direction. Spiral

vortices are observed in the transition region (Kobayashi et al. [46]) at a rotational Reynolds number of
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approximately 500.

Figure 2.5: Visualization of the Boundary Layer Profiles (Ram [45] left) and Transition (Kobayashi [46]
right) on a Rotating Disk

A cyclonic vortex is present at the centre of the disk (Moulin and Flor [47]). This vortex becomes
smaller with increasing disk rotational velocity. The von Karman solution of the rotating disk do not
account for the effect of this vortex on the boundary layer. Zoueshtiagh et al. [48] conducted hot-wire
experiments on smooth rotating disks. His results indicates that there are differences in the far-field
profile values between the von Karman results and the experimental results (Figure 2.6). However, the

von Karman solution provides a good estimate of the velocity profile in the near-wall region.

Figure 2.6: Hot-Wire Measurement of the Mean Velocity Profile in the Radial (left) and Azimuthal
(right) Directions (Zoueshtiagh [48])
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Various studies have been conducted in recent years to investigate transition, stability, heat transfer
and surface suction on rotating disks (Attia [49], Harris et al. [50], Siddiqui [51], Zoueshtiagh et al. [48]).
The studies are aimed at obtaining a better understanding of the mechanisms in the boundary layer for
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flow control purposes.

The rotating disk provide results that are analogous with rotating machines such as turbine blades.
In the aeronautical field flying objects, such a projectiles and aircraft nose cones, resemble rotating
cone. A vast number of studies are available that investigates transition on rotating cones in axial flow
(Garret and Peake [52], Hussain et al. [53], Kargar and Mansour [54], Kobayashi et al. [55], Kohama
[40], Towers and Garrett [56]).

Figure 2.7: Disturbance Propagation and Boundary Layer Transition on Spinning Objects in Axial Flow
(Kohama [40], Kobayashi [55])

A rotating cone in axial flow can be considered laminar below a Reynolds number of 249.64 (Man-
sour and Kargar [57]). Significant work has been done by Garret and Peake [52] to investigates the effect
of cone angle and axial flow on transition. It has been found that a larger cone angle delays separation.

Furthermore, axial flow stabilizes the boundary layer on a cone and further delays separation.

18

© University of Pretoria



oot
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Q= YUNIBESITHI YA PRETORIA

Chapter

Non-Inertial Equations in Vector Form

rbitrary flow conditions, which segregate inertial from non-inertial reference frames, are widely

applicable to the motion of aero-ballistic airframes such as missiles, projectiles, grenades and

mortars. A missile can be accelerated by an on-board engine that generates thrust to counter
the effect of drag. Spin stabilized projectiles are subjected to high rates of change in the spin axis
over the ballistic trajectory. Grenades and mortars experience unsteady deceleration as the target is
approached. All of these are examples of arbitrary motion in non-inertial reference frames. The flow
field surrounding the airframes can be expressed using the non-inertial Navier-Stokes equations.

Developing a fundamental understanding of the non-inertial equations is pertinent to the develop-
ment of a computational code that is capable of solving such flows accurately. Firstly the correct formu-
lations of the equations are not intuitive and must be rigorously derived. Secondly, once the equations
are implemented, the correct boundary and initial conditions must be utilized to obtain a stable and
realistic solution. Deriving the non-inertial equations enhance understanding of the flow physics. This
in turn assists in formulating the numerical methods required for computations.

Deriving the equations in the vector form is general. This allows for direct implementation of the
governing equations in the computational code, OpenFOAM as described in Chapter 6. In this chapter
the non-inertial Navier-Stokes Equations for constant rotation, variable rotation and arbitrary motion
(both in rotation and translation) are derived. The mathematical identities related to this chapter are

located in Appendix A.
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3.1 Non-inertial Navier-Stokes Equations for Constant, Pure Rotation

The non-inertial Navier-Stokes equations for constant rotation is derived here using a method based on
the work of Kageyama and Hyodo [23]. They established an Eulerian method for deriving the Coriolis
force in the momentum equation. This was done for constant, pure rotation in incompressible flow. The
method is expanded upon to derive the full set of non-inertial Navier-Stokes equations for compressible
flow. In subsequent sections, Sections 3.2 and 3.3respectively, the equation sets are derived for variable

rotation and full arbitrary motion.

3.1.1 Frame Transformations

The first step in the derivation is to define the relation of the inertial and non-inertial frames with respect
to each other. These relations are mathematically described in terms of transformation operators, i.e. lo-

cal Galilean transform and rotational transform, and is used to change the perspective of the observer.

Assume that three (3) frames exist; O, O' and O as indicated in Figure 3.1.

Figure 3.1: Frames of Observation (O, O' and O) for Point P

vA @p LEGEND

O — Absolute Frame

O'— Orientation Preserving
Frame

X O — Relative Frame

P — Point Mass

%

z

Frame O is the stationary, inertial frame. This is also referred to as the absolute frame. Frame O'
is an orientation preserving frame (i and i' has the same orientation), which can be either inertial or
non-inertial depending on the cases analysed. This frame shares an origin with the rotational Frame O.
Frame O is the non-inertial, rotational frame and is therefore not orientation preserving. This frame is
also referred to as the relative frame.

Now consider a point P which can be observed, and therefore described, from all the frames; Frame
0, Frame O' and Frame O. Point P is rotating around the origin of Frame O, but it is stationary in Frames
0'and O.
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A set of equations are developed to describe the motion of point P in the rotational Frame O. This
development results in the non-inertial Navier-Stokes equations for constant, pure rotation. Point P is
described below in Frame O from where a local Galilean transformation (defined in Section 3.1.1.1),
GM  is used to transform it to Frame O'. The rotational transform (defined in Section 3.1.1.2), R s

then used to transform the resulting equations (as described in Frame O') to the rotational Frame O.

3.1.1.1 Local Galilean Transformation

The standard Galilean transform is limited in its application to constant translation cases. In Figure 3.2
such a motion is depicted between Frames O and O'. The Galilean transform is used to transform vectors
between two reference frames that only differ by a constant vector of motion.

A visual example of this is a train going through a station at constant velocity on a straight train
track. If the station platform is considered to be Frame O (which is stationary), then the train is in Frame

O' and the displacement between the station and the train can be described as shown in the figure below.

Figure 3.2: Galilean Transformation between Frames

VA y'A
X P

{
X rel X

Z z'

Assume that the origins of the two frames above intersect at time ¢ = 0 (the train drives through the
station at time ¢ = 0) and that Frame O' is moving at a constant velocity V in the x-direction (the train
is moving at constant speed on a straight track). At time ¢ =At, the Frames O and O' are then distance
xre; from each other (the train is distance x,,; from the station).

The relationship between the coordinates points for this single event between Frames O and O' is

described by Equation 3.1. This is known as a standard form of the Galilean transform.

x =x-VAt
Y=y
, (3.1)
zZ =2
=t
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If it is assumed that the constant motion need not be exclusively in the x-direction (or in translation
for that matter) and that it can be presented as a vector of motion as shown in Figure 3.3. The motion

between the frames is then described by the vector X, as it was done in Kageyama and Hyodo [23].

Figure 3.3: Local Galilean Transformation between Frames

Z

Let all the Frames (O,0' and O) share the same origin where the point P is stationary in the rotational
Frame O. If the rotation is around the z-axis of Frame O, the angular acceleration vector € is described
by Q =(0,0,Q). Therefore point P is rotating with a constant angular velocity, vye], around the origin

or the inertial Frame O. The x,e) component is described as:

Xrel = Vrel At (3.2)
where

Vrel = QAX (3.3)

The local Galilean transform operator, GM s introduced. Any vector defined in the inertial Frame

O can be related to the vector as observed from the orientation preserving Frame O' by:
u'(x, ) = GMu(x, ¢) (3.4)

This definition leads to a mathematical description that directly relates the vector fields in the inertial

Frame O, to the vector fields in the orientation preserving Frame O":

u'(x',t) = GMu(x, t)

= G u(x, t)

3.5
=ulx,t)-QAX

uX, ) =ux,)+xAQ
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3.1.1.2 Rotational Transformation

Frame O shares an origin with the Frame O', therefore the vector components in O is related to O'
through a rotational transform (Figure 3.4).

Figure 3.4: Relation between Frame O' and Frame O

27
\

O‘?
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The rotation, in this case, is around the z-axis of Frame O (that shares and origin with Frame O')
with a constant angular velocity of Q = (0,0,). The rotational transform, R that relates the vectors

in Frame O' to the vectors in Frame O is described by,

cosQt sinQt 0

R =|_sinQt cosQt 0 (3.6)
0 0
such that:
x x!
5| =R |y (3.7)
2 2!

The first column of the R® tensor represents the projection of the x’ vector component (defined
in the O' Frame) on the £,9 and 2 axis (defined in the O Frame). In the same manner is the second and

third columns the projection of y’ and z’ respectively on the rotational axes, y and 2.
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From the above, a description follows that relates the vectors in Frame O' to the vectors in Frame

O:
ax,t) = R®%u'(x, 1) (3.8)

Equations 3.8 and 3.5 can further be used to describe a vector as seen from Frame O in relation to
a vector in Frame O.
%, t) = RYG u(x, t) (3.9)

R is therefore the rotational transform that operates on x’ to obtain the % coordinates in the rota-
tional frame. From Equations 3.5 and 3.9 it is shown that for the velocity vector the following relation
holds:

W%, ) = RY[u(x, )+ x A Q] (3.10)

3.1.2 Incompressible Flow Conditions

The local Galilean invariance, G®"*, and the rotational transform, R, have been described for con-
stant rotational conditions. Both the operators are required to derive the non-inertial Navier-Stokes
equations for constant rotation. The Galilean invariance is required to account for the relative motion
between the frames, whilst maintaining the orientation of the unit vectors. The rotational transform is
required to account of the change in orientation of the unit vectors due rotational motion of the relative
frame.

In this section the non-inertial Navier-Stokes equations for conservation of mass, momentum and
energy for constant rotation in incompressible flow are derived using an Eulerian approach adapted from
Kageyama and Hyodo [23]. The derivation commences from the perspective of the absolute observer
(Eulerian approach) instead of using the conventional Lagrangian method where the derivation is done

directly from the relative observation point.

3.1.2.1 Continuity Equation

The conservation of mass equation, referred to as the continuity equation, in the inertial frame takes the
form (White [9]):

op

ot

The first term represents the temporal change in density due to compressibility of the flow. In com-

+(V-pu)=0 (3.11)

pressible fluids the density is a non-constant function of pressure and temperature (Anderson [58]). Any
fluid particle that interacts with a adjacent fluid particle as a result of a bulk pressure force undergoes
compression where the specific volume of the flow is decreased. Specific volume is the inverse of den-
sity and results in temporal variation of the density field. When the bulk compressibility of the flow is
small in comparison to pressure variations in the free stream, variations in pressure cause only small
changes in specific volume and hence density. The flow is then assumed to be incompressible when
changes in pressure and temperature causes very small temporal variations in density. This assumption

is used in low Mach number flows, typically below Mach 0.3. This case is assumed to be incompressible
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and the temporal density term can be neglected (Anderson [58], White [9]), but for the purposes of the

derivation it remains in the equation until the last step.

The second term is the divergence of density and velocity which represents the residual mass flux of a

given control volume.

The non-inertial form of the unsteady density term can be described as:

% 4, = lim PXerae, b+ A1) — P(Xy, 1) (3.12)
ot At—0 At
A Taylor series expansion of the term p(X;4a¢, ¢ + At) provides:
0
PXrear,t+ A0 = p(xe, 1) + [AHQAX) - VIOt 8) + (AL =P, 1) + . (3.13)

Substitution of this expansion in the Equation 3.12 and manipulation result in an expression that

relates the non-inertial, unsteady density to the inertial frame.
9p

0
® =R“t[a—’2+(mxt)-vm

ot (3.14)

The second term of the continuity equation is affected by both frame transformations since it contains
the velocity vector:

(V-pa) = REGYX(V.pu)
RYUV. p(G*u)] (3.15)

Equation 3.10 is used to complete the local Galilean transformation, and the equation becomes:

(V-pt) = RM[V- p(u+x A Q)]
=RY¥[V-(pu)+ V- p(x A Q)]
The equation can be manipulated to the convenient form where the second term is of equal size and
opposite sign on the second term in Equation 3.14 .

V-pt=R¥[V-(pu)— (QAX)-Vp]
i i P (3.16)

The addition of Equations 3.14 and 3.16 lead to a relation between the continuity equation in the inertial

and rotational frames:

0 o o a: 9P
—+V-pa=R™|—+V- 3.17
L0 pa=RY[ L4V (pu) (3.17)

The right hand side of the equation is equal to zero since this represents the continuity equation in

the inertial frame (Equation 3.11):

0p

% . 5. 60=0 3.18

Y pa (3.18)
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Since this is the incompressible case, the temporal term is equal to zero. The continuity equation

for the rotational frame therefore takes the form:

V-pa=0 (3.19)

The physical meaning of this equation describes the very nature of incompressible flow assumption;

the residual mass flux in a specific control volume is zero (Anderson [58]). This means that there are
no compressible effects in the flow because the same amount of mass flux that enters a domain exits it.
The transient density term causes a change in the residual mass flux in the domain that manifests itself

in the form of compressibility.

3.1.2.2 Momentum Equation

The inertial equation for incompressible momentum conservation is describe by the equation below
(White [9]):

ou
ot
where 1 is the pressure per unit mass where the pressure is divided by the density. The density was

+(u-V)u=-Vy +vVu (3.20)

divided into all the terms of the equation since the flow is assumed to be incompressible:

Y== (3.21)
0

The transformation of the equation above to the rotational frame is done in a similar manner as in

Section 3.1.2.1 - the terms are transformed separately and then summed to find the final expression.

The first term that is transformed, to obtain an expression that relates the inertial Frame O to the rota-
tional Frame O, is the time dependant term. It is expressed here through the definition of the derivative
at a point (Tannehill et al. [59]):

ot WXy ng, E+ AL — (X, 1)

E(Xt, t) = AI}I—I»I

3.22
0 At ( )

The expression above, which is in the non-inertial Frame O, can be related to the inertial Frame O

by finding an inertial expression for @(X;+a¢, t + At) in the form of Equation 3.9:
W(Kesnr, b+ At) = ROFADGONS et [y(x, 0y, 8+ AL))] (3.23)

The method that is used to expand the relation above, in the inertial frame, is described in the para-

graph below.

Perform a Taylor series expansion for x;;az:

Xi+At = X¢ + Veel At + O(AL) (3.24)
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The resulting series is truncated at the second order term since this case involves constant motion and
the higher order terms represents the arbitrary motion. The derivative term is substituted with Equation

3.3. Re-arrangement of the terms lead to an expression for displacement over the specific time interval:
XAt — Xt = Xpr = (R AX)AL (3.25)

A Fourier series expansion is done for w(x;;as,t + At), and with substitution of Equation 3.25 it
results in:
0
u(xsias, b+ At =u(xy, )+ [AHQAX,) - V]ulxy, 8) + (Ata)u(xt, t) (3.26)

Equation 3.26 is substituted into Equation 3.23 to get the expression:
0
Wkepar, t+ At) = RACADGE T er fu(x, 1) + [AHQ AXy) - V]u(xy, £) + (At Jutxe,0p - (3.27)

GO %2t can be simplified as shown below. Equation 3.24 is substituted in the operator and trun-
cated at the first order. The error made with this simplification is of order At. It is shown further on in
this section that A¢ approximates a very small number, €. Therefore the error approximates a very small

number &, when

At —¢
(3.28)
e—0
Subsequently, it can be shown that:
GQ/\XHM _ GQ/\{xt+At(Q/\xt+O[At2])}
(3.29)

— GQ/\{Xt(1+O[At])} ~ GQAxt
The expression for @(Xs1a¢, t + At), then becomes:
. Qt+A8) HQAX 0
W(Xsin,t+At)=R G {u(xy, 1) + [AHQ AXy) - V]ulxy, ) + (Ata)u(xt,t)} (3.30)

The assumption was made that point P is fixed in the rotating frame and the rotation is around the

shared origin of the Frames O, O' and O, with this in mind an expression can be derived for x;:

%= RQ(HAt)XHAt szxt
QA (3.31)
x;=R Xt+At
This relation is substituted in the Taylor series expansion for x;4as:

XA =X+ AtV + O[Atz]

(3.32)
= RO %, as + AHQ A X;) + O[A?]

Re-arrange this equation and consider in the limit as At approaches ¢ as € tends to 0:

RQAL‘ _
lim —— AT RN iy (x, A ) (3.33)
At—0 At At—0
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Considering this relation for any vector b (where in the case b — x; ), and take into account that

X:1Ar — X¢ as At — 0, the following equation is arrived at:

RO%b-b
lim ——— =bAQ (3.34)
At—0 At

By applying the same analogies as in Equation 3.31 to the velocity field, it can be shown that Equa-

tion 3.34 is valid when b — uy.

Substitute Equation 3.30 into Equation 3.22 to obtain the equation:

i RAUEHAIGONX (1] — L 4 (AHQ AXy)- V) |u(xy, 1)+ (At2 )u(xy,t)
a—u(f(t,t)Z lim {[ ROA ( t )] t ( at) t } (3.35)
ot At—0 At
By using Equation 3.34 , and after re-arrangement of the terms the following expression is arrived
at:
ou S Ot 0 QAx
E(Xt,t):R [a +(Q/\xt)-V—QA][G u(Xt,t)] (336)

Substitution of Equation 3.10 into the equation above results in:

ou

R 0
5 &) =R [ =

ot
)
+Rm[&+(ﬂAxt)-V—QA](xt/\Q)

+(QAX) V- QA (ulxy,2))
(3.37)

In the equation above the transient component of [% +(QAX) - V-QAIx: A Q) is equal to zero.

This is shown piecewise in the paragraphs below. Consider the transient components of the term first:

0 ox 0Q
&(Xt/\ﬂ)za_tt/\ﬂ-i_Xt/\E:O (338)

The first term is zero because the magnitude of x; is constant over the time domain; its magnitude
does not change with respect to the origin since this case involves pure rotation. The second term is zero
due to constant rotation of the point P. In the case where the rotation is not constant, this term plays a

role as seen in Section 3.2 .

By introduction of the identity below (see Appendix A ), the terms [(Q A x;) -V — QAl(x; A Q) can

be simplified. In this case a represents a vector.
(a-V)xAQ)=arQ (3.39)

The entire term 1s hence cancelled out:

[(QAX) V-QA|x:AQ)=[(QAX) - V]|(x: A Q) - QA (% A Q)
=OAXAQ) - QA X AQ) (3.40)
=0
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This leads to the final description of the unsteady terms in the momentum equation. Note the ap-

pearance of one part of the Coriolis effect manifesting in the relation below.

oa Qi 0
5, &) =RY [ +(@Ax) V- Q] (ux,,0) (3.41)

Coriolis

The relation of the inertial to the rotational advection term is described in the following manner:

@-Va=RYUG®*1u-V)u

(3.42)
— RQt(GQ/\Xu X V)GQ/\Xu
Substitution of Equation 3.10 into the equation above results in:
(@-Vya=RY[(u+xAQ)-V]u+xAQ)
(3.43)

=R»[(u+xAQ)-V]u+RY[(u+xAQ)-V]xAQ)

Dividing out all the terms gives the final relation of the advection term between the frames. Note
the appearance of the centrifugal effect and the other part of the Coriolis effect from the transformation

of the advection term.

@-Va=RY[(u-Vyu+(xAQ)-V)u+uAQ)+ExAQ)AQ]
—_—— —
Coriolis Centrifugal (3.44)

The gradient of the specific pressure term in the momentum equation is described between Frames O

and O in the following manner:
Vi = RUG*vy (3.45)

Scalars are invariant under Galilean transformation (Kleppner and Kolenkow [60], McCauley [61]).
Scalars are not invariant under the rotational transform if spatial operations is performed on it since the
axis along which the discretization is performed, changes between all the frames. The relation between

the gradient of specific pressure in the inertial and rotational frames is therefore described by:

b9 =RMvy (3.46)

The diffusion term in the inertial Frame O can be related to the rotational Frame O in the following
manner:
vW2i = R%G %y vy
— RO, 2GRy,
= Rmvv2(u +xAQ)

= Rmv[Vzu +V23(x A Q)]

(3.47)
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If it is considered that, as shown in Appendix A,
VZ(xAQ)=0 (3.48)
the diffusion term is invariant under Galilean transformation:
VW2 = R yv2y (3.49)

Note that the pressure and viscous terms are Galilean invariant in this instance and combine the two
components in a vector f(x, t):
f(x,t) = -V +vV2u (3.50)

The new, combined parameter in the inertial and rotational frames is related in the following manner

due to the invariance:

f&,t) = R (x,t)
(3.51)

The transformation of the momentum is completed through the summation of the unsteady and advection

terms in the rotational and inertial frames as determined in Equations 3.41 and 3.44:

A

oa

N 0
5 +(ﬁ-V)ﬁ=RQt[6—]:+(u-V)u+2u/\Q+xAQAﬂ]

o (3.52)
:Rnt[a_t +(a-Vu] +RY[2un Q+xA QA Q]

The first term grouping of the equation above is simplified as shown in the equations below. This

was done using Equations 3.20, 3.50 and 3.51.
R [‘2—‘; +(u-V)u| = RY(~Ay +vV2u)
- RYf(x, 1) (3.53)
=1f(%,1)
The second term grouping, with the insertion of Equation 3.10, becomes:
RY[2unQ+xAQAQ]=2RYW)AQ+RYx) A QAQ
=2[a-RYxAD)|AQ+RY)AQAQ (3.54)
=20NQ-XAQAQ

The two simplifications above are filled back into Equation 3.52 and results in the non-inertial

momentum equation for constant rotation.
oa

JRE— A.A A:_AA 24 P —X
Y +(@-V)a=-Vy+vWa+2aAQ-3xAQAQ (3.55)

Coriolis Centrifugal

It can be seen from the equation above that the fictitious forces associated with constant rotation is
the centrifugal and the Coriolis effects. The centrifugal effect originates from the transformation of the

advection terms while the Coriolis effect is from both the transient and advection terms.
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3.1.2.3 Energy Equation
The general energy equation in the inertial Frame O takes the following form (White [9]):

6aite+(V-peu):—p(V-u)+V-(kVT)+(p (3.56)

The time dependant term is transformed in a similar manner as shown in Section 3.1.2.1 where the
continuity equation was derived. The first term is therefore transformed and the non-inertial component
becomes: .

‘%e :Rﬂt[% +(QAX)-V(pe)] (3.57)

The convective term is transformed between Frames O and O with the use of the rotational transform,

local Galilean transform and by substitution of Equation 3.10:

(V- pét) = REGIX(V .- peu)
=R [V-pe(u+x1r Q)] (3.58)
=R [V:peu+V-pe(xnQ)]

The terms that represents the rate of work done by the normal pressure forces is transform between
the Frames O and O and Equation 3.10 is inserted:

—p(V-ia) = RUG[ — p(V-u)]
=RY[-pV-(u+xAQ)] (3.59)
=Rm[ —pV-u—pV-(x/\Q)]

It can be shown that this terms is also invariant under transformation by the insertion of Identity 1
in Appendix A :
—p(V-a)=R¥(-pV-u) (3.60)

The diffusion is invariant under Galilean transformation since the heat transfer coefficient (k) and

temperature (T) are scalars. The transformation between the frames O and O then becomes:

A

V-(RVT) = RUGYX[V - (RVT))]

3.61
= RY[V-(RVT)] (36D

The dissipation function, ¢, is a scalar value that represents the rate at which mechanical energy is
expended in the process of deformation of the fluid due to viscosity (Anderson [58]). This property, in
component form, can be described by:

ou\? (dv)? (ow)® 1 9 o ou\? (ow ov)\® (ou ow)?
T:Va=2u||—| +|=—]| +|=—| —=(V- )| +pu||=— + +
0x oy 0z 3

+— —+— —+—
0x Oy 0y 0z 0z Ox

(3.62)
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The above equation indicates that the dissipation function is a scalar and therefore invariant under

Galilean transformation:

~ :RQtGQAx
v o ¢ (3.63)

All the transformed terms of the energy equation is summed to obtain the equation below.

0pé . A A ra 0
g +(V-pew)+ p(V-a) - V- BVT) + ¢ =Rﬂf[§ +(V-pew) +p(V-w)=V-(kVT) +¢p] (3.64)
The right hand side of the equation is equal to zero, as shown in Equation 3.56 . The energy equation

in the non-inertial frame for constant rotation is invariant under transformation in this specific case:

opé . . A
g+(V-ﬁéﬁ):—ﬁ(V-ﬁ)+V-(kVT)+¢) (3.65)
This equation can be further simplified with the assumption of incompressibility and using Equation

3.19:

0pé . A
%HV-ﬁéﬁ):V-(kVT)ﬂi)I (3.66)
Note that the energy equation is invariant under transformation. This is in agreement with the work
of Diaz et al. [62] who determined that there are no fictitious effects in the non-inertial energy equation

using a point mass method.

3.1.3 Compressible Flow Conditions

The effect of compressibility in the boundary layer of an object in arbitrary motion cannot be assumed
negligible. The boundary layer equations for this type of flow must first be determined. This investigates
the presence of compressible terms in the non-inertial boundary layer for arbitrary rates of change in
translation and rotation. This is further explored in Chapter 5 .

The full compressible formulations for non-inertial Navier-Stokes equations for conservation of mass,
momentum and energy for constant rotation in compressible flow are derived using the same Eulerian

approach (Kageyama and Hyodo [23]) as in Section 3.1.2.

3.1.3.1 Continuity Equation

The general continuity equation in the rotational Frame O was derived in Equation 3.18. This has shown
that the equation is invariant under transformation. The compressible, non-inertial equation thus re-

mains:

2|

+V.pa=0 (3.67)
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3.1.3.2 Momentum Equation

The incompressible form of the momentum equation as shown in Equation 3.20, made the assumption
that the temporal change in density is negligible (Anderson [58]). Therefore, the equation could be sim-
plified by dividing density into all the terms as there are no temporal change in density. The diffusion
term in particular could be simplified in a manner that would facilitate easy transformation for incom-
pressible conditions. In this case the divergence of the velocity gradient yields the same results as taking
the laplacian of the velocity vector.

Incompressible Momentum Equation

- .
a—‘; +@-Vu=-Vy+ vWia (3.68)

Laplacian

This is not the case when compressibility has to be accounted for. The compressible Navier-Stokes
Equation in the inertial frame takes the form (White [9], Anderson [58], Tannehill et al. [59]):

Compressible Mometum Equation

e N

0
apu+V~(pu®u) = —Vp+V-[u(Vu+Vul) + (V-]

"
Material Derivative

(3.69)

J

Compressible Stress Tensor

Density, p, remains part of the momentum material derivative. Pressure gradients are represented by
Vp, instead of pressure gradient per unit mass, V.

The full compressible stress tensor is used to represent momentum diffusion in the flow:

G +AV-u p(G+ ) ()
@y,2)=| p(3E+3)  2uP+Av- vy 3.70
T(x,y,2 ”(ay"'ax) Hay + u r“(az"'ay) (3.70)

u(Ge+%)  u(E+5)  2u3+AV-u

The same methodology that was used in Section 3.1.2 is used here to derive the non-inertial form of
the momentum equation. Inertial terms are transformed to the non-inertial frame using the local Galilean

transformation for pure rotation (Equation 3.5 ), and the Rotational transform matrix (Equation 3.10).

First consider the unsteady term in the rotational Frame O and apply the product rule for partial deriva-

tives. This operation results in two terms that were not considered during the incompressible case:

0 oa ,adp
O .y 0w 0P 71
at(pu) pat +u6t (3.71)

With the aid of Equation 3.9 (which describe a vector as seen from Frame O in relation to a vector
in Frame O) and Equation 3.36 (which expressed the non-inertial velocity derivative in terms of inertial

parameters) the above becomes:
0 0 0
&(ﬁﬁ)zRQtGQAX[pa—?+p(QAx)~Vu—pﬂ/\u+u0—€] (3.72)
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The product rule is then used to combine the terms p %—‘; and ug—'[t7 so that the equation above simplifies
to:

) )
&(f)ﬁ):Rﬂt[a(p)+p(ﬂAx)-V—pQA]GQAXu (3.73)

The equation is of the same form as Equation 3.36 . It is therefore shown that the final form of the
equation is similar to Equation 3.41, but with the inclusion of the density scalar:
0, .. Qi 0
&(pu) =R [a(p)‘f' p(QAX)-V-pQA]|u

——
Coriolis

(3.74)

The relation between the non-inertial and inertial frames for the advection term in the compressible

Navier-Stokes momentum equation is:
V-(paed) = REYGI*[V-(pusu)] (3.75)
By using Equation 3.5 the equation above is expanded into:

V-(pae@)=RY{V-p[u+xAQ)s(u+xrQ)]}

(3.76)
=Rm{(V-pu)®u+(V-pu)®(x/\Q)+ [V-pxA Q)] @u+ [V p(xAQ)]exAQ)}

As shown in Section 3.1.2.2 and Appendix A , the identity below can be used to simplify the equation.

(V-a)e(xnQ)=anQ (3.77)

This leads to the following expression for relating the diffusion term in the rotational Frame O to
the terms in the inertial Frame O:

V- (paea)=RY[V-pusu+purQ+V-pxAQ)@u+(pxAQ)AQ]

Coriolis Centrifugal

The pressure gradient term in the momentum equation is transformed in a similar manner than shown
in Section 3.1.2.2 . This part of the equation remains Galilean invariant since it is a scalar (Kleppner
and Kolenkow [60], McCauley [61]).

@p\ — RQtGQ/\va

X (3.79)
Vp=R¥vp

In the transformation of the diffusion term the difference between the compressible and incompressible
cases must be noted. Divergence of the velocity vector is not equal to zero, therefore the completed
diffusion term must be accounted for. The expression for relating the diffusion term between Frame O

and Frame O hence becomes:
V- [pva+val) + Av-ai] = RMGMEV.- [u(Va + Vah) + AV )] (3.80)
With implementation of Equation 3.10, the right hand side of the equation above becomes:
RV {u[Vu+xAQ)+Va+x A Q)T+ A(V-(u+x A Q))I} (3.81)
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If it is considered (as derived in Appendix A ) that,
VEAQ)+VEAQ)T =0 (3.82)

and
V- xAQ)=0 (3.83)

it can be shown that, as in the case of incompressible flow, the diffusion component of the momen-

tum equation is invariant for constant rotation conditions:
V- [aVa+val) + Av-@i] = RYV- [u(Vu+ val) + AV-wiI] (3.84)

The same principle of summation of the parts, as used in Section 3.1.2.2, is used to obtain the final form
of the non-inertial momentum equation:
opa oo o e T A AT L A And . .
—+V-(paea)=-Vp+ V- [A(Va+Va )+ A(V-DI] +20a A Q- px A QA Q
t —_—— Y——
Coriolis Centrifugal (3 .8 5)

3.1.3.3 Energy Equation

The general energy equation remains the same as described in the previous section:

aaLf+(V-peu)=—p(V~u)+V'(kVT)+(p (3.86)

This equation remains invariant in the non-inertial frame as shown in Equation 3.65
— +(V-pét) = —p(V- )+ V-(EVT) + (3.87)

Take again note that there are not fictitious effects present in the energy equation.

3.1.4 Incompressible Equations as a Special Case of the Compressible Equations

The incompressible momentum equation is a special case of the compressible momentum equation. The
latter assumes that the velocity of the flow is low enough (below Mach 0.3) that the compressible effects
does not have a significant effect on the flow properties. The difference between the incompressible
flow (Equation 3.55) and the compressible flow (Equation 3.85) is seen in the diffusion terms and the
presence of the density parameter in all terms. The fictitious forces, Coriolis and Centrifugal, are again
presents and has the same origins, from the material derivative, as in the incompressible case.

If the flow is assumed to be incompressible, the mass flux is close to zero. This is a special case of
compressible flow that assumes that no temporal changes in density occurs.

The compressible continuity equation in the rotational frame was determined in Equation 3.18 :

0p

—+V-pa=0 3.88

5 TV pu (3.88)
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The applied assumption of incompressibility results in the transient change in density being zero:

Y
%
ot (3.89)
e—0
The equation therefore becomes:
V-pa=0 (3.90)

This provides the same result Equation 3.19 which is the derived, incompressible continuity equa-

tion in the rotational frame.

The derived, compressible momentum equation in the rotational frame (Equation 3.85 ) is:
—+V-(paew)=-Vp+ V- [pVa+val) + AV -@)i] + 2061 Q- px A QA Q (3.91)
The first term that must be simplified to account from incompressibility is the diffusion term:
V- [aVa+val) + Av-ai] (3.92)

Let's consider the x-momentum components of the divergence of the deviatoric stress tensor (Equa-
tion 3.70). Assume in this instance that the dynamic viscosity u is a constant. Viscosity is a function of
temperature which in turn is a function of pressure and density. Therefore, since density is constant in

incompressible flow, viscosity is as well. Simplify the relation to obtain the form as shown below:

0 ou 0 ou Ov 0 ou Oow
Pu u %u v Pw, 0

— ettt —— + +—(AV- 3.93
0x2  0y2 ' 022 Oyox ooax) oAV W (3.93)

0 0
e (V-u)+ p (AV-u)

This relation can be written in the vector form to account for all the components of the diffusive

:,uV2u+u

momentum if it is assumed that the second viscosity, A, is constant according to Stokes Hypothesis
(White [9]):

V- aVa+ V- [(f+ AV -a)] (3.94)

The second term in the expression above is equal to zero if the incompressible continuity equation

is substituted into the relation. This result in the following equation:

0 N . A
§+V-(,ﬁﬁ®ﬁ):—Vﬁ+V-ﬁVﬁ+2pﬁ/\Q—pfz/\Q/\ﬂ (3.95)
Since density is constant in the equation above, it can be divided into the equation. This leads to the
non-inertial momentum equation:
o ., S S .
a+(u-V)u:—Vz//+vV U+20NQ-xAQAQ (3.96)
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This equation above it the same as Equation 3.55 which was derived from first principles.

The conservation of energy equation in the rotational frame for compressible flow is described by (Equa-
tion 3.237):
opé .~ ... A A A
E+(V-peu):—p(V-u)+V-(kVT)+(p (3.97)
When the continuity equation (Equation 3.19) is applied to this equation it results in:

a";‘%(v péa) =V-(EVT) +¢r (3.98)
This is the same as Equation 3.66 where the incompressible energy equation in the rotational frame
was derived.
The derived incompressible equation provided the same results as the compressible equations with
incompressibility conditions. This section therefore indicates that there are no observed discrepancies
between the derived equations for the compressible and incompressible cases in the rotational frame.
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3.2 Non-inertial Navier-Stokes Equations for Variable, Pure Rotation

In Section 3.1 the non-inertial Navier-Stokes Equations for constant, pure rotation were derived. In re-
ality there are very few rotational flow applications where a constant rotational speed is maintained.
Even if such a speed is desirable to maintain a specific performance region, the rotation is not constant
over the entire duration of the event. Start-up and shut-down conditions involve variable rotational ve-
locities. Examples include helicopter blades, turbine rotors and ship propellers. Additional non-inertial
terms manifest when the rotation is about a moving axis of variable nature. In this section these terms
are derived and isolated to obtain a better understanding of non-inertial terms for unsteady rotational

flow.

3.2.1 Frame Transformations

Assume that the same three frame exists as described in Section 3.1.1; O, O' and O (Figure 3.5). O
is again the stationary frame, O' is the orientation preserving frame and O is the rotational frame. In
Section 3.1.1 O was rotating at a constant velocity around the shared origin. Here O is rotating around

the shared origin with a constant rotational acceleration.

Figure 3.5: Local Galilean Transformation between Frames

Yy A P
Y
X'
A *
X
>
O X
Xrel

L '
0] X z

N

3.2.1.1 Local Galilean Transformation

The local Galilean transform, as described in Section 3.1.1.1, is here expanded to account for rotational
acceleration.
Assume that the frame origins intersect at time ¢ = 0 and that Frame O' is moving at unsteady

velocity, vyel, With acceleration aye in three dimensional space. At time ¢ =A¢ Frame O and Frame O'
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are distance Xy from each other. In Equation 3.2 there was not an accelerating component, but in this

case it is incorporated in the expression to account for the distance travelled by the particle:
1 2
Xrel = Vrel Al + EarelAt (3.99)
In the equation above the velocity is again described as in Equation 3.3 :
Viel = QAX (3.100)

The acceleration is the time derivative of the velocity:

Vi 0 o0 ox
Prel _ % 1o px]= S ax+ QA 3.101
e e TR 7 (3-101)

The second term is equal to zero since this case involves pure rotation. The accelerating component

for the rotational case is therefore expressed as:
arel = QAX (3.102)

Equation 3.99 is a Taylor series expansion that was truncated after the second order term since
constant acceleration was assumed. Had the acceleration not been constant, the additional terms are

accounted for by the inclusion of further derivative terms:

1 1
Xrel = Vyel AL + 5amlAﬂ + 5aslmlAﬁ +... (3.103)

In this equation it can already be seen that the effect of further derivatives on x,e] becomes negligible.
This is due to the coefficient A¢" that becomes smaller and smaller. Subsequently, the effects of the
higher order terms are diminished.

In the same manner as in Equation 3.5, the relation between the order preserving Frame O' and the

inertial Frame O is defined with the inclusion of the accelerating components:

u'(¥,#) = GMu(x, t)
— GQAX+(QAX)Atu(X, t) (3.104)

=u(x,t)+x A Q+(xA Q)AL

3.2.1.2 Rotational Transformation

The rotational transform for this case can be defined in the same manner as Equation 3.9. The vec-
tor components in Frame O is related to Frame O' by defining a rotational transform and substituting

Equation 3.104 to relate Frame O to Frame O:

ﬁ(f{, t) — Rﬂt+ﬂt2ul(xl’ t)

, . (3.105)
:Rﬂt+9.t GQAX+(QAx)Atu(X t)
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R+ ig the rotational transform that operates on the vector x/, defined in Frame O', to obtain the

% coordinates in the unsteady rotational Frame O (Figure 3.6).

Figure 3.6: Relation between Frame O' and Frame O

27
\

O‘)

~

7

Let's assume that the rotation is around the z-axis. The vector Q is described as Q =(0,0,Q) and

vector Q is described as Q = (0,0,)). The rotational transform in this case is described by:

cos(Qt + Qt2) sin(Qt + Qtz) 0
R _ | _Gin(Qt+ 02 cos(Qt+Q2) 0 (3.106)
0 0 1

From Equations 3.104 and 3.105 it is derived that the following relation holds:

W&, 1) = RY O [u(x 1)+ x A Q +(x A Q)AL (3.107)

3.2.2 Incompressible Flow Conditions
3.2.2.1 Continuity Equation

Consider the continuity equation in the inertial reference Frame O (White [9]):
0
P (v-pu)=0 (3.108)
ot
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The non-inertial form of the unsteady density term can be described as, the same at in Section 3.1.2.1

(3.109)

op . . PXesar, t+ AL - p(Xe, 1)
—(X4,8) = lim
ot At—0 At

A Taylor series expansion of the term p(Xy1a¢, ¢ + At) provides an expression similar to Equation
3.13 but with the inclusion of the rotational acceleration:

1 . 0
ﬁ(xt+At, t+At)= ﬁ(Xt,t) + {[At(ﬂ AXy)+ 5At2(ﬂ AXy)]- V}ﬁ(xt, t)+ (At&)ﬁ(xt, t) (3110)

Substitution of this expansion in the Equation 3.109 and manipulation result in an expression that
relates the non-inertial, unsteady density to the inertial frame. This is exactly the same as Equation 3.14.

ap 22 0
9 _ gosrar [a—i’ +(QAx,)-Vp]

ot (3.111)

Equation 3.105 is used to obtain an expression that relates the inertial form of the second term in Equa-

tion 3.108 to the non-inertial Frame O:

(@ . p'\ﬁ) — RQt+QtZGQ/\X+(Q/\X)AL‘(V . pu)

:Rﬂt+ﬂtzv'p(GQAx+(QAx)Atu) (3.112)
Substituting Equation 3.107 into the expression above simplifies it to:
(V- pia) = ROy plu+x A Q +(x A Q)AL] (3.113)
The third term in the relation above is equal to zero as shown in Appendix A :
V-xAQ)=0 (3.114)
The relation is hence simplified to the following relation, that is the same a Equation 3.16:
V. o= R (V. (pu)— (Q AX)-Vp) (3.115)

The addition of Equation 3.111 and Equation 3.115 gives a relation for continuity in the rotational
Frame O: 56 5
a—‘;+©.pﬁ:Rﬂf+ﬂf2(a—’;+v.pu) (3.116)

Implementing Equation 3.108 and invoking the assumption that the flow is incompressible leads to

the final equation for mass conservation in the non-inertial Frame O :

V-pa=0 (3.117)

Consider the term (x AQ)A¢ in Equation 3.113. This term originates from the Taylor series expansion

in Equation 3.103 and contains a A¢ component. Any further expansions, due to changes in acceleration
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in rotation, contain a At component. These acceleration terms become negligible in the limit as A¢"

approaches zero:

.0
A1}1110(;(/\9),@({:0 (3.118)

Divergence of the cross product further ensure that these terms, and any higher order terms, becomes
zero in accordance to Equation 3.114. In the light of this, the derivations for the continuity equation in
the rotational Frame O had been proven Galilean invariant whether the rate of rotation it is zero, constant

or variable. In any rotational frame Equation 3.117 holds for incompressible conditions.

3.2.2.2 Momentum Equation

The conservation of momentum equation in the inertial Frame O is expressed by (White [9]):

0

6—‘;+(u-V)u=—w+vv2u (3.119)
The terms are again, as in Section 3.1.2.2 , treated separately and then combined to obtain the final

transformed equation.

The first transformation concerns the unsteady term where the limit at a point equation is used:

oa L aXgaag, t+ A —0(xy, 1)
— (X, t) = lim
ot At—0 At

(3.120)

The first task is to find an expression for the term G(X;4a¢, ¢ + At) as a function of the terms in the
inertial frame. It follows from Equation 3.105 that it can be expressed as:

- 9 .
ﬁ(&t+At;t+At) :RQ(t+At)+Q(t +At )[GQAXHM+(QAxt+At)Atu(Xt+At,t+At)] (3121)

For simplification purposes the rotational and local Galilean transforms in this case are shown in

the following manner (Equation 3.29) :

RQU+AD+QE*+Ar%) _ pMITA

GQAXHAt"‘(Q/\XHAt)At — GM”M (3.122)
The Taylor series expansion for x4 is expressed as:
1
XAt = X¢ + Vyel AL + §arelAt2 +O(AL%) (3.123)

The equation above is truncated at the second order since the change in acceleration in the case is

considered zero. With the substitution of Equations 3.100 and 3.102 the equation above becomes:
1.
Xpinr — X = Xar = (QAX)AL + 5(Q AX)AE? (3.124)

The Fourier series expansion is obtained for w(x;ia¢,t + At). Substitute Equation 3.124 into the

expression to obtain:
1 . 0
w(Xsap, t+AL) =w(xy, t) + {[At(ﬂ AXy) + §At2(ﬂ A xt)] -V}u(xt, t)+ (Ata)u(xt, t) (3.125)
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The equation above is substituted into Equation 3.121 to get an expression for the non-inertial terms

as a function of the inertial terms:

. . 1 . 0
eant+ A8 = RMGM ™ fu(x,, ) + [AHQ AX,) + SAPQ@Ax)] - Viulx, )+ (At Jutxr, 1)
(3.126)
In Section 3.1.2.2 Equation 3.29 it was shown that the following simplification can be made to the

local Galilean transformation parameter:
GM™ g™ (3.127)
The above leads to a simplified form:
(ks n, t+A8) = R GM fu(x,, 1)+ [At(ﬂ/\xt)+%At2(ﬂAxt)] Viu(x,, t)+(Ata%)u(xt, £} (3.128)

In order to complete the substitution for Equation 3.120 further expressions must be defined. As-
sume that the point P is fixed in the rotating frame, and the rotation is around the origin (meaning that

O and O' share an origin), then:

N t+At t
X ZRM X¢+At ZRM X;

A (3.129)
X; = RM tXt+At
Use the expression above and conduct a Taylor series expansion for X, ay:
1
XAt = X¢ + VAt + EaAtz + O[At3]

N 1. (3.130)

=RM %, 00 +(Q AX)AL+ S@nAx)+ O[A#?]

Re-arrange the expression above and consider it in the limit:
. RMMXHAt — Xt At . 1 : 3

Al}g}o At = Alg}o (x: A Q) - §At(ﬂ/\xt)—O[At 1) (3.131)

If the above is considered for any vector b, and if it is taken into account that x;,r; — X; as At — 0,

the following equation related to rotation is obtained:

RMb_b
lim — — =

bAQ (3.132)
At—0 At

This is the same as Equation 3.34 and is valid for displacement and velocity vectors as shown in
Section 3.1.2.2.
With all the required expressions in place Equation 3.120 can now be completed:
ou RM™GM[1- o + AHQ AX) -V + SAL2(Q A xy) - V]ux, 1)+ (At ulxy, 1)}

(&, )= i
ot &,8)= lim, At

(3.133)
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Equation 3.132 is used to simplify the expression above and with some re-arrangement of terms the

following expression is obtained:

a6 . 0 :
a—l;(f(t,t)zRM [5 +(QAX) V-0 A [GMux,, 1)] (3.134)

This equation above is the same as Equation 3.36 for constant rotation. It retains its current form
irrespective of any further changes in unsteady rotational motion. All higher order terms, accounting

for unsteady rates of change, become negligible when the expression is considered in the limit.

Equation 3.107 is substituted in the equation above to remove the local Galilean operator from the

equation:

d0 (0
Z(&s,6) = RV [ +(QAx,)- V- QA ] (ulx, 1)
ot ot
o
+RM [ +(QAx)- V-QA](x A Q)
%t (3.135)
+RMt[&+(QAxt)-V—QA](XtAQ)At

The different parts of [% +(QAX;)-V—QAI(x; AQ), which is the second combination of terms in

Equation 3.135 , are considered here.

The transient term in the equation above can be expanded on with the use of the product rule for partial

differential equations:

0 0x 0Q
g(x’f/\ﬂ):a_;/\ﬂ-’-Xt/\E (3136)

In the equation above the first term on the right hand side is zero because the magnitude of x; is
constant, it does not change it's magnitude with respect to the origin. The second term is not equal to
zero in this case and has to be taken into account since it represents the unsteady rotation, this is called

the Euler fictitious force.

The terms [(Q Axy) -V — QAl(x; A Q) has already been shown in Section 3.1.2.2 to be equal to zero:
[(QAX)-V-QA]xAQ)=0 (3.137)
Therefore, the relation [% +(QAX;)-V-QAI(x; A Q) , for this case, simplifies to:
[%+(Q/\xt)-V—Q/\](xt/\Q):xt/\Q (3.138)

The different parts of [% +(QAX,)-V—QAIx; A Q)AE, which is the third combination of terms in

Equation 3.135 , are considered below.
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The transient component of the terms can be expanded again using the product rule. In this case the

terms are all equal to zero:
0 L 0x 0Q
—xANQ)=—ANQ+x: A— =0 3.139
or XN =5 AT (3.139)
The first term in the equation above is equal to zero because the magnitude of x; is constant due

to the pure rotation. The second term in the equation is equal to zero because constant acceleration is
considered in this case.

Now consider the term [(Q Ax;)-V — QAl(x; A Q)At. If the identity Appendix A:
(@a-VxAQ)=arQ (3.140)

is considered, it can be shown that the entire term is equal to zero:

[(QAX) V-QA|xAQ)=(QAX)AQ - QA (X AQ)

(3.141)
=0
The entire third combination of terms in Equation 3.135 therefore becomes zero:
0 .
[a—t+(Q/\Xt)'V—Q/\](Xt/\Q)At=0 (3.142)

The expressions above leads to the final description of the unsteady terms in the momentum equation

for constant rotation:

d 9 .
D&, =RM [Z (@ rx) V-0 A](ux, ) +BY (x, A Q) (3.143)
ot ot —_—— ——

Coriolis Euler

At this stage it must noted that in any pure rotation, this is the form the unsteady component of the
equation takes. Higher order terms that appear in rotation as a result of unsteady behaviour becomes
negligible as demonstrated in this section.

Take note in this equation of the appearance of a part of the Coriolis effect and the Euler effect. The
Euler term account for the variability in the rotational velocity and is not seen in Equation 3.20 since

that equation is for constant conditions.

The advection term in the non-inertial Navier-Stokes equation for constant rotation is transformed in
the following paragraphs. The relation between the inertial and rotational frames can be described by
the equation below:
@-Va=RM6M@u - V)u
=R™(GMu-v)GM'u (149
With the use of Equation 3.107 , the equation above is expanded into:
@-¥)a=RM [[u+xAQ+xAQ)AL)-V]u
+RM [(u+x A Q+(xAQ)AL)-V]|(xAQ) (3.145)
+RM [(u+xAQ+(xAQ)AL)-V](x A Q)AL
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The equation above can be simplified by considering it in the limit of A¢ as it approaches zero and

using the identity in Equation 3.39 . This leads to the equation:

@-Vya=RM[u-Vyu+(xAQ)-V)u+uAQ)+xAQ)AQ] (3.146)
—_——— ——
Coriolis Centrifugal

This is the form the advection terms of the momentum equation take in rotation, irrespective of any
unsteady rates of change. In this equation the appearance of the second part of the Coriolis effect and
the Centrifugal effect is shown.

The pressure gradient term is considered next. The relation between the inertial and rotational frame for

the pressure gradient can be expressed in the manner below:
Vi =RM GM vy (3.147)
Since scalars are Galilean invariant under transformation, the equation simplifies to:
Vi =RM vy (3.148)

The last term in the momentum equation that must be transformed is the diffusion term. The relation
between the inertial and non-inertial frames is described below and Equation 3.107 is used to expand
on the relation:
w2i = RM g™ vv2u
=RMyv2GM'y (3.149)
=RV W2 [u+x A Q+(x A Q)AL

If the following identities, as proofed in Appendix A , is substituted in the equation above,

ViZxAQ)=0
. (3.150)
V2[(x A Q)AL =0
the advection terms of the momentum equation becomes:
vW2i = RMyv2u (3.151)

Note that the pressure and viscous term is Galilean invariant in this instance and the two components

can be combined into a single variable f:
f(x,t) = —Vy +vV2u (3.152)
The relation for f between the inertial and rotational frames can therefore be described by:
f%,t) = RM'f(x, 1) (3.153)
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Expressions have been obtained for all the parts of the momentum equation that relates the inertial Frame
O to the rotational Frame O. The transformed equation is obtained by the summation of the transient

and advection components as derived in Equations 3.143 and 3.146 :

0% N 0 .
—u+(ﬁ-V)ﬁ=RMt[—u+(u~V)u+2u/\Q+xAQAQ+x/\Q]

ot gfl (3.154)
:RMt[EHu-V)u] +RM [2unQ+xAQAQ+xAQ]

First grouping of terms on the right hand side of the equation above can be simplified using Equa-
tions 3.119, 3.152 and 3.153 :

R [g—ltl +-V)u| = RM (-vy +vV2u)
_ RMf(x.9) (3.155)
=f(x,1)

Second grouping of terms in the transformed equation can be simplified using Equation 3.107 and
become:
RMQuAQ+xAQAQ+XAD)=20AQ-KAQAQ+ZAQ (3.156)

The above simplifications can be substituted into Equation 3.154 and result in the non-inertial mo-
mentum equation in a rotational frame:
oa . ., T . .
— +(@-V)a=-Vy+vWa+2arnQ-xAQAQ+XAQ (3.157)
—_— —— —
Coriolis Centrifugal Euler
IThe only difference between the momentum equation in constant rotation, Equation 3.55, and vari-
able rotation, Equation 3.157, is the appearance of the Euler term.
The Euler term % A Q represents the unsteady rotational acceleration of the point P around the axis
of rotation which in this case is the origin of Frame O. It has also been shown that the equation above

always take this form whether the acceleration in rotation is constant or variable.

3.2.2.3 Energy Equation

Consider the energy equation in the inertial frame (White [9]):

0
aite+(v-peu):—p(V~u)+v-(kVT)+<p (3.158)

The various terms can be transformed to the rotational frame separately and then combined to ob-

tained the energy equation in the rotational frame, the same method as was followed in Section 3.1.2.3 .

The time dependant term can be related between Frame O and Frame O by using the equation below.

This is the same equation as in Section 3.1.2.3 and it is valid in this case as well.

00¢ _ par+ar [aﬁ +(QAX)- V(pe)] (3.159)
ot ot
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The relation for the convective term between the inertial and rotational frame is shown below. This
equation can be expanded upon with the used of Equation 3.107 :
(V-pét)=RM GM (V- peu)
=R™[V.pe(u+xAQ+xAQ)AL)] (3.160)
=RM[V-peu+V-pe(xAQ)+V-pe(x A Q)AL]

The third term on the right hand side of the equation above was shown in Equation 3.114 to be equal

to zero. The convective term therefore becomes Galilean invariant under transformation:
(V-péa) =RM (V- peu+ V- pe(x A Q)) (3.161)

The term that represents the rate of work done by the normal force can be related in the inertial and
rotational frames as shown below. This term can be expanded upon using Equation 3.107 .
~p(V-@)=R™GM' [~ p(V-u)]
=R [-pV-(u+xAQ+(xAQ)AL)] (3.162)
=RMt[—pV-u—pV-(x/\Q)—pV-(xAQ)At]

Showing that the second and third terms is again equal to zero, the same as above and indicated in

Equation 3.114 , this transformation is also invariant.
—p(V-0)=R™ (-pV-u) (3.163)

The diffusive term in the rotational frame can be expressed in the inertial frame with the following
relation:
V-V =R GM [V (kVT)) (3.164)

Since k and T are scalars the relation is invariant under transformation:

N

V- (hVT) =R [V-(kVT)) (3.165)

The full relation between the rotational and inertial frames for the energy equation can be obtained by
summation of the components obtained above. This leads to the equation:

ape . . N 9
ﬁ+(V-ﬁéﬁ)+ﬁ(V-ﬁ)—V-(kVT)+ciJ:RMt[g+(V-peu)+p(V-u)—V-(kVT)]+(p (3.166)

The right hand side of the equation is equal to zero, this can be seen from re-arrangement of the
terms in Equation 3.158 . The non-inertial energy equation is invariant under transformation in this
specific case for constant acceleration in rotation, but it can be seen that this equation remains in this

form even if the acceleration is not constant. Equation 3.117 is further used to arrive at:
0 . PSRN
¢ L (¥ pew) =¥ -(BVT) + ¢y (3.167)
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3.2.3 Compressible Flow Conditions
3.2.3.1 Continuity Equation

The continuity equation was shown to be invariant under the local Galilean transformation for constant
rotational acceleration in Equation 3.116 . Since the compressible case is considered here, the trans-

formed equation becomes:

— 4+V-pa=0 (3.168)

The continuity equation was proven invariant in all instances of unsteady rotation.

3.2.3.2 Momentum Equation

The difference between the compressible and incompressible momentum equation was discussed in
Section 3.1. It was shown in Section 3.1.3 that the difference between the incompressible and compress-
ible case only manifests in the diffusion term. The equation for variable rotation takes a form similar to
Equation 3.85, but with the inclusion in this case of the Euler term as seen in Equation 3.157:
opu +V-(paen)=-Vp+ V- [aVa+Val) + AV-wI] + 206 A Q- pxAQAQ+px A Q (3.169)
4 —_— — ——

Coriolis Centrifugal Euler

In the case only pure rotations were considered. If the rotation was about a moving axis, an additional
fictitious term would have been present in the momentum equation. This term has its origin from the

transient term as shown in Equation 3.136 . The resulting momentum equation would be:

opa . N A N A s s .
PR (paet) = —Vp+ V- [aa+TaD) + A - wi] + 2000 Q- pRAQAQ+pRAQ+ pEAQ
ot —_— — — ~—— ———
Coriolis Centrifugal Euler Moving Axis
(3.170)

This equation applies to all bodies in unsteady rotation. It has been shown that no additional terms
are added to the non-inertial formulation even if the rotational rate of change is unsteady (Equation
3.143).

3.2.3.3 Energy Equation

The energy equation remains invariant in the non-inertial frame as shown in Equation 3.167, only here
the incompressibility assumption is not made. The non-inertial energy equation in compressible flow

therefore becomes:

— +(V-péa)=—p(V-a)+V-(RVT) + (3.171)

It was shown in Section 3.2.2.3 that the energy equation is invariant under transformation in all

cases of rotation.
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3.2.4 Constant Rotation Equations as a Special Case of the Variable Rotation
Equations

In Sections 3.1.2 and 3.2.2 it was shown that the continuity and conservation of energy equations are
invariant under Galilean transformation for all cases of rotation. This is an important result to show. Even
though mass and energy are scalar values which is invariant under Galilean transformation (Kleppner
and Kolenkow [60], McCauley [61]), it is not obvious that there are no fictitious effects when deriving
the equations using the a Lagrangian approach. The derivation of the momentum equation for the various
cases not only provided the appropriate fictitious forces for each case, but it also showed from which
transformations the forces originated (see Equations 3.55, 3.85, 3.157 and 3.169).

The derivations are based on a Taylor series expansion of the relative motion between the origin
of Frame O and the combined origin of Frames O' and O. The constant rotation case is a special case
of the variable rotation case since the order at which the Taylor series was truncated, determines the
fictitious force involved (see Equations 3.2 and 3.99 ). The variable rotation formulation lead directly
to the constant rotation formulation if constant rotation conditions is applies to it. Since the conservation
of mass and energy equations is invariant no changes occur in those formulation. This is demonstrated
using the momentum equations below.

Consider the momentum equation for variable, pure rotation in the rotational frame in incompress-
ible flow (Equation 3.157):

oa

—_— A.A A:_,\A V24 G —X X :
3 +(@-V)a VI +vVa+2anQ-xAQAQ+XAQ (3.172)

Coriolis Centrifugal Euler
The fictitious forces involved are the Coriolis force, Centrifugal force and Euler force. In the case
where the rotational is constant, Q = 0 , the Euler force becomes zero, £ A Q = 0. The equation then
becomes: .
(;—ltl+(ﬁ-©)ﬁ:—©zﬁ+v©2ﬁ+w—&/\ﬂ/\ﬂ (3.173)

Coriolis Centrifugal

This is the same as Equation 3.55 which describes the momentum equation for constant rotation as

seen from the rotational frame. This indicates consistency in the derivations.
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3.3 Non-Inertial Navier-Stokes Equation for Arbitrary Motion

Rotational cases, as discussed in the previous sections, are very specific. The formulations only applies
in applications such as wind turbines and other stationary machinery.

Applications that display fully arbitrary non-inertial behaviour can be found in the aeronautical and
aero-ballistic fields. Military aircraft that executes high acceleration manoeuvres and artillery projec-
tiles with air-breathing engines are some examples where arbitrary motion in six degrees of freedom is
observed.

The non-inertial mathematically formulations for airframes executing arbitrary motion (both in

translation and rotation) are derived here.

3.3.1 Frame Transformations

In this derivation three reference frames (the same as used in Sections 3.1 and 3.2) are made use of to

transform the inertial Navier-Stokes equations to the non-inertial form (Figure 3.7).

Figure 3.7: Frames of Observation (O, O' and O) for Point P

LEGEND

O — Absolute Frame

O'— Orientation Preserving
Frame

O — Relative Frame

P — Point Mass

Z

These frames comprise of:
» Frame O, which is an inertial frame. This frame is stationary.

* Frame O', which is a non-inertial frame. This frame is orientation preserving with respect to Frame
O. It therefore has three degrees of freedom and is free to translate. This frame accounts for the

relative translation motion between the inertial and non-inertial frames.

« Frame O, which is a non-inertial, rotating frame. This frame does not preserve orientation there-
fore it has six degrees of freedom. It can translate and rotate as predicted by the unsteady motion
imposed on point P. This frame shares an origin with Frame O' so that it can account for the

relative rotational motion between the inertial and non-inertial frames.
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Consider the point P. The motion of this point can be described from each of the three frames. This
point is in arbitrary motion in translation and rotation. The rotational axis is about the shared origins of
Frame O and Frame O'.

The flow field that surrounds this point can be described from any of the reference frames. The
standard Navier-Stokes equations hold in the inertial frame, therefore the objective is to obtain the
correct form of the equations in Frame O. It is accomplished by conducting two transformations.

The first transformation accounts for arbitrary motion between the inertial frame and the orientation
preserving frame. Since Frame O' and Frame O shares an origin, this transformation accounts for the
translation of Frame O as well. A local Galilean Transformation for unsteady motion is used to this
effect.

The second transformation accounts for arbitrary rotation. A transformation from Frame O' to Frame
O is defined. The relation derived during the first transformation is used to describe the flow field in

Frame O in terms of the vectors of Frame O.

3.3.1.1 Local Galilean Transformation

For the local Galilean transformation assume that the frame origins intersect at time ¢ = 0 and that frame
Ois moving at velocity vye1 and acceleration ayej in three dimensional space. At time ¢ =A¢ Frames O

and O' are distance Xy from each other. The is depicted in Figure 3.8.

Figure 3.8: Point Description between Frames

Yy A P
Y
X'
A *
X
>
O' X
Xrel

> '
0] X z

w7

Z

In Figure 3.8 the absolute distance can be described in terms of the relative and non-inertial dis-

tances:

X =Xpe] +X (3.174)
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The relative distance between the two frames is a summation of the accelerating translation and

rotation and is described by:

1
Xpel = Vyel AL + §amlm:? (3.175)

The relative velocity component consist of the translating and rotating velocity components so that:

Viel = Vtranslating + Vrotating

(3.176)
=V@)+QAx

In this equation the translation component is a function of time only as it describes the motion
between the origins of Frames O and O'. The rotation is taking place in Frame O' and is therefore
defined in this frame.

The acceleration is the time derivative of the velocity:

OVyel _

0 )
Y a[V(t)+Q/\x]

:a(t)+@/\x’+ﬂ/\0—x, -

ot ot

The first term represents the translational acceleration, while the second and third terms is a result of

the rotational velocity. Since both the derivative of x and Q is not equal to zero, these terms contribute

to the total relative unsteady motion. The accelerating component can therefore be expressed as:

Arel = Atranslating T Arotating

= alt) +QAxX+QA% (3.178)
Translating Rotating

A description for the relative motion can be obtained by substituting Equations 3.178 and 3.176
into Equation 3.175. This results in:

1 .
Xrel = [V(t) + Q AX]AL + §[a(t) +QAX +QAX 1AL (3.179)
The relation between the order preserving frame and the inertial frame is defined through a local
Galilean transformation:
u )= GMtu(x, t)

. (3.180)
=ux,t)-V@)+x' AQ-[a@t)+ QAX + Q AX]AL

3.3.1.2 Rotational Transform

The rotational transform for this case can be defined as the projection of the vectors in the orientation
preserving frame on the rotational frames. This is depicted in Figure 3.9 .
The vector components in Frame O is related to Frame O' by defining a rotational transform and
substituting Equation 3.180:
a(k,t) = RMu'(x, 1)

- (3.181)
=R GMu(x,?)
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Figure 3.9: Relation between Rotational and Orientation Preserving Frames

27
\

O‘P

~

7

Lets assume that the rotation is around the z-axis, then the vector Q is described as Q = (0,0,Q)

and vector Q is described as Q = (0,0,Q2). The rotational transform in this case is described by:

cos(Qt +Qt2)  sin(Qt+Qt2) 0
RM = | _sin(Qt +Ot2)  cos(Qt+O2) 0 (3.182)
0 0 1

From Equations 3.180 and 3.181 it can be derived that the following relation holds:

(%, 6) = RMux, ) - V@) + X' AQ - [a@) + QA X + Q@ AX1AL] (3.183)

3.3.2 Compressible Flow Conditions
3.3.2.1 Continuity Equation
Consider the continuity equation in the inertial reference frame (White [9]):

op

= H(Vpw=0 (3.184)

The time dependant term in the inertial and non-inertial frame is related by the same expression in
Sections 3.1.2.1 and 3.2.2.1. The exception in this case is that the rotation is around the origin of Frame
(O .

0_p _ RMt[Gp

— , .
o = +H(@Ax)-Vp] (3.185)
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The relation between the inertial and non-inertial formulations of the second term in the continuity

equation becomes:

V- pt)=RMGM (V- pu)

(3.186)
=RM'V. p(GM )}
With the implementation of Equation 3.183 the relation is simplified to:
(V-pa)=RM' V. plu- V() +x' A Q —[at) + QA X + QAKX (3.187)

The divergence of a cross product is equal to zero (see Appendix A for the proof), hence a number
on the terms in the above relation is cancelled out:
V-(QAx)=0

(3.188)
V-(QAX)=0

Furthermore, the divergence of the translational components are equal to zero. This is due to the
translation being dependant on the time dimension alone - V(¢) and a(¢) are constant throughout the

spatial domain at any given time step:

V-V#) =0
V-a(t)=0

(3.189)

The relation is hence simplified to an invariant relation as all the additional terms cancels out:
V-pa=RM (V- pu+V-px' A Q) (3.190)

The addition of Equations 3.185 and 3.190 give a relation for continuity in the non-inertial frame:

A

0 & .. m 0p
L +Vv-pa=RM (=L +V. 3.191
5 TVopu (6t+ pu) ( )

By implementing Equation 3.184, the final equation for mass conservation in the accelerating frame

1s obtained:

0p
Z +V-pa=0 3.192
Y pa ( )

The derivations for the continuity equation, here and in Sections 3.1.2.1 and 3.2.2.1, in the non-
inertial frame have shown to be invariant to transformation whether the acceleration is zero, constant

or variable. In any non-inertial frame Equation 3.192 holds for compressible conditions.

3.3.2.2 Conservation of Momentum Equation

The compressible Navier-Stokes Equation in the inertial frame takes the form (White [9]):

0
—pu +V-(pueu)=-— Vp +V-[p(Vu+vuh) + A(V-wI] (3.193)
ot —_—— ~— N -~ by
v Advection Pressure Gradient Compressible Stress Tensor
Unsteady
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The non-inertial forms of the separate terms of the equation, are derived from this form to obtain

the compressible equations in the acceleration frame.

First consider the unsteady term in the rotational frame and apply the product rule for partial deriva-

tives. This operation results in two terms that was not considered during the incompressible case:

0 oa  0p
—(ph)=p— +a— 3.194
5 P =p5, ag, (3.194)
The first transformation concerns the unsteady term where an expression is found for:
o0 A(Rping, b+ A —G(Ry, ¢
0 )= lim SEeranl+ AN~ 0G, 1) (3.195)
ot At—0 At

The first task is to find an expression for the term G(X;; ¢, ¢ + At). The expression takes a form that

is similar to Equation 3.181:
W&panp, t+ A1) = RN W (X pyng, £+ AL) (3.196)
The Taylor series expansion for X'y, a; is expressed as:
X in =X+ VAL + %a'm? +O(AE?) (3.197)

The expression above is as seen from the orientation preserving frame. Since this frame is free to
translate, but not to rotate, only the rotation terms are relevant here. The equation above is truncated at
the second order as further changes in acceleration does not have a effect in the non-inertial frame. With
the substitution of the rotational components of Equations 3.176 and 3.178 and further re-arrangement
the equation becomes:

1.
X i —X, =X pr = (QAX)AL + 3@~ X, + Q Ax)AL (3.198)

The Fourier series expansion is obtained for uw'(x';. ¢, + At). Substitute Equation 3.198 into the
expression to obtain:

! / / / / 1 2/ ¢ / -/ a
u (X, ppt+AD =u(x;, 1) +{[AH(Q AX) + §At QA+ QAX)]-Via(x,, ) + (Ata)u(xt, t)
(3.199)

The equation above is substituted into Equation 3.196 to get the expression:

t+ 1 5 0
W&o onr,t+ A1) = RM ™ fu/(x), ) + {IAHQ A X)) + §At2(ﬂ AX,+QAX)] -V (x),8) + (At&)u'(xg, )}
(3.200)

The assumption are made that the point P is fixed in the rotating frame, and the rotation is around

the origin of Frame O'. The relation of motion between two time steps are:
A Mt+At / _ Mt
x=R Xpn =BT X

x,=RM"'x! ., (3.201)
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Next a Taylor series expansion for x;, ,, is developed and the equation above is used to arrive at:

1
X, A, =X, + VAL + §a’At2 +0[A]

N 1 (3.202)
t o
=RM"x] ,, +(QAX)AL+ S@Ax;+ QA x)At? + O[At]
Re-arrange the expression above and consider it in the limit yields:
RMM ! 1
lim Xis00 " ¥renr = lim [-Q A X} - —At(ﬂ AKX+ QAX,) - O[A]] (3.203)
At—0 At At—0

If this expression is considered for any vector b, and taken into account that x;,a; — X; as At — 0,
the following equation related to rotation is obtained:

RMb-b
lim ———=bAQ (3.204)
At—0 At

With all the required expressions in place Equation 3.195 can now be completed:

o RM™[1- Lo + AHQAX)-V+ LAZQ A X, + QA X)) - VW (x], 1) + (At 2)u/(x), 1)}
—(%,0) = hm

ot -0 At

RMAt

(3.205)

Equation 3.204 is used to simplify the expression above and with some rearrangement of terms the

following expression is obtained:
oa Mt O , M
E(Xt’t):R [& +(QAX)-V-QAIG™ u(x,,t)] (3.2006)
This equation above retains its current form irrespective of any further changes in acceleration. All
other terms that is inserted to account for variation in acceleration become negligible when the expres-

sion is considered in the limit. This equation is similar to Equations 3.36 and 3.134 indicating that the

higher order acceleration terms do not cause any changes in this expression.

Substitute Equation 3.206 into Equation 3.194 and with the aid of Equation 3.181 the above be-
comes:

0 dp
o, (P = RMtGM[ +p(Q/\xt) Vu- pQ/\u+u—] (3.207)
The product rule is then used to combine the terms p S and u £ 5o that the equation simplifies to:

0 ) .
5P =RM [5;(0)+p(@ AX))-V - pQAlIGM u (3.208)
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Equation 3.183 is substituted in the equation above to remove the local Galilean operator from the
equation:
opa Mt 0 ,
E(X“ t)=R [&(p) +p(QAX};) -V — pQAI(u(xy, 1))
w0 /
-R [&(p) +p(QAX) -V - pQAIV(2))
. 0
+RM [5,(0)+ p(@ X))V =~ p@AIGK; A ) (3.209)

. 0 . '
+RM [5,(0)+ P(QAX))-V — pQAN@(E) + A X, + QA K)AL

The different parts of [%( p)+p(QAX})-V—pQAl(x; AQ), which is the third combination of terms

in Equation 3.209 , are considered here.

The transient term in the equation above can be expanded on with the use of the product rule for partial

differential equations:
0 [ 0Q
—XAQ)=—ANQ+EA—) 3.210
ot ! ot Y (3:210)
In the equation above the first term on the right hand side represents the unsteady motion of point P
in the frame O' in cases where the rotation is not purely about the fixed axis. In pure rotation cases this
term is equal to zero. The second term represents the unsteady rotation, this is referred to as the Euler

fictitious force.

The terms [(Q A X)) -V — QAI(X] A Q) is equal to zero and cancels out:
[(QAX?)-V—Q/\](X;/\Q):O (3.211)
The relation [%(p) +p(Q AX;) -V — pQAIX; A Q), for this case, simplifies to:
[a%(p)+ p(QAX])-V—pQAIX, A Q) = px, A Q + px, A O (3.212)

The entire fourth combination of terms in Equation 3.209 falls away.
The above leads to the final description of the unsteady terms in the momentum equation for arbitrary
acceleration:
opa

0 .
<&, ) = RM [—(0) + p(Q A X)) -V — pQAI(u(xs, ) -V(E) + RN ( px,AQ +px,AQ) (3.213)
ot ot —— ——

- v
Coriolis Moving Axis Euler

In any arbitrary acceleration case, this is the form the unsteady component of the equation always
take. Take note in this equation of the appearance of a part of the Coriolis effect, Euler effect and a term

that is related to in frame motion due to rotation that is not purely around a stationary axis.
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The relation between the frames for the advection term in the compressible Navier-Stokes momen-

tum equation is:

N

V-(paea)=RMGM[V-(pusu)] (3.214)
By using Equation 3.180 the equation above is expanded into:
V-(paea)=RM(V pl(u-V(®) +x AQ—[alt) + QAX + QAKTAY)
eu-VE)+x' AQ-[alt)+ QAx + QAKX 1AD]
= RV pu)eu—(V-pw) & (V(1) + (V- pu) & (x' A Q) (3.215)
—[V-p(VE)leu+[V-p(V(t)] @ (V1) — [V p(V()] 8 (x' A Q)
+IV-px AQ)]eu—[V-px A Q)] V() +[V-px A Q)] x A Q)

The identity as derived in Appendix A below can be used to simplify the equation.
(V-a)e(xX'AQ)=anQ (3.216)

This leads to the following expression for relating the diffusion term in the rotational frame to the
terms in the inertial frame:
V-(paea)=RY[V-pueu+punQ+V-px' AQ)ou+(px AQAQ+pVAQ]  (3.217)
—— —_—
Coriolis Centrifugal Magnus

The original of the second part of the Coriolis and the Centrifugal terms can be seen here. Fur-
thermore, an additional term that represents the change in diffusion due to the interaction between the

translating and rotating part of the flow can be seen here. This is referred to as the Magnus force.

The pressure gradient term in the momentum equation is transformed. This part of the equation

remain invariant since it is a scalar.
A t 13
Vp=RMcMvp
. - (3.218)
Vp=R" Vp

In the transformation of the diffusion term the difference between the compressible and incompress-
ible cases must be noted. The divergence of the velocity vector is not negligible, therefore the completed
diffusion term must be accounted for. The expression for relating the diffusion term between the frames

hence becomes:
V-aa+ vah) + A - ol = RMGM'V - [u(va + vuTl) + A(V-wI] (3.219)
With the implementation of Equation 3.183, the right hand side of the equations becomes:

RMV . (uV(u-V@)+x' AQ—-[alt) + QAx + QAX]AL)
+Vu-V@)+x' AQ-[alt) + QO Ax + QAKX 1AHT] (3.220)
+AV-u-V@) +x' AQ —[a@t) + QAx' + QAXTAD)T}
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If it is considered that, as shown in Appendix A,

V' AQ)+VE AQ)T =0
(3.221)
V- (X' AQ)=0

It can be shown that the diffusion component of the momentum equation is invariant for constant
rotation conditions:

V-[pVa+vah) + AV- i = RV - [u(Vu + Vu?) + A(V-w)] (3.222)

The final transformation of the momentum equation relies on the summation of the transient and

advection terms, as well as further manipulation of the resulting groups of terms.

Group 1
pa . . an 0 )
— +V-(pa®w)=R" [ +V-pueu-—(pV(Q
5 (pa o) [at(pu) pueu 6t(p @)
Group 2
+ X AQ+px A Q+ (X' AQ)AQ+2punQ (3.223)
Group 3
+V-o(x AQ)@u+ p(QAX)-Vu—p(QAX)- VV()
Group 3
+70V(t) ANQ+pQ AV())]

Group 1 is replace by the equation below, where Equation 3.193 was used the rotational transform

multiplied through the equation. Subsequently the non-inertial form of the terms were obtained:

w9 : — RM[_ . T :
R [at(pu)+V pudu]=R™ [-Vp+V - [u(Vua+Vu")+ AV -wl]] (3.224)

= —Vp+V-[ava+val)+ AV -wi]
The Group 2 terms represents the majority of the fictitious forces. These were manipulated as shown
below to determine the non-inertial form:
RMpx' AQ+px' AQ+(px' AQ)AQ +2pun Q]
= pBRM)X A Q+ pRM)X AQ+(pERM)X AQ)AQ +20(RM yunQ
= pXANQ+pXAQ+pXAQAQ+2p[0+V(£) — KA Q + (Arelative) AL A Q (3.225)
= pXAQ+pRKAQ+pXAQAQ+200AQ+20V(HAQ - 20K A QA Q
= pXAQ+pXKAQ - pXAQAQ+200AQ+2pV(H) A Q
The remainder of the terms, Group 3 conveniently cancels each other out.

V-p(x' AQ)@u+p(@Ax) Vu-p(@Ax)-VV(E) +pV(E) AQ+pQAV(E) =0 (3.226)

Summation of the transformed parts of the momentum equation lead to the final form of the com-

pressible, non-inertial momentum equation for full arbitrary motion:
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apa . e L
%+V-(ﬁﬁ®ﬁ):—Vﬁ+V-[ﬁ(Vﬁ+VﬁT)+)L(V-ﬁ)I]

) \ .
= 5 (VD) + pRAQ+pRAQ +208A Q- pRAQAQ+2VOAD  (3.227)
—_—— ——

— — v
Translation Euler Coriolis Centrifugal agnus

Unsteady motion

The equation above indicates that there are six fictitious terms in the non-inertial momentum equa-
tion for fully arbitrary motion. These are the only terms that is present during arbitrary acceleration. The
higher order terms become negligible or cancel out with other terms during the derivation. A fictitious
force that is not present in the rotation cases manifests here. This is the Magnus force that represents the
interaction between the translation and rotation of the object. The unsteady translation term, two terms
due to unsteady motion and one part of both the Coriolis and the Magnus terms originate in the transfor-
mation of the unsteady component of the momentum equation. The remainder inertial terms,second part
of the Coriolis and Magnus terms and the Centrifugal term, all has their original in the transformation

of the advection term.

3.3.2.3 Energy Equation

Consider the energy equation in the inertial frame (White [9]):

0
g+(V-peu)=—p(V-u)+V-(kVT)+(p (3.228)

The various terms can be transformed to the rotational frame separately and then combined to ob-

tained the energy equation in the rotational frame.

The time dependant term can be related between the frames as shown:

0pé _ap Ope ,
¢ _rM12P¢ L@ nx)-V 3.229
5 (57 +(@Ax)-Vpe] (3.229)

The relation for the convective term between the inertial and rotational frame is shown below. This

equation can be expanded upon with the used of Equation 3.183:

(V- péa)
=RMGM (V. peu) (3.230)
=RM[V.pe(u-V(t)+x A Q—[alt) + QA X + Q AX]AL)]

The third term grouping on the right hand side of the equation above was shown in Equation 3.189

to be equal to zero. The convective term therefore becomes Galilean invariant under transformation:
(V-pea)=RM[V-peu+ V- pe(x’ A Q)] (3.231)
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The term that represents the rate of work done by the normal force can be related in the inertial and
rotational frames as shown below. This term can be expanded upon using Equation 3.183 .
-p(V-)
=RM'GM[_p(V-u)] (3.232)
=RM[—pV.-(u-V(@®)+xX AQ—[a(t) + A Ax + QAXTAD)]
Showing that the second and third terms is again equal to zero, the same as above and indicated in
Equation 3.188, this transformation is also invariant.

—p(¥-a)=RM[-pV -u] (3.233)
The diffusive term in the rotational frame can be expressed in the inertial frame with the following
relation:
V-EVT) =R GM' V- (:VT)] (3.234)
Since k and T are scalars the relation is invariant under transformation:

V-(kVT) =RMV-(&VT)] (3.235)

The full relation between the rotational and inertial frames for the energy equation can be obtained

by summation of the components obtained above. This leads to the equation:

A A

ape . e 9
0Lte+(V~ﬁéﬁ)+ﬁ(V~ﬁ)—V~(kVT)+¢:RMt[aLte+(V~peu)+p(V~u)—V~(kVT)+(p] (3.236)

The right hand side of the equation is equal to zero, this can be seen from re-arrangement of the terms
in Equation 3.228. The non-inertial energy equation is invariant under transformation in this specific
case for constant acceleration in rotation (Diaz et al. [62]). It can be seen that this equation remains in

this form even in the case of unsteady acceleration. Equation 3.192 is further used to arrive at:

— +(V-péa)=—p(V- )+ V-(EVT) + (3.237)

3.3.3 Special Cases of the Arbitrary Acceleration Flow for Compressible Conditions

The non-inertial momentum equation for arbitrary acceleration, both in translation and rotation, was
derived in Equation 3.227 :

—— 4V -(paew)=-Vp+V-[aVa+val)+ AV -wi]

0 n .
——(EV@))+pxAQ+pxAQ+200NAQ-pXAQAQ+20V(E)AQ  (3.238)

ot —— Y ~ - ~ -~
. Euler Coriolis Centrifugal Magnus
Translation

Unsteady motion
The equation above contains all the possible fictitious effects that can be present in a fully arbitrary

system as well as the full formulation for the compressible stress tensor. This equation can be used to
obtain the formulations for special cases such a the incompressible case and various combinations of

translational and rotational formulations.
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3.3.3.1 Incompressible Flow Conditions

This incompressible form of the non-inertial momentum equation for arbitrary acceleration can be ob-
tained through a combination of the fictitious terms in Equation 3.227 and the formulation of the diffu-
sive terms as in Equation 3.157. This leads to the following equation for the conservation of non-inertial

momentum:

oa - . N 0 A .
—+(@-Va= —Vu/+vv2ﬁ— —(V@)+xAQ+ZXAQ+20NA QD -XAQAQ+2V(E) A Q
Euler Coriolis Centrifugal Magnus ( . )
Translation “N———
Unsteady motion

As it was shown in all derivations of the non-inertial conservation of mass and energy equations
in this chapter, those equations remain unchanged by in its formulations irrespective of the rotations or

translations of the associated frames - there are no fictitious effects present (Diaz et al. [62]).

3.3.3.2 Various Translation and Rotation Formulations
Case I - Pure, Unsteady Rotation
Equation 3.227 is used to obtain the non-inertial formulation for the case of pure, unsteady rotation.

The limiting conditions for such is flow is where both the translational velocity and subsequently the

translational acceleration is zero. There is also be no translational motion within the non-inertial frame:

ov(t)

ot 0

V(=0 (3.240)
x=0

The conditions above is applies to Equation 3.227 to cancel out the terms that is not relevant to this

specific case.

ooa . N N . . R N
%+V-(ﬁﬁ®ﬁ):—Vﬁ+V-[ﬁ(Vﬁ+VﬁT)+)L(V-ﬁ)I]
d A o0 (3.241)
- —(pV() + pA T+ pXAQ+200 A Q— pX A QA Q+2
—_—— —\— —-
Euler Coriolis Centrifugal

The result is an expressed that corresponds with the expression derived in Equation 3.169 for the

non-inertial momentum equation in unsteady, pure rotation:

—“+V(pﬁ®ﬁ):—©ﬁ+v[ﬂ(@ﬁWﬁT)M(Vﬁ)i]+2pﬁ/\n—p&/\ﬂ/\ﬂ+pﬁ/\ﬂ

Coriolis Centrifugal Euler

63

© University of Pretoria



poat
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

QA YUNIBESITHI YA PRETORIA

CHAPTER 3. NON-INERTIAL EQUATIONS IN VECTOR FORM

Case Il - Pure, Steady Rotation

The limiting conditions for steady, pure rotation is the same as in the unsteady case with the inclusion
of the rotational acceleration being equal to zero:
ov(t)
= -
V(t)

(3.243)

0
0
0

(@ERYH
I

This results in an expression for the non-inertial momentum equation in steady, pure rotation that is

the same as Equation 3.85 that was derived using the Eulerian approach.

opa . . . A A s
gpu +V-(paew)=-Vp+ V- [aVa+Vval) + AV-wI] + 206 A Q- px A QA Q
ot < - (3.244)
Coriolis Centrifugal
Case 11l - Unsteady Translation
In the unsteady translation case all the rotation parameters are equal to zero:
x=0
fz 0 (3.245)
=0
This results in the non-inertial momentum equation for unsteady translation:
dpa . A A A Aa s O
% +9-(paow) = ~Vp+ V- [a(Ta+ V&™) + ATl - 2 (oVi) (3.246)
—_———

Translation

Case 1V - Steady Translation

The steady translation case is the simplest off all the special cases. All the motion parameters is equal

to zero with the exception of the relative frame velocity that is equal to a constant value:

ov(@)

ot
x> 0 (3.247)
G-0
Q=0

This results in the inertial momentum equation which indicates that constant translation does not

cause any fictitious effects in the flow:

‘i;’—t“ +V-(pueuw)=-Vp +V-[p(Vu+vVul) + A(V-wI] (3.248)
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Case V - Steady Translation, Unsteady Rotation

In the case where the translation is steady and the rotation is unsteady, the translational acceleration

becomes zero and the translational velocity has a constant value:

ov()

-0 3.249
¥ (3.249)

Applying the above conditions result in an equation where all the rotational terms is preserved as

well as the term the represents the interaction between the translation and rotation:

opa . PN s
%+V-(ﬁﬁ®ﬁ):—Vp+V-[ﬁ(Vﬁ+VﬁT)+)L(V-ﬁ)I]
+pXAQ+pRAQ+200NA Q- pXAQAQ+20V() A Q (3.250)
—_— Y ~~ 7N ~~ -
Euler Coriolis Centrifugal Magnus

Unsteady motion
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3.4 Closure

This chapter formalized an Eulerian method for the derivation of non-inertial Navier-Stokes equations.
The original method was used by Kageyama and Hyodo [23] to derive the Coriolis force for constant
rotational flows in incompressible fluids. It was extended here to account for all ranges of motion, from
constant pure rotation to full arbitrary accelerating flows, and applied to compressible cases. The main

contributions of this chapter can be described as follow:

* It has been shown mathematically that there are no fictitious components in the non-inertial con-
tinuity or energy equations. The non-inertial equations takes the same general form as the inertial

equations.

+ Clarification was obtained on the mathematical origin of the fictitious forces through the deriva-
tions. This indicated that the fictitious forces stems from the transformation of the temporal and

advection terms. The diffusion terms remain invariant under transformation

» The mathematical sign (positive or negative) of the fictitious forces is dependant on the selection
of the positive and negative directions. The signs of the terms that are appropriate in a system

conforming to standard sign conventions have been determined.

» The presence of fictitious forces is case dependant. The non-inertial momentum equation for a
aero-ballistic case, which involves acceleration in six degrees of freedom, has been derived. It
has been shown that the six fictitious forces derived in this chapter is the only additional forces
acting on an aero-ballistic system. From this equation the appropriate terms of a specific case can

easily be determined.

* The physical meaning of the mathematical fictitious forces can be explored from the equations

established in this chapter.

There are a number of misconceptions that have been observed in literature with regards to flow equa-
tions in non-inertial reference frames. An example where discrepancies in the literature is seen is in the
conservation of energy equation. Some sources add fictitious energy terms to these equations (Limache
[3], Gardi [2]). It was shown through derivation that both the continuity and conservation of energy

equations remains invariant under transformation - no additional terms are added to these equations:

+V.pa=0 (3.251)

— +(V-pét) = —p(V-0)+ V-(EVT) + ¢ (3.252)

The equation for full arbitrary acceleration below indicates that there are six fictitious terms in the
non-inertial momentum equation. These are the only terms that are present during arbitrary acceleration;

the higher order terms become negligible or cancel out with other terms during the derivation. The
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equation for fully arbitrary acceleration can be used to explore the appropriate form of the non-inertial

momentum equation for steady translation and unsteady rotation.

—— 4V (paen)=-Vp+V-[ava+val)+ AV wi]

0 A .
——(EV(@))+pxAQ+pXAQ+200 A Q- pXAQAQ+20V()AQ  (3.253)
ot { N R _ O _

[ —

Translation Euler Coriolis Centrifugal Magnus

Unsteady motion

The mathematical origin of the fictitious terms can be observed during the derivations. The unsteady
translation term, two terms due to unsteady rotational motion and the first parts of the Coriolis and
Magnus terms originates in the transformation of the unsteady component of the momentum equation
(Equation 3.213).

dpa
ot

0 .
(%0, 8) = RM[=(p) + p(Q A X)) -V — pQAIu(xs, 1) — V(£) +BRM ( px, AQ +px, A €)) (3.254)
ot ~ - —_— Y=

Coriolis & Magnus Moving Axis Euler

The remainder inertial terms, second part of the Coriolis, Centrifugal and the term representing
the interaction between the rotation and translation, all has their original in the transformation of the

advection term (Equation 3.217).

V- (paew)=RM [V pusu+purQ+V-px AQ)ou+(px AQAQ+pVIHAQ]  (3.255)

Coriolis Centrifugal Magnus

The presence of the majority of the fictitious forces can be intuitively explained as the result of
accelerating motion. However, the physical meaning of the Coriolis force has been a subject of many
discussions (Dolovich et al. [63], Persson [12], Thornton and Marion [64]). Observation of the effect
of both Coriolis and Magnus effects can be explained using a mathematical approach which is seated
in an understanding of the cross product operation.

The Coriolis force was first mathematically formulated in 1835 by Gaspard Coriolis ,but obser-
vations of the effect long preceded the formulation (Persson [12]). Deflections in motion due to the
Coriolis effect is three dimensional, but the term Coriolis force is mostly associated with horizontal
deflections in the Northern and Southern Hemispheres with respect to the surface of the earth. This has
specific application in Meteorology and Geophysics since weather patterns and sea currents are directly
influenced by the horizontal component of the Coriolis force.

In Figure 3.10 it is shown that a particle travelling in North on the earth's surface deflects to the
right in the North Hemisphere and to the left in the Southern Hemisphere. The difference in deflection
is a function of the surface curvature of the earth where a velocity vector in the South has a different
orientation than in the North. The result is that the cross product of the velocity and the rotation has a
resultant force that is dependant on the hemisphere it operates in.

While the deflection on the surface of the earth has been the most general observation of the Coriolis

force, the component vertical to the earth's surface has only been measured in 1908 by Lorand E6tvos
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Figure 3.10: Deflections of a Particle Travelling in the Northern and Southern Hemispheres (left) and

the Corresponding Directions of the Velocity Vector (right)

(Persson [12]). He observed the effect through gravity readings collected by research ships which indi-

cated that the gravity measurements increased with motion towards the west and decreased when the
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ships sailed in an easterly direction (Figure 3.11).

Figure 3.11: Two Components of the Coriolis force: Outward Component due to E6tvos effect (left) and

Deflection on the Earth's Surface in Northern and Southern Hemisphere (right)
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The Coriolis force is therefore described as a non-inertial force that operates on an object that is in
motion relative to a rotational reference frame. The effect of the Coriolis force is to cause deflection of
the object in three dimensions in with a magnitude and direction that is determined by the cross product
of the object's non-inertial velocity and the rotation of the frame, 2pa A Q.

The Magnus force has a similar formula to the Coriolis force, but it has a different physical mean-
ing. It is a function of the object's translation and represents the interaction between the rotating and
translating motion of the object. It is therefore a non-inertial force that operates on a rotating object that
is in motion relative to a inertial reference frame. The effect of the Magnus force is to cause deflection
of the object (Figure 3.12 ) in three dimensions with a magnitude and direction that is determined by
the cross product of the object's translational velocity and the rotation of the object, 20V(¢) A Q.

Figure 3.12: Deflection due to the Magnus Effect in the Inertial Frame (left) and the Non-Inertial Frame
(right)

The presence of the Magnus force in the non-inertial momentum equation is not generally seen in lit-
erature (Meriam and Kraige [8], White [9]) since non-inertial formulations does not regularly include all
the aero-ballistic accelerations and is generally applied to rotating flows. In CFD applications the Mag-
nus force is mostly investigated using a predictive approach (Cayzac et al. [65], Silton [66], Weinacht
et al. [67]) instead of with prescribed motion as suggested here.

The work done in this chapter assisted in developing a clear understanding of non-inertial Navier-

Stokes equations and provided a baseline with correct formulations for the subsequent chapters.
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Chapter

Non-Inertial Equations in Component Form

n this chapter the component form of the equations are given in the Cartesian, Cylindrical and
Curvilinear systems. The Cartesian coordinates system is the most common system; introductory
calculus and mechanics textbooks (Anderson [58], Steward [68], Versteeg and Malalasekera [69])
largely make use of this system and only provides a brief description of other coordinate systems (Figure

4.1).

Figure 4.1: Depiction of Various Coordinates Systems

At
v

z X X
Rectangular coordinates Cylindrical coordinates Spherical coordinates

Most aero-ballistic and aeronautical applications lends itself toward analysis in cylindrical or curvi-
linear coordinates as their geometric features, consisting of cylindrical forms and curves, are better
described in such systems. Advanced textbooks that make use of cylindrical systems do provide some
formulations for non-inertial Navier-Stokes equations, but those are limited to constant rotation cases
(Schlichting [42], White [9]) for turbo-machinery applications. The aim of this chapter is to provide a
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frame work for the non-inertial equations for full arbitrary accelerations in component form which are

used in a subsequent chapter for boundary layer analysis.

4.1 Non-Inertial Equations in Cartesian Coordinates

4.1.1 Incompressible Flow Conditions

The incompressible continuity equation is obtained from White [9]:

A

V-pa=0 4.1)
This equation can be expressed in the Cartesian component form using the Cartesian definition of
divergence (Anderson [58], Aris [70]):

on 00 oW
—+—+—=
oz 0y 05

0 4.2)

In Chapter 3, Equation 3.239 the non-inertial momentum equation for arbitrary acceleration in

incompressible conditions have been derived:

oa . A . . 0
—+@-V)a= —Vw+vV2ﬁ+2ﬁ/\Q—f(/\QAQ+§{/\Q+XAQ+2V(t)/\Q— —(V(1))
Coriolis Centrifugal Euler Magnus —— ( . )
—_— Translation

Unsteady motion

This equation can be expanded into the component form using the Cartesian vector operations, dot
and cross products, for divergence, gradient and laplacian operators (Anderson [58], Aris [70]). Each

grouping of fictitious terms can be expanded into components in the following manner:

i J k
207 Q= (20 20 20| = (20w, - 20w+ 2w, —200,)j+iw, - 200 )k (4.4)

Wy Wy

These operations result in the non-inertial component form of the Navier-Stokes equations for full
arbitrary acceleration;

X-momentum

oa .oa ow 0k o A(02ﬁ+02ﬁ+62ﬁ)
—tu v =——=+V —
02 092 052

- ~TW— = A
ot 0x oy 0z 0x
+ 20w, - 20wy + a%(wz2 + wyz) —Jwrwy — 20w,

Coriolis Centrifugal 4.5)
. R N R ov,
+ YW, — 20y +yw, — 2wy +2Vy0, —2V,0, - =
—— —

Euler Magnus Translation

Unsteady motion
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y-momentum

00 00 00 00 oy
—tU—=+ V0 -+ W—=—"""7"+1+V
ot ox 0¥ 0z oy

+ +—
0x2 " 052 052

(6213 8%0 626)

+ 20w, — 20w, + 5/(wz2 + wxz) —Xwywy —EZwyw,
[ —TN V)

Coriolis Centrifugal (4.6)
A A . 2 o 0Vy
+20Wy — KXWy +2Wy — X, + 2V, 0, — 2V, 0, —
— —_— ot
Euler Magnus N~
~ ” Translation
Unsteady motion
Z-momentum
ow 0w ow _ow of _(0%w d*w 0w
— +tuU—+V0 A+w—A:——A+v( A2+ A2+ AQ)
ot 0x 0y 0z 0z 0% 0y 0z
+ 20w, — 20w, + é(a)y2 + wxz) —Xwy0; — Jwyw,
Coriolis Centrifugal
A . Al 2 2 aVz (47)
+ X0y — YWy +Xwy — ywy +2Viwy —2Vywy — rr
— —
Euler _ Magnus Translation
Unsteady motion
4.1.2 Compressible Flow Conditions
The compressible continuity equation is expressed as (White [9]):
00 & .n
a—€+(V~pu)=O (4.8)

The component form of this equation subsequently becomes (Anderson [58], Aris [70]):

0p 06pu 0p0 Opw
4 + — 4+ = 0 49
ot o0x 0y 0% (49)
The non-inertial equation for incompressible flow in full arbitrary acceleration conditions were deter-
mined in Chapter 3, Equation 3.227:

Deviatoric stress
A A -
opa

v +V-(paea)=-Vp+V-[pVa+val)+ AvV-wi]

: A 0
+200NAQ-pXANQAQ+pXAQ+pxAQ+20V(E) A Q- —(pV(t)) (4.10)
—_— — —— ——— Ot

Coriolis Centrifugal Euler Magnus

Translation
Unsteady motion

The equation can be expressed in the component form using the approach of Section 4.1.1. The
deviatoric stress tensor components is obtained from Hoffmann and Chiang [71]:
0 ou @ ou , @
2uge +AV-u p(G+g)  wGE )
ou |, Ov

pEE+%)  2uE+avom p(E+%)

u(GE+5e)  wEE+5)  2uE+Av-u

T(x,y,2) = (4.11)
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The compressible non-inertial momentum equations in the component form is subsequently ex-
pressed as;

X-momentum
P A n A n A n R
ot +a6pu +66pu +w6pu _ _0p
ot 0% o0y 02 0%
ou ., 00 6v
+ A==

0. au ou ow
+l2ns + Ao ] [u( ] [ (5 +52)]
0x 0x 0x Gy 0z ay 0y 0% 021"\%z " ok
Compressible dlffusion terms
+2p00, — 2P0y + PR(w,% + 0y?) — pIw 0y — Loy, (4.12)
Co;ii)lis Cent?irﬁlgal
AAR AAR AR AR A A apAV
+pJw; — PEZwy +Ppyw, — PZwy +2pVy0, -2V, 0, — Y =
—_—— ~ ~ -
Euler y Magnus Translation
Unsteady motion
y-momentum
000 000 000 000 0p
ﬂﬂzlfjﬂﬁif)ﬂizlf}:——{)
ot 0x o0y Oz Oy
0 0 o 00 00 0w
Gl g o i S8 2up 50
0x Gy Ox 0x 0y 02 ozl ‘0z 0y
Compressible diffusion terms
+ 210y — 2P0, + PH(0,% + 0, — pRwcw, — proyw, (4.13)
Co;i(olis Cent;irfugal
AnD AnD AR AR N A aﬁvy
+ P20y — PR, +P20y — px0W, + 20V 0, — 20V, 0, — Y
< , - -— ,
Euler ——

Magnus

~

~ Translation
Unsteady motion

Z-momentum

opw Oﬁw Gpw e opw o0p

w =_
ot 0x Oy 0z 0z
0 ou 0 00 ow 0 ow ou 00 ow
+—A[,a( — + — —A[ﬁ(—A+ - —[2A M=+ =+ A)]
oxl ‘0z o0x 02 0y 0x 0y 02
CompressibleEffusion terms
+2p00y — 2000, + P20y + 0, %) — pRow, — P00, (4.14)
Cor‘irolis Cent;irfugal
AAR AADR AR AR A A aﬁV
+ PpXwy — PYwy +PXWy — Pywy +20Viwy — 20V, — o z
N——— — ~ ~ J/
- Euler _ Magnus Translation

Unsteady motion
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4.2 Inertial Navier-Stokes Equations in Cylindrical Coordinates

The component forms of the Cylindrical formulations of the inertial Navier-Stokes equations are first

established in this section. The non-inertial equations are explored in the next section, Section 4.3.

4.2.1 Transformation for Cartesian to Cylindrical Coordinates

The vector form of the non-inertial Navier-Stokes equations is independent of the coordinates system
(White [9]). Therefore the equations that were developed in Chapter 3 can refer to either the Cartesian,
Cylindrical or Curvilinear system. Expression of an inertial equation in the Cylindrical system does not
place it in the non-inertial form; the equation remains in the inertial form. The Cylindrical formulation

is just a different manner of expressing the same event in an alternative coordinate system (Figure 4.2).

Figure 4.2: Description of a Point in the Cartesian and Cylindrical Coordinates System

€9

o

P X

The Cylindrical form of the Navier-Stokes equations can be obtain either by deriving it from first
principles or, the method that is used here, converting it from the Cartesian component form to the
Cylindrical (Figure 4.3).

Figure 4.3: Cartesian and Cylindrical descriptions of point P

2} @ P(xy,2) z @ P(r0,2)
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The conversion is done geometrically. The displacement and velocity components are transformed
as indicated in Equations 4.15 and 4. 16 respectively (Anderson [58], Aris [70], Steward [68]).

x =rcost
y =rsinf
(4.15)
z=z
u=urcosl—ugsind
v=u,sinf+ugcosb
(4.16)

Ww=1u,

The derivatives in the Cartesian and Cylindrical system is related by the following matrix (Anderson

[58]):
g_(ﬁ cosO sm@ t;(f
3| = |sin0 0089 % (4.17)
9¢ 9

0z 0z

4.2.2 Incompressible Flow Conditions
4.2.2.1 Continuity Equation

The incompressible continuity equation in component form was obtained in Equation 4.2:

ou Ov 0
LR (4.18)
0x 0y Oz
Substitution the conversion equations as described in Section 4.2.1 results in the following expres-
sion:
0 sinB 0 0 cosO 0 ou
(00365— " 06)(urcosﬁ? ugszn6)+(sm05 " 69) zZ =0 (4.19)
Re-arrangement of the terms leads to an equation,
0 10 0
aL;r (c0529 + sin29) + %(00320 + sin29) + ;%(cos%) + sin20) + Ouzz =0 (4.20)
that can be simplified by using the equation:
cos?0 +sin0=1 (4.21)

The final equation that represents the Continuity Equation in cylindrical component then becomes:

0 10 0

A e (4.22)
or r r 00 0z

This form is in agreement with equations shown in the literature (Anderson [58], Aris [70], Schlicht-

ing [42], White [9]).
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4.2.2.2 Conservation of Momentum Equation

The incompressible momentum equation is expressed as White [9]:

9
6—'; +(u-V)u=-Vy+vWiu (4.23)

Using the definitions for Cartesian gradient and laplacian operations results in the following equa-

tion that describes the conservation of momentum in the x-direction (Anderson [58], Aris [70]):
] 0 0 0 0 u  Pu o
—u+u—u+v—u+w—u:——w+v(—u+—u+—u) (4.24)
ot 0x Oy 0z Ox 0x2  0y2 022

This equation can be converted to the Cylindrical system term by term. The Cartesian transient term

is transformed to a cylindrical form by using the equations of Section 4.2.1:

ou 0
= = — ; 4.25
Py at(urcose ugsin0) (4.25)

The product rule applies and the expression is expanded to:

0 u
2 0 — upsing) =
57 Urcos0 —ugsin0) =7 ot ot ot

ug (4.206)
The assumptions are made here that,

* the coordinate systems is attached to the body analysed

* the Cartesian and Cylindrical system shares an origin

+ the analysis considers small perturbations of the order €

The value of 8 is subsequently very small when, 8 — ¢ as € — 0. Furthermore, cosf — 1, sinf — 0 and
Equation 4.26 simplifies to:

ou Ou,
ot ot

(4.27)

Using the methodology above the Cylindrical form of the remainder of the Cartesian terms can be
obtained.

Convective terms,

2
ou  ugyou, uy

V— — —

_ 4.28
oy r 00 r ( )

Pressure term,

oy _ oy (4.29)
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Diffusive terms,

Pu  0%u,

0x? or?

Pu  10u, 10%u, 20ug u,

—_———_—t—_— - — 4.30
ay2 ror r2a0%2 r200 r? (430)
Pu  0%u,

022 022

The resulting equation represents the conservation of momentum equation in the r-direction of the
Cylindrical system which is in agreement with the equation from literature (Anderson [58], Aris [70],
Schlichting [42], White [9]):

ou, Ou, ugou, u§ ou, ow 2u, 10u, 1 d%u, 2 0up u, u,

tup—t—— Ly, =T Ly 2 T, T

ot or r 88 r 0z or 06r2 ror r2ad02 r200 r2 922
(4.31)

Using the method above it can be shown that for the y-momentum and z-momentum equations
respectively,

ov ov v o oy (0%v 0%v %
+tv—+w —+v(—+—+—)
ot o0x 0y 0z ay 0x2  0y2 022

(4.32)

ow s ow s ow . ow oy s (62w . w +62w)
—tu—+v—H+w—=——"-+V
ot ox 0Oy 0z 0z ox2  0y% 022
the equations can be expressed in Cylindrical coordinates for the #-direction and z-direction res-
pectively:

Ougp Ougp ugolug ugu, Oug 1oy 0%up 1loup 10d%up 2 0u, ug 0%uy
— tup—t———+—Fu,—=———+ +-——+ = +— -—+
ot or r 00 r 0z rod or2 r or r2002 r200 r2 9z2
ou, Ou, ugou, ou, oy d%*u, 1ou, 10d%u, d%u,
—+ +— + =——+ +— +— +
ot “or T r 00 Y%z T oz or ror 12002 ' 022

(4.33)

The equations above are in agreement with the literature (Anderson [58], Aris [70], Schlichting
[42], White [9]) and indicates consistency in the method used.
4.2.3 Compressible Flow Conditions
4.2.3.1 Continuity Equation

The component form of the compressible continuity equation in Cartesian coordinates was obtained in

Equation 4.8,
dp 0 0 0
op  dpu  dpv  Opw

4.34
ot Ox o0y 0z ( )
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Using the same method as in Section 4.2.2.1 the Cylindrical component form is obtained. This

equation is similar to the incompressible form but with the inclusion of the transient term.

a_p n opur " pur n lapuﬂ + opu;
ot or r r 00 0z

=0 (4.35)
4.2.3.2 Conservation of Momentum Equation

The compressible conservation of momentum equation is expressed by White [9]:

0 T
apu+v-(pu®u) =-Vp +V-[,u(Vu+ Vuv)+/l(V~u)Il (4.36)

deviatoric stress

In Chapter 3 it was shown that the major difference between the incompressible and compressible
formulations of the Navier-Stokes equations lies in the diffusion terms. In Equation 3.19 it was shown
that a number of terms in the deviatoric stress tensor can be neglected in the incompressible case (specif-
ically the terms associated with V-u = 0) and which leads to significant simplifications to the diffusion
terms (see Equation 3.20). In compressible flow those simplifications are not relevant (since V-u # 0

as shown in Equation 4.8) and the full deviatoric stress tensor is considered.

The deviatoric stress tensor takes the following form in the compressible, Cartesian case (Hoffmann
and Chiang [71]):
Tex Txy Txz
T(X,5,2)= |Tyx Tyy Ty (4.37)
Tzx Tzy Tzz
G +AV-w p(GH ) (S
ou |, Ov ov |, dw

t(0,y,2)= | u(§E+3) 2uP+Aveou p(E+3) (4.38)

Oy
ou , ow ov |, dw

2
nag+as)  wE+5) 2wFE+AV-u
The difference between the Cartesian and Cylindrical formulations of the deviatoric stress tensor
relies on the geometrical conversions established in Section 4.2.1. 1t is be used here to conduct the

conversion with as described by Figure 4.4.
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Figure 4.4: Cartesian (left) and Cylindrical (right) Control Volumes

| z

y

The conversions are done separately for each term in the tensor matrix as shown in Equation 4.38.

The term in first row, first column is designated 7,, and is converted as follow:

ou ou dv
Fax ”ax " ( Oy Gz ]
0 sm@ 0 .
[Zy(cosﬂa—r - ﬁ)(u,«cow —upsinb)
0 ind 0 0 6 90 ow
+ A((cos@a— - SZ:L 66)(ur0039 ugsmﬁ) (sin@a + cors 66)(u,-szn9 + ugcosﬁ) + E) (4.39)
ou, Our ur 10ug Ou,
=2 +A —+——
H or ( r r or 0z )
o Oup
or
The term in the first row, second column of Equation 4.38 is designated 7, and is converted as
follow:
(au N av)
T = —_— ) —
w = H 0y Ox
0 6 0 6 o
u[(sinﬁg cors ae)(urcosﬁ ugsing) + ((co 65 - 31: aH))(u,szn@ + ugcosﬁ)] (4.40)

_ 1ou, ug Oup,
_/J(r 00 r " Or)_rro

The term in the first row, second column is designated 7, and is converted as follow:

ou Ow
Txz = H(& + a)

—

0 0 00
y[—(urcose —ugsinf)+ ((cosB— — sin
0z or

) (uz)] (4.41)

_ Oup  Ougy,
=Gyt )=
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By transforming all the terms in the Cartesian deviatoric stress tensor to the Cylindrical system, it

can be shown that the Cylindrical stress tensor is expressed as:

Trr Tro Trz

T(x,y,2)= |Tor Too To: (4.42)

Tzr Tz0 Tzz

2u%z + AV u H(E %5~ + %) (%2 + %)
T(r,0,2) = |p(L% -t 4 Hoy gu(l% L))y p(l%e 4 ) (4.43)
n(Ge+ %) u; 55 + %2 20 +AV-u

This agrees with the literature as indication in Aris [70].

The x-momentum equation is expressed as:

Opu 0pu  Opu Opu op
w =——=

+ + +
ot “ox oy oz ox

ou  ow (4.44)

+%[2yg—l;+(/lv'u)] Oi[u(gz 6x 62[ (02+a)]

The r-momentum equation, using the compressible form of Equation 4.31 and the relevant terms of

Equation 4.43, can then be expressed as:

opur N opu, N Eapur 3 pu?) N opu, _6_p

o0 " or r 00 r 0z  or (4.45)
0 ou, 0 10u, ug aug ou, Ou,
o 25y +W“]+ae[“(r09_r ] 02[(62+6r)]

In a similar manner it can be showed that the momentum equations in the 8- and z-direction respec-

tively become:

) ) ) ) 10
pug  ~Opug ugOug pueu,  Opug __10p

ot ’ar r 00 r 09z  roo
1au, ug Oug laug 7 0 10u, OJug
-— ———+— )+ AV u|+—|pul- +—
[“ F 90 r ] ae[ s ") “] oz [“(r 20 ' oz )]
opu, Opu, ugdpu, Opu, op (4.46)
+u, +—= +u, =—-—
ot or r 00 0z 0z
0 ou, 6uz lauz Oug
+ — 2u —+)LV
ar[”( 9z ] ae[ T ] 62[ e
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4.3 Non-Inertial Navier-Stokes Equations in Cylindrical Coordinates

In Section 4.2 the Cylindrical form of the inertial Navier-Stokes equations were established. This section

builds on that work and formulates the non-inertial Navier-Stokes equations in Cylindrical coordinates.

4.3.1 Incompressible Flow Conditions
4.3.1.1 Constant, Pure Rotation

The non-inertial Navier-Stokes equation for incompressible flow in constant, pure rotation was derived
in Chapter 3, Equation 3.55 :

aﬁ A BN LN A2 A A S
—+(@-V)a=-Vy+iVa+2arn Q-xAQAQ (4.47)

Coriolis Centrifugal
The inertial components of this equation were converted to the Cylindrical system in Section 4.2,
here the cylindrical forms of the fictitious forces are obtained. This can be done in one of two manners;
the first is to convert from the Cartesian components using the formulations in Section 4.1 and the sec-
ond is to obtain the components directly from the Cylindrical vector operations. Both methods are used

for the conversion of the Coriolis force.

Method I - Convert from Cartesian Components
The component form of the Coriolis force is obtained though the cross product of the non-inertial ve-
locity vector and the rotation vector both in Cartesian coordinates. The conversion equations in Section

4.1 is used to convert from the Cartesian to the Cylindrical coordinates:
i j k
207 Q= (20 20 20| =(200, - 20w+ 2w, — 20w, + iy — 200,k (4.48)

Wy Wy

—[2(4,sinb + Gigcos®)w, — 20 ,(w,sinb + wgcosh)lé,

+[20,(wyc080 — wgsind) — 2(ii,cos — tgsinb)w,1ég (4.49)
+[2(fi,cos0 — igsind)w,sind + wgcosé) —2(6,sinf + ﬁgcosé)(wrcosé - wgsiné)]éz .

Using the same assumptions, as in Section 4.2 ,that 8 — £ where € — 0, then cosf — 1and sinh — 0.

The equation above then simplifies to the Coriolis force components in Cylindrical coordinates:

20N Q =2(llgw, — T, wg)er + 2(M 0, — U,0,)e0 + 2( g — lgw, )€, (4.50)

82

© University of Pretoria



-
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

QA YUNIBESITHI YA PRETORIA

4.3. NON-INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

Method II - Directly from Cylindrical Vector Operation
The second methods obtains the component form of the Coriolis force though the cross product of the
non-inertial velocity vector and the rotation vector both in Cylindrical coordinates:
é €p &,
207N Q= |24, 209 20,| =2@ew, —l,0p)eér+2(l, 0, — U,0w,)é0 + 2(h,wg — lgw,)é; (4.51)
W, Wy Wy
The two methods produce exactly the same results. Therefore either of the two can be used. The
most direct method is to obtain the fictitious force components directly from the Cylindrical vector
operations. This method is used from this point forward.
The centrifugal force components are obtained by in a similar manner as shown above for the Coriolis

components:
€r €9 €4
xANQ=|7 70 2| =F0w,—2wg)er+Ew,—Fw,)eg+ (Fwg—Flw,)e, (4.52)
Wy Wy W

A A A

€, €g é,
XANQANQ = |Fw, - 20, 2wy—-Fw, Fo,—FOw, (4.53)
wr w9 Wy

=[G, - Fw,)w, - (Fwg - Fw,)wglér +[(Fog - Fw,)w, - (Fhw, - 209w, 189
+ [(féwz —2wg)wg — Gw, — Fwy)w,le, (4.54)
— (Bw,0; — F0? - Fud)éy + (Fo,0g + 20pw,)ég + (Fo,0, — 202 — 2078,

The components forms of the Coriolis and Centrifugal fictitious forces have been obtained above,

and in addition to Equations 4.31 and 4.33 the components form of the non-inertial momentum equation

for constant, pure rotation are derived:

rF-momentum

oi, dgoh, Us _ on, O¢ 0%, 104, 10%0, 200¢ oy 04,

9ar , 5,98 + + + o 2
Ur— —— —tlUr— =~ — t st S s S = "
ot "oFr P 90 P " 03 oF  0fr2 7 OF P2 902 P2 9 2 052

+20gw, — 20,9 —ZWrw5 + f"a)g + fwz

A

-~

Coriolis Centrifugal

(4.55)

f0-momentum

Oy . Olg 1Ugdhg U, . Olg 100 0%ag 10ag 10%09 200, hg 020

- tUr——+t—F— - = -2 A - T T s Tt Tt e
ot "oFr P 00 7 " 03 FoO OFZ P OF 72 902 7290 P2 932
+20,w, — 20,0, — FW,Wg — ZWoW,
Coriolis Centrifugal
(4.56)
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Z-momentum

o4, . Oi, Ggdu, . 0d, oW o%*a, 1on, 10%a, d%u,
— tUpy——F/—t+——FtUr—/—=——+ o) + - A+A—2_A+ o)
ot or 7 00 02 02 or 7 OoF 72 002 02
. . R .9 .9 (4.57)
+20,09 — 2Ugwr —FWrw, + 205 + 2wy
Coriolis Centrifugal

4.3.1.2 Arbitrary Rotation

The non-inertial momentum equation for variable, pure rotation in incompressible flow was derived in
Chapter 3, Equation 3.157:

00 N A A .
—u+(ﬁ-V)ﬁ:—Vz//+f/V2ﬁ+2ﬁ/\Q—f:/\Q/\ﬂ+ﬁ/\Q (4.58)
0t —_—— —— ——

Coriolis Centrifugal Euler
The Cylindrical components of the Euler fictitious force are obtained in a similar manner as the
Centrifugal force components in Section 4.3.1.1:
é €y e,
xAQ=|7 0 2| =F00,-20)ey + oy —Fi,)eg + (Fag — FO0,)é, (4.59)
O Gy @
Following from Equations 4.55, 4.56 and 4.57 and the description of the Euler components above,

the non-inertial momentum equation in cylindrical components is as follow;

F-momentum
iy , 5,08  Bo + + + + —
u - - ~—— TtUu ~ = ~ ~ = AR ~ A ~ A X ~
ot "oF P 90 P " 05 oF  oFf2 FOF P2 902 P20 P2 052

+ 20w, — 20,09 — ZWrw, + fwg + fwg —Zwg
~—~—

o4, o, U2 04, oy 0%, 104, 10%4, 20ty i, 0%0,

A

Euler
(4.60)
f-momentum
oi dllg Qg 0lg Upll oi 10y 0%09 10ug 10%°Gg 204, w9 0%0
—"+ar A9+79 P+¥+ﬁr AH:—7l+ A0+7—F+A—4+A——K—A—g+ Ae
ot or F o6 7 02 FoO 0F2 P OF P2 502 7250 72 032
+ 20,0, — 20,0, — FW,Wg —ZWeW, + ZWr — F)
———
Euler
(4.61)
Z-momentum
o4, _ Oi, Ggdu, _ 0d, oW o%*q, 1ou, 10%a, d%u,
5 tUr—t Tt St 5 T s T2 e T
ot oF  F 96 0% 05  o0r2 P OF P2 992 052
9 (4.62)

+ 20,0 — 20p0r — Fwrw, + 207 + éwg + Fwg
~—

Euler
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In the case where the rotation is fully arbitrary, in other words the rotation is around of movable

axis, Chapter 3 has indicated that the non-inertial momentum equation takes the form:

oa

FR— A.AA:_AA 524 0 —X X ‘ X
6t+(u Va=-Vy+iVa+20AQ-XAQAD+XANQ+ xXAQD (4.63)

Coriolis  Centrifugal Euler  Moving Axis
The Cylindrical components of the arbitrary rotation term (due to the movable axis) is determined

is the same manner as for the previous fictitious forces - directly from the Cylindrical vector operation:

ér €9 éz
XAQ=|d, g G,|=0¢w;—1l,00)é +(l,w,—Tl,rw;)eq+(l,wg—Tew,)e, (4.64)

W, Wy W,

Following from Equations 4.60, 4.61 and 4.62 and the description of the arbitrary rotation terms

above, the non-inertial momentum equations in Cylindrical component form becomes;

r-momentum

N N PPN ~2 N N N N N N N N
ou, , 04, ugou, Uy 00, o %4, 104, 1 0%, 2 0ty 10, %4,
= tUr— = tUr— =~ o T2 Y2 s 2 a2 s
ot or 7 00 r 0z or  Oor For P4 002 740909 F 0z
+ 20w, — 20 ,wg —éwrwz+fwg+f*wg—2d)g+ Uogw, — T,y

—_———

Arbitrary Rotation
(4.65)

0-momentum

diig Ollg Qg 0hg Geli, . O0hg 100 0%4g 10ug 10%09 200, 0g 0%0g
o tUr—t = - Ur— = 221t 3032 T2 32 772 322 T2 a3 2 A2
ot or 7 00 F 0% FoO O0F2 P OF P2 502 P2 506 2 052

+ 20,0, — 20,0, — FW,0g —ZWeW; + 20, — FW5 + U0r —Urwy
| ———7

A

Arbitrary Rotation

(4.66)
Z-momentum
oi, _ Oi, Ggdid, _ Oh, Oy o0%a, 1éa, 1%, 0%,
— tUry———t——FtUp——F/— =7+ -t =—Ft
ot or P 9b 02 02 0F2 7 OoF P2 502 @ 932
(4.67)

+ 20,09 — 209w, — FW, w5 + éw% +éw§ +Fwg + U,rwg —Ugwy
—— —

Arbitrary Rotation

4.3.1.3 Arbitrary Acceleration

In Chapter 3, Equation 3.239 the non-inertial momentum equation for arbitrary acceleration in incom-
pressible conditions has been derived:
oa

N N N A 0
—+@-V)a= —Vz/?+vV2ﬁ+2ﬁ/\Q—ﬁ/\QAQ+ﬁAQ+X/\Q+2V(t)/\Q——(V(t)) (4.68)

Coriolis Centrifugal Euler Magnus
—_— Translation

Unsteady motion
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Following from the derivations in Section 4.3.1 and Section 4.3.2, the Cylindrical component form

of the equations are determined,

F-momentum
2 A ~ ~
10°4, 20ig 1,

04,  of 0%a, 10, .\

o, , 04, wgon, Uy

— tUr———t+—F——F ——/—tUr——— = — + A2+A A+A—2 = +A2 = o)
ot or 7 00 7 0z or  or FOF P4 0902 74090 7
+2lgw, — 20,0 — 200, +Fol +Foy

Coriolis Centrifugal

—Zwg + Ugw, — U ,wg
~ Y——
Euler Arbitrary Rotation

ov,

+2Vow, — 2V,wg —

~ ot
Magnus —~ .
Unsteady Translation

f0-momentum

Ollg . Ollg UgOlg Ugl,
— tUr— 7t S tUr T 2 2T 5m T s T 2
ot or 7 00 r 0z 7 00 or FOr 74 002 74 50

+20, 0, — 20,0, — FWrWe — ZWoW5

Coriolis

Centrifugal
+ 20, —FW,+ U,y —Urw,
—_
Euler Arbitrary Rotation
0Vy
+2VZ(,(),- - 2erz - E

Magnus —~
Unsteady Translation

Z-momentum
oy 0%, 104, 1%, 0%,
Ur— ="t 503 T2 32 T2 77 T A,
0z 0z oOr 7 or 74 992 @ 0%
2

+20,0w9 — 20w, — FW,rw5 + éwg + 2wy

oa, , 0d, uUgldu, . OU,

—L o h— X
ot “or TR 30

~~

Coriolis Centrifugal
+ Fwg + Urwg — lgw,
—~ ———
Euler Arbitrary Rotation

)%
+2V,.wg — 2Vyw, — atz
Magnus —~ .
Unsteady Translation
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4.3. NON-INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

4.3.2 Compressible Flow Conditions

4.3.2.1 Constant, Pure Rotation

The non-inertial Navier-Stokes equation for compressible flow in constant, pure rotation was derived

in Chapter 3, Equation 3.85 :

— +V-(paew)=-Vp+V-[aVa+val) + AV-@)i] + 2061 Q- px A QA Q

Coriolis Centrifugal

By using the stress components from the deviatoric stress tensor (Equation 4.43) and Equations 4.55,
4.56 and 4.57 (that provides the formulation for constant, pure rotation in incompressible flow) the com-

ponent form of the compressible momentum equation in Cylindrical coordinates are determined;

F-momentum

+ - + =
ot "Tor TR a0 F ez of
0 o An 0 104 onu 0 on ou
+ 2 2A Ur AVﬁ]+ ( ur__8+if)] [ﬂ( uAr+ qu]
or or 56 7 00 F or 0z 0z or (4.73)

+2pu9w2—2puzwg pzwrwz+prw + prw g

Coriolis Centrlfugal

f6-momentum

0ptg 00ty N Qg Otig N Olol, 0pug 1 ap

+ —— + 1 =
ot r oF f 90 2 “2Tor T a0
1aur Uy Olg 01..,10Gy 1, An 0r1..,104, O0ig
— -+ +—=20(-—+—)+ AV +—=ilz—
[” Fob ¢ oF ) ae[ Mz * ) d 92 [”(f« PY L )
+2,6L22wr—2purwz—ﬁfwrw9—ﬁéwgw2
Co;i,olis Cem;irfugal
(4.74)
Z-momentum
0pi, 0pt, dgdpu, , 0pi, o0p
+u, - = +uz — = T =X
ot or 00 0z 0z
0 0u, O 6 104 ot 0 0w s
+—A[ﬂ( uf+ uf)] ( e U ]+—[2A Lf) /W-ﬁ]
or 0z or 09 09 Z (4.75)
+2ﬁﬁrw3—2ﬁﬁ9wr prwrwz+pzw +p2w g ‘
Cor‘irolis Centrlfugal
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

4.3.2.2 Arbitrary Rotation

The non-inertial momentum equation for variable, pure rotation in compressible flow was derived in
Chapter 3, Equation 3.169:

opua . A R A Aa s .
p +V-(paeh) = —Vﬁ+V-[,a(Vﬁ+VﬁT)+/1(V-ﬁ)I]+2pﬁ/\ﬂ—pﬁ/\ﬂ/\ﬂ+pfu\ﬂ (4.76)
ot —_— —  —— ——

Coriolis Centrifugal Euler
Again the stress components are determined by the compressible stress tensor (Equation 4.43) and
by also using Equations 4.60, 4.61 and 4.62 (providing the formulation for variable, pure rotation in
incompressible flow) the component form of the compressible momentum equation in Cylindrical co-

ordinates are determined;

r-momentum:

A n An A aaa an2 An
u
apur+ﬁrapur+_90pitr_/0 9+ﬁ26pur_ o0p
ot oF 7 00 P 0% or
0 0, . .1 O 104, dy 6u9 ou, 04,
+—= (20 +AV-a|+—= 4ol — +
or “af “] ae'u(fag P [(02 af)]

(4.77)

~~ ~—~—
Coriolis Centrlfugal Euler

6-momentum

0ptg . Oplg 1yp 6ﬁ9+ﬁﬁgﬁ i opug  10p
= raa =~ A - U7 = "7 72A
ot or F 06 r 02 r 06
0 104, g Olg 6 10ig 1y, ~~ . 0 104, Oig
-— 2 +AV-a|+—|a(= +
Or[ G2 ~ 7 af)] %G5 ) al aé[“(f a0 02)]
+200,0, — 200 ,w, — PFw,wy — PEZwow,; + P20, — PFO,
Co;irolis Cent;irfugal Elﬁer

(4.78)
Z-momentum
001 001U 001 0 o0p
pu, +i, Plfz +u—f) Plfz +i, Plfz =——{)
ot or 7 00 0z 0z
0 on o 0 104 on ~
+?[A(aur+ aqu)]Jrae Az aL;Z ) [QA HAVa
r
? \ (4.79)
+200 09 — 2009w, — prwrwz + pzw + ﬁéwa + prag
~ ~ ~——
Coriolis Centr]fuga] Euler
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4.3. NON-INERTIAL NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES

In fully arbitrary rotation, Chapter 3 has established that the non-inertial momentum equation in com-

pressible flow takes the form:

Coriolis Centrifugal Euler

—— V- (paew)=-Vp+ V- [aVa+Vval) + AV-@)] + 200 A Q- pXAQAQ +px A Q+ pxAQ
—_— — — —— ~—(—
Unpure Rot

(4.80)

As an extension of Equations 4.77, 4.78 and 4.79 above, as well as the formulation for the fictitious

forces in Section 4.3.1.2, the Cylindrical formulation for the arbitrary rotation case becomes;

F-momentum

opa, . 0pu, ngoph, PlUy  dpa, 9P
—tlU— ot =
ot or 7 00 7 0z or
0 0l, aax 0 101, 0 0u9 0i, O0i,
+—=|20 +AV-a|+—=|lz——-—+
or or u] a0 H(f 00 7 ] 62[ (62 or )]
+2p1lgw, — 201, W — PEW,w, + PFW? + pFw 3
Co;riolis Cent?fugal
—p2wg + pllgw, — Pl zwp
——
Euler Arbitrary Rotation
6-momentum
0plig apug ig Olig ﬁﬁeﬁrJrA 0ptg 10p
—_— — u = ———
ot Carre or P 00 7 “ 0z 7 00
0 104, g Olg 0 1009 Qr, +n . 0 lauz
+—=lz———+ —20(z—+—)+AV Q|+ = [
e e e e e AR R H
+200,w, — 200,00, — pro,wg — PEZWgw,
Cor‘irolis Centr‘i'fugal
+ P20, — PFW, + Pl 0y — Plir0,
El?ler Arbitrar; Rotation
Z-momentum
opu, . 0pu, ugdpu, ., 0pi, op
tUr——7— —~ ~ z ~  — " aa
ot or 700 0z 0z
0 ou, O0i, 0 10, O0Oig 0 ow .
+—|f + +—=|lz—=+ — 20—+ AV 10
af[“( 9z oF ) 351G 58 + %z ) 62[ Hoz

+200,wg —2ﬁﬁgwr prwrwz + pzw +p2w g

Coriolis Centr1fugal
+ prwg + pitrwg — PUgw;
N~ ——

Euler Arbitrary Rotation

&9
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4.3.2.3 Arbitrary Acceleration

In Chapter 3, Equation 3.227 the non-inertial momentum equation for arbitrary acceleration in com-

pressible conditions has been derived:

— +V-(paea)=-Vp+V-[pva+val)+ Av-wi]
A 0
+200 N Q- pXANQAQ++pXANQ+pxAQ+20V()A Q- —(pV(2)) (4.84)
—_— — —— —— ————— Ot

Corioli Centrifugal Eul M i
oriolis entrifugal  — Buler _ agmuis Translation

Unsteady motion

The stress components are determined by the compressible stress tensor in Equation 4.43 and by also
using Equations 4.69, 4.70 and 4.71 (providing the formulation for arbitrary in incompressible flow)
the component form of the compressible momentum equation in Cylindrical coordinates are determined;

F-momentum

AA A A AA An2
apur + ﬁraplfr + Teaplfr - plfg + ﬁz aplfr = _6_p
ot 7 00 & 0z or
R P o (. 104, g aug on, 0i,
22—+ AV-a|+ —|f(z— - — +
Torlh o T al+ B MG ~F ] 62[(62 6f)]
+2p1lgw, — 200w — PEW,w, + PFW? + pmg (4.85)
Co;irolis Centrifugal
apV,
~ pEivg + plgw, — Ppliswg +2pVpw, ~ 20Vawp - gtr
—— ~ ~

i i M
Euler Arbitrary Rotation agnus Unsteady Translation

6-momentum

0pig , . 0Py  igOlly  pioly . 0plg _ 10p

u +u =———
ot " or P 40 2 “ 02 7 00
16ur g Oug 6 10y Qr, o . 0 10a, Oug
-+ — 20—+ —)+AV-a| + < |- —
[“ Fob o oF )]+ 322G 55+ ) | aé[“(f PY IS J
+2ﬁﬁzwr - 200,0, — prw,wg — pZwow,
Co;irolis Cent;i,fugal (4.86)
00V,
- pEG@y — PR, + Pl @y — Plirwy + 2pVowy — 20V, g ; 0
Elﬁer Arbitrar;/, Rotation Magnus Unsteady Translation
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Z-momentum

opu, . 0pa, ugdpu, ., 0pu, op
+u, — +— — Tt U, — = ——=
ot or 7 00 0z 0z
0 ou, O0u 0 104, o0u 0 oW .
s =[S+ )]+ AR+ S0 |+ o2 2055 A9 -a
or 02 or 00 7 00 02 02 02
+2p1,09 — 2pllgw, — PFo,0, + pEw; + pEw;
Coriolis Cent;g‘uga] (487)
0pV,
+ pRivg + ity wy — Pligwr + 20V, wp — 2pVowy — Pz
—— ~ N ~ - ot
Euler  Arbitrary Rotation Magnus Unsteaﬁlslation
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CHAPTER 4. NON-INERTIAL EQUATIONS IN COMPONENT FORM

4.4 Non-Inertial Equations in Curvilinear Coordinates

4.4.1 Vector Operation in Curvilinear Systems

An orthogonal curvilinear system is the most general form in which a set of equations can be written. The
Cartesian, Cylindrical and Spherical coordinate systems are special cases of the orthogonal curvilinear
system. A set of equations in the curvilinear system can be transformed to any of the above mentioned
systems by using the table below as shown in Griffiths [72] and Williams [73]:

Table 4.1: Relations between the Curvilinear Coordinate System and Other Systems

Curvilinear | w1 | us | us x y z h1 ho hs
Cartesian y | z X y z 1 1 1

Cylindrical 0 | z rcos6 rsin6 z 1 r 1
Spherical 0 | ¢ | rsinfcos¢ rsinfsing rcosf 1 rsinf

Consider a geometry (Figure 4.5) that consists of three surfaces, f1, f2 and f3. These are defined in
the Cartesian system and is related to the coordinates surfaces in the following manner:

filx,y,2)=u1, folx,y,2)=uz, f3(x,y,2)=us (4.88)

Figure 4.5: Co-ordinate Surfaces and Intersection Coordinate Curve Lines at Point P

us curve

\/
<

The surfaces intersect at a point P. It is from this point that the curvilinear system are described.
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4.4. NON-INERTIAL EQUATIONS IN CURVILINEAR COORDINATES

The coordinates surfaces, u1,ug and ug, remain constant at a given time step. The surfaces intersect
each other at the intersection coordinate curves, w1 curve,us curve and ug curve which form the axes

associated with point P.

uilx,y,z)=c1, ugx,y,2)=ca, uslx,y,z)=cs (4.89)

Tangential to the coordinate curves is the unit vectors e, eg and eg that form the axes of the
curvilinear system at point P. These are equivalent to the i, j and k unit vectors in the Cartesian system.
In the curvilinear system the geometry is represented by scaling factors (h1,h9,h3) that are used to
characterise the surface curvatures. If the arc length between the surfaces vy and w1 + du; is defined
by dl1, then the scaling factor is applied so than dl; = A1 duy. The scaling factor accounts for the
curvature in the surface of the geometry and is applied in all principle directions:

dli=hidui, dla=hadugz, dlz=h3dus (4.90)

These definitions pave the way for establishment of the curvilinear finite control volume from which

the equation sets for fluid motion can be derived (Figure 4.6). This leads to the definition:

ds=hiduieir+hiduies+hiduy eg (4.91)

Figure 4.6: Curvilinear Finite Control Volume

us

The finite control volume in the Cartesian and Cylindrical system is well known, and can be related
to the Curvilinear system as shown by Griffiths [72] and using Table 4.1.

ds=dxi+dyj+dzk
(4.92)
ds=dre,+rdbeg+dze,
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The vector form of the Navier-Stokes equations is independent of the coordinates systems used
(White [9]). Therefore the equations can be written from the vector form into the component form of
any coordinate system using the appropriate definition of the operators involved. The operator that is
most generally used in computational fluid mechanics is the del-operator (also referred to as nabla) for

which the mathematical symbol is V. In the curvilinear system it is defined as:

1 0 1 0 1 0
\Y ili =——ej+——eg+ —— 4.93
Curvilinear i 6u1e1 by Oy €2 hs Ot €3 ( )

The relations in Table 4.1 can be used to obtain the definition of V in other coordinate systems:

. 0. 0
Veartesian = 0 1+ @J + ak
a 1 0
VCylmdrlcal a ;@eﬂ + aez (494)
v 0 N 10 1 0
; —er+—— —e
Spherical = 5 €t 55 €0 T im0 6¢p ¢

The definitions of the vector operations required in the curvilinear system are obtained from the
literature (Griffiths [72], Marskar [74], Anon [75], Williams [73]. These are used in the section below

to expand the vector form of the non-inertial equations into curvilinear components.

Gradient:
1 of 1 of 1 of
4.95
h16u1e1 hzauze hs 6u3e3 ( )
Divergence:
VA= 0 (hohgAy)+ = (h1haAs) + ——(hihohs)] (4.96)
hihohg0u, Oug Ous
Curl:
hier hges hges
VAA= — S (4.97)
h1A1 h2A2 h3A3
Laplacian:

1 0 ,hohs 0 0  hihs 0 0 ,hohi 0
2 [ ghs 0f \ 0  hihg Of \ 0  hohy Of (4.98)

+ + —
h1h2h3 oui hi 6u1 Ous ™ hg Ous’ Ousg' hsg Oug
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4.4.2 Incompressible Flow Conditions

The incompressible continuity equation is obtained from Schlichting [42]:

N

V.pt=0 (4.99)

The definitions of the displacement and velocity in the non-inertial frame, using the curvilinear
coordinates, are described as:

)AKIﬁl e +ig e2+ﬁ3 es3 (4.100)
ﬁ=V1 e1+V2 82+V3 es (4.101)

Using the definition above for displacement and velocity, along with the definition of the divergence

in Equation 4.96, the curvilinear continuity equation for incompressible conditions is:

9 9 0 A
hihahs |33, 12haV1)+ 5 (hahaVe) + @(hlhzvs’)] =0 (4.102)

In Chapter 3, Equation 3.239 the non-inertial momentum equation for arbitrary acceleration in incom-

pressible conditions has been derived:

ot . o . .. 0
W @Dz -V +vT2a+ 20 A Q- KAQAQ+EAQ+EAQ+2V(E) A Q - —(V(2))
Coriolis Centrifugal Euler Magnus rlrt—’ ( . )
— ranslation

Unsteady motion

The curvilinear stress tensor is described in Liu et al. [76] and Kee et al. [77] and is used along with

Equation 4.96 to obtain the diffusion terms in component form.

1 0‘71 Vz oh1 V3 oh1 A .
-p+20|——+ —+ +AV-
i “(hl 041 hihg 0ds  hihs 6u3) "
10Ve V3 0hg Vi 0hay A~ .
=—p+20|— + — + +AV-
t22="P “(hz 0lis  hohs 0hs  hihg Oul) u
A 10Vs Vi 0hs Vo 0hsgy .. .
=—p+2 + — + +AV-
f33="p “(h3 0hs | hihs0d;  hohs auz) "
s . _afh2 O Voy h1 0 (Vi (4.104)
T2 =ta1 = f| 57 aul(h2)+h2 6u2(h1)
N N A h3 0 V3 h2 0 V2
= = +
723 =732 “h2au2(h3) h36u3(h2)
PORPS hl 0 (Vl) h3 0 (Vg)
T = 505 \hy) T By ouy \hs
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The non-inertial momentum equation is expanded into curvilinear components using the vector op-
erations defined in Section 4.4.1. The fictitious effect terms are expressed in curvilinear coordinates
and expanded as shown in Equation 4.4. The relative motion vectors are expressed in curvilinear coor-

dinates:

Vi) = V21 e+ V62 eg + Ve3 eg
(4.105)
Q=wie;+w es+wses
The non-inertial Navier-Stokes equations for arbitrary acceleration in curvilinear components are
shown below. The equations are the same as seen in Kee et al. [77], but with the addition of the fictitious
terms.

Uj-momentum:

ot h10i1 hgOilg hgoils

hi1ho 0Gi1 hihg Olg

oVy ViaVy VooV V3dVy . ( Vo 0hg Vi 0h1y ~( Vi 0hy Vi 0Ohg
ot hio0y  hyoas va( J+ (h1h30u3 h1h30a1)

1 0y

“h10a,

1 3 10V Vy 0h Vs 0h
" hihahs | 04, {2Vh2h3(h1 Oui " hliz 0_12; i hlzg G_u;)}
0 ho 0 (Vo h1 0 (V:

auz{Vh?’h h_iaﬁl(h_z)+h;au2(hm}

0 hi 0 (Viy hg 0 (V:
+@{Vh1h2 h;aug(hi) hj@ul(hz)]}]

1% hz 0 Vz h1 0 ahl
" hihg {h_lﬁ(hz) hzaug(hl)}auz

 (h1 0 (Viy h3 0 oh
h:h?,{h;6u3(h1)+hj0u1(h3)}6u;

2v {16V2+ V3 %4_ V1 %}6_}12
h1h2 hz auz h2h3 6LAL3 h1h2 aﬁl 6121
29 {16V3+ Vi %+ Vo %}%
" hihs \hsdds  hihs 041 hohs Ods

+ 2V2a)3 - 2V3w2 + ﬁl(w32 + wzz) —Uowiwg — ﬁ3w1w3

0ty

~~

Coriolis Centrifugal

V.,
ot

——

Translation

+llows — ligwse +&2(1)3 - 1230)2 + 2V, w3 =2V, w2 —
—————— N _

Euler Magnus

v

Unsteady motion

(4.106)
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Ug-momentum:

Wy N0V VaVy Vodbe o Vo by Vo Oy g Vo Ohe Vi oy
0t h1007 hgllis hgOig hsho 0iis  hohg Olig hiho 0li1 hihe Olig
1 o¢
1 0 (. ho 0 (Vo hi 0 (V1
* i Lo 23 () * 3 ()
0 . 1 0Vs V3 0ho Vi 0hg
+0_L?2{2Vh3h1 ha 0lz i hzhsﬁ-’- hihg ﬁ]}
0 (. hg 0 (V3 hog 0 (Vo
st s () s ()
s 0 (Vo) e D Ty Ohe
hohs Lho Olig \hg hg0iig\hyo/) 0lig
{2 () L () 2
hohi Lhi 011 \ho ho 0lig \h1/) 011
(2 L oVs Vi Ohy, Vo Oha)ohs
hohs hg 0lis hih3 01 hohs 0iig) Olig
3 2v {iavl_i_ Vg %_’_ V3 %}%
hoh1'h1 001 hiho Ol hihs0iig) Oig

+ 2V3w1 - 2V1w3 + ﬁg(w32 + w12) - ﬁlwlwz - ﬁ3w2w3

—_—

Coriolis

+lgw1 — 13 +Ift3ﬂ)1 - ﬁlwg +2Ve, w01 -2V, w3 —
———— N M

Euler

Unsteady motion

Centriirfugal
aV,,
~ ot
— Magnus Translation
(4.107)
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ug-momentum:

0V3+V10V3+V20V3 V36V3 ( Vi 0h1 V3 0h3) ( Vs 0hy Vs ah2)
h2h3 0t h2h3 6u3

+ —_— e — —
h10i1 hgOiig h30u3 hi1hg0ii3 hihsg0iq

I
" hi0dg
1 70 hi 0 (Vi\ hs 0 (Vi
h1h2h3 aul{ Vhzh (h; 6u3(h1)+h? aul(hz))}
o (. hs 0 (Vs\ hy 0 (V;
aaQ{Vh?’h hiauz(h§)+h§au3(h§)]}
5 10Vs Vy ohs Vo oh
" i, {2oh1hs B3 auz+h1llz30_£+h2izzga_ﬁz]}]
v

+

hl 0 Vl h3 0 6h3
h h {h3 aug(h1)+h1 aul(hg)}aul
% hsg 0 V3 ho 0 V2 Ohs
hzhg{hzauz(h3)+h36u3(h2)}6ﬁ2
2 LV Vo Oh, Vo Oha)oh
hihs \hy1 01 hihodlis hihs 0hs) dis
29 {10V2+ Vs @+ Vi @}ahz
h2h3 hzauz h2h30ﬁ3 hlhzaﬁl

+ 2V1(1)2 - 2V2(1)1 + ﬁg(w22 + w12) - ﬁ1w1w3 - ﬁzwlwg

+

0il3

v~

Coriolis Centrifugal

V.,
ot

——

Translation

+1l10W9 — oW1 +f¢1w2 - &2(01 +2Ve, w3 — 2V, 01 —
— N _

Euler Magnus

/

Unsteady motion

(4.108)

4.4.3 Compressible Flow Conditions

Equation 4.8 defines the compressible continuity equation.

0p
a_’;+(v.ﬁﬁ>=o (4.109)

In a similar manner as shown in the previous section, the curvilinear continuity equation in com-

pressible flow becomes:

0 ob Vodb Vo0 b0 0
h1001 hodilie hgoiiy hihohg!loii,

0 N 0 N
+ 3ty (h1h3V2) + @(h1h2V3)] =0
(4.110)
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The compressible conservation of momentum equation was determined in Chapter 3, Equation
3.227:

Deviatoric stress
e

6 A1 n “ -~ ~ ~ N Aw
% +V-(paen) = —Vp+ V- [aFa+val)+ AV -wil
A . f By A 0 (4.111)
+200NQ—-pXANQAQ+pXAQ+pxAQ+20V(E) A Q- —(pV(2))
—_— —/ — —— —_———— Ot
Coriolis Centrifugal Euler Magnus —
—_— Translation
Unsteady motion
Using the methodology of Section 4.4.2, the curvilinear component form is obtained. This corre-
sponds with the formulations for Kee et al. [77], with the addition of the fictitious terms.

uj-momentum:

hihg 0li1  hiha i)

avl V16V1+V26V1+V35V1 ( Vo 0hy V3 ahl) ( Vi 0h1 V3 ah3)]
P h1 6u1 h2 0u2 h3 aﬁS ’

1 0p 1 0

hi0iiy  hy0iq
1 )

10V Vo 0h Vs oh
" Tihahs aal{Q"hzh?’(hl aui +h1l212£+h1l313 ﬁ)}
0 he 0 (Vo h1 0 [V
i {ahahy hjaul(hz)Jrh;auz(hi”}
a (. hi 0 (Viy hs o (V-
* 5y hahe 75 (7 + hjaxl(hz”}]
hy 0 (Vay hy 0 o0h1
hlaul(hz) hzauz(hl)}aUQ
hi 0 (Viy h3 0 oh
h16u3(h1)+hjax1(h3)}6u;
10Vy Vs 0hy Vi 0Ohg)ohs
h20_ﬁz+h2h36_%+h1h20_ﬁl}ﬁ
24 {1av3 Vi ohy Vs %}%

Qi
hihs

+

+
B3
,—A— —_—— ,—A—

h1h3 h30i3 hih30i1 hohsOig) 01y
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Ug-momentum:

R GVQ Vl OVQ Vg OVQ Ohsy

V3 0V 'V( Vs

oy _ Vo oha)y,( Ve
h3 0u3 h3hg 0tio

ho 0ilg hohs 0l
10p 130
ho 0ls  ho 0l

1 0 hy 0 (Voy h1 0 (Vi
h1h2h3 [a_{llhzh (hl aul(hg) ho auz(hl))}
+ 16V2+ V3 %_‘_ V1 %]}
Ol hg 0y hohsdity  hihg 0y
0 hg 0 V3 ho 0 (Vo
a1’2'3{Mhlh hzaﬁz(h3) h30u3(h2)]}]
a {@ 0 (V3) h2 0( )}ahz
hohs \hg 0lia\hs)  hs diis hz diis
fi (hy 0 (Vo) h1 0 ohy
h2h1{h ou 1(h2)+h20u2(h1)}6u1
20 1 6A3 Vi 0hs  Vy 0Ohg)ohs
{h h1h3 01 hahs @}5_122
_ 2k {3;921+ Ve Ohy Va Qﬁl}gﬁl
hohi'h10@1  hihg0lia  hihg 003

+ p [ 2V3w1 - 2V1w3 + ug(w3 + w1 ) ula)lwg - u3w2w3

—_— + _—
ot hq 014

? {Zﬂhshl

+

+

+

Otlo

g

Coriolis Centrlfugal

v,
ot

Translation

+lgw1 —l1w3 +Li3(1)1 - &1&)3 +2Ve, w1 — 2V, w3 —
Nt N )

~~

Euler Magnus

/

Unsteady motion
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4.4. NON-INERTIAL EQUATIONS IN CURVILINEAR COORDINATES

ug-momentum:

s[0Vs VioVs VooV VoV 7y (- Vi 0h1 V3 0h3) AR Vs 0hy  Vy ahz)]
hohs 0li1  hohs 0i3

[ — [ —_— s — — +
0t  h1001 hg0dds hgois hihs 0t3 hihs iy
10p 1 0 ..

=9 = 9 G%4
hidas  hadas VY

1 0 hi @ (Vi\ h3 a (V:
" hihahs 6&1{uh2h3(h;aug(hi)Jrhjaxl(hZ))}

0 hg 0 V3 ho 0 Vz
{hahs hzauz(h3)+h36u3(h2)]}
1 0Vy V1 Ohg Vo 0Ohg
h30u3+h1h36_ﬁ1+h2h3@]}]
b (D) 2 () o0
h1h3 hg 0lg hl hl 0x1 \hg/) 0111
b{ts 0 (Fs) s (Vo oh
ho 0lig \h3 h3 Otig \ho/) Oilg
{1 0V1 Vz 0h1+ V3 %}%
h1h3 h16u1 hlhzaug hihg 0iig’ O0iis
2 (L10Ve, Vi Ohy Vi Ohy)ohy
hohg Lhe 0lig  hohg 0iig  hihe 0l
+p[2V1w2—2V2w1+u3(w2 +w1) ulwlwg—uzwlwg

g

Coriolis Centrlfugal

0

aa {Z/Jhlhz

h2h3

o3

+ W9 — Uow1 +f¢1w2 - Iflzwl +2Velw2 - 2Ve2w1 -
————— N _

Euler , Magnus
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4.5 Closure

It was established in this chapter that the Cylindrical and Curvilinear systems, as in the case of the
Cartesian system, have an inertial and a non-inertial form. Subsequently the component forms of the
non-inertial Navier-Stokes equations were derived in Cartesian, Cylindrical and Curvilinear coordinates

respectively. The specific contributions of that followed from the work are as follow:
 The non-inertial momentum equation in incompressible and compressible flow were derived in
for the Cartesian, Cylindrical and Curvilinear systems respectively which clearly indicated the
o differences in the material derivative between the various coordinates systems,
o forms of the diffusion terms that are dependant on compressibility,
o subsequent differences in the diffusion terms between coordinates system and
o formulations of the fictitious forces for each co-ordinate system respectively.

 The continuity equation were determined in component form for the Cartesian, Cylindrical and

Curvilinear systems respectively.

* It was shown that the non-inertial equations derived in Chapter 3 are relevant to all coordinate
systems, since the vector form of the Navier-Stokes equations are universal across coordinate
systems (White [9]),

* The Cartesian and Cylindrical systems are special cases of the Curvilinear case. The aforemen-

tioned can be obtained from the Curvilinear description using the relation shown in Table 4.1.

The compressible continuity equation, in Cartesian, Cylindrical and Curvilinear components respec-
tively, were derived and is formulated in Equations 4.9, 4.35 and 4.110. In the case of incompressible

flow the transient terms can be neglected as well as any terms associated with the change in density.

Cartesian d0 8 3 5
u v w
a—i+§—x+;;y+g—z:0 (4.115)
Cylindrical
2—?+%+%+%%+%=0 (4.116)
Curvilinear

0
/%)

0p Vi op Ve 0p Vi 0p ) B
op Y1op V2 Op V3Op P

hohsVy) +
5t iy duy iy oty s oy huhaha loa, 121V *

N 0 N
(h1h3V2) + F(h1h2V3)] =0
us
(4.117)
The Curvilinear form of the non-inertial momentum equations is the most general form; the Carte-
sian and Cylindrical formulations was derived from this using 7able 4.1. The descriptions of the ficti-

tious forces in the various coordinates systems are shown below for selected directions.
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Curvilinear: i@ 1-direction

ovh 1 d0p . .
o|l—+ L= —+...+p0 2V2w3 — 2V3w2 + ul(w32 + w22)— U119 —U3W1W3
ot h1 0t - ~ -\ ~ -
Coriolis Centrifugal
A . A . 2 ~ aVel
+Ugwg —U3W9 TUQW3 — U3W?Y +2V62a)3—2Ve3w2— ot
—_—— N -~ _
Eul ~
uer ~ v Magnus Translation
Arbitrary Rotation
Cartesian: X-direction
apis ap
% Y +...+2p0w, - 200w, + pi(w,2 + wy2) —pIwxwy — PEWyw,
X - — TN -— _
Coriolis Centrifugal
\ A R 0pVs
+PpJw, — PEwy +pyw, — PZwy +2pVyw, -2V, 0, - Y
—— N ~~ 4
< Euler -~ _ Magnus Translation
Arbitrary Rotation
Cylindrical: r-direction
opu 0p
gt T =- 0{) +...+200gw, — 200,09 — PEWrw, + prwg + prwg
r N ~ N —
Coriolis Centrifugal
0pV,
— 2wy +plgw, — Pl we +2pVyw, — 2PV, — AL
e ~ ~~ 4 ot
M
\Euler v agnus Translation

Arbitrary Rotation

(4.118)

(4.119)

(4.120)

The fictitious terms have a common form between the various coordinates systems that are depen-

dant on direction. This can be illustrated with the Coriolis terms from the equations above. The equiva-

lent terms between the coordinates systems are highlighted in the same colour. In a similar manner the

equivalence between the other fictitious terms are observed.

20 Vo w3 -2p Vs wg —Curvilinear
200 w; —2p w w, —Cartesian

20 G w, —2p 4, wy —Cylindrical
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Chapter

Non-Inertial Boundary Layer Equations

n this chapter the boundary layer equations are determined in a non-inertial frame. Boundary layer
theory is well established for inertial cases (Anderson [58], Schlichting [42], White [9]) and is
expanded upon to determine the non-inertial formulations.

The boundary layer is the thin layer of viscous fluid close to the wall of a solid surface in a mov-
ing fluid. The velocity in the boundary layer approximates zero at the wall (if a no-slip condition is
assumed) and increases in a direction perpendicular to the wall to approximate the free stream velocity.
The regions associated with the boundary layer are shown in Figure 5. 1. There are three properties of a
boundary layer that characterises it and a fourth that classifies the flow regime; boundary layer thickness

8, displacement thickness §*, momentum thickness 6 and shape factor H.

Figure 5.1: Regions Associated with the Laminar Boundary Layer

A Velocity
v a U u(x) v profile
- u(x)
> - ~ Inviscid
nvisci
> * >
_ 6%(x) B (x) - region
6(X) > > }
Boundary .
layer VISC'OLIS
thickness region
— X
> ¢ . >
[« L > X No-slipata  all shear stress =
solid surface  viscosity x velocity
gradient

The boundary layer height, §, is the distance from the wall were the velocity is 99% of the free
stream velocity. Within boundary layer the viscous effects are dominant during steady state conditions,
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while in the outer inviscid flow the momentum effects become dominant.

The displacement thickness, §, is the distance by which a surface would have to be moved in the
direction perpendicular to its normal vector away from the reference plane, in an inviscid fluid stream
of the free stream velocity, to give the same flow rate as occurs between the surface and the reference
plane in a real fluid (Schlichting [42]). This definition is mathematically described by Equation 5.1
(White [9]) and depicted in Figure 5.2.

e[V, u
5 _fo (1- 2-)dy 5.1)

Figure 5.2: Graphical Representation of the Displacement Thickness Parameter

v A Equal mass flow at y A
Ueo same pomtlon the plate U(X)
_— > >
* > > > >
s & —— g g
b ° : g :
I«S*(x) 8*(x)

<V

A
—

> X \_‘_1

‘ Shaded areas are equal ‘

The momentum thickness, 8, is the distance by which a surface would have to be moved in the
direction perpendicular to its normal vector away from the reference plane, in an inviscid fluid stream,
of the free stream velocity to give the same momentum as occurs between the surface and the reference
plane in a real fluid (Schlichting [42]). This definition is mathematically described by Equation 5.2
(White [9]) and depicted in Figure 5.3.

*—00

B:foy Uu_oo(l_ULoo)dy (5.2)

The shape factor is a function of the displacement and momentum thicknesses (Equation 5.3). It

is used to characterise the flow regime; a value of 2.59 is typical for laminar flows (White [9]). A

higher shape factor is associated with a stronger adverse pressure gradient which in turn can lead to
flow separation from the solid surface (Wazzan et al. [78]).

5*

H= 1 (5.3)

The three dimensional boundary layer equations for inertial conditions on a flat plate are derived

using a magnitude of order approach (Schlichting [42]). The boundary layer equations for the non-

inertial conditions are derived in a similar manner as the inertial equations to determine the effects of

the fictitious terms in the near wall region. These equations, along with the boundary layer properties
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FORMULATION

Figure 5.3: Graphical Representation of the Momentum Thickness Parameter
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described above, are used in subsequent chapters to enhance the understanding of the flow physics

observed in the numerical results of non-inertial flows.

5.1 Non-Inertial Boundary Layer Equations for a Flat Plate - Cartesian

Formulation

Partial differential equations are analysed by obtaining the non-dimensional form through scaling of the
characteristic properties (White [9]). This allows for analysis of the relative magnitudes of the separate
terms in the component form of the equation. The characteristic properties of a laminar boundary layer
are shown in Figure 5.4. It comprises of a reference length (L), reference velocity (free stream velocity

U), boundary layer thickness (&) and other free stream properties such as viscosity and pressure.

Figure 5.4: Boundary Layer Parameters

YA
u(x)

c
]

Free stream

YvyYyYVvVvy

|

6iX) ; Boundary layer

D

< L >l

YYVvYY ll Yyvy

x

Scaling (see Figure 5.5) is aimed at obtaining the relative sizes of the terms in order to identify
smaller terms that can be neglected from the equation (Patankar [79], Versteeg and Malalasekera [69]).
Elimination of the smaller terms result in a simplified equation. These equations contain the terms that

have a significant effect in the near-wall region and are responsible for the behaviour of the flow in the
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boundary layer. The physical responses of the boundary layer to accelerating conditions are explained

using the simplified equations.

Figure 5.5: Boundary Layer Scaling Parameters

s_ Y
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»|

rescale 1
[EE——

X —

X
< 1 > 1

S/

The analysis is based on the assumption that the boundary layer thickness, &, is much smaller in
comparison with the body over which the flow is analysed (Schlichting [42]),
o
+<<1 5.4
. (5:4)

A perturbation parameter, ¢ is introduced. This represents a very small disturbance in the flow at

the surface that asymptotically approaches zero as indicated in Figure 5.6.

Figure 5.6: Perturbation Parameter € on a Flat Surface
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The perturbation originates from the surface of the plate continues to propagate along it. Therefore

the disturbance approaches € in both the - and 2- directions in the figure above. In the j-direction the
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FORMULATION

disturbance approaches ¢ close to the wall, but it dissipates further way from the wall since the interac-
tion of the fluid with the solid surface sustains the disturbance. At the flow boundary the disturbance is
smaller that £ and of order £2. The boundary layer height is smaller than the disturbance at the wall and
asymptotically approaches 2. It is defined that (Rogers [80], Schlichting [42]),

e<<1

e2<e (5.5)
65— &2

5.1.1 NON-DIMENSIONAL ANALYSIS

Significant work was done by Mager [81] to characterize the laminar boundary layer in turbo-machinery
applications. The figure below (Figure 5.7) indicates the notation from Mager [81] that are used in this
derivation. The boundary layer develops along the %- and 2-directions and the rotations occur about the

&-, ¥-, and Z-axes with magnitudes w1, w9 and w3 respectively.

Figure 5.7: Flow over a Rotation Flat Surface (Mager [81])

The non-dimensional parameters selected for the spatial variables is as follow (Rogers [80], Schlicht-
ing [42], White [9]):

s 2

* 7L

=3 (5.6)
s 2

° L

L is the reference distance, the assumption is made that the plate is infinite in the £- and 2-directions.

¢ is the boundary layer height in the j-direction as a distance of L.
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The velocity components are non-dimensionalized as follow, where U is the characteristic free-
stream velocity (Rogers [80], Schlichting [42], White [9]):

ur=2
U
0L
“Us
N 5.7
LB (5.7)
U
U
t=t—
L

The angular velocity, with the units of radians per second, are non-dimensionalized as follows:

rad

| 151

w- =w;t [
(5.8)

The specific pressure and kinematic viscosity are normalized as follows (Rogers [80], Schlichting
[42], White [9]:

"zl ][5 9

5.1.2 Continuity Equation for Boundary Layer Flows

The non-inertial continuity equation was derived in Chapter 4, Equation 4.18:
ou 00 ow
=Tt 2
0x 0y 02

Applying the normalization parameters to this equation result in the non-dimensional form of the equa-

=0 (5.10)

tion Section 5.1.1:
ow*U) 00 ) sw*U)

+ + = 5.11
0(x*L)  0(y*6)  d(z*L) G40
The equation above is multiplied by:
L
T (5.12)
leading to the final non-dimensional form of the equation:
ou*™ ov* ow*
1 +|1|=—+|1 =0
[ ]6x* [ ]ay* 4 0z* (5.13)

The coefficients of each term are equal to one and are therefore of the same order of magnitude. No terms
can be neglected as all are contributing equally to the flow. The boundary layer continuity equation thus

remains the same as the bulk flow equation:

on 80 ow

=ttt =0

0% 0y o0z (5.14)
110

© University of Pretoria



poat
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

QA YUNIBESITHI YA PRETORIA
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FORMULATION

5.1.3 Conservation of Momentum Equation for Boundary Layer Flows

The non-inertial conservation of momentum equation (Equation 3.55) for constant, pure rotation is
broken up into its direction components in order to treat the principle directions separately. The X-
direction is specified as the first principle directions, and the ¥- and 2-direction the second and third
respectively.
@+(ﬁ~©)ﬁ:—W+v@2ﬁ+2ﬁ/\n—ﬁ/\m\ﬂ
o= = (5.15)

ot
Coriolis Centrifugal

5.1.3.1 First Principle Direction Equation

The non-inertial conservation of momentum equation in the %-direction is determined using Equation
4.24 (that established the component form in incompressible flow) and Equation 4.49 (that indicated

the method for determining the component form of the non-inertial components) in Section 4.3.1.1 :

on on oa _on oy o%a d*n o*a
—t0—tW—c=——+V 5+ 5+ )
ot 0% 09 0% 0% %2 092 032 (5.16)

+20w3 — 2Wwse + 56((1)32 + w22) —Jwiws —Zwi1ws
By implementing the normalization parameters as indicated in Section 5.1.1 and multiplying by,
L
U2

the equation takes on the non-dimensional form. This allows for order of magnitude analysis of the

(5.17)

separate terms:

ou*  ,ou* ,ou*  ,ou*  oy* 1 0%u* L o0%u* 1 o%u*
ot* Tu O0x* v oy* rw 0z* :_ax* v VOO[(L_U)ax*2 +(U52)0y*2 +(L_U)az*2]
5 L L? 2 42
(G20 03 - (F2w" 0F + (a0 + 03] (5.18)
oL L?
—(W)y*w’fwg —(W)z*wfw?f

For the purposes of simplification the assumption is made that the boundary layer thickness ap-
proaches a very small number (¢2) while the characteristic length approaches a very large number
(Rogers [80], Schlichting [42]):

e<<1
§—e? (5.19)
L — o0
In order to keep the solution as general as possible, it is assumed that velocity and time has positive
values. It then follows that:
Ueleg oof

(5.20)
teleg o0
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From the above relations the following simplifications are made:
1
L *
L
Z oo
&2 (5.21)
o 2

— =€

0L — oo

Implementing the above simplifications in Equation 5.16 lead to the non-dimensional momentum
equation with components in the &-direction. The order of magnitude factors and the corresponding

orders are indicated below:

ou* ou* ou* ou* oy™
1 +[1]u* +[1v* +[1w™ =-[1
(g + [ 5+ [ o+ [ 57 =~ 5 5
£ &
1/ 0%u* L o0%u* 1/ 0%u*
+v*voo[(ZZ) 5+ (=) — +(ZZ)—2]
U dx* Ud 6y* U §z*
(0]
5 L 2 (5.22)
+( gy 20y = 5 2w 0l + (s e w3 + 03]
— —— ——
[ 00( [e 00l [e 00l
5L L?
_(W )y o] w) —( T )z*wiwl
—— ——
[g 00 [g, 0]

The coefficients of the fictitious terms have a temporal component, ¢, in the equation. This parameter,
t € [g, oo[, has been defined for a general solution. The order of magnitude of the coefficients associated
with the fictitious terms is undetermined, since it is an element of [&, oo[. The terms can therefore not
be excluded from the equation. None of the fictitious terms could be neglected in this case and in the
general solution influences the boundary layer behaviour. The general conservation of momentum for

the non-inertial boundary layer equation in the &-direction becomes:

on .oa .oa on oy o*n. . R 9 o X
—+iU—=+0—=+ =——+ V(=) +20w3 - 20wz + H(w3” + W2") — Jwiwa — Zwiws

at "oz oy Yoz oz 092 (5.23)

5.1.3.2 Second Principle Direction Equation

The non-inertial conservation of momentum equation in the j-direction follows from Section 4.3.1.1,

Equation 4.32 and the method for non-inertial component expansion in Equation 4.49:
06 00 06 o0 o 0% 0% 0%
—tl S+t =+ m=———+Vm+ 5+ =
ot 0x 0y 0% 09 %2 092 022 (5.24)

+2wwi — 2ﬁw3 + 5’((1)32 + w12) —Xwiw9 — 2&)2&)3

— )
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Implementing the non-dimensional parameters previously defined in Section 5.1.1 and multiplica-

tion by:
1)
oz (5.25)
Leads to the non-dimensional form of the equation:
6% ov* 8% L ovr 8% L ov* & L dvt oyt
=) —+ (=S —+ (= +(= =——
(T T2 o YV G TR 5 T oy
52 02 * 1 ot 6% 8%t
+v Voo((UL3) " (L—U) *2+(UL3 *2)
Ox 6 0z (5.26)
6 *  x 5 *2
+(m)2w wl—(m)zu +y ((W)w +(U2 2) )
6L * ko ok * kK
(G oia} (e 03

When the same simplifications are used as in the Z-direction case as shown in Equation 5.22, the gen-
eral conservation of momentum equation for the non-inertial boundary layer equation in the y-direction

become:

30
0= _6_1/'{ +20Ww1 —24ws + 5/(w32 + wlz) —Xw1w2 — Zwaws
Y

(5.27)

5.1.3.3 Third Principle Direction Equation

The non-inertial conservation of momentum equation in the Z-direction is determined using Section
4.3.1.1, Equation 4.32 and Equation 4.49:

ow ow ow _ow of d*w o*w w
—+ 0 —+W—=———+Vv(— — + —
ot 0% 0y 0% 0% %2 092 032 (5.28)

+ 20w — 20w + é(wzz + (1)12) — .92(1)1(1)3 - yw2w3

Implementing the non-dimensional parameters previously defined in Section 5.1.1 and multiplica-

tion by:
% (5.29)
lead to the non-dimensional form of the equation:
* * * * *
+V*V°°[(I%)22Lg +(%>Z’f; “L%’Zilf;]
. 5 ) (5.30)
A 0y = A0 01+ (5502 o +or®)
_(UL222 )t wiws (52122 )y* waws
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When the same simplifications are used as in the &-direction case (Equation 5.22), the general

conservation of momentum equation for the non-inertial boundary layer equation in the 2-direction

becomes:
ow 0w oW 0w of 0%w
4] +0—+u =——=+v + 21 20w1 + +
= oz 0% — 53 (0 5) +20wg - 20w1 2(w2? + w1%) — w103 — Jwows (5.31)

5.1.3.4 Compressibility Effects on the Boundary Layer Equations

The differences between the compressible and incompressible formulations for the momentum equation
were discussed at length in Section 4.2.2.2. It was established that the form of the diffusion terms in
compressible and incompressible flow conditions is crucial since the complete deviatoric stress tensor

must be used in the compressible case (Equation 4.38):

2% +AV-a p(B+%)  AE+P)
#@39,0=| p(3+%) 205 +AV-a HPU %ﬂ (5.32)
A%E+5E) g5 205 +AV-a

Here it is determined which of the diffusion terms, that are relevant in the bulk flow, are relevant
in the boundary layer. This is done using the order of magnitude analysis (Patankar [79], Schlichting
[42], Versteeg and Malalasekera [69], White [9]) that was employed to determined the incompressible

boundary layer equations.

The components that pertain to the £-momentum equation is:

o on  ou
ot oy 6z ] Oy[ (az 0% ] 62[ (az*'az

6[ ou ou 00

2_
= |20 +A(

— )| (5.33)

The non-dimensional parameters of Section 5.1.1 are substituted in the terms above and multiplied
by Equation 5.17,

L
o2 (5.34)
to obtain the non-dimensional form of the terms:
ou™ ou* ov* ow* Ou Ov*
[—] —|2u +A( + +
LU | 9x* 0x* ox* Ody* 0z~ 6y Oy (5.35)
[ ] Ou N ow* )] '
LU 62 O0x*
An order of magnitude analysis, along with the following simplifications,
1
— =€
LU
) (5.36)
52U %

result in a number of the terms being neglected since the coefficients of the terms tends to e.
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£

0 ou™ ou* ov* ow* L 0
[Z%Jax—*m:*waz*u;—ﬁ;:—*nwm INEUEAN.
[246z

The diffusive terms in the compressible £-momentum equation are similar to the terms in the in-

(5.37)

ou* Ow*
z* Ox* )

compressible form (Equation 5.23):

2 n 2]

51735 (5.38)

The compressible form of the boundary layer equation for the conservation of momentum in the

&-direction is similar to the incompressible form determined in Equation 5.23:

0010 0p 0 ,o0u
~ pu_ p ”u_+2pvw3_2pww2+px(w3 +(J.)2)

+ +0 + =——++
or "oz "oy Yoz oz 05"09
- pywiwe — pEwiws (5.39)
The stress components that pertains to the y-momentum equation are:
0 ou 0 ou av 00 oW
— 20—+ A= + — —+ 5.40
0x [ (ay 0% ] ay[ ,u (afc ay 02 ] 02[ (dé 05/)] ( )

The non-dimensional parameters of Section 5.1.1 are substituted in the terms above and multiplied

by Equation 5.25,
o

2 (5.41)
to obtain the non-dimensional form of the terms:
Gv* ou* ov* ow*
[—] — +A( + + )
LU Gx* ax dy 6y* ox* 0dy* 0z*
N (5.42)
[ 2 [ e
L3U loz* e 0z* “ay*
An order of magnitude analysis, along with the following simplifications,
LU
52 (5.43)
9" 2
U ¢
results in all of the terms being neglected.
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&
0 ou* 52 0 ou* ov* ow*
RUEARENE 21 [f]ay ;* uazﬁag—ﬁ;;—*)]

2
o

(5.44)

0z* 62

The diffusive terms in the compressible y-momentum equation are similar to the terms in the in-
compressible form; all the terms can be neglected.
The compressible form of the boundary layer equation for the conservation of momentum in the J-
direction is similar to the incompressible form determined in Equation 5.27:
op
0=——+4+2pdbw; —2plws + py(w3 + w1 2 prwiwe — pZwaws

The stress components that pertains to the Z-momentum equation are:

0 [A(aa

2 [ aé+a£ 0 [A(dﬁ ow 6[ N oin 0v aw)]

— ==+ + = +A +—+
APy ay) 53 1255 + Moz 29 " 02

(5.46)

The non-dimensional parameters of Section 5.1.1 are substituted in the terms above and multiplied
by Equation 5.29,

L
02 (5.47)
to obtain the non-dimensional form of the terms:
[ s + 520+ 25 e e 15
LU Oox* LU ay 52U | ay*
w* ou* ov* ow* (5.48)
[LU] [ e
An order of magnitude analysis, along with the following simplifications,
1
— =€
LLU (5.49)
32U
result in a number of the terms being neglected.
€
[ ] 6u Ow*)]+[ 1 ]i v ow™
0x* 0x* U!loy* #
o0 (5.50)

ow* /lﬁu* ov* ow*

“az* * (Gx* * oy* " 62*)
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The diffusive terms in the compressible Z2-momentum equation are be similar to the terms in the

incompressible form (Equation 5.31):

0 [ N, ] (5.51)
a5 185 '
The compressible form of the boundary layer equation for the conservation of momentum in the

Z-direction is similar to the incompressible form determined in Equation 5.31:

opw 0pw  0pw , 0pw 0p 0 .0w o o anr 9 9
+ + + =——+= +2 -2 + +
o “Tex oy ez oz ay[“ay] piwy = 2p0w1 + p2ws" + 017)
- pRwiws - pIwaws (5.52)
5.1.4 Validation of Equations
In Mager [81] the non-inertial boundary layer equations are defined as follow:
Ux+uy+u, =0
1
Uly +VUy + WU, + 209w — w%rx =——PxtViyy
P
(5.53)

1
2
2(w3u —w1W) —Wy;Ty = ——py
o
2 1
UWy +VWy + WW,; — 202U — W,T; = —— Dy +VWyy
o

Mager [81] however stated that the total change of pressure through out the boundary layer along a
principle direction normal to the wall is of the same order as § and may therefore still be neglected as

both approximates 2. The equation in the §-direction can thus be simplified to:

1
Py 0 (5.54)

The mass conservation equation for the boundary layer agrees with the equation given by Mager
[81]:
on 06 Oow
—+—+ =
0x 0y 02

0 (5.55)

The boundary layer equations derived in the previous section represent a general case where no

assumptions were made with regards to the order of magnitude of characteristic velocity (U) and time

g
Ut

Equation 5.22. This leads to the following boundary layer equation in the %-direction:

(t). If it is assumed that the product of U and t is greater than one, the term 7 can be neglected from

on on oa _on oy 0%
— 4+l =+ =+ =——+v(

ot ox 0y 0z 0x 092

— 212)&)2

)
(5.56)

+ 5c(w32 + w22) - 5’0)1(1)2 - §w1w3
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This equation agrees with the equation given in Mager [81].
Under the same assumption as above, the boundary layer in the y-direction becomes Equation 5.27:
oy

0=-
0y

—Xwiwo — Zwows (5.57)

In Mager [81] it is assumed that total change of pressure through out the boundary layer long a
principle direction normal to the wall is zero. This means that the pressure gradient is only dependant

on %- and 2-directions. The above equation subsequently becomes:

A~

0= (5.58)
0y

In a similar manner as explained above for the Z-direction, the equation in the 2-direction becomes
(Equation 5.31):

ow 0w oW _ow oY 0%

—tih—+ + = 4t v(—
ot T4 0% TR T e TV G

+ 24w (5.59)

+ 2((1)22 + a)12) —XW1w3 — Yywows
This is consistent with the equation given in Mager [81].

Now consider that the rotation on the flat plate is only around the y-axis. In such conditions the

values of the angular velocities become:

w1 =0
wo =) (5.60)
w3=0

Substituting for these values in Equations 5.56, 5.58 and 5.59 respectively results in the following

set of non-inertial boundary layer equations:

on _on o4 ou N %a
A L L VAL WY o W Yo%
092

ot ok 0y 02 0%
_ %
oy (5.61)
ow ow 0w 0w of 0w 9
—+1 +——+0—=——7F+v(=—7=)+22Q0+2Q
ot "Wz T0%5 T0gs T Tas TV Gpe) TR 2

This results in the same equations as in the literature for a rotating blade as described by Bogdanova
[82] and Dwyer [83]. The equations derived in this section, provides results that are consistent with the
literature (Bogdanova [82], Dwyer [83]).
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5.1.5 Non-Inertial Boundary Layer Equations for Variable Rotation

The non-inertial equation for incompressible flow in variable rotation conditions was determined in
Chapter 3, Equation 3.157:
06 . AL oA .
M @iz Vi +v920+ 200 Q- KAQAQ+ZAQ (5.62)
ot —_— —\ ) "~

Coriolis Centrifugal Euler

The component form of the momentum equations were developed in Equations 5.23,5.27 and 5.31.
Component forms of the fictitious forces were determined in Equation 4.49. Using the equations men-
tioned, the Cartesian component form for incompressible flow in variable rotation is expressed as:
Z-momentum

ou _on on _on oy d*n . .
th— 40— +0— = — +V—= +20ws — 2Wws
ot 0% 09y 0% 0%  0y2 (5.63)

+ fc(w32 + w22) —Jwiwe —Zwi1ws + Y3 — Zwa

y-momentum

A

0=

Y +2Ww1 — 20ws + ﬁ(wgz + wlz) —Xw1wg —Zwows + 2w — Xw3 (5.64)
y

Z-momentum
ow _ow ow 0w oY 0w . .
— 4+ i— — + — — +V— + 20w — 20wy
ot ox 0y 03 02 092

+ 2((1)22 + wlz) —Xw1w3 — Yywows + Xwe — Y1

(5.65)

The non-inertial equation for compressible flow in variable rotation conditions was determined in Chap-
ter 3, Equation 3.169:
opa . Ao A Aa .
PRV (paet)=—Vp+ V- [Fa+TaD) + AV @] + 206 A Q- pRAQAQ+px A0 (5.66)
ot —_— — ) ——

Coriolis Centrifugal Euler
Using the expression above, along with Equations 5.39, 5.45, 5.31 and the compressible stress terms
determined in Section 5.1.3.4, lead to:
A-momentum
agtu i a;;u o G;yu i a(,;éu - _Z_I; " G%ﬁ% +2p00s = 2pibos + PRy + 02) (5.67)

- pywiwe — PEZwi1w3 + PIO3 — PEw2

y-momentum
35
0= _a_z +2pwy — 2p0w3 + PHws? + w12) — PRwiws — pAwaws + PEiy — PRO3 (5.68)

Z-momentum

opw opw Opw _opw  Op 0 0w
PO a2 2P0 2P0 TP 4 3% s 9ptws — 2p0w1 + pE(we? +w12)
ot 0x o0y 02 02 0y 0y (5.69)

— pRw1w3 — pYwaw3 + PRW2 — PIW1
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5.1.6 Non-Inertial Boundary Layer Equations for Arbitrary Acceleration

The non-inertial equation for incompressible flow in full arbitrary acceleration conditions was deter-
mined in Chapter 3, Equation 3.239:

oa R
— +@-Va=
5 -V)u

Coriolis

e D A A A ~ Ll 2 0
VP + WA+ 20A Q-XAQAQ+ XA Q+XAQ+2V(E) A Q— —(V(1))
——— ——— N~ ot
Centrifugal Euler

Magnus ~ ~—~—r’ (5.70)

Translation
Unsteady motion

This formulation, along with Equations 5.63, 5.64, 5.65, and 4.49, result in the following boundary
layer expressions:
X-momentum
~ oi ~ 2 A
A el Y ket W, 59
ot

s
o oy Yoz oz 032

+20w3 — 2wy + 55((1)32 + w22) - &wlwg —Z2wiws

oV (5.71)
+ Yz — Zwg + 5/6&)3 —éwz + 2Vyw3 -2V, wo — ad

ot

y-momentum

A~

9
0=

A

+2wwi —24ws + 5/(6032 + w12) —Xwiwg — Zwowsg + ZW1 — Xw3 + z°w1 - J%wg
5.72
v, (5.72)
+2V, w1 —2V,wg — —=
ot
Z-momentum
ow ow ow

. . 0w o o%u
— tu—+0—/—t+twW—F/—=—"7"7+
ot 0x 0y 02 0z

) + 20w — 20w + 2((022 + w12) —£w1w3 - §w2w3
Yy

2 2 ov.
+ Xwg — Y1 + xwg — yw1 +2Vywe —2Vyw1 — a_tz (5.73)

The non-inertial equation for compressible flow in full arbitrary acceleration conditions was determined
in Chapter 3, Equation 3.227:
apa

at +V-(paen)=-Vp+V-[aVa+val)+ AV wi]

. Eul
Translation uer

—a(pV(t))+p§/\n+p&AQ+2pﬁAQ—pﬁAQAQ+2pV(t)/\Q (5.74)
—_— —\—

Coriolis Centrifugal

Magnus
Unsteady motion

Using this and Equations 5.71, 5.72, 5.73, the following boundary layer expressions is obtained for
arbitrary motion:
X-momentum
050 A n A A A .
ot +ﬁ6pu +66pu +w6pu _ 0p 0 ou
ot 0% 0y 02

— =+ —— +2pDw3 — 2pws + PR(w3® + we?)
0x 0y 0y
— pIw1wa — PEwiws + I3 — PE2 + Pyw3 — PEw
apV,
+26V, w3 — 2pV,ws — ‘;t"

(5.75)
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y-momentum

A

0p N R N N
0= ~30 +2p0wwi —2ptws + py(wg2 +w1?) - pxwiwa — pZwaws + PZw1 — PpAws + pzw1 — Prws

. . 0pVy
+20V, w1 -2pV,ws - Y
(5.76)
Z-momentum
opw  dpw opw  opw  Op 0 [, 0w " . e 9 g
+ + + =——+— +2 -2 + +
ot "oz oy Yoz T oz ay[“ay] pluwy 2001 + p2lwe”+ 1)
- pRw103 — PHwews + PEDy — PHDx + PEOy — PyWy (5.77)
apV,
+2pVyws — 20Vywy — g =
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5.2 Non-Inertial Boundary Layer Equations for a Flat Plate -

Cylindrical Formulation

In some cases for aero-ballistic and aeronautical application, especially when doing asymptotic expan-
sions and similar analytical methods, it is more convenient to make use of a curvilinear formulation for
the boundary layer equations. The geometric features of aerodynamic bodies, such as rotating disks and
cones, is more efficiently described in a cylindrical system. Analytical solutions for the flow features,
specifically of a rotating disk, are available from the literature in cylindrical coordinates (Schlichting

[42)).

Consider the same plate as shown in Figure 5.7, but with the - and 2-axis written in terms of the 7-

and 0- axis cylindrical coordinates ( Figure 5.8). The §-axis remains common between the two frames.

Figure 5.8: Flat Plate in Cylindrical Co-ordinates

<>
.

=>

Qs

r
Leading edge

N

The cylindrical formulations of the non-inertial Navier-Stokes equations were determined in Chap-
ter 4 and are used here. The same method of comparative orders that was used in Section 5.1 are used

to obtain the boundary layer equations in a cylindrical co-ordinate system.

5.2.1 Non-Dimensional Analysis

The non-dimensional parameters used in this analysis are indicated below. R is the characteristic dis-

tance where, at a characteristic angle of f, the boundary layer height in the j-direction is §. This is

122

© University of Pretoria



-
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

QA YUNIBESITHI YA PRETORIA

5.2. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CYLINDRICAL

FORMULATION
similar to the non-dimensional parameters of Section 5.1.1.
.
R
y
y* = 5
p (5.78)
0*=E, p € 10, 27]

The normalized velocity components are a function of the characteristic velocity in the free stream

and in the case of the velocity in the j-direction, R and 6.

o Ur
u; = U
uy=———
l{oo 6 (5.79)
«_ fg
uy = U
The remainder of the parameters are normalized in a similar manner as in Section 5.1.1:
Uso
t*=t—
R
wi* =w;t
v (5.80)
y* = Uz
o0
2
Voo
5.2.2 Continuity Equation for Boundary Layer Flows
The continuity equation in the cylindrical form was derived in Equation 4.22:
ou, 4, 10ag 0dy (5.81)

ofF  F Foh 0y
The non-dimensional form of this equation is obtained by substituting the parameters from Section

5.2.1 into the equation:

wUs) ulUs 1 0uplUs) 0uyPe®)

5.82
3-*R) R R 00*p) | a(y*o) (5-82)
The equation above it then multiplied by,
R
— 5.83
U (5.83)
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This results in the non-dimensional form of the continuity equation where the order of magnitude,

shown in the square brackets, can be used to group the terms that are of comparable order:

* * 1 * ou*
[1] +[1]—+[1]B —*60* +[1 ]—= (5.84)
10, 27]

The parameter S is of finite value since 8 € ]0, 27]. The order of the term 5 L therefore approximates

1 and can not be neglected from the equation. The boundary layer equation for continuity there remains:

oty Gy 10dg 0y

ofF  F Foh 0y

(5.85)

5.2.3 Conservation of Momentum Equation for Boundary Layer Flows

The tensor form of non-inertial conservation of momentum equation is derived in Equation 3.55.
6ﬁ+(A Va=-Vi+vW2a+2a A Q-XAQAQ
ot u u = y+vvra u X (586)

Coriolis Centrifugal

The Cylindrical form of the equations are used here to derive the boundary layer equations.

5.2.3.1 First Principle Direction Equation

The component form of the non-inertial momentum equation in the first principle direction (in this case
taken as the #-direction) was derived in Equation 4.55 for a coordinates system with directions (7,0, 2).

This formulation is used here for a system (7, 9,0) to obtain the equation:

aa’+a,%+ﬁ_faaAr—i?+ay%: oy
ot or 7 00 F 0y or
e %4, L1 104, o, 10%a, 204y 4y . %40,
V| |—F o A~ o _A~ T o -
o2 "For F2oapz 2 op P2 032 (5-87)

N N o A2 a2
—?ugwy + 2uywq— Jwrwy +Fwy + Fwy

v~

Coriolis Centrifugal

Substitution of the non-dimensional parameters, as defined in Section 5.2. 1, into the equation, result

in the non-dimensional form:

U2 1 ou* s U? U1k 0uy  (UZ +[U§o LouX
— u —_— — —
‘R lot* R I Or* RBlr*00* R 17 ay*
U2, [ J* %ur [ J* 1 ouy
— /‘/ —_—
R R?2 6r*2 R?2 Crx orx
Uoo * 1 02 * Uoo * 2 aug Uoo * u;‘ 5.88
+ R2ﬁ2 V Voo *2 69*2 [R2ﬁ v Voorjae* - ﬁ Voor*z ( )
Usol & 0%ur 00 Uso0 * * g * kK
oY °°ay*r2 [ ]2 ujwy + ]Qung— 2|y wrwy
2 [R 2
+ 2]r*w; +[t—2]r*wg
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Multiplying the equation above with,
R
U—go (5.89)
results in a non-dimensional form where the order of magnitude of the terms can be evaluated:
2
AL e A ML ]v voo THE
ot* or* Lpglrxo00* r* Y oy* r* UR or*2
1 1 ou} 1 62 * 2 Ouy
e v — 2 +[ V Voo [ ] — ¢
UxR * or UsR B2 *2 9*2 UxRp O px2 90* (5.90)
1 * uy R * azu: * % 6 * % .
— m 1% Voom‘l' Uoo()‘2]v Vooay*z— —t]2u9wy+[m]2uyw9
OR * Kk 2 * *2 *  x2
[ oot + [ s+ [ g
[e.0]

As was done previously, in Section 5.1 for the purposes of simplification, the assumption is made
that the boundary layer thickness approaches a very small number (£2) while the characteristic length

approaches a very large number (oc0):

e<<1
6—¢? (5.91)

R — oo

In order to keep the solution as general as possible, it is assumed that velocity, time and characteristic

angle has positive values:

Ue€leg oo
tele 00 (5.92)
B € 10, 21]

From the above the following simplifications are made:

1

UoR
g oo (5.93)
O0R — o0

— £

The most general form of the #-momentum boundary layer equation becomes:

on, Ggdn, Uy Ok, OF

our .
—_—+— +ly—=—"+9 — 209wy + 20 ywg

—
ot or TR ah F oy T oF ay

(5.94)
2

- Jwrwy + fw?v + Fwy
None of the fictitious terms could be eliminate and are having an effect in the boundary layer.
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5.2.3.2 Second Principle Direction Equation

The component form of the conservation of momentum equation in the j-direction is expressed as
follow (Equation 4.57):

o0 oh, g0l i o %4, 104, 1%, 4%
—+a, Ay+u_A9 Ay+f¢y Y = UA/ v Ay 7—3+A— Y Ay
ot or 7 00 09 0y or2 7 OF 2 502  0%2

N .\ A A 2, a2
:2urwg +2u9wc—fwrwy + Jw; +yw€

(5.95)

Coriolis Centrifugal

Substitution of the equations as shown in Section 5.2.1 result in the expression:

[ o R2 ]” or ]uz ZZ* [ ;Oy;__ UTEO ?wli
" z;;a] ’ °°?3 L:; [%6] ’ mri*i%Jr[;o;Z]v*v""%zz—g (5.96)
e b R b R R
N ] 2y [ AL
Multiply the equation above with,
% (5.97)

results in the non-dimensional form of the equation:
8 6u;+ 5_2]u*6u§+ 5 ue ouy [ ] Ou;__au/*
RZl ot " LR217T g T LR2 69* RrZ1%y dy* oy*
52 o®uy 1 0ul
+ 3 ]V*VOO 2 3] * w_*_y
UoR or* UxR r* or*
52 1 0%u} 1 o%u}
s [V Voo ol
U fB2R3 UxR

(5.98)

2 pn2 ]V*V"O [U t
52

U2 t?

*  x2

y Wy +[Ugot2

* ok

R
[@rwr

* ok
2ugw, —

*
e — w; +
Uoot] Y

The simplification assumptions that were made in Section 5.2.1 are used here to arrive at the bound-

ary layer equation in the y-direction for cylindrical coordinates:

5
0= —0—‘{’ — 20,09 + 29wy — Fwrwy + JO2 + J02 (5.99)
B
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5.2.3.3 Third Principle Direction Equation

The component form of the momentum equation in the 6- direction is expressed as shown in Equation
4.56:
Oilg . Ollg 1UgOllg TUgl, , Olg 1 61//
- TUr——+——= - Uy—— =
ot or 7 00 r 0y F 06
0% Loz 1 0%ag 204, dg . 0209
or2 "7 or 2 02 F2oh 2 052 (5.100)

=20 0, + 20,0y - Fwr0g — Jwgw,

'

Coriolis Centrifugal

Substituting the non-dimensional parameters of Section 5.2.1 into the equation above yields:

[Ufo]au§+ oo] L 0uj [ ]ue Ouy [Uozo]ugu;(_’_[Ugo £ 0uh
_ — e —\u, — =
R 1ot* “r o BR 1 r* 00* R Y oy*
~ U211 oy* [ ] 62u0 [ ] iaug
/3R r* 00* | R2 ©or*2 | R2 Crx or*
Us |« 10U [ Uso . 2 0uf [(Us) . U 5.101
+ PR v vw?—ae*z _[,62R2]V V“?ae* “| gz )Y voom (5.101)
U o%ux
(St - [ g (2o
R 6
-z r*w:wg- 5 y*w;w;
Multiplying the non-dimensional expression above with,
PR (5.102)
Uz '
Results in the non-dimensional form of the §-momentum equation.
ﬁ@u;+ﬁu*6u;+£0u;+ ugu;'(Jr u*aug:_iaq/*
ot* "or*  r* 00* rx Y oy* r* 00*
N ﬁ ] * 6 ug [ ] ]_ Gue [ 1 1 6 ug
vy v*
UsR <9 UsR r* or*  LUxRP %2 5g*2 (5.103)
2 ouf u) BR 0%u} '
* r * 0 * 0
7 Rﬁ v Vm?ae*_[U R]V Vo gt Uoo(sz}V Voo 5+
ﬁR2 *x ko k ﬁ5R *x K
- 2 2u Yok - r Wy — )

The same 51mp11ﬁcat10ns that were done for the #-momentum equation above are employed here to
obtain the final form of #-momentum boundary layer equation:
ou 0ty 1UgOly Ugl ou 10y 0%
0 g, S0 B0C00 B0 L, S0 250 90w, + 20,0,
ot or  F 00 r 09 7o 0y (5.104)

—Fwrwg — Jwgw,
Again, as in the case of the #-momentum, none of the fictitious terms could be eliminated from the

boundary layer equation.
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5.2.3.4 Compressibility Effects on the Boundary Layer Equations

The stress tensor in Cylindrical coordinates is described by Equation 4.43
o,

290 4 A% 4 o(108 8o, 080y o

205 +AV-a ru(faé 7+ 57 ﬂ(% o7

22 B oy= | n(108: _ 2o 009 a(19%e L 8y LA .q  ofL% 4 0%
T(7,0,9) = IJ(; 0 f0+ af) 2N(f 96+ f)+lv u N(S 0 T3
iy (1% | Oty 19% LAY .G
) (3 &+ y) 2f155 +AV -4

(5.105)

Here it is determined which of the diffusion terms, that are relevant in the bulk flow, are present in
the boundary layer. This is done using the order of magnitude analysis that was employed to determined

the incompressible boundary layer equations

Qg Oug

The components that pertain to the #-momentum equation is
f

16u9+6ﬁy)]+ 0 M(laur
F oo 0y 097 00

i,

F

o,
or

Aaur )L(

[2

D)+ gl

The non-dimensional parameters of Section 5.2.1 are substituted in the terms above and multiplied

o,
oF

oL,
0y

J

(5.106)

o,

by Equation 5.89,
R 5.107
to obtain the non-dimensional form of the terms
(L]0 02 (2 R
U R 1or* 0r* or* r* UooﬁR r* r* 00* Us oy*
+[ 0 1 aur ] ue Gue ] 6u;f ] Gu
Uoo 2 dﬁ*ur* 00* U 09* Uy 62 6y y* UR 6y rx
(5.108)

terms in the compressible #-momentum equation are similar to the terms in the incompressible form

0 0l

(Equation 5.94):
35" 93

An order of magnitude analysis results in a number of the terms being neglected. The diffusive

(5.109)

The compressible form of the boundary layer equation for the conservation of momentum in the

7-direction is similar to the incompressible form determined in Equation 5.94

0pt, . 0pi, g 0P, ﬁﬁ . 0pi,  0p 0 oty .. "
+ +—=—— + = — -2 +2
or “TTor TF eb F ey or Taghay  “PHOeTEPL®O )
— pIwrwy + PFo’ + prog
The components that pertain to the y-momentum equation is
0.0a, Ou 0 104, odi Oty 00, U, 100y OU
(S =)+ A=+ 52 e 2 [op S 4B B 2% T (s
or o0y or 00 7 00 o0y or P00 oy
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The non-dimensional parameters of Section 5.2.1 is substituted in the terms above and multiplied
by Equation 5.97,

0 (5.112)
Uz '
to obtain the non-dimensional form of the terms:
Uso R3 ar*“ ot UooﬁZRz 09*“ ot /sU ae*“
*
%—hﬂw—hﬁmﬁ Ry
UoR!10y* " 0y* LULR!0y* \or* r* RpBU10y* r* 00* LULRI1dy* 0y*
(5.113)

The diffusive terms in the compressible y-momentum equation are similar to the terms in the incom-
pressible form; no diffusion terms are present. The compressible form of the boundary layer equation
for the conservation of momentum in the 8- direction is similar to the incompressible form determined
in Equation 5.99:
oy
0y

0=——2 — 20,0 + 20p0, — F0,0y + JO* + J0i (5.114)

The components that pertain to the §-momentum equation is:

2 [l

A

A A A A R A A A a a A
o T gl S S A 5 S i
JLU R 00 09

(5.115)

The non-dimensional parameters of Section 5.2.1 are substituted in the terms above and multiplied
by Equation 5.102,

BR

Uz (5.116)
o0
to obtain the non-dimensional form of the terms:

1 ou* u, Ouy 1 ouy ur
B e 3 e
UoR10r*" r* 06 UR 10r r or BU 1 06 00 Uy 100

ou* o 1 0ur o ouX 1 o 1 0ur
L

Usl00* \or* r* BUs 1 06*  r* 00* Ugl06* ay* UR!10y* r* a6*
52U ay* Gy

(5.117)

An order of magnitude analysis results in a number of the terms being neglected. The diffusive

terms in the compressible §-momentum equation are similar to the terms in the incompressible form
(Equation 5.104):

0 ,0ig

5" a5

(5.118)
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The compressible form of the boundary layer equation for the conservation of momentum in the -

direction is similar to the incompressible form determined in Equation 5.104:

ou Ollg g 0l Ugll ou 109 0%
0 ,, 0o UoOue UeUr . OlUo _ LAl

— 4+ + ~ — = ~+V - 20,0, + 20,0
ot Tor 7 oh ¢ Yoy Fop | oagz < lyerTowrly (5.119)

—fwrwg — Jwgw,

5.2.4 Validation of Equations

The cylindrical form of the Navier-Stokes equations are expressed, as in the Cartesian case, in the inertial
or the non-inertial form. Expressing a set of equations, that was originally in the Cartesian system, in
cylindrical coordinates do not place it in the non-inertial frame. This misconception was noted in Anon
[84] as shown in Equation 5.120 where certain cylindrical terms (as marked in the equation) where
described as the Centrifugal and Coriolis forces respectively. Those terms are merely part of the material
derivative in the cylindrical system and bears no relevance to the fictitious forces. This is shown in the

sections below.

Centrifugal
2
B 0 B u 0 B
Hr g, T R0 To tu, ur _ oy
ot or r 00 r oy or
2u, 10u, 10d%u, 20uy u, 0%u,
+v — 5= 5=+

_+_
or2 ror r200%2 r200 r2 09y2

(5.120)
Coriotis
Oug Oug ugOug ‘ugu, Oug 1oy
— tuUp—+——+ tUuy—=———
ot or r 00 r oy r 00
0ug 10ug 10%°ug 2 0u, up 0%up

+-—24 +
or2 ror r2002 r200 r2 o0y?

+v

Analytical solutions to classic rotating flow problems, such as the von Karman rotating disk, are
done in the Cylindrical system (Schlichting [42]). The vector form of the non-inertial Navier-Stokes
equations is independent from coordinates system. The differences in the system of equations (Cartesian

and Cylindrical), only becomes apparent when written in component form.

5.2.4.1 Conversion

The Cartesian positions are related to the Cylindrical positions as shown below where it is assumed that

the -axis remains common between the coordinates systems (Equation 4.15):

% =7Fcosh
5=% (5.121)
5="rsinb
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FORMULATION
The velocity components are therefore related by Equation 4.16:
4=10,cos0— ﬁgsiné
b=1, (5.122)
W =d,sinb + ﬁgcosé
The derivatives of one system are converted by means of the matrix:
g—? cosh - Si;lé 0 g—f
% | _ %
gg 0 ) 09 1 gg (5.123)
3 Ccos
e sin0 = 0 %

The relations above are used to convert between the coordinates systems in the section below to

obtain the non-inertial boundary layer equations.

5.2.4.2 Continuity

The continuity equation for the boundary layer was derived in Section 5.1.2 and resulted in Equation

5.14:
on 00 oW
—t+—+—=
o 0y 02

Substitution with the equations as shown in the previous section lead to the following expressions:

0 (5.124)

~ 0 sinf 0 R R 5 0 o R R
(cos prin Sl: £)(ﬁrcose —gsinb) + (sineg + co: E)(ﬁrsine +gcosh)
oi
g (5.125)
0y
a i A A 1 A A 1 a i ~ A alz
uf (cos29 + sin20) + u—f(coszg + sin29) += uf) (00820 + sin20) +—2=0
or 7 7 00 oy
Using,
cos?0+sin0=1 (5.126)
the final equation becomes:
ou J; 104 ou
Ur  Ur 10up Oy _ (5.127)

ofF F F 4O 09
This is the equation for the boundary layer in cylindrical coordinates. This is the same as Equation
5.85 derived in Section 5.2.2.

5.2.4.3 Momentum Equations

The non-inertial £-momentum equation, as derived in Section 5.1.3.1, Equation 5.23 is:

on _on oa _on oy  d%n. . .
— Ul H W= =——— + V(=) + 20ws — 20w>
ot ox 0y 0z 0x 092 (5.128)

+ 5c(w32 + w22) - 5’0)1(1)2 - §w1w3
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This is converted to the Cylindrical coordinates system piece by piece to result in the final equation.

The transient term, with substitution of the conversions indicated in Section 5.4.1 is expanded to

the following:

on a . ) . ~ 00, . OcosO 0ty . ~ 0sind
a—l;—>&(ﬁrcose—ﬁgsinﬁ)a(ﬁrCOSG—ﬁgsinB): 6”trcose+ c;s ﬁr—ﬁsine— s(;’;

Ifit is assumed that @ — & where € — 0, then cosd — 1 and sinf — 0. The equation above simplifies

to:
on _ 9u, (5.130)
ot ot
The remainder of the terms is converted in a similar manner:
Advection terms:
_0n o,
U——Ur—
0% " oF
ﬁ@ -0 9y
on g 0u, ﬁ§
03 7 96 7
Pressure term:
ov _ W (5.132)
0% or
Diffusion term:
a2_ﬁ @ (5.133)
092 092
Fictitious terms:
Coriolis terms,
2003 — 2@ — [24 y(@,5ind + Dpcosh) — 2(d,sind + uycosh)d,]
— 20 ywp — 209w, (5.134)

Centrifugal terms,
S(A2 L AN an A s A AL anD AN
203 +03) — Y102 — 2D103 — —JD,Dy + POy + Fayg
This conversion leads to the non-inertial form of the #-momentum, which is the same as the derived
Equation 5.94:
~ ~ ~ N ~2 ~ ~ DN
on ot Gg O u on 0 0%
—r+u,«—j .|_Tt9 Ar Ag +ﬁy Ar =— UA/+1A/ Azr—Zﬁgwy +2ﬁng
ot of F 90 F 0y or 0y (5.135)

- A2 a2
- Jwrwy +Foy + Fog

A
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In a similar manner the conversion of Equations 5.27 and 5.31 lead to a set of equations that are the
same as Equations 5.99 and 5.104 respectively.

oy o T
0=- 61{/ = 20,09 + 2090y — FO,r 0y +yw3 +ng
Yy
ou O0llg g Olg Ul ou 109 %0
0 A UgOug  UolUr . OUo _ - U/+A B—Qﬁyd)r (5.136)

—+ + - —— = -
ot Yor TR o0 T F ey T TFae 032

+ 20,0y — Flr0g — Yo,

Implementing the same conditions as in Equation 5.60 where rotation about the j-axis was consid-

ered,

wr=0
Wy =0
(5.137)
wg=0
results in the following set of non-inertial boundary layer equations:
o oa, apon, By _ oa, oy 0%
Or g, 2 R0%0r T0 g T OV 50 9ne0+ Q2
ot or 7 9 7 09 oF 092
50
0=-2%
oy (5.138)
ol 017 g Ol ol ol 109 0%
00 4 g, 200 L0000 ROt | 5 200 o 20V 500 90,0
ot or ' F 8h 7 oy  Foh - 052

For exactly the same conditions, Dumitrescu et al. [85] made use of a set of boundary layer equations
where both the Coriolis and Centrifugal terms where present in the #- and §-momentum equations
respectively. The work of Martinez et al. [86] on the other hand has the Centrifugal force only present
in the 7-direction and the Coriolis force only in the 6- direction. The derivation above indicates that in
pure rotation about the §-axis, the Coriolis force is present in both the #- and 6- directions. It was shown
in the mathematical development that the centrifugal term should only be present in the #-momentum
equation. This is depicted in Figure 5.9 using a satellite orbiting earth.

It is assumed that the satellite is in pure rotation about the earth. The satellite is also travelling at
a constant rotational speed. The centrifugal force points in the positive #-direction away from earth's
centre. There are two components for the Coriolis force. The first one is the component responsible for
the Eotvos effect pointing in the negative #-direction. The second one is the most general component.
It is similar to the Coriolis force responsible for deflections on the surface of the earth. This component

points in the positive §-direction.
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Figure 5.9: Visualization of Physical Meaning of Fictitious Forces
6
— T — \
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\ Coriolis Force

/ Coriolis Force
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— 702
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Centrifugal Force

5.2.5 Non-Inertial Boundary Layer Equations for Variable Rotation

The non-inertial equation for incompressible flow in variable rotation conditions were determined in

Chapter 3, Equation 3.157:
[ I DU . . ¢
+(@-V)a=-Vy+vWa+20AQ-xAQAQ+XAQ
—_— ——

ot
Coriolis Centrifugal Euler

(5.139)

The component form of the incompressible momentum equations were determined in Equations

5.94, 5.99 and 5.104. Additional non-inertial components related to this case are obtained from Equa-
tions 4.60, 4.62 and 4.61. Combining the relations previously obtained, lead to the component form of

the incompressible momentum equations for variable rotation:

F-momentum
ot, . 04, Ggod, Ui _ 04, 0% 0%, . .

=—-— VT—ngwy+2uyw9
(5.140)

A

tUur——t+t—— - tUy =55 F
ot "o 7 06 7 yay or 0y
~ R R
= Jwrwy + Foy + Fog + Jag

y-momentum
_ oy . . A P R P
O——aA —20,wg + 209w, — Frwy + Y0, + Yy — Fidg (5.141)
y

f-momentum

o ou Ug Ol Ugll o 109y %a

—0+ur A9+79 Aa aAr+uy—A0=—7 1'5/+17 A26—2ﬁywr+2ﬁrwy

ot or F 00 7 oy 7 00 0y (5.142)

—Fwrwg — Jwgwy — Yo, + Fi)y
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The non-inertial equation for compressible flow in variable rotation was determined in Chapter 3,
FEquation 3.169:
opa . N N A R A oa A .
PR LV -(paew)=-Vp+ V- [aa+VaT) + AT @i] + 206 A Q- pRAQAQ+pRAQ (5.143)
ot —_—— ———— —.—
Coriolis Centrifugal Euler
Using the component forms developed in Equations 5.110, 5.114 and 5.119, and the non-inertial
terms of Equations 4.77, 4.78 and 4.79 lead to the compressible component formulations for variable,
pure rotation:

r-momentum

opii, 0pi, g 0pU, ﬁﬁg 0pi, op 0  0u,
+1 = +1 =———+—[ - 200wy +2p0 0
o UTor TR e ¢ ey o oaghay PUOUvTEPL®O s 4
= pIwrwy + PR’ + PR + P
y-momentum
__ 0 .. P A Ao 2 An 2 an
0——F—2purw9+2pu9wr—prwrwy+pywr+pyw6—prw9 (5.145)
Yy
6-momentum
o0pu 0pu g 0pU Ollgl o0pu 1p 0 00
ﬂ_ﬂzr po".;_TH plf9+pu?u’ dy pog:—T—lz+—Aﬂ uAg—Zﬁﬁywr+2ﬁﬁrwy
ot ofF  F 40 P 0y Fo0 09 03 (5.146)

— pfwrwg — PIwewy — P, + Prw,
5.2.6 Non-Inertial Boundary Layer Equations for Arbitrary Acceleration

The non-inertial equation for incompressible flow in full arbitrary acceleration conditions was deter-

mined in Chapter 3, Equation 3.239,

oa - . N 0 A .
— + (@ V= -VJ+vwWaa—- — (V) +XAQ+EAQ+20 A Q-RAQAQ+2V(H) A Q
Euler Coriolis Centrifugal Magnus ( . )
Translation
Unsteady motion

Using Equations 4.69, 4.70, 4.71, 5.140, 5.141 and 5.142 the incompressible component form for
arbitrary acceleration can be obtained:

F-momentum

aﬁr_'_ar%_}_@aﬁ,\r—ﬁ—g{—ﬁyaﬁr :—6¢+0@—2ﬁ9w + 21 ywy
ot oF P 00 P 39 oF 952 Y Y
—Jwrwy + fw?v + fa)g + Jweg (5.148)
oV,

- ﬁgwy + ﬁng - 2ngy + 2Vng - E

y-momentum

oy . ) ) L
0=- 35 - 20,wp + 209w, — FOr0y + JWF
Y av. (5.149)
+ i — Firg — i, wp + Lgw, — 2V, wg + 2Vow, — atz
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6-momentum

ol Olig 19 0lig Tgll ol 109 _0%a
90 4,200 R0 O8O | Botr  p O00 2TV 500 9w+ 20,0
ot ofF 7 90 7 0y 7 00 092
—Ffwrwg — Jwgwy — Yo, +Fao, (5.150)
oV,
—lUyw,+ 0,0y —2Vy0, +2V,0, — a_te

The non-inertial equation for compressible flow in full arbitrary acceleration conditions was deter-

mined in Chapter 3, Equation 3.227:

apa . e L
%+V-(ﬁﬁ®ﬁ):—Vﬁ+V-[ﬂ(Vﬁ+VﬁT)+/1(V-ﬁ)I]
P . .
— PV +pEAQ+ pRAQ+200A Q- pRAQAQ+20VOAQ  (5.151)
ot —_—— —\—— - RN

Euler Coriolis Centrifugal Magnus

Translation
Unsteady motion

The formulation above, along with Equations 5.148, 5.149, 5.150 result in the following boundary
layer expressions:

F-momentum

pi, . 0pi, hgopa, PLE _ dpa, Ap 0 0h, . .
+1a + - +1 =- = —2pl0pwy +2p0 0
at “TTor R 9b ¢ oy o oglay ~oPHOCyTAPEy®E
— pIwrwy + Prwd + preg + pIig — pllgwy + pllywy (5.152)
pV,
—26Vpw, + 25V, wp - gt’"
y-momentum
oo .. an ,a A SN A .
0= _6_5/ —20U,wg + 200w, — PFwr0y + PO, + PJ0y — Prwg — Pl ,rwg + PUHW,
R (5.153)
apV,
— 24V, wg +2pVowr — ‘;tz

O0-momentum

0pi opi g 00U Oligl opi 1p 0 00
puo + 4, plfa + u—f) plfg + pu(jur +ay ,OlAtg = _T_lj + _AﬂLAH =200y, +2pU,0y
ot or F 00 7 0y 700 0y 0y
— prwrwg — pIwgwy — PO, + PFwy — PIO, + PFwy — Py, + Pl 0,y (5.154)
R R 0pVay
=20Vyw,r +2pV,wy — gt
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5.3 Non-Inertial Boundary Layer Equations for a Flat Plate -

Curvilinear Formulation

5.3.1 Continuity Equation

The continuity equation in the boundary layer was determined in Cartesian and Cylindrical coordinates
in Equations 5.14 and 5.85 respectively. The continuity equation in curvilinear coordinates takes a form

similar to Equation 4.110:

0

175

o, 1 [0
0t hihohsloiiy

A A 0 A
(h2h3ﬁV1) + 3 (hﬂlgﬁVz) + a—LALS(hlhgﬁV;g)] =0 (5.155)

5.3.2 Conservation of Momentum Equation for Boundary Layer Flows

In Sections 5.1 and 5.2 the conservation of momentum equation was determined in the boundary layer
region for Cartesian and Cylindrical components respectively. These sections indicated that the material
derivative remains unchanged in the longitudinal and transversal direction, but is eliminated in the
direction normal to the surface. The pressure gradient terms, as well as all the terms related to fictitious
effects are present in the boundary layer equations. The diffusion terms originating from the divergence
of the stress tensor, showed that all terms are neglected except for specific terms of 719 and 7o3.

T(1,2,3)= T21 T29 T23 (5.156)

T31 T23 733

0 0w
ot oy
for the &- and 2-momentum equations respectively. These terms are components of 719 and 793 of the

The remaining diffusion terms have been identified in Equations 5.38 and 5.51 as a% ﬁ% and

Cartesian stress tensor described in Equation 4.38.

0

<

i

QD ~—~
<D QO
‘<>|
> 4
< gl
NS
N—

£%,5,8)=|- 24

+AV-@ - (5.157)

)

Similarly, in the Cylindrical Stress Tensor (Equation 4.43) the equivalent components of 719 and

o
<

o

S

fi(55 +

Q)
QD
g

T3 remain relevant in the boundary layer as indicated by Equations 5.109 and 5.118.

A, 9,0) =] 2052 +AVv-a .- (5.158)
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The equivalent terms of 712 and 723 are relevant in the boundary layer when expressed in Curvilinear
coordinates. The components of the Curvilinear stress tensor were described in Equation 4.104, with

T19 and 139 defined as:

h2 0 (V2) hi 0 (Vl)]

£
2= 001 \ho) " Ry 019 iy (5.159)
5 h3 0 (V3)+h2 0 (VQ)] .
2=, By \hs) " By 0li3 \hy

Table 4.1 gave the conversion from a Curvilinear system to a Cartesian or Cylindrical system. The
table are based on the third principal direction (2-direction) being normal to the surface. Here the second
principal direction (§-direction) is taken a normal to the wall. The conversion between the systems

changes as follow:

Table 5.1: Relations between the Curvilinear Coordinate System and Other Systems

Curvilinear ui us us x y z h1 ho hs
Cartesian y z x y z 1 1
Cylindrical r y 0 rcosf z rsinf 1 1 r

The conversion of 719 indicates that equivalent terms to be included in the boundary layer equation.

A R Va

Tl2curvilinear:ﬂ l(h_) ho 0u2(h1)]

P = %%G) “15(1) o160
flzcylindrical:ﬁ %%(u ) %i(_)]

Using the above relations, it is seen that the term le i, (Vl) must be included in the boundary

layer equation for the first principle direction. In a similar manner the equivalent term in 732 can be

determined as ﬁt% % (%)

2
sooooay_ | on(LdVe, Vs dhy . Vi 0hs) L A¢.Xr ...
(@1, 02,09) = |-+ 2L G2 + o T2+ - T2 ) 4 A0V (5.161)
a[hs 0 (Va) ke 0 (Ve
H| 7, 3i; 3)+h35ﬁ3(2]
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Using Equations 4.112, 4.113 and 4. 114 the non-inertial Curvilinear set of equations for the conser-

vation of momentum in the boundary layer for compressible flow are determined:

uj-momentum:

oVy ViaVy VeoVy V3dVy .~ Vo 0hg Vi 0hyy ~( Vi 0hy Vi 0Ohg
|l —+—F—+————+—— -V —
ot  hi00y  hgOiy hsOds 2( ) 3( )]
10p 1.0 h . Vi

+_ J— —
hi0i,  hedlgh he  2hy

+ ‘5 [ 2V2w3 - 2V3w2 + ill((u32 + (1)22) —llowiwe — lgw1wWs

A

Coriolis Centrifugal
A . A . 2 2 aVel
+Uows —Uswg +UowW3 — U3W2 +2Vezw3—2Ve3w2— ot
—_— N ~ )
Eul N—~—
il ~ - Magnus Translation
Unsteady motion
(5.162)
Ug-momentum:
1 0p 7.4 o R R R
0=—-—— EY; +p0 2V3(1)1 - 2V1(1)3 + uz(w32 + w12) — U119 —U3WowWs
9 Otiy N -~ < ~ >
Coriolis Centrifugal
~ » v, 5.163
+l3w1 —U1w3 +uzw) —Uiw3 +2Ve,w1 — 2V, w3 — 0t2 ( )
—_——— N -~ _
Euler
~ . Magnus Translation
Unsteady motion

tg-momentum:

+ +
ot h10i@1 hodily hgoig

10p 1 0 ks W

—_—— — — — — u —

hi0hs | hgdbg By Phs

+ ﬁ [ 2Viwg —2Vowq + ﬁg(w22 + w12) - ﬁlwlwg - ﬁ2w1w3

h1h3 0&3 h1h3 0121

[0V ViV VpdVz V3dVs 7 Vi 0h1 V3 0h3) | Va3 0hy  Vp ahz)]
' 2\hohs 0a1  hohs g

v~

Coriolis Centrifugal

€3

+1W9 — oW1 +&1w2 - &20)1 +2Ve, w9 —2V,, w1 -
—_ - _

Euler o i
/ Magnus Translation

Unsteady motion

(5.164)
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

5.3.3 Validation of Equations

The conservation of momentum equations for incompressible flow in Curvilinear coordinates are de-
rived using Equations 5.162, 5.163 and 5.164:

Uj-momentum:

hiho 0Gi; hihg 0lg

ST ALY ALY A N AR, WO A
ot h10i1 hgOily hgoils

Lob 10 b Vi

h16u1 hzaﬁz h2 hl

+ 2V2w3 - 2V3w2 + ﬁl(w32 + wzz) —Uowiwg — ﬁ3w1a)3

Coriolis Centrifugal
A . A . 2 2 avel
+Uowzg —U3W?2 +u2w3—u3w2+2Vezw3—2Vegw2— ot
[ —— - ~ D)
Eul ~—~—
it ~ - Magnus Translation
Unsteady motion
(5.165)
ug-momentum:
1 aw
0=————+ 2V3w1 — 2V1w3 + u2(w3 + w1 ) ulwlwz — u3w2w3
hg 0lg ~
Coriolis Centrlfugal
Ve, (5.166)

+l3w1 —U1w3 +ﬁ3w1 - &1&03 +2Ve,w1 — 2V, w3 —
—_ N ’

Euler Magnus

v

Translation

Unsteady motion

ug-momentum:

ot h10i1 hgOilg hgoilg
1 oy N 1 0 h3
h3 Oiig hz auz hz 2h3

+2Viwe — 2V2w1 + u3(w2 + wlz) —l1wiws —Uowiws

aV3+VlaV3+V2aV3 Vs Vs ( Vi 0hy V3 ah3)+A( Vs ah2 Vo ahz)
hihs 03 hihs 0dq

Coriolis Centrifugal

A A 2 2 aVeB
+Uiwo — U1 +u1w2—u2w1+2Velw2—2VeZ(u1— Py

—_— N ~ _

Eul

uer ~ . Magnus Translation
Unsteady motion
(5.167)
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5.3. NON-INERTIAL BOUNDARY LAYER EQUATIONS FOR A FLAT PLATE - CURVILINEAR
FORMULATION

In Equation 5.60 a set of rotation parameters were defined for rotation about the y-axis in the Carte-

sian direction. The same set of equations are applied here to Equations 5.165, 5.166 and 5.167.

w1:0
ws=Q (5.168)
w3=0

A set of boundary layer equations for incompressible flow with no translation and steady rotation

about the second principal direction in Curvilinear coordinates are obtained:

uj-momentum:

avl WV Vi 14 avl Ve Vo 6V1 Vs Vs avl . ( Vo 0hy V3 0h1)+ . ( Vi 0h1 Vi ah3)
h1 6u1 h2 6u2 h3 6u3 h1h2 0&1 h1h2 GLALQ h1h3 6u3 h1h3 aﬁl
1 01// 1 0 hl V1

— e 90— - 2V3Q + 0102
h10G41 hgdlig hy "hi ~~— ~——
Coriolis  Centrifugal

(5.169)
ug-momentum:
1 oy
0=———— 5.170
ho dlio ( )

ug-momentum:

6V3+V1 Vs Vy 6V3 V3 0V3 ( Vi 0h1 V3 ahg) ( Vs 0hy Vs 6h2)

+ — +—-—- _— = — —_—
h1001 ho 0u2 hg 0lg ! hihs 0ii3  hihs 0l hohg 0li1 hohsg Olig
10p 1 0 hs

V3
+———V—"02— +2V1Q + 1302
h3 6u3 h2 aﬁQth 2h3 %}—/ &—’

A

Coriolis  Centrifugal
(5.171)

The Curvilinear geometry is a flat plate in this case. The equations above are written in the Cartesian

or Cylindrical form using 7able 5.1.

The Cartesian description then becomes:
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

o0 .04 . oa _on oy 0%

— Al A0 A — = —— +V—s — 20 + 22
ot "oz oy Yoz~ oz lapr “UMTE
o
0=-22
39 (5.172)
o ob o o oy 0%
Rl S P LA VALV Yo WP Yo'

ot ok 0y o0& 05 092

This is the same as the set of equations in Equation 5.61 which were used in Section 5.1.4 to validate
the boundary layer equations in the Cartesian co-ordinate system.

In a similar manner the Cylindrical equations are obtained:

ot oty dgoh, Ui . 04 oy 0%
K g, Zor B0 Z0 g T o OV 508 9np0+ 702
ot ofF F 9O P 0y or 092
ol
0=-22
0y (5.173)
dlig . Ollg 1Oty wel, . Olg 100  0%ig

—+u = +20,.Q

— il : — -
ot "o TP o | F Y89 Foh - 032

The equations above are similar to Equation 5.138 which were used in Section 5.2.5 to validate the

boundary layer equations in the Cylindrical co-ordinate system.
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5.4. CLOSURE

5.4 Closure

This chapter provided a framework for the analysis of the non-inertial boundary layer in Cartesian,

Cylindrical and Curvilinear coordinates respectively. The main results are:

» The continuity equations in the boundary layer for both compressible and incompressible flows
were obtained. No terms are neglected from the continuity equation. Therefore the form remains

the same as in the bulk flow.

0

U

@ 1 [ 0

a A ¥ —
ot " hihahs (h1h2pVs)| =0 (5.174)

(h2h3pV1)+ P) (hlh3pVg)+a—a3

0
» The momentum equations in the boundary layer for compressible and incompressible flow were

determined for Cartesian, Cylindrical and Curvilinear co-ordinate systems.

X-momentum
001 op 0 _O0u
! U Pl 0P 9 3T 9 b0wms — 20w + pR(ws? + we?)
ot 0x 0y 0z ox 0y 0y
- pIw1w2 — pEO103 + pIW3 — pLw2 + pyws — pzwg  (5:175)
0pV,
ot

+
<
+
<
+

+20Vyw3 —2pV, w9 —

y-momentum

0p . R . N
0=- 6{) +2pw1 — 2p0ws + PHw32 + w12) — PRwiws — PEwews + PEi1 — PEd3 + PEw1 — Prws
Yy
A o,
+2pV,w1 -2V, w3 — Y

(5.176)

Z-momentum

opw  Opw 0pw 0p  dp 0 (. 0w s
+ 4 +0 +u =——+ |/ +2plwe —2p0w1 + P2 +
ot "oz oy Yoz a2 ay[“ay] pluwy =2pdwy + p2(wy” +w17)
— pRwiws — pywaws + ﬁfc(f)y — PPy + ﬁfcwy — Pywy
apV.,

+26Vews — 26V w1 — gtz

(5.177)

* The following similarities were observed for all co-ordinate systems:

o The material derivative (left hand side of the Navier-Stokes equation) are unchanged in
the longitudinal and transversal directions. However, all left hand side terms are neglected in the

direction normal to the surface.

o The pressure gradient terms are present in all directions.
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CHAPTER 5. NON-INERTIAL BOUNDARY LAYER EQUATIONS

o The diffusion terms in the boundary layer originate from specific components in the stress

tensor of the 719 and 739 terms.

f12=ﬂ[%621(;%)+ wak(a) | 5.178
. hg 0 Vz (5. )
ta= 0|k (7) hgﬁ(h;”

o The fictitious terms can not be neglected from the boundary layer equations. Therefore the
terms have an influence on the boundary layer velocity profile during acceleration and decelera-

tion of the object.

uj-momentum:
oV, ViV, VeodVy VsV ( Vo 0hy V3 0h1) ( Vi 0hy Vs ah3)
2\hihg 0iy hihg Olls

+ +

ot h10i@1 hodily hgoig
109 1 Y%
o 10
h10G1 hodlg ho hi1

+ 2V2w3 - 2V3w2 + ﬁl(w32 + w22) —lUowiwg — ﬁ3w1w3

Coriolis Centrifugal
A AL 2 2 avel
+Uowzg —U3W2 +u2w3—u3w2+2Vezw3—2Ve3(u2— ot
————— N -~ _
Eul ~—~—
uer ~ v Magnus Translation
Unsteady motion
(5.179)
Ug-momentum:
1 0y N N
0=—— 1// + 2V3w1 - 2V1(1)3 + uz(a)32 + wlz) — U119y —U3WoW3
ho 0lig ™~ ~ - - -~ S
Coriolis Centrifugal
Ve, (5.180)

+lgw1 —lU1w3 +&3w1—ﬁ1w3+2Ve3w1—2Velw3— Y,
- N )

Translation

Euler Magnus

~

Unsteady motion

The boundary layer equations were validated with examples from the literature (Bogdanova [82],
Dumitrescu et al. [85], Dwyer [83] and Mager [81]) for cases with zero translation and steady rotation.
The components of the fictitious forces in Cylindrical coordinates were visualized in Figure 5.9 by

indicating the direction of the Centrifugal force and the two components of the Coriolis force.

~ ~ ~ ~ ~2 ~ ~ 2 A
9 9 on, 4 o oy 0
g, B B0 % Ro g T OV 30 E ane04 Q2
ot ofF P 9b P 0y or 092 (5.181)
dtg . Oty do0Gg fdohi, . Odg  10¢ 0%as '

+ —=—+V +24,Q

- — 4 _ —_— = =
ot “"or T F o0 F Yy Fod | 032
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5.4. CLOSURE

In a similar manner the components of the fictitious forces in Cartesian coordinates can be visualized

using the same analogy as Figure 5.9. This is shown in Figure 5.10.

on on oa _on oY 0%
A e e it ”’+v0f;—2w9+m2

Y (5.182)
Y o 9a0+202

+
ot o0x 0y 0z 0z 092

Figure 5.10: Visualization of the Fictitious Forces in Cylindrical and Cartesian Co-ordinates
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In a Cylindrical system the Centrifugal force has one component in the positive #-direction. In a
Cartesian system it has two components. The Coriolis force consists of two components in both Cylin-
drical and Cartesian systems. The E6tvos effect and the Coriolis force tangential to the satellite motion

can be distinguished separately in the Cylindrical system. In the Cartesian system these effects cannot

be separated.
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Chapter

Non-Inertial Solver Implementation and Validation

he open source code OpenFOAM was utilized as a platform for the non-inertial solver develop-
Tment and subsequent numerical analysis. Implementation of the solver is discussed in a manner

that facilitates reproduction of the code. The theoretical formulation and numerical methods
used in the subsequent analysis are provided to add to the reproducibility of results.

Two validation cases were conducted to assess the functionality of the developed solver; a laminar
flat plate and a laminar rotating disk. Analytical results for these cases are available from the literature
(Blasius [37], Monaghan [87], von Karman [41]). This is compared with the steady state numerical
results.

The boundary layer behaviour is discussed in terms of the boundary layer height, §, displacement

thickness, §*, momentum thickness, 6, and the Shape Factor, H (Figure 6.1).

Figure 6.1: Physical Interpretation of the Boundary Layer Parameters

YA

6*(x)  6(x)

c
g
c
yyvvy =
<

Yyvoy

> L o 1 e

| | Shaded areas are equal | I | Shaded areas are equal |

The boundary layer height is the distance from the wall where the stream-wise velocity is 99% of
the free stream velocity. The mathematical definitions of the displacement and momentum thickness
was shown in Equations 5.1 and 5.2.
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o= [0 2 6.1

=), g (e

6 ‘fy*mi(l—i)d 6.2)
B 0 Uoo Uoo Y .

A comparison of the parameters is shown in Figure 6.2 . This indicates that the boundary layer
thickness is be higher than the displacement thickness which in turn is be higher than the momentum
thickness.

6>6">0 (6.3)

Figure 6.2: Comparison between the Boundary Layer, Displacement and Momentum Thicknesses

Boundary layer thickness Displacement thickness Momentum thickness
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The parameters above are used to obtain a numerical approximation of the displacement and mo-

L—CD

mentum thicknesses. The displacement thickness is the area under the 1 - 7~ curve. The momentum

thickness is the area under the 7~(1 — 7~) curve. This is demonstrated in Figure 6.3.

Figure 6.3: Boundary Layer Parameters on a Flat Plate
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The Shape factor is determined from the displacement and momentum thicknesses.

5*
H=— 6.4
- (6:4)
The purpose of the Shape Factor is to characterize the regime of the flow. Wazzan et al. [78] deter-

mined the Shape Factor curve as a function of the critical and transition Reynolds numbers (Figure 6.4).

Figure 6.4: Correlation of Critical Reynolds Number, Transition Reynolds Number versus Shape Factor
from Wazzan et al. [78]
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In Figure 6.4 it is shown that at lower Reynolds numbers, the critical Reynolds number occur at a
higher Shape Factor value. Similarly, at high Reynolds numbers the Shape Factors are much lower for
corresponding critical Reynolds number. The Shape Factor is used in steady state analyses to determine
if the flow has separated. It is also used to determine if the flow is turbulent or laminar. The critical
Reynolds number for a Blasius Flat plate is approximately 2.59 (White [9]).
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CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.1 Code Implementation

6.1.1 Open Source Field Operation And Manipulation - OPENFOAM®

OpenFOAM (OpenFOAM [88]) is a acronym for Open Source Field operation and Manipulation. It is
a C++ toolbox that provides a platform for the development of customized numerical solvers related to
continuum mechanics problems using the finite volume method. It is released under the Open Source
Software GNU General Public License (GNU [89]).

The code was originally developed by Henry Weller at Imperial College in London. The commer-
cial Computational Fluid Dynamic (CFD) codes StarCD (CD-adapco [90]) and Fluent (ANSYS [91])

also originates from this college.

Numerical analysis of aerospace and defence applications requires a significant level of code flexi-
bility to make the desired changes to existing subroutines or to develop new routines. OpenFOAM ®
consist of many solvers, utilities and libraries that provide an ideal platform of development. Its object
orientated code architecture allows for re-use of existing code blocks and objects and therefore eases
the overhead of new developments.

OpenFOAM provides a good alternative to commercial software since it has been extensively vali-

dated and there is no direct costs involved to operate it.

6.1.2 Code Architecture

The non-inertial solver is designated ARFrhoPimpleFoam. The code architecture consist of three main
code blocks and the case set-up files (Figure 6.5). The baseline of the OpenFOAM solver, rhoPimple-
Foam, were used since it already had the source terms for steady rotation implemented. Although the
solver methodology is based on the PIMPLE method (SIMPLE-PISO hybrid with pseudo-transient im-
plementation (Ferziger and Peric [92], Versteeg and Malalasekera [69])), it can be operated in the PISO
mode (Pressure Implicit with Splitting of Operator (Ferziger and Peric [92], Versteeg and Malalasekera
[69])) as was done in this analysis. The quasi-transient transient implementation of PIMPLE is not be
able to capture transient behaviour accurately as no parameter relaxation should be used in time accurate
cases. The baseline of the existing SRFModel library was used to developed the ARFModel library.
This library contains all the non-inertial source terms for an object in arbitrary acceleration but in pure

rotation.

In this architecture the case set-up defines the problem, which include the initial conditions, fluid
properties, grid domain, numerical schemes, solution methods and control measures. This information
is provided to the solver, ARFrhoPimpleFoam and the library, ARFModel. The solver contains the
compiled source code for the solution algorithm. Parameters in the solver points to the ARFModel that
calculates the non-inertial source terms and determines the frame velocity through interpolation of the

table provided in the case set-up.
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The case set-up can make use of specialized non-inertial boundary conditions which is obtained in the
ARFModel/derivedFvPatchFields library. It provides the non-inertial velocity boundary condition with
information obtained from the ARFModel library.

Figure 6.5: Accelerating Reference Frame (ARF) Model Code Architecture
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urel - Flud Properties BB options - ect _ | ARFModel H
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ARFProperties - Solution Methods ~.| compressibleCreatePhiRel.H - Translation [~ [illtabulatedacceleration
data.csv - Control Methods ~.| createFields.H _ Rotation ~ | tabulatedAcceleration.C
datat.csv = _| EEqQnH & tabulatedAcceleration.dep
RASProperties _ | pEqn.H = tabulatedAcceleration.H
thermophysicalProperties — | rhoEgn.H > g tabulatedFrameVelocity
turbulenceProperties — | UEqn.H > gl tabulatedomega

v | system
controlDict

decomposeParDict
fvschemes
fvSolution

sampleDict

Provide Calculated
Parameters from the

Non-Inertial Frame
- Source terms

derivedFvPatchFields

Provide Calculated - Coriolis
Non-Inertial Boundary Name ’ - Centrifugal
Condition Parameters v [l ARFFreestreamVelocityFvPatchvectorField B ect

| ARFFreestreamVelocityFvPatchvectorField.C

ARFFreestreamVelocityFvPatchvectorField.dep - Relative Frame

| ARFFreestreamVelocityFvPatchvectorField.H Transient VEIOCIty
v |l ARFVelocityFvPatchvectorField - Translation
ARFVelocityFvPatchVectorField.C - Rotation

ARFVelocityFvPatchvectorField.dep
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The resulting application for solving cases in a non-inertial frame has the following attributes:

» Non-Inertial Momentum Equation Implementation. The momentum equations implementation in

the existing SRFModel was for steady rotations only. This was modified to contain the relevant
source terms as derived in Equation 3.227. The term px A Q was not included since only pure rota-
tion are investigated here. The non-inertial momentum equation implemented in the ARFModel

1s:

— +V-(paew)=-Vp+V-[avVa+val)+ A(v-wi]

0 .
——(EV@)+pxAQ+200 A Q- pXAQAQ+20V()AQ
ot o Ul — RN P

Translation Euler Coriolis Centrifugal Magnus

* Non-inertial Operation. The code solves entirely in the non-inertial frame therefore the velocity

vectors are calculated in terms of the relative frame. The code calculates the absolute velocities
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by transformation of the relative velocities.

* Prescribed Motion. The solver requires the time dependant translational and rotational velocities

as inputs for the prescribed motion of the system.

+ Stationary Mesh. The uniqueness of this implementation lies in the non-inertial nature where the

object is completely stationary and the flow is in motion. This eliminates the need for a moving
mesh or level set methods that can cause large computational overheads. The cells in the near
wall region can be made sufficiently small to capture the boundary layer response to changing

bulk flow conditions.

* Specialized Boundary Conditions. The boundary conditions are able to adapt to the changing

relative motion of the non-inertial frame when in acceleration. This is achieved by specifying the
boundary conditions in the absolute frame (of which the far field is stationary) and transforming

the conditions according to the prescribed motion to the non-inertial frame.

» Compressible. The governing equations are in the compressible form, which make is applicable

to a wider range of applications.

A detailed account of the implementation, with code examples, are given in Appendix B.
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6.2 Theoretical Formulation

The theoretical formulation and numerical method used to analyse the three cases in this thesis (Fig-
ure 6.6) is discussed in this section. This includes the assumptions made regarding the flow, the govern-
ing equations implemented and the closure models used. The grid independent computational domains
and boundary conditions for each case is shown. The numerical methods that was used to solve the

system of equations, as already implemented in openFOAM, is discussed.

Figure 6.6: Graphical Representation of Test Cases; Translating Plate, Rotating Disk and Translating,
Rotating Cone

QS o,
>

N>

u=0

Non-inertial frame: Non-inertial frame: Non-inertial frame:
Flat Plate Translation Rotating Disk Translating, Rotating Cone

6.2.1 Assumptions

The following assumptions were made with regards to the flow field:

* The flow can be completely described in the non-inertial reference frame.

* The fluid is Newtonian i.e. the viscous stresses in the fluid is linearly proportional to the strain
rate.

* The ideal gas law is an appropriate equation of state to utilize as a closure model.
* The compressible form of the governing equations accurately describes the flow.
* The flow is well within the laminar regime, no turbulence models are employed.

« Viscous dissipation terms, ¢, in the energy equation can be neglected since this is a laminar case

and the dissipation term is associated with turbulent behaviour.
* The bulk viscosity is zero, as per Stoke's Law.

* Heat conduction is described by Fourier's Law.

153

© University of Pretoria



-
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

QA YUNIBESITHI YA PRETORIA

CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.2.2 Governing Equations

The governing equations used in the analysis was derived in Chapter 3.

The conservation of mass, also referred to as the continuity equation, made use of the formulation
of Equation 3.192 .

0p -
_+V.AA:O 65
Py pa (6.5)

In the source code this equation is solved in the inclusion of the header file, rhoEgn.H (shown in Ap-

pendix B).

The non-inertial energy equation was derived in Equation 3.237 .

A A

—— +(V-péa)=—p(V-a)+V-(EVT) + (6.6)

The implementation of this equation in openFOAM was done using a different form. The viscous dis-
sipation term, ¢, is assumed to be negligible as discussed in the assumptions. The energy equation is
expressed either in the internal energy form or the enthalpy form.

The internal energy form of the equation is described as,

o0pé IR
%+(V-pesu)+

WK . . & (B
%+(v.pKﬁ)+ﬁ(V~ﬁ)—V~(kVT)=0 (6.7)

where K represents the potential energy.
The enthalpy form of the energy equation is described as follow:
phs . .~ .. OPK . . 0p
+(V-phst)+ +(V-pKG) - — -
Py (V-phst) o (V-pKa) Y

V-(EVT)=0 (6.8)

In the source code this equation is solved in the inclusion of the header file, EEgn.H (shown in Ap-

pendix B).

The non-inertial momentum equation for fully arbitrary flow was derived in Equation 3.227. The
equation had an additional term that represented a moving axis formulation, px A Q. In this case that
term was neglected since only cases in pure rotation are considered. Therefore the equation below was
implemented:

00 o A ap A s s
o +V-(paea)-V-[(Va+Vva )+ A(V-a)I]
(6.9)

0 . R
+ —(pV(@)—pXAQ-200AQ+pXAQAQ-20V()ANQ=-Vp
ot o o R P

[ ——

Translation Euler Coriolis Centrifugal Magnus

In the source code this equation is solved in the inclusion of the header file, UEgn.H (shown in Ap-

pendix B).
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6.2.3 Closure Models

The system of governing equations above requires additional equation to close the system of equations.
An equation of state, transport model and thermodynamic model is required to ensure that for the number
of unknowns, there are the same number of equations.

Closure models to be used are defined in the thermophysicalProperties dictionary in the openFOAM

set up files. This specifies the equation of the state, transport model and thermodynamic model.

The equation of state used in this case is the ideal gas law. This relates the pressure to the density,
gas constant and temperature of the fluid.
p=pRT (6.10)

The transport model makes use the equation below, where the Prandtl number is expressed as a ratio

of viscous diffusion rate over the thermal diffusion rate:

C
p, =2t (6.11)

K

In this implementation either the internal energy or enthalpy can be used to determine the tempera-
ture profile in the fluid.
The enthalpy is a function of internal energy and pressure.

ho=es+ 2 (6.12)

0

This equation can be re-written to make the internal energy the subject of the equation. The known

quantities in the flow is then used to model the internal energy.

eszhs—lE
) TC . o To (6.13)
=, Cr 78

The total enthalpy can also be expressed as the sum of the static enthalpy and the enthalpy of the
dynamic pressure (Sontagg and Borgnakke [93]).

hi=hs+0.5U-U (6.14)

The static enthalpy is replaced with known quantities in the flow, and the equation becomes:

T
h;= CpdT +0.5U-U (6.15)
To
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6.3 Case Set-up

6.3.1 Computational Domains

The objective of the analyses is to characterise the response of the laminar boundary layer to prescribed
motion. Computational grids are required with a sufficient amount of cells in the near-wall viscous

region (Figure 6.7) .

Figure 6.7: Orientating Image of the Boundary Layer
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In the near-wall region a sufficient resolution between discrete points are required to obtain a solu-
tion that is representative on the flow. At least 15 cells are required in the boundary layer region on a
steady solution to achieve this. In accelerating and decelerating flows, more cells are required. Grids
were generated with between 25 - 50 cells in the boundary layer. The first dimensionless cell node height

is in the order of y* =1 (Ferziger and Peric [92]). Grids were designed according to these parameters.

R (6.16)

The computational domains for the three cases (translating plate, rotating disk and translating, ro-
tating cone) are described in Figures 6.8, 6.9 and 6.10 below.
The grids have been designed and tested to ensure grid independence. Results from the grid inde-

pendence study is shown in Figures 6.11, 6.12 and 6.13.
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Figure 6.8: Computational Domain for Translating Plate Case
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Figure 6.9: Computational Domain for Rotating Disk Case
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Figure 6.10: Computational Domain for Translating, Rotating Cone Case

1990 mmM——— |

100 x 159 cells

Vertical total grading: 20

200 x 159 cells
Vertical total grading:

20

€25 mm~>‘

A 4
A 100 x 35 cells
v Vertical total grading: 40
S
S
o < 500 mm
T
Figure 6.11: Grid independence of the laminar flat plate
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Figure 6.12: Grid independence of the laminar rotating disk
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Figure 6.13: Grid independence of the translating, rotating cone
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6.3.2 Boundary Conditions

OpenFOAM has vast libraries of boundary conditions that can be used. Boundary conditions can also
be augmented from existing source codes or newly developed. Three classes of boundary conditions
are defined: basic, derived and constraint conditions.

Basic boundary conditions are independent from any other utilities and all the mathematical equa-
tion to used this library is in its root source code. Examples of this is the fixedValue condition and the

zeroGradient conditions as shown in Figure 6.14.

Figure 6.14: Boundary Condition Definition for fixedValue, zeroGradient and inletOutlet

fixedValue zeroGradient inletOutlet
Basic Boundary Condition Basic Boundary Condition Derived Boundary Condition

¢b0undmy = ﬁxed Vah/le ¢b0undary = ¢inner Flux out of domain - zeroGradient
Flux into domain - fixedValue

The fixedValue condition enforces a fixed value on the boundary, while the zeroGradient condition
obtains the boundary value from the internal node.

Derived boundary conditions are dependent on either the basic boundary condition specification
or on another external library. The inletOutlet condition is an example of an outlet derived boundary
where a fixedValue condition is enforce on the boundary if the flux is into the computational domain
and a zeroGradient condition when the flux is out of the domain.

Constraint type boundary conditions allows for reduction of dimensions or computational domain

due to axis-symmetry, symmetry or two dimensionality (see examples in Figure 6.15.)

Figure 6.15: Boundary Condition Definition for empty, symmetryPlane and cyclic

empty symmetryPlane cyclic
Constraint Boundary Condition Constraint Boundary Condition  Constraint Boundary Condition

O e
¢b = ¢i ¢normal=0

¢[eft =1 ¢righ1

The empty condition allow for the reduction of dimensions where no solution is required on the

empty patch pairs. A symmetryPlane condition is used at the mirror line of a symmetrical object to
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reduce the size and extend of the computational domain. This condition sets all the normal components
of vectors to zero. The cyclic condition requires that a pair of boundaries be identified and treats these
patches as if it is physically connected. This allows for the reduction of the computational grid in axis-

symmetrical cases.

Two special boundary conditions were also used as shown in Figure 6.16.

Figure 6.16: Boundary Condition Definition for waveTransmissive and ARFFreeStreamVelocity

wave Transmissive AFRFreeStreamVelocity
Derived Boundary Condition Derived Boundary Condition
¢i ¢f

¢b = f(¢n ¢/) vnan—inertial = vinertial - vﬁ'ume

The first is the waveTransmissive condition. This conditions allows for less stringent pressure con-
ditions on the outlet boundary where the boundary value assigned is a function of the inner node and
a far-field ghost node. Interpolation between the inner node and the ghost node is used to obtain the
value for the boundary. The second is a boundary that was modified for the purposes of this work and
is designated the ARFFreeStreamVelocity condition. In this condition the value of the velocity vector
in the inertial frame is specified. The value for the non-inertial frame is calculated by subtracting the
frame velocity vector from the specified inertial velocity vector. Specifying the far-field inertial velocity
vector is simple since the flow in the inertial far-fields is stationary. In Appendix C the partial source

code for this implementation is shown.

The boundary condition locations for the flat plate, rotating disk and cone are graphically repre-
sented in Figures 6.17, 6.18 and 6.19. Tables 6.1, 6.3 and 6.5 indicate the velocity, pressure and tem-

perature boundary conditions for each case respectively.

The flow conditions was select to ensure that the fluid remains well within the laminar regime. To
this effect the Reynolds number for a flat plate in translation must be below 300 000 (Crowe et al. [94])
and a rotating disk below 500 (Imayama [43], Schmid and Henningson [44]). A rotating cone with a 15
degree half-angle separates at a Reynolds number of approximately 249.64 (Mansour and Kargar [57]).
Axial flow delays the onset of transition, therefore if the rotational Reynolds numbers are kept below
250, the flow is laminar for low axial velocities (Garret and Peake [52] Kobayashi and Kohama [95]).
Tables 6.2, 6.4 and 6.6 show the Reynolds numbers of the separate cases.
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Figure 6.17: Graphical Representation of Translating Plate Boundary Condition
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Table 6.1: Boundary Conditions of the Translating Plate

Boundary Velocity Pressure Temperature
inlet ARFFreeStreamVeloctiy zeroGradient fixedValue
bottom symmetryPlane symmetryPlane symmetryPlane
plate no-slip wall zeroGradient zeroGradient
outletLower zeroGradient zeroGradient inletOutlet
outletUpper ARFFreeStreamVelocity zeroGradient inletOutlet
top ARFFreeStreamVelocity zeroGradient inletOutlet
front/back empty empty empty
Re, = PU* (6.17)

Table 6.2: Minimum and Maximum Reynolds Numbers of the Translating Plate

Condition | Ulm/s] Re, Re iz
min 10 35100 | 300 000
max 80 280 800 | 300 000
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Figure 6.18: Graphical Representation of Rotating Disk Boundary Condition
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e
bottomWall

Table 6.3: Boundary Conditions of the Rotating Disk

Boundary Velocity Pressure Temperature
axis symmetryPlane symmetryPlane symmetryPlane
bottomWall no-slip wall zeroGradient zeroGradient
sidesLower zeroGradient zeroGradient inletOutlet
sidesUpper  ARFFreeStreamVelocity zeroGradient inletOutlet

top ARFFreeStreamVelocity zeroGradient inletOutlet
front/back  cyclic cyclic cyclic

Re,=ry/> (6.18)
v

Table 6.4: Minimum and Maximum Reynolds Numbers of the Rotating Disk

Condition | wlrad/s] | Re, | Recri;
min 10 150 500
max 80 424.2 500
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Figure 6.19: Graphical Representation of Translating, Rotating Cone Boundary Condition

top
outletUpper
inlet
outletLower
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o
Table 6.5: Boundary Conditions of the Translating, Rotating Cone
Boundary Velocity Pressure Temperature
inlet ARFFreeStreamVeloctiy waveTransmissive inletOutlet
bottom symmetryPlane symmetryPlane symmetryPlane
plate no-slip wall zeroGradient zeroGradient
outletLower zeroGradient zeroGradient inletOutlet
outletUpper ARFFreeStreamVelocity waveTransmissive inletOutlet
top ARFFreeStreamVelocity waveTransmissive inletOutlet
front/back cyclic cyclic cyclic
UL
Reams == (6.19)

w
Re19,q4/5s = r\/ ; (6.20)

Table 6.6: Maximum Reynolds Numbers of the Translating, Rotating Cone

Condition Value Re, Re it
Plate 4m/s 4 520.412 | 300 000
Cone 12rad/s 9.37 249.63
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6.3.3 Numerical Method

The solution algorithm that is used in the simulation is the Pressure Implicit Method with Splitting of
operators, referred to as the PISO method. The algorithm is shown in Figure 6.20. The method consist of

one predictor and two corrector steps for each local iteration and was used in its standard implementation
in openFOAM.

Figure 6.20: Pressure Implicit with Splitting of Operator (PISO) Solution Algorithm

Bredictor St Sol Calculate Intermediate

redictor Step: Solve Step 2 Velocity (pressure

Step 1 : —> P y (P «—
Momentum Equation dissipation added)

Step 3 Calculate Mass Flux
Solve Pressure

Step 5 Correct Mass Flux
Step 6 Correct Velocity et CONnverged? —YES—)@

The openFOAM code allows for the separate discretization treatments of divergence, gradient and
laplacian terms. This is selected in the fvSchemes file in the system folder of the case set-up.

o)
<

Time integration was done using the implicit Euler method (Ferziger and Peric [92], Versteeg and
Malalasekera [69]). In the steady state solutions the Courant number was kept below 0.9 and in the ac-
celerating and decelerating cases a constant time step was used since time accurate results were required.
Discretization of the divergence terms were done using Gauss's theorem (Ferziger and Peric [92], Ver-
steeg and Malalasekera [69]) with a total variate diminishing (TVD) scheme. The gradient and laplacian
term terms were both discretised with Gauss's theorem and a central differencing scheme (Ferziger and
Peric [92], Versteeg and Malalasekera [69]).
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6.4 Validation Results

6.4.1 Laminar Flat Plate

The first validation case utilized to test the functionality of the developed solver was the laminar flat
plate. The boundary layer on a flat plate is self-similar. It means that along the plate the shape of the
velocity distribution differs in scale but the form of the profile remains the same. The profile shape is
also similar between the non-inertial and inertial frames, with the exception of directionality. This is
elaborated on in the next chapter. A graphical representation of the boundary layer in the non-inertial

and inertial frames is shown in Figure 6.21.

Figure 6.21: Graphical Representation of the Boundary Layer on a Flat Plate
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The laminar flat plate is a classic problem in Fluid Mechanics for which a similarity solution
was developed by Blasius [37]. The boundary layer equations are simplified by introduction of a non-

dimensional similarity variable 7,

1
n=-2\/Re, (6.21)

2x

that reduces the partial differential boundary layer equation to a non-dimensional ordinary differential

equation.

2f "+ ff =0 (6.22)

The first derivative of the non-dimensional function f (), become the non-dimensional velocity:

=2
o= (6.23)

(e
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The algebraic equation can numerical be solved with an integration routine, such as the Runge Kutta

method, using the initial values below.

f(0)=0
f'(0)=0 (6.24)
flleo)= 1

In a similar manner used to determine the Blasius solution to an incompressible, laminar flat plate,
Monaghan [87] derived a solution for laminar compressible boundary layer.

Numerical simulations for steady state conditions were conducted for free stream velocities of 10
m/s, 45 m/s and 80 m/s. The simulation results were compared against the solutions of Blasius [37] and
Monaghan [87]. The results of the comparisons obtained are depicted in Figures 6.22, 6.23 and 6.24.

Figure 6.22: Steady State Solution for a Laminar Flat Plate at 10 m/s
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1 T T T T

0.9

0.8 .

06

0.5

8c:|sr‘.>

0.4 .

0.2

01k O Blasius 1
% Monaghan
ARFrhoPimpleFoam

0 0.5 1 1.5 2 25 3

167

© University of Pretoria



CHAPTER 6.

oot
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Q= YUNIBESITHI YA PRETORIA

NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

Figure 6.23: Steady State Solution for a Laminar Flat Plate at 45 m/s
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Figure 6.24: Steady State Solution for a Laminar Flat Plate at 80 m/s
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The simulated results compares well with the analytical results of the Blasius [37] and Monaghan
[87] solutions. The results from this test case are be used in the next chapter as steady state starting

conditions. The flow is accelerated or decelerated from these initial conditions.

The boundary layer characteristic profiles,

u

U

u
1-— 6.25
- (6.25)

U 174

—~(1-—

Uoo( Uoo)

are compared to the analytical results in Figures 6.25, 6.26 and 6.27. The numerical results compare

well with the analytical results.

In Table 6.7 the boundary layer parameters are compared with the analytical results. The differences
between the numerical and analytical results are within acceptable parameters as determined by:

ResultAnalytical _ReSUZtNumerical N

Difference% = 100 (6.26)

Resul L Analytical

Figure 6.25: Comparison of Boundary Layer Parameters at 10 m/s
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Figure 6.26: Comparison of Boundary Layer Parameters at 45 m/s
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Figure 6.27: Comparison of Boundary Layer Parameters at 80 m/s
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Table 6.7: Boundary Layer Properties of the Translating Plate 0.2 m

5 [m] 5* [m] 6 [m] H

Analytical ~ 2.2054e™2 0.8040e 3 0.2999¢™ 2.68

10m/s  Numerical 2.6526e™2 0.7941e™3 0.3025¢™2 2.62
Difference % -16.86 -1.22 0.85 -2.06
Analytical ~ 1.0396e~2 0.3790e 3 0.1414e3 2.68

45m/s  Numerical 1.3363e73 0.3749¢3 0.1423¢™2  2.63
Difference % -22.20 -1.10 0.64 -1.73
Analytical ~ 0.7797e™2 0.2843e™3 0.1060e™> 2.68

80m/s Numerical 1.0260e™® 0.2816e™2 0.1069¢72 2.63
Difference % -24.01 -0.93 0.79 -1.71

The wall shear stress is calculated during the numerical simulations. This is used to determine the

skin friction coefficient. The skin friction coefficient is directly proportional to the skin friction drag on

the translating plate. This is used to determine the effect of unsteady motion on the skin friction drag.

The skin friction coefficient and wall shear stress for steady state conditions are shown in Figure 6.28.
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Figure 6.28: Skin Friction Coefficients and Wall Shear Stress
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6.4.2 Laminar Rotating Disk

The second validation case concerns the boundary layer on a rotating disk. In Figure 6.29 a graphical

representation of the boundary layer on the rotating disk is shown for the radial and tangential directions.

Figure 6.29: Graphical Representation of the Boundary Layer on a Rotating Disk

Non-inertial frame: Inertial frame:
Plate stationary, Far field flow in motion Plate in motion, Far field flow stationary

In von Karman [41] a similarity solution is derived for the boundary layer on a rotating disk. This
solution is discussed in detail by Schlichting [42]. A solution is obtained by introducing a similarity

variable, 7, to the boundary layer equations (in cylindrical coordinates).

n=yy/ 2 (6.28)
v

In the above equation y is the height normal to the wall, w, is the rotational velocity (in rad/s) about
the y-axis and v is the kinematic viscosity. Using this equation the partial differential equations (PDE) is
reduced to a set of ordinary differential equations (ODE), as shown by Schlichting [42]. This is solved
numerically to obtain the velocity profiles.

Simulations were conducted for rotational velocities of 10 rad/s, 45 rad/s and 80 rad/s to obtain the
steady state solution in the non-inertial frame (Figures 6.30 and 6.32). This solution was transformed to
the inertial frame in order to compare it with the analytical result (Schlichting [42], von Karman [41])

presented in Figures 6.31 and 6.33.
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Figure 6.30: Non-Inertial Tangential Velocity Profiles
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Figure 6.31: Comparison between Numerical and Analytical Tangential Velocity Results
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Figure 6.32: Non-Inertial Radial Velocity Profiles
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Figure 6.33: Comparison between Numerical and Analytical Radial Velocity Results
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6.4. VALIDATION RESULTS

The tangential non-dimensional velocity profile is consistent with the analytical result near the wall
region. Slight differences are observed in the far-field of the boundary layer. The non-dimensional value
is slightly higher than the analytical value. This difference is increased with decreasing rotational ve-
locity.

Similar behaviour is observed for in the radial direction. The radial non-dimensional velocity profile
is overall consistent with the profile of the analytical result. The apex of the simulated curves are in the
same order as the analytical apex. However, the simulated results are slightly higher than the analytical
result.

The von Karman equations do not account for instabilities in the flow. The differences between the
numerical and analytical results are due to the formation of laminar instabilities. Instabilities associated
with rotating disks are mostly of Type I and Type Il (Chefranov [96], Zoueshtiagh et al. [48]). Type |
instabilities occur due to inviscid cross flow interactions. An example of Type I is the spiral vortices
occurring above a Reynold number of 500. These vortices facilitates flow transition. Type II is instabil-
ities that occur due to interaction between the Coriolis and viscous forces in the boundary layer. The
differences observed here are due to cyclonic vortices at the centre of rotation. Moulin and Flor [47]
investigated the sudden start of rotating disks. They experimentally observed the growth of the cyclonic
vortices due to Ekman suction. It was noted that the growth rate of the vortices diminishes over time for
steady state spin up conditions. This indicates that the cyclonic vortices are stationary in steady state
conditions. This instability is classified as Type I since it operates in the inviscid region of the flow.

An increase in rotational velocity, adds to the momentum in the inviscid regions of the flow. The ef-
fect of the cyclonic vortice on the boundary layer are reduced since the increased momentum dominates
the formation of cyclonic vortices. Therefore, with increasing rotational velocity, the cyclonic vortices
decrease and the numerical solution approximates the von Karman solution.

The boundary characteristic properties in the radial and tangential directions were determined for

the numerical and analytical results.

(6.29)

(6.30)

The comparison of the boundary layer properties are shown in Tables 6.8 and 6.9 for the tangential

and radial direction respectively.
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Table 6.8: Tangential Boundary Layer Properties of the Rotating Disk at 0.14 m radius

69 [m] 0y [m] 6 [m] Hy

Analytical  6.0e™®  1.283e™> 6.0102¢™* 2.13

10rad/s  Numerical 6.2¢™3  1.475¢™2 17.5953¢ ™% 1.94
Difference % 3 15.01 26.37 -8.98
Analytical  2.8¢73  6.0482¢ % 2.8332¢™% 2.13

45rad/s  Numerical 2.83¢™2 6.5632¢ ™% 3.2964¢7% 1.99
Difference % 1.14 8.51 16.34 -6.73
Analytical  2.1e™3  4.5362¢ % 2.1249¢™% 2.13

80rad/s Numerical 2.12e73 4.7743e™* 2.2977¢™* 2.07
Difference % 1.05 5.25 8.13 -2.66

Table 6.9: Radial Boundary Layer Properties of the Rotating Disk at 0.14 m radius

6y [m] 6; [m] 6, [m] H,

Analytical  6.0e™3 5.5865¢ % 3.6386e™* 1535

10rad/s  Numerical  6.2¢e™3  5.7001e™3 4.2472¢* 13.42
Difference % 3 2.03 16.72 -12.58
Analytical ~ 2.8¢73  2.6335¢ 3 1.7152¢™* 1535

45rad/s  Numerical 2.83¢73 2.6184e™3 1.8724e % 13.98
Difference % 1.14 -0.57 9.16 -8.91
Analytical ~ 2.1e™3  1.9751e™3 1.2864e % 1535

80rad/s  Numerical 2.12¢72 1.9619¢73 1.3964e % 14.04
Difference %  1.05 -0.66 8.55 -8.49

Comparisons are graphically represented for 10 rad/s, 45 rad/s and 80 rad/s in Figures 6.34-6.39.
The effect of the cyclonic vortices on the boundary layer can be observed in the graphs. In the near
wall regions deviation from the von Karman results are small. The regions near the free-stream flow

deviated from the analytical result. The deviation is indirectly proportional to rotational velocity.
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Figure 6.34: Comparison of Tangential Boundary Layer Characteristic Profiles for 10 rad/s
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Figure 6.35: Comparison of Radial Boundary Layer Characteristic Profiles for 10 rad/s

Radial Velocity Profile - Relative Frame 10 rad/s
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Figure 6.36: Comparison of Tangential Boundary Layer Characteristic Profiles for 45 rad/s

Tangential Velocity Profile - Relative Frame 45 rad/s
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Figure 6.37: Comparison of Radial Boundary Layer Characteristic Profiles for 45 rad/s

Radial Velocity Profile - Relative Frame 45 rad/s
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Figure 6.38: Comparison of Tangential Boundary Layer Characteristic Profiles for 80 rad/s

Tangential Velocity Profile - Relative Frame 80 rad/s
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Figure 6.39: Comparison of Radial Boundary Layer Characteristic Profiles for 80 rad/s

Radial Velocity Profile - Relative Frame 80 rad/s
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The wall shear stress was calculated in the tangential and radial directions. This was used to de-
termine the total skin friction on the rotating plate. The effect of acceleration and deceleration on skin

friction coefficient, and subsequently the skin friction drag, is determined in Chapter 8.

Oug
Tewall = IJ{W
ou
Trwall = Ha_r
y (6.31)
Twall = Tgwall + T%wall
Twall
Cp=—wall_
F~ 05002,

Figure 6.40: Wall Shear Stress in the Tangential (left) and Radial (right) Directions
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Overall the simulated results compares well with the analytical results and can be used in Chapter

8§ as initial conditions for subsequent analyses.
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Skin Friction Coefficient - Cf
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Figure 6.41: Skin Friction Coefficients for Steady State Conditions

0.03F

0.025

0.02

0.015+

0.01F

0.005

—— 10rad/s
45 rad/s
—— 80 rad/s

0
0.04

| | | | |
0.06 0.08 0.1 0.12 0.14 0.16
Distance from disk centre [m]

181

© University of Pretoria



-
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

CHAPTER 6. NON-INERTIAL SOLVER IMPLEMENTATION AND VALIDATION

6.5 Closure

This chapter reported on the non-inertial solver development and validation test cases related to the

solver functionality. The contributions of this chapter is:

* Development of a non-inertial solver. The non-inertial equations derived in Chapter 3 were
implemented in the open source platform OpenFOAM. The governing equations that was imple-

mented are the conservation of mass, momentum and energy equations respectively:

—+V.pa=0
o PY
000 o . s s ap Ao
o +V-(paea)-V-[(Va+Vva' )+ AV-a)I]
0 . N
+ —(V()—px A Q200N Q+pXAQAQ-20V(E)ANQ =-Vp
ot —_—— —\—— ~ ~ AN ~ 7
. Euler Coriolis Centrifugal Magnus
Translation
0phs o .o WK o o 0P o sens
Pl + ¥ pheiy+ P2 4 (V- o) - 22 —%-(h¥T) =0
ot ot
The source code and case set-up are shown in Appendix B. The resulting code had the properties

of:

[e]

Non-inertial momentum equation implementation,

[e]

Prescribed motion definitions required,
o Operating on a stationary mesh,
o Using specialized boundary conditions and

o Capability of resolving compressible flow.

* Development of a non-inertial boundary condition. A special boundary condition, ARFFree-
StreamVelocity, was developed that allows for defining the free stream velocity conditions in
the inertial frame. It is a simplified manner of describing the flow boundaries where the inertial
velocity is stationary. The code transforms the boundary values to the non-inertial frame using

the prescribed motion definitions.

* Validation of the non-inertial code. Two validation cases were conducted to asses the function-
ality of the solver; a flat plate and a rotating cone. Numerical results from these analyses were
compared with analytical results from Blasius [37], Monaghan [87] and von Karman [41] respec-
tively. The simulated results compared well with the analytical results, the solver can therefore
be used in the subsequent chapter to analyses the behaviour of the boundary layer under various

accelerating conditions.
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Chapter

Boundary Layer Response in Pure Rotation - Flat Plate Flow

he aim of this chapter is to characterise the response of the laminar boundary layer to arbitrary
Ttranslations on a flat plate. This is accomplished through a multitude of simulation results that
are interpreted using the non-inertial boundary layer equations established in previous chapters.
Acceleration of objects takes place over a variety of magnitudes. The lowest orders are represented

by accelerating trains while the highest orders are found in the Large Hadron Collider and accelera-
tions from a Wakefield plasma accelerator (7able 7.1). In this chapter the acceleration and deceleration

parameters have been varied from 70 g to 700 000 g to obtain results over a large spectrum.

Table 7.1: Examples of Accelerating Objects

Order of Magnitude Example
0-1g Train or car acceleration
1-10g F1 race cars
10-100 g Ejection seat of aircraft
100-1000 g Missile in acceleration
1000 -10000 g Artillery projectile
10 000 - 100 000 g Small calibre bullets

>100000 g Theoretical Space guns

Acceleration and deceleration are analysed separately. In the first instance the flow is accelerated
from a fully converged, steady state solution at 10 m/s (Re = 3.5 x 10%) to a final velocity of 80 m/s
(Re =2.81x105). Here this is referred to as the Acceleration Event. Acceleration from 70 g to 70000 g at
increasing orders of 10 is investigated. The second instance is analysed through deceleration from a fully
converged, steady state solution at 80 m/s (Re = 2.81 x 10%) to a final velocity of 10 m/s (Re = 3.5 x 10%).
This is referred to as the Deceleration Event. Decelerations from 70 g to 70000 g at increasing orders

of 10 are investigated. In Table 7.2 , the simulations conducted for an accelerating and decelerating flat
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plate are respectively tabulated.

Table 7.2: Flat Plate Test Matrix

Acceleration Event Deceleration Event
Velocity [m/s] 10 to 80 80to 10
Reynolds Number 3.5 x 10% t0 2.81x 10°  2.81 x 10° to 3.5 x 10*
70g 70g
700g 700g
7 000g 7 000g
70 000g 70 000g
700 000g 700 000g

The acceleration conditions were selected to represent a large operational envelope. The minimum
acceleration, 70g, is typical of ejection seats of aircraft. A lower value was not taken as the focus of
this work is applications in the aero-ballistic environment where higher accelerations are present. The
maximum value, 700 000g, was selected beyond that limit of known applications ensuring proper cov-
erage of the range of applications. The flow conditions were select to ensure that the fluid remains well
within the laminar regime. To this effect the Reynolds number of the flat plate in translation are kept
below 300 000 (Crowe et al. [94]).

7.1 Case Description

The laminar boundary layer on a flat plate in steady motion was discussed in Chapter 6 . Analytical
solutions are available from the literature (Blasius [37], Monaghan [87]) against which the non-inertial

solver was validated. The case analysed in this chapter is depicted in Figure 7.1.

Figure 7.1: Graphical Representation of the Boundary Layer on a Flat Plate
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The difference between the velocity vectors in the inertial frame and non-inertial frame can be
observed in Figure 7.1. In the inertial frame the plate is in motion with a velocity U in the negative
x-direction. In the near-wall region the boundary layer assumes an absolute velocity of U in the negative
x-direction - the velocity at which the plate is moving. In the far field the absolute velocity approaches
zero. In the non-inertial frame the perspective of the observer has changed; the plate is stationary and
the fluid is in motion. In the near-wall region the fluid velocity approaches zero on the no-slip wall and
in the far field the fluid velocity approaches U - the relative velocity of the moving plate.

The velocity profile of the boundary layer is a function of the diffusion term in the Navier-Stokes
equations. This originates from the shear stress on the wall which is a function of the velocity gradient
on the wall (Figure 7.2).

Figure 7.2: Wall Shear Stress as a Function of Velocity Gradient

ou
Toall = y@

wall

Mathematically, the diffusion term is responsible for the existence of the boundary layer. If this term
is excluded from the equation, the Navier-Stokes equations are reduced to the inviscid Euler equations.
Without viscosity in the flow, there is no boundary layer. The influence of the diffusion term is used in

later sections to explain the behaviour of the boundary layer in accelerating conditions.

0 0 0 0
Pu+u Pu+v pu __9P a( 6u)

ot 0x oy  ox Oy\"oy

(7.1)

Material Derivative
In order to interpret the response of the boundary layer to acceleration and deceleration, the non-
inertial equations are required. In Chapter 3 the non-inertial momentum equation was derived for arbi-
trary acceleration using the frame description in Figure 7.3.
Relationships between the inertial and orientation preserving frames were derived in Equation 3.180,

which in turn was used to find an expression for the motion in the non-inertial frame (Equation 3.183).

W (x,t)=GMux,t) =ux,t) - V) +x AQ-[at) + QA X + Q AX']AL (7.2)
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Figure 7.3: Frame Definitions for Non-Inertial Flow

z

(k) = RMu(x, 1) - V() + X AQ —[a(t) + Q Ax + Q AX]AL] (7.3)

Through elimination of terms that are not applicable in this case, the equations above can be used

to determine an expression for this specific case of arbitrary translation:
u'(x,t) =ux,t)-V(t) (7.4)

(%, ) = RM[u(x, ) - V(#)] (7.5)

Further simplification, taken into account that no rotation is involved in this case, leads to a relation

for the absolute velocity in terms of the relative frame velocity and non-inertial velocity:
u(x, ) =a(x,1)+ V() (7.6)

The momentum equation for unsteady relative translation can be obtained by eliminating the rota-

tional terms from Equation 3.246:

jopa . - A A R A a ~. 0
% +¥-(paed) = ~Vp + V-[aTa+ T8+ AT -@il- = (V) (7.7)
Material Berivative Translation

The only fictitious term remaining in the momentum equation is the unsteady frame acceleration. It
acts as a momentum source when in the plate is in acceleration and a momentum sink in decelerating

conditions.
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7.2 Results and Discussion - Acceleration

7.2.1 Velocity Profiles

The accelerating flow analysis was done for the laminar flat plate in accordance with Table 7.2. Compar-
isons were drawn between the non-dimensional velocity profiles at common free stream velocities for
different accelerations. The non-dimensional distance from the wall, 1, is determined by Equation 6.21.
Results are indicated in three grouping in Figures 7.4-7.6. The three groupings were selected to represent

the results in a concise manner.

Figure 7.4: Non-Dimensional Velocity Profiles: Translating Flat Plate - Acceleration Grouping I
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Figure 7.5: Non-Dimensional Velocity Profiles: Translating Flat Plate - Acceleration Grouping II
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Sample results that are representative of the boundary layer responses are shown for explanation
purpose in Figures 7.7 and 7.8.

Figure 7.7: Sample Results and Observations for the Lower Acceleration Cases
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In Figure 7.7 it is shown that the 70g acceleration case remains very close to the steady state results.
In the near-wall region the velocity gradient is maintained at steady state values. The boundary layer
thickness is the same since the free-stream velocity is reached at the same value for non-dimensional
height, 7, than in the steady state case. In Figure 7.4 it is seen that the profile deviated from the steady
state conditions in the middle boundary layer region between free stream values of 17 m/s and 24 m/s,
but by 38 m/s the deviations subsided and a steady profile was resumed. The diffusion term dominates
the 70g acceleration case to maintain near steady state conditions.

The 700 g acceleration case maintains the steady state profiles in the near-wall regions, but deviates
as the flow approaches the free stream conditions in the far field (Figure 7.7). This leads to a thicker
boundary layer than the steady state where the free-stream velocity value is achieved at a higher non-
dimensional height, 7, than in the steady state case. This response is a combination of the diffusion term
dominating in the near-wall region and the material derivative of momentum (all the terms on the left
hand side of the equation) dominating in the far field.

The higher acceleration cases (> 1000 g) is characterised by an increased velocity gradient in

the near wall region resulting in a higher wall shear stress (Figure 7.8). This increase in near-wall
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velocity gradient is directly proportional to the acceleration - higher acceleration causes higher wall
shear stresses. The boundary layer is thicker than in the steady state conditions since the free-stream
condition (a non-dimensional velocity of 1) is reached at a higher non-dimensional distance, 7, than in

the steady state case. The flow in all regions is dominated by the momentum of the acceleration.

Figure 7.8: Sample Results and Observations for the Higher Acceleration Cases
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The observed behaviour was shown in the non-inertial frame. It can also be explained from the iner-
tial perspective. In the inertial frame the flat plate is initially in a fully developed steady state condition.
The plate is moving while the far field flow is standing still. The velocity profile has an identical shape
to the velocity profile in the non-inertial frame. However, the velocity at the wall has the value of the
non-inertial free stream value. The far-field velocity in the inertial frame is zero. As the plate accelerates
the velocity at the wall increases rapidly. Since the motion is unsteady, the velocity gradient near the
wall becomes steeper. The velocity in the free stream remains at zero. The thickening of the boundary
layer occurs due to the momentum effects dominating the viscous effect. Furthermore, the time scale of
the event is too high for the viscous effects to dominate the flow. Subsequently, the viscous effects are

not able to adjust the boundary layer flow to assume the steady state profile in these changing conditions.

The observed results can further be interpreted mathematically using the boundary layer equations
derived in Chapter 5. In Equations 5.75 and 5.76 the Cartesian component from the non-inertial mo-

mentum equations were derived for arbitrary accelerating conditions.
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X-momentum
opa ,0pa  0pa |, 0pu op 0, 01
tl—+—+—=——+ —(0—

ot 0x oy 0z ox 0y 0y

)

) +2p0w3 — 2ptws + pR(ws? + we?)

g

Material Derivative

. an And  aah A . (7.8)
—Pywiw2 — PZwiws + pYw3 — PZw2 + Pyws — PZw2
0pV,
+25V,yws — 2pV,wg — ‘;t’“

y-momentum

op . . )
0=-2L 1 25w - 2paw3 + P (w32 +w12) — PRw1wg — pEwaws + PEGL — PR + pEwr — pEws
A v,
+2pV, w1 -2V, w3 — o

(7.9)

The equations above can be simplified by eliminating the terms that is not relevant to flat plate
translation in the x-direction. All terms associated with rotation and translational acceleration in the
y-direction is removed from the equation, resulting in the following set of boundary layer equations:

X-momentum

opi . 0pa | 0pu op 0 ,.0u, 0pV,
ARl e S B Ay e WA (7.10)
ot 0x 0y ox 0y 0y ot
y-momentum
op
0=-2 (7.11)
0y

The equation set above is responsible for the observed behaviour and from this a mechanism can

be devised to explain the boundary layer response (Figure 7.9).

Figure 7.9: Boundary Layer Profiles for Steady and Accelerating Conditions
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In Equation 7.6 the absolute and relative velocities were related to each other for this case.

u(x, ) = (%, ) + V(t) (7.12)
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The meaning of this relationship become clear when the component form of the inertial and non-
inertial x-momentum equations are compared. An increase in the relative frame velocity (velocity of
the plate in the negative x-direction) results in an increase in the non-inertial velocity and subsequently
the absolute velocity.

* Absolute acceleration \

dpu 0/0u+ apu Op 6( 0_u)

dy

+_
or 1oy dy ox  dy #

% i =2 2

» Non-inertial accelerauol)

» Frame acceleration prescribed

The prescribed frame velocity, here acting in the negative x-direction, acts as a source of momentum.
An increase in this term on the right hand side of the momentum equation, results in an overall increase
in the material derivative on the left hand side of the equation.

b1 op 0 ,.0u 5
T O dod W/ 1

An increase in the material derivative results in an increase in 2, which in term results in an increase

in the wall velocity gradient (Figure 7.10) which is the observed effect in the accelerating boundary layer
profile.

0pa | 0P A0pd 0p 0 oa 0pVy

0% 0% (2] ot

The strength of this mechanism is dependant on the magnitude of the frame acceleration. Three dis-
tinct acceleration regions are identified in the translation case; a viscous dominant, a viscous-momentum

interaction and a momentum dominant region.

* Region I - Viscous Dominant. The 70 g case falls within this region. There is almost no diver-
gence from the steady state non-dimensional result (Monaghan [87]). The viscous effects dom-
inate the boundary layer flow and any disturbances in the boundary layer is neutralized by the

much larger viscous forces. This can be seen the Grouping I (Figure 7.4) results at 20.5 m/s where
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Figure 7.10: Increased Wall Velocity Gradient for Accelerating Conditions
U —>»

the disturbance occurs, the upstream propagation at 24 m/s. At Grouping II (Figure 7.5) 38 m/s
the disturbance has been dissipated and the profile is on the steady state baseline again. In this
region the rate of change in velocity due to acceleration is small enough to allow the flow the
adjust to steady state conditions. The induced momentum effects, due to acceleration, is not high

enough to result in changes in the boundary layer properties.

Acceleration Response - Type I:

opi.  9pa __9p 0pVe

or "oz Vay oz ot

Sle
=3
QD

‘<>|§>

Region II - Viscous-Momentum Interaction. In the near wall region the viscous effects origi-
nates from the wall and dominates the flow close to the wall. This effect becomes smaller further
away from the wall. In the free-stream the viscous effects are negligible and the momentum ef-
fects dominate. In region 11, the time scales of the viscous and momentum forces in the boundary
layer are approximately equal leading the two effects being of comparable order. This causes dis-
turbance of the boundary layer since neither force is dominant. The 700 g case falls within this
region. The region (for this specific case) extends from approximately 500 g - 1100 g. It is char-
acterized by unsteady disturbance propagation that originates from the wall which causes erratic

behaviour in the boundary layer.

Acceleration Response - Type 11:

0pi | ~0pa . A0pQ aﬁ+ on 00V
a9 ot
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* Region III - Momentum Dominant. The three higher acceleration cases falls within this region
- 7000 g, 70000 g and 700000 g. The region is characterized by a sharp increase in the near-wall
velocity gradient that is directly proportional to the acceleration. The boundary layer velocity
profile resembles that of a fully developed, turbulent profile with the steep gradient that becomes
almost parallel with the free stream in the regions close to the boundary layer edge. An increase in

boundary layer height is observed. The general form of the profiles are comparable with similar
studies in literature (Back [28], Mager [97]).

Acceleration Response - Type I11:
op 0 . 0a 0pVy

— +_ —_—
oz 09"95 ot

The accelerating results is grouped in the three regions as shown in (Figure 7.11).

Figure 7.11: Acceleration Response Regions by Type in Simulation Results
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7.2.2 Boundary Layer Parameters

The boundary layer properties that are considered here have been shown in Figure 6.1:

Figure 7.12: Physical Interpretation of the Boundary Layer Parameters

T

The effect of acceleration on the boundary layer thickness have been discussed in the previous
section along with the boundary layer shape. The definitions of the displacement thickness, 6* and
the momentum thickness, 8, follow directly from the non-dimensional boundary layer profile, ULOO The
mechanism described in the previous section, that effects the boundary layer profile, therefore influences

these parameters as well.

y*—o0 n
e:fy*“wiu-i)dy (7.14)
0 Uoo Uoo

The displacement and momentum thicknesses are determined by integrating the area under the rel-

evant curve as shown below:

Figure 7.13: Boundary Layer Parameters on a Flat Plate
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Comparisons of the displacement thickness for various accelerations are shown in Figures 7.14 - 7.17.

First Derivative of Displacement Thickness [m]

Figure 7.14: Displacement Thickness Comparison for the Accelerating Flat Plate

x 10
25 T T T T T T
x=0.05m 70g
x=0.10 m 70g
x=0.15m 70g
) x=0.20m 70g

-------- x = 0.05 m 700000g
ceesesennns x = 0,10 M 700000g
cenene x = 0,15 m 700000g
----------- x = 0.20 m 700000g

Displacement Thickness [m]

10 20 30 40 50

Free-stream Velocity [m/s]

Figure 7.15: Displacement Thickness Derivatives Comparison for the Accelerating Flat Plate
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Figure 7.16: Displacement Thickness Comparison at x = 0.05 m in Accelerating Conditions
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Figure 7.17: Displacement Thickness Comparison at x = 0.2 m in Accelerating Conditions
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Since the boundary layer properties are directly linked to the boundary layer profile, the behaviour
of the parameters can be grouped in the same three regions as identified in the previous section.
Region I - Viscous Dominant Region - has a displacement thickness that is on average monotonically
decreasing with increased free-stream velocity. A slight disturbance in the early stages of the acceler-
ation event, at approximately 20 m/s to 30 m/s free-stream velocity, is observed. It was noted in the
previous section that the velocity profile deviated from the steady state conditions between free stream
values of 17 m/s and 24 m/s. At a velocity of 38 m/s the deviations subsided and a steady profile was
resumed. This was due to viscous-momentum force interactions and is the origin of the disturbance.
The first derivative of the displacement thickness indicates that this disturbance is time related. The
local maximum and minimum values of displacement thickness, between 17 m/s and 38 m/s, occurs
consecutively in time for successive points on the plate (Figure 7.15). The disturbance dissipates after
50 m/s. The first derivative approximates zero near the completion of the event at 80 m/s. This is an
indication that the displacement thickness approaches an asymptotic value. The second derivative has
an inflection point at the start of the acceleration event. This is a response to the sudden acceleration of
flow in a steady condition, similar to the mass flow conditions of a sudden start case. Sudden accelera-
tion is here defined as the initial response of the flow in the first instance of the acceleration event. This
region showed no plate edge effects in the boundary layer.

Region II - Viscous-Momentum Interaction Region - is characterised by erratic behaviour of the
displacement thickness. Disturbances are noted in the first and second derivative. On average the first
derivative of the displacement thickness, Figures 7.16 and 7.17, approximates zero at the end of the
event. Although there are disturbances in the displacement thickness value near 80 m/s, it approximates
an averaged asymptotic value. The inflection point in the second derivative is larger than the other
acceleration case. This indicates that in this region the boundary layer is sensitive to sudden acceleration
and responds accordingly. Edge disturbances of the plate were not observed in this region.

In Region III - Momentum Dominant Region - the displacement thickness is monotonically de-
creasing with increasing free-stream velocity. There are no observed disturbances in the displacement
thickness in this region. The first derivative is monotonically increasing. It approximates zero, which
indicates that the displacement thickness approaches an asymptote during the acceleration event. An
inflection point is present in the second derivative. The value of the inflection point is equal between
the 7000g, 70000g and 700000g cases. The displacement thickness inflection point is a measure of the
response of the mass flow to sudden acceleration. Here it indicates that the mass flow response to sud-
den acceleration from a steady state condition is independent from the strength of the acceleration. No

plate edge effects are observed in this region.
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The momentum thickness responds in a similar manner than the displacement thickness over the

three acceleration regions. The results are shown in Figures 7.18-7.21.

Momentum Thickness [m]

Figure 7.18: Momentum Thickness Comparison for the Accelerating Flat Plate
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Figure 7.19: Momentum Thickness Derivatives Comparison for the Accelerating Flat Plate
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Figure 7.20: Momentum Thickness Comparison at x = 0.05 m in Accelerating Conditions
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Figure 7.21: Momentum Thickness Comparison at x = 0.2 m in Accelerating Conditions
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In Region I - Viscous Dominant Region - the average momentum thickness is monotonically de-
creasing with increased free-stream velocity. The same disturbance that was noted in the displacement
thickness between 17 m/s and 38 m/s is observed here. This disturbance is also time dependant as shown
in the consecutive maxima in the first derivative Figure 7.20. The momentum thickness approaches an
asymptote as indicated by the first derivative approximating zero at the end of the event. An small inflec-
tion point is observed in the second derivative. This is an indication of the response of the momentum
in the boundary layer to sudden acceleration. Edge effects of the plate is not observed in this region.

Region II - Viscous-Momentum Interaction Region - shows erratic behaviour in the momentum
thickness. The average first and second derivative approaches zero, but with visible disturbances in
the result. This is especially seen at the end of the acceleration event. No momentum edge effects are
observed in this region.

A slight increase in the momentum thickness at the beginning of the acceleration event is present in
Region I1I - Momentum Dominant Region. After this increase the momentum thickness monotoni-
cally decreases without disturbances. The first derivative shows a minimum value in the early stages of
the acceleration event. After this, it monotonically increases and approximates zero near the end of the
event. This indicates that the momentum thickness approaches an asymptotic value. An inflection point
is noted in the second derivative. This point has the same value for all the Region III cases. Furthermore,
the momentum thickness in this region varies very little between all the acceleration cases that fall in
this category. The momentum in the boundary layer shows minimal response to the initial stages of
sudden acceleration from steady state conditions. In this region there are no plate edge effects on the

momentum thickness.

The shape factor is calculated from the displacement and momentum thickness parameters.
5*
H-= 7 (7.15)
The results are shown in Figures 7.22-7.24.

The Region I - Viscous Dominant Region - starts with the steady state value of approximately
2.68 as determined in the previous chapter. In the initial stages of the acceleration event the shape
factor value decreases to a minimum. After the minimum was reached, the shape factor increases and
approximates the steady state shape factor value. The first derivative approximates zero near the end of
the event. Therefore, the shape factor approaches an asymptotic value at the end of the acceleration event.
The disturbances due to viscous-momentum interaction are present in the second derivative. These are
damped out as was seen in the displacement and momentum thickness graphs.

Region II - Viscous-Momentum Interaction Region - shape factor graphs displays similar be-
haviour as Region L. The value starts at the steady state condition and reduces to a minimum value. The
value then increases and recovers a percentage of the steady state value. The first derivative approaches
zero, indicating that the shape factor approximates an asymptotic value. The second derivative shows
disturbances near the plate edge at the end of the event. This indicates that distance from the plate edge

affects the shape factor.

201

© University of Pretoria



5

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

First Derivative of Shape Factor H

Figure 7.22: Shape Factor Comparison for the Accelerating Flat Plate
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Figure 7.23: Shape Factor Derivative Comparison for the Accelerating Flat Plate
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In Region III - Momentum Dominant - the 7000g case shape factor responds differently to ac-

celeration than the other two cases in this category. At the location close to the plate edge, the 7000g

case has a similar response to Region I and Region II. Further away form the plate edge, the response is

similar to the higher acceleration cases. The shape factors of the 70000g and 700000g cases are mono-

tonically decreasing. There is no turning point in the result and no attempt to recover the steady state

value. The first derivative shows that an asymptotic value is approached. There are no disturbances in
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the second derivative.

In Figure 7.24 a comparison between the shape factors at various points on the plate indicate that
the shape factor is dependant on position on the plate. The value at the end of the event is higher close
to the plate edge.

The results of the displacement thickness, momentum thickness and shape factor indicates that
steady acceleration flow can be equated to developing flow. The flow approaches asymptotic values
if the steady acceleration condition is maintained for a period of time. The shape factor is dependant on
both the size of the acceleration and the position on the plate.

Figure 7.24: Shape Factor Comparison at Various Plate Positions for the Accelerating Plate
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7.2.3 Skin Friction Coefficients

The skin friction coefficient is a function of the wall shear stress, the fluid density and the free-steam
velocity. It is calculated from the wall shear stress results obtained from the simulation. The skin friction
drag is directly proportional to the skin friction coefficient. Skin friction plots give an indication of the
drag behaviour of the plate during acceleration. Results for the skin friction coefficient plotted against

Reynold number are shown in Figures 7.25 and 7.26.

_ ou
Twall —/Jay wall
Twall
Cp= wall
F= 05U (7.16)
pUS,

Fdrag = Cf TAwetted

Figure 7.25: Comparison between Skin Friction Coefficients at Various Free-Stream Reynolds Numbers
for Accelerating Conditions
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The behaviour of the skin friction coefficient is the same across all regions of the flow. An initial
increase is observed and a maximum value reached. The skin friction coefficient is then decreased to a

value lower then the value at commencement of the acceleration event. The first derivative approximates
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zero at the end of the event, indicating that the skin friction coefficient approaches an asymptotic value
(Figure 7.27). The second derivative shows an inflection point at commencement of the event. This is a
response to the sudden acceleration of the flat plate. In accelerating flows, from steady state conditions,
the skin friction drag have a similar response as the skin friction coefficient. The response is an initial
increase in drag. A maximum value is reached early in the event. This maximum drag is dependant on
acceleration strength - stronger accelerations lead to higher drag forces. The drag force is reduced to
a value lower than the initial starting condition provided that steady acceleration is maintained for a

sufficient time duration.

Figure 7.26: Comparison between Skin Friction Coefficients at Various Plate Positions for Accelerating
Conditions
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Figure 7.27: First and Second Derivatives of the Skin Friction Coefficients in Accelerating Conditions
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7.3 Results and Discussion - Deceleration

7.3.1 Velocity Profiles

The decelerating flow analysis was done according to 7able 7.2. Comparisons were drawn between
the non-dimensional velocity profiles at common free stream velocities for different decelerations. The
results are indicated in three grouping in Figures 7.28-7.30. The groupings were selected to be repre-
sentative of the total result and for explanation purposes.

Figure 7.28: Non-Dimensional Velocity Profiles: Translating Flat Plate - Deceleration Grouping I
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Figure 7.29: Non-Dimensional Velocity Profiles: Translating Flat Plate - Deceleration Grouping I1
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Sample results that are representative of the boundary layer responses are shown for explanation
purpose in Figures 7.31 and 7.32.

The 70 g deceleration case remains equal to steady state conditions for the greatest part of the
simulations Figure 7.31 . There is a slight difference in the near-wall region, but the flow is considered

to be marginally dominated by the viscosity.

Figure 7.31: Sample Results and Observations for the Lower Deceleration Cases
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Separation in near-wall region

Separation is observed in the near-wall region of the 700 g case (Figure 7.31). In the far field the
boundary layer is slightly thinner. The non-dimensional free-stream velocity is reached at a slightly
lower non-dimensional distance, 7, than in the steady state solution. This is due to momentum effects
further away from the wall.

In the higher deceleration cases separation is prevalent. The flow reversal becomes stronger with
increasing deceleration (Figure 7.32). The non-dimensional velocity approximates one at a much lower
non-dimensional distance,n. This indicates that the boundary layer is significantly thinner in deceler-
ation than in the steady state. The flow is dominated by the momentum which originates from flow
deceleration.

The result in this section are comparable with a study done by Back [28]. He obtained similar
profiles by investigating the effect of inducing pressure changes in the boundary layer. In the Navier-
Stokes equations, changes in deceleration have a similar effect on the boundary layer since it is also

located on the right hand side of Equation 7.8. The phenomenon can be explained in the inertial frame.
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Figure 7.32: Sample Results and Observations for the Higher Deceleration Cases
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The plate wall has a certain velocity and the bulk flow is stationary. The velocity profile extends from the
high velocity to zero. Now the plate is decelerated, for instance from 80 m/s to 70 m/s. The velocity at
the wall are then 70 m/s, but due to the historic profile at 80 m/s there is a certain amount of momentum
and energy in the boundary layer. This momentum and energy is subjected to the laws of conservation
of momentum and energy. If the deceleration is low enough (in this case below 70g) the boundary layer
have time to adjust to the changing conditions and the "excess" momentum and energy diffuse into the
bulk flow. However, if the deceleration is high enough (in this case above 70g) there is not time for
diffusion to take place and the boundary layer separates. The mechanism for this is further discussed in
the paragraphs below.

Equations 5.75 and 5.76 was used to determined the boundary layer equations that pertain to flow
in arbitrary translation. The same equations are relevant here.

X-momentum

o0pi opi |, 0pu op 0 ,.0u, 0pV,
Pe L 2% 1o pAu:——}3+—A(A—lf)—M (7.17)
ot 0x o0y ox 0y 0y ot
y-momentum
o5
0=-2 (7.18)
0y

In this case however, the non-inertial terms on the right hand side of the equation becomes a sink

which causes the separation of the flow (Figure 7.33).
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Figure 7.33: Boundary Layer Profiles for Steady and Deceleration Conditions
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The deceleration of the relative frame causes a momentum sink on the right hand side of the mo-

mentum equation. This leads to a decrease on the left hand side in the material derivative.

(o))

PG A 0pa . A0ph op 0 0u 0pV,
O 4 08 4 poe — =y (—) -
t X 9 0% 05/( 65/) ot

The decrease of the material derivative lead to a decrease in i@, which in turn causes a decrease in

the velocity gradient at the wall.

opa  nops  sopa 0P 0 o 0PV:
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A decrease in the near-wall velocity gradient causes and increase in the pressure gradient, since the
terms have opposite signs. The pressure gradient increases to such an extent that an adverse pressure

gradient forms and the flow separates.

0pVs
ot

Figure 7.34: Adverse Pressure Gradient for Decelerating Conditions
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The same three distinct regions that were identified in the accelerating case, presented itself here
(Figure 7.35):

* Region I - Viscous Dominant. The 70 g case falls within this region. In comparison with the
steady state non-dimensional result, there is no observed difference in the profile. The time scale
at which the event occurs is low enough to allow time for the viscous forces in the boundary layer

to adjust to the changes and keep the steady state profile.

Deceleration Reaction - Type I:

op. . 0ph 3pa _ 9p 0PV
ot

or "“ox "oy oz

Sle
=3
(s3] =3

‘<>|R>

* Region II - Viscous-Momentum Interaction. The 700 g deceleration case falls within this region.
The region is characterized by disturbances in the boundary layer due to the interaction between
the viscous and momentum effects. Separation of the boundary layer occurs almost immediately
and are directly proportional to the deceleration. In the near-wall regions the momentum effects
dominates, while close to the boundary layer edge, the viscous effects dominate. In the upper
regions of the boundary layer the profile conforms to the steady state result.
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Deceleration Response - Type 11:

0pi | ~0ph . ~0pd op 0 ~0 0pVy
i =+
0x o ot

IS

2
)

* Region III - Momentum Dominant. The three higher deceleration cases falls within this region.
The momentum effects due to deceleration dominates here. Separation occurs very early and the
boundary layer remains separated thought out the plate. The velocity gradient close to the wall is
very steep and directly proportional to the deceleration. The boundary layer height is decreased
with almost the same distance for all the cases in this region. Similarity, that depends on the time
scales involved, is present in the region.

Deceleration Response - Type I11:
op 0 o0a 0dpVy

"oz o3toy ot

Figure 7.35: Acceleration Response Regions by Type in Simulation Results
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7.3.2 Boundary Layer Parameters

The boundary layer parameters were determined here in the same manner as discussed in Section 7.2.2.

The results of the displacement thickness for a decelerating plate are shown in Figures 7.36-7.39.

First Derivative of Displacement Thickness [m]

Figure 7.36: Displacement Thickness Comparison for the Decelerating Flat Plate
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Figure 7.37: Displacement Thickness Comparison for the Decelerating Flat Plate
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Figure 7.38: Displacement Thickness Comparison at x = 0.05 m in Decelerating Conditions
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Figure 7.39: Displacement Thickness Comparison at x = 0.2 m in Decelerating Conditions
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The plots indicate that all three regions, as previously defined, react similarly to the deceleration
event. The displacement thickness increases in decreasing free-stream velocity. The displaced value is
directly proportional to deceleration strength. The fist derivative is divergent, indicating that the dis-
placement value do not approximate an asymptotic value. It continues to increase in decelerating flow.
The second derivative shows an inflection point near the end of the deceleration event. This is in con-
trast to the acceleration case where the inflection point occurred at the beginning of the acceleration
event. The inflection point here is a result of a hysteresis-like response of the boundary layer mass flow
to deceleration and is dependant on the strength of deceleration.

The momentum thickness plots are displayed in Figures 7.40-7.43. The momentum thickness for all
three regions, as previously defined, responds in a similar manner to deceleration. The momentum thick-
ness diverges with decreasing free-stream velocity. This is confirmed with the diverging first derivative.
An inflection point is shown in the second derivative. As in the displacement thickness, this is a hys-

teresis like response to deceleration of the plate.

Figure 7.40: Momentum Thickness Comparison for the Decelerating Flat Plate
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Figure 7.41: Momentum Thickness Comparison for the Decelerating Flat Plate
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Figure 7.42: Momentum Thickness Comparison at x = 0.05 m in Decelerating Conditions
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Figure 7.43: Momentum Thickness Comparison at x = 0.2 m in Decelerating Conditions
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The shape factor was determined from the results above. The response of the shape factor to decel-

eration is depicted in Figures 7.44-7.46.

The shape factors of all three previously defined regions response to deceleration in the same man-
ner. At commencement of the deceleration event, the shape factor is at the steady state value. It is then
increased to a point where a discontinuity is present. The shape factor value approaches the asymptote
on the left hand side of the discontinuity. On the right hand side of the discontinuity, the shape factor
approaches the asymptote with a negative value. It continue to increase, whilst remaining negative until
the end of the event. The occurrence of the discontinuity is dependant on the strength of the decelera-
tion. In higher deceleration cases, the onset of the discontinuity is earlier than for lower decelerations.
It occurs at all positions on the flat plate. This behaviour is a result of the flow reversal. Flow reversal
takes place at shape factor values between 2.6 and 2.8 for steady state conditions. From the previous
subsection it was observed that the flow in this case separates very early in the deceleration event. The
subsequent strength of the reversal causes a negative momentum thickness, which is where the disconti-
nuity manifests. A negative shape factor value is undefined in the literature both for computational and
numerical work. This condition is not physically possible. A negative shape factor can be define here as
a flow with abnormally strong reversal to the extent that the momentum thickness is negative. Further-

more, it is a flow characterised by the resultant momentum in the boundary layer being in the reversed
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flow direction. However, the occurrence of the discontinuity provides an indication of the strength of
the reversal. It subsequently also provides the point where the momentum in the reversed component

of the boundary layer, is equal to the momentum that has not yet reversed.

Figure 7.44: Shape Factor Comparison for the Decelerating Flat Plate
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Figure 7.45: Comparison of Shape Factor Discontinuities and Momentum Thickness for the Decelerat-
ing Flat Plate
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Figure 7.46: Shape Factor Comparison at Various Plate Positions in Decelerating Conditions
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7.3.3 Skin Friction Coefficients

The skin friction coefficients were determined in the same manner as for the accelerating cases.

_ on
Twall = /Jay wall
Twall
C,= wa
= 0BpUE (7.19)
pU3
Fdrag = Cf Tokoetted

The results are shown in Figures 7.47-7.49.

Figure 7.47: Comparison between Skin Friction Coefficients at Various Free-Stream Reynolds Numbers
for Decelerating Conditions
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The skin friction coefficients associated with the three respective regions, reacts in a similar manner
to decelerating conditions. At high Reynolds numbers, at commencement of the deceleration event, the
skin friction is equal to the steady state value. The value for skin friction increases rapidly as the even
progresses. The first derivative is divergent, which indicates that the skin friction coefficient continues
to increase (Figure 7.49). The value are directly proportional to deceleration strength. The stronger the

deceleration is the higher the skin friction values (and subsequently the drag force) are on the plate.
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Figure 7.48: Comparison between Skin Friction Coefficients at Various Plate Positions for Decelerating
Conditions
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Figure 7.49: First and Second Derivatives of the Skin Friction Coefficients in Decelerating Conditions
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7.4 Closure

This chapter aimed a characterising the response of the laminar boundary layer to arbitrary translation.

The most important result are as follows:

1) The definition of three type of responses to arbitrary translation for a flat plate.

2) The proposal of a mechanism proving an explanation for response types.

3) The characterisation of the response of the shape factor to arbitrary translation.

4) The characterisation of the response of the skin friction coefficient to arbitrary translation.

Three types of responses to changing conditions in the relative velocity have been identified as shown
in Figure 7.50.

Figure 7.50: Response Types for Accelerating and Decelerating Conditions on a Flat Plate
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* Response Type I, which is viscous dominant. The time scale at which the event occurs is low
enough to allow time for the viscous forces in the boundary layer to adjust to the changes and

keep the steady state profile.

* Response Type II, where the time scales of the viscous and momentum forces are of the same
order. Certain regions of the boundary layer are dominated by viscosity and others by momentum.
In acceleration the viscosity dominates in the near-wall region and momentum in the far field
regions. In deceleration momentum dominates in the near-wall region and viscosity in the far
field.

* Response Type 111, which is dominated by momentum. The time scale at which the event occurs
is too high for viscous forces in the boundary layer to adjust to the changes and keep the steady
state profile. In deceleration the near-wall velocity profile increases with increasing deceleration.

In deceleration separation occurs at a result of momentum changes in the flow.
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The generalised behaviour of a flat plate subjected to arbitrary translation is depicted in Figure 7.51.
Accelerating velocity profiles has steeper gradients in the near wall region and a lightly thicker bound-
ary layer when compared to the steady state result. The gradient are proportional to the acceleration
parameter. Decelerating velocity profiles indicates that flow reversal takes place (which is proportional

to the deceleration) and the boundary layer are thinner than calculated in the steady state case.

Figure 7.51: Boundary Layer Profiles for Steady, Acceleration and Deceleration Conditions on a Flat
Plate
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A mechanism was proposed for the response of the boundary layer using the boundary layer equation
below. The mechanism is depicted in Figure 7.52.

Figure 7.52: Accelerating and Decelerating Mechanisms of Boundary Layer Response on a Flat Plate
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CHAPTER 7. BOUNDARY LAYER RESPONSE IN PURE ROTATION - FLAT PLATE FLOW

In acceleration the relative frame acceleration term becomes a momentum source. An increase in
momentum on the right hand side of the equation leads to an increase in the material derivative on the
left hand side of the equation. This increase results in an increase in velocity . In turn it causes the

velocity gradient at the wall to increase. This is the effect observed in the simulation results.

The opposite occurs in deceleration where the relative frame acceleration term becomes a momen-
tum sink. A decrease in momentum on the right hand side of the equation leads to a decrease in the
material derivative on the left hand side of the equation. This decrease results in a decrease in velocity
u. In turn it causes the velocity gradient at the wall to decrease. The pressure gradient has an opposite
sign to the diffusion term and increases to such an extent that an adverse pressure gradient form. This

results in flow separation as observed in the simulation results.
Figure 7.53 is presented to depict the variability in the boundary layer profiles for different starting
and acceleration conditions. The flow history has an influence on the boundary layer behaviour and

must be considered in aerodynamic studies.

Figure 7.53: Variability in Boundary Layer Profiles for Different Starting and Acceleration Conditions
on a Flat Plate

0.8

0.6

0.4

Usx=41.5m/s

0.2

% Monaghan
70g Acceleration

0 70g Deceleration
7000g Acceleration
——— 7000g Deceleration
_02 Il 1 1 | 1 1
0 0.5 1 1.5 25 3 3.5 4

N -

The response of the shape factor to acceleration and decelerating conditions have been determined.
A graph that characterises the critical shape factor versus Reynolds numbers are available from the
literature (Wazzan et al. [78]). This is limited to steady flow conditions, but it still gives a good indication
of where flow separation can be expected (Figure 7.54).

For the conditions analysed here, the flow is expected to separate for shape factor between 2.6 and
2.8. The general tendency of the shape factor is to decrease in acceleration and increase in deceleration
(Figure 7.55).
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7.4. CLOSURE

Figure 7.54: Shape Factor Changes for Accelerating and Decelerating Flow Mapped on the Graph of
Wazzan et al. [78]
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The responses can be further broken down according to response type, as discussed in the body
of this chapter. There exists a limit of acceleration strength that is related to the shape factor response.
Below this limit the shape factor attempts to recover the initial value as the event progresses. At acceler-
ation above the limit the shape factor decreases and approximate a low asymptotic value. In deceleration
there is a discontinuity in the deceleration event. This marks the point where the shape factor becomes
negative due to the negative value of the momentum thickness. At this point the resultant momentum
in the boundary layer points in the direction of the reverse flow.

The response of the skin friction coefficient to arbitrary translation is shown in Figure 7.56. In
acceleration the skin friction coefficient initial increases, reaches a maximum and then decrease at the
event continues. It approximates an asymptotic value near the end of the event. Deceleration increase
the skin friction coefficient significantly. The response is divergent and continues for the duration of
the event. The skin friction drag is directly proportional to the skin friction coefficient and thus have a

similar response to arbitrary translation.
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Figure 7.55: Results of the Shape Factor Response for Acceleration (left) and Deceleration (Right)
Events on a Flat Plate

x=020m x=0.20m
30 . :
25 1
20t ]
T 5 10
8 2 8 — —
o L ol 70g
g 70g o) —— 700g =
& 15 700g | & -10F| —— 70009 1
7000g ? ool 70000g |
70000g ) 700000
700000g f 30 ‘ 9 . ‘ L .
Yo 20 30 40 50 60 70 80 80 70 60 50 40 30 20 10
Free-stream Velocity [m/s] Free-stream Velocity [m/s]

Figure 7.56: Result of the Skin Friction Coefficient Response to Arbitrary Translation on a Flat Plate
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Chapter

Boundary Layer Response in Pure Rotation - Rotating Disk Flow

his chapter investigates the response of a laminar boundary layer on a rotating disk to changes in
Tangular velocity. Arbitrary angular acceleration occurs over a range of magnitudes for various
applications. Examples include spin stabilize projectiles, missiles conducting high acceleration
manoeuvres, spin up or spin down of turbo-machines, ship propellers, helicopter blades and wind tur-
bines to name a few. The highest angular acceleration is found in ultra-centrifuges where accelerations
of up to 1 000 000 g is possible. The angular acceleration and deceleration in this case is varied from
70g to 700 000g. A wide range a values is covered in the same manner as done in the previous chapter.
The accelerating cases are initialized from a steady state solution at 10 rad/s (Re,,; = 150) and
accelerated to 80 rad/s (Re,o; = 424.3). Five acceleration cases are done with constant acceleration
from 70g to 700 000g at increments of 10. Similarly, the deceleration cases commence from a steady
state solution or 80 rad/s (Re,,; = 424.3) and decelerated to 10 rad/s (Re,o; = 150) with decelerations

as shown below in Table 8.1.

Table 8.1: Rotating Disk Test Matrix

Acceleration Event Deceleration Event

Velocity [rad/s] 10 to 80 80to 10

Reynolds Number 150 to 424.3 424.3 to 150
70g 70g
700g 700g
7 000g 7 000g
70 000g 70 000g
700 000g 700 000g
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

8.1 Case Description

The steady state solution of the rotating disk was discussed in Chapter 6 . Analytical results are available
from the literature (Schlichting [42],von Karman [41]). The boundary layer the forms on the rotating
disk in steady, pure rotation is depicted in Figure 8.1.

Figure 8.1: Graphical Representation of the Boundary Layer on a Rotating Disk

Non-inertial frame: Inertial frame:
Plate stationary, Far field flow in motion Plate in motion, Far field flow stationary

Parallels can be drawn between the boundary layer on the rotating disk in the tangential direction

and the boundary layer on the laminar flat plate (Figure 8.2).

Figure 8.2: Depiction of the laminar boundary layer on the flat plate (left) and in the tangential direction
on a rotating disk (right)
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At the wall, the velocity is zero since no-slip conditions is assumed. The velocity profile further

away from the wall increases monotonically to approach the free-stream value in the far field. In the
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8.1. CASE DESCRIPTION

case of the flat plate, the free-stream value is the translational velocity at which the plate is moving.
The rotating plate free-stream value is dependant on the distance from the centre of rotation and the
rotational velocity.

The wall shear stress is dependant on the velocity gradient at the wall. This term is present in the
boundary layer equation and is responsible for the shape of the boundary layer. The non-inertial form
the equation was derived in Equation 5.148 and is expressed in the inertial frame as follow:

Opug N Opug N Eapug N pUgl, N dpug  10p P ( aﬂ)

N HUS 3y

- 8.1
ot “"ar - a6 r W8y T ro0 " W @.1)

The boundary layer in the radial direction occurs as a result of secondary effects of due to tangential
rotation (Figure 8.3). In an ideal flow u, is zero through the entire domain. Viscous and secondary
flow effects results in a boundary layer that is approaches zero velocity in the near-wall and far-field
respectively. In the central regions of the boundary layer, the velocity profile is monotonically increasing

closer to the wall, and monotonically decreasing closer to the boundary layer edge.

Figure 8.3: Depiction of the laminar boundary layer on a rotating disk in the radial direction

wall

The non-inertial boundary layer equation for a rotating disk in the radial direction was determined in

Equation 5.152. This equation can be written in the inertial frame as shown below. The term responsible

M M 0 0 r
for the formation of the boundary layer is 57 (1 3 ).
dpur Opu,  ug Opur pu?) opur 0P | 5 ou
+ + — — + = —— 4+ = L 8.2
ot “"or " r a0 r ey T or 75 (1 5y) ®82)

The boundary layer equations are required in the non-inertial form. This is used to interpret the
results from the simulations. In Chapter 3 the non-inertial momentum equation was derived using the

frame description in Figure 8.4.
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.4: Frame definitions for non-inertial flow

The full momentum equation that is used to solved unsteady rotational flow was determined in
Equation 3.169:
PR (paea)=-Vp+Y¥- [aVa+Val) + AV -] + 200 A Q- pXAQAQ +pxA Q. (8.3)
ot —_— —  —— ——
Coriolis Centrifugal Euler
This equation was expanded in Equation 5.144-5.146 to obtain the formulations in cylindrical com-
ponents. The equations can be reduced to a set that applies to this specific case:

r-momentum

apa,yamr fg 0pa, P opa, 0p 0, 0i,

Yo _ 2 __9 . 9 —950 572 8.4
+ _ + = + + -
ot " Tor TR a0 F T%™Tay T or ay( ay) PUoGyT Py (84)
y-momentum
0p
0=—-—— 8.5
6-momentum
0ptg 0plg 1UgO0pllg plell, . 0plly  10p 0 Ol . .
+—=——+ =—--—+—= +2 + 8.6
ot " oor 700 7 Y09 7 00 65»( 65/) purwy+pray  (8.6)

The case description that was used to perform the numerical simulation with was described in Chap-
ter 6. The results are interpreted using the boundary layer formulations above.
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8.2. RESULTS AND DISCUSSION - ACCELERATION

8.2 Results and Discussion - Acceleration

8.2.1 Velocity Profiles

The result from the acceleration simulation for the rotating disk in the tangential direction is shown
in Figures 8.5-8.7 respectively. The results are displayed in the absolute frame in order to compare

it with the von Karman solution. The non-dimensional distance from the wall, 7, is determined by
Equation 6.28.

Figure 8.5: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Acceleration Grouping I
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.6: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Acceleration Grouping I1
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Figure 8.7: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Acceleration Grouping I1I
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The result from the acceleration simulation for the rotating disk in the radial direction is shown in
Figures 8.8-8.10 respectively.

Figure 8.8: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Acceleration Grouping I
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.9: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Acceleration Grouping II
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Figure 8.10: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Acceleration Grouping III
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The results from the acceleration simulation for the rotating disk in the tangential direction have
many similarities with the flat plate in acceleration. It can be seen that the boundary layer has an imme-
diate reaction to acceleration in the near-wall region. Initially the boundary layer thickens (Grouping
I), but reduces and becomes slightly thicker than the steady state solution as the acceleration event
progresses. In the far-field, close to the free stream values, all the acceleration cases displays similar
non-dimensional values. In the near-wall regions the velocity gradient of the boundary layer becomes

steeper with increased acceleration (Figure 8.11).

Figure 8.11: Sample results and observations for tangential flow in acceleration
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The results from the acceleration simulation for the rotating disk in the radial direction showed
limited reaction to tangential acceleration. The first grouping of results indicates that the far-fields values
shows an initial thickening of the boundary layer when compared to steady state results. In the near-wall
region the apex of the profile is lower than the steady state result and decreases as the simulation progress.
All the accelerating profiles have the same values, with the exception of the 70g case that breaks away.
The second and third grouping displays similar patterns where the boundary layer becomes thinner and
the apex is reduced. The profile lines are common between the acceleration cases with the exception of
the 70g case, as before, and the 700g that also breaks away. These results are an indication that the radial
velocity profile is very slow to react to acceleration. The profiles that remain on top of each other are
an indication that the boundary layer is maintaining the initial conditions. The boundary layer profile
of the high acceleration cases (7000g, 70 000g and 700 000g) are frozen in the initial conditions of the
acceleration event. The lower acceleration cases to however show a response. The lowest acceleration
case, 70g, is first to respond. The response is initiated in the near-wall region and then propagates to the

upper areas of the boundary layer. The 700g case responds in a similar manner, but much later in the
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

acceleration event.

The boundary layer equations for unsteady rotation were shown in Section 8.1:

r-momentum

pi, . 0ph, Ggopa, PUE  dph, Op 0, O, 5
+0 " T 0 - _ 4 N — 9250 T HF 8.7
ot TUrTor Y an T 7 ey T an T ag gy ) m20lews R0 @7
y-momentum
op
0=-— 8.8
29 (8.8)
0-momentum
0ptg . Oplp Qg O0plly pPlel, , Oplp 10p 0 0l . .
+ + — — + =———4+ —— +2 + 8.9
at Tor R a0 Pt Tas T TR 0n T gy ) T 2Ryt PGy (89)

These equations are responsible for the boundary layer response of the rotating disk to angular

acceleration (Figure 8.12). It is used to propose a physical mechanism for the observed behaviour.

Figure 8.12: Boundary layer profile for steady angular acceleration

(0

Non-inertial frame:
Plate stationary, Far field flow in motion

In accelerating conditions, the Coriolis and Euler forces increase. These are located on the right

hand side of the equation below and therefore becomes momentum sources.

0piig 10p 0, Odg
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The momentum sources causes an imbalance on the left hand side on the equation. To maintain
equality between the right and left hand sides, the material derivative (all the terms on the left hand

side) increases.

An increase in the material derivative leads to an increase in the tangential velocity. This in turn
lead to an increase in the velocity gradient. The pressure decreases to compensate for the additional

momentum on the right hand side.

Oply | ~ Pl , @ Ople | pled, , ~ 0pis _ 1op 0 ~ 0y An An
TR i b e e = faéJray (A ay) +200,0y+pFiy

In the flat plate accelerating case of Chapter 7 three response types were identified.
* Response Type I, which is viscous dominant.

* Response Type 11, which is certain regions in the boundary layer are dominated by viscosity and

other regions by momentum.
* Response Type III, which is dominated by momentum.

The same response types are relevant here. There is no occurrence of Response Type I where the
steady state conditions are maintained for the duration of the event. The 70g case fall into the Response
Type 1I category, since it is dominates by viscosity in some regions and momentum in others. The
remainder of the higher acceleration cases are all of Response Type II1.

An alternative explanation for the behaviour is to recognize that an increase in the angular velocity,

w,, results in an increase in the tangential velocity, ug.

Ug =rw,y (8.10)

The increase of ug results in an increase in both the material derivative and the viscous terms.

0pty | » Opdo | g 0pie | Pied,  » Opig _ _10P 5 (-ony "
o TUrTor TF g T TYTey TTEGg 55 (A55) + 2000y + pray
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

The magnitude of the increase in the left hand side momentum terms are larger than the increase in
the viscous term. A % term is seen on both side of the equation. On the right hand side the gradient of

the term is taken. This value is smaller than the magnitude of all the momentum terms on the left hand

side.

0pu 0pug U 0pU Ol 5 10p 0 2
PRo | p, 2020 RO OPRO | PUOUr 4, agy’f" =2, 2 (ﬂa%) + 2p0,0y + PPay
ot or r 00 r 700 03 —_——— ——

Coriolis Euler

In light of the above it is postulated that the response of the tangential boundary layer largely falls
in the Type III category (Figure 8.13). The 70g case falls within the Type II category. At accelerations
smaller than 70g it is possible that a Type I response will be observed. Smaller than 70g accelerations

are not within the scope of this study and are suggested for further work in this field.

Figure 8.13: Acceleration Response Types of the Rotating Disk
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8.2. RESULTS AND DISCUSSION - ACCELERATION

The flow in the radial direction is slow to respond to the changing condition, where the lower accel-

eration cases responds first (Figure 8.14).

Figure 8.14: Sample Results of the Radial Velocity Profiles in Acceleration
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The boundary layer in the radial direction has two non-inertial terms, the Coriolis and the Centrifugal

force.
o n I RPN A~D N N
o0pu 0pi, Ugdpu, PU opu 0 0, . 00
Por g, 200 (20O D0, 5,00 - P T (020 pagw, +  pre’
ot or 06 7 o0y or 0y 0y N ——
Coriolis Centrifugal

The radial boundary layer forms due to secondary effects. It is not directly influenced by the tangen-
tial velocity and has no unsteady terms (i.e. Euler)in the equation. The flow remains in the initial state
for the higher acceleration cases. Changes occur first in the 70 g case in the near-wall regions. This is
an indication that the response originates from in increase of the velocity gradient.

During tangential acceleration, the tangential velocity increases. This results in an increase on the
left hand side of the equation. The increase is balanced on the right hand side by an increase in the

viscous terms.

The Coriolis and Centrifugal forces has opposite signs. It is postulated that the magnitude of the
terms are of the same order. This creates a feedback loop where the Centrifugal term is a momentum

source and the Coriolis is a momentum sink. The effect of these terms in the boundary layer are minimal.

239

© University of Pretoria



oot
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Q= YUNIBESITHI YA PRETORIA

CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

The eventual increase of the viscous term on the right hand side of the equation leads to an increase

on left hand side. Subsequently, the radial velocity, u,, is also increase.

Q)
&
+
<
S
D
3
+
»|&

The increase of u, depends on the strength of the acceleration an is therefore time dependant. In
higher accelerations there is not sufficient time for the radial velocity profile to respond to the changing

conditions.

8.2.2 Boundary Layer Parameters

The boundary layer parameters on the rotating disk (Figure 8.15) were determined in a similar manner

as the flat plate.

Figure 8.15: Tangential Boundary Layer on a Rotating Disk

Q_/d U, = ro

A JV Yyvy

r=0 r=oo

The parameters were calculated in the tangential and radial directions respectively:

Tangential Parameters

Y=oy up
0 =f 20 - H0)g 8.11)
0 0 Uoo( Uoo) Y
6*
Hy=-2
0 %o
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Radial Parameters

y*—o0
er:f Lr(1-2)dy (8.12)
0

8.2.2.1 Tangential Parameters

Displacement Thickness result in the tangential direction is shown in Figures 8.16-8.18 .

Figure 8.16: Tangential Displacement Thickness Comparison for the Accelerating Rotating Disk
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The rotating disk displays behaviour similar to the flat plate. The displacement thickness is mono-
tonically decreasing. It approaches an asymptote near the end of the acceleration event that is indirectly
proportional to the acceleration strength. The approach of an asymptote is evident from the first deriva-
tive results that approximates zero. An inclination point is seen in the second derivative at the beginning
of the event. This is a response to the sudden acceleration. At 70g a disturbance is seen at the point clos-
est to the plate centre near the end of the event. The second derivative displays unsteady behaviour at
this point. This is due to the effect of a stationary vortex in the middle of the plate.

241

© University of Pretoria



oot
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

Figure 8.17: Tangential Displacement Thickness Derivatives Comparison for the Accelerating Rotating
Disk
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Figure 8.18: Tangential Displacement Thickness Comparison at r = 0.14 m in Accelerating Conditions
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The tangential momentum thickness is shown in Figures 8.19-8.21 .

Figure 8.19: Tangential Momentum Thickness Comparison for the Accelerating Rotating Disk
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Figure 8.20: Tangential Momentum Thickness Derivative Comparison for the Accelerating Rotating
Disk
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The behaviour is similar to a flat plat in acceleration. The momentum thickness is monotonically

decreasing. The first derivative approaches zero near the end of the acceleration event. This is an indica-
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Figure 8.21: Tangential Momentum Thickness Comparison at r = 0.14 m in Accelerating Conditions
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tion that the momentum thickness approaches an asymptotic value. The value is indirectly proportional
to acceleration strength. The rotating disk boundary layer is sensitive to sudden acceleration. The first
derivative decrease at the beginning stages of the event before it increases and approach zero. The leads
to two inflection points in the second derivative as a response to sudden acceleration. At low accelera-
tions, i.e. 70g a disturbance is seen in the final stages of the acceleration event. This is due to effects of

the centre stationary vortex.

The Shape Factor results for the tangential direction is shown in Figures 8.22 and 8.23.

Since the displacement and momentum thickness results are similar to the acceleration flat plate
results, the shape factor displays similar trends as well. At the lower accelerations, 70g and 700g, the
shape factor decrease to a minimum value. It then increases an attempt to recover the starting value. At
the plate edge, the value is not fully recovered, while further away form the edge, the value is overshot.
The first derivative indicates that an asymptotic value is approached near the end of the event. The higher
acceleration cases, 70 000g and 700 000g, is monotonically decreasing an approaches a minimum value.
While the 7000g displays behaviour is between the lower acceleration and higher acceleration cases. It
is monotonically decreasing of the first half of the event, after which it has a slight upward tendency.
All the value tend towards and asymptotic limit that is dependant on acceleration strength. The second
derivatives of all results show that the shape factor is affected by sudden acceleration. This effect is
independent on acceleration strength.
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First Derivative of Shape Factor H

Figure 8.22: Tangential Shape Factor Comparison for the Accelerating Rotating Disk
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Figure 8.23: Tangential Shape Factor Derivative Comparison for the Accelerating Rotating Disk
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8.2.2.2 Radial Parameters

Displacement Thickness results for the radial direction is shown in Figures 8.24-8.26 .

Figure 8.24: Radial Displacement Thickness Comparison for the Accelerating Rotating Disk
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Figure 8.25: Radial Displacement Thickness Derivatives Comparison for the Accelerating Rotating

Disk
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The displacement thickness is monotonically increasing. The 70g acceleration case has a lower re-
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Figure 8.26: Radial Displacement Thickness Comparison at r = 0.14 m in Accelerating Conditions
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sults, while all the other cases have results that is almost on top of each other. The first derivative shows
that the 70g case has small disturbances near the end of the event. For this case the final result may
approximate an asymptotic value if the event is carried on for long enough. The existence of such an
asymptote can not be conclusively proved with the results here. The first derivatives of the accelerations
higher than 70g do however approximate zero indicating the existence of the asymptote. An inflection
point is present in the second derivative. This is a result of the response to sudden acceleration. It is not
dependant on acceleration strength. At the point closest to the centre, the 70g, 700g and 7 000g cases
shown unsteady behaviour. This behaviour is damped out further away from the centre. This is a result

of the interference of the station vortex at the centre of the plate.

The momentum thickness results in the radial direction are shown in Figures 8.27-8.29 .

The momentum thickness is monotonically decreasing. It show similar tendencies as the displace-
ment thickness. The 70g case result is higher than the remainder of the acceleration cases. The other case
results are of the same order and have values than are close together. The 70g case shows small distur-
bances in the first derivative. This occurs near the end of the acceleration event. The first derivatives of
the other cases approximates zero. An inflection point is noted in all cases of the second derivative. The
same unsteady behaviour that was seen in the displacement thickness is seen here. Closer to the centre
of the plate, the flow is affected by the central stationary vortex, this is evident in the low frequency
oscillations of the second derivative.
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Figure 8.27: Radial Momentum Thickness Comparison for the Accelerating Rotating Disk
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Figure 8.28: Radial Momentum Thickness Derivative Comparison for the Accelerating Rotating Disk
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Figure 8.29: Radial Momentum Thickness Comparison at r = 0.14 m in Accelerating Conditions
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Shape factor results for the radial direction are shown in Figures 8.30.

Figure 8.30: Radial Shape Factor Comparison for the Accelerating Rotating Disk
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The shape factor response of the radial direction can be divided in three groupings; linear behaviour,

non-linear behaviour and mixed linear/non-linear behaviour. This behaviour is dependant on distance

from the centre of the plate. Close to the centre the flow is affected by the central vortex, while is has a

lesser effect further away.
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In the regions further away from the centre the higher acceleration cases, 700 000g, 70 000g and 7
000g, displays linear behaviour in the shape factor. The values increase linearly along the trajectory of
the event. The 70g case shows non-linear behaviour and has a much lower value than the other cases.
The 700g case appears to have a mixed response. At first it has similar values to the higher acceleration
cases, but at later stages in the event, the behaviour becomes non-linear.

In the regions closer to the centre of the disk, the 700 000g shows linear behaviour, the 70g non-
linear and the remainder of the cases shows mixed behaviour.

The behaviour as described above is reflected in the first and second derivatives fo the shape factor.

In the first derivative, the linear grouping has near-steady values of the same order. The non-linear
grouping (70g), has variable result. Initially the mixed grouping has the same results as the linear group-
ing. In the later stages of the acceleration event the result tend toward the value of the non-linear.

The second derivative shows sinusoidal behaviour for the 70g case with low frequency disturbances.
The 700g case shows high frequency disturbances near the disk centre, that is damped out further away
from the centre. The same disturbance is present in the 7 000g cases, but with a lower frequency and
amplitude. The higher acceleration cases approximates zero.

The flow in the radial direction is a secondary effect of the tangential acceleration. The shape factor
therefore dependant on secondary effect. It is dependant on acceleration strength and is affected by its
position on the plate. The central stationary vortex on the plate influences the boundary layer parameters.

This effect of the influence is indirectly proportional to acceleration strength.
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8.2.3 Skin Friction Coefficients

The skin friction coefficients on the rotating disk were determined in a similar manner as for the flat

plate.
Ougp
Tewall = (ME) wall
_ Ouy
Trwall =H ay wall (813)
Twall = Tgwall + Tgwa”
Twall
C — wa
’ = 0.5pUZ

The results are indicated in Figures 8.31-8.32.

Figure 8.31: Comparison between Skin Friction Coefficients at Various Free-Stream Rotational
Reynolds Numbers for Accelerating Conditions
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The behaviour of the skin friction coefficient is similar to the general tendencies seen for the flat
plate. There is an initial increase in the skin friction coefficient. After a maximum value is reached, the
skin friction coefficient decreases and approaches an asymptotic value. Higher accelerations result in
higher skin friction coefficients. The skin friction is lower at positions further from the centre of the

plate. The values are dependant both on position on the plate and acceleration strength.
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Figure 8.32: Comparison between Skin Friction Coefficients at Various Disk Positions for Accelerating

Conditions
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Figure 8.33: Derivatives of Skin Friction Coefficient for Accelerating Conditions
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8.3 Results and Discussion - Deceleration

8.3.1 Velocity Profiles

The result from the decelerating simulation for the rotating disk in the tangential direction is shown

in Figures 8.34-8.36 respectively. The non-dimensional distance from the wall, n, is determined by
Equation 6.28.

Figure 8.34: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Deceleration Grouping I
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Figure 8.35: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Deceleration Grouping I1
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Figure 8.36: Non-Dimensional Tangential Velocity Profiles: Rotating Disk - Deceleration Grouping I11
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The result from the decelerating simulation for the rotating disk in the radial direction is shown in
Figures 8.37-8.39 respectively.

Figure 8.37: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Deceleration Grouping I
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Figure 8.38: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Deceleration Grouping I1
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Figure 8.39: Non-Dimensional Radial Velocity Profiles: Rotating Disk - Deceleration Grouping 111
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The result from the decelerating simulation for the rotating disk showed that there is a slight thick-
ening of the boundary layer in the far-field across all the cases of deceleration. The boundary layer
reverses almost immediately, accept in the 70g cases where minimal reversals is observed. The strength
of the flow reversal is directly proportional to the magnitude of the deceleration. The non-dimensional

far-field values of the simulated profiles are all equal in value.

Figure 8.40: Sample results and observations for tangential flow in deceleration
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The result from the decelerating simulation for the rotating disk in the radial direction indicates an
immediate reaction to the deceleration. The boundary layer height is comparable to steady state results,
but there is an increased apex value. In the Grouping I results, all the deceleration cases are of the same
value, with the exception of the 70g result that breaks away. In the grouping II and III results further
thinning of the boundary layer is seen and the 70g as well as the 700g case breaks away from the com-
monly shared profile values. This is an indication that the radial flow, being a secondary flow effect, is

slow to respond to changing conditions in the tangential direction.

The results obtained for the rotating disk in deceleration has similarities to the decelerating flat
plat. The flow reversal is common behaviour between the cases. This flow is also mostly momentum
dominant, with the exception of the 70g deceleration analysis, as in the case of the accelerating disk.

The reaction to deceleration has immediate effects on the boundary layer profile.
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The boundary layer equations for unsteady rotation were shown in Section 8.1:

r-momentum

a’;i" +a,ag;" + %agg" — ng +ayag;" = —g %(ﬂaaﬁy’) —2ptgwy + pro’ (8.14)
0-momentum
Ol g Bl G090l ity 0o _ 108 O 300y ouu pri, (529
y-momentum .
0= —‘2? (8.16)

These equations are responsible for the observed behaviour of the flow in deceleration as depicted

in Figure 8.41.

Figure 8.41: Boundary layer profile for steady angular deceleration
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In the tangential direction, the Coriolis and Euler forces are the only non-inertial force components
present. In the accelerating case these forces acted as momentum sources. Here, in the decelerating case

the forces act as momentum sinks.

0pig . 9pdg G Opdg  piod, . 0phg __10p 0 . 0ig

u + — + u =—=——+= +  200,w + pro
ot “TTor P a0 7 Y05 7ob ay(“ 9 ) ZPur%y ey
Coriolis Euler

In deceleration the Euler force becomes negative since @, is acting in a direction opposite to the
tangential rotation w, of the plate. The tangential rotation decreases as a result of the deceleration. This
results in a decrease in momentum on the right hand side of the equation. To balance the left hand side

with the right, there is a decrease in momentum on the left hand side.
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Opiy | ~ Oply , g 0Py , Pl , ~ 0pay _ 10D 0 Ol . n .
o g+ P Tt = f6é+65/(u05/)+ 200,y + pro,

Subsequently, the tangential velocity, iig, decreases as it is a function of the rotational velocity:
g =fw, (8.17)

The velocity gradient in the near-wall region decreases.

Optig | » Opig , g 0Pl | Plgt, |  Opilg _ 10D | 5 .oag\ | A
a TUrTer TF e T F TUyey =7 " 55 (B53) +pirwy + proy

In order to balance the decrease in the near-wall region, the pressure gradient is adjusted. At a certain

point an adverse pressure gradient forms and the flow in the near-wall region separates.

In the case of the flat plate three types of responses to decelerating flow was proposed. The regions

are similar to those of an accelerating case:
* Response Type I, which is viscous dominant.

* Response Type 11, which is certain regions in the boundary layer are dominated by viscosity and

other regions by momentum.
* Response Type 111, which is dominated by momentum.

The rotating disk is showing a Deceleration Response Type III for all cases of deceleration from
700g to 700 000g analysed here. This flow is momentum dominant (Figure 8.42). The 70g case fall
within the Response Type Il category as it the neither dominated by viscous forces nor by momen-
tum forces. As in the accelerating disk case, it is postulated that responses mostly fall within the third

category.
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Figure 8.42: Deceleration Response Types of the Rotating Disk
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The magnitude of the decrease in the left hand side momentum terms are larger than the decrease in
the viscous term. A %ﬂ term is seen on both side of the equation. On the right hand side the gradient of

the term is taken. This value is smaller than the magnitude of all the momentum terms on the left hand

side.
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The response of the tangential boundary layer to deceleration therefore largely falls in the Type III
category. At very small deceleration it is possible that a Type I or Type II response will be observed.
Small decelerations are suggested for further work in this field.

The response the deceleration flow in the radial direction displays the same trends as in the ac-
celeration case. The flow in the higher deceleration cases remains in the initial state, while the lower

decelerations reacts has a delayed reaction (Figure 8.43).

260

© University of Pretoria



poat
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

QA YUNIBESITHI YA PRETORIA

8.3. RESULTS AND DISCUSSION - DECELERATION

Figure 8.43: Sample Results of the Radial Velocity Profiles in Deceleration
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In the same manner as explained for the acceleration case, the Coriolis and Centrifugal forces create

a feedback loop between each other. Changes in the tangential velocity eventually lead to a reduction

in momentum in the radial velocity gradient.

opa, . opa 0ph,  paz . 0pi, 0P o T
r 4 T g . - = 2 (a ) - 208pwy  + prw?
~_

The eventual decrease on the right hand side of the equation leads to a decrease in momentum on

the left hand side. The radial velocity, u,, decreases as a result. This mechanism is time dependant and

depends on the strength of the deceleration parameter.
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8.3.2 Boundary Layer Parameters
8.3.2.1 Tangential Parameters

The tangential displacement thickness results for the decelerating disk are shown in Figures 8.44-8.46.

Figure 8.44: Tangential Displacement Thickness Comparison for the Decelerating Rotating Disk
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Figure 8.45: Tangential Displacement Thickness Derivative Comparison for the Decelerating Rotating
Disk
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Figure 8.46: Tangential Displacement Thickness Comparison at r = 0.14 m in Decelerating Conditions

3

x 10
5 T T T T T
70g
45H 700g i
—— 70009
al 70000g i
7000009

Displacement Thickness [m]

80 70 60 50 40 30 20 10
Free-stream Rotation [rad/s]

The displacement thickness on the decelerating disk is monotonically increasing. The values are
directly proportional to acceleration strength; a higher acceleration results in a higher displacement
thickness. The values are divergent. This can be seen in the first derivative. An inflection point is noted
in the second derivative near the end of the deceleration event. The is due to a hysteresis effect of the
flow response to deceleration. In the 70g case, unsteady behaviour is seen throughout the deceleration
event. This occurs at the sample locations further away from centre of the disk. The 70g case has a Type
II response to deceleration. In this type of flow the boundary layer is dominated by momentum forces in
some parts and viscous forces in other parts of the profile. The results is an unsteady flow that presents
as oscillations in the first derivative of the displacement thickness. The effect is damped out later in the
deceleration event when the viscous forces becomes more dominant and stabilizes the boundary layer
profile.

Momentum thickness in the tangential direction for deceleration is shown in Figures 8.47-8.49 .

The response of the momentum thickness to deceleration in the tangential direction can be divided
into two groups. The 70g and 700g is in the first grouping, while the cases equal to 7 000g and higher fall
in the second grouping. In the first grouping there is a very slight increase in momentum thickness up
until a free-stream rotation of 40 rad/s. In the first derivative it can be seen that the gradient is very small
in the initial stages of the deceleration event. After a maximum values is reached the results becomes
monotonically decreasing. This value is divergent as can be seen from the first derivative. The same
unsteady behaviour that was noted in to 70g case is present here. At points further away from the disk
centre the momentum thickness is oscillating. This effect is damped out further along the deceleration

event. The second grouping presents with a momentum thickness that is monotonically decreasing. The
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Figure 8.47: Tangential Momentum Thickness Comparison for the Decelerating Rotating Disk
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Figure 8.48: Tangential Momentum Thickness Derivative Comparison for the Decelerating Rotating
Disk
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result is divergent and is proportional to the acceleration strength. An inflection point is again present

in the second derivative in the later stages of the acceleration event.
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Figure 8.49: Tangential Momentum Thickness Comparison at r = 0.14 m in Decelerating Conditions
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The tangential shape factor results are shown in Figures 8.50-8.51.

Figure 8.50: Tangential Shape Factor Derivative Comparison for the Decelerating Rotating Disk
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The shape factor behaviour for the decelerating disk has many parallels to the shape factor for
the decelerating plate. The discontinuity that characterized the decelerating flat plate shape factor is
present here. The shape factor in monotonically increasing as the beginning of the deceleration event.
It approaches an asymptote. After the asymptote the shape factor becomes negative and approaches

zero near the end of the acceleration event. The discontinuity is dependant on deceleration; a stronger
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Figure 8.51: Comparison of Tangential Shape Factor Discontinuities and Momentum Thickness for the
Decelerating Disk
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Figure 8.52: Tangential Shape Factor Comparison at Various Radial Positions for the Decelerating Disk
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deceleration approaches its asymptote earlier in the event than a weaker deceleration. It presents when
the momentum thickness becomes negative. A negative shape factor is not achievable in the physical
world. Mathematically it is an indication that the flow regime is changing. The models applied can no
longer sufficiently describe the flow. It is postulate here that the asymptote is an indication that the flow
has become turbulent. Flow reversal leads to turbulence and a high shape factor.
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8.3.2.2 Radial Parameters

In Figures 8.53-8.55 the displacement thickness in the radial direction is shown.

Figure 8.53: Radial Displacement Thickness Comparison for the Decelerating Rotating Disk
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Figure 8.54: Radial Displacement Thickness Derivative Comparison for the Decelerating Rotating Disk
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Figure 8.55: Radial Displacement Thickness Comparison at r = 0.14 m in Decelerating Conditions

x 10
10 T T T T T

9.8

© ©
EN o

©
N

Displacement Thickness [m]

91| —— 709 |
700g
——— 7000g
8.8 | — 70000g
700000g
| | | | | |
80 70 60 50 40 30 20 10

Free-stream Rotation [rad/s]

The displacement thickness is monotonically decreasing. It is indirectly proportional to deceleration
strength; a higher deceleration have a lower displacement thickness value. The values are divergent as
can be seen in the first derivative. The inflection point in the second derivative is present here as it was
for all cases of deceleration in the tangential direction. The 70g case displays disturbances in the first
and second derivative. This is similar to behaviour noted in the tangential direction for deceleration.
The exception here is that it occurs at all points on the disk and not just at the exterior points further
away from the centre. The disturbances is in phase with each other. Higher amplitudes is observed at
the exterior point. This typifies the Type II behaviour where neither viscous force nor momentum forces
and dominant in the boundary layer. The effect is damped out further along the deceleration event.

Momentum thickness result in the radial direction is displayed in Figures 8.56-8.58 .
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Figure 8.56: Radial Momentum Thickness Comparison for the Decelerating Rotating Disk
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Figure 8.57: Radial Momentum Thickness Derivative Comparison for the Decelerating Rotating Disk
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Figure 8.58: Radial Momentum Thickness Comparison at r = 0.14 m in Decelerating Conditions
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The radial momentum thickness displays two groupings of behaviour for decelerating conditions.
The 70g case (Type II) responds differently to changing conditions than the remainder of the cases
(Type III). The cases all respond in a similar manner up to a free-stream rotation of 30 rad/s. At this
point the profiles are monotonically increasing. The momentum thickness is directly proportional to
deceleration strength. The 70g case continues to increase until the completion of the deceleration event.
The higher acceleration cases reach a maximum value and rapidly decrease. In all cases the results
are divergent. The first derivative of the 70g case approaches negative infinity, while the higher cases
approach positive infinity. The same disturbances that was noted in the radial displacement thickness
for the 70g case is noted here. The disturbances occur at all points on the disk. It is in phase with each
other, but with higher amplitudes at points further away from the centre of the plate.

The radial shape factor for decelerating conditions on a rotating disk is displayed in Figures 8.59
and 8.60 .

The shape factor is influenced by the behaviour of the momentum thickness and displays similar
trends. The 70g deceleration, which is of Deceleration Response Type 11, has a shape factor that is mono-
tonically decreasing. It is divergent and displays the disturbances as noted in the momentum thickness.
The remainder of the deceleration cases, which are all of Deceleration Response Type III, have shape

factors the is decreasing, reaches a minimum after which it rapidly diverges.
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Figure 8.59: Radial Shape Factor Comparison for the Decelerating Rotating Disk
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Figure 8.60: Comparison of Radial Shape Factor Values and Momentum Thickness for the Decelerating

Disk
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8.3.3 Skin Friction Coefficients

The skin friction coefficients were determined in the same manner as for the acceleration cases.

Oug
Tgwall = (IJ'W) wall
ou
Trwall = Ha_r 11
y lwa (8.18)
Twall = Tgwall + T%wall
Twall
Cp=—wall
F~ 05002,

The results are displayed in Figures 8.61-8.62.

Figure 8.61: Comparison between Skin Friction Coefficients at Various Free-Stream Rotational
Reynolds Numbers for Decelerating Conditions
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The decelerating disk skin friction coefficients have similar trends than the decelerating flat plate.
Skin friction coefficient values are divergent in deceleration and directly proportional to deceleration
strength. On a rotating disk it is also dependant on position, since rotational velocity is a function of
location on the disk. The values are at a maximum at the interior points (closest to the disk centre) and

becomes smaller at the exterior points (further away from the centre).
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Figure 8.62: Comparison between Skin Friction Coefficients at Various Disk Positions for Decelerating
Condition
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Figure 8.63: Derivatives of Skin Friction Coefficient for Decelerating Conditions
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8.4 Closure

This chapter aimed at characterising the response of the laminar boundary layer to arbitrary rotation.
The contribution of this chapter are as follows:

1) The characterisation of the boundary layer behaviour in terms of the three types of responses to
arbitrary motion as define Chapter 7.

2) The proposal of a mechanism providing an explanation for response types.

3) The characterisation of the response of the shape factor to arbitrary rotation.

4) The characterisation of the response of the skin friction coefficient to arbitrary rotation.

The same three response regions that were defined in Chapter 7 is applicable to the flow behaviour

in this chapter:

* Response Type I, which is viscous dominant.

* Response Type 11, which is certain regions in the boundary layer are dominated by viscosity and

other regions by momentum.

* Response Type III, which is dominated by momentum.

The response to acceleration and deceleration in the tangential direction behaves similar to the flat

plate (Figure 8.64). However, a Type I response was not observed in the rotating disk case.

Figure 8.64: Response types for accelerating (left) and decelerating (right) conditions on a rotating disk
in the tangential direction
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Boundary layer behaviour in the radial direction indicated a slow response to changing conditions.
The lower acceleration cases responds first. This was also the case in deceleration. At high accelerations

and decelerations the radial profile remains in the initial state.
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Figure 8.65: Response to accelerating (left) and decelerating (right) conditions on a rotating disk in the

radial direction
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The general trends in tangential velocity behaviour on the rotating disk, both in acceleration and

deceleration, are depicted in Figure 8.66.

Figure 8.66: Boundary layer profiles for steady, acceleration and deceleration conditions on a rotating
disk
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Parallels can be drawn between the flat plate and rotating disk in changing conditions. In acceleration
the velocity profiles have steeper gradients in the near-wall region. This gradient is proportional to the
acceleration strength. Decelerating velocity profiles is characterized by flow reversal. The reversal is
directly proportional to the deceleration strength. A mechanism was proposed for the response of the

boundary layer using the boundary layer equations below. The mechanism is depicted in Figure 8.67.
In acceleration the fictitious forces become sources of momentum. An increase in momentum on
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Figure 8.67: Accelerating and decelerating mechanisms of boundary layer response on a rotating disk
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the right hand side of the equation leads to an increase in on the left hand side. This results in an increase
in tangential velocity, ug, which in turn causes the velocity gradient at the wall to increase. The effect
is observed in the simulation results.

The opposite occurs in deceleration when the fictitious forces becomes momentum sinks. A decrease
in momentum on the right hand side of the equation leads to a decrease on the left hand side. This results
in a decrease in tangential velocity ug, which in turn causes the velocity gradient at the wall to decrease.
The pressure gradient has an opposite sign to the diffusion term. When it increases to such an extent
that an adverse pressure gradient form, separation is observed. This is the separation observed in the

simulation results.
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Fictitious Forces

The same mechanism as described above was responsible for the behaviour of the flat plate in
arbitrary translation. Since the mechanism is the same, the tangential boundary behave like a boundary
layer on a flat plate.
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The radial mechanism of response is much simpler. The fictitious forces are of the same order,

but with difference mathematical signs. Changes in the fictitious forces creates a feedback loop where
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8.4. CLOSURE

the one component is a momentum source and the other is a momentum sink. Response in the radial
boundary layer are not caused by the fictitious components, but rather by changes in the rotational
velocity, ug. This affects the balance between the right and left hand side of the equation. The viscous
term adjusts to counter the changes. Subsequently the value of the radial velocity increases or decreases.
This mechanism is highly dependant on the acceleration or deceleration strength. In cases where high

rates of change is present, the radial velocity profile remains in the initial state.
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Figure 8.68 is presented here to show the variability in velocity profiles.

Figure 8.68: Variability in boundary layer profiles for different starting and acceleration conditions on
a rotating disk

1 6 T T T T T
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1.2

2
U

The profile is dependent on the history of the flow as well as the strength of acceleration or decelera-
tion. At values of 70g the profile in unsteady velocity varies little from the steady state result. However,
this still has a major impact on the shape factor and more importantly the skin friction coefficient. The
effects of arbitrary motion should still be included in mathematical models.

The shape factor in tangential direction is shown in Figure 8.69 for accelerating and decelerating
conditions. The behaviour is similar to the flat plate results. The higher acceleration cases is monotoni-

cally decreasing and approximates a minimum value. In contract, the lower acceleration cases reach a
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CHAPTER 8. BOUNDARY LAYER RESPONSE IN PURE ROTATION - ROTATING DISK FLOW

minimum value very early in the event. It then recovers the initial value and approaches an asymptotic
shape factor value. In deceleration the shape factor displays a discontinuity. The shape factor approaches
positive infinity at this point. A discontinuity in the mathematics is an indication that the flow regime has

changed. It is therefore postulated that the discontinuity is the point where the flow becomes turbulent.

Figure 8.69: Results of the tangential shape factor response for acceleration (left) and deceleration (right)
events on a rotating disk
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The shape factor in radial direction, as shown in Figure 8.70 is divergent in all cases. Type II flows,
such as the 70g case, responds in a different manner than the Type I1I flows. Type II approaches negative
infinity in deceleration while Type III approaches positive infinity. The 70g is characterized by unsteady
oscillations in the shape factor.

The skin friction coefficients (Figure 8.71) on a rotating disk reacts in the same manner as it would
on a flat plate in translation. In acceleration the value first increase. It reach a maximum after which it is
reduced. An asymptote is approximated as the acceleration event continues. The skin friction coefficient
in deceleration is divergent and continues to increase. The values in both cases are dependant on position
on the disk.
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Figure 8.70: Results of the radial shape factor response for acceleration (left) and deceleration (right)
events on a rotating disk
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Figure 8.71: Result of the skin friction coefficient response to arbitrary rotation on a rotating disk
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Chapter

Boundary Layer Response in Combined Translation and Rotation -

Arbitrary Cone Flow

he boundary layer response to acceleration and deceleration of a rotating cone in axial flow is
analysed in this chapter. The cone has a half angle of 15° and is subjected to arbitrary translating
and rotating conditions. The boundary layer profiles is depicted in terms of a curvilinear co-

ordinate system as shown in Figure 9.1.

Figure 9.1: Orientating Image of the Rotating Cone in Axial Flow

Rotating cones in axial flow are commonly found in engineering environments such as turbo-machinery,
aerial vehicles and defence systems. Applications range from missile nose cones and projectile front
ends to engine intakes and rotor configurations of wind turbines. The function of the cone is to direct

the flow and facilitate maximum pressure recovery in the system.
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ARBITRARY CONE FLOW

Since cones are commonly used, the theory of cone flow is well established in terms of the shock
wave angles (when applicable), streamline curvatures and pressure losses. Most studies are focussed
on predicting transition from laminar to turbulent flow (Mansour and Kargar [57], Garret and Peake
[52], Kobayashi and Kohama [95]), while few studies investigate the boundary layer (Back [28]).

A number of test conditions have been selected to investigate the behaviour of the boundary layer
in arbitrary changing flow. The test cases have been divided into several groupings that test various
aspects of the response to acceleration and deceleration in translation and rotation. The groupings are

as follow:

* Group I - Steady Translation with No Rotation. The results from this grouping is for compar-
ative purposes with other groups that include rotation. Free-stream velocities of 1 m/s, 2 m/s, 3

m/s and 4 m/s were simulated.

* Groups II & III - Variable Translation, Steady Rotation. The effect of acceleration and decel-
eration in translation on the boundary layer of the cone at two constant rotations (10 rad/s and 2

rad/s respectively) are determined, see Table 9.1.

* Group IV & V - Steady Translation, Variable Rotation/ The effect of acceleration and decel-
eration in rotation on the boundary layer of the cone at two constant translations (1 m/s and 4 m/s

respectively) are determined, see Table 9.2.

* Group VI - Mixed Acceleration and Decelerating Conditions. In Table 9.3 the conditions for
this case is shown to indicate the response of the boundary layer to a mixture of accelerating and
decelerating conditions. A number of simulation sets are defined in accordance Table 9.3. The
event of Set 2 takes place over a time frame where At = 1e — 02s. Similarly Set 3 corresponds to
At =1e—03s up to Set 6 that takes At = 1le — 06s to complete.

Table 9.1: Translating, Rotating Cone Test Matrix Group II and Group III

Groups Steady Solution Acceleration Event  Deceleration Event
I

1,2,3 &4 m/s at 10 rad/s
10 rad/s 1 m/s-4m/s 4m/s-1m/s
70g - 700 000g 700 000g - 70g

III
1,2,3 & 4 m/s at 2 rad/s
2 rad/s 1 m/s-4m/s 4m/s-1m/s
70g - 700 000g 700 000g - 70g
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9.1. CASE DESCRIPTION

Table 9.2: Translating, Rotating Cone Test Matrix Group IV and Group V

Groups Steady Solution Acceleration Event Deceleration Event
v
I m/sat2,6,10 & 12 rad/s
1 m/s 2 rad/s - 12 rad/s 12 rad/s - 2 rad/s
70g - 700 000g 700 000g - 70g
v
4m/sat2,6,10 & 12 rad/s
4 m/s 2 rad/s - 12 rad/s 12 rad/s - 2 rad/s
70g - 700 000g 70g - 700 000g
Table 9.3: Translating, Rotating Cone Test Matrix Group VI
Groups Steady Solution Acceleration Deceleration Mixed
VI
1.75 m/s at
4.5 & 9.5 rad/s
2 m/s 7 rad/s
3.25 m/s at
4.5 & 9.5 rad/s
a 1 m/s 2 rad/s to
4 m/s 12 rad/s
At:1e—02s —1e—06s
Set2—Set6
b 1 m/s 12 rad/s to
4 m/s 2 rad/s
At:1e—02s — 1e—06s
Set2—Set6
C 4 m/s 12 rad/s to
1 m/s 2 rad/s
At:1e—02s —1e—06s
Set2—Set6
d 4 m/s 2 rad/s to

1 m/s 12 rad/s
At:1le—02s—1e—06s
Set2—Set6

9.1 Case Description

In Figure 9.2 a graphical representation of the boundary layer on a rotating cone in axial flow is given.

The rotation is about Cartesian x-axis at the centre of the cone. Translation occurs along this axis as

well.

The cone geometry and boundary layer is expressed here in curvilinear co-ordinates as discussed

in Section 4.4. The s, n and z-directions from an orthogonal set. The s-direction is on the surface on the
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Figure 9.2: Graphical Representation of the Boundary Layer on a Rotating Cone in Axial Flow

Non-inertial frame: Inertial frame:
Plate stationary, Far field flow in motion Plate in motion, Far field flow stationary

cone parallel to the longitudinal plane. Perpendicular to this is the z-direction which is parallel to the
transverse plane. The n-direction is normal to the surface of the cone.

The boundary layer is divided into two components in the s-direction and the z-direction respectively.
The steady state boundary profile is equivalent to the laminar flat plate profile in the s-direction, while
the profile in the z-direction is similar to the rotating disk case.

The full momentum equation in the non-inertial frame, as derived in Equation 3.227 , is applicable

to this case. However, the term px A € is not applicable, since rotation is around a stationary axis.

0ot R N n ~ ~ A oA A
%Jrv.(ﬁﬁ@ﬁ): —Vp+V-[ﬂ(Vﬁ+VﬁT)+/1(V~ﬁ)I]

0 N .
—— (V@) +pxAQ+pxAQ+200 A Q—-pXANQAQ+2pV(E)AQ 9.1

ot —— Y ~~ 7 N\ ~~ 4

. Euler Coriolis Centrifugal Magnus
Translation
Unsteady motion

The theoretical formulation and numerical methods used were described in Chapter 6.
The non-dimensional distance perpendicular to the cone surface is determined in a similar manner

as for the flat plate in Equation 6.21.

(9.2)

This parameter is used through out this chapter to obtain non-dimensional profiles for the cone.
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9.2 Results and Discussion - Acceleration

9.2.1 Velocity Profiles
9.2.1.1 Accelerating Translation with Steady Rotation

In Figure 9.3, a comparison is drawn between the results of the Group 2 and Group 3 simulations. That
the acceleration groupings between the cases (e.g. 4 m/s 2 rad/s 70 g versus 4 m/s 10 rad/s 70 g) in the
s-direction has similar results. This indicates that the flow is dominated by the translational velocity for
this selection of parameters. The rotational velocity is much smaller than the translational velocity. In
the case of rotating large calibre projectiles, the translational velocity dominates as well. The translation
velocity is in the order of Mach 2.8, while the rotational speed - depending on the barrel rifling, is in
the order of 15000 rpm. The general tendencies of the velocity profiles are similar to those observed
for the flat plate (Figure 7.8). An increase in near wall velocity gradient is observed with increased

acceleration.

Figure 9.3: Comparison between Group 2 and Group 3 Simulation Results for Acceleration
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Figures 9.4 and 9.5 show the results of the non-dimensional s-direction velocity profiles for Group
2 and Group 3 respectively.

Figure 9.4: Non-Dimensional s-Direction Velocity Profiles: Group 2 Accelerating Cone
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Figure 9.5: Non-Dimensional s-Direction Velocity Profiles: Group 3 Accelerating Cone
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Figures 9.6 and 9.7 show the results of the non-dimensional z-direction velocity profiles for Group

2 and Group 3 respectively.

Figure 9.6: Non-Dimensional z-Direction Velocity Profiles: Group 2 Accelerating Cone
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Figure 9.7: Non-Dimensional z-Direction Velocity Profiles: Group 3 Accelerating Cone
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In the longitudinal s-direction three key responses have been observed (Figure 9.8); 1) an increase
velocity gradient in the near-wall region, 2) a change in non-dimensional velocity in the far-field and 3)

the presence of a strain limit at higher accelerations typically from 7000 g upwards.

Figure 9.8: Responses of the Boundary Layer on the Cone to Acceleration in Translation
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The cone in translational acceleration reacts in a similar manner than the flat plate subjected to
the same conditions. In Figure 9.9 the velocity profile along the s-direction is shown. The profile is
equivalent to the profile of the flat plate shown Figure 7.8 where an increase in translational velocity

lead to an increase in the velocity gradient in the near-wall region.

Figure 9.9: Accelerating Velocity Profile in the s-Direction on the Cone

Equation 5.162 provided a mathematical description of the boundary layer in the s-direction for

arbitrary acceleration. In this case the equation is reduced to:
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The same mechanism as described for the flat plate in Chapter 7 applies. The non-inertial translation
term on the right hand side acts as a momentum source in the equations. This results in an overall increase

on the left hand side which a balanced by an increase in the near-wall velocity profile.
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(9.4)

The second response observed is an increase in non-dimensional velocity values with increasing
acceleration. This occurs due to the interaction between the Coriolis and Translation non-inertial terms

during acceleration.
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Centrifugal —~

Translation

(9.5)

In steady state conditions, the effects of all the non-inertial terms are in balance Figure 9.10. The
effects all occur at the same time scale. An increase in the translational velocity, while the rotational
velocity remains constant, causes the translation non-inertial term to dominate the Centrifugal forces.
The time scale of the translation term is increased to become higher than the time scale of the centrifugal
force, leading to a higher non-dimensional velocity in the s-direction.

The final response of the boundary layer involves strain limit that a boundary layer in acceleration
can be subjected to. In the derivation of the Navier-Stokes equations for first principles, the infinites-
imal strain theory is applied to a fluid parcel to obtain the stress tensor (Schlichting [42]). In a solid
undergoing deformation, the strain is initially directly proportional to the stress. This condition only
applies in the elastic portion of deformation up to the strain value that is associated with the plastic

limit. From that point forward the material would undergo plastic deformation from which the material
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Figure 9.10: Non-inertial Force Acting on a Cone in Arbitrary Motion
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can not recover. A solid material therefore has a strain limit that separates the elastic deformation from
the plastic deformation. In the Navier-Stokes equations the analogy is made that a fluid parcel deforms

under external forces in the same manner as a solid parcel would in the elastic regime (Figure 9.11).

Figure 9.11: Strained Element
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The stain limit of the fluid is the point where the fluid parcel has reached maximum deformation.

This limit manifests in the accelerating boundary layer as a conglomeration of the boundary profiles for
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9.2. RESULTS AND DISCUSSION - ACCELERATION

various acceleration strengths. At this point the velocity profile becomes independent from the current
acceleration strength. There is therefore a limit to how fast the particles can be accelerated in certain
regions of the boundary layer. The profile is bounded by the strain limit. In the inviscid part of the flow,
which is external of the boundary layer, the same limits does not apply.

The flow in the z-direction (transverse direction) reacts very similar to the rotating disk flow in
the radial direction (Figure 8.14). The accelerating profiles are all of the same value, but not equal to
the steady state result. As the simulation progresses the 70g profile separates from bundle results in
the direction of the steady state result. This shows that there is a delay in the reaction of the tangential
velocity profile to adjust to the accelerating boundary layer. The 70g profile has sufficient time to start
adjusting to the changing conditions, while the remainder of the profiles remain at values similar to
the starting condition. The general equation for boundary layer flow in the tangential direction was
determined in Equation 5.164. This equation is reduced to obtain the non-inertial forces relevant to this
case. the observed behaviour is due to an interaction between the Coriolis, Centrifugal and Magnus

forces in a similar manner as discussed in Section 8.2.1.
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(9.6)

The same acceleration response types that were defined Chapter 7 and used in Chapter 8 are relevant
to this case. The responses are:

* Response Type I, which is viscous dominant.

» Response Type II, which is certain regions in the boundary layer are dominated by viscosity and

other regions by momentum.

* Response Type III, which is dominated by momentum.

The flow in this case fall exclusively in the Response Type I1I category. The accelerating boundary
layer deviates from the steady state profile. The two profiles do not overlap, neither in the near-wall nor
far-field regions of the boundary layer. The flow for this selection of conditions are therefore dominated

by momentum effects.
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9.2.1.2 Steady Translation with Accelerating Rotation

In Figure 9.12 the results from the accelerating part of Table 9.2 is shown. In the s-direction the boundary

layers are divided into two regions; n < 2 and n > 2. In the region closer to the wall, n < 2, the profiles

are dominated by viscous forces. Here the 1 m/s and 4 m/s profiles are approximately equal. In the
far-field of the boundary layer, n > 2, the flow is influences by the Centrifugal acceleration. This is

a similar mechanism as discussed in the previous subsection. Translation dominates the flow and the

profiles are independent from the strength of the acceleration. The velocity profiles in the z-direction

displays similar behaviour as the rotating disk in the tangential direction. The velocity gradients become

larger closer to the wall with increasing acceleration. The strain limit that was discussed in the previous

subsection is observed here as well.

Figure 9.12: Comparison between Group 4 and Group 5 Simulation Results for Acceleration
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Figures 9.13 and 9. 14 show the results of the non-dimensional s-direction velocity profiles for Group
4 and Group 5 respectively.

Figure 9.13: Non-Dimensional s-Direction Velocity Profiles: Group 4 Accelerating Cone
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Figure 9.14: Non-Dimensional s-Direction Velocity Profiles: Group 5 Accelerating Cone
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Figures 9.15 and 9.16 show the results of the non-dimensional tangential velocity profiles for Group

4 and Group 5 respectively.

Figure 9.15: Non-Dimensional z-Direction Velocity Profiles: Group 4 Accelerating Cone

s =0.0207 m

o
N

1m/s6rad/s
o
N

o
(V)

I m/s6rad/s
o
~

s = 0.0828 m

0.6 -0.6
0.8 -0.8
-1 , -1
3 4 3 4
0 0
L L
= -0.2 = -0.2
o] o]
- —
S -04 S -04
[92] wn
~ ~.
£ -06 g -06
— —
0.8 -0.8
-1 : -1
3 4 3 4
0
@ » %eady State
-0.2 g
g ks 700g
— —
ﬁ ﬁ 04 —— 7000g
z <« 700000
g g -06 9
Al —
-0.8
-1
3 4 0 2 3 4
Ui
297

© University of Pretoria



oot
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -
ARBITRARY CONE FLOW

Figure 9.16: Non-Dimensional z-Direction Velocity Profiles: Group 5 Accelerating Cone
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9.2. RESULTS AND DISCUSSION - ACCELERATION

The result of the cone in the z-direction is consistent with the rotating disk in the tangential direc-
tion. This is displayed in Figure 9.17 where an increased velocity gradient is observed that is directly
proportional to the acceleration strength. the presence of the strain limit, as discussed in the previous

subsection, is also present in this case. The boundary layer response to acceleration is momentum dom-
inant and therefore of Type III.

Figure 9.17: Responses of the Boundary Layer on the Cone to Acceleration in Rotation
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The mechanism responsible for the increased velocity gradient in the near-wall region is similar
to the mechanism that causes the same effect on the rotating disk (Figure 9.18). The increase in the
velocity gradient near the wall is a direct result of the acceleration of the flow.

Figure 9.18: Accelerating Velocity Profile in the z-Direction on the Cone

The governing equation for the momentum in the z-direction was determined in Equation 5.164.
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For the current case this equation is reduced to the following:

[0Vs ViV VodVz V3V a Vi o1 V3 6h3) | Vs 0hy  Vy 0h2”

+—= + = +— -Vil—— — - —
ot  h1041 hgdiy hsdis hihs di3  hihs3 0iq hohs 001 hohs Ol
10p 1 0 _hs_. V3

+_
hidhs  hodlgh by ha

+0 [ 2Viwo —2Vow1 + ﬁ3(w22 + w12)+ i10W2 — w1 +2V, wa —2V,,w1 ]

~

g v

Coriolis Centrifugal Euler Ma;g,nus

(9.7)

Rotational acceleration causes an increase in the non-inertial terms on the right hand side of the
equation. In response the momentum terms on the left hand side increase. The velocity, V3 subsequently

increases. This results in an increase in the near-wall velocity profile.

hihg 0its hihg 0l

[0V Vi0Vs VodVs V3dVs . Vi 0hy Vs 0hs\ o ( Vs 0hy Vi 0Ohg
—+—T+—T+—T—V1( )+ 2( Pyl T)]
ot h1001 hodlis hgdiis hohg 0it1 hohsg Ol

— 1 aﬁ + ii h3 A~ Vg
hi Ol hg 0lio

+0 [ 2Viwe —2Vow1 + ﬁg(ﬂ)Qz + w12)+ 109 — lowq + 2Velw2 - 2Ve2w1 ]

~~ N~ ~~

Coriolis Centrifugal Euler Magnus

(9.8)

Equation 5.162 is reduced to described the flow in the s-direction for this case.

hihg 0li1  hiho Ollg

[ o VooV VooVs g Vo ks Vi by g Vi Ohy_ Vo oha)
ot h1001 hgodlig hgdiis 2 3 h1hg 0lis hihsg 01l
19 10 . Vi

hioiy  hgdhat by 2h

+ﬁ[ ﬁ1WQ2—ﬁ2w1w2 ]—ﬁgd)z

-

Centrifugal
(9.9)

The effect of the Centrifugal force in the equation below is seen in Figure 9.13 and depicted in Figure
9.10. The flow is dominated by translation. If the translational velocity is low enough the Centrifugal
force influences the shape of the velocity profile. In the Group 4 case, with 1 m/s translational velocity
the far-field non-dimensional velocity is reduced with higher rotations. However, in the Group 5 case,
with 4 m/s translation completely dominates the flow and no differences is observed (Figure 9.14). In
both cases the flow in the s-direction is independent of the acceleration since no variation is seen in the

profiles for different accelerations.
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9.2.2 Boundary Layer Parameters

The shape factor was calculated here as shown in Chapters 7 and & from the displacement and momen-
tum thickness parameters.
6*
H=— 9.10
~ 9.10)
In Figure 9.19 a comparison of the results for different accelerations is shown for Group 2 in the
s-direction and Group 4 in the z-direction. Figures 9.20 -9.23 show the results for the s-direction of

Groups 2 and 3 and the z-direction of the Groups 4 and 5 respectively.

Figure 9.19: Comparison of Shape Factor for the Group 2 (left) and Group 4 (right) Cases
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The results are consistent with those of the flat plate and rotating disk in acceleration. Two types
of behaviour are seen in the profiles. The first is observed in the lower accelerations. The shape factor
initially decreases to reach a minimum value, after which it is increasing and attempts to recover the
steady state value. The second type of behaviour is seen in the higher acceleration cases. Here the shape
factor decreases to approach an minimum asymptotic value. In both cases the first derivative approaches

zero, indicating that an asymptotic values is approached.
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First Derivative - Shape Factor H
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Figure 9.20: Shape Factor in s-Direction for Translational Acceleration
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Figure 9.21: Derivatives of Shape Factor in s-Direction for Translational Acceleration
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First Derivative - Shape Factor H

Figure 9.22: Shape Factor in z-Direction for Rotational Acceleration
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Figure 9.23: Derivatives of Shape Factor in z-Direction for Rotational Acceleration
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9.2.3 Skin Friction Coefficients

The skin friction coefficients were determined using the equation of in Chapters 7 and 8. The results
are shown in Figures 9.24-9.28.

on
Twall = U5
0y lwall ©.11)
Cr= Twall
F~ 05002,

Figure 9.24: Comparison of Skin Friction Coefficient for the Group 2 (left) and Group 4 (right) Cases
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The Group 2 and Group 3 cases display similar responses at the flat plate in acceleration. The skin
friction coefficient has an initial increase at the start of the acceleration event. The value reaches a
maximum after which it steadily decreases to approach an asymptote. Higher accelerations leads to
higher skin friction coefficient values.

The Group 4 and Group 5 cases do not compare with any results previously observed, neither for
the flat plate nor the rotating disk. At low accelerations the change in skin friction coefficient values is

very small, with the biggest changes seen in the accelerations above 7 000g.
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Figure 9.25: Skin Friction Coefficient in s-Direction for Translational Acceleration
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Figure 9.26: Derivatives of Skin Friction Coefficient in s-Direction for Translational Acceleration
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Figure 9.27: Skin Friction Coefficient in z-Direction for Rotational Acceleration
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Figure 9.28: Derivatives of Skin Friction Coefficient in z-Direction for Rotational Acceleration
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9.3 Results and Discussion - Deceleration

9.3.1 Velocity Profiles
9.3.1.1 Decelerating Translation with Steady Rotation

The deceleration of the axial velocity for the cone was done in accordance with Table 9.1. A comparison
between the result for the Group 2 and Group 3 results are shown in Figure 9.29. The velocity profiles
in the s-direction is minimally influenced by the difference in rotational velocity. Profiles with the same
deceleration however, have similar values. Strong separation of the flow is seen. The separation strength
is directly proportional to the deceleration. The Centrifugal force lowers the non-dimensional velocity
value in the far-field of the boundary layer. The tangential velocity profile (in the z-direction) are only
slightly affected by the change in axial velocity. The flow is overall dominated by the larger translational

velocity.

Figure 9.29: Comparison between Group 2 and Group 3 Simulation Results for Deceleration
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In Figures 9.30 and 9.31 the s-direction velocities for the Group 2 and Group 3 results are shown.

Figure 9.30: Non-Dimensional s-Direction Velocity Profiles: Group 2 Decelerating Cone
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Figure 9.31: Non-Dimensional s-Direction Velocity Profiles: Group 3 Decelerating Cone
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In Figures 9.32 and 9.33 the tangential velocities for the Group 2 and Group 3 results are shown.

Figure 9.32: Non-Dimensional z-Direction Velocity Profiles: Group 2 Decelerating Cone
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Figure 9.33: Non-Dimensional z-Direction Velocity Profiles: Group 3 Decelerating Cone
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The flow reacts immediately to the decelerating conditions. The deceleration response is classified
as Type I1I since no part of the profile remains close to the steady state result. Three profile responses
have been observed similar to the responses in acceleration; separation in the near-wall region, influence

of the centrifugal effect in the boundary far-field and the presence of a strain limit (Figure 9.34).

Figure 9.34: Responses of the Boundary Layer on the Cone to Deceleration in Translation
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The mechanism responsible for the flow reversal is similar to those for the flat plate and rotating
disk where an adverse pressure gradient is the underlying cause (Figure 9.35).

Figure 9.35: Decelerating Velocity Profile in the s-Direction on the Cone

e
V«)

The governing equation for the boundary layer flow in the s-direction was determined in 5./62. This
equation is can be reduced to show only the terms that are relevant in this case:
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In deceleration conditions the non-inertial terms on the right hand side of the equation becomes a
momentum sink. The reduction on the right hand side of the equation leads to a decrease on the left
hand side momentum terms. As a result, the velocity V; decreases. In turn this leads to a decrease in
the velocity gradient in the stress tensor. The flow compensates for the reduced velocity gradient by
increasing the pressure gradient. This results in an adverse pressure gradient. In these conditions the

flow separates from the wall and flow in the opposite direction.

(0VL ViaVy VooV V3dVi . ( Vo Ohe Vi 0Oh1y ~( Vi 0hy Vs Ohs
—+—T+—T+—T—V2( ————) 3( )]
ot h10i@1 hgdily hgOig

s 1 0 _h 1%

_ _10p Al s V1
= — —
h1 0G4y hzaﬁzuhz u2h1

Al A 2 ~ A . aVel
+p[u1a)2 —UW1Ww2 —U3WY — ]
N ~~ 7 N=— ot

Centrifugal Euler i
Translation

(9.13)

In the tangential direction a delay in the reaction of the tangential velocities can be seen (Figures
9.32 and 9.33 ). However the 70g profile reacts to the changing conditions . This is a similar effect as
was seen in the radial direction of the rotating disk. Since there are no direct changes in this direction,
the flow changes due to secondary effects. The lower deceleration cases react first, while in the higher

decelerations the profile in this direction remains in it's initial state.

+ +
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(9.14)
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9.3.1.2 Steady Translation with Decelerating Rotation

The deceleration of the rotational velocities was done in accordance with Table 9.2. The Group 4 and
Group 5 results are indicated in Figure 9.36 below. It is shown in these graphs that the s-direction veloc-
ity profiles are independent on rotational velocity and deceleration strength. Furthermore, the rotational
velocity profiles, in the z-direction, are affected by the axial velocity. At a lower axial velocity (1 m/s),
the peak values of the separation is higher than for a compatible case (same rotational velocity and
deceleration). Furthermore, at lower axial velocities the near-wall velocity gradient is steeper than in
the case of higher axial velocities. Translation velocity dominates the flow, since it is higher than the

rotational velocity, and has a stabilizing effect on the rotational flow in deceleration.

Figure 9.36: Comparison between Group 4 and Group 5 Simulation Results for Deceleration
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In Figures 9.37 and 9.38 the s-direction velocities for the Group 4 and Group 5 results are shown.

Figure 9.37: Non-Dimensional s-Direction Velocity Profiles: Group 4 Decelerating Cone
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Figure 9.38: Non-Dimensional s-Direction Velocity Profiles: Group 5 Decelerating Cone
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In Figures 9.39 and 9.40 the tangential velocities (itz-direction) for the Group 4 and Group 5 results

are shown.

Figure 9.39: Non-Dimensional z-Direction Velocity Profiles: Group 4 Decelerating Cone
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Figure 9.40: Non-Dimensional z-Direction Velocity Profiles: Group 5 Decelerating Cone
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The decelerating rotational flow on the cone, in the tangential direction, has similarities with the
flat plate and rotating disk in deceleration (Figure 9.41). In the near-wall region the flow separates. This
separation is directly proportional to the deceleration strength. Stronger separation is associated with an
increased velocity gradient at the wall. The strain limit, as explained in Section 9.2.1 as also seen here.

The flow responses are of Type I1I and is momentum dominant.

Figure 9.41: Responses of the Boundary Layer on the Cone to Deceleration in Rotation
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The mechanism that leads to the responses as shown above is similar to the flat plate and rotating
disk in deceleration (Figure 9.42).

Figure 9.42: Decelerating Velocity Profile in the z-Direction on the Cone
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In Equation 5.164 the general equation for an object in general arbitrary acceleration was deter-
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mined. This equation can be reduced, by exclusion on the terms that are not relevant, to obtain an

expression for the boundary layer in this case.

. % Vl% ng_Vg V3% Al( Vi 0hq Vg 6h3) A2( V3 Oho Vo ahz)]

+— +—= +— -Vil——— — - —
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10p 1 0 _hs_. V;

Tt U
h10G3  heods ha  lhy
+p [ 2V1w2 - 2V2w1 + ﬁ3(w22 + w12)+ U109 —lowq + 2Velw2 - 2Vezw1 ]

Coriolis Centrifugal Euler Magnus

A

(9.15)

During deceleration, the non-inertial terms on the right hand side of the equation become a momen-
tum sink. These reduce the terms on the right hand side. In response, to keep the equation balance, the
momentum terms on the left hand side decrease. This results in a decrease of the velocity component
V3. Subsequently the velocity gradient in the near-wall region decreases. If the gradient is low enough,

it results in a positive pressure gradient which induces an adverse pressure gradient and flow reversal.
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(9.16)

The flow in the axial direction, s-direction is governed by the reduced form of Equation 5.162. At
lower axial velocities, i.e. Group 4, the axial velocity profiles are only slightly affected by the decelera-
tion in the tangential direction. The Group 5 results, at a higher axial velocity of 4 m/s, are unaffected by

the changes in rotational velocity - the higher axial flow dominates the effects of rotational deceleration.
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9.3.2 Boundary Layer Parameters

The shape factor related to the cone in decelerating translation displays the same tendencies as for the
flat plate in deceleration. A discontinuity is approached in the shape factor that is dependant both on
position on the plate and deceleration strength (Figure 9.43). Positions further away from the cone front
end reach the discontinuity first. It is further seen that higher decelerations also reach the discontinuity

before lower decelerations.

Figure 9.43: Shape Factor in s-Direction for Translational Deceleration
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Similar effects is seen for the cone in decelerating rotation (Figure 9.44) with the exception of
dependence on position. All points on the cone surface reach the discontinuity at approximately the
same time. The discontinuity position is however also dependant on deceleration strength here - higher
decelerations reach the discontinuity first.

As discussed in Chapters 7 and 8 the presence of the discontinuity is a sign of regime change. Before
the discontinuity the flow can be assumed to be fully laminar. After the discontinuity the flow no longer
falls within the laminar regime. A negative shape factor is not physically possible since it means that the
momentum thickness assumes a negative value. This is not just an indication that the flow has separated
from the wall, but also indicates a change in the flow regime. The flow is most likely in transition or
turbulent after this point.
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Shape Factor H

Shape Factor H

Figure 9.44: Shape Factor in z-Direction for Rotational Deceleration
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9.3.3 Skin Friction Coefficients

The skin friction values for the rotating cone in translational deceleration, as shown in Figure 9.45,
behaves in a similar manner as the flat plate in deceleration. Deceleration takes place from 4 m/s to 1
m/s. The skin friction coefficient is dependant on position and deceleration strength. The highest values
is displayed at positions closest to the tip of the cone for stronger decelerations. The values are divergent,
since the first and second derivatives are divergent (Figure 9.46). In this case the values are independent
on the rotational velocity. The axial velocity dominates and is much larger than the rotational velocity.

Figure 9.45: Skin Friction Coefficient in s-Direction for Translational Deceleration
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The skin friction coefficients for the cone in axial flow with deceleration in rotation (Figure 9.47)
has a similar response as the cone in acceleration (Figure 9.27). The results are influences by the axial
velocity, as can be seen in the differences between the Group 4 and 5 results. Higher axial velocities
render lower skin friction coefficients. Results are also dependant on deceleration strength where higher

decelerations cause larger skin friction coefficients.
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Figure 9.46: Derivatives of Skin Friction Coefficient in s-Direction for Translational Deceleration
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Figure 9.47: Skin Friction Coefficient in z-Direction for Rotational Deceleration
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9.4 Results and Discussion - Arbitrary Motion

9.4.1 Velocity Profiles

The cone in arbitrary motion simulations were conducted in accordance with Table 9.3.

In all the cases analysed an immediate response to the changing conditions can be observed. The
s-direction and normal profiles react similar to the flat plate under accelerating conditions, while similar-
ities can be drawn between the tangential direction (z) profiles and the rotating disk results (Figure 9.48

). The boundary layer responses is all classified as Type III.

Figure 9.48: Comparison between Group 6a,b,c and d at a Condition 2.5 m/s 7 rad/s
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The s-direction and normal profiles in acceleration shown a thinning of the boundary layer in com-
parison with the steady state result. In the near-wall region the profile slope responds proportionally
to the acceleration parameter. In deceleration low reversal is observed that is also proportional to the
deceleration parameter. The flow is slightly influenced by the changes in rotation, but since the axial

flow is large that the rotational flow, it dominates the responses of the boundary layer.
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The rotational flow profiles are affected significantly by the changes in the axial flow. This is further
shown in Figures 9.49 and 9.50.

Figure 9.49: Comparison between Group 6a and Group 6¢
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The tangential boundary in accelerating conditions mimics the behaviour of the rotating disk; the
profile becomes steeper in the near wall region in a manner directly proportional to the acceleration.
However, in accelerating axial flow the near-wall profile is steeper and the boundary layer thicker than
in decelerating axial flow. The decelerating axial flow retards the effect of the rotational acceleration
while accelerating axial flow enhances the effect.

In rotational deceleration the axial flow has a similar effect on the rotational boundary profile. In
axial acceleration the rotational profile displays a greater reversal and a thicker boundary layer than for
the same case but with axial deceleration. The flow is dominated by the axial flow in these cases since
the axial flow affects the rotational profiles, but the s-direction and normal profiles are only minimally
affected by the changes in rotation. A tabular summation of the general behaviour is shown in Table 9.4.

Based on the previous two sections, a summation can be derived for the mechanisms involved in the
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

Figure 9.50: Comparison between Group 6b and Group 6d
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boundary layer flow (Figures 9.51-9.54). In general the following apply in both the s- and z-directions:

e Acceleration. The non-inertial terms becomes a momentum source. This leads to an increase in
the near-wall velocity gradient which influences the velocity profile, h_lz % ﬁ%@ﬁg%.

* Deceleration. The non-inertial terms becomes a momentum sink. This lead to a decrease in the
near-wall velocity gradient. In turn the pressure gradient becomes positive and forces an adverse

pressure gradient, _h_11 (;3—51. The flow separates.
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CHAPTER 9. BOUNDARY LAYER RESPONSE IN COMBINED TRANSLATION AND ROTATION -

ARBITRARY CONE FLOW

Table 9.4: Cone Arbitrary Motion Results Matrix

Group 6a

1-4m/s2-12rad/s

Group 6b

1-4m/s12-2rad/s

s-direction

n-direction

z-direction

Boundary layer thinner
Profile similar to steady state
Steeper gradient with increased acceleration

Similar reaction as s-direction
Boundary layer slightly thicker

Profile similar to steady state
Steeper gradient with increased acceleration

s-direction

n-direction

z-direction

Boundary layer thinner
Profile similar to steady state
Steeper gradient with increased acceleration

Similar reaction as s-direction
Boundary layer significantly thicker

Flow reversal observed
Reversal proportional to deceleration

Group 6¢

4-1m/s12-2rad/s

Group 6d

4-1m/s2-12rad/s

s-direction

n-direction

z-direction

Boundary layer thicker
Flow reversal observed
Near-wall gradient proportional to deceleration

Similar reaction as s-direction
Boundary layer thinner

Flow reversal observed
Reversal proportional to deceleration

s-direction

n-direction

z-direction

Boundary layer thicker
Flow reversal observed
Near-wall gradient proportional to deceleration

Similar reaction as s-direction
Boundary layer significantly thinner

Profiles similar to steady state
Curve slopes proportional to acceleration
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Figure 9.51: Mechanisms Associated with Case 6a of the Cone
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Figure 9.52: Mechanisms Associated with Case 6a of the Cone
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

Figure 9.53: Mechanisms Associated with Case 6a of the Cone
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Figure 9.54: Mechanisms Associated with Case 6a of the Cone
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

9.4.2 Boundary Layer Parameters

Figures 9.55 and 9.56 show the shape factor in the s-direction. In both cases the flow in translation
in accelerating. Group 6a are accelerating in rotation while Group 6b are decelerating in rotation. The
shape factor in the s-direction is affect by the rotation as can be seen in the slightly lower results of Group
6b. The general tendencies in the result are similar to the shape factors of the flat plate in accelerating

translation.
Figure 9.55: Group 6a Shape Factor in the s-Direction
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Set 2 Set 2
22t Set 3 |4 2.2
Set 4
21¢ Set 5 |4 2.1
Set 6
2r 1 2
1.9
S g
3 3 1.8
w w
2 2
© o 1.7
< <
» 7]
1.6
1.5
1.4
1.3
12 1 1 1 L 1 12 1 L 1 1 1
1.5 2 2.5 3 3.5 4 1.5 2 25 3 3.5 4
Free-stream Translational Velocity [m/s] Free-stream Translational Velocity [m/s]
Figure 9.56: Group 6b Shape Factor in the s-Direction
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ARBITRARY CONE FLOW

Figures 9.57 and 9.58 show the shape factor in the z-direction for Groups 6a and 6d respectively.
Both cases are accelerating in rotation. Deceleration in translation causes the shape factor to start at
higher values and end at lower values than if there had been acceleration in translation. This is due to

residual flow effects from starting at a higher free-stream velocity. The profiles of the shape factor are

comparable to the tangential profiles of a rotating disk in acceleration.

Figure 9.57: Group 6a Shape Factor in the z-Direction
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Figure 9.58: Group 6d Shape Factor in the z-Direction
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9.4. RESULTS AND DISCUSSION - ARBITRARY MOTION

Figures 9.59 and 9.60 show the shape factor in the z-direction for Group 6b and 6¢ respectively. The
rotational flow is in deceleration. The profiles are similar to the tangential profiles of a rotating disk in
deceleration. The same discontinuity in the shape factor is observed. Acceleration in the axial flow has
a destabilizing effect on the boundary layer since it causes the discontinuity to occur earlier than in
the case of decelerating axial flow. Higher rotational deceleration cases are less affected by changes in

translation since Sets 5 and 6 do not indicate earlier onset of discontinuity.

Figure 9.59: Group 6b Shape Factor in the z-Direction
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Figure 9.60: Group 6¢ Shape Factor in the z-Direction
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Figures 9.61 and 9.62 show the shape factor in the z-direction for Group 6¢ and 6d respectively.
Translational velocities are in deceleration. Since the flow is dominated by the higher translation, it
dominates the shape factor behaviour. The profiles are similar to a flat plate in deceleration as indicated

by the presence of the discontinuity in the shape factor.

Figure 9.61: Group 6¢ Shape Factor in the s-Direction
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Figure 9.62: Group 6d Shape Factor in the s-Direction
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9.4.3 Skin Friction Coefficients

In Figures 9.63 and 9.64 the skin friction coefficient results for Group 6a and 6b are given respectively.
In both cases the translational flow is in acceleration and dominates the flow. The skin friction coeffi-
cients display similar patterns than the flat plate and the rotating disk in acceleration. The values are

increasing during the beginning stages of the acceleration event. It reaches a maximum after which it

decreases to approach an asymptotic value.
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Figure 9.63: Group 6a Skin Friction Coefficient
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Figure 9.64: Group 6b Skin Friction Coefficient
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Figures 9.65 and 9.66 show the skin friction coefficient for the Group 6¢ and 6d respectively. In
both these cases the flow is in translational deceleration. Translation dominates the flow. The behaviour
of the skin friction coefficient is similar to the flat plate and rotating disk in deceleration. The values
increase with deceleration and is divergent. Stronger decelerations causes higher skin friction coefficient

values.

Figure 9.65: Group 6¢ Skin Friction Coefficient
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Figure 9.66: Group 6d Skin Friction Coefficient
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9.5 Closure

In this chapter the response of the boundary layer to arbitrary acceleration of rotating cone in axial flow
have been investigated. The specific contribution of this chapter is summarized as:
1) Characterization of the boundary layer behaviour for a cone in
i) variable translation with steady rotation,
ii) steady translation with variable rotation and
iii) variable translation with variable rotation.
2) Definition of a mechanism that explains the behaviour of the boundary layer for each case.
3) The characterisation of the response of the shape factor to arbitrary motion.

4) The characterisation of the response of the skin friction coefficient to arbitrary motion.

The rotating cone in axial flow was subjected to various cases of acceleration and deceleration.
Similarities can be drawn between the response of the cone in the s-direction and the flat plate in variable
translation. The responses in the z-direction are comparable to the rotating disk. In all cases Type 111
response were observed. The cone case is therefore dominated by momentum effects in the boundary
layer.

The unsteady rotation is affected by the axial velocities as indicated in Figure 9.67 below. This figure
illustrates the importance of taking flow history into account when conducting analysis in arbitrary
motion.

Figure 9.67: Comparison of Various Profile at a Free-Stream of 2 m/s 7.5 rad/s
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In acceleration the near-wall velocity profile becomes steeper in comparison to the steady state case,
while in deceleration flow reversal is observed. The profiles are dependant on the strength of the velocity
change rate. Higher accelerations cause greater velocity gradients in the near-wall region, while higher
decelerations result in stronger separation of the flow.

The profiles in the s-direction are influenced by the Centrifugal effects in the far-fields of the bound-
ary layer. A decrease was observed in the centrifugal effect with increasing acceleration and an increase
with increasing deceleration. The profiles are also subjected to a strain limit where the gradient of the
velocity profile is independent from the arbitrary motion.

The boundary layer responses are explained using the same mechanisms of the flat plate and rotating
disk in acceleration and deceleration. This is depicted in Figures 9.68 and 9.69 for translation and

rotation respectively.

Figure 9.68: Flow Mechanisms for Translation

In acceleration the non-inertial terms becomes a momentum source. This leads to an increase in
the near-wall velocity gradient which influences the velocity profile. In deceleration the non-inertial
terms becomes a momentum sink. This lead to a decrease in the near-wall velocity gradient. In turn
the pressure gradient becomes positive and forces an adverse pressure gradient. The flow separates in

response to the adverse pressure gradient.
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Shape factor results are comparable with the shape factor results of the flat plate. Since translation

dominates, the shape factor reacts according to the conditions of the axial flow as indicated in

In a similar manner where the shape factor are dependant on the conditions of the axial flow, so

does the skin friction coefficient respond to acceleration or deceleration in translation.

Figure 9.70: Skin Friction Coefficient Comparisons with respect to Arbitrary Motion in Translation
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Figure 9.71: Skin Friction Coefficient Comparisons for Arbitrary Motion
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Chapter

Conclusion

his thesis was aimed at characterizing the response of the boundary layer to arbitrary motion. The
task was approached by addressing the identified gaps in the body of knowledge. The objectives
that followed from the literature survey were related to boundary layers of objects in unsteady six-

degree-of-freedom motion. The formalized research question, objectives and outcomes are as follow:

? Research Question
How does the boundary layer on an airframe in arbitrary motion respond the unsteady

flow conditions?

[g Objective 1 ]

| Derive the non-inertial Navier-Stokes bulk flow and boundary layer equations.

N ! 7z
- Outcome 1
Mathematical formulations for the bulk flow and boundary layer equations in arbitrary

motion.

[:g Objective 2 ]

| Implement the non-inertial Navier-Stokes equations in a solver in OpenFOAM.

" Outcome 2
Solver, for prescribed, arbitrary motion in the non-inertial reference frame, implemented
in OpenFOAM.

:g Objective 3
Conduct numerical simulations to determine the response of the boundary layer to arbi-

trary motion.

[‘@"Outcome 3 ]

| Insight into the response of the boundary layer to arbitrary motion.
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CHAPTER 10. CONCLUSION

10.1 Contributions

The contributions made during the course of this research is grouped per objective below.

53 Objective 1

| Derive the non-inertial Navier-Stokes bulk flow and boundary layer equations.

It was shown through derivation that both the continuity and conservation of energy equations re-

mains invariant under transformation - no additional terms are added to these equations:

—+V-pa=0 (10.1)

— +(V-pét) = —p(V-a)+ V- (RVT) + ¢ (10.2)

The conservation of momentum equation for full arbitrary acceleration below, indicated that there
are six fictitious terms in the non-inertial equation. These are the only terms that are present during

arbitrary acceleration. The higher order terms become negligible or cancel out during the derivation.

opa . A . N . A -
Lt“ +¥-(pae) = —Vp +V-[a¥a+ val) + AV - @il
0 A .
—— (V@) +pxAQ+pXAQ+200 AN Q- pXAQAQ+20V(E) AQ (10.3)
ot e e ~ - ~ ~
e Euler Coriolis Centrifugal Magnus
Translation

Unsteady motion

Clarification were obtained on the mathematical origin of the fictitious forces through the deriva-
tions. This indicated that the fictitious forces stem from the transformation of the temporal and advection
terms. The presence of fictitious forces is case dependant and is a function of the motion of the relative
frame. The diffusion terms and pressure gradient terms remain invariant under transformation.

The continuity equation in the boundary layer for both compressible and incompressible flows were
obtained. No terms are neglected from the continuity equation. Therefore, the form remains the same

as in the bulk flow. Here it is indicated in the curvilinear form.

0

175

o, 1 [0
0t hihohs !0l

- oy, 0 o
(h2h3pV1)+ P) (hlhng2)+E(h1thV3)] =0 (10.4)
The momentum equation in the boundary layer for compressible and incompressible flow were

determined for Cartesian, Cylindrical and Curvilinear co-ordinate systems.

X-momentum

A

opa . 06pa  0pa , 0pu op 0
+u 4 +w =- + ==
ot 0x 0y 0z 0x 0y 0y

A

+2p0ws — 2pws + PR(ws? + we?)

10.5
0pVy (10.5)
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r-momentum
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ot TTor 7 90 P g o ay gy PRoCy TR0 (10.6)
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—PYWrwy + prwy, + prwy + pywg — PUgwy + Pywe — 20Vyw, o

uj-momentum:
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0Ve,

ot

+lowg — llgwg + &2({)3 - ﬁ3w2 +2Ve, w3 — 2V, w9 —

(10.7)

It was shown that the compressible and incompressible equations have the same terms. The only
difference between the two forms is that in the incompressible case the density parameter, p, can be
divided through out the equation.

The following similarities in boundary layer equations were observed for all co-ordinate systems:

* The fictitious terms can not be neglected from the boundary layer equations. Therefore all the
terms have an influence on the boundary layer velocity profile during acceleration and decelera-
tion of the object.

» The material derivative (left hand side of the Navier-Stokes equation) are unchanged in the longi-
tudinal and transversal directions. However, all left hand side terms are neglected in the direction
normal to the surface.

oy

0=
0y

— Fwrwy + Y02 + Yol — Fap (10.8)

* The pressure gradient terms are present in all directions.

* The diffusion terms in the boundary layer originate from specific components in the stress tensor

of the 719 and 739 terms.

it )] ¢ s () RG] 00

N>
—
l\’)

'\@"Outcome 1
| Mathematical formulations for the bulk flow and boundary layer equations in arbitrary motion.
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[gomective 2 }

| Implement the non-inertial Navier-Stokes equations in a solver in OpenFOAM.

The non-inertial formulations for the Navier-Stokes equations developed in addressing Obejctive 1, a
non-inertial solver was developed. The resulting code, ARFrhoPimpleFoam have the following prop-

erties:
* Non-inertial momentum equation implementation,
* Prescribed motion definitions required,
* Operating on a stationary mesh,
+ Using specialized boundary conditions and
+ Capability of resolving compressible flow.

The governing equations that were implemented are the conservation of mass, momentum and en-

ergy equations respectively:

0 & ..
—+V:-pa=0
ot
opa . A R N Aa L a
OLtu +¥-(pasw - V- [aa+ val) + A - wi]
0 . N
+—=(EV@) - pX A Q200N Q+pXAQAQ-20V(H)AQ=-Vp
ot —_— —\— - ~ RN -~ )
. Euler Coriolis Centrifugal Magnus
Translation
dph 0pK op

+(V-phgi)+

- +(©~pkﬁ)—6—i’—v(WT)=o

A special boundary condition, ARFFreeStreamVelocity, was developed that allows for defining
the free stream velocity conditions in the inertial frame. It is a simplified manner of describing the flow
boundaries where the inertial velocity is stationary. The code transforms the boundary values to the
non-inertial frame using the prescribed motion definitions.

Two validation cases were conducted to asses the functionality of the solver; a flat plate and a
rotating cone. Numerical results from these analyses were compared with analytical results from Blasius
[37], Monaghan [87] and von Karman [41] respectively. The simulated results compared well with the
analytical results. It was subsequently used to analyse the behaviour of the boundary layer under various

arbitrary flow conditions.

'@"Outcome 2
Solver, for prescribed, arbitrary motion in the non-inertial reference frame, implemented in Open-
FOAM.
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fg Objective 3

Conduct numerical simulations to determine the response of the boundary layer to arbitrary mo-

tion.

The numerical simulations were done for a translating flat plate, a rotating disk and a rotating cone in
axial flow. Test matrices were constructed to obtain sample results of various accelerating and deceler-
ating conditions. In all the cases simulated, three types of behaviour to arbitrary motion were observed.
The three type were defined in this thesis as Response Types L, II and III. This is illustrated in Figure
10.1.

* Response Type I, which is viscous dominant. The time scale at which the event occurs is low
enough to allow time for the viscous forces in the boundary layer to adjust to the changes and
keep the steady state profile.

* Response Type II, where the time scales of the viscous and momentum forces are of the same
order. Certain regions of the boundary layer are dominated by viscosity and others by momentum.
In acceleration the viscosity dominates in the near-wall region and momentum in the far field
regions. In deceleration momentum dominates in the near-wall region and viscosity in the far
field.

* Response Type 111, which is dominated by momentum. The time scale at which the event occurs
is too high for viscous forces in the boundary layer to adjust to the changes and keep the steady
state profile. In acceleration the near-wall velocity profile increases with increasing acceleration.

In deceleration separation occurs at a result of momentum changes in the flow.

Figure 10.1: Response Types for Accelerating and Decelerating Conditions on a Flat Plate
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The mechanisms that cause changes in the boundary layer due to arbitrary motion were identified.
This is similar for all test cases and was explained using the boundary layer equations previously derived.
There are similarities in behaviour of the translating plate profiles and the longitudinal velocity profiles
of the rotating cone in axial flow. More similarities are observed in the rotating cone and the tangential

velocity profile of the cone. This is depicted in Figures 10.2 and 10.3 respectively.

Figure 10.2: Comparison between the Arbitrary Flow Mechanisms for the Translating Plate (left) and
the Longitudinal Velocity Component of the Rotating Cone in Axial Flow (right)
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Figure 10.3: Comparison between the Arbitrary Flow Mechanisms for the Rotating Disk (left) and the
Tangential Velocity Component of the Rotating Cone in Axial Flow (right)
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In acceleration the relative frame fictitious terms become a momentum source. An increase in mo-
mentum on the right hand side of the equation leads to an increase in the material derivative on the left
hand side of the equation. This increase results in a velocity increase in the boundary layer near-wall
region. In turn it causes the velocity gradient at the wall to increase. This is the effect observed in the
simulation results for accelerating cases.

The opposite occurs in deceleration where the relative frame fictitious terms become a momentum

sink. A decrease in momentum on the right hand side of the equation leads to a decrease in the material
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derivative on the left hand side of the equation. This decrease results in a velocity decrease in the
boundary layer near wall region. In turn it causes the velocity gradient at the wall to decrease. The
pressure gradient has an opposite sign to the diffusion term and increases to such an extent that an
adverse pressure gradient form. This results in flow separation as observed in the simulation results.

These mechanisms are depicted in the equations below. It corresponds with the figures above. The
red terms cause the velocity gradient increase during acceleration. The blue terms are responsible for
flow separation during decelerating.

The equation below is the boundary layer equation for the translating plate.

0pi. . 0pi  0pi _ o )

opV.
+U—/ 3% + — - h
ot 0x o0y * 0y

ot

3R
S|

(12

The equation below is the boundary layer equation for the longitudinal velocity component of the

rotating cone in axial flow. It has similarities with the equation for the translating plate.

avl Viovi  VaoVi V3 oVi A(\A@ dhy Vi ahl) A(Vl oh1 V3 ahs)]
hihg 0tis hihg 0l

+ + == —
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oV,
o

(0%2)  +2pi,0y+pio,

Sl

The equation below is the boundary layer equation for the tangential velocity component of the

rotating cone in axial flow. It has similarities with the equation for the translating plate.
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The shape factor behaves in a similar manner for all cases. An example set is shown in Figure 10.4

for accelerating and decelerating conditions.
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Figure 10.4: Results of the tangential shape factor response for acceleration (left) and deceleration (right)
events on a rotating disk
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The higher acceleration cases is monotonically decreasing and approximates a minimum value. In
contrast, the lower acceleration cases reach a minimum value very early in the event. It then recovers the
initial value and approaches an asymptotic shape factor value. In deceleration the shape factor displays
a discontinuity. The shape factor approaches positive infinity at this point. A discontinuity in the mathe-
matics is an indication that the flow regime has changed. It is therefore postulated that the discontinuity
is the point where the flow becomes turbulent.

The skin friction coefficient behaviour is the same for all cases analysed. A sample of the behaviour
is shown in (Figure 10.5). In acceleration the skin friction coefficient value first increase. It reach a
maximum after which it is reduced. An asymptote is approximated as the acceleration event continues.
Boundary layers in acceleration has a cooling effect on the wall due to a lower skin friction which results
in a lower skin drag value. The skin friction coefficient in deceleration is divergent and continues to

increase. The higher skin drag is responsible for the heating effect on the wall of objects in deceleration.
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Figure 10.5: Skin Friction Coefficient Comparisons for Arbitrary Motion on the Cone
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‘@"Outcome 3
| Insight into the response of the boundary layer to arbitrary motion.

10.2 Suggested Further Work

This research provides a basis for further work in the field of boundary layers of objects in arbitrary mo-
tion. Additional commended research are divided into three categories; Mathematical Research, Code

Improvements and Numerical Research.

10.2.1 Mathematical Research

Continuation of this research will greatly benefit from analysis of the boundary layer equations us-
ing asymptotic methods (Cathalifaud et al. [98], Hamouda [99], Lundgreny [100]). The aim will be to
obtain a semi-analytical solution for boundary layers in arbitrary motion against which the numerical
results can be compared. This will further assist in defining an acceleration parameter to characterize
the similarities in the flow for different response types. The acceleration limits that divide the behaviour
according to response types can hence be determined. Asymptotic analysis is also a method to study dis-
turbance propagation in the boundary layer. Examples include, transition of the boundary layer due to
Tollmien-Schlichting waves, Taylor-Gortler vortices and the Kelvin-Helmholtz instability in separated
flows (Dovgal et al. [101, 102]). Studies could not be found where the effect of arbitrary motion on
these disturbances are analytically investigated. To investigate the shock wave boundary layer interac-
tion of supersonic and hypersonic flows analytically, it is suggested that the method of characteristics

be augmented to account for arbitrary motion.
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10.2.2 Improvements to the Code

There are a number of ways in which the current solver can be improved upon. The solver does not
make provision for flow with a moving axis. Implementing the additional term is simple. Tt involves
inclusion of the additional unsteady term in the source terms and accounting for the movable axis by
specifying a centre of gravity on the object under analysis. However, in external ballistic applications
the Magnus force acts through the centre of pressure. Implementing a movable axis might influence
the manner in which the Magnus source term is implemented. A pressure-based solver was used in this
study. Pressure-based solvers were not created for the resolution of supersonic and hypersonic flows
(Ferziger and Peric [92], Versteeg and Malalasekera [69]). Although, it has been augmented in recent
years and applied to the higher flow regime (Menter et al. [103]). It is advisable that a density based
solver be developed for the analysis of high velocity flows (Xisto et al. [104]). These types of solvers are
able to capture the shock wave propagation more accurately with fewer computational nodes than other
methods. A study with the aim to numerically investigate disturbance propagation in turbulent boundary
layers will benefit from alternative simulation techniques such a Large Eddy Simulation (LES) or Direct
Numerical Simulation (DNS) (Hattori et al. [105], Spalart et al. [106], Orellano and Wengle [107]). The
Reynolds Average Navier-Stokes (RANS) methodolgy currently employed can easily be extended to
include reacting flows, two-phase flows and porous flows. These have specific application in the defence

environment for air-breathing engines and internal ballistic analysis.

10.2.3 Numerical Research

Further investigation can be done to numerically define the limits of the response types as proposed
in this research. Accelerations and decelerations of 70g to 700 000g were imposed on the flow field.
The exact limits of transition from one response to the other were not defined explicitly. Furthermore,
Response Type | was not envoked for the disk case and the cone only displayed a Type III response.
More simulations are required to predict the onset of response types.

The solver was validated in this case for laminar boundary layers. The modularity of OpenFOAM
allows for the immediate inclusion of turbulence models and the subsequent validation of low velocity
turbulent cases. One equations models, such a Spalart-Almaras, and two equations models, such a the x—
e-model and the k¥ — w-model can be directly implemented without changes to the source code (Ferziger
and Peric [92], Versteeg and Malalasekera [69]). The parameters in these turbulence models are scalar
values and therefore invariant under transformation.

Improvements to the code suggested in the previous section will allow for more complex simula-
tions. The cases can be extended to the supersonic and hypersonic regimes. Disturbance formation and
propagation can be studied with slight alterations to the code. More complex flows, such as turbulent
combustion in air breathing engines, porous flow inside large calibre gun chambers and two-phase flow
in rocket engines can be studied using this methodology.

The graph of Wazzan et al. [78] were generated for steady conditions. The analytical and numer-

ical studies can be used to generated a similar graph for unsteady conditions. This will assist in the
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classification of flow regimes for arbitrary motion.

10.3 Alternative Applications

The methods used in this research, were developed to study the behaviour of the boundary layer to
arbitrary motion. There are however a number of unforeseen alternative applications where it can be
used.

The down-wash of a helicopter hovering above a ship's flight deck has been widely studied (Schau
et al. [108], Scott et al. [109]). The computational requirement of such a study is very expensive since a
movable mesh is required. Constant re-meshing of the grid does not allow for accurate resolution of the
boundary layer on the helicopter blades. The code developed in this study is capable resolving such a
domain with a stationary grid. Not only does this significantly reduce the computational time required,
but it also allows for proper resolution of the boundary layer around the blades. Similarly, studying the
effect of the helicopter blades on each other, specifically the disturbances generated by each blade, can
be done with relative ease. This can also be employed in studies where the effect of a ship's body on
the propeller is investigated (Martin et al. [110], Shin et al. [111]). In military applications the ship's
propeller must be optimized to generate as little cavitation as possible. Cavitation damages the propeller
blades and generates noise which an opposing force can use to track the ship. Again, as in the case of the
helicopter, a manoeuvring ship can be studied with a stationary grid and fine resolution of the boundary
layer on the propeller. The research methods can be used for unsteady solutions of the start-up or shut-
down of turbo-machines (Rainbird et al. [112], C.Trivedi et al. [113]). The majority of computational
studies in turbo-machines only considers steady conditions. It was seen in the body of this thesis that the
flow history plays an important part in the unsteady boundary layer of an object. The velocity profiles
for unsteady condition on turbine blades, wind turbines and other rotating machines can be determined.

Advanced boundary layer research can be conducted with the methods developed in this thesis.
Since the behaviour of the boundary layer can be predicted, it is of use in flow control studies. Stability
analysis, disturbance propagation and transition studies can also be done.

Fluid structure interaction studies requires input from the fluid flow and more specifically the bound-
ary layer. More realistic prediction of the boundary layer flow will result in enhanced simulations for

structural response. This is applicable in flutter analysis and development of intelligent materials.
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Appendix

Proof of Identities

The identities below are referred to in the main text of this thesis.

Identity 1

V-(xAQ)

0 .
= a[x‘]Qk —kuj]l
l

0 .
=[x Qg —xQ;]j
0x

0
+ E[xigj —iji]k

=0

Identity 2

V-xAQ)
0 . ..
= a—xi[ijk —x€251i

- i[xiQk —xQlj
0x
+i[xiQ~—x~Q~]k

o j T XN
=0
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Identity 3
V2(x A Q)
% 9% 4
=(—+— + —)x:Qp —x: Qi
ax? ax? axi SR TR
2 9 4 .
—(@‘F@‘Fw)[xigk—xkgih
i J k
2 4 4
+(a—xlz+w+@)[x191—xj£2l]k
J
=0
Identity 4
V2(xAQ)
2 4

=(— + — + —5)[x;Qp — 2, Qi
o2 ox? ox2 TR
o2 0% 9% . :
—(—+—+ )% Qp — 2]
0x?  0x? ze 2 ~ %2
2 9 2 . :
H— +— + —)x; Q2 —x,;Q; ]k
0x? OxJz. Ox]% T

368

© University of Pretoria



-
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

QA YUNIBESITHI YA PRETORIA

Identity 5
(e-V)EAQ)=cnQ
LH=(c-V)xAQ)
0 0 .
= (Cia—xi + Cjaj +cCp a)[(xjgk _kuj)l
= (o Qp — 2 Q;)j + (x;Q — x;Q,)k]
=(c;Qp —cpQi—(c;Qp —crQ)j
+(Cin—CjQi)k]
(e-V)EAQ)=cAQ
RH=cAQ
=(cjQp — cr QNi—(c;Qp — cr )]
+(Cin—CjQi)k]
LH=RH
Identity 6

(c-VEAQ)=cAQ

LH=(c-V)xAQ)

0 0 . L.
:(Cia_xi +Cj£j +cka)[(xjﬂk —xx 21

— (i Qp — Q23 + (2 — x4 K]
= (c;Qp — cpQi— (¢; Qp — 2 Q)]
+ (Cin - CjQi)k]

RH=cAQ
=(cjQ — cpQNi—(ciQ — ek L))

+(Cin - CjQi)k]

LH=RH
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Identity 7
VEAQ)+VEADT =0
VxAQ)=
Gixi(ijk —kuj) %(xjﬁk —kuj)
%(—xiﬁk +xQ;) .. %(—xiﬁk +x,Q;)
a%(xiﬂj—iji) %(xiﬂj—xjﬂi)
0 Qp  —Q;
= —Qk 0 Q,
Q; - 0
VEAQ)+VEADT =0
_Qk 0 Q; + Qk 0 -Q; t = 0
Q; -Q 0 -Q; Q; 0
Identity 8

xANQ=-0QAx

LH=xAQ
= (2 Qp — 0 QI — (x;Qp — x)j
+(x; Q- x;Q)k

RH=-QAx
= —[(xp Q) — x; Q)i — (. Q; — % Qp)j
+(x;Q; —x; QK]
= (o Qp — 2 Q)i — (2 Qp — x£Q;)j

+(xin —iji)k

LH=RH
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Appendix

Code Formulations for the Accelerating Reference Frame Solving Utility

n this appendix the code formulations for the Accelerating Reference Frame Solver, designated
ARFrhoPimpleFoam, are shown.

B.1 ARFrhoPimpleFoam Code Formulation

Figure B.1: ARFrhoPimpleFoam Solver Root Folder

OpenFOAM  madeleine-2.3.0 userUtil ARFrhoPimpleFoam Make ' y Q, search

Make ARFrhoPimpleFoa ARFrhoPimpleFoa compressibleCreat
m.C m.dep ePhiRel.H

rhoEgn.H
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.2: ARFrhoPimpleFoam Solver Make Folder

+  OpenFOAM  madeleine-2.3.0 userUtil ARFrhoPimpleFoam Make

10 10
18 i
18 18

linux64GccDPOpL files options

Figure B.3: ARFrhoPimpleFoam Solver Installation Location

files (ibm-03 ~fOpenFOAM/madeleine-2.3.0/userUtil/ARFrhoPimpleFoam/Make) - gedit

E_ B open - BB save - | DI ¢

files x options x
ARFrhoPimpleFoam.C

EXE = S(FOAM_USER_APPBIN)/ARFrhoPimpleFoan|

Figure B.4: ARFrhoPimpleFoam Solver Dependent Utilities

options (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userUtil/ARFrhoPimpleFoam/Make) - gedit

!'_ P open ~ [ save |g| B D GF
files = options
EXE_INC = \

-IS(LIB_SRC)/thermophysicalModels/basic/1lnInclude
-IS(LIB_SRC)/turbulenceModels/compressible/turbulenceModel \
-IS(LIB_SRC)/finiteVolume/lnInclude
-IS(LIB_SRC)/meshTools/lnInclude \
-IS(LIB_SRC)/sampling/lnInclude \
-IS(LIB_SRC)/fvOoptions/lnInclude \

-IS(HOME) /OpenFOAM/madeleine-2.3.0/userLib/lnInclude Y

EXE_LIBS = \
-1fluidThermophysicalModels \
-lspecie \
-lcompressibleTurbulenceModel \
-lcompressibleRASModels \
-lcompressibleLESModels Y\
-1finiteVolume \

-lmeshTools \
-lsampling \
-1fvOptions \
-L$(FOAM_USER_LIBBIN) \
-LARFModels
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B.1. ARFRHOPIMPLEFOAM CODE FORMULATION

Figure B.5: ARFrhoPimpleFoam C++ Main Code

ARFrhoPimpleFoam.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0f/userUtilfARFrhoPimpleFoam) - gedit

E- P{]pen + B8 save |g| " 2. @

ARFrhoPimpleFoam.C x
while (runTime.run())

{

#include "readTimeControls.H"

#include "compressibleCourantho.H"

#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

if (pimple.nCorrPIMPLE() <= 1)

#include "rhoEgn.H"

}

/] --- Pressure-velocity PIMPLE corrector loop

while (pimple.loop())

{

#include "UEgn.H"
#include "EEqn.H"
/] --- Pressure corrector loop
wrile (pimple.correct())
{
#include "pEgn.H"
1
// Update the absolute velocity
U = Urel + ARF-=U();
if (pimple.turbCorr())
{
turbulence->correct();
}

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl =< endl;

}

Info<< "End\n" << endl;
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.6: ARFrhoPimpleFoam C++ Create Fields Header File

createFields.H (ibm-03 ~fOpenFOAM/madeleine-2.3.0f/userUtilfARFrhoPimpleFoam) - gedit

E_ B open - Bsave M & undo | S

createFields.H x

J/ Create the absolute wvelocity
volVectorField U

(
I0object
(
e,
runTime. timeName(),
mesh,
I0object::NO_READ,
I0object::AUTO_WRITE
),
Urel + ARF-=U()
):

J/ Create the arf velocity

volVectorField Uarf

(
I0object
(
"Uarf",
runTime. timeName(),
mesh,
I0object::NO_READ,
I0object: :AUTO_WRITE
),
ARF->U()
);

// Create the abs| velocity

volVectorField Uabs

(
I0object
(
"Uabs",
runTime. timeName(),
mesh,
I0object::NO_READ,
I0object: :AUTO_WRITE
Y,
ARF-=Uabs()
);
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B.1. ARFRHOPIMPLEFOAM CODE FORMULATION

Figure B.7: ARFrhoPimpleFoam C++ rhoEqn.H Code

rhoEqn.H (ibm-03 ~/OpenFOAM/madeleine-2.3.0/useruUtil/ARFrhoPimpleFoam) - gedit

E_ P Open -~ {'1 Save — r‘*. /

rhoEgn.H x
___________________________________________________________________________ t\
|
F ield | OpenFOAM: The Open Source CFD Toolbox
0 peration |
A nd | Copyright (C) 2011 OpenFOAM Foundation
M anipulation |
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Global
rhoEgn
Description|
Solve the continuity for density.
\* ___________________________________________________________________________ tf
{
solve(fvm::ddt(rho) + fvc::div(phi));
1

!! A A A A A A A A R A A A A R A A A A A A A A A R A AR A A XA A A A A AR T A A XA AT AR AR A AR A A F A dF A d L ExH f{
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Figure B.8: ARFrhoPimpleFoam C++ EEqn.H Code

EEqn.H (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userUtil/ARFrhoPimpleFoam) - gedit

!'_ B open - B save =, ‘" D @

EEqQn.H X

volScalarField& he = thermo.he();

fvScalarMatrix EEgn
(
fvm::ddt(rho, he) + fvm::div(phi, he)
+ fvc::ddt(rho, K) + fvc::div(phi, K)
+ (
he.name() == "e"
? fvc:i:div
(
fvc::absolute(phi/fvc::interpolate(rho), Urel),
P,
"div(phiv,p)"
)
: -dpdt
)
- fvm::laplacian(turbulence-=alphakff(), he)

fvOptions(rho, he)
);

EEqn.relax();
fvOptions.constrain(EEqn);
EEqn.solve();
fvOptions.correct(he);

thermo.correct();
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Figure B.9: ARFrhoPimpleFoam C++ UEqn.H Code

UEqn.H (ibm-03 ~/OpenFOAM/madeleine-2.3.0/useruUtil/ARFrhoPimpleFoam) - gedit

E_ B open - B8 save = B 5 Gr

rhoEgn.H x UEgn.H x
// solve the Momentum equation

tmp<fvVectorMatrix= UEqn
(
fvm::ddt(rho, Urel)
+ fvm::div(phi, Urel)
+ turbulence->divDevRhoReff({Urel)
+ rho*ARF->5u()
fvoptions(rho, Urel)
)

UEgn().relax();
fvOptions.constrain(UEqn());

if (pimple.momentumPredictor())

{
solve(UEqn() == -fvc::grad(p));
fvoptions.correct(Urel);
K = @.5*magsqr(Urel);

}
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B.2 ARFModel Code Formulation

Figure B.10: ARF Library Root Folder

F§ madeleine OpenFOAM  madeleine-2.3.0 userLib

ARF Ininclude Make

Figure B.11: ARFModel Library Root Folder

F8 madeleine OpenFOAM madeleine-2.3.0 userLib ARF ARFModel ¢ Q, search
ARFModel tabulatedAccelerati  tabulatedFrameVvel tabulatedOmega
on ocity

Figure B.12: ARFModel Library Sources

madeleine-2.3.0 userLib ARF ARFModel ARFModel

e++ e = e++
ARFModel.C ARFModel.dep ARFModel.H ARFModelNew.C
1010
ARFModelNew.dep
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Figure B.13: ARFModel C++ Source Code ARFProperties Constructors

ARFModel.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userLib/ARF/ARFModel/ARFModel) - gedit

E- Popen + B save B B D, &

ARFModel.C x

J] * % % % % % % k k k x & % % % % Constructors * % * % % * % & % * & & * x [f

Foam: :ARF: : ARFModel: : ARFModel

(
const word& type,
const volVectorField& Urel
)
I0dictionary
(
I0object
(

"ARFProperties”,

Urel.time().constant(),

Urel.db(),

I0object: :MUST_READ_IF_MODIFIED,

I0object::NO_WRITE

)
),
Urel_(Urel),
mesh_(Urel_.mesh()),
axis_(lookup("axis")),
axisTrans_(lookup("axisTrans")),
omegaModelCoeffs_(subDict("tabulatedOmegaCoeffs")),
velocityModelCoeffs_(subDict("tabulatedFramevelocityCoeffs")),
delTime_(dimensionedScalar("delTime", dimTime, lockup("delTime"))),
omega_(dimensionedvector("omega", dimless/dimTime, vector::zero)),
omegaDot_(dimensionedVector("omegaDot", dimless/dimTime/dimTime, vector::zero)),
framevVelocity (dimensionedvector("framevelocity", dimLength/dimTime, vector::zero)),
frameVelocityDot_(dimensionedVector("frameVelocityDot", dimLength/dimTime/dimTime,
vector::zero))
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Figure B.14: ARFModel C++ Source Code Vector Definitions

ARFModel.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userLib/ARF/ARFModel /ARFModel) - gedit

E_ B open - 2 save B D

ARFModel.C x

const Foam::vector& Foam::ARF::ARFModel::axis() const

{
return axis_;
}
const Foam::vector& Foam::ARF::ARFModel::axisTrans() const
{
return axisTrans_;
1
const Foam::dimensionedScalar& Foam::ARF::ARFModel::delTime() const
{
return delTime_;
}
const Foam::dimensionedVector& Foam::ARF::ARFModel::omega()
{
this->update();
return omega_;
}

const Foam::dimensionedVector& Foam::ARF::ARFModel::omegaDot()

this->update();
return omegaDot_;

}
const Foam::dimensionedVector& Foam::ARF::ARFModel::framevelocity()
{
this->update();
return frameVelocity_;
}
const Foam::dimensionedVector& Foam::ARF::ARFModel::frameVelocityDot()
{
this->update();
return frameVelocityDot_;
}
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Figure B.15: ARFModel C++ Source Code - Coriolis and Centrifugal Source Calculation

ARFModel.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userLib/ARF/ARFModel/ARFModel) - gedit

BRoe - Boe 2 -

ARFModel.C x

-

Foam: :tmp<Foam: :DimensionedField<Foam: :vector, Foam::volMesh> =
Foam: :ARF: :ARFModel: :Fcoriolis()

{

return tmp<DimensionedField<vector, volMesh> =

(

new DimensionedField<vector, volMesh>

(

Ioobject

(
"Fcoriolis”,
mesh_.time().timeName(),
mesh_,
I0object: :NO_READ,
I0object::NO_WRITE

),

2.0%omega_ * Urel_

Foam: : tmp<Foam: :DimensionedField<Foam: :vector, Foam::volMesh> =
Foam: :ARF: :ARFModel: :Fcentrifugal()

{

return tmp<DimensionedField<vector, volMesh> =

(

new DimensionedField<vector, volMesh=

(

I0object
(
"Fcentrifugal”,

mesh_.time().timeName(),
mesh_,
I0object::NO_READ,
I0object::NO_WRITE

Y,

omega() ~ (omega() ~ mesh_.c())
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Figure B.16: ARFModel C++ Source Code - Euler and Rotation-Translation Interaction Source Calcu-
lation

ARFModel.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userLib/ARF/ARFModel/ARFModel) - gedit

E_ B open - B8 save - | DI
ARFModel.C x
)
);

}

Foam: :tmp<Foam: :DimensionedField<Foam::vector, Foam::volMesh> =
Foam: :ARF: : ARFModel: :Feuler()

{
return tmp<DimensionedField<vector, volMesh> =
(
new DimensionedField<vector, volMesh=
(
I0object
(
"Feuler",
mesh_.time().timeName(),
mesh_,
I0object::NO_READ,
I0object::NO_WRITE
),
omegaDot() »~ mesh_.C()
)
b
}

Foam: :tmp<Foam: :DimensionedField<Foam::vector, Foam::volMesh> =
Foam: :ARF: :ARFModel: :FinterframeCoriolis()
{
return tmp<DimensionedField<vector, volMesh> =
(
new DimensionedField<vector, volMesh=
(
I0object
(
"FinterframeCoriolis”,
mesh_.time().timeName(),
mesh_,
I0object::NO_READ,
I0object::NO_WRITE
),
mesh_,
2.0%omega() »~ frameVelocity()
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Figure B.17: ARFModel C++ Source Code - Frame Acceleration and Source Summation Calculations

ARFModel.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userLib/ARF/ARFModel/ARFModel) - gedit

E- Popen « [ save |g| | 2.

ARFModel.C x

mesh_.time().timeName(),
mesh_,
I0object: :NO_READ,
I0object::NO_WRITE

),

mesh_,

2.0%omega() » frameVelocity()

}

Foam: :tmp<Foam: :DimensionedField<Foam: :vector, Foam::volMesh> =
Foam: :ARF: :ARFModel: :FtranslationAccelleration()
{
return tmp<DimensionedField<vector, volMesh> =
(
new DimensionedField<vector, volMesh>
(
I0object
(
"FtranslationAccelleration”,
mesh_.time().timeName(),
mesh_,
I0object::NO_READ,
I0object::NO_WRITE
),
mesh_,
frameVelocityDot_

}

Foam: :tmp<Foam: :DimensionedField<Foam: :vector, Foam::volMesh> =
Foam: :ARF: :ARFModel: :Su()
{

return Fcoriolis() + Fcentrifugal() + Feuler() + FinterframeCoriolis() +
FtranslationAccelleration();

}
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Figure B.18: ARFModel C++ Source Code Velocity Calculation

*ARFModel.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userLib/ARF/ARFModel/ARFModel) - gedit

E_ POpen + 8 save |g| €&, Undo | S

*ARFModel.C x

Foam: :tmp<Foam::volVectorField> Foam::ARF::ARFModel::U()

{
return tmp<volVectorField:=
(
new volVectorField
(
I0object
(
"Usrf",
mesh_.time().timeName(),
mesh_,

I0object: :NO_READ,
I0object: :NO_WRITE

),
(omega() ~ mesh_.C()) + frameVelocity() + (frameVelocityDot()+(omegaDot() »
mesh_.C()))*delTime()

)
);

Foam: :tmp<Foam: :volVectorField> Foam::ARF::ARFModel: :Uabs()

{
tmp<volVectorField> Usrf = U();

tmp<volVectorField> tUabs

(
new volVectorField
(
I0object
(
"Uabs",
mesh_.time().timeName(),
mesh_,
I0object::NO_READ,
I0object::NO_WRITE,
false
),
Usrf
)
)H

384

© University of Pretoria



b

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Q= YUNIBESITHI YA PRETORIA

B.2. ARFMODEL CODE FORMULATION

Figure B.19: ARFModel C++ Source Code Internal Field and Boundary Layer Correction

*ARFModel.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userLib/ARF/ARFModel /ARFModel) - gedit

E_ B open - Bsave M & undo | D G

*ARFModel.C x
new volVectorField

(
Ioobject
(
"Uabs",
mesh_.time().timeName(),
mesh_,
I0object: :NO_READ,
I0object::NO_WRITE,
false
Y,
Usrf
)

)

// Add ARF contribution to internal field
tUabs().internalField() += Urel_.internalField();

// Add Urel boundary contributions
const volVectorField::GeometricBoundaryField& bvf = Urel_.boundaryField();

forall(bvf, 1)

if (isA<ARFVelocityFvPatchvectorField=(bvf[1]))

{
J/ only include relative contributions from
// ARFVelocityFvPatchVectorField's
const ARFVelocityFvPatchVectorField& UrelPatch =
refCast<const ARFVelocityFvPatchVectorField=(bvf[i]);
if (UrelPatch.relative())
tUabs().boundaryField()[1] += Urel_.boundaryField()[1];
}
else
tUabs().boundaryField()[1] += Urel_.boundaryField()[1];
}

}

return tUabs;
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Figure B.20: ARFModel Header File Returned Parameters

ARFModel.H (ibm-03 ~/OpenFOAM/madeleine-2.3.0f/userLib/ARF/ARFModel /ARFModel) - gedit

E_ B open - B save = B D P

*ARFModel.C x ARFModel.H x

//- Return the [time [s]
const dimensionedScalar& delTime() const;

//- Return the angular velocity field [rad/s]
const dimensionedvector& omega();

//- Return the angular acceleration field [rad/s/s]
const dimensionedvVector& omegaDot();

//- Return the translation velocity field [m/s]
const dimensionedVector& frameVelocity();

//- Return the angular acceleration field [m/s/s]
const dimensionedVector& frameVelocityDot();

//- Return the coriolis force
tmp<DimensionedField<vector, volMesh> > Fcoriolis();

//- Return the centrifugal force
tmp<DimensionedField<vector, volMesh> > Fcentrifugal();

//- Return the Euler force
tmp<DimensionedField<vector, volMesh> > Feuler();

//- Return the interframe coriolis force
tmp<DimensionedField<vector, volMesh> > FinterframeCoriolis();
//- Return the translational acceleration force

tmp<DimensionedField<vector, volMesh> > FtranslationAccelleration();

//- Source term component for momentum equation
tmp<DimensionedField<vector, volMesh> > Su();

//- Return velocity vector from positions
vectorField velocity(const vectorField& positions);

//- Return velocity of ARF for complete mesh
tmp<volVectorField> U();

//- Return absolute velocity for complete mesh
tmp<volVectorField> Uabs();
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Figure B.21: tabulated Acceleration Library Root Folder

madeleine-2.3.0 userLib ARF ARFModel tabulatedAcceleration

e+ + 018
tabulatedAccelerati tabulatedAccelerati tabulatedAccelerati
on.C on.dep on.H

Figure B.22: tabulatedAcceleration C++ Source Constructors

tabulatedAcceleration.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/userLib/ARF/ARFModel/tabulatedAcce

E_ B open - B save |

tabulatedAcceleration.H x tabulatedAcceleration.C x
A I

#include "tabulatedAcceleration.H"

#include "addToRunTimeSelectionTable.H"
#include "mathematicalConstants.H"

!! * & & & & k & k & ¥ & ®* & & Static Data Members * ®* ®* & ¥ ¥ ¥ &% & ¥ ¥ ¥ * ”

namespace Foam

{
namespace ARF
{
defineTypeNameAndDebug(tabulatedAcceleration, 0);
addToRunTimeSelectionTable
(
ARFModel,
tabulatedAcceleration,
dictionary
);
}
}

,{,{****************cOnstructorS **************,,

Foam: :ARF::tabulatedAcceleration: :tabulatedAcceleration

(
const volVectorField& U
)
ARFModel(typeName, U),
tabulatedAccelerationl_(omegaModelCoeffs_),
| tabulatedAcceleration2_(velocityModelCoeffs_)
{
J// Initialise the angular wvelocity
omega_.value() = axis_*tabulatedAccelerationl_(U.mesh().time().value());
frameVelocity .value() = axisTrans_*tabulatedAcceleration2_(U.mesh().time().value());
}
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Figure B.23: tabulatedAcceleration C++ Source Member Functions

*tabulatedAcceleration.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0f/userLib/ARF/ARFModel/tabulatedAcc

E_ B open - &, & undo |

tabulatedAcceleration.H x *tabulatedAcceleration.C x

J] *® k% k k %k k k k x k k % x * * Destructor ¥ k k K kK k k kK k k K k * k * [
Foam: :ARF::tabulatedAcceleration::~tabulatedAcceleration()

{3

JI * % % % %k % % % & % x % % x % Member Functions * * * % % % % % % % * % * [/
bool Foam::ARF::tabulatedAcceleration::read()

if (ARFModel::read())

{
/| Re-read tabulatedAcceleration
omegaModelCoeffs_.lookup("tabulatedAcceleration") =>> tabulatedAccelerationi_;
velocityModelCoeffs_.lookup("tabulatedAcceleration") >> tabulatedAccelerationz_;
/[ Update velocity
omega_.value() = axis_*tabulatedAccelerationl_(mesh_.time().value());
frameVelocity_.wvalue() = axisTrans_*tabulatedAccelerationz_(mesh_.time().value());
return true;

1

else

{
return false;

}

1
void Foam::ARF::tabulatedAcceleration::update()
J// Update velocity
omega_.value() = axis_*tabulatedAccelerationi_(mesh_.time().value());

omegaDot_.value() = axis_*tabulatedAccelerationi_.rate0fChange(mesh_.time().value());

frameVelocity_.value() = axisTrans_*tabulatedAcceleration2_(mesh_.time().value());
framevVelocityDot_.value() = axisTrans_*tabulatedAcceleration2_.rateOfChange(mesh_.time

().value());

}

‘(! KEE A A AR AR A A A AR A A I I A I AR AR AR AA A AR I A A A AT I A AR A E A A A AR d bbb h Ao b d&d ‘(‘(
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B.3 ARFFreeStreamVelocity Boundary Implementation

Figure B.24: ARF derivedFvPatchFields Root Folder

OpenFOAM  madeleine-2.3.0 userLib ARF derivedFvPatchFields

—d et

ARFFreestreamVelo  ARFVelocityFvPatch
cityFvPatchVectorFi VectorField
eld

Figure B.25: ARFVelocity Boundary Condition Description

ARFVelocityFvPatchVectorField.H (ibm-03 ~fOpenFOAM/madeleine-2.3.0/...elds/ARFVelocityFvPatchVe

B PBooen - Bsae 5 W O 7
L | ARFVelocityFvPatchVectorField.H X ARFVelocityFvPatchvectorField.C x )
Description

Velocity condition to be used in conjunction with the single
rotating frame (ARF) model (see: ARFModel class)

Given the free stream velocity in the absolute frame, the condition
applies the appropriate rotation transformation in time and space to
determine the local velocity.

The optional \c relative flag switches the behaviour of the patch
such that:

- relative = yes: inlet velocity applied 'as is':
\FI
\f]

- relative = no : ARF velocity is subtracted from the inlet velocity:

U p=uU_{in}

\FL
Up=uU{in} - U _{p,srf}
\f]
where
\vartable
u_p = patch velocity [m/s]
U_{in} = user-specified inlet velocity

U_{p,skf} = ARF velocity
\endvartable
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Figure B.26: ARFVelocity Boundary Condition Source Code

ARFVelocityFvPatchVectorField.C (ibm-03 ~/OpenFOAM/madeleine-2.3.0/...elds/ARFVelocityFvPatchVe

B PBoren - Bsae 5 B D,

| ARFVelocityFvPatchvectorField.H X ARFVelocityFvPatchVectorField.C x |)

TSR e g mm gy

const ARFVelocityFvPatchVectorField&a tiptf =
refCast<const ARFVelocityFvPatchVectorField=(ptf);

inletvalue_.rmap(tiptf.inletvalue_, addr);

}
void Foam::ARFVelocityFvPatchVectorField: :updateCoeffs()
{
if (updated())
{
return;
}
J// If not relative to the ARF include the effect of the ARF
if (!relative )
{
/| Get reference to the ARF model
ARF::ARFModel& sfrf =
const_cast<ARF::ARFModel&>(db().lookupObject<ARF::ARFModel=("ARFProperties"));
/[ Determine patch velocity due to ARF
const vectorField ARFVelocity(srf.velocity(patch().cf()));
operator==(-ARFVelocity + inletValue_);
J/ If already relative to the ARF simply supply the inlet wvalue as a fixed
/] value
else
{
operator==(inletvalue );
}
fixedvalueFvPatchvectorField: :updateCoeffs();
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Figure B.27: ARFFreestreamVelocity Boundary Condition Description

ARFFreestreamVelocityFvPatchVectorField.H (ibm-03 ~/OpenFOAM/madeleine-2...eamVelocityFvPakch

E_ B open - B8 save = B S ¢

ARFFreestreamVeloci...FvPatchVectorField.H x ARFFreestreamVeloci...FvPatchvectorField.C x

Class
Foam: : ARFVelocityFvPatchvectorField

Description
Freestream velocity condition to be used in conjunction with the single
rotating frame (ARF) model (see: ARFModel class)

Given the free stream velocity in the absolute frame, the conditien
applies the appropriate rotation transformation in time and space to
determine the local velecity using:

\FL
U p = cos(\theta)*U_{Inf} + sin(theta) (n~UInf) - U_{p,ARF}
\F]
where
\vartable
u_p = patch velocity [m/s]
U_{Inf} = free stream velocity in the absolute frame [m/s]
theta = swept angle [rad]
n = axis direction of the ARF
U {p,srf} = ARF velocity of the patch
\endvartable
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Figure B.28: ARFFreestreamVelocity Boundary Condition Source Code

ARFFreestreamVelocityFvPatchVectorField.C (ibm-03 ~/OpenFOAM/madeleine-2...eamVelocityFvPatch

n. Popen v ﬂsjp |E| ri /

ARFFreestreamVeloci...FvPatchvectorField H x ARFFreestreamVeloci...FvPatchvectorField.C x

void Foam::ARFFreestreamVelocityFvPatchVectorField: :updateCoeffs()

{
if (updated())
{
return;
}

// Get reference to the ARF model
ARF::ARFModel& srf =
const_cast<ARF::ARFModel&>(db().lookupObject<ARF: :ARFModel>("ARFProperties"));

word ddtScheme

(
this->dimensionedInternalField().mesh()
.ddtScheme(this->dimensionedInternalField().name())
):
if (ddtscheme == fv::steadyStateDdtScheme<scalar=::typeName)
{
J/ If not relative to the ARF include the effect of the ARF
if (lrelative )
refvalue() = UInf_ - srf.velocity(patch().Cf());
}
/] If already relative to the ARF simply supply the inlet value
// as a fixed value
else
refvalue() = UInf_;
3
i
else
{
scalar time = this-=db().time().value();
scalar theta = time*mag(srf.omega().value());
refvalue() =
cos(theta)*UInf_ + sin(theta)*(srf.axis() » UInf_)
- srf.velocity(patch().Ccf());
}
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B.4

Case Structure

Figure B.29: OpenFOAM Case Initial Set-up

Name v
v 0
] P
e T
iz | Urel
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.30: OpenFOAM Root Case Folder

run  ARFrhoPimpleFoamTest cone mixed group6a set2

L
L
L

0.01 0.005 0.0025

LR
L
L
L

0.0075 0.00125 0.00375 0.00625
0.00875 constant postProcessing system
10 101 101
log machine run

Figure B.31: OpenFOAM Mesh Description Files

cone mixed group6a set2z constant polyMesh

1 1 1 1
g ik i il
1 161 161 101

1018 119 1018 18
blockMeshDict boundary Faces neighbour
i 1
1% i
1m0 1
e 118
owner points

Figure B.32: OpenFOAM Case System Folder

ARFrhoPimpleFoamTest cone mixed group6a set2 system

1 1 1 1
g ik i il
1 161 161 101

1018 119 1018 18
controlDict decomposeParDict fvSchemes fvSolution
s
sampleDict
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B.4. CASE STRUCTURE

Figure B.33: OpenFOAM Case Initial Conditions Folder

uniform Fc Fe Fta

1 1 i i

10 1% 10 12

1 1 1w 1m

1019 1919 1me e
p phi rho Su

1 1 i i

10 1% 19 10

01 01 i@ i

1018 119 1me 19
T U Uabs Uarf

1 1

10 1%

01 01

1616 118

Urel wallShearStress

Figure B.34: OpenFOAM Case Constant Folder

ARFrhoPimpleFoamTest cone mixed group6a set2 constant

polymesh ARFProperties data.csv datal.csv
RASFroperties thermophysicalPro turbulenceProperti
perties es
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APPENDIX B. CODE FORMULATIONS FOR THE ACCELERATING REFERENCE FRAME SOLVING
UTILITY

Figure B.35: Acceleration Reference Frame Properties File

ARFProperties (ibm-03 ~/OpenFOAM/madeleine-2.3.0/run/ARFrh...leFoamTest/cone/mixed/group6a/se

!I- P-Dpen + 8 save = r'". D

ARFProperties x

V* ———————————————————————————————— I =\
| ========= | |
[AYY /] F ield | OpenFOAM: The Open Source CFD Toolbox
Y / 0 peration | Version: 2.2.0
| W/ A nd | Web: WWW.0penFOAM.org
| W M anipulation | |
\* ___________________________________________________________________________ *f‘
FoamFile
{

version 2.0;

format ascii;

class dictionary;

location "constant";

object SRFProperties;
1
!!*************************************;;
ARFModel tabulatedAcceleration;
axis (10 0);
axisTrans (10 0);
delTime 1.25e-5;
tabulatedOmegacCoeffs
{

readerType csv;

fileName "SFOAM_CASE/constant/data.csv";

hasHeaderLine false;

timeColumn 0;

valueColumns (1);
outofBounds error;

}
tabulatedFrameVelocityCoeffs
{
readerType csv;
fileName "SFOAM_CASE/constant/datal.csv";
hasHeaderLine false;
timeColumn 0;

valueColumns (1);
outofBounds error;
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B.4. CASE STRUCTURE

Figure B.36: Tabulated Frame Velocity at Specified Time

datal.csv (ibm-03 ~/OpenFOAM/madeleine-2.3.0/run/ARFrhoPimpleFoamTest fcone/mixed/group6a/set:

E_ Popen + B8 save |g| E

| ] data.csv x | [ ] datal.csv X

o, -1
1.0e-2|, -4
1000, -4

Figure B.37: Turbulence Model Description

RASProperties (ibm-03 ~/OpenFOAM/madeleine-2.3.0/run/ARFrh...leFoamTest /cone/mixed/group6a/se

E- Popen + B8 save — E

RASProperties x

R L e e *\
| | |
| F ield | OpenFOAM: The Open Source CFD Toolbox
| 0 peration | Version: 2.2.0 |
| A nd | Web: Www . OpenFOAM. org
| M anipulation |
O */
F
{

version 2.0;

format ascii;

class dictionary;

location "constant";

object RASProperties;
}
J,fff*************************************II(II(
RASModel laminar;
turbulence of f;
printCoeffs on;

’f’f FhFkrkFkddkhk A d A A E A AT T I I A FF A A A A A A EF AT T T FF A d A EA AT EA T T T ddd II,'II,'
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Figure B.38: Thermo-Physical Property Specification

thermophysicalProperties (ibm-03 ~/OpenFOAM/madeleine-2.3.0/run...mTest/cone/mixed/group6a/set

s =

F i = /

thermophysicalProperties x

| W/ A nd | Web: www .OpenFOAM.org
| W/ M anipulation |
\* ___________________________________________________________________________ *J,f
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object thermophysicalProperties;
1
J{J{*************************************J,fJ,f
thermoType
{
type hePsiThermo;
mixture pureMixture;
transport const;
thermo hConst;
equation0OfsState perfectGas;
specie specie;
energy sensibleEnthalpy;
1
mixture
{
specie
{
nMoles 1;
mollWeight 28.9;
}
thermodynamics
{
Cp 1007;
Hf 0;
1
transport
{
mu le-04;
Pr 0.7;
}
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