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ABSTRACT 

To improve the measurement accuracy of the thickness of asphalt concrete layer, an 
optimal calibration method for ground-penetrating radar (GPR) measurements is presented 
by comparing twelve kinds of algorithms. Based on the layer-stripping inversion, one 
through four calibrating coefficients are introduced into the calculation equations of 
thickness. Specifically, the reflected signals are reconstructed by fitting smoothing spline in 
three calibration procedures. With the optimal calibration procedure, the thickness 
measurement errors can be effectively decreased. This is a critical study of the quality 
assessment of hot-mix asphalt (HMA) paving using GPR. 

1. INTRODUCTION 

Providing a safe and non-destructive method of subsurface investigations, 
ground-penetrating radar (GPR) has been used since the 1980s to measure the thickness 
of pavement layers (Loulizi et al., 2003). The past two decades have witnessed a 
tremendous increase in the use of GPR technology that has several major advantages, 
such as high-rate data acquisition, quasi-continuous measurements and mapping of the 
individual layers.  

The precision of GPR data is of increasing interest. Unfortunately, most existing commercial 
GPRs are based on the pulse technique and employ wide-duration pulses, which result in 
low resolution and limit the systems’ abilities to accurately determine subsurface layer 
thickness (Jeong Soo et al., 2004). The GPR systems designed for a specific purpose can 
surely improve the quantitative measurements, but it is unrealistic to expect owners to 
scrap their current instrumentation right now.  

It has been determined that the deviation of GPR measurement results from (a) 
heterogeneous ground properties, e.g. variable density, water content and air void content; 
(b) medium attenuation (Huang and Su, 2005); (c) the height of the antenna above the road, 
which is difficult to keep constant at high speed (Gordon et al., 1998); (d) a rough surface, 
which scatters the incident pulse rather than reflects it neatly; (e) radio noise (Olhoeft, 
2002); and (f) the variation in the time base of the instrumentation used (Jacob and 
Hermance, 2005), etc. The difference between the ideal layer-stripping model and the 
actual condition results in non-linear deviation of measurement. Based on layer-stripping 
inversion, one through four calibrating coefficients is introduced into the calculation 
equations of thickness in this study. The optimal calibration method can be found finally by 
comparing the calibration effects. 



2. BACKGROUND 

GPR pavement thickness data were collected for: (a) structural characterisation of existing 
pavements to estimate their remaining service life; (b) network level surveys; (c) 
supplementing FWD data in the calculation of layer moduli; (d) pavement design purposes, 
e.g. to check if the pavement is thick enough for recycling milling; and (e) quality control 
(Saarenketo and Scullion, 2000). Pavement layer thickness is an important factor that 
determines the quality of newly constructed pavements and overlays. For asphalt 
pavement, GPR is by far the most established technology (other than coring) for measuring 
pavement thickness. Evaluation studies have been carried out by SHRP, Mn/ROAD, 
Kentucky Transportation Center and the FHWA, all of which have documented the 
accuracy of GPR asphalt thickness vs. core samples (Wenzlick et al., 1999; Al-Qadi et al., 
2005; Willett et al., 2006; Maser et al., 2006). These studies have shown that for newly 
constructed pavements, the deviation between GPR and core results range from 2 to 5% of 
the total thickness. This paper suggests that higher accuracy could be realised by an 
appropriate calibration procedure. 

3. LAYER THICKNESS ESTIMATION FROM GPR DATA 

GPR has been tentatively applied in HMA quality assessment for the pavement of the 
Yangjiang-Maoming expressway, Guangdong Province, China. The pavement is a typical 
structure, which mainly includes a three-layered asphalt surface layer, cement-bound 
granular base layers and subgrade. The monostatic GPR system used in this case is an 
impulse radar with an air-coupled horn antenna deployed at about 500 mm above the 
pavement surface. The transmitted pulse width is 1.0 ns. To assess the uniformity of the 
thickness and degree of compaction of newly paved asphalt concrete, the thickness and 
relative permittivity of the surface layer need to be precisely estimated based on GPR data. 
Although the exact value of the permittivity of HMA mixtures may not be measured 
conveniently, the accuracy of estimated permittivity can be inferred through thickness. 
Therefore this study places emphasis on thickness estimation. 

Electromagnetic inversion is a useful tool for quantitative analysis in short-range 
applications of impulse radars (Spagnolini, 1997). To estimate multi-layered media 
properties using monostatic radar, a layer-stripping algorithm is widely used. As an ideal 
layer-stripping model, each pavement layer is a mixture of particles embedded in a 
homogeneous matrix. Since particle size is considered to be small compared to the pulse 
resolution, the pavement is assumed to be horizontally layered and homogeneous within 
each layer. Moreover, plane wave approximation is usually understood in the layer-stripping 
approach. Currently, the permittivity and thickness of the surface layer can be estimated 
from GPR data as follows (Attoh-Okine, 1996): 
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where: 
1rε  is the relative permittivity of the surface layer. 

A0 is the amplitude of the surface reflection. 
Am is the amplitude of the reflected signal collected over a flat metal plate placed on the 
pavement surface.  

  is the thickness of the surface layer.  1h
c is the speed of light in free space, . 83 10 /c m≈ × s

1t  is the time delay between the received pulses reflected from the top and bottom of the 
surface layer. 

The accuracy of equation (3) can easily be checked by laboratory or field tests. Our field 
tests at a paving spot have shown that the relative errors range from 0.1% to 7.57%, the 
mean relative error is 3.98%, and the mean absolute error is 7.26 mm (see Table 1 for 
details). Although they may be accurate enough for some general purposes, the 
corresponding thickness data could not be considered as plausible evidence in the project 
of quality assessment of HMA paving. 

Table 1. Estimated surface layer thicknesses without calibration. 

Sample No. 
Core 

thickness 
(mm) 

h1 estimated by “Method 1” (no 
calibration) 

(mm) 

Relative 
error 

Absolute 
error 

1 190 192.33  0.0122  2.33  
2 179 171.68  0.0409  7.32  
3 190 180.75  0.0487  9.25  
4 183 173.77  0.0504  9.23  
5 170 162.61  0.0435  7.39  
6 182 168.22  0.0757  13.78  
7 196 192.62  0.0173  3.38  
8 200 199.81  0.0010  0.19  
9 193 185.00  0.0415  8.00  

10 174 169.96  0.0232  4.04  
11 180 168.71  0.0627  11.29  
12 179 168.08  0.0610  10.92  

Mean value 0.0398  7.26  

4. CALIBRATION METHODS 

Based on the ideal layer-stripping model, equation (3) inevitably results in a deviation of 
measurement. According to equations (1) and (2), the evaluation value of thickness 
depends on the corresponding time delay and the relative permittivity. The amplitude error 
directly determines the accuracy of relative permittivity, and the accuracy of the time delay 
and the relative permittivity affect the thickness measurement. Thus 

1rε , λ  and  
should be calibrated and the thickness of the surface layer can be determined from: 
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In view of the complexity of the wave propagation in pavement materials, which is not 
exactly homogeneous within each layer, the other uncertain factors could not be entirely 
disregarded, e.g., the wave speed in air would drift with the variation of the air moisture or 



density. Furthermore, the ideal model itself should be rectified. Therefore, another 
calibration equation is simply given as: 
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where  ( i = 1 to 8 ) is the calibrating coefficient and is the calibrated thickness of the 

surface layer. 
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~
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To decide  and1t λ , the wave crest and trough of every received pulse must be well 
located. When the thickness is calculated by equations (4) and (5), the wave crest and 
trough are searched among the sampled points. Actually, the sampling interval is a constant 
unless the GPR is adjusted intentionally, which means the wave crests or troughs are 
probably located between two neighboring sampled points (see Figure 1). Considering that 
the bias of the location can directly affect , A1t 0 and Am, the spline smoothing approach is 
introduced into calibration methods, equation of which is expressed as: 
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where  and *
1t

*λ are calculated using the fitted curve of the received pulses. 
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Figure 1. A local sketch map of a reflected signal reconstructed by fitting 
smoothing spline. 



5. SELECTION AND DETERMINATION OF CALIBRATION FACTORS 

To determine the calibration factors, it is necessary to obtain enough data including 
received pulses and the precise layer thickness. The general method of obtaining data is to 
drill a core after the GPR test. Subsequently, the calibrating coefficients can be determined 
through non-linear regression analysis based on the least squares method. 

Since GPR is commonly regarded as a non-destructive approach, the pavement should not 
be drilled too much. Moreover, the more factors selected, the more data will be required. 
Therefore in this study, 12 kinds of calibration methods (not including the two items without 
calibrating factors) based on equations (4) to (7), are selected respectively with no more 
than four calibrating factors (see Table 2).  

Table 2. Selected calibrating factors in calibration methods. 

Method Selected calibrating 
coefficients 

Corresponding 
equation 

1 none (5) 
2 k1 (4) 
3 k3 (4) 
4 k1,k2 (4) 
5 k3,k4 (4) 
6 k1,k2,k3 (4) 
7 k1,k2,k3,k4 (4) 
8 k3,k5,k6 (4) 
9 k3,k4,k5,k6 (4) 
10 k7,k8 (5) 
11 none (7) 
12 k1,k2 (6) 
13 k3,k4,k5,k6 (6) 
14 k7,k8 (7) 

Remark: The non-selected coefficients are equal to 1 or 0 when 
e subscripts are odd or even numbers respectively.  th

6. EXPERIMENTAL RESULTS 

When a section of the surface layer mentioned above was finished, 22 spots at random 
locations with about 200 m proportional spacing were marked. After a GPR static check 
was performed in sequence, we carefully sampled drill cores which were subsequently sent 
to the laboratory to test quality performance, including the precise thickness of the asphalt 
concrete layer. Ten of the 22 cores were selected at random and used to compute the 
calibration factors, while the others were used to evaluate the effect of the calibration 
methods. 

The relative errors of the thickness of the 12 samples calibrated by different methods are 
shown in Figure 2. The mean relative error and summed square of residuals (see Table 3) 
provide a quantitative evaluation of the effects of different methods. Unexpectedly, the 
methods with curve fitting, which entails a higher computational cost, are not so ideal. It is 
clear that Method 9 is the optimal one. Table 4 presents the calibration results of Method 9 
in detail, which reveals that the relative error ranges from 0.03% to 3.94%, the mean 



relative error has decreased from 3.98% to 1.35%, and the mean absolute error has 
dramatically decreased from 7.26 mm to 2.48 mm compared to Table 1. Such considerable 
accuracy can meet our purposes of quality assessment very well. 

Table 3. Comparison of the effect of all calibration methods. 

Method Mean relative error (%) Summed square of residuals  
(mm2) 

1  3.98 812.60 
2 2.21 386.41 
3 2.17 379.42 
4 2.02 355.00 
5 2.00 346.75 
6 2.01 348.13 
7 1.90 299.53 
8 1.40 126.95 
9 1.35 121.09 

10 1.45 136.76 
11 4.91 1139.44 
12 2.03 312.96 
13 1.71 185.99 
14 1.64 186.54 

Table 4. Calibration results of Method 9. 

Sample No. 
Core 

thickness 
(mm) 

h1 estimated by Method 9 
(mm) 

Relative 
error 

Absolute 
error 

1 190 197.48  0.0394  7.48  
2 179 181.00  0.0112  2.00  
3 190 186.84  0.0166  3.16  
4 183 184.00  0.0055  1.00  
5 170 172.54  0.0149  2.54  
6 182 177.47  0.0249  4.53  
7 196 195.94  0.0003  0.06  
8 200 199.89  0.0005  0.11  
9 193 190.71  0.0119  2.29  

10 174 177.66  0.0211  3.66  
11 180 178.19  0.0100  1.81  
12 179 180.06  0.0059  1.06  

Mean value 0.0135  2.48  
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Figure 2. The relative error of asphalt concrete layer thickness measurements 
calibrated by different methods. 

The optimal calibration equation is: 
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This equation has well-defined physical significance revealing that the time delay and the 
amplitudes of the received signals that are both critical quantities to be rectified properly.  

7. CONCLUSIONS 

Based on the layer-stripping inversion, this paper presents 12 kinds of thickness calibration 
methods for GPR measurement and selects the optimal method that yields a minimum 
mean relative error. The optimal approach, in which curve fitting of the reflected signals is 
unnecessary, makes use of four calibrating factors that can be determined through 
non-linear regression analysis. The calibration was effective and it met the needs of quality 
assessment very well. The algorithm was successfully applied in the processing of GPR 
data collected from every scanned point on an 80-kilometre expressway. The methodology 
of this study may be useful to find the best thickness calibration method for the other layers 
of asphalt pavement, or other types of pavement structure, although only the systematic 
error can be effectively diminished through the methods. 
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