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Abstract

By

Christopher Wesley Cleghorn

Particle swarm optimization (PSO) is a well-known stochastic population-based search

algorithm, originally developed by Kennedy and Eberhart in 1995. Given PSO’s success

at solving numerous real world problems, a large number of PSO variants have been

proposed. However, unlike the original PSO, most variants currently have little to no

existing theoretical results. This lack of a theoretical underpinning makes it difficult,

if not impossible, for practitioners to make informed decisions about the algorithmic

setup. This thesis focuses on the criteria needed for particle stability, or as it is often

refereed to as, particle convergence.

While new PSO variants are proposed at a rapid rate, the theoretical analysis often

takes substantially longer to emerge, if at all. In some situation the theoretical analysis

is not performed as the mathematical models needed to actually represent the PSO

variants become too complex or contain intractable subproblems. It is for this reason

that a rapid means of determining approximate stability criteria that does not require

complex mathematical modeling is needed. This thesis presents an empirical approach

for determining the stability criteria for PSO variants. This approach is designed to

provide a real world depiction of particle stability by imposing absolutely no simplifying

assumption on the underlying PSO variant being investigated. This approach is utilized

to identify a number of previously unknown stability criteria.
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This thesis also contains novel theoretical derivations of the stability criteria for both the

fully informed PSO and the unified PSO. The theoretical models are then empirically

validated utilizing the aforementioned empirical approach in an assumption free context.

The thesis closes with a substantial theoretical extension of current PSO stability re-

search. It is common practice within the existing theoretical PSO research to assume

that, in the simplest case, the personal and neighborhood best positions are stagnant.

However, in this thesis, stability criteria are derived under a mathematical model where

by the personal best and neighborhood best positions are treated as convergent se-

quences of random variables. It is also proved that, in order to derive stability criteria,

no weaker assumption on the behavior of the personal and neighborhood best posi-

tions can be made. The theoretical extension presented caters for a large range of PSO

variants.
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Chapter 1

Introduction

1.1 Motivation

In the field of computational intelligence there exists an incredibly vast number of op-

timization algorithms. Many optimization algorithms are designed based on analogies,

often inspired by nature, but the resulting algorithmic behavior is often ignored in favor

of a simple empirical performance analysis. As a result, most computational intelligence

based optimization algorithms are not truly understood from a theoretical perspective.

This leaves two important questions open: Firstly, does the algorithm actually exhibit

behavior in line with its initial intent? Secondly, is the algorithm’s behavior predictable,

and if so what kind of guarantees can be made about the algorithm? This thesis focuses

on answering the second question in the context of particle swarm optimization (PSO).

There are numerous aspects of an optimization technique that can be investigated, rang-

ing from an algorithm’s computational complexity, to the more specific property of rota-

tional invariance. This thesis focuses on the stability of PSO and its variants’ particles.

While there exists a number of theoretical results about PSO, most of PSO’s variants

have undergone little or no analysis. The reason for this is two fold: Firstly, PSO vari-

ants are introduced at such a rapid rate that it is very difficult for the theory to catch

up, given the complexity involved in modeling the algorithm. The second reason is that

some PSO variants contain internal mechanisms that are fundamentally hard to model

1
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Chapter 1. Introduction 2

in practice, for example, dependencies between multiple particles or even sub-swarms,

possible dependencies between previous time steps, the influence of the underlying objec-

tive function on the algorithm behavior, to name but a few. The task of constructing a

model of an algorithm, that is both reflective enough of the actual algorithm and simple

enough to allow for meaningful conclusions to be derived from that model, is far from

straightforward. It is for this reason that an rapid empirical approach for investigating

stability criteria for PSO variants is needed. This thesis provides such an approach.

The empirical approach should have an additional use, namely the verification of the-

oretically derived stability criteria. All stability analysis performed on PSOs rely on a

variant of the stagnation assumption, where by the updating of the personal and neigh-

borhood best positions is heavily restricted. In the most extreme case, the personal and

neighborhood best positions are held constant. While restriction of the personal and

neighborhood best positions’ ability to update can allow for effective modeling of the

PSO’s behavior, all derived results should still be empirically verified against a complete,

and unsimplified PSO. It is for this reason that a simple method for verifying the criteria

for stability is needed.

The use of a stagnation assumption is common place in theoretical analysis of PSOs.

An immediate question is how weak of a stagntion assumption can be made, while

still allowing for stability criteria to be derived. This thesis investigates this important

question for a wide class of PSO variants.

1.2 Objectives

The primary objectives of this thesis are summarized as follows: To

• provide an empirical approach for exploratory stability analysis of new PSO vari-

ants;

• provide an empirical approach that can be utilized to verify theoretically derived

stability criteria in an assumption free context;
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Chapter 1. Introduction 3

• make use of the proposed empirical verification approach to verify newly derived

stability criteria for PSO variants;

• provide a theoretical extension to the existing PSO stability research that relies

on the weakest possible assumption on the behavior of the personal best and

neighborhood best positions. The provided extension should be sufficiently general

to cater for a large class of PSO variants.

1.3 Publication Derived from the Thesis

This section provides a list of all published and submitted conference and journal article

derived from the content of this thesis.

The following is a list of published work:

• C.W. Cleghorn and A.P. Engelbrecht. Particle swarm convergence: An empirical

investigation. In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 2524–2530, Piscataway, NJ, 2014. IEEE Press.

• C.W. Cleghorn and A.P. Engelbrecht. Particle swarm convergence: Standardized

analysis and topological influence. In Proceedings of International Swarm Intelli-

gence Conference (ANTS), Swarm Intelligence, pages 134–145, Switzerland, 2014.

Springer International Publishing.

• C.W. Cleghorn and A.P. Engelbrecht. Fully informed particle swarm optimizer:

Convergence analysis. In Proceedings of the IEEE Congress on Evolutionary Com-

putation, pages 164–170, Piscataway, NJ, 2015. IEEE Press.

• C.W. Cleghorn and A.P. Engelbrecht. Particle swarm variants: Standardized con-

vergence analysis. Swarm Intelligence, 9(2–3):177–203, 2015.

• C.W. Cleghorn and A.P. Engelbrecht. Unified particle swarm optimizer: Conver-

gence analysis. In Proceedings of the IEEE Congress on Evolutionary Computa-

tion, pages 448–454, Piscataway, NJ, 2016. IEEE Press.
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Chapter 1. Introduction 4

• C.W. Cleghorn and A.P. Engelbrecht. Particle swarm optimizer: The impact of

unstable particles on performance. In Proceedings of the IEEE Symposium Series

on Swarm Intelligence, pages 1–7, Piscataway, NJ, 2016. IEEE Press.

The following work has been submitted for review:

• Particle Swarm Stability: Weakest Allowable Assumption on Particle Informers.

Swarm Intelligence Journal, 2017

1.4 Thesis Outline

Chapter 2 presents an algorithmic description of PSO and the PSO variants directly rele-

vant to this thesis. Specifically, the original PSO as developed by Kennedy and Eberhart

[31], with the inclusion of the inertia coefficient as proposed by Shi and Eberhart [56] is

discussed in detail. A detailed explanation of fully informed PSO (FIPS), unified PSO

(UPSO), bare bones PSO (BPSO), and standard PSO 2011 (SPSO2011) is also given.

Chapter 3 presents existing theoretical stability results for PSO and PSO variants. Com-

monly utilized assumptions present in PSO stability analysis literature are presented

along with an overview of the types of convergence relevant to PSO stability analysis.

Existing theoretical stability results for PSO, FIPS, BPSO, and SPSO2011 are presented.

Chapter 4 investigates, using a novel empirical approach, which of the existing theoret-

ically derived stability regions for PSO accurately predicts the true unsimplified PSO

stability region.

Chapter 5 provides a description of a standardized approach for performing stability

analysis on PSO variants. The effectiveness of a specifically designed objective function

for stability analysis is shown. The empirical approach for stability analysis is utilized

to test the influence of the social network structure on PSO’s stability criteria. The

stability criteria for FIPS, BPSO, and SPSO2011 are analyzed.
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Chapter 1. Introduction 5

Chapter 6 focuses on the stability criteria of the fully informed PSO. A novel theoretical

derivation of the stability criteria for FIPS is provided followed by an experimental

verification of the derived stability criteria.

The stability criteria of the unified PSO is the focus of chapter 7. The theoretical

derivation of the stability criteria for UPSO is presented as well as an experimental

verification of the derived stability criteria.

Chapter 8 provides an empirical study of the relationship between particle stability and

PSO’s performance.

Chapter 9 presents an extension to the state of the art theoretical model utilized for

understanding the stability of PSO’s particles. A novel theorem for deriving stability

criteria for a large class of PSO variants, under what is shown to be the weakest allowable

assumption on the personal and neighborhood best positions, is proved. The application

of the proved theorem is shown by deriving stability criteria for a generalized PSO where

all coefficients can be modeled as random variables with arbitrary distributions.

Chapter 10 presents a summary of the findings of this thesis and topics for future research

are also discussed.
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Chapter 2

Particle Swarm Optimization

This chapter presents a detailed discussion and description of PSO and popular PSO

variants. Section 2.1 presents the PSO algorithm, and variants of PSO are discussed in

section 2.2.

2.1 The Particle Swarm Optimization Algorithm

This section introduces the particle swarm optimization (PSO) algorithm. Section 2.1.1

provides a detailed algorithmic description of PSO, followed by a discussion of PSO’s

social network structure in 2.1.2.

2.1.1 Algorithmic Description and Origin of PSO

Particle swarm optimization (PSO) was originally developed by Kennedy and Eberhart

[31] to simulate the complex movement of birds in a flock. The variant of PSO this

section focuses on includes the inertia coefficient proposed by Shi and Eberhart [56],

which, for simplicity is referred to as the PSO algorithm in this thesis.

The PSO algorithm is defined as follows: Let f : Rd → R be the objective function

that the PSO algorithm aims to find an optimum for, where d is the dimensionality of

the objective function. For the sake of simplicity, a minimization problem is assumed

6
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Chapter 2. Particle Swarm Optimization 7

from this point onwards. An optimum o ∈ Rd is defined such that, for all x ∈ Rd,

f(o) ≤ f(x). In this thesis, the analysis focus is on objective functions where the

optima exist. Let Ω (t) be a set of N particles in Rd at a discrete time step t. Then Ω (t)

is said to be the particle swarm at time t. The position xi of particle i is updated using

xi (t+ 1) = xi (t) + vi (t+ 1) , (2.1)

where the velocity update, vi (t+ 1), is defined as

vi (t+ 1) = wvi (t) + c1r1(t)⊗ (yi(t)− xi (t)) + c2r2(t)⊗ (ŷi(t)− xi (t)), (2.2)

where r1,k(t), r2,k(t) ∼ U (0, 1) for all t and 1 ≤ k ≤ d. The operator ⊗ is used to

indicate component-wise multiplication of two vectors. The position yi(t) represents

the “best” position that particle i has visited, where “best” means the location where

the particle had obtained the lowest objective function evaluation. The position ŷi(t)

represents the “best” position that the particles in the neighborhood of the i-th particle

have visited. The coefficients c1, c2, and w are the cognitive, social, and inertia weights,

respectively.

The PSO algorithm is summarized in algorithm 1.

2.1.2 Social Network Structure

One of the driving features of the PSO is social interaction, specifically the way in which

knowledge is shared amongst the particles in the swarm. In general, the social network

structure of a swarm can be viewed as a graph, where nodes represent particles, and the

edges are the allowable direct communication routes. Direct knowledge sharing is only

performed if the particles are directly connected. The group of particles that particle

i is directly connected to is called the neighbourhood Ni of particle i. For example,

consider the graph in figure 2.1 with four particles, then N1 = {1, 2}, N2 = {1, 2, 3},

N3 = {2, 3, 4}, and N4 = {3, 4}. It is also possible to have the social network set up

in such a manner that the communication link is not bi-directional. The graph then

becomes directional, as in the work of Mohais et al [40].
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Chapter 2. Particle Swarm Optimization 8

Algorithm 1 PSO algorithm

Create and initialize a swarm, Ω (0), of N particles uniformly within a predefined
hypercube of dimension d.
Let f be the objective function.
Let yi represent the personal best position of particle i, initialized to xi(0).
Let ŷi represent the neighborhood best position of particle i, initialized to xi(0).
Initialize vi(0) to 0.
repeat

for all particles i = 1, · · · , N do
if f(xi) < f(yi) then
yi = xi

end if
for all particles î with particle i in their neighborhood do

if f(yi) < f(ŷî) then
ŷî = yi

end if
end for

end for
for all particles i = 1, · · · , N do

update the velocity of particle i using equation (2.2)
update the position of particle i using equation (2.1)

end for
until stopping condition is met

Figure 2.1: Simple Social Network.

The social network structure chosen has a direct impact on the behaviour of the swarm

as a whole [29, 32, 46]. When a social network is highly connected, knowledge of the

best particle (its best location) is quickly propagated through the social network. From

an optimization perspective, this implies a faster rate of convergence to an optimum,

as opposed to that of a less connected social network structure. This faster rate of

convergence to an optimum comes at the cost of a greater susceptibility to getting stuck

in local optima. There are many factors that play a role in the flow of information

through a social network. These factors are well explained by Watts and Strogatz [62].
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Chapter 2. Particle Swarm Optimization 9

Some of the most frequently used social network structures are discussed below:

• Star: The star network structure is one where all the particles in the swarm are in-

terconnected as illustrated in figure 2.2a. The original implementation of the PSO

algorithm utilized the star network structure. A PSO utilizing the star network

structure is commonly referred to as the Gbest PSO.

• Ring: The ring network structure is one where each particle is in a neighbourhood

with only two other particles, with the resulting structure forming a ring as illus-

trated in figure 2.2b. The ring network structure can be generalized to a network

structure where larger neighbourhoods are used.

• Von Neumann: The Von Neumann network structure is one where the particles are

arranged in a grid-like structure. The 2-D variant is illustrated in figure 2.2c, and

the 3-D variant is illustrated in figure 2.2d.

There are many other available social network structures, such as the wheel, pyramid,

four cluster, random, amongst others [32]. Each social network structure has certain

advantages and disadvantages, with no social neighbourhood structure that can be la-

belled as the “best”. The optimal social network structure choice is problem dependent

[21, 52]. That being said, a number of empirical studies have shown that the Von

Neumann network structure outperforms other network structure on a large array of

problems [32, 46].

2.2 Popular Particle Swarm Optimization Variants

There exists a large number of PSO variants [6, 19, 20]. The simplest variants alter

one or more of the PSO velocity update equation’s coefficients to be a function of time

[42, 47, 55, 57, 64], in an attempt to control the exploration-exploitation behavior of the

swarm over the course of the search. There are also more sophisticated PSO variants

that substantially alter the PSO’s behavior. This section focuses on four of these variants

that are commonly used: the fully informed PSO (FIPS), unified PSO (USPO), bare
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Chapter 2. Particle Swarm Optimization 10

(a) Star topology. (b) Ring topology.

(c) 2-D von Neumann topology. (d) 3-D von Neumann topology.

Figure 2.2: Common social topologies

bones PSO (BPSO), and the standard PSO 2011 (SPSO2011). All variants discussed

are either empirically or theoretically analyzed within this thesis.

2.2.1 Fully Informed PSO

The FIPS algorithm was inspired by the observation made by Kennedy and Mendes [33]

that human individuals are not influenced by only a single individual, but rather by a

statistical summary of the state of their neighborhood. Based on this observation, the

velocity equation is altered such that each particle is influenced by the successes of all its

neighbors, and not by the performance of only one other individual in the neighborhood.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. Particle Swarm Optimization 11

The velocity update equation of FIPS is defined as follows:

vi (t+ 1) = wvi (t) +

|Ni|∑
m=1

γm(t)⊗ (ym(t)− xi (t))

|Ni|
, (2.3)

where Ni is set of particles in particle i’s neighborhood, |Ni| is the cardinality of Ni,

and γm,k(t) ∼ U (0, c1 + c2) for 1 ≤ k ≤ d.

The FIPS algorithm was originally proposed using constriction. For a detailed explana-

tion of constriction the reader is referred to [17]. However, the velocity update equation

(2.3) can be rewritten to utilize constriction instead of an inertia weight by setting the

constriction factor X equal to w, and (c1 + c2) /X = ĉ1 + ĉ2, where ĉ1 and ĉ2 are coeffi-

cients chosen for a PSO using constriction. From a theoretical perspective, the models

are equivalent.

2.2.2 Unified PSO

The UPSO algorithm was developed by Parsopoulos and Vrahatis [45]. The authors

argued that it would be beneficial to be able to utilize the exploitative nature of global

best PSO (Gbest PSO) and the exploratory nature of local best PSO (Lbest PSO) in

one unified scheme. Gbest PSO is defined as a PSO that draws its social knowledge from

the best performing particle within its swarm. On the other hand, Lbest PSO rather

draws its social knowledge from the best performing particle within its neighborhood,

often a subset of the swarm connected in a ring structure [31].

Based on this idea, the velocity update equations of PSO was altered to be a combination

of the Gbest and Lbest velocity update equations. The weighting of Lbest and Gbest is

controlled by an additional control parameter, u ∈ [0, 1], called the unification factor.
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Chapter 2. Particle Swarm Optimization 12

The velocity and position update equations of UPSO are defined as follows:

gi (t+ 1) = wvi (t) + c1r1 ⊗ (yi(t)− xi (t)) + c2r2 ⊗ (g(t)− xi (t))

li (t+ 1) = wvi (t) + c1r
′
1 ⊗ (yi(t)− xi (t)) + c2r

′
2 ⊗ (ŷi(t)− xi (t))

vi (t+ 1) = ugi(t+ 1) + (1− u) li(t+ 1) (2.4)

xi (t+ 1) = xi (t) + vi (t+ 1) , (2.5)

where r1, r2, r
′
1, r

′
2 ∼ U (0, 1)d, with d the dimension of the problem PSO is attempting

to solve. The positions yi and ŷi are as defined for PSO. The position g is the “best”

position found by the swarm so far. If the star network structure is utilized g and ŷi(t)

represent the same position for all particles, however, if the network structure is not

fully connected, g and ŷi(t) may be different. The coefficients c1, c2, and w are the

cognitive, social, and inertia weights respectively.

Parsopoulos and Vrahatis [45] also proposed the two variants to the velocity update

equation, namely

vi (t+ 1) = ur3 ⊗ gi(t+ 1) + (1− u) li(t+ 1) (2.6)

and

vi (t+ 1) = ugi(t+ 1) + r3 ⊗ (1− u) li(t+ 1) (2.7)

where r3 ∼ N (µ,Σ), and Σ = σ2I, with I the identity matrix. This thesis focuses on

the standard version of UPSO using update equations (2.4) and (2.5).

The UPSO algorithm was also originally proposed using constriction. However, the

velocity update in equation (2.4) can be rewritten to utilize constriction utilizing the

same approach as discussed in section 2.2.1. From a theoretical perspective the models

are equivalent.
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2.2.3 Bare Bones PSO

Kennedy [30] proposed the BPSO algorithm based on the empirical observation, of PSO

under the star topology, that the distribution of particle positions are centered around

the weighted average between the personal best and global best positions, specifically,

yi(t) + ŷi(t)

2
(2.8)

assuming that c1 and c2 are equal. In a generalized context, the particle positions are

centered around

c1yi(t) + c2ŷi(t)

c1 + c2
. (2.9)

This observation was later supported by the theoretical work of Van den Bergh and

Engelbrecht [61] and Trelea [59], where it was shown under the deterministic and stag-

nation assumption, as defined in section 3.1, that each particle converges to the point

defined in equation (2.9) (assuming a star neighborhood topology).

For BPSO, the velocity update equation changes to

vi,k (t+ 1) ∼ N (ζi,k, φi,k (t)) , (2.10)

where φi,k (t) = |yi,k(t)− ŷi,k(t)|, and ζi is equal to equation (2.9) . The position update

equation is changed to

xi (t+ 1) = vi (t+ 1) . (2.11)

In the standard implementation of BPSO [30], equation (2.8) is used as the point of

convergence, ζi. For the purposes of this thesis, the case where c1 and c2 are equal is

treated as a special case of the BPSO in all subsequent stability analysis.
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2.2.4 Standard PSO 2011

Clerc [16] developed SPSO2011 in an attempt to define a new baseline for future PSO

improvements. The two primary benefits of the SPSO2011 are stated to be rotational

invariance and an adaptive topology. The first published work on SPSO2011 was by

Zambrano-Bigiarini and Clerc [65]. The particle velocity update equation is defined as

follows:

vi (t+ 1) = wvi (t) +Hi (ci (t) , ||ci − xi||2)− xi (t) , (2.12)

where ci is defined as

ci (t) =
xi (t) + ai (t) + bi (t)

3
, (2.13)

with ai (t) and bi (t) are defined as

ai (t) = xi (t) + c1r1 ⊗ (yi(t)− xi (t)) , (2.14)

bi (t) = xi (t) + c2r2 ⊗ (ŷi(t)− xi (t)) . (2.15)

The function Hi (ci (t) , ||ci − xi||2) returns a uniformly sampled random position from

a hyper-sphere centered at ci (t) with a radius of ||ci − xi||2.

The samples from Hi are obtained using the following approach: Construct a random k

dimensional vector, rv, whose scalar components are sampled from the normal distribu-

tion, N (0, 1). The random vector must then be normalized, and multiplied by a random

scalar sampled uniformly from 0 to the hypersphere’s radius. The random vector rv

must then be translated to the specified center point.

In the work of Zambrano-Bigiarini and Clerc [65], no special consideration was explicitly

made for the case where yi(t) = ŷi(t). However, in the original work, Clerc [16] replaced

equation (2.13) with

ci (t) =
xi (t) + (xi (t) + c (yi(t)− xi (t)))

2
. (2.16)
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This thesis uses the following equation for the center of gravity, which applies the same

principle used by Zambrano-Bigiarini and Clerc [65] for the case where yi(t) 6= ŷi(t):

ci (t) =
xi (t) + ai (t)

2
. (2.17)

The topology used by SPSO2011 is a particular case of the stochastic star topology pro-

posed by [38]. On initialization, each particle’s neighborhood is constructed by selecting

three particles randomly from the swarm and the particle itself (the same particle is

allowed to be chosen several times). If an unsuccessful iteration occurs, the neighbor-

hoods are reconstructed. An unsuccessful iteration is defined as an iteration where no

new position was found that improved the previous best objective evaluation obtained

by the whole swarm.

In the work of Zambrano-Bigiarini and Clerc [65], the SPSO2011 algorithm prevents

particles from leaving the search space by setting the component of the particle that

breached the search space boundary to the boundary value and the particle’s whole

velocity to zero.

2.3 Summary

This chapter discussed the PSO algorithm and PSO variants that are used in this thesis.

The next chapter provides a detailed discussion on the existing theoretical work on

stability analysis for both PSO and PSO variants.
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Chapter 3

Review of Existing Theoretical

Stability Analysis of Particle

Swarm optimization

The focus of this chapter is on the exiting theoretical stability results for PSO and PSO

variants. Section 3.1 presents the commonly used assumptions in existing theoretical

studies on particle stability. Section 3.2 presents an overview of the types of convergence

and their relationship to stability analysis of PSO. The relevant theoretical findings for

PSO, FIPS, BPSO, and SPSO2011 are presented in sections 3.3, 3.4, 3.5, 3.6, and 3.7

respectively. A summary of this chapter is presented in section 3.8.

3.1 Common Assumptions

This section briefly discusses the commonly utilized theoretical assumptions in PSO sta-

bility analysis. Where and when each assumption was made in the theoretical literature

will be stated in section 3.3.

The primary assumptions that occur in the theoretical PSO research are as follows:

Deterministic assumption: It is assumed that θ1 = θ1(t) = c1r1(t), and θ2 = θ2(t) =

c2r2(t), for all t.

16
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Stagnation assumption: It is assumed that yi(t) = yi, and ŷi(t) = ŷi, for all t

sufficiently large.

Weak chaotic assumption: It is assumed that both yi (t) and ŷi (t) will occupy

an arbitrarily large finite number of unique positions (distinct positions), ψi and ψ̂i,

respectively.

Weak stagnation assumption: It is assumed that yî (t) = yî, for all t sufficiently

large, where î is the index of the particle that has obtained the best objective function

value.

Stagnant distribution assumption: It is assumed that both yi (t) and ŷi (t) are

random variables sampled from a fixed distribution, such that both yi (t) and ŷi (t)

have well defined expectations and variances.

Each of the assumptions mentioned in this section simplifies the PSO algorithm in

order to allow for a mathematical analysis to be performed. However, the accuracy of

the mathematical model is directly related to the number of PSO’s behaviors that are

removed due to simplifications. In recent literature, as will be discussed in section 3.3,

the deterministic assumption has been successfully removed, which means the stochastic

aspect to PSO is now catered for. However, some form of assumption is still placed

on all particles’ personal and neighborhood best positions in all existing theoretical

stability studies. For this reason, it is important to understand the relative ordering, in

terms of strength of assumption, of the existing assumptions on particles’ personal and

neighborhood best positions.

The stagnation assumption is the strongest assumption on particles’ personal and neigh-

borhood best positions, as the assumption keeps the positions completely fixed. The

stagnation assumption implies that no particle ever finds a better position, and as a

direct result the swarm will never optimize. This implies that the stability criteria de-

rived under the stagnation assumption are only guaranteed after the swarm has stopped

optimizing.

All three of the remaining assumptions on particles’ personal and neighborhood best

position are weaker than the stagnation assumption. However, there is not a very clear
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ordering between the assumptions, since each weakens the assumption on particles’ per-

sonal and neighborhood best positions in a slightly different way. The weak chaotic

assumption allows the particles’ personal and neighborhood best positions to occupy an

arbitrarily large finite number of distinct positions. The weak stagnation assumption,

in essence, assumes stagnation on the global best position, but allows a potentially infi-

nite number of personal best positions, provided they are not better than the stagnant

global best position. The most recently used assumption is the stagnant distribution

assumption, which allows a potentially infinite number of different personal and neigh-

borhood best position. However, there is a superficial restriction on the personal and

neighborhood best positions, namely that they are sampled from stationary distribu-

tions. During a run, PSO gains information about the search space from which it would

derive potentially new personal and neighborhood best positions. This implies that the

personal and neighborhood best positions can not be accurately derived from stationary

distributions, as clearly the distributions should be functions of the PSO’s state at the

current iteration, implying the distributions should at least be iteration dependent.

3.2 Convergence and Stability

This section discusses the types of convergence used in the stability analysis of PSO and

PSO’s variants.

In the context of a deterministic PSO model, that is a theoretical PSO model that

is utilizing the deterministic assumption, the aim is to prove convergence of particle

positions. Specifically, convergence is defined in the traditional sense as

Definition 3.1. Convergent sequence

The sequence (st) in Rn is convergent if there exists an s ∈ Rn such that

lim
t→∞

st = s (3.1)

It should be made clear that the convergence as defined in equation (3.1) does not imply

convergence to an optimum. The convergence, as described in definition 3.1, can be
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seen as complete stability, in that the particle’s position completely ceases to move as t

approach infinity. In a stochastic context it is seldom that complete stability is obtained.

Consider the following illustrative example of a stochastic sequence,

υt ∼ U
(

1

t
,
1

t
+ 1

)
. (3.2)

Clearly, (υt) does not convergence according to definition 3.1. However, the sequence

does converge in some weaker sense. Observe that, given enough time, the expected

value, E[υ], of the sequence converges. Specifically,

lim
t→∞

E[υt] = lim
t→∞

(
1

t
+

1

2

)
=

1

2
(3.3)

This type of convergence is now defined as

Definition 3.2. Order-1 stability

The sequence (st) in Rn is order-1 stable if there exists an sE ∈ Rn such that

lim
t→∞

E[st] = sE (3.4)

where E[st] is the expectation of st.

While order-1 stability is useful, it does not necessarily provide a strong enough level of

stability, which is now illustrated: Consider the random sequence, defined as

r̂t ∼ U(−t, t). (3.5)

Now, the expectation of r̂t is zero for every t, which implies the sequence (r̂t) is order-1

stable. However, the variance of the sequence (r̂t) is increasing over time, which does not

appear particularly stable. Hence the introduction of the following type of convergence:

Definition 3.3. Order-2 stability

The sequence (st) in Rn is order-2 stable if there exists a sV ∈ Rn such that

lim
t→∞

V [st] = sV (3.6)
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where V [st] is the variance of st.

The earlier sequence in equation (3.2) is order-2 stable, because

lim
t→∞

V [υt] = lim
t→∞

(E[υ2
t ]− (E[υt])

2) =
1

12
. (3.7)

However, the sequence in equation (3.5) is not order-2 stable, because

lim
t→∞

V [r̂t] = lim
t→∞

(E[r̂t
2]− (E[r̂t])

2) = lim
t→∞

t2

3
→∞ (3.8)

While it is possible to study higher-order stability, such as those related to skewness or

kurtosis of a random sequence as was considered by Poli [49], it is generally the aim

of PSO stability analysis to obtain the criteria needed to ensure order-1 and order-2

stability. If a particle position is order-1 and order-2 stable, it is often referred to as

convergent. However, this does not imply the deterministic convergence of definition

3.1.

3.3 Theoretical Results for PSO

This section presents each theoretically derived region that is sufficient and/or necessary

for particle convergence in the PSO algorithm, along with the corresponding assumptions

utilized in the region’s derivation.

There are numerous important early contributions to the theoretical understanding of

PSO particle trajectory [15, 17, 43, 44]. However, the first studies to explicitly derive the

criteria needed to ensure particle convergence of PSO with the inclusion of the inertia

weight was the work of Van den Bergh and Engelbrecht [60, 61], and that of Trelea

[59]. Both derived the necessary and sufficient criteria for particle convergence under

the deterministic assumption and the stagnation assumption. The region derived by

Van den Bergh and Engelbrecht is

0 < c1 + c2 < 2 (1 + w) , |w| < 1, (3.9)
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whereas the region derived by Trelea is

0 < c1 + c2 < 4 (1 + w) , |w| < 1, (3.10)

The discrepancy between equation (3.9) and (3.10) is due to how the stochastic com-

ponents where handled. In the work of Van den Bergh and Engelbrecht the stochastic

components of the PSO update equation where set such that r1,k = r2,k = 1. This can be

seen as a more conservative approach than that used by Trelea, where r1,k = r2,k = 1/2,

which is the expected value of the random components. Equation (3.9) and (3.10) are

illustrated in figure 3.1 as the triangles AFB and ACB, respectively.

More recently, under the deterministic and weak chaotic assumption Cleghorn and En-

gelbrecht [8] derived the same region as equation (3.9) or (3.10), depending on how the

stochastic variables r1 and r2 are set.

Under the stagnation assumption only, Kadirkamanathan et al [27] derived the following

sufficient region for order-2 stability:


c1 + c2 < 2 (1 + w) for w ∈ (−1, 0]

c1 + c2 <
2(1−w)2

1+w for w ∈ (0, 1) .

(3.11)

Still under the stagnation assumption, Gazi [25] expanded the derived region of equation

(3.11), resulting in the region


c1 + c2 <

24(1+w)
7 for w ∈ (−1, 0]

c1 + c2 <
24(1−w)2

7(1+w) for w ∈ (0, 1) .

(3.12)

The regions corresponding to equations (3.11) and (3.12) are illustrated in figure 3.1 as

triangle like regions ADB and AEB, respectively. Unfortunately, both equations (3.11)

and (3.12) are very conservative regions, as they were derived utilizing the Lyapunov

condition [34].

Without the use of the Lyapunov condition or the stochastic assumption, Poli and

Broomhead [51] and Poli [50] derived the necessary and sufficient criteria for order-1
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and order-2 stability. The order-2 region’s sufficient condition was partially obtained

via experimental means. The region derived by Poli for order-1 stability is the same as

the region derived by Trelea in equation (3.10). The region derived for order-2 stability

is as follows:

c1 + c2 <
24
(
1− w2

)
7− 5w

for w ∈ [−1, 1] . (3.13)

The region defined by equation (3.13) is illustrated in figure 3.1 as the curved line

segment AB. The region defined by equation (3.13) was also independently derived by

Jiang [26] under the stagnation assumption.

Blackwell [30] showed that the criteria of equation (3.13) are a necessary condition for

order-2 stability, utilizing an approach that was both computationally simpler than Poli’s

approach while also being applicable to a range of PSO variants. Garćıa-Gonzalo and

Fernández-Martinez [24] also derived necessary conditions for order-1 and order-2 sta-

bility, allowing w, c1r1, and c2r2 to be random variables with well defined expectations

and variances. Garćıa-Gonzalo and Fernández-Martinez utilized similar techniques to

their earlier contribution which relied on the modeling the PSO as a stochastic damped

mass-spring system [23].

Liu [37] rederived, under the weak stagnation assumption, the same necessary and suf-

ficient conditions for order-2 stability as Poli. The work of Liu [37] also implies that

the convergence region of equation (3.13) is the same irrespective of the social network

topology utilized by PSO.

Recently, under the stagnation distribution assumption, Bonyadi and Michalewicz [7]

were able to derive criteria for order-1 and order-2 stability, while also allowing w,

c1r1, and c2r2 to be random variables with well defined expectations and variances.

Specifically,

• order-1 stability:

−1 < E[w] < 1 and 0 <
E[c1r1] + E[c2r2]

E[w] + 1
< 2 (3.14)
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Figure 3.1: Theoretically derived regions sufficient for particle convergence

• order-2 stability:

−1 <
E[w]√

1− V [w]
< 1 (3.15)

0 < E[θ1] + E[θ1] <
−2(E[w]2 + V [w]− 1)

1− E[w] + (V [c1r1]+V [c1r2])(1+E[w])
(E[c1r1]+E[c2r2])2

(3.16)

3.4 Theoretical Analysis of the Fully Informed Particle

Swarm Optimizer

The FIPS algorithm has undergone far less theoretical investigation than the canonical

PSO has. The primary contributions with regard to convergence analysis are discussed

in this section.

Poli [48] was the first to analyze the FIPS algorithm from a theoretical perspective. The

analysis was performed under the stagnation assumption, and focused on the case where

the neighborhood size was three (i.e. FIPS3). The analysis compared the order 1, 2,

3 and 4 (mean, deviation, skewness, kurtosis) stability of the social-only and canonical

PSO with that of FIPS3. It was found that FIPS3 was, surprisingly, the most stable
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of the three, despite the FIPS3 algorithm containing more sources of randomness. No

general region of convergence was provided for an arbitrary choice of neighborhood size.

In the study performed by de Oca and Stützle [41] it was shown that particles are

attracted to the centroid of the particle’s neighborhood best found positions, given

that coefficients were selected that satisfy the constriction conditions as defined in [17].

The centroid is defined as the average over all the neighborhood best positions. The

study was performed under the stagnation and deterministic assumptions, where γm of

equation (2.3) was replaced with the expected value c1+c2
2 . A general region for particle

convergence was not presented. The study did, however, empirically determine that a

more connected swarm topology resulted in a smaller region of the search space being

explored. It was also found that the FIPS algorithm has a very strong bias to the

centroid of each particle’s previously found neighborhood best positions.

Garćıa-Gonzalo and Fernández-Martinez [24] derived the following necessary conditions

for order-2 stability under the stagnation assumption

c1 + c2 <
12|Ni|

(
1− w2

)
3|Ni|+ 1 + w (1− 3|Ni|)

(3.17)

where |Ni| is the neighborhood size of particle i. It should be noted at this point that

the contribution found in chapters 5 and 6 were accepted for publication before the work

of Garćıa-Gonzalo and Fernández-Martine was published and available.

3.5 Theoretical Analysis of the Bare Bones Particle Swarm

Optimizer

Despite the BPSO algorithm being well supported by theoretical convergence results

of PSO, the algorithm itself has not undergone much theoretical study. The primary

contribution is that of Blackwell [3]. The study focused on a generalized class of PSO

update equations. The class of PSOs considered were those with update equations that

could be applied component wise, and that can be rearranged in the form

xij(t+ 1) + axij(t) + b(t)xij(t− 1) = c(Ni), (3.18)
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were a and b are random variables, and c(Ni) is a random variable that also depends

on constant neighborhood positions. Blackwell [3] was able to show that, under the

stagnation assumption, the sequence of particle positions is weakly stationary for BPSO.

If a series is weakly stationary, it is by implication order-2 stable as shown by [28].

Alterations of the BPSO algorithm with theoretically derived non-collapse conditions

were also presented.

Blackwell [3] used the same approach to derive necessary criteria for order-2 stability of

PSO particles, as stated in section 3.3.

3.6 Theoretical Analysis of the Unified Particle Swarm

Optimizer 2011

The only theoretical analysis performed on UPSO was in its introduction by Parsopoulos

and Vrahatis [45]. The analysis was on a weak type of local convergence to an optimal

value on a highly oversimplified version of UPSO. The analysis performed was also only

valid for convex objective functions.

3.7 Theoretical Analysis of the Standard Particle Swarm

Optimizer 2011

To date, there have been only two theoretical studies on SPSO2011. Both of which where

performed by Bonyadi and Michalewicz [4, 5]. Both analyses where completed under the

stagnation assumption, and without the special treatment of gi (t) when yi(t) = ŷi(t) as

defined in equation (2.17). It was shown that SPSO2011 was not locally convergent to an

optimum. However, SPSO2011 was shown to be rotationally invariant. The convergent

(stable) region of SPSO2011 was plotted using an empirical technique under forced

stagnation, with each particle’s personal best and neighborhood best positions set to be

equal. Forced stagnation is a situation when neither the personal and neighborhood best

positions are allowed to update, or the objective function is a constant. The former was

used in the studies by Bonyadi and Michalewicz [4, 5]. It was shown that the size of the
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convergence region appeared to decrease as the dimensionality of the problem increased.

However, no explicit conditions for convergence were presented.

3.8 Summary

This chapter presented an overview of existing PSO stability analyses. The assumptions

that have been utilized in existing PSO stability analyses were discussed. An overview

of order-1 and order-2 stability was given. Existing stability studies of PSO and PSO’s

variants were also discussed.

The next chapter presents a novel empirical approach that is used to verify the theoret-

ically derived criteria for order-2 stability in an assumption free context.
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Chapter 4

Finding the True Convergence

Region for PSO

As discussed in chapter 3, a number of theoretical studies on PSO stability exist. How-

ever, these studies rely on some form of simplifying assumption. This chapter aims

to empirically verify which criteria for particle stability are an accurate representation

of PSO particle behavior in an unsimplified context. Content from this chapter was

published in the proceeding of the 2014 IEEE Congress on Evolutionary Computation

[9].

Section 4.1 presents the experimental procedure and setup for testing PSO particle sta-

bility. The experimental results and discussion are presented in section 4.2. A summary

of this chapter’s findings is given in section 4.3.

4.1 Experimental Setup

The experiment conducted in this chapter is designed to illustrate under what param-

eter settings the PSO algorithm will actually exhibit convergent behavior. There is an

inherent difficulty in empirically analyzing the convergence behavior of PSO particles,

specifically with regards to understanding the influence of the underlying objective func-

tion’s landscape on the PSO algorithm. In an attempt to try and mitigate this issue,

27
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the following objective function that will make it “hard” for PSO to become stagnant,

is used:

CF (x) ∼ U (−1000, 1000) . (4.1)

The value of CF , for each x in the domain of CF , is calculated and stored the first time

it is required in the execution of the PSO algorithm. The calculated value for each x in

the domain of CF remains static after its initial computation. Objective function values

are generated anew for each independent run of the PSO algorithm. In other words,

for each evaluated x in the domain of CF a unique random value from the uniform

distribution U (−1000, 1000) is assigned. What the objective function in equation (4.1)

provides, is an environment that is rife with discontinuities and completely unstructured,

resulting in a search space in which the PSO algorithm will be highly unlikely to enter

a state of full stagnation. If particles are seen to be convergent (not necessarily to the

same point) with such a degenerate objective function as equation (4.1), it is reasonable

to assume that convergent behavior will hold with less degenerate objective function

where stagnations is more likely.

The experiment utilizes the following static parameters: Population size of 64, 2000 iter-

ations, a 50-dimensional search space, the star neighborhood structure (gbest). Particle

positions are initialized within (−1000, 1000)d and velocities are initialized to 0. Equa-

tion (4.1) is utilized as the objective function. A population size of 64 is utilized to allow

for easier future comparison of differing PSO neighborhood structures. A population size

of 64 allows for complete 2-D and 3-D von Neumann neighborhood structures.

The measure of convergence is as follows:

∆ (t+ 1) =
1

N

N∑
i=1

‖xi (t+ 1)− xi (t) ‖2, (4.2)

which is the average Euclidean distance moved by each particle in the swarm from

iteration t to iteration t+ 1.

The test is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 4.4] , (4.3)
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where c1 = c2, with a sample point every 0.1 along w and c1 +c2. A total of 1012 sample

points are used. The region defined by equation (4.3) is slightly larger than that needed

to include all the regions presented in figure 3.1 in section 3.3, except the region defined

by equation (3.10) which is partially omitted. The sub-region

c1 + c2 < 4 (1 + w) , c1 + c2 > 4.4, (4.4)

of the region defined by equation (3.10) is omitted from the analysis due to the lack

of any convergent behavior within the omitted region (this fact will become obvious in

section 4.2). The results reported in Section 4.2 are averages over 35 independent runs

for each sample point.

4.2 Experimental Results and Discussion

This section presents the results of the experiment described in section 4.1. A snapshot of

all parameter configurations’ resulting convergence measure values are presented at the

PSO’s 10th, 500th and 2000th iteration. For each iteration, a snapshot figure with the

convergence measure value capped at 100, 500, and 2000 is presented, so as to prevent

very large convergence measure values from obscuring the important observations.

At iteration 10, a relatively clear picture of particle behavior is already developing.

Even with the low convergence measure limit of 100, figure 4.1a illustrates parameter

settings that are more conducive to convergence behavior, even at this low iteration

count of 100. More specifically, the parameter values within the curved region with

the apex at w = 0.2 and c1 + c2 = 2.3 are clearly exhibiting convergence behavior. In

figure 4.1b, the region with the most convergent behavior is already starting to show

similarity to the region of equation (3.13). In figure 4.1c, there is a large number of

parameter settings exhibiting convergent like behavior. This is not surprising given the

early iteration count and the substantial large convergence measure threshold. What is

quite surprising, however, is the large number of parameter settings that have resulted in

convergence measure values in excess of 2000 after only 10 iterations. As an illustrative

example, the exact convergence measure value at w = −0.8, c1 + c2 = 3.5 in figure 4.1c
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(a) Recorded convergence measure values
after 10 iterations with a ∆ threshold of

100
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(b) Recorded convergence measure values
after 10 iterations with a ∆ threshold of

500
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(c) Recorded convergence measure values
after 10 iterations with a ∆ threshold of

2000
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(d) Recorded convergence measure values
after 10 iterations with a ∆ threshold of

500 with equation (3.13) overlaid

Figure 4.1: Convergence measure values at the 10th iteration

is 153101. Such large convergence measure values could be a serious hindrance on PSO’s

search capability, and in the extreme case, the PSO’s search is surely useless [22].

At iteration 500 the particle behavior is already substantially more stable than at itera-

tion 10. This is illustrated by the close similarity between figures 4.2b and 4.2c. In figure

4.2a, the region of convergent behavior is slightly narrower than that of figure 4.1a, but

the apex is further out. However, the number of particles with a convergence measure

value below 100 has increased over the course of 490 iterations. In figures 4.2b and 4.2c,

the correspondence between equation (3.13) and the convergent behavior is becoming

very clear, as illustrated in figure 4.2d. The only discrepancy is that the apex of the
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(a) Recorded convergence measure values
after 500 iterations with a ∆ threshold of

100
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(b) Recorded convergence measure values
after 500 iterations with a ∆ threshold of

500
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(c) Recorded convergence measure values
after 500 iterations with a ∆ threshold of

2000
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(d) Recorded convergence measure values
after 500 iterations with a ∆ threshold of

2000 with equation (3.13) overlaid

Figure 4.2: Convergence measure values at the 500th iteration

convergence region of figures 4.2b and 4.2c is slightly less than that of equation (3.13).

However, with this correlation in mind, there are still convergence measure values of over

2000 corresponding to parameters that are technically in the region of equation (3.13).

At iteration 1000 the region of convergent behavior is nearly identical to the correspond-

ing figures for iteration 500, as can bee seen in figures 4.3a, 4.3b and 4.3c. There is,

however, a small decrease in convergence measure values across the region of convergent

behavior. For example, when w = 0.5 and c1 +c2 = 3, the convergence measure changed

from 79.689 at 500 iterations to 70.8303 at 1000 iterations. This decrease in convergence

measure values is not negligible. However, the rate of decrease is particularly slow.
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(a) Recorded convergence measure values
after 1000 iterations with a ∆ threshold of

100

∆

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5
c1+c2

-1

-0.5

 0

 0.5

 1

w

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

(b) Recorded convergence measure values
after 1000 iterations with a ∆ threshold of

500
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(c) Recorded convergence measure values
after 1000 iterations with a ∆ threshold of

2000

Figure 4.3: Convergence measure values at the 1000th iteration

At iteration 2000 the same phenomenon as from 500 to 1000 iterations occurred, namely,

figures 4.4a, 4.4b, and 4.4c are nearly identical to the corresponding figures for 1000 it-

erations. Again, a small decrease in convergence measure values across the region of

convergent behavior occurred. For example, when w = 0.5 and c1 + c2 = 3, the conver-

gence measure changed from 70.8303 at 1000 iterations to 53.8461 at 2000 iterations. As

illustrated in figure 4.4d, equation (3.13) matches almost perfectly with the convergence

region of figure 4.4c.

In general, the convergence results correspond well with the derived region of equation

(3.13). The regions defined by equations (3.11) and (3.12) both result in convergent
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(a) Recorded convergence measure values
after 2000 iterations with a ∆ threshold of
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(b) Recorded convergence measure values
after 2000 iterations with a ∆ threshold of
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(c) Recorded convergence measure values
after 2000 iterations with a ∆ threshold of

2000
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(d) Recorded convergence measure values
after 2000 iterations with a ∆ threshold of

2000 with equation (3.13) overlaid

Figure 4.4: Convergence measure values at the 200th iteration

behaviour, as they are subsets of the region defined in equation (3.13). However, the

regions defined by equations (3.11) and (3.12) excludes a large number convergent pa-

rameter settings. The extended region defined by equation (3.10) (with |w| < 1) is far

larger than the actual observed convergence region of parameter values. The extended

region defined by equation (3.9) (with |w| < 1) contains a large number of convergent

parameter settings. However, there are a number of excluded parameters, namely those

within the region BEG of figure 3.1. The extended region defined by equation (3.9) also

includes a small number of parameters that do not fall within the actual convergence

region, namely, those within the region AGF of figure 3.1.
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There are, however, two additional observations: Firstly, parameters that reside very

near to the apex of the region defined in equation (3.13) do not exhibit a fast convergent

trend. For example, the parameter setting w = 0.5 and c1 + c2 = 3.9, which is within

the derived region of equation (3.13), has a convergence measure value of 2576.85 after

2000 iterations. While this parameter configuration may actually result in convergence,

the rate of convergence is prohibitively slow in practise. The second observation is that

the closer c1 +c2 is to zero and w to roughly 0.4, the quicker particle convergence occurs.

Given these observations, when utilizing PSO in practice, selecting parameters from a

region of the same form as that of equation (3.13), but excluding configurations within

0.1 of equation (3.13)’s boundary, will yield a reasonable convergence rate.

4.3 Summary

The aim of this chapter was to perform an experiment that clearly shows which theoret-

ically derived convergence region is most applicable to practical PSO use. It was found

that there is a very strong correlation between the convergence behavior of the PSO and

the parameter region defined by Poli [50, 51]. Despite this very strong correlation, the

empirical results also shows that, when PSO parameter values are near the edge of the

region defined by equation (3.13), convergence is incredibly slow, with some parameter

settings still having an average particle movement of over 2500 after 2000 iterations.

From these observations it is concluded that, in practice, PSO parameter setting should

be selected from a slightly smaller region than that of equation (3.13), if an unreasonably

slow rate of particle convergence is to be avoided.

The next chapter expands the empirical approach to stability analysis and the effective-

ness of the objective function as defined in equation (4.1) is demonstrated.
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Chapter 5

Empirical Stability Analysis

Approach

This chapter has two main aims. Firstly, to demonstrate that the use of a specially

designed objective function for convergence analysis, as defined in equation (4.1), is both

a simple and valid method for performing assumption free stability analysis. Secondly, to

utilize the standardized stability analysis approach to investigate the stability criteria for

PSO variants. Content from this chapter was published in the Proceedings of the 2014

International Swarm Intelligence Conference (ANTS) [10] and in the Swarm Intelligence

journal [12].

A thorough empirical analysis on the effectiveness of using the objective function, as

defined in equation (4.1), for PSO stability analysis is presented in Section 5.1. The

influence of the social network structure on the stability criteria of PSO is investigated in

section 5.2. Sections 5.3, 5.4, and 5.5 presents an empirical investigation of the stability

criteria of FIPS, BPSO and SPSO 2011, respectively. A summary of the chapter’s

fundings are given in section 5.7.

35

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Empirical Stability Analysis Approach 36

5.1 Custom Objective Function for Convergence Analysis

As discussed in chapter 4, there is an inherent difficulty in empirically analyzing the con-

vergence behavior of PSO particles. This difficulty arises from the potential dependency

between the particle exhibiting convergent behavior, for given parameter configurations,

and the underlying objective function’s landscape. Chapter 4 proposed that the follow-

ing objective function, as originally defined in equation (4.1),

CF (x) ∼ U (−1000, 1000)

is an effective choice of objective function when performing stability analysis of PSO

and PSO variants.

The aim of most recent theoretical convergence research performed on PSO and PSO

variants [3, 7, 26, 50, 51] was to prove, for a simplified version of the optimization

algorithm, the following theorem, with the hope that the derived results are applicable

to the unsimplified version of the optimization algorithm:

Theorem 5.1. There exists a set C of PSO parameter values such that if parameters

are selected from C then for all objective functions f : Rn → R there exists an iteration

T such that for all iterations t > T each particle’s position is order-1 and order-2 stable.

The objective function in equation (4.1) is designed to be an ideal counter example to

theorem 5.1. The premise is that if a PSO variant can converge for a given parameter

configuration using equation (4.1) as an objective function, then the parameter config-

uration is very likely to be a truly convergent parameter configuration for all objective

functions.

The experiment conducted in this section aims to justify the use of a specifically designed

objective function for the convergent parameter region analysis. The experimental setup

and results are presented in sections 5.1.1 and 5.1.2, respectively.
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5.1.1 Experimental Setup

The measure of convergence used in this section is that of equation (4.2), as defined

in chapter 4. Equation (4.2) is chosen as the measure of convergence because if any

particle is divergent, the convergence measure value will reflect this divergence within

the swarm. A swarm can only be classified as convergent if every particle in the swarm

exhibits convergent behavior.

The experiment utilizes the following static parameters: Swarm size of 64 particles, 5000

iterations, and a 50-dimensional search space. A swarm size of 64 particles is utilized

to allow for all the social topologies tested to be complete structures. Particle positions

are initialized within (−100, 100)d and velocities are initialized to 0.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 4.3] , (5.1)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The experiment is

performed for each of the following neighborhood topologies: star, ring, 2-D and 3-D von

Neumann. The experiment is conducted using CF and 11 base objective functions from

the CEC 2014 problem set [36]. The functions are as follows: Ackley, High Conditioned

Elliptic, Bent Cigar, Discus, Rosenbrock, Griewank, Rastrigin, HappyCat, HGBat, Kat-

suura, and Expanded Griewank and Rosenbrock composition. The explicit equations for

each objective function is given in appendix 8.1. The region of equation (4.3) contains

exactly 504 points that satisfy equation (3.13). A total of 989 sample points from the

region defined in equation (5.1) are used per objective function and topology pair. The

results reported in Section 5.1.2 are averages over 35 independent runs for each sample

point. It should be noted that, for all PSO variants used in this chapter, no form of

search space bounding is performed. Any attempt to force particles to remain within a

given bounded area would seriously hinder the ability to perform an empirical analysis,

and implicitly impose a form of order-2 stability on the swarm.

In order to allow for a sensible comparison of convergence properties, the convergence

measure values are bounded as follows: If [l, u]d is the initial domain of the objective
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function, then

∆max =

√
d (l − u)2, (5.2)

where l and u are the lower and upper bounds of the domain per dimension, respectively.

∆max is the maximum distance of two points in the initialized search space. For this

section, ∆max = 1414.214, as d = 50. Utilizing ∆max to bound the presented results is

reasonable as any swarm that has the average particle movement exceeding the maximum

initial distance possible between two particles in the search space after 5000 iterations

cannot be thought of as convergent in a practical context. The convergence measure

values are bounded instead of log scaled as multiple parameter configurations resulted

in particle movement so extreme that a 64-bit floating point number was experiencing

overflow. The value of ∆max also has a secondary purpose as the classification boundary

between convergent and divergent particle movement. While ∆max appears to be a

large allowance for convergence, it allows for particles that are converging at a very slow

rate to still be classified as converging. However, utilizing ∆max is not a hindernace to

correctly classify particles that are slowly diverging, as it is easy for particles to exceed

∆max, and be classified as divergent after swarm initialization, due to the well known

phenomenon of particle velocity explosion [22].

5.1.2 Experimental Results and Discussion

This subsection presents a table per PSO social topology containing the following mea-

surements per objective function:

• Measurement A: The number of PSO parameter configurations that resulted in a

final convergence measure value less than or equal to the final convergence measure

obtained if the CF objective function was used instead.

• Measurement B: The number of PSO parameter configurations that resulted in a fi-

nal convergence measure value greater than the final convergence measure obtained

if the CF objective function was used instead.

• Measurement C: The number of PSO parameter configurations that resulted in a

final convergence measure greater than or equal to ∆max.
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• Measurement D: The number of PSO parameter configurations that resulted in a

final convergence measure less than ∆max.

• Measurement E: The number of PSO parameter configurations that satisfied equa-

tion (3.13) and resulted in a final convergence measure less than ∆max.

• Measurement F: The number of PSO parameter configurations that satisfied equa-

tion (3.13) and did not result in a final convergence measure less than ∆max.

• Measurement G: The average convergence measure value across all parameter con-

figurations, with all elements bounded at ∆max. It should be noted that reported

averages for this measurement are calculated after bounding of the convergence

measure has occurred, so as to prevent divergent configurations from radically

affecting the results.

Measurements A and B provide a concise way of seeing, per objective function, how much

better or worse the CF objective function performs as a reference convergence analysis

function. An ideal convergence analysis function is one that, in general, will yield the

highest resulting convergence measure for all possible parameter configurations. The

higher the resulting convergence measure value is, the harder it was for the PSO to have

converged under a given objective function. Measurements C and D give a clear picture

of how effectively the underlying objective function highlights possible divergent particle

behavior. Given the tested region of equation (5.1), there are a total of 504 parameter

configurations that satisfy equation (3.13), leaving 485 parameter configurations that

should produce divergent behavior. Ideally, an objective function utilized for convergence

analysis should result in a value for measurement C as close as possible to 485, and a

value for measurement D as close as possible to 504. Measurements E and F are an

extension of measurements C and D, in that an objective function should have at most

504 parameter configurations that both satisfy equation (3.13) and have a convergence

measure value not exceeding ∆max. An objective function with a measurement E value

smaller than 504 is more conservative in assigning the label of a convergent particle. A

slightly conservative assignment is a positive feature of an objective function being used

for convergence analysis, as falsely classifying a parameter configuration as convergent

could lead to a PSO user obtaining radically unexpected results when utilizing the
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parameter configuration in practice. Measurement G provides an overall view of how

difficult the used objective function has made it for the PSO algorithm to converge.

A snapshot of the convergence measure values are presented for four cases:

• Case A: For each parameter configuration the maximum convergence measure value

across all 11 objective functions and topologies is reported.

• Case B: For each parameter configuration the maximum convergence measure value

across all topologies using only the CF objective function is reported.

In order to deduce the convergence region from the empirical data of all 11 base functions

and all topologies, the largest recorded convergence measure value of each parameter

configuration is reported in case A. Case B is presented to illustrate the similarity

between the mapped out convergence region of the PSO algorithm using the CF objective

function to the mapped out convergence region of the PSO algorithm in case A, which

is constructed using the complete pool of gathered data of the 11 objective functions.

• Cases C and D: For each parameter configuration the maximum convergence mea-

sure value across all topologies using the two objective functions which have the

most similar resulting measurements to case B is reported.

Cases C and D are presented to illustrate that the mapped out convergence region of

cases A and B are not identical to the convergence regions of any arbitrary objective

function. In particular, cases A and B should result in a subset of the region produced

by an arbitrary objective function.

Measurements A and B in table 5.1 show that the Gbest PSO applied to the CF objective

function resulted in higher convergence measures than 9 of the 11 other objective func-

tions for nearly all parameter configurations. For the two remaining objective functions,

Katsuura is the only objection function close to the CF objective function in terms of

measurement A. However, Katsuura has an average convergence measure of 49.672 less

than CF has, making CF the better objective function for convergence analysis. The

CF objective function also obtained the largest number of parameter configurations that
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resulted in a convergence measure that exceeded the bound of ∆max, and the highest

average convergence measure evaluations. These measurements indicate the effective-

ness of CF as an objective function for convergence analysis. The CF objective function,

under the star topology, provides an environment that is the hardest for PSO particles

to converge in.

Measurements A and B in table 5.2 show that the Lbest PSO applied to the CF objec-

tive function resulted in higher convergence measures than 9 of the 11 other objective

functions for nearly all parameter configurations. Once again, Katsuura provided the

second lowest value for measurement A, while CF provided the best results for all other

measurements, applying the same analysis logic used for the star topology. Though

inferior, Ackley resulted in values for C, D and G very close to that obtained by the CF

objective function. However, CF provided far better results in terms of measurement A,

making CF the best choice as an objective function for convergence analysis.

Measurements A through G in tables 5.3 and 5.4 show for both the 2-D and 3-D von

Neumann topologies that the results remain almost identical to those of the ring and

star topologies. This provides evidence that the topology has a negligible impact on the

effectiveness of CF as an objective function for convergence analysis.

For case A, the convergence region as illustrated in figure 5.1a matches the derived region

of equation (3.13) almost perfectly, as does the region seen in figure 5.1b for case B. While

there exists a slight difference between figures 5.1a and 5.1b in terms of convergence

measure values, the overall convergence regions are nearly identical. The similarity

Table 5.1: Convergence properties per objective function under the Star topology

hhhhhhhhhhhhhhhFunction
Measurement

A B C D E F G

CF – – 467 522 504 0 683.437
Ackley 879 110 464 525 502 2 676.293
High Conditioned Elliptic 989 0 400 589 504 0 573.601
Bent Cigar 989 0 412 577 504 0 598.593
Discus 989 0 409 580 504 0 592.545
Rosenbrock 988 1 424 565 504 0 622.009
Griewank 989 0 412 577 504 0 596.772
Rastrigin 989 0 411 578 504 0 596.909
HappyCat 989 0 411 578 504 0 595.375
HGBat 989 0 412 577 504 0 595.366
Katsuura 507 482 416 573 504 0 623.765
Expanded Griewank and Rosenbrock 989 0 416 573 504 0 603.981
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Table 5.2: Convergence properties per objective function under the Ring topology

hhhhhhhhhhhhhhhFunction
Measurement

A B C D E F G

CF – – 473 516 503 1 690.797
Ackley 912 77 469 520 504 0 682.570
High Conditioned Elliptic 989 0 400 589 504 0 574.659
Bent Cigar 989 0 415 574 504 0 602.194
Discus 989 0 414 575 504 0 597.668
Rosenbrock 989 0 417 572 504 0 613.094
Griewank 989 0 412 577 504 0 603.304
Rastrigin 989 0 412 577 504 0 601.111
HappyCat 989 0 415 574 504 0 603.536
HGBat 989 0 414 575 504 0 601.403
Katsuura 509 480 413 576 504 0 623.710
Expanded Griewank and Rosenbrock 989 0 416 573 504 0 609.277

Table 5.3: Convergence properties per objective function under the 2-D von Neumann
topology

hhhhhhhhhhhhhhhFunction
Measurement

A B C D E F G

CF – – 480 509 500 4 704.946
Ackley 915 74 475 514 501 3 692.301
High Conditioned Elliptic 989 0 402 587 504 0 577.036
Bent Cigar 989 0 413 576 504 0 600.998
Discus 989 0 414 575 504 0 598.234
Rosenbrock 988 1 415 574 504 0 616.365
Griewank 989 0 414 575 504 0 600.839
Rastrigin 989 0 412 577 504 0 597.999
HappyCat 989 0 414 575 504 0 600.869
HGBat 989 0 413 576 504 0 599.576
Katsuura 525 464 415 574 504 0 622.108
Expanded Griewank and Rosenbrock 988 1 416 573 504 0 608.545

Table 5.4: Convergence properties per objective function under the 3-D von Neumann
topology

hhhhhhhhhhhhhhhFunction
Measurement

A B C D E F G

CF – – 479 510 500 4 704.173
Ackley 925 64 473 516 503 1 691.705
High Conditioned Elliptic 989 0 401 588 504 0 576.575
Bent Cigar 989 0 415 574 504 0 601.344
Discus 989 0 416 573 504 0 600.027
Rosenbrock 989 0 416 573 504 0 615.662
Griewank 989 0 417 572 504 0 602.236
Rastrigin 989 0 413 576 504 0 601.200
HappyCat 988 1 415 574 504 0 603.712
HGBat 988 1 415 574 504 0 600.504
Katsuura 532 457 417 572 504 0 624.483
Expanded Griewank and Rosenbrock 988 1 418 571 504 0 610.503
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observed between figures 5.1a and 5.1b indicates that the utilization of the CF function

is sufficient for the purpose of empirical convergence analysis. The similarity between

figures 5.1a and 5.1b is not observed for the other objective functions. For example in

case C, the Katsuura function, when used with PSO, resulted in properties similar to

the PSO using CF in tables 5.1 through 5.4. However, Katsuura has a substantially

different convergence region to both figures 5.1a and 5.1b, with an apex extending past

c1 + c2 = 4.5, as illustrated in figure 5.1c. For Case D, the convergence region obtained

when using the Ackley objective function is illustrated in figure 5.1d. The obtained

convergence region is substantially closer to the convergence region obtained in case A

and B. However, the apex of the convergence region obtained when using the Ackley

objective function is quite jagged in comparison to cases A and B.

A very promising feature of the convergence analysis approach presented in this paper is

the high level of accuracy that can be obtained when using CF as an objective function

and ∆max as a classification boundary between convergent and divergent parameter

configurations. Specifically, with the PSO algorithm, if every parameter configuration

with a convergence measure value below ∆max is classified as convergent and every

parameter configuration with a convergence measure value above or equal to ∆max is

classified as divergent, a total accuracy of 98.79% is obtained when compared to the

region derived by [50], with only 12 of the 989 parameter settings misclassified (10

falsely classified as divergent, and 2 falsely classified as convergent).

5.2 PSO, Convergence Analysis of Topological Influence

This section aims to verify that the theoretically derived region of Poli for order-2 sta-

bility, as described in equation (3.13), remains valid under multiple social topologies.

Considering the results of subsection 5.1, it is clear that the topology does not have a

very meaningful impact on the convergence results. This is seen in the similarity be-

tween tables 5.1 to 5.4 where, under all measurements, there is minimal to no change,

implying that the topology has no real influence on the parameter region corresponding

to particle convergence.
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(a) Case A: Optimal region
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(b) Case B: CF region
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(c) Case C: Katsuura region
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(d) Case D: Ackley region

Figure 5.1: Convergence measure values at the 5000th iteration

A snapshot of all parameter configurations’ resulting convergence measure values is

presented in figure 5.2 for the following situation:

Topology influence: The optimal convergence region is constructed for each investi-

gated topology, using the same method as explained in case A of section 5.1. The

resulting optimal region that has the greatest distance in terms of convergence

measure values from case A is reported.

The snapshot in figure 5.2 illustrates the maximum deviation between the convergent

parameter region under multiple topologies. If the convergent parameter regions between

the presented snapshot and that of case A from section 5.1 are identical, then the

topological choice has no influence on the convergent parameter regions.
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The ring topology had the greatest Euclidean distance of 1738.23 from the optimal

region of case A from subsection 5.1, and therefore experienced the greatest topological

influence. While an Euclidean distance of 1738.23 appears large, in the context of a

989 dimensioned vector, it is actually relatively negligible. The convergence region is

illustrated in figure 5.2. Despite the ring topology having the greatest Euclidean distance

from the optimal region of case A, figure 5.2 appears identical to the region of figure

5.1a, as the difference in convergence measure values are very small. The close similarity

between figures 5.1a and 5.2 is a clear indication that the topology used within the PSO

algorithm has no meaningful impact on the convergence region of a PSO. The conclusion

that PSO’s convergence region is independent of the social topology used is supported

by the analysis done by Liu [37].
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Figure 5.2: Topology influence: Convergence measure values for the ring topology at
the 5000th iteration

5.3 Fully Informed PSO Convergence Analysis

This section aims to empirically obtain the convergence criteria for FIPS utilizing the

proposed objective function CF as defined in equation (4.1).

The FIPS algorithm is implemented using the PSO description in algorithm 1 with the

velocity update in equation (2.2) replaced with equation (2.3). The experimental setup

and results are presented in sections 5.3.1 and 5.3.2 respectively.
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5.3.1 Experimental Setup

Upon inspection of the FIPS update equations defined in equation (2.3), it is clear that

the neighborhood size might be a contributing factor in the convergence criteria of FIPS.

As a result, the convergence criteria are investigated for neighborhood sizes 2, 4, 8, 16,

32, and 64.

The experiment utilizes the same static parameters as subsection 5.1, except that the

LBest topology is used. The analysis is done in one dimension, because the components

of the update equation are independent of one another, resulting in ∆max = 200 for

this subsection. The experiment of this subsection utilizes the convergence measure of

equation (4.2) and the objective function defined in equation (4.1). The use of only the

objective of equation (4.1) is validated by the experimental results of subsection 5.1,

which proved the effectiveness of the objective function for convergence analysis.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 7] , (5.3)

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The parameter

region was empirically determined by increasing the values of c1 + c2 and w until the

complete convergent subregion was contained. A total of 1610 sample points from the

region defined in equation (5.3) are used. The results reported in subsection 5.3.2 are

the averages over 35 independent runs for each sample point.

5.3.2 Experimental Results and Discussion

A snapshot of the resulting convergence measure values across the region defined in

equation (5.3) under varying neighborhood sizes is presented in figure 5.3, for 2, 4, 8,

16, 32, and 64 dimensions.

The convergence region obtained in figure 5.3a is very similar to the convergence region

found for the PSO algorithm in subsection 5.1. The similarity of the convergence regions

is to be expected given that, if the neighborhood size of 2 is used and c1 = c2, FIPS
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can be shown to be the PSO algorithm assuming that each particle is within its own

neighborhood.

The convergence region found for FIPS with a neighborhood size of 4, as seen in figure

5.3b, is larger than that of FIPS with a neighborhood size of 2. The general form of the

convergence region is close to that of FIPS with a neighborhood size of 2.

Upon inspection of FIPS with the neighborhood sizes of 8 and 16 in figure 5.3c and

5.3d, it is clear that the neighborhood size has a meaningful effect on the convergence

region. The convergence region continues to allow for greater values of c1 + c2 as the

neighborhood size increases. There is also a clear favoring of positive inertia weight

values for larger values of c1 + c2.

The increase in the size of the convergence region continues with neighborhood sizes 32

and 64, as is seen in figures 5.3e and 5.3f. The convergence region’s shape is substantially

different from the convergence region obtained when a small neighborhood size is utilized.

The convergence region in figure 5.3f is almost triangular in shape.

It is clear that the larger the neighborhood size, the larger the convergence region be-

comes. The region also appears to extend indefinitely while simultaneously becoming

more triangular in shape. This finding is inline with the observation made by [48] that

the FIPS algorithm appears to be more stable with the larger neighborhood size of 3

than if a neighborhood size of 2 was used. The idea of increased stability of FIPS is

empirically supported in this subsection for larger neighborhood sizes.

From a practical perspective, it is informative to note that the convergence region for

FIPS with neighborhood size n is a subset of the convergence region for FIPS with

neighborhood size n + 1. Given this knowledge, if the neighborhood size changes over

time, convergence parameters should be selected from the region matching the lowest

possible neighborhood size, if the PSO user wishes to guarantee convergent particle

behavior.
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(a) FIPS with neighborhood of size 2.
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(b) FIPS with neighborhood of size 4.
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(c) FIPS with neighborhood of size 8.
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(d) FIPS with neighborhood of size 16.
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(e) FIPS with neighborhood of size 32.
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(f) FIPS with neighborhood of size 64.

Figure 5.3: Fully Informed PSO convergence results
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5.4 Bare Bones PSO Convergence Analysis

This section focuses on the convergence criteria for the BPSO algorithm. The experi-

mental setup and results are presented in sections 5.4.1 and 5.4.2 respectively.

5.4.1 Experimental Setup

The experiment utilizes the same static parameters as subsection 5.3, except that the

star topology is utilized.

The experiment is conducted over the following parameter region:

c1 ∈ (0, 7] and c2 ∈ (0, 7] , (5.4)

with a sample point every 0.1 along c1 and c2. The parameter region was selected as

it allows for values of c1 and c2 twice as large as the region needed to contain all of

FIPS’s convergence regions, as determined in section 5.3. The theoretical work of [3]

predicts that at least the line where c1 = c2 should exhibit convergent particle behavior.

A meaningful segment of this line is therefore included in the investigated parameter

region. A total of 4900 sample points from the region defined in equation (5.4) are used.

The results reported in subsection 5.4.2 are obtained from averaging over either 35, 70,

or 1000 independent runs for each sample point. A differing number of independent runs

are used to illustrate the amount of noise present in the BPSO experimentation.

5.4.2 Experimental Results and Discussion

Snapshots of the resulting convergence measure values across the region defined in equa-

tion (5.4), using a convergence measure bound of ∆max and 5 ∗∆max, are presented in

figures 5.4, 5.5, and 5.6, respectively for 35, 70 and 1000 sample runs. Two different

convergence measure bounds are utilized to distinguish the degree of found divergence

behavior in BSPO.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Empirical Stability Analysis Approach 50

Figure 5.4a reports the convergence measure values bounded at ∆max based on 35 inde-

pendent runs. The convergence results of BPSO are somewhat surprising, as there are

very few parameter choices that potentially indicate some level of convergent behavior.

Further more, there are no parameter configurations that are clearly convergent, with

the smallest reported convergence measure being 52.32. BPSO is actually divergent

regardless of parameter choice. If one considers parameter settings where c1 is larger

than c2, then more divergent behavior is indicated. When the bound on the reported

convergence measure is increased to 5 ∗ ∆max (see figure 5.4b), it is more clearly seen

that greater divergence occurs when c1 is larger than c2. The results of both figures 5.4a

and 5.4b have a large degree of noise present despite being the result of 35 independent

runs on each sample point.
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(a) BPSO: 35 samples, bounded at 200.
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(b) BPSO: 35 samples, bounded at 1000.

Figure 5.4: BPSO convergence results for 35 samples.

In an attempt to reduce the level of noise, the same experiment was run 70 independent

times as illustrated in figures 5.5a and 5.5b. In figure 5.5a, the number of parameter

choices that do not result in the bound of ∆max to be exceeded has been reduced slightly.

Despite the increased number of independent runs, the results clearly still contain a large

amount of noise, indicating a large level of unpredictability in BPSO’s behavior between

runs. This unpredictability is attributed to the heavy reliance of BPSO on the normal

distribution as defined in section 2.2.3.

The results presented in figures 5.6a and 5.6b are the result of 1000 independent runs. In

figure 5.6a, there are only three parameter settings that did not exceed the convergence
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(a) BPSO: 70 samples, bounded at 200.
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(b) BPSO: 70 samples, bounded at 1000.

Figure 5.5: BPSO convergence results for 70 samples.

measure bound, ∆max. There is substantially less noise present in figure 5.6b, making

the early mentioned trend that the divergent behavior is more severe if c1 is greater

than c2 clearer. It is also seen in figure 5.6b that, while the divergent behavior is more

severe if c1 is greater then c2, the amount by which this affects the divergent behavior

decreases as c1 and c2 increase.
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(a) BPSO: 1000 samples, bounded at 200.
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(b) BPSO: 1000 samples, bounded at 1000.

Figure 5.6: BPSO convergence results for 1000 samples.

The convergence measure values are also not remaining constant over the latter part of

the search. In fact, the convergence measure values increase with respect to the increase

in t, as illustrated in figure 5.7 where the convergence measure is reported over the

course of 5000 iterations of a BPSO algorithm with c1 = c2.
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From the presented results it is clear that BPSO is in fact not guaranteed to converge.

Even for the standard BPSO model, where it is assumed that c1 and c2 are equal,

convergence does not occur. If convergence were to occur when c1 is equal to c2, a

straight line (c1 = c2) of low convergence measure values would have been present in

figure 5.6b. It is also worth noting that BPSO’s particle movement is fairly unpredictable

given how much noise is present in the results even with 1000 independent runs, which

implies a large amount of unpredictability in the behavior of BPSO.

The theoretical finding of Blackwell [3] that BPSO is order-2 stable is clearly not an

accurate representation of the algorithm as the increase in the convergence measure

over time in figure 5.7 implies that convergence in standard deviation to a fixed value

is not occurring in practice. The nature of the normal distribution may well imply

that very high, though statistically unlikely, particle movement will be seen periodically.

However, if this was the sole reason for high convergence measure values, the continued

increase of the convergence measure as seen in figure 5.7 would not have occurred. Even

if particles’ personal and neighborhood positions stagnated at a great distance form each

other, the convergence measure would only be high, and not increasing.

Given the simple structure of the BPSO’s update equation (2.10), it is easy to see that

at least one of the following two particle interactions occurs if the convergence measure

is increasing:

• The midpoint between the personal best and the neighborhood best positions is

moving through the search space at an increasing velocity. This implies that at

least one of the personal best position or the neighborhood best position is moving

at an increasing velocity.

• The component wise distance between the personal best and the neighborhood

best positions is increasing. This implies that at least one of the personal best

position or the neighborhood best position is moving.

From this analysis it is clear that the swarm is not entering a state of stagnation.

The only possible justification for the discrepancy between the theoretical findings and

the empirical results of this subsection is due to the theoretical work being performed
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under the stagnation assumption. In order to verify that the discrepancy is in fact

caused by the stagnation assumption, the BPSO was rerun, but with stagnation forced

from iteration 20 onwards, by not updating any personal or neighborhood best positions.

The results are illustrated in figure 5.8. When stagnation is forced the results match the

theoretical derivations of Blackwell [3] perfectly. The difference between figure 5.7 and

5.8 shows that the stagnation assumption resulted in an inaccurate theoretical model

for the BPSO algorithm. The reason why stagnation is not occurring is not immediately

apparent, and warrants further investigation.
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Figure 5.7: BPSO average change in particle position (1000 samples).

5.5 Standard PSO 2011 Convergence Analysis

This subsection focuses on the convergence criteria for the SPSO2011 algorithm. The

experimental setup and results are presented in sections 5.5.1 and 5.5.2, respectively.

5.5.1 Experimental Setup

The SPSO2011 algorithm’s velocity update equation (2.12) cannot be analyzed in one

dimension and then generalized to an arbitrary dimension as in the PSO, FIPS, and
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Figure 5.8: BPSO average change in particle position (1000 samples) with forced
stagnation from iteration 20.

BPSO algorithms, since the function that generates a random point in a hypersphere

cannot be investigated component wise [4]. As a result, the convergence criteria are

investigated for dimension sizes 1, 10, 20, and 50.

The experiment utilizes the same static parameters as in subsection 5.3 except that the

SPSO2011 topology, as defined in subsection 2.2.4, is utilized. The SPSO2011 algorithm

is analyzed with and without the special treatment of the center of gravity calculation.

The two cases for the center of gravity calculation are

• Case 1 uses only the center of gravity equation (2.13), as suggested by Zambrano-

Bigiarini and Clerc [65].

• Case 2 uses the center of gravity equation (2.13) if the particle’s personal best

and neighborhood best positions are different. If the particle’s personal best and

neighborhood best positions are the same, the center of gravity equation (2.17) is

used.

The experiment is conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 13] , (5.5)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Empirical Stability Analysis Approach 55

where c1 = c2, with a sample point every 0.1 along w and c1 + c2. The parameter region

of equation (5.5) was selected as it contains the convergent parameter regions reported

by [4]. A total of 2990 sample points from the region defined in equation (5.5) are

used. The results reported in subsection 5.5.2 are the averages over 35 independent runs

for each sample point. Analysis is done with the convergence measure bounded at the

corresponding ∆max values, namely 200, 632.456, 894.427, and 1414.214, respectively.

5.5.2 Experimental Results and Discussion

Snapshots of the resulting convergence measure values across the region defined in equa-

tion (5.5) for SPSO2011 are presented under varying dimensionality for cases 1 and 2 in

figures 5.9, 5.10, 5.11, and 5.12, respectively for 1, 10, 20 and 50 dimensions.

The convergence region for SPSO2011 in one dimension is presented in figures 5.9a

and 5.9b. SPSO2011 has a clear boundary between convergent parameter settings and

divergent parameter settings, unlike BPSO. In figure 5.9a, the convergence region is

symmetrical around w = 0, which is substantially different from the convergence regions

of FIPS and PSO where there is a preference towards a positive inertia weight selection

for particle convergence. The convergence regions for both cases 1 and 2, as seen in

figures 5.9a and 5.9b, are very similar. However, the convergence region for case 2 is

slightly larger. Note that, with or without the special treatment of the center of gravity

calculation, there is no substantial change in the convergence region. The found conver-

gence regions in both figures 5.9a and 5.9b are substantially different in size from the

found region of Bonyadi and Michalewicz [4]. The convergence region found by Bonyadi

and Michalewicz has its apex at c1 + c2 = 12 as opposed to the apex in figure 5.9a at

around 8.5. At present it is not completely clear what the exact source of the discrep-

ancy is. However, possible sources present in the work of Bonyadi and Michalewicz [4]

are as follows:

• the study is performed under the presence of forced stagnation;

• the particles’ personal and neighborhood best positions are set to be equal;
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(a) SPSO2011: 1 dimension, case 1.
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(b) SPSO2011: 1 dimension, case 2.

Figure 5.9: SPSO2011 convergence results for 1 dimension.
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(a) SPSO2011: 10 dimensions, case 1.
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(b) SPSO2011: 10 dimensions, case 2.

Figure 5.10: SPSO2011 convergence results for 10 dimensions.

• there is a linear increase in the number of iterations used based on the dimension-

ality of the search space; however, the maximum distance between two points in a

search space only increases sublinearly; and

• it is not stated how the spherical distribution, H, is calculated.

The analysis done in this section made use of neither of the two mentioned simplifi-

cations. As a result, the regions presented in figures 5.9a and 5.9b should be a more

accurate representation of SPSO2011’s convergent behavior.

The convergence regions for SPSO2011 in 10 and 20 dimensions are presented in figures

5.10a, 5.10b, 5.11a and 5.11b. In both 10 and 20 dimensions, the difference in the
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(a) SPSO2011: 20 dimensions, case 1.
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(b) SPSO2011: 20 dimensions, case 2.

Figure 5.11: SPSO2011 convergence results for 20 dimensions.

convergence regions for case 1 and case 2 is relatively minor. However, the convergence

regions for case 2 are slightly larger than those of case 1. The convergence regions

appear to be stable under an increase in dimension, as the regions plotted for 1, 10, and

20 dimensions appear unchanged for both cases 1 and 2.

The finding that the convergence region of SPSO2011 does not depend upon the dimen-

sionality of the search space is in opposition to the results of Bonyadi and Michalewicz

[4] . Even in 50 dimensions, as seen in figure 5.12a and 5.12b, the convergence region

does not appear to change. In the work of Bonyadi and Michalewicz, the apex of the

found convergence region decreases by 33.3% with the increase from an one dimensional

search space to a 50 dimensional search space. This trend is clearly not present in the

results of this subsection.

5.6 Performing Empirical Verification

This section presents a simple method for performing empirical verification of criteria

for particle convergence.

Empirical verification of the criteria for particle convergence for PSO and PSO variants

is performed by utilizing CF as the objective function for the PSO variant, along with
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(a) SPSO2011: 50 dimensions, case 1.
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(b) SPSO2011: 50 dimensions, case 2.

Figure 5.12: SPSO2011 convergence results for 50 dimensions.

∆max as a classification boundary between convergent and divergent particle behavior.

The data collection approach is summarized in algorithm 7.2.

Once the necessary data is collected using algorithm 7.2, the empirical classification of

each parameter tuple can be performed and compared against the theoretically obtained

stability criteria (in PSO the parameter tuples are of the form (d,w, c1, c2), where d is

the dimension of search space. A smaller tuple may be justifiable in practice if there is

a good theoretical justification for why the parameter cannot effect the result). Each

parameter tuple has a set of convergence measures associated with it, one for each

sample run. In order for the classification between divergent and convergent to be

made, the convergence measures must be summarized in some manner. The most direct

approach would be to average the convergence measures across all sample runs. However,

utilizing the maximum recorded convergence measures is also a sensible approach. If the

maximum is used, the occurrence of divergent particle behavior in any sample run, for

a parameter tuple, would result in the parameter tuple being classified as divergent. On

the other hand, the mean could classify the parameter tuple as convergent if divergent

behavior happens very infrequently. The use of the maximum means that if a parameter

tuple is classified as causing convergent behavior, the parameter tuple always results in

convergent behavior and not just convergent behavior most of the time.

Once the convergence measures over all sample runs are summarized for each parame-

ter tuple, classification can be performed. If a parameter tuple results in a convergent
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measure greater or equal to ∆max, then that parameter tuple is classified as divergent.

If a parameter tuple results in a convergent measure less than ∆max, then that param-

eter tuple is classified as convergent. Once the classification of all parameter tuples is

complete, the resulting classification can be compared with the theoretical prediction.

Algorithm 2 Data Collection for Empirical Verification of Stability Criteria

Let CF be the objective function as defined in equation (4.1)
Let s be the number of sample runs used
Let C be the set of parameter tuples under consideration
for all sample runs 1 · · · s do

for all p ∈ C do
Run PSO variant using the parameter tuple p for I iterations
Record the convergence measure of the swarm utilizing equation (4.2)

end for
end for

5.7 Summary

This chapter had two primary aims: The first was to show that the objective function,

CF (x) ∼ U (−1000, 1000), is an effective objective function to utilize for convergence

region analysis. The second was to analyze the parameter region needed to ensure

convergent particle behavior of particle swarm variants utilizing the proposed objective

function, CF .

It was found that the CF objective function was able to capture the convergent behavior

of the PSO, as the found convergence regions matched both the theoretically derived

region of Poli [50], as defined in equation (3.13), and the “optimal” region, where the

“optimal” region was constructed using the maximum convergence measure value across

all topologies and objective functions used (excluding CF). It was also found that the

social topology used by PSO had no meaningful impact on the convergence region.

Using the CF objective function, the convergence region was empirically obtained for

FIPS, BPSO, and SPSO2011. It was observed that FIPS’s convergence region grows

with an increase in neighborhood size. It was shown that BPSO does not converge

for any choice of c1 and c2. More specifically, in practice it was shown that BPSO

is not order-2 stable, despite theoretical findings [3]. The discrepancy is linked to the

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Empirical Stability Analysis Approach 60

theoretical work being performed under the stagnation assumption. For SPSO2011 it

was found that the convergence region does not depend on the dimensionality of the

problem, as previously observed by Bonyadi and Michalewicz [4]. The region needed to

ensure convergent particle behavior in SPSO2011 is also different from those obtained

by Bonyadi and Michalewicz. The discrepancies are attributed to the simplifications

used by Bonyadi and Michalewicz.

The next two chapters utilize the empirical approach discussed in this chapter as a

means of verifying novel theoretically derived stability criteria for both the FIPS and

the UPSO algorithms.
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Chapter 6

Fully Informed Particle Swarm

Optimization: Stability Analysis

This chapter presents novel theoretical derivations of the order-1 and order-2 stable

regions for the fully informed PSO algorithm in section 6.1. The accuracy of the derived

region is then empirically tested in an assumption free context in section 6.2 utilizing the

approach presented in section 5.6. The summary of this chapter’s findings are presented

in section 6.3. Content from this chapter was published in the proceedings of the 2015

IEEE Congress on Evolutionary Computation [11].

6.1 Theoretical Derivation

This section presents theoretical derivations of the order-1 and order-2 stable regions for

the FIPS algorithm.

Firstly, the stagnation assumption is used: specifically, it is assumed that when analyzing

particle i that all ym ∈ Ni are stagnate. That is, all particles in particle i’s neighborhood

have a stagnant personal best position. Given that there is no dependence between the

vector components of the update equation used by FIPS, it is possible to, without loss

of generality, focus on an one dimensional particle trajectory. For the analysis in this

61
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section it is assumed that the neighborhood size is the same for each particle and is

denoted by |N |.

The position update equation of FIPS, merged with the velocity update equation (2.3),

is rearranged to the form

xi(t+ 1) + α1xi(t) + α2xi(t− 1) = α3 (6.1)

where

α1 = − (1 + w) +
1

|N |

|N |∑
i=1

θi (6.2)

α2 = w (6.3)

α3 =
1

|N |

|N |∑
i=1

θiyi(t) (6.4)

where |N | is the size of particle’s neighborhood and θi ∼ U(0, c1 + c2).

The criteria for order-1 stability are derived first. Let c1 + c2 = č. Then, application of

the expectation operator to equation (6.1) leads to

E[xi(t+ 1)] + E[α1]E[xi(t)] + E[α2]E[xi(t− 1)] = E[α3] (6.5)

where

E [α1] = − (1 + w) +
1

|N |

|N |∑
i=1

E [θi] = − (1 + w) +
č

2
(6.6)

E [α2] = w (6.7)

E [α3] =
1

|N |

|N |∑
i=1

E[θi]yi =
č

2|N |

|N |∑
i=1

yi (6.8)

In order to obtain the order-1 stable region, equation (6.5) is rewritten into the following

equivalent matrix form:

xi(t+ 1)

xi(t)

 = M

 xi(t)

xi(t− 1)

+

E[α3]

0

 (6.9)
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where

M =

−E[α1] −E[α2]

1 0

 (6.10)

Now, if ρ(M) < 1, then order-1 stability is obtained [35], where ρ is the spectral radius

of the matrix. The two eigenvalues of M are

−E[α1]±
√
E[α1]2 − 4E[α2]

2
(6.11)

which means that the simplified conditions needed for ρ(M) < 1 are

|w| < 1 and 0 < c1 + c2 < 4(w + 1) (6.12)

which are the same criteria for order-1 stability of PSO, as discussed in section 3.3. Given

order-1 stability, it is possible to derive the fixed point of equation (6.5). Specifically,

γfips can be calculated as

γfips =

∑|N |
i=1 yi
|N |

(6.13)

by setting

E[xi(t− 1)] = E[xi(t)] = E[xi(t+ 1)] = γfips

in equation (6.5) and solving for γupso.

Focus is now shifted to the derivation of criteria for order-2 stability. The proof tech-

nique utilizes a method proposed by Blackwell [3]. Blackwell considered a class of PSO

algorithms of following form:

xij(t+ 1) + a(t)xij(t) + b(t)xij(t− 1) = c(t,Ni), (6.14)

were a(t) and b(t) are random variables, and c(t,Ni) is a random variable that also

depends on stagnant neighborhood position information. The three random variables

do not depend on t in any way other than the sampling of stochastic components.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6. Fully Informed Particle Swarm Optimization: Stability Analysis 64

Blackwell showed that, if the particles are order-1 stable, then the following conditions

are necessary for order-2 stability:

1 + E [a] + E [b] 6= 0 (6.15)

1− E
[
a2
]
− E

[
b2
]

+

(
2E [ab]E [a]

1 + E [b]

)
> 0 (6.16)

Blackwell’s conditions for order-2 stability can be directly used for FIPS by setting

a = α1, b = α2 and c = α3. In order to utilize Blackwell’s conditions, a few extra

expected values are required. Each of the required expectations are calculated below:

E
[
α2

2

]
= w2 (6.17)

E [α1α2] = −w (1 + w) +
wč

2
(6.18)

E
[
α2

1

]
= E

− (1 + w) +
1

|N |

|N |∑
i=1

θi

2
= E

(1 + w)2 − 2

|N |
(1 + w)

|N |∑
i=1

θi +
1

|N |2

 |N |∑
i=1

θi

 |N |∑
i=1

θi


= (1 + w)2 − (1 + w)č+

1

|N |2
E

 |N |∑
i=1

θi

 |N |∑
i=1

θi

 (6.19)

where

E

 |N |∑
i=1

θi

 |N |∑
i=1

θi

 = E

 |N |∑
i=1

θi
2 +

|N |∑
i=1

|N |∑
j=1,j 6=i

θiθj


= E

 |N |∑
i=1

θi
2

+ E

 |N |∑
i=1

|N |∑
j=1,j 6=i

θiθj


=
|N |c2

3
+

|N |∑
i=1

|N |∑
j=1,j 6=i

E [θiθj ]

=
|N |c2

3
+ P (|N |, 2)

č2

4

= |N |č2

(
1 + 3|N |

12

)
(6.20)
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Merging equation (6.20) with equation (6.19) leads to

E
[
α2

1

]
= (1 + w)2 − (1 + w)č+

1

12|N |
č2 +

3

12
č2 (6.21)

The first condition necessary for order-2 stability of FIPS, derived using equation (6.15),

is:

1− (1 + w) +
c1 + c2

2
+ w 6= 0 (6.22)

which implies that

c1 + c2 6= 0 (6.23)

The second condition necessary for order-2 stability of FIPS, derived using equation

(6.16), is:

1−
(

(1 + w)2 − (1 + w)č+
1

12|N |
č2 +

3

12
č2

)
− w2

+

(
2w((1 + w)2 − (1 + w)č+ č2

4 )

1 + w

)
> 0 (6.24)

The condition can be simplified using the fact that |w| < 1 and č = c1 + c2 > 0 (from

the order-1 stability condition from equation (6.12)) to the following:

c <
12|N |

(
1− w2

)
3|N |+ 1 + w (1− 3|N |)

(6.25)

Equation (6.25) implies that the maximum convergence region is

c < lim
|N |→∞

12|N |
(
1− w2

)
3|N |+ 1 + w (1− 3|N |)

= 4 (w + 1) . (6.26)

The convergence regions for FIPS with neighborhood size 1, 2, 4, 8, 16, 32, and 64

are illustrated in figure 6.1. The maximum convergence region of equation (6.26) is

illustrated in figure 6.1 as the straight line ending at L. What is somewhat surprising

is that the maximum convergence region as presented in equation (6.26) is the same as

the order-1 stable region of equation (6.12).
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If the neighborhood size is set to 2, then equation (6.25) leads to the following condition:

c <
24
(
1− w2

)
7− 5w

(6.27)

which is in exact agreement with the order-2 stability region derived by Poli [51] for the

PSO algorithm.
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Figure 6.1: Derived convergence regions for |N | = 1, 2, 4, 8, 16, 32, 64, and the
maximum convergence region

It should be noted that in order for a particle’s movement to be seen as convergent it

should exhibit both order-1 and order-2 stability. Specifically, the conditions from both

equation (6.12) and equation (6.25) should be satisfied to obtain convergent particle

behavior. However, since equation (6.25) is a subset of the region 0 < c1 + c2 < 4(w+ 1)

the criteria for order-1 and order-2 stability are given as

|w| < 1 (6.28)

0 < c1 + c2 <
12|N |

(
1− w2

)
3|N |+ 1 + w (1− 3|N |)

(6.29)

6.2 Empirical Validation

This section utilizes the method for empirically investigating the convergence region of

PSO variants as proposed in section 5.6. Section 6.2.1 presents the experimental setup

followed by the experimental results and discussion in section 6.2.2.
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6.2.1 Empirical Setup

The experiment in this section utilizes a population size of 64, and 5000 iterations.

Particle positions were initialized within (−100, 100) and velocities were initialized to 0.

The analysis is in 50 dimensions, resulting in the maximum possible distance, ∆max, of

1414.214 between particles in the initial search space. Reported results were bounded

at ∆max to prevent highly divergent parameter configurations from obscuring the data.

The LBest topology was used. The neighborhood sizes 2, 4, 8, 16, 32, and 64 were

considered. For all neighborhood sizes used, each particle is set to be within its own

neighborhood.

The empirical measure of convergence used in this chapter is that of equation (4.2), and

the objective function used is CF, as defined in equation (4.1). The experiment was

conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 7] , (6.30)

where c1 = c2, with a sample point every 0.1 along w and c1 +c2. A total of 1610 sample

points from the region defined in equation (6.30) were used. The region of equation (6.30)

was chosen as it contains the derived regions for neighborhood sizes |N | <= 64. The

results reported in section 5.1.2 are averages over 35 independent runs for each sample

point.

6.2.2 Experimental Results and Discussion

This section presents the results of the experiments described in section 6.2.1.

A snapshot of all parameter configurations’ resulting convergence measure values are

presented in figures 6.2a to 6.2f for the 5000th iteration for FIPS with neighborhood

sizes 2, 4, 8, 16, 32, and 64. The number of parameter configuration that empirically

agree or disagree with the convergence/divergence behavior predicted by the theoret-

ically derived convergence region of equation (6.16) is presented in table 6.1. Eight

measurements are given in table 6.1: the number of parameter configurations that are
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theoretically convergent (TC) and divergent (TD), the number of parameter configu-

rations that were empirically convergent (EC) and divergent (ED), the number of pa-

rameter configurations that were found to be empirically convergent despite the theory

predicting divergence (EC & TD), the number of parameter configurations that were

found to be empirically divergent despite the theory predicting convergence (ED & TC),

and lastly the percentage error and agreement between the theoretical derivation and

the empirical finding.

A parameter configuration is classified to be convergent if the value of the recorded

convergence measure of equation (4.2) is less than ∆max, and divergent if greater than

or equal to ∆max. A summary of the empirical convergence results are presented in

figure 6.3, where each parameter configuration is labeled with a symbol corresponding

to the lowest neighborhood size for which that parameter configuration was classified as

convergent.

The empirically obtained convergence region of FIPS with a neighborhood size of 2

is illustrated in figure 6.2a. The general shape and size of the convergence region is in

agreement with that of equation (6.16), as can be seen by comparing figure 6.1 with figure

6.2a. The theoretically derived convergence region agrees with the empirical findings

for 99.255% of the tested parameter configurations, with only 0.621% of parameter

configurations incorrectly classified as divergent by the theory, and 0.124% incorrectly

classified as convergent by the theory, as seen in table 6.1.

Table 6.1: Theoretical prediction versus empirical findings

NBH size TC TD EC ED EC & TD ED & TC Error Agreement
2 504 1106 512 1098 10 2 0.745% 99.255%
4 585 1025 561 1049 1 25 1.615% 98.385%
8 719 891 626 984 3 96 6.150% 93.850%
16 760 850 675 935 5 90 5.901% 94.099%
32 786 824 711 899 8 83 5.652% 94.348%
64 800 810 737 873 13 76 5.528% 94.472%

The mesaurements presented are, the number of parameter configurations that are theoretically
convergent (TC) and divergent (TD), the number of parameter configurations that where empirically
convergent (EC) and divergent (ED), the number of parameter configurations that were found to be

empirically convergent despite the theory predicting divergence (EC & TD), the number of parameter
configurations that were found to be empirically divergent despite the theory predicting convergence
(ED & TC), and lastly the percentage error and agreement between the theoretically derivation and

the empirical finding.
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The empirically obtained convergence region of FIPS with a neighborhood size of 4 is

illustrated in figure 6.2a. Visually, the convergence region is in agreement with that of

equation (6.16). The theoretically derived convergence region agrees with the empirical

findings for 98.385% of the tested parameter configurations. Unlike FIPS with |N | =

2, when |N | = 4 there are substantially more configurations incorrectly classified as

convergent by the theory than divergent, with 1.553% and 0.06% respectively. However,

the theory is still nearly perfectly inline with the empirical findings.

The empirically obtained convergence region of FIPS with a neighborhood size of 8

and 16 is illustrated in figures 6.2c and 6.2d respectively. The theoretically derived

convergence region for k = 8 and k = 16 agrees with the empirical findings for 93.850%

and 94.099% of the tested parameter configurations respectively. While the level of

accuracy is less than that of |N | = 2, 4 the theory still provides a very close fit with

the empirical results. The decrease in accuracy from |N | = 2, 4 to |N | = 8, 16 can be

attributed to two things: firstly the increase in the number of sources of randomness,

and secondly that the stagnation assumption becomes stronger the larger k becomes.

Despite this justification it is unclear why the accuracy for |N | = 8 is lower than that

of |N | = 16. It appears that a specific neighborhood size exists where the effect of the

multiple sources of randomness is maximal, because all considered neighborhood sizes

greater than 8 have a better level of agreement with the theory as seen in table 6.1.

Visually, the found convergence regions for neighborhood size 8 and 16 are in agreement

with that of figure 6.1, with the convergence regions clearly becoming more triangular

in shape as |N | increases.

The empirically obtained convergence region of FIPS with a neighborhood size of 32

and 64 is illustrated in figures 6.2e and 6.2f respectively. The theoretically derived con-

vergence region for k = 32 and |N | = 64 agrees with the empirical findings for 94.348%

and 94.472% of the tested parameter configurations respectively. The convergence re-

gion obtain in figure 6.2f for a neighborhood size of 64 is nearly completely triangular

in shape as predicted by equation (6.16).

The change in convergence region with the increase in neighborhood size is clearly illus-

trated in figure 6.3, and is in agreement with the theoretical derivation as illustrated in
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(a) FIPS convergence results for |N | = 2 in
50 dimensions.
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(b) FIPS convergence results for |N | = 4 in
50 dimensions.
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(c) FIPS convergence results for |N | = 8 in
50 dimensions.
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(d) FIPS convergence results for |N | = 16
in 50 dimensions.
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(e) FIPS convergence results for |N | = 32
in 50 dimensions.
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(f) FIPS convergence results for |N | = 64
in 50 dimensions.

Figure 6.2: FIPS convergence results
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figure 6.1.

It should be noted that for all neighborhood sizes other than two, the empirically ob-

tained convergence regions were slightly smaller than the theoretically derived region,

as can be seen in table 6.1 by the larger number of misclassification of configurations

as being convergent by the theory. This behavior is almost certainly due to an increase

in difficultly for the swarm to become stagnate when parameter configurations near the

border of equation (6.16) are used.
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Figure 6.3: FIPS convergence results summary

Given the results of this section, it is clear that the convergence criteria derived in section

6.1 are an accurate representation of an assumption free FIPS algorithm. However, in

practice, it is advisable to avoid parameter configurations that are particularly close to

the boundary of equation (6.16), given the results of this section.

6.3 Summary

The convergence criteria for FIPS were theoretically derived under the stagnation as-

sumption. The convergence criteria where validated empirically utilizing the method
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presented in Chapter 5, were no simplifying assumptions were made on the FIPS algo-

rithm. Given the empirical validation, the theoretical derivation is an accurate represen-

tation of FIPS’s convergence region despite the region being derived under the stagnation

assumption. It should be noted that, when the content of this chapter was accepted for

publication, it was the first theoretical derivation of explicit stability criteria for FIPS

using an arbitrary neighborhood size.

The next chapter performs stability analysis of the UPSO algorithm utilizing the same

approach as used in this chapter.
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Chapter 7

Unified Particle Swarm

Optimization: Stability Analysis

This chapter presents novel theoretical derivations of the order-1 and order-2 stable

regions for the unified PSO (UPSO) algorithm in section 7.1. The accuracy of the

derived regions is then empirically tested in an assumption free context in section 7.2

utilizing the approach presented in section 5.6. A summary of this chapter’s findings is

presented in section 7.3. Content from this chapter was published in the proceeding of

the 2016 IEEE Congress on Evolutionary Computation [14].

7.1 Theoretical Derivation

This section presents the theoretical derivation of the order-1 and order-2 stable regions

for the UPSO algorithm. The point of particle convergence is also derived.

Firstly, the stagnation assumption is used: In UPSO’s update equation, as defined in

equation (2.5), it is assumed that gi(t) = g, ŷi(t) = ŷ and yi(t) = y for all t. Given

that there is no dependence between the vector components of the update equation, it

is possible to, without loss of generality, focus on a one dimensional particle trajectory.

73
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he position update equation of UPSO, merged with the velocity update equation (2.5),

is rearranged to the form

xi(t+ 1) + α1xi(t) + α2xi(t− 1) = α3 (7.1)

where

α1 = −(1 + w) + u
(
r1 − r′1

)
c1 + u(r2 − r′2)c2 + c1r

′
1 + c2r

′
2

α2 = w

α3 = u
(
r1 − r′1

)
c1y + uc2(r2g − r′2ŷ) + c1r

′
1y + c2r

′
2ŷ. (7.2)

Application of the expectation operator to equation (7.1) results in the following equa-

tion:

E[xi(t+ 1)] + E[α1]E[xi(t)] + E[α2]E[xi(t− 1)] = E[α3] (7.3)

where

E[α1] = −(1 + w) +
c1

2
+
c2

2

E[α2] = w

E[α3] =
uc2(g − ŷ)

2
+
c1y

2
+
c2ŷ

2
. (7.4)

In order to obtain the order-1 region, equation (7.3) is rewritten into the following matrix

form: ∣∣∣∣∣∣xi(t+ 1)

xi(t)

∣∣∣∣∣∣ = M

∣∣∣∣∣∣ xi(t)

xi(t− 1)

∣∣∣∣∣∣+

∣∣∣∣∣∣E[α3]

0

∣∣∣∣∣∣ (7.5)

where

M =

∣∣∣∣∣∣−E[α1] −E[α2]

1 0

∣∣∣∣∣∣ (7.6)

Now, if ρ(M) < 1, then order-1 stability is obtained [8], where ρ is the spectral radius

of the matrix. The two eigenvalues of M are

−E[α1]±
√
E[α1]2 − 4E[α2]

2
(7.7)
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which means that the simplified conditions needed for ρ(M) < 1 are

|w| < 1 and 0 < c1 + c2 < 4(w + 1) (7.8)

So the order-1 stable region for UPSO is the same as the order-1 stable region found for

both PSO and FIPS as discussed in chapters 3 and 6.

In the presence of order-1 stability, a fixed point γupso exists for equation (7.3). Specifi-

cally, γupso is calculated as

γupso =
uc2(g − ŷ) + c1y + c2ŷ

c1 + c2
(7.9)

by setting

E[xi(t− 1)] = E[xi(t)] = E[xi(t+ 1)] = γupso

in equation (7.3) and solving for γupso.

If u = 0 or u = 1 in equation (7.9) the same fixed point is obtained for the canonical

PSO as found in [51][61] for the LBest and GBest PSO respectively.

In order to obtain the conditions necessary for order-2 stability, once again the proof

technique derived by Blackwell [3] is used. The following conditions are necessary for

order-2 stability:

1 + E [a] + E [b] 6= 0 (7.10)

1− E
[
a2
]
− E

[
b2
]

+

(
2E [ab]E [a]

1 + E [b]

)
> 0 (7.11)

In the case of this chapter a = α1, b = α2.

It is not clear in the original paper [45] if r′i and ri are in fact distinct for i = 1, 2. As a

result, this chapter distinguishes the cases

• r′1 = r1 and r′2 = r2

• r′1 6= r1 and r′2 6= r2
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Both of the cases result in the same order-1 stable region, so it was not necessary to

distinguish the cases earlier. If the first case is considered, UPSO’s update equation can

be simplified such that

α1 = −(1 + w) + c1r1 + c2r2

α2 = w (7.12)

α3 = uc2r2(g − n) + c1r1y + c2r2n

Now it should be noted that the conditions necessary for order-2 stability in equations

(7.10) and (7.11) do not depend on α3. The terms α1 and α2 are exactly the same as in

the case of the PSO algorithm, which means that the derivation of PSO’s order-2 stable

region in [3] is the same as that of UPSO when r′1 = r1 and r′2 = r2. Therefore, it is not

necessary to proceed any further with this case.

The second case where r′1 6= r1 and r′2 6= r2 is more interesting. In order to use equations

(6.15) and (6.16), a number of expected value are needed:

E[α1] = −(1 + w) + uE[
(
r1 − r′1

)
]c1 + uE[(r2 − r′2)]c2 + c1E[r′1] + c2E[r′2]

= −(1 + w) + u(0)c1 + u(0)c2 + c1
1

2
+ c2

1

2

= −(1 + w) + c1
1

2
+ c2

1

2
(7.13)

E[α1]2 = (1 + w)2 − (1 + w)(c1 + c2) +
(c1 + c2)2

4
, (7.14)

E[α2] = w (7.15)

E[α2]2 = w2 (7.16)

E[α1α2] = E[α1]E[α2] = −w(1 + w) +
c1w

2
+
c2w

2
. (7.17)
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Moving on to the more lengthy calculation, E[α2
1] needs to be calculated. Now,

α2
1 = (−(1 + w) + c1u(r1 − r′1) + c2u(r2 − r′2) + c1r

′
1 + c2r

′
2)2

= (1 + w)2 − (1 + w)c1u(r1 − r′1)− (1 + w)c2u(r2 − r′2)

− (1 + w)c1r
′
1 − (1 + w)c2r

′
2 − (1 + w)c1u(r1 − r′1)

+ c2
1u

2(r1 − r′1)2 + c1c2u
2(r1 − r′1)(r2 − r′2) + c2

1ur
′
1(r1 − r′1)

+ c1c2ur
′
2(r1 − r′1)− (1 + w)c2u(r2 − r′2)

+ c1c2u
2(r1 − r′1)(r2 − r′2) + c2

2u
2(r2 − r′2)2 + c1c2ur

′
1(r2 − r′2)

+ c2
2r
′
2u(r2 − r′2)− (1 + w)c1r

′
1 + c2

1ur
′
1(r1 − r′1)

+ c1c2r
′
1u(r2 − r′2) + c2

1(r′1)2 + c1c2r
′
1r
′
2 − (1 + w)c2r

′
2

+ c1c2r
′
2u(r1 − r′1) + c2

2r
′
2u(r2 − r′2) + c1c2r

′
1r
′
2 + c2

2(r′2)2 (7.18)

Application of the expectation operator leads to

E[α2
1] = (1 + w)2 − (1 + w)c1uE[r1 − r′1]− (1 + w)c2uE[r2 − r′2]

− (1 + w)c1E[r′1]− (1 + w)c2E[r′2]− (1 + w)c1uE[r1 − r′1]

+ c2
1u

2E[(r1 − r′1)2] + c1c2u
2E[(r1 − r′1)(r2 − r′2)]

+ c2
1uE[r′1(r1 − r′1)] + c1c2uE[r′2(r1 − r′1)]

− (1 + w)c2uE[r2 − r′2] + c1c2u
2E[(r1 − r′1)(r2 − r′2)]

+ c2
2u

2E[(r2 − r′2)2] + c1c2uE[r′1(r2 − r′2)] + c2
2uE[r′2(r2 − r′2)]

− (1 + w)c1E[r′1] + c2
1uE[r′1(r1 − r′1)] + c1c2uE[r′1(r2 − r′2)]

+ c2
1E[(r′1)2] + c1c2E[r′1r

′
2]− (1 + w)c2E[r′2]

+ c1c2uE[r′2(r1 − r′1)] + c2
2uE[r′2(r2 − r′2)]

+ c1c2E[r′1r
′
2] + c2

2E[(r′2)2] (7.19)
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where

E[r1 − r′1] = E[r2 − r′2] = 0 (7.20)

E[(r1 − r′1)2] = E[(r1)2 − 2r1r
′
1 + (r′1)2] =

1

6
= E[(r2 − r′2)2] (7.21)

E[(r1 − r′1)(r2 − r′2)] = E[r1r2 − r1r
′
2 − r′1r2 + r′1r

′
2] = 0 (7.22)

E[r′2(r1 − r′1)] = 0 = E[r′1(r2 − r′2)] (7.23)

E[r′1(r1 − r′1)] = E[r′1r1 − r′1r′1] = − 1

12
= E[r′2(r2 − r′2)] (7.24)

After substituting back these expected values into equation (7.19) and simplifying, the

following is obtained:

E[α2
1] = (1 + w)2 − (1 + w)(c1 + c2) +

c2
1 + c2

2

6
(u2 − u) +

c2
1

3
+
c1c2

2
+
c2

2

3
(7.25)

Using the calculated expected values it is now possible to obtain the conditions necessary

for order-2 stability. The first condition obtained from equation (7.10) is

1− (1 + w) +
c1

2
+
c2

2
+ w 6= 0 =⇒ c1 + c2 6= 0 (7.26)

The second condition obtained from equation (7.11) is calculated as follows:

1−
(

(1 + w)2 − 2(1 + w)c̃+
2c̃2

6
(u2 − u) +

7c̃2

6

)
− w2

+

(
2w
(
(1 + w)2 − 2(1 + w)c̃+ c̃2

)
1 + w

)
> 0 (7.27)

where c̃ = c1 = c2. Using |w| < 1 and c1 + c2 > 0 from the order-1 stable region of

equation (7.8), equation (7.27) can be simplified to

c̃ <
12(1− w2)

7− 5w + 2(u2 − u)(1 + w)
(7.28)
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In order for a particle’s movement to be seen as convergent, it should exhibit order-1

and order-2 stability. As such, the criteria for particle convergence is merged as

|w| < 1 (7.29)

0 < c1 + c2 <
24(1− w2)

7− 5w + 2(u2 − u)(1 + w)
(7.30)

This merger is possible because the region defined by (7.28) is a subset of the region

defined by 0 < c1 + c2 < 4(w + 1).

The manner in which the choice of u affects the convergence region is illustrated in figure

7.1. Clearly, the closer u gets to 0.5, the more the convergence region’s apex extends.

As u approaches 0 or 1 from 0.5 the convergence region shrinks in a symmetric fashion,

with both u = 0 and u = 1 resulting in the identical convergence region of the PSO

algorithm, as defined in equation (3.13).

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5

w

c
1
+c

2

u=0.0 and 1.0

u=0.1 and 0.9

u=0.2 and 0.8

u=0.3 and 0.7

u=0.4 and 0.6

u=0.5

Figure 7.1: UPSO convergence regions for u = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, and 1

7.2 Empirical Validation

This section utilizes the method for empirically investigating the convergence region of

PSO variants as proposed in section 5.6. Section 7.2.1 presents the experimental setup

followed by the experimental results and discussion in section 7.2.2.
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7.2.1 Empirical Setup

The experiment of this chapter follows the same structure as was used in chapter 6. A

population size of 64, and 5000 iterations were uses. Particle positions were initialized

within (−100, 100) and velocities were initialized to 0. The analysis is in 50 dimensions,

resulting in ∆max = 1414.214. Reported results were bounded at ∆max to prevent

highly divergent parameter configurations from obscuring the data. The ring topology

was used. The unification factors u = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 are

considered

The empirical measure of convergence used in this chapter is that of equation (4.2),

and the objective function used is CF, as defined equation (4.1). The experiment was

conducted over the following parameter region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 5.2] , (7.31)

where c1 = c2, with a sample point every 0.1 along w and c1 +c2. A total of 1196 sample

points from the region defined in equation (7.31) were used. The region of equation

(7.31) was chosen as it contains the derived regions for all values of the unification

factor u ∈ [0, 1]. The results reported in section 7.2.2 are derived from 35 independent

runs for each sample point.

7.2.2 Experimental Results and Discussion

This section presents the results of the experiments described in section 7.2.1.

A snapshot of all parameter configurations’ resulting convergence measure values are

presented in figures 7.2a to 7.4c for the 5000th iteration for UPSO with unification

factors u = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. The reported convergence

measures are the maximum recorded over the 35 independent runs. The maximum was

utilized in this chapter as apposed to the mean because the differing convergence regions

(as defined by equation (7.30)) are more closely spaced than the convergence regions of

FIPS (as defined in equation (6.25)) were in chapter 6.
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The number of parameter configurations that empirically agree or disagree with the con-

vergence/divergence behavior predicted by the theoretically derived convergence region

of equations (7.29) and (7.30) is presented in table 7.1. The same eight measurements

as used in chapter 6 are given in table 7.1.

A parameter configuration is classified to be convergent if the value of the recorded

convergence measure of equation (4.2) is less than ∆max, and divergent if greater than

or equal to ∆max.

Table 7.1: Theoretical prediction versus empirical findings

u TC TD EC ED EC & TD ED & TC Error Agreement
0.1 532 664 578 618 46 0 3.8462% 96.1538%
0.2 552 644 597 599 45 0 3.7625% 96.2375%
0.3 571 625 618 578 47 0 3.9298% 96.0702%
0.4 581 615 626 570 45 0 3.7625% 96.2375%
0.5 587 609 633 563 46 0 3.8462% 96.1538%
0.6 581 615 621 575 40 0 3.3445% 96.6555%
0.7 571 625 613 586 42 0 3.5117% 96.4883%
0.8 552 644 603 593 41 0 4.2642% 95.7358%
0.9 532 664 580 616 48 0 4.0134% 95.9866%

The mesaurements presented are the number of parameter configurations that are theoretically
convergent (TC) and divergent (TD), the number of parameter configurations that were empirically
convergent (EC) and divergent (ED), the number of parameter configurations that were found to be

empirically convergent despite the theory predicting divergence (EC & TD), the number of parameter
configurations that were found to be empirically divergent despite the theory predicting convergence
(ED & TC), and lastly the percentage error and agreement between the theoretically derivation and

the empirical finding.

The empirically obtained convergence region of UPSO with a unification factor of 0.1

is illustrated in figure 7.2a. The general shape and size of the convergence region is

in agreement with that of equations (7.29) and (7.30), as can be seen by comparing

figure 7.1 with figure 7.2a. The theoretically derived convergence region agrees with the

empirical findings for 96.1538% of the tested parameter configurations as seen in table

7.1.

The empirically obtained convergence region of UPSO with a unification factor of 0.9

was in agreement with the theoretically derived region for 95.9866% of the parameter

configurations, and is nearly identical to that of UPSO with a unification factor of 0.1 as

can be seen in figures 7.4c and 7.2a, as was predicted by the theoretically derived region.

As expected, the empirically obtained convergence region of UPSO with a unification

factor of 0.2 is nearly identical to that of 0.8 as illustrated in figures 7.2b and 7.4b.
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(a) UPSO convergence results for u = 0.1
in 50 dimensions.
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(b) UPSO convergence results for u = 0.2
in 50 dimensions.
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(c) UPSO convergence results for u = 0.3
in 50 dimensions.

Figure 7.2: UPSO convergence results for u = 0.1, 0.2, and 0.3.

The level of agreement with the theoretical derivation was 96.2375% and 95.7358% for

a unification factor of 0.2 and 0.8 respectively.

Figures 7.2c and 7.3a show that, for the unification factors 0.3 and 0.4, the apex of the

convergence region extends more the closer the unification factor gets to 0.5, as was

predicted by the theory. The level of agreement with the theoretically derived region is

96.0702% and 96.2375% for unification factors 0.3 and 0.4 respectively. The convergence

region obtained for the unification factors 0.3 and 0.4 are nearly identical to that of

the convergence region obtained for the unification factors 0.7 and 0.6 respectively, as

shown in figures 7.2c, 7.3a, 7.3c, and 7.4a. The identical convergence regions are, once
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(a) UPSO convergence results for u = 0.4
in 50 dimensions.
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(b) UPSO convergence results for u = 0.5
in 50 dimensions.
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(c) UPSO convergence results for u = 0.6
in 50 dimensions.

Figure 7.3: UPSO convergence results for u = 0.4, 0.5, and 0.6.

again, in complete agreement with the theoretically derivation. The empirically obtained

convergence region of UPSO with a unification factor of 0.6 and 0.7 also had a very high

level of agreement with the theoretical derived region with a 96.6555% and 96.4883%

agreement respectively.

The empirically obtained convergence region of UPSO with a unification factor of 0.5 is

the largest of all the convergence regions as illustrated in figure 7.3b, which was predicted

by the theory. The level of agreement with the theory for a unification factor of 0.5 was

96.1538%. There is, however, very little difference between the convergence region for

a unification factor of 0.5 and both 0.4 and 0.6, as is to be expected given the small
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(a) UPSO convergence results for u = 0.7
in 50 dimensions.
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(b) UPSO convergence results for u = 0.8
in 50 dimensions.
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(c) UPSO convergence results for u = 0.9
in 50 dimensions.

Figure 7.4: UPSO convergence results for u = 0.7, 0.8, and 0.9.

predicted difference by the theory as illustrated in figure 7.1.

What is interesting is that there are absolutely no cases where a parameter configuration

is predicted to be convergent by the theory but that was empirically detected to be

divergent. This lack of false positives (false convergent configurations) is very indicative

of the fact that the utilization of the theoretically derived region will completely avoid

unwanted divergent behavior. It should also be noted that, in most cases, as is visible

in figures 7.2a to 7.4c, there are a few parameter configurations with a relatively high

convergent measure value around the boundary of the convergence regions that are less

than ∆max. These parameter configurations are the primary contributing factor to the
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“EC & TD” measurement in table 7.1. Given this information and the comparatively

large convergent measure values, it would be reasonable to assume that given enough

iterations, the particle movement would in fact breach the classification threshold of

∆max, and agree with the theoretical derivation.

It is clear that the theoretically derived region for particle convergence described by

equations (7.29) and (7.30) is an accurate representation of the real world parameter

configurations necessary to ensure particle convergence.

7.3 Summary

This chapter derived the order-1 and order-2 stable regions for UPSO, along with the

point of particle convergence. The derived criteria for convergence where validated

empirically utilizing the method described in chapter 5, were no simplifying assumptions

were made on the UPSO algorithm. Given the empirical validation, the theoretical

derivation is an accurate representation of UPSO’s convergence region despite the region

being derived under the stagnation assumption.

The next chapter investigates the impact that particle stability has on PSO perfor-

mance.
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Chapter 8

Influence of Particle Stability on

Performance

This chapter investigates the effect of particle stability on the ability of PSO to find

optimal solutions. Specifically, the influence of order-2 stability on performance is in-

vestigated. The performance of PSO is tested across a wide range of objective functions

in varying dimensionalities. Performance is also considered across differing iteration

counts. Content from this chapter was accepted for publication in the proceedings of

the 2016 IEEE Symposium Series on Swarm Intelligence [13].

Section 8.1 provides a simple theoretical explanation for why unstable particles are

likely to result in poor performance. Section 8.2 presents the empirical setup. The

experimental results and discussion of the results are presented in section 8.3. The

chapter’s findings are summarized section 8.4.

8.1 Why Particle Stability Should Effect Performance

This section defines what is meant by particle stability, and discusses the implications

of particle stability.

A particle is considered stable if the sequence generated from the particle’s positions is

order-1 and order-2 stable, as defined in definitions 3.2 and 3.3 respectively. A particle

86
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is termed unstable if the sequence generated from the particle’s positions is not both

order-1 and order-2 stable.

A large body of theoretical analysis of PSO exists as discussed in 3. Currently, the

most general theoretical PSO model is from Bonyadi and Michalewicz [7], which is

an extension of the work of Poli [50]. This general model relies on a first order, non-

homogeneous recurrence relation. Specifically, a first order, non-homogeneous recurrence

relation is defined as a sequence (zt) in Rq, constructed from

zt = Mzt−1 + b, (8.1)

where b is a constant offset in Rq and M a matrix from Rq to Rq. The recurrence

relation’s initial term is defined as z1. The sequence (zt) converges if and only if ρ(M) <

1 [1], where ρ denotes the spectral radius as defined in definition C.11.

The exact values used for M and b by Bonyadi and Michalewicz [7] and Poli [50] can

be found in the respective works. The fully generalized values for M and b can also

be found in chapter 9. However, the exact values of M and b are not the focus of this

section, rather the focus is on what the violation of ρ(M) < 1 implies for PSO particle

movement.

If ρ(M) < 1, then PSO particles are order-2 stable, and the condition ρ(M) < 1

corresponds directly to the following criteria for order-2 stability:

c1 + c2 > 0, |w| < 1, c1 + c2 <
24(1− w2)

7− 5w
, (8.2)

as explained in chapter 3.

The rate at which the variance, V [xt], of particle positions increases if ρ(M) > 1, is now

illustrated. For the sake of simplicity, consider M as symmetric with ρ(M) > 1 (what

follows still holds if M is not symmetric, as is proven in [1]; however, the technical detail

would detract from the discussion, as the proof is quite intricate). Now, unwinding of
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equation (8.1) leads to

zt = M t−1z1 +
t−2∑
j=0

M jb (8.3)

where M j indicates the jth matrix product, with M0 = I the identity matrix. Since

M is symmetric there exist scalar values η1 to ηq such that an initial term z1 can be

represented as a weighted sum of M ’s eigenvectors, specifically, z1 =
q∑
i=0

ηiei, where ei

are the eigenvectors of M , which have the corresponding eigenvalues λi. Consider the

first term of equation (8.3):

M t−1z1 = M t−1
q∑
i=0

ηiei =

q∑
i=0

ηiλ
t−1
i ei (8.4)

because Mei = λi. Since ρ(M) > 1, at least one eigenvalue, λî, of M is greater

than one, so the summation in equation (8.4) will diverge (assuming the corresponding

ηi 6= 0). Not only will the term diverge, but it will do so exponentially since λt
î

diverges

exponentially. This implies that the variance of the particle positions will increase

exponentially during the PSO run. The exponential divergence is very important to note

as small increases in ρ(M) could drastically increase the long term particle trajectory.

The immediate questions that arise from the preceding discussion are

• What is the relationship between PSO particle stability and PSO’s real world

performance?

• How tolerant is PSO to having control parameters selected that result in a spectral

radius slightly larger than one?

These questions are answered in the subsequent sections.

8.2 Empirical Setup

This section summarizes the experimental procedure used for this chapter. The exper-

iment aims to illustrate that most unstable parameter configurations actually result in
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such poor performance of PSO that a trivial random search can outperform them. Pa-

rameter configurations are seen as unstable if they do not satisfy the criteria for order-2

stability, as defined in equation (8.2).

The performance of the PSO was measured for each parameter configuration across the

following region:

w ∈ [−1.1, 1.1] and c1 + c2 ∈ (0, 5.5] (8.5)

where step sizes of 0.1 were used for w and c1 + c2. This results in 1264 parameter

configurations, of which 761 are unstable and 504 are stable according to equation (8.2).

A star neighborhood structure was used. Velocities were initialized to 0. A population

size of 20 was used. The results for each configuration were derived from 35 independent

runs.

The performance of the original PSO, with the inclusion of inertia, is compared to that

of a random search. If a specific configuration of PSO does worse than a random search,

the PSO is not effectively optimizing. The random search algorithm used is defined in

algorithm 3. For the sake of comparison, each iteration of the PSO algorithm is seen as

comparable to 20 random samples of the search space, one for each of the particles in

the PSO swarm.

Algorithm 3 Random Search

Let f be the objective function to be minimized, and S the search space
Let s be the maximum number of samples, and scount is initialized to 0
Let pbest represent the position with the current lowest objective function value
while scount < s do

Sample c from a uniform distribution over S.
if f(c) < f(pbest) then
pbest = c

end if
end while

The objective functions used in this chapter are listed in table 8.1. Full definitions of

the objective functions are given in appendix B. Each objective function is tested in

5, 10, and 30 dimensions. The performance is measured at 500, 1000, 2000, and 5000

iterations.
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Table 8.1: Objective Functions

Function name Function Name

F1 Absolute Value F15 Norwegian

F2 Ackley F16 Quadric

F3 Alpine F17 Quartic

F4 Bent Cigar F18 Rastrigin

F5 Discus F19 Rosenbrock

F6 Egg Holder F20 Salomon

F7 Elliptic F21 Schaffer 6

F8 Expanded F9 and F19 F22 Schwefel 2.21

F9 Griewank F23 Schwefel 2.22

F10 HappyCat F24 Shubert

F11 HGBat F25 Spherical

F12 Hyper Ellipsoid F26 Step

F13 Katsuura F27 Vincent

F14 Michalewicz F28 Weierstrass

8.3 Empirical Results and Discussion

This section presents the results of the experiments described in section 8.2.

For each parameter configuration, Mann-Whitney U tests, using a confidence level of

95%, were performed to determine whether a given parameter configuration resulted in

a PSO that was in fact better or worse than a random search, or if the PSO showed

no statistical difference with the performance of the random search. This information

is summarized into four performance indicators for each objective function, and each

considered maximum number of iterations:

• S BR: The percentage of theoretically stable parameter configurations that re-

sulted in the PSO performing better than random search.

• S NDR: The percentage of theoretically stable parameter configurations that re-

sulted in the PSO performing with no statistically significant difference to random

search.

• US BR: The percentage of theoretically unstable parameter configurations that

resulted in the PSO performing better than random search.
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• US NDR: The percentage of theoretically unstable parameter configurations that

resulted in the PSO performing with no statistically significant difference to ran-

dom search.

For each dimensionality tested, a table summarizing the performance information is

given. The performance results for 500, 1000, 2000, and 5000 iterations are reported in

each table.

The first thing to note is that, over all the results shown in tables 8.2, 8.3, and 8.4 for 5,

10, and 30 dimensions respectively, the percentage of unstable parameter choices that

were able to outperform random search was significantly low. The highest percentage

of unstable parameter configurations able to outperform random search was 34.67% for

Griewank in 5 dimensions, at 500 iterations, though the performance of unstable pa-

rameter configurations on Griewank decreases with an increase in iteration count, down

to 27.2% at 5000 iterations. The worsening of performance of PSO, when using un-

stable parameter configurations, is expected given the known exponential growth in the

variance of particle positions, as discussed in section 8.1. The exact parameter configura-

tions that failed to beat random search are illustrated in figure 8.1a. What is interesting

is that all the unstable parameter configurations that did in fact outperform random

search are in a region which is an extension of the stability boundary of equation (3.13),

with an extended apex. The extension corresponds with a spectral radius of M that is

slightly larger than 1. Similar results can be seen for both Solomon and Rosenbrock in

5-dimensions at 5000 iterations as illustrated figures 8.1b and 8.1c respectively.

While it appears in figures 8.1a, 8.1b, and 8.1c as if there is a fair degree of tolerance

on the stability boundary of equation (3.13), a quick scan of tables 8.2, 8.3, and 8.4

shows numerous cases where the performance of unstable parameter configurations are

terrible. For example, only 6.18% of the unstable parameter configurations were able to

outperform random search on Michalewicz in 30 dimensions at 1000 iterations, whereas

100% of the stable parameter configurations outperformed random search. Figure 8.1d

shows that a near perfect relationship exists between stable parameter configurations

and the ability of the PSO to outperform random search when optimizing Michalewicz.
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There are actually two objective functions that illustrate how finely tuned PSO some-

times needs to be, namely Egg Holder and Elliptic (while Egg Holder is known to have

better solutions outside of the search space, this does not impact the results as the PSO

was not allowed to update particles’ personal or neighborhood positions best if they

were outside of the allowable search space). Over all tested dimensions even stable pa-

rameter configurations were more often than not outperformed by random search. This

requirement of fine tuning is evident in figure 8.1e for the Elliptic objective function in

5 dimensions at 5000. What is worth noting in figure 8.1e is that there are unstable

parameter configurations that outperform stable parameters. However, all unstable pa-

rameter configurations that were successful are still near the apex of the stable region

of equation (3.13). The performance of PSO was very poor for Egg Holder, with only

less than 12% of the parameter configurations (stable and unstable) outperforming ran-

dom search in 5 dimensions at 500 iterations, and decreasing to less than 11% of the

parameter configurations. Figure 8.1f shows that only a very small number of parameter

configurations are effective at optimizing the Egg Holder objective function. What is

interesting is that once again the optimal parameter configurations are clustered around

the boundary of the stable region. However, in the case of the Egg Holder objective

function, most parameter configurations are just slightly outside the stable region.

There is a very clear trend throughout all the data, namely that the performance of

stable parameter configurations improve as the dimensionality of the objective func-

tion increases. This behavior is observed for all tested objective functions except for

the Happy Cat objective function. What is interesting is that the performance across

nearly all the objective functions worsens, with an increase in dimensionality for unsta-

ble parameter configurations. This implies that the higher the dimensionality, the more

important it becomes to select stable parameter configurations.
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8.4 Summary

This chapter showed that the majority of parameter configurations that are theoretically

unstable perform worse than random search on all objective functions tested. It was also

shown that there is a degree of tolerance from which parameters can be selected just

outside of the convergence region without extreme performance degradation. However,

the degree to which parameter values can be selected outside of the stable region is very

problem dependent. For most tested cases it was found that convergent parameter con-

figurations drastically increased the chance of outperforming random search. Selecting

parameter values within the stable region near the apex was the best strategy to ensure

that PSO was always superior to random search. It was also observed that the higher

the dimensionality of the problem, the more important it is to select stable parameter

configurations.

The next chapter presents an extension to the state of the art theoretical model utilized

for understanding the stability of particle swarm optimization particles.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 8. Influence of Particle Stability on Performance 97

 0  1  2  3  4  5

c
1
+c

2

-1

-0.5

 0

 0.5

 1

w

 1

 1.5

 2

 2.5

 3

(a) Griewank, 5-dimensions, 5000 itera-
tions.
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(b) Salomon, 5-dimensions, 5000 iterations.
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(c) Rosenbrock, 5-dimensions, 5000 itera-
tions.
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(d) Michalewicz, 30-dimensions, 1000 iter-
ations.
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(e) Elliptic, 5-dimensions, 5000 iterations.
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(f) Egg Holder, 5-dimensions, 5000 itera-
tions.

Figure 8.1: Performance of PSO versus random search
1 = performed better than random search, 2 = no statistical difference,

3 = random search performed better
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Chapter 9

Extension of the Theoretical

Particle Swarm Model

This chapter presents a meaningful extension of the state of the art theoretical model

utilized for understanding the stability of particle swarm optimization’s particles. Con-

ditions for order-1 and order-2 stability are derived by modeling, in the simplest case,

the expected value and variance of a particle’s personal and neighborhood best posi-

tions as convergent sequences of random variables. Furthermore, it is proven that the

assumption that the expected value and variance of a particle’s personal and neighbor-

hood best positions are convergent sequences is in fact a necessary condition for order-1

and order-2 stability. The theoretical analysis presented in this chapter is applicable to

a large class of particle swarm optimization variants.

The theoretical derivations of criteria for order-1 and order-2 stability are presented

in section 9.1. Section 9.2 presents an application of the theoretical stability analysis.

A summary of the chapter’s findings are presented in section 9.3. Content from this

chapter has been submitted for review to the Swarm Intelligence journal.

98
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Chapter 9. Extension of the Theoretical Particle Swarm Model 99

9.1 Stability Proof

This section presents a derivation of the necessary and sufficient conditions for order-1

and order-2 stability of PSO under the non-stagnant distribution assumption. The sec-

tion starts with two small lemmas which are used to improve the flow of the more sub-

stantial lemma 9.3. Lemma 9.3 is an extension of a classic theorem from mathematical

analysis. The main result is then presented in theorem 9.4.

Lemma 9.1. Let (T n) be a sequence of bounded linear operators [35] from Rp to

Rp, all with equal spectral radius, where the spectral radius is defined using definition

C.11. Furthermore let (T n) be uniformly operator convergent. If ρ(T 1) < 1, then

lim
n→∞

T nT n−1 · · ·T 1 = Θ, where Θ is the null operator; ρ(T 1) is used to indicate the

spectral radius of T 1.

Proof : It is known that for any δ > 0, there exists a norm || · ||δ such that ρ(T 1) ≤

||T 1||δ ≤ ρ(T 1)+δ [35], and since ρ(T 1) < 1, a δ can be selected such that there exists a

σ where ||T 1||δ ≤ σ < 1. The same is true for any element of the sequence (T n). Since

(T n) is uniformly operator convergent, and each ρ(T n) < 1, there exists a N , σ, and

norm ‖ · ‖δ such that ‖T n‖ ≤ σ < 1 for all n ≥ N . Furthermore, since (T n) is uniformly

operator convergent there exists a bound such that ‖T n‖ ≤ ξ for all n. It then follows

that, for all n > N ,

‖T nT n−1 · · ·TNTN−1 · · ·T 1‖δ ≤ ‖T nT n−1 · · ·TN+1‖δ‖TNTN−1 · · ·T 1‖δ (9.1)

≤ σn−NξN (9.2)

Given that N and ξ are finite, σn−NξN → 0 as n → ∞. Since ||T nT n−1 · · ·T 1||δ → 0,

T nT n−1 · · ·T 1 → Θ, as was to be proved.

Lemma 9.2. Let (T n) be a sequence of bounded linear operators from Rp to Rp, and let

(T n) be uniformly operator convergent, where uniform operator convergence is defined

using definition C.13. Then for any finite j the sequence (T n · · ·T n−j) is also uniformly

operator convergent.
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Chapter 9. Extension of the Theoretical Particle Swarm Model 100

Proof : An inductive argument is used. For j = 0, operator convergence is directly

obtained from the given assumption. The inductive step is as follows: assume that

(Tn · · ·Tn−j) is convergent. Since both (T n−j−1) and (T n · · ·T n−j) are convergent, they

are bounded, so there exists an η1 and η2 such that ‖T n · · ·T n−j‖ ≤ η1 and ‖T n−j−1‖ ≤

η2 for all n. It also follows that for any ε > 0 there exists a Nε,j−1 such that, if

m > n ≥ Nε,j−1 for m,n ∈ N, then ‖Tm−j−1 − T n−j−1‖ < ε
2η1

. Similarly, there

exists a Nε such that, if m > n ≥ Nε, then ‖Tm · · ·Tm−j − T n · · ·T n−j‖ < ε
2η2

. Let

N = max{Nε, Nε,j−1}. If m > n > N , then

‖Tm · · ·Tm−j−1 − T n · · ·T n−j−1‖

≤ ‖Tm · · ·Tm−j−1 − Tm · · ·Tm−jT n−j−1‖+ ‖Tm · · ·Tm−jT n−j−1 − T n · · ·T n−j−1‖

≤ ‖Tm · · ·Tm−j‖‖Tm−j−1 − T n−j−1‖+ ‖Tm · · ·Tm−j − T n · · ·T n−j‖‖T n−j−1‖

≤ η1‖Tm−j−1 − T n−j−1‖+ η2‖Tm · · ·Tm−j − T n · · ·T n−j‖

< ε (9.3)

Therefore, (Tm · · ·Tm−j−1) is Cauchy, and therefore convergent, proving the inductive

step. This concludes the proof of the lemma.

Lemma 9.3. Let (xn) be a sequence in Rp, defined as

xn = T nxn−1 + bn−1 (9.4)

where (T n) is a sequence of bounded linear operators from Rp to Rp which is uniformly

operator convergent, with each element having equal spectral radius, and (bn) is a se-

quence in Rp. The term x1 is used to indicate the initial condition. Now, if ρ(T n) < 1

and (bn) converges, then (xn) converges.

Proof : Firstly, it is assumed that ρ(T n) < 1 for all n and (bn) converges. As a notational

convenience, let C(s,e) = T eT e−1 · · ·T s when s ≤ e, and C(s,e) = I when s > e, where I

is the identity operator. As in Lemma 9.1 it is known that there exits a norm ‖ · ‖ such

that ||T n|| ≤ σ < 1. This norm will be used for the remainder of the proof.

Since the lemma is set in a finite dimensional space, it is sufficient to prove that (xn)

is Cauchy in order to prove convergence, which is now done. Let m,n ∈ N and m > n.
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Chapter 9. Extension of the Theoretical Particle Swarm Model 101

Unwinding xn leads to

xn = T nxn−1 + bn−1

= T n(T n−1xn−2 + bn−2) + bn−1

= · · ·

= C(1,n−1)x1 +
n−2∑
i=0

C(n+1−i,n)bn−1−i (9.5)

Now, using equation (9.5),

||xm − xn||

= ||C(1,m−1)x1 +
m−2∑
i=0

C(m+1−i,m)bm−1−i −C(1,n−1)x1 −
n−2∑
i=0

C(n+1−i,n)bn−1−i||

≤ ||
(
C(1,m−1) −C(1,n−1)

)
x1||+ ||

m−2∑
i=0

C(m+1−i,m)bm−1−i −
n−2∑
i=0

C(n+1−i,n)bn−1−i||

(9.6)

Considering the first term of the summation in equation (9.6), it is seen that

||
(
C(1,m−1) −C(1,n−1)

)
x1|| ≤ ||

(
C(1,m−1) −C(1,n−1)

)
|| ||x1|| (9.7)

since ρ(T n) < 1 for all n, and using lemma 9.1, the sequence of operators (C(1,n)) is

convergent, and therefore Cauchy. It follows that ||
(
C(1,m−1) −C(1,n−1)

)
‖ converges to

zero, and trivially so does equation (9.7).

Focusing on the second term of the summation in equation (9.6),

||
m−2∑
i=0

C(m+1−i,m)bm−1−i −
n−2∑
i=0

C(n+1−i,n)bn−1−i||

≤ ||
m−2∑
i=n−1

C(m+1−i,m)bm−1−i||+ ||
n−2∑
i=0

(
C(m+1−i,m)bm−1−i −C(n+1−i,n)bn−1−i

)
||

(9.8)
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Note that, for the first term in equation (9.8), since (bn) is convergent, there exits a ζ

such that ||bn|| < ζ for every n. It therefore follows that:

||
m−2∑
i=n−1

C(m+1−i,m)bm−1−i|| ≤
m−2∑
i=n−1

||C(m+1−i,m)|| ||bm−1−i||

≤
m−2∑
i=n−1

||C(m+1−i,m)|| ζ ≤
m−2∑
i=n−1

m−1−i∏
j=m

||T j || ζ (9.9)

It is also known that ‖T j‖ ≤ σ < 1. It therefore follows from equation (9.9) that

m−2∑
i=n−1

m−1−i∏
j=m

||T j || ζ ≤
m−2∑
i=n−1

m−1−i∏
j=m

σ ζ = ζ

m−2∑
i=n−1

σi+1 (9.10)

Since σ < 1, the elementary geometric series formula can be used to transform equation

(9.10) to

ζ
m−2∑
i=n−1

σi+1 = ζ
σn−1 − σm−1

1− σ
→ 0 as n,m→∞

Focusing on the remaining term in equation (9.8),

||
n−2∑
i=0

(
C(m+1−i,m)bm−1−i −C(n+1−i,n)bn−1−i

)
||

≤ ||
n−2∑
i=0

(
C(m+1−i,m)bm−1−i −C(m+1−i,m)bn−1−i

)
+ ||

n−2∑
i=0

(
C(m+1−i,m)bn−1−i −C(n+1−i,n)bn−1−i

)
|| (9.11)

Both terms of equation (9.11) requires a more subtle mathematical treatment, given the

complexity of the internal terms. The standard epsilon-n approach from analysis will
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be used. Consider the first term of equation (9.11),

||
n−2∑
i=0

(
C(m+1−i,m)bm−1−i −C(m+1−i,m)bn−1−i

)
≤

n−2∑
i=0

||C(m+1−i,m)|| ||bm−1−i − bn−1−i||

≤
n−2∑
i=0

σi ||bm−1−i − bn−1−i||

≤
n−2∑
i=0

σi ||bm−1−i − b||+
n−2∑
i=0

σi ||bn−1−i − b|| (9.12)

Let zi = bi+1− b. Since bi → b, ||zi|| → 0, and there exists a τ ∈ R such that ||zi|| < τ

for all i, because (zi) is convergent. Now there exists a nε, such that σn < ε and

||zn+1|| < ε for all n > nε. So, for the second term of equation (9.12),

n−2∑
i=0

σi ||bn−1−i − b|| =
n−2∑
i=0

σn−2−i ||bi+1 − b||

≤ τ
nε−2∑
i=0

σn−2−i + ε
n−2∑

i=nε−1

σn−2−i

≤ σn−nε − σn−1

1− σ
τ +

1− σn−nε
1− σ

ε

≤ σn−nε

1− σ
τ +

ε

1− σ

≤ τ + 1

1− σ
ε (9.13)

Now, since m > n, the same argument can be made for the first term of equation (9.12),

as was used for the second term. This implies that, for a large enough n and m, equation

(9.12) can be made less than an arbitrarily small ε > 0.

The last remaining term requiring analysis is the second term of equation (9.11). Note

that, since σn → 0 for any ε > 0, there exits a nε such that σn < ε (1− σ) /(2ζ) if
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n ≥ nε. Equation (9.11) can then be handled as follows:

‖
n−2∑
i=0

(
C(m+1−i,m)bn−1−i −C(n+1−i,n)bn−1−i

)
‖

≤
n−2∑
i=0

‖C(m+1−i,m) −C(n+1−i,n)‖‖bn−1−i‖

≤ ζ
nε−1∑
i=1

‖C(m+1−i,m) −C(n+1−i,n)‖+ ζ
n−2∑
i=nε

‖C(m+1−i,m) −C(n+1−i,n)‖

≤ ζ
nε−1∑
i=1

‖C(m+1−i,m) −C(n+1−i,n)‖+ 2ζ

n−2∑
i=nε

σi

≤ ζ
nε−1∑
i=1

‖C(m+1−i,m) −C(n+1−i,n)‖+ 2ζ
σnε

1− σ

≤ ζ
nε−1∑
i=1

‖C(m+1−i,m) −C(n+1−i,n)‖+ ε (9.14)

Now that m and n have been decoupled from the summation limit of the first term in

equation (9.14), the limit can be dealt with directly. It is known from lemma 9.2 that,

since (Tn) was convergent, then (T n · · ·T n−i) is also convergent for a finite i. It then

follows that for every δ > 0 and for each sequence (C(n+1−i,n)) where 0 ≤ i ≤ nε there

exits a nδ,i such that, if m > n ≥ nδ,i, then ‖C(m+1−i,m) −C(n+1−i,n)‖ < δ/(ζnε). Let

nδ = max{nδ,i|0 ≤ i ≤ nε}. Then equation (9.14) becomes

ζ

nε−1∑
i=1

‖C(m+1−i,m) −C(n+1−i,n)‖+ ε ≤ δ + ε (9.15)

Since ε and δ can be made arbitrarily small, this completes the proof.

Now that lemma (9.3) has been proved, the focus is moved to the main result on PSO

stability. In this paper all PSO variants with update equations of the form

xk(t+ 1) = xk(t)α+ xk(t− 1)β + γt (9.16)

are considered, where k indicates the vector component, α and β are well defined random

variables, and (γt) is a sequence of random variables.

This class of PSOs includes PSO (with inertia), fully informed PSO [33], and unified PSO

[45], though many others exist. Furthermore this class also allows arbitrary distributions
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to be utilized for all internal components, provided they are dimension independent.

Theorem 9.4. The following properties hold for all PSO variants of the form described

in equation (9.16):

1. Assuming (it) converges, particle positions are order-1 stable for every initial con-

dition if and only if ρ(A) < 1, where

A =

E[α] E[β]

1 0

 and it =

E[γt]

0

 (9.17)

2. The particle positions are order-2 stable if ρ(B) < 1 and (jt) converges, where

B =



E[α] E[β] 0 0 0

1 0 0 0 0

0 0 E[α2] E[β2] 2E[αβ]

0 0 1 0 0

0 0 E[α] 0 E[β]


and

jt =



E[γt]

0

E[γ2
t ]

0

0


(9.18)

under the assumption that the limits of (E[γtα]) and (E[γtβ]) exist.

3. Assuming that x(t) is order-1 stable, then the following is a necessary condition

for order-2 stability:

1− E [α]− E [β] 6= 0 (9.19)

1− E
[
α2
]
− E

[
β2
]
−
(

2E [αβ]E [α]

1− E [β]

)
> 0 (9.20)
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4. The convergence of (E[γt]) is a necessary condition for order-1 stability, and the

convergence of both (E[γt]) and (E[γ2
t ]) is a necessary condition for order-2 stabil-

ity.

Proof : It should first be noted that there is no coupling between dimensions in the

PSO variants considered in this theorem. Therefore, analysis can be performed in one

dimension only without loss of generality. This is possible because each dimension

can be modeled as an independent problem. Furthermore, since the coefficients and

distributions used are the same in each dimension, the stability criteria for one dimension

is the same for all dimensions.

As a result the dimension subscript k is dropped.

Property 1 is proved first. The application of the expectation operator to equation (9.16)

yields

E[x(t+ 1)] = E[x(t)]E[α] + E[x(t− 1)]E[β] + E[γt] (9.21)

which is reformulated to

ut = Aut−1 + it (9.22)

where ut =

E[x(t+ 1)]

E[x(t)]

, A =

E[α] E[β]

1 0

, and it =

E[γt]

0

. Direct application

of lemma 9.3 shows that (ut) converges if ρ(A) < 1 and (it) is convergent, implying

order-1 stability of particle positions. It is a well known theorem from analysis that

if it is constant, then ρ(A) < 1 is a necessary condition for convergence [35]. Since a

constant it is a special case of equation (9.22), ρ(A) < 1 is also a necessary condition

for convergence of ut (specifically, ρ(A) < 1 ensures convergence for all possible initial

conditions).

Now, consider property 2. In order to study the variance of equation (9.16), defined as,

V [x(t+ 1)] = E[x2(t+ 1)] + E[x(t+ 1)]2 (9.23)
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the dynamics of E[x2(t+ 1)] and E[x(t)x(t− 1)] need to be considered.

The term x2(t+ 1) is calculated as

x2(t+ 1) = x2(t)α2 + x2(t− 1)β2 + γ2
t + 2x(t)γtα+ 2x(t)x(t− 1)αβ + 2x(t− 1)βγt

(9.24)

Application of the expectation operator produces

E[x2(t+ 1)] = E[x2(t)]E[α2] + E[x2(t− 1)]E[β2] + E[γ2
t ]

+ 2E[x(t)]E[γtα] + 2E[x(t)x(t− 1)]E[αβ]

+ 2E[x(t− 1)]E[βγt] (9.25)

The expectation of x(t)x(t− 1) is obtained by multiplying equation (9.16) by x(t) and

applying the expectation operator to yield

E[x(t+ 1)x(t)] = E[α]E[x2(t)] + E[β]E[x(t)x(t− 1)] + E[x(t)]E[γt] (9.26)

Given equations (9.21), (9.25), and (9.26), the dynamics of E[x2(t+1)] and E[x(t)x(t−1)]

are derived by relying on a 5-dimensional recurrence relation, as there are five unknowns

in the system, namely E[x(t)], E[x(t− 1)], E[x2(t)], E[x2(t− 1)], and E[x(t)x(t− 1)]. If

the recurrence relation has a limit, then so does V [x(t)], implying order-2 stability. The

specific recurrence relation under consideration is

gt = Btgt−1 + jt (9.27)

where

Bt =



E[α] E[β] 0 0 0

1 0 0 0 0

2E[γtα] 2E[γtβ] E[α2] E[β2] 2E[αβ]

0 0 1 0 0

E[γt] 0 E[α] 0 E[β]


(9.28)

(9.29)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 9. Extension of the Theoretical Particle Swarm Model 108

gt =



E[x(t)]

E[x(t− 1)]

E[x2(t)]

E[x2(t− 1)]

E[x(t)x(t− 1)]


, jt =



E[γt]

0

E[γ2
t ]

0

0


(9.30)

Since the limits (E[γtα]), (E[γtβ]) and (E[γt]) exist by assumption, then so does the

limit of (Bt). One of the conditions of lemma 9.3 is that the spectral radius of Bt must

be the same for all t. The eigenvalues of Bt were calculated using Matlab’s symbolic

toolbox. The eigenvalues actually do not contain the terms E[γtα], E[γtβ], or E[γt] at all

(the exact eigenvalues are given in appendix D, as some are over 1000 characters). The

absence of γt in any term implies that the spectral radius ofBt is constant, and therefore,

direct application of lemma 9.3 shows that gt converges if ρ(Bt) < 1 and jt is convergent,

implying order-2 stability of PSO particles, as was to be proved. Furthermore, since the

spectral radius of Bt does not depend on E[γtα], E[γtβ], or E[γt], the spectral radius

of B, with E[γtα], E[γtβ] and E[γt] all set to zero, is equivalent to the spectral radius

of Bt. Therefore, the conditions under which ρ(Bt) < 1 are the same as the conditions

under which ρ(B) < 1.

The proof of property 3 follows directly from the work of Blackwell [3]. It was shown by

Blackwell that if γt is a constant random variable and that if x(t) is order-1 stable, then

equations (9.19) and (9.20) are necessary conditions for order-2 stability. Note that a

constant γt is simply a special case of equation (9.16), which implies that the necessary

conditions hold equally for the class of PSOs under consideration in equation (9.16).

Property 4 is now proved. First note that, trivially, (E[γt]) converges if and only if

(it) converges and that (E[γt]) and (E[γ2
t ]) converge if and only if (jt) converges. The

approach taken is to prove property 4 by contradiction. Assume that (it) diverges, but

that (ut) converges. Equation (9.22) can now be reformulated to

ut −Aut−1 = it (9.31)
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Because (ut) converges and A is continuous, the summation (ut−Aut−1) is also conver-

gent. But, this is impossible as (it) is divergent by assumption, hence a contradiction.

The same approach can be used to show that (jt) must be convergent if (yt) is, and

therefore the convergence of both (E[γt]) and (E[γ2
t ]) are necessary conditions.

This completes the proof of properties 1, 2, 3 and 4.

At this point it should be made clear that the assumption that (jt) and (it) are con-

vergence sequences, is a weaker assumption than the original stagnation assumption,

the weak chaotic assumption, the weak stagnation assumption, and the stagnant dis-

tribution assumption, as defined in chapter 3. Each of the existing assumptions that

have been used in theoretical stability analysis of PSO are stronger special cases of the

assumption that (jt) and (it) converge. Therefore any stability analysis performed us-

ing theorem 9.4 is more reflective of the true PSO behavior than any previously done

stability analysis.

9.2 Direct Application of Stability Theory

This section provides an illustrative example using theorem 9.4 to provide the reader

with a simple procedure for using theorem 9.4 to derive stability criteria for new PSO

variants that comply with the formulation given in equation (9.16).

A general version of PSO is considered. Specifically, the components c1r1 = θ1, c2r2 = θ2,

and w are allowed to be arbitrary independent random variables with well defined ex-

pectations and variances, as considered in [7]. It is shown that the same criteria, as in

[7], can be derived for both order-1 and order-2 stability utilizing theorem 1 under the

weakest allowable assumption on the personal and neighborhood best positions.
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Rewriting the general version of PSO in the form of equation (9.16) is achieved by setting

the following terms:

α = (1 + w)− θ1 − θ2

β = −w

γt = θ1yt + θ2ŷt (9.32)

where yt and ŷt, the personal and neighborhood best positions, are modeled as sequences

of random variables which are convergent in expectation and variance. In order to use

theorem 9.4 it should first be verified if (it) and (jt) are convergent. Note that, because

E[θ1] and E[θ2] are constant and the limit of (E[yt]) exist, that the limit of (E[γt]) exists,

where E[γt] = E[θ1]E[yt] +E[θ2]E[ŷt]. The existence of the limit of (E[γt]) implies that

(it) is convergent. In order for (jt) to be convergent, the limit of (E[γ2
t ]) must also exist.

Observe that

E[γ2
t ] = E[θ2

1]E[y2
t ] + 2E[θ1]E[θ2]E[yt]E[ŷt] + E[θ2

2]E[ŷ2
t ]

Because V [χ] = E[χ2]− (E[χ])2, with χ an arbitrary random variable, it directly follows

that E[θ2
1] and E[θ2

1] exist. Similarly, the limit of (E[y2
t ]) exists, and as a result so does

the limit of (E[γ2
t ]).

Now applying properties 1 of theorem 9.4, along with the existence of the limit of (E[γt]),

the criteria for order-1 stability are directly calculated as

−1 < E[w] < 1 and 0 <
E[θ1] + E[θ2]

E[w] + 1
< 2 (9.33)

Using the criteria for order-1 stability of equation (9.33), and property 4 of theorem 9.4,

along with the assistance of Matlab’s symbolic toolbox, and similar steps to that of [7],
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the following necessary criteria for order-2 stability are obtained:

−1 <
E[w]√

1− V [w]
< 1 (9.34)

0 < E[θ1] + E[θ2] <
−2(E[w]2 + V [w]− 1)

1− E[w] + (V [θ1]+V [θ2])(1+E[w])
(E[θ1]+E[θ2])2

(9.35)

It should be noted that the expected values of E[α], E[α2], E[β], E[β2], and E[αβ] are

needed for this calculation. The detailed calculation of these expected values can be

found in [7].

The next step is to verify that equations (9.34) and (9.35) are in fact sufficient conditions

for order-2 stability, using properties 3 of theorem 9.4. The existence of the limits of

(E[γtα]) and (E[γtβ]) must first be shown. Observe that

E[γtα] = E[θ1]E[yt](1 + E[w]) + E[θ2]E[ŷt](1 + E[w])− E[θ2
1]E[yt]

− 2E[θ1]E[θ2]E[yt]E[ŷt]− E[θ2
2]E[ŷt] (9.36)

and

E[γtβ] = −E[w]E[θ1]E[yt]− E[w]E[θ2]E[ŷt] (9.37)

Both the limits of (E[γtα]) and (E[γtβ]) clearly exist since the limits of (E[yt]) and

(E[ŷt]) exist. In order to obtain the sufficient conditions for convergence, the condition

ρ(B) < 1 must be simplified. Unfortunately, due to the generality of the considered

PSO variant, the simplification of the condition ρ(B) < 1 becomes intractable. How-

ever, the conditions in equations (9.34) and (9.35) can be empirically verified to be suf-

ficient for convergence using an empirical approach similar to Bonyadi and Michalewicz

[7]. The experimental procedure is as follows: 1012 random combinations of the form

{E[w], E[θ1], E[θ2], V [w], V [θ1], V [θ2]} were constructed such that equations (9.34) and

(9.35) were satisfied. It was then tested whether or not ρ(B) < 1. It was found that

in 100% of the cases, if equations (9.34) and (9.35) were satisfied, then the condition

ρ(Bt) < 1 held. This provides strong evidence that equations (9.34) and (9.35) are in

fact also the sufficient conditions for order-2 stability.
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It is also seen via the application of property 4 of theorem 9.4 that convergence of

(E[yt]), (E[ŷt]), (V [yt]), and (V [ŷt]) are in fact necessary conditions for convergence.

Therefore, the provided order-1 and order-2 stability regions obtained in this section are

derived utilizing the weakest allowable assumption on the personal and neighborhood

best positions.

It is informative to note that the criteria for order-1 and order-2 stability of the regular

PSO algorithm can be directly obtained from equations (9.33), (9.34), and (9.35). Let

w be a constant, and let θ1 = c1r1, θ2 = c2r2 as in the regular PSO algorithm. Then it

follows that E[w] = w, E[θ1] = c1
2 , E[θ2] = c2

2 , V [w] = 0, V [θ1] =
c21
12 , and V [θ2] =

c22
12 .

Substituting the calculated expectations and variances into equation (9.33) leads to the

following criteria for order-1 stability:

−1 < w < 1 and 0 < c1 + c2 < 4(w + 1) (9.38)

The criteria for order-1 stability in equation (9.38) agrees with the criteria for order-1

stability as derived by [50] under the more restrictive stagnation assumption. Further-

more, substituting the calculated expectations and variances into equations (9.34) and

(9.35) leads to the following criteria for order-2 stability:

−1 < w < 1 and 0 < c1 + c2 <
24(1− w2)

7− 5w
(9.39)

While this section focused on a general version of PSO, the same procedure can be

followed with any new or existing PSO variant that is contained in the class of positional

updates described by equation (9.16).

9.3 Summary

This chapter provided a meaningful extension to the theoretical stability analysis cur-

rently performed on PSO. The criteria for order-1 and order-2 particle stability were

provided for a large class of PSO variants. The stability criteria were derived by mod-

eling, in the simplest case, the personal and neighborhood best positions as convergent
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sequences of random variables. It was also shown that no weaker assumption is theoret-

ically possible.

The next chapter presents a summary of the findings of this thesis, as well as a discussion

on possible future research on PSO stability.
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Chapter 10

Conclusion

This chapter begins with a summary of the findings and contributions of this thesis in

section 10.1, followed by a discussion of potential future work in section 10.2.

10.1 Overview

This thesis proposed a method for performing assumption free empirical convergence

analysis. The empirical method was successfully utilized in chapter 4 to verify which

of the numerous theoretically derived criteria for PSO’s particle stability were actually

representative of PSO’s true, unsimplified, stability behavior. It was found that the

region for particle stability as derived by Poli and Broomhead [51] and Poli[50] was in

fact an accurate representation of the stability criteria for PSO particles.

The proposed empirical convergence analysis method’s effectiveness was tested in chapter

5. The convergence region obtained using the proposed objective function CF , as defined

in equation (4.1), was compared against the intersection of the obtained convergence

regions of 11 well known objective functions. It was found that just using the CF

objective function was a sufficient way of obtaining the convergence region, as the found

region corresponded to the intersection of the obtained convergence regions of the 11

well known objective functions. Chapter 5 showed that the social network structure

used by PSO did not alter the convergence region. The empirical convergence analysis

114
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approach was also effectively utilized to investigate the convergence region for BPSO,

FIPS, SPSO 2011 in an assumption free context. One very interesting finding was that,

in an assumption free context, BPSO’s particles did not exhibit stable behavior, as was

predicted by the work of Blackwell [30]. The discrepancy found between the theoretical

and practical behavior of BPSO’s particles provides a clear example of why empirical

verification of the stability criteria in an assumption free context is necessary.

The stability criteria for both the FIPS and UPSO algorithms were theoretically derived

under the stagnation assumption in chapters 6 and 7 respectively. Then the empirical

convergence analysis approached presented in this thesis was utilized to verify the accu-

racy of the theoretical derivations in an assumption free context. It was found that the

stability criteria that were derived for both FIPS and UPSO accurately predicted the

stability criteria of the unsimplified and assumption free FIPS and UPSO.

The relation between stability criteria and PSO performance was investigated in chapter

8. It was found that the majority of parameter configurations that are theoretically

unstable perform worse than random search on all objective functions tested. It was also

shown that there is a degree of tolerance from which parameters can be selected just

outside of the convergence region without extreme performance degradation. However,

it was seen that selecting parameter values within the stable region near the apex was

the best strategy to ensure that PSO was always superior to random search.

Lastly, an extension of the state of the art theoretical model utilized for understanding

the stability of particle swarm optimization’s particles was given in chapter 9. The

necessary and sufficient conditions for order-1 and order-2 stability of particle positions

were derived for a large class of PSO variants. The class of PSO variants the theory

caters for includes PSO, UPSO, and FIPS to mention a few. Furthermore, the presented

theoretical extension is still applicable even if the PSO variants’ control parameters,

such as w, c1, and c2, are replaced with random variables or when the existing random

variables are sampled from a different distribution. The provided extension makes it

easy to derive stability criteria for new PSO variants or even for minor alterations to

existing PSO variants by utilizing theorem 9.4. The provided extension of PSO stability

theory is all performed under what is proven to be the weakest allowable assumption on
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particle informers, where the particle informers are, in the simplest case, the personal

and neighborhood best particle positions.

In summation, this thesis effectively provides a complete framework for performing sta-

bility analysis on PSO variants, with the proposed empirical approach for convergence

analysis allowing for assumption free verification of theoretically derived stability cri-

teria, which can be derived in many cases by utilizing theorem 9.4. The empirical

approach for convergence analysis can also be utilized for exploratory stability analysis

when analytical analysis is infeasible.

10.2 Future Work

A number of directions for future work may flow from this thesis. The most obvious

extension to the proposed empirical convergence analysis method is the inclusion of

automated extraction of the convergence region. There exists numerous approaches

that could be utilized for the extraction of the convergence region, ranging from simple

curve fitting, to more sophisticated function approximation approaches such as those

derived from trained neural networks.

From a theoretical perspective there are still two relatively unexplored areas of PSO

stability analysis. The first is the theoretical derivation of stability criteria for PSO

variants where the control coefficients are time dependent. Specifically, the following

class of PSO update equations could be considered

xk(t+ 1) = xk(t)αt + xk(t− 1)βt + γt (10.1)

where k indicates the vector component, (αt), (βt), and (γt) are sequences of random

variables. The class of PSOs described by equation (10.1) includes numerous PSO vari-

ants where the inertia, cognitive or social coefficients are altered over time, as in many

self-adaptive PSOs [42, 47, 55, 57, 64]. The second relatively unexplored area is to per-

form theoretical stability analysis on PSO variants where the particle position update

equation do not operate on dimensions independently. A good example of a PSO variant
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with this coupling between dimensions is SPO2011. The required mathematical tech-

niques needed to perform this type of analysis in a tractable fashion are, unfortunately,

not immediately apparent.
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Appendix A

Symbols

This appendix lists the symbols used throughout this thesis, along with their corre-

sponding meanings.

Ω Particle swarm population.

i Index of the particle in its swarm.

xi Position vector of particle i.

vi Velocity vector of particle i.

k Component index of a particle.

N Swarm size.

d Particle dimension.

c1 Cognitive weight coefficient.

c2 Social weight coefficient.

w Inertia weight coefficient.

yi Best position found by particle i.

ŷi Best position found in particle i’s neighbourhood.

r1, r2, r
′
1, r

′
2 Stochastic variables from the uniform distribution U (0, 1)k.

θ1 Shorthand for r1c1.

θ2 Shorthand for r2c2.

Ni Neighbourhood of particle i.

χ Constriction coefficient.

u Unification factor.

118
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gi The Gbest velocity vector in UPSO.

li The LBest velocity vector in UPSO.

ζi The weighted average c1yi(t)+c2ŷi(t)
c1+c2

.

φi,k (t) The distance at time t, |yi,k(t)− ŷi,k(t)|.

ci The center of gravity in the SPSO2011 update equations.

ai (t) Shorthand for xi (t) + c1r1 ⊗ (yi(t)− xi (t)) in SPSO2011.

bi (t) Shorthand for xi (t) + c2r2 ⊗ (ŷi(t)− xi (t)) in SPSO2011.

H(ĉ, r) A uniform distribution in the hypersphere with center ĉ and radius r.

γfips The point of convergence for FIPS.

γupso The point of convergence for UPSO.

E[·] The expectation operator.

V [·] The variance operator.
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Appendix B

Objective Functions

This appendix describes the objective functions utilized within this thesis, along with the

objective functions’ corresponding search space. For each objective function, a reference

is made to an existing source where the function is defined.

Function name Definition Domain

Absolute Value [21] f1(x) =
∑d

j=1 |xj | x ∈ [−100, 100]d

Ackley [63] f2(x) = 20e
−0.2

√
1
d

∑d
j=1 x

2
j − e

1
d

∑d
j=1 cos(2πxi) + 20 + e x ∈ [−32, 32]d

Alpine [54] f3(x) =
∑d

j=1 |xjsin(xj) + 0.1xj | x ∈ [−10, 10]d

Bent Cigar [36] f4(x) = x2
1 + 106

∑d
j=2 x

2
i x ∈ [−100, 100]d

Discus [36] f5(x) = 106x2
1 +

∑d
j=2 x

2
i x ∈ [−100, 100]d

Egg Holder [21] f5(x) =
∑d−1

j=1

(
−(xj+1 + 47)sin

(√
|xj+1 + xj/2 + 47|

))
x ∈ [−512, 512]d

+sin
(
−xj

√
|xj − (xj+1 + 47)|

)
Elliptic [58] f6(x) =

∑d
j=1 x

2
j (106)

j−1
d−1 x ∈ [−100, 100]d

Expanded Griewank

and Rosenbrock f6(x) =
d−1∑
j=1

f7 (f17 (xj , xj+1)) + f7 (f17 (xd, x1)) x ∈ [−100, 100]d

composite [58]

Griewank [63] f7(x) = 1
4000

∑d
j=1 x

2
j −

∏d
j=1 cos

(
xj√
j

)
+ 1 x ∈ [−600, 600]d

HappyCat [2] f8(x) = |
∑d

j=1 x
2
j − d|

1
4 +

(
0.5
∑d

j=1 x
2
j +

∑d
j=1 xj

)
/d+ 0.5 x ∈ [−2, 2]d

HGBat [2] f9(x) =

∣∣∣∣(∑d
j=1 x

2
j

)2
−
(∑d

j=1 xj

)2
∣∣∣∣ 12 x ∈ [−2, 2]d

+
(

0.5
∑d

j=1 x
2
j +

∑d
j=1 xj

)
/d+ 0.5

Hyper Ellipsoid [21] f10(x) =
∑d

j=1 jx
2
j x ∈ [−5.12, 5.12]d
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Katsuura [36] f11(x) = 10
d2
∏d
j=1

(
1 + j

∑32
l=1

|2lxl−round(2lxl)|
2l

)10/d1.2

− 10
d2

x ∈ [−5, 5]d

Michalewicz [39] f12(x) = −
∑d

j=1 sin(xj)(sin(
jxj
π ))20 x ∈ [0, π]d

Norwegian [21] f13(x) =
∏d
j=1 cos(πx

3
j )
(

99+xj
100

)
x ∈ [−1.1, 1.1]d

Quadric [63] f14(x) =
∑d

j=1

(∑j
l=1 xl

)2
x ∈ [−100, 100]d

Quartic [63] f15(x) =
∑d

j=1 jx
4
j x ∈ [−1.28, 1.28]d

Rastrigin [63] f16(x) = 10d+
∑d

j=1

(
x2
j − 10cos(2πxj)

)
x ∈ [−5.12, 5.12]d

Rosenbrock [63] f17(x) =
∑d−1

j=1(100(xj+1 − x2
j )

2 + (xi − 1)2) x ∈ [−2.048, 2.048]d

Salomon [53] f18(x) = −cos
(

2π
∑d

j=1 x
2
j

)
+ 0.1

√∑d
j=1 x

2
j + 1 x ∈ [−100, 100]d

Schaffer 6 [21] f19(x) =
∑d−1

j=1

(
0.5 +

sin2(x2j+x2j+1)−0.5(
1+0.001(x2j+x2j+1)

2
)
)

x ∈ [−100, 100]d

Schwefel 2.21 [21] f19(x) = max{|xj |, 1 ≤ j ≤ d} x ∈ [−100, 100]d

Schwefel 2.22 [63] f20(x) =
∑d

j=1 |xj |+
∏d
j=1 |xj | x ∈ [−10, 10]d

Shubert [21] f21(x) =
∏d
j=1

(∑5
l=1 lcos((l + 1)xj + l)

)
x ∈ [−10, 10]d

Spherical [18] f22(x) =
∑d

j=1 x
2
j x ∈ [−5.12, 5.12]d

Step [63] f23(x) =
∑d

j=1bxj + 0.5c2 x ∈ [−20, 20]d

Vincent [21] f24(x) = −
(

1 +
∑d

j=1 sin
(
10
√
xj
))

x ∈ [0.25, 10]d

Weierstrass [39] f25(x) =
∑d

j=1

∑20
l=0 0.5lcos

(
2π3l(xi + 0.5)

)
x ∈ [−0.5, 0.5]d

−d
∑20

l=0 0.5lcos
(
2π3l

)
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Appendix C

Mathematical Definitions and

Theorems

This appendix contains a number of well known definitions and theorems from functional

and numerical analysis from [1] and [35] that are either explicitly or implicitly relevant

to this thesis.

Definition C.1. Linear operator

A linear operator T is an operator with the following properties;

1. The domain D(T ) of T is a vector space and the range R(T ) lies in a vector space

over the same field.

2. The following hold for all z,w ∈ D(T ) and scalars ψ:

T (z +w) = Tz + Tw (C.1)

T (ψz) = ψTz (C.2)
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Definition C.2. Metric Space

A metric space is a pair (Z, d), where X is a set and d is a metric on Z. The metric is

defined on Z × Z such that, for all v,w, z ∈ Z the following properties hold:

1. d (w, z) ≥ 0, and d is real-valued and finite.

2. d (w, z) = 0 ⇐⇒ v = w.

3. d (w, z) = d (z,w).

4. d (w, z) ≤ d (w,v) + d (v, z)

Definition C.3. Cauchy Sequence

A sequence (zn) in a metric space (Z, d) is Cauchy if for every ε > 0 there exits a Gε ∈ N,

such that d(zm, zn) < ε for every m,n > Gε.

Definition C.4. Completeness

A metric space (Z, d) is complete if every Cauchy sequence in Z converges to a point

within Z.

Definition C.5. Normed Space

A normed space (Z, ‖ · ‖) is a vector space with a norm defined on it. A norm on a

real-valued vector space Z is a real valued function defined such that, for all w, z ∈ Z

and α ∈ R, the following properties hold:

1. ‖z‖ ≥ 0.

2. ‖z‖ = 0 ⇐⇒ z = 0.

3. ‖αz‖ = |α|‖z‖.

4. ‖z +w‖ ≤ ‖z‖+ ‖w‖.

Also, a norm on Z defines a metric d on Z given by d (z,w) = ‖z −w‖

Definition C.6. Banach Space

A banach space (Z, ‖ · ‖) is a complete normed space, where completeness is defined in

definition C.4.
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Definition C.7. Bounded linear operator

Let Z and W be normed spaces and T : D (T )→W a linear operator, where D (T ) ⊆ Z.

The operator T is bounded if there exist a h ∈ R such that for all z ∈ Z

‖Tz‖ ≤ h‖z‖ (C.3)

Theorem C.8.

If a normed space W is finite dimensional, then every linear operator on X is bounded.

[35]

Theorem C.9. Matrix representation of liner operators

Every linear operator T on finite dimensional vector spaces can be represented by a fixed

matrix MT [35].

Definition C.10. Spectrum

Let T be a linear operator on finite dimensional vector spaces. The spectrum of T is

the set ΣT of scalars λ, such that det (MT − λI) = 0, where det is the determinant and

I is the identity matrix.

Definition C.11. Spectral radius

Let T be a linear operator on finite dimensional vector spaces with the spectrum ΣT ,

then the spectral radius of T , is defined as

ρ (T ) = max
λ∈ΣT

|λ| (C.4)

Theorem C.12.

Let T be a bounded liner operator from Z to W . For every δ > 0 there exists a norm

‖ · ‖δ such that

ρ(T ) ≤ ||T ||δ ≤ ρ(T ) + δ (C.5)
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Definition C.13. Uniform Operator Convergence

Let Z and W be normed spaces. A sequence (T n) of operators T n : Z → W is said to

be uniformly operator convergent if

‖T n − T ‖ → 0, (C.6)

where ‖ · ‖ is a operator norm.
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Appendix D

Eigenvalues from Theoretical

Analysis

For the sake of completeness, this appendix contains the five eigenvalues of matrix Bt,

from chapter 9. The presented eigenvalues were generated using Matlab’s symbolic

toolbox. Given the length of some of the eigenvalues, they have been typeset in a

compact manner.

Eigenvalue 1:

E[α]/2 - (E[α]ˆ2 + 4E[β])ˆ(1/2)/2

Eigenvalue 2:

E[α]/2 + (E[α]ˆ2 + 4E[β])ˆ(1/2)/2

Eigenvalue 3:

E[β]/3 + E[α2]/3 + (E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3

+ (2E[α]E[αβ])/3)/((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6

+ (E[α]E[β2])/2 - (E[β]E[β2])/2 + (((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2]

+ 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2)ˆ2 - (E[β2]/3 + (E[β] + E[α2])ˆ2/9 -

(E[β]E[α2])/3 + (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3) + ((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2]

- E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2 + (((E[β] + E[α2])ˆ3/27 +

((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2)ˆ2 -

(E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3 + (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3)
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Eigenvalue 4:

E[β]/3 + E[α2]/3 - (3ˆ(1/2)((E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3

+ (2E[α]E[αβ])/3)/((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6

+ (E[α]E[β2])/2 - (E[β]E[β2])/2 + (((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2]

+ 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2)ˆ2 - (E[β2]/3 + (E[β] + E[α2])ˆ2/9 -

(E[β]E[α2])/3 + (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3) - ((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2]

- E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2 + (((E[β] + E[α2])ˆ3/27 +

((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2)ˆ2 -

(E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3 + (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3))1i)/2 -

(E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3 + (2E[α]E[αβ])/3)/(2((E[β] + E[α2])ˆ3/27 +

((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2 + (((E[β]

+ E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 -

(E[β]E[β2])/2)ˆ2 - (E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3 + (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3))

- ((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2

- (E[β]E[β2])/2 + (((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6

+ (E[α]E[β2])/2 - (E[β]E[β2])/2)ˆ2 - (E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3 +

(2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3)/2

Eigenvalue 5:

E[β]/3 + E[α2]/3 + (3ˆ(1/2)((E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3

+ (2E[α]E[αβ])/3)/((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6

+ (E[α]E[β2])/2 - (E[β]E[β2])/2 + (((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2]

+ 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2)ˆ2 - (E[β2]/3 + (E[β] + E[α2])ˆ2/9 -

(E[β]E[α2])/3 + (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3) - ((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2]

- E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2 + (((E[β] + E[α2])ˆ3/27 +

((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2)ˆ2 -

(E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3 + (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3))1i)/2 -

(E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3 + (2E[α]E[αβ])/3)/(2((E[β] + E[α2])ˆ3/27 +

((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 - (E[β]E[β2])/2 + (((E[β]

+ E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2 -

(E[β]E[β2])/2)ˆ2 - (E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3 + (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3))

- ((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6 + (E[α]E[β2])/2

- (E[β]E[β2])/2 + (((E[β] + E[α2])ˆ3/27 + ((E[β] + E[α2])(E[β2] - E[β]E[α2] + 2E[α]E[αβ]))/6

+ (E[α]E[β2])/2 - (E[β]E[β2])/2)ˆ2 - (E[β2]/3 + (E[β] + E[α2])ˆ2/9 - (E[β]E[α2])/3

+ (2E[α]E[αβ])/3)ˆ3)ˆ(1/2))ˆ(1/3)/2
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