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Abstract

The set FilRR of all right topologizing filters on a fixed but arbitrary ring R is both a complete lattice

under inclusion, and a monoid with respect to an order compatible, but in general noncommutative

binary operation :. It is known that the order dual [FilRR]
du of FilRR is always left residuated,

meaning, for each pair F,G ∈ FilRR there exists a smallest filter H ∈ FilRR such that H : G ⊇ F,

but is not, in general, right residuated (there exists a smallest filter H such that G : H ⊇ F). This

thesis is an investigation of rings R for which [FilRR]
du is both left and right residuated. A sufficient,

but not necessary, condition for two-sided residuation to hold is that [FilRR]
du is commutative, by

which is meant, the monoid operation on FilRR is commutative.

In Theorem 1.25 it is proved that if I is a proper ideal of a ring R, then [Fil (R/I)R/I ]
du is two-sided

residuated [resp. commutative] whenever [FilRR]
du is two-sided residuated [resp. commutative]. It

is a consequence of Theorem 1.26 that the classes of rings possessing each of these properties is

closed under the formation of finite direct products.

A main result in Chapter 2 (Theorem 2.1) proves that if F and G are right topologizing filters on

R with respective associated hereditary pretorsion classes TF and TG, then the right residual G−1F

of F by G exists if and only if the class TF possesses a subgenerator M such that the family of all

TG-dense hereditary pretorsion submodules of M has a smallest member. From this result can be

deduced the fact that if R is a ring for which [FilRR]
du is two-sided residuated, then every factor

ring of R satisfies the DCC on hereditary pretorsion submodules (Corollary 2.6). This fact is used in

Theorem 2.12 to prove that [FilRR]
du is two-sided residuated for all right Fully Bounded Noetherian

rings R.

Chapter 3 explores commutative rings R for which [FilR]du is two-sided residuated. Theorem 3.7

proves that for commutative rings R, commutativity of FilR is equivalent to FilR being two-

sided residuated. Whilst commutative noetherian rings R are such that FilR is commutative,
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commutativity of R does not, in general, imply commutativity of FilR. Indeed, it is shown in

Theorem 3.11 that a commutative ring R is such that FilR is commutative if and only if every

factor ring of R satisfies the ACC [or equivalently, the DCC] on annihilator ideals.

Examples of commutative non-artinian semiartinian rings with finitely generated socle abound. A

result of Shores (1974) asserts that if a commutative semiartinian ring R is such that both soc (RR)

and soc (RR/soc (RR)) are finitely generated, then R must be artinian. In Theorem 3.16 it is proven

that if R is a commutative semiartinian ring for which FilR is commutative, then R is artinian if

and only if R has finitely generated socle. A class of commutative semiartinian rings is constructed

in Section 3.3 which provides a host of examples of non-noetherian rings R for which FilR is

commutative.

Let RS−1 denote the ring of fractions of a commutative ring R with respect to multiplicative

subset S. It is shown in Theorem 3.36 that the mapping ϕ̂S : [FilR]du → [FilRS−1]du defined

by ϕ̂S(F) = {AS−1 : A ∈ F} is an onto homomorphism of lattice ordered monoids. This has the

consequence that the commutativity condition is passed from FilR to FilRS−1 (Theorem 3.37).

For each prime ideal P in R, denote by SP the complement of P in R, and by ≡ϕ̂SP
the congruence

on FilR induced by the homomorphism ϕ̂SP
. It is proved in Proposition 3.43 that if FilR is

commutative, then the intersection of congruences
⋂

P ≡ϕ̂SP
(taken over the family of all maximal

ideals of R), is trivial. This yields a subdirect product embedding of [FilR]du into
∏

P [FilRS
−1
P ]du

for rings R such that FilR is commutative. It is known that a valuation domain is noetherian, and

thus rank 1 discrete, precisely if FilR is commutative. The theory developed in Chapter 3 is used to

extent this result with a proof that a Prüfer domain R is noetherian, and thus a Dedekind domain,

precisely if FilR is commutative (Theorem 3.55).

In Chapter 4, a detailed analysis of the structure of FilR for two types of valuation domain R is

undertaken. The first type is a valuation domain whose value group is the linearly ordered abelian

group Z × Z ordered lexicographically, and the second a valuation domain with value group the

additive group of reals R. Both ring types are non-noetherian and so in both cases, [FilR]du must

fail to be right residuated. Left residuals are computed for all pairs in FilR and instances where
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right residuals fail to exist, are recorded.
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Introduction

As the title suggests, the primary concern of this thesis is the study of two-sided residuation in the

lattice of right topologizing filters on a ring.

A lattice ordered monoid is a monoid endowed with a lattice order that is compatible with the

monoid operation in the sense that the latter distributes over finite joins. The systematic study

of these structures, which has its origins in the 1930s paper of Ward and Dilworth [41], [9, 8]

(see also [4]), was motivated by a classical prototype, the set of ideals of a commutative ring with

identity. In this instance, the lattice structure derives from the usual partial order: meets correspond

with intersections, joins with ideal sums, and the monoid operation with ideal multiplication. The

lattice ordered monoid structure on the set of ideals of a ring, which we shall denote by IdR,

is not particular to commutative rings, however. Indeed, IdR is a lattice ordered monoid for all

rings R (with identity). A key difference in the general case is that the monoid operation of ideal

multiplication need not be commutative. The lattice ordered monoid IdR has the further desirable

property that it is right and left residuated. This is to say, if I and J are ideals of R, then there

is (a unique) largest ideal K of R, given by K = {r ∈ R : Jr ⊆ I}, such that JK ⊆ I. In this

situation K is called the right residual of I by J and is denoted J−1I. The left residual of I by J ,

denoted IJ−1, is the largest ideal K of R such that KJ ⊆ I and comprises {r ∈ R : rJ ⊆ I}.

Given its commutative ring theoretic antecedents, early work on lattice ordered monoids focused

on the development of a commutative residuated theory. Residuated structures have since found

application in other areas of mathematics, in particular, in the algebra of binary relations and the

model theory of nonclassical logics.

Residuated lattice ordered monoids also arise in torsion theory, for the set of right topologizing filters

FilRR on an arbitrary ring R (or equivalently, the collection of all hereditary pretorsion classes of
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right R-modules) is the order dual of a lattice ordered monoid. It is the study of lattice ordered

monoids in this torsion theoretic context that shall be the setting of this thesis.

An important avenue of research in torsion theory explores the extent to which internal properties of

a ring R and its category of right R-modules, are encoded in the structure FilRR. The usefulness

of FilR as a tool for analysing R, lies in the fact that the former structure encodes at least as

much information about the ring R as does the ideal lattice IdR, for there is a canonical structure

preserving embedding (that is in general not onto) of IdR into [FilRR]
du that takes each I ∈ IdR

onto the set of all right ideals of R containing I. A Condition placed on the larger structure FilRR

imposes more stringent requirements on the underlying ring R than does the equivalent condition

on the smaller IdR. For example, a ring R for which IdR is trivial is, by definition, a simple ring.

However, a ring R for which FilRR is trivial is much more than simple, it is necessarily simple

artinian and thus isomorphic to a matrix ring over a division ring.

The point of departure for the investigation undertaken in this thesis, is the question: what rings

R have the property that [FilRR]
du is two-sided residuated, that is to say, is both left and right

residuated? As results in this thesis show, the two-sided residuation condition manifests as a form

of finiteness condition on the ring. For commutative rings R, a sufficient condition for [FilRR]
du to

be two-sided residuated is that R be noetherian. However, as results in Chapter 3 show, noetheri-

anness is by no means necessary for two-sided residuation. The situation is less clear in the case of

noncommutative rings. It is not known, for example, whether [FilRR]
du is two-sided residuated in

every (noncommutative) right noetherian ring R.

A detailed breakdown of the main results in Chapters 2 to 4 is provided in the abstract. Chapter 1

is introductory whilst Chapter 5 lists a number of problems for planned future research. We wish to

point out that the paper [37] is a synthesis of results from Chapter 2, the first section of Chapter 3

and part of Chapter 4.
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Convention on the numbering of results

Theorem 2.3 refers to Theorem 3 in Chapter 2. Theorems, Propositions, Lemmas, Corollaries,

Examples and Remarks are numbered sequentially using the same counter.
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Chapter 1

Preliminaries

The aims of this section are threefold, in the first place to describe the notational conventions used

throughout this dissertation and secondly to collect in readily usable form a selection of mostly

standard results from the theories of lattice ordered monoid, hereditary pretorsion classes, right

topologizing filters and left residuation of right topologizing filters on rings which shall be used in

the sequel. In the third place we include some new results with proofs which shall be used in proving

some results in Chapter 3.

Except new results in this section we have chosen not to provide proofs for most standard results

rather we provide reference from such standard books [31, 18, 17].

All of the Theorems, Propositions, Lemmas and Corollaries in this dissertation that have not been

explicitly cited from another source represent original work.

1.1 Set theoretic conventions

The symbol ⊆ denotes containment and ⊂ proper containment for sets.
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1.2 Rings and modules

Throughout this thesis R will denote an associative ring (not necessary commutative) with identity.

By an ideal we always mean a two-sided ideal and the set of all two-sided ideals of a ring R will be

denoted by IdR. If I is an ideal of R we write I E R.

The word module will mean a unitary right R-module and the category of unital right R-modules

shall be denoted by Mod-R. We shall use RR [resp. RR] to denote the ring R considered as a

right [resp. left] module over itself. If N,M ∈ Mod-R we use the symbol N ≤ M to mean N is

a submodule of M and N →֒ M to mean N is embedded in M . We shall, on occasion, use the

symbol L(M) to indicate the lattice of submodules of a right R-module M .

If X, Y are nonempty subsets of a right R-module M we define

Y −1X = {r ∈ R : Y r ⊆ X}.

If Y = {y} [resp. X = {x}] is a singleton we write y−1X [resp. Y −1x] in place of {y}−1X [resp.

Y −1{x}].

If {Ai : i ∈ I} is a family of abelian groups we write
⊕

i∈I Ai for the direct sum and
∏

i∈I Ai for the

direct product where I is any index set. If there is no ambiguity and the index set I is understood,

we simply write
⊕

Ai and
∏
Ai respectively. If Ai = A for all i ∈ I, we write A(I) in place of

⊕

i∈I Ai and A
I for

∏

i∈I Ai. If the indexed set I = {1, 2, . . . , n} is finite we shall denote the direct

sum [resp. direct product] by
⊕n

i=1Ai [resp.
∏n

i=1Ai].

If M,N ∈ Mod-R we denote by HomR(M,N) the additive abelian group of all R-homomorphisms

from M to N . In this situation, if X is any nonempty subset of M , we shall denote by f [X ] the

image of X under f .

A right R-module M is simple if it has no proper nonzero submodules. The socle of an arbitrary

right R-module M , denoted soc(M), is defined to be the sum of all simple submodules of M . We

call M semisimple if soc(M) = M . A ring R is simple semisimple if RR is simple, or equivalently,

RR is simple.

2
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Recall that a right R-module M is said to be artinian [resp. noetherian ] if its lattice of submodules

satisfies the Descending Chain Condition (henceforth to be abbreviated DCC) [resp. Ascending

Chain Condition (henceforth to be abbreviated ACC)]. We call the ring R right artinian [resp. right

noetherian ] if the module RR is artinian [resp. noetherian].

A right R-module M is said to be an essential extension of a right R-module N if N ≤ M and

every nonzero submodule of M intersects N nontrivially. In this situation we call N an essential

submodule of M and write N 6e M . Note that M is said to be a maximal essential extension of

N if M is an essential extension of N , and M has no proper essential extension.

A right R-module M is said to be N -injective with N ∈ Mod-R, if every right R-homomorphism

from a submodule L of N to M can be lifted to an R-homomorphism from N to M . A right

R-module M is called an injective module if M is N -injective for every N ∈ Mod-R. For every

right R-module M there exists a minimal injective module containing M called the injective hull

(envelope) of M . The injective hull of M is unique up to isomorphism and is denoted E(M); it is

furthermore a maximal essential extension of M .

Recall that an ideal P of a ring R is said to be a prime ideal of R, if P ⊇ IJ implies P ⊇ I or

P ⊇ J whenever I, J ∈ IdR. We call the set of all prime ideals of a ring R, the spectrum of R

and abbreviate it by SpecR.

We call a ring R prime if the zero ideal of R is a prime ideal of R, this can be shown to be equivalent

to the requirement ∀a, b ∈ R, aRb = 0 ⇒ a = 0 or b = 0 (see[7, p. 442-443]).

The intersection of all prime ideals of a ring R is called the prime radical of R, and is denoted by

radR. If R is commutative, then radR comprises the set of all nilpotent elements of R (see[7, p.

442-443]).

We call an ideal of a ring semiprime if and only if it is the intersection of prime ideals of the ring. We

call a ring semiprime if the zero ideal is semiprime ideal. An equivalent definition for semiprime ideal

is that, an ideal I in a ring R is called semiprime ideal if R/I is a semiprime ring. It is known that

if I is an ideal of a ring R such that I ⊆ radR, then rad (R/I) = (radR)/I (see [7, Proposition

3
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4, p.342]). Taking I = radR, we see that rad (R/radR) = 0, thus R/radR is semiprime ring.

1.3 Lattice ordered monoids

Lattices first arose in the work of Schröder and later Dedekind in 1890. Distributive and Boolean

lattices in particular, arise naturally in many mathematical contexts. An elementary lattice theory

is developed by Schröder in his book die Algebra der Logik. Dedekind, Birkhoff and Ore are other

pioneers in the development of this subject.

By a partially ordered set (abbreviated poset) 〈P,≤〉, we mean a nonempty set P together with a

binary reflexive, antisymmetric and transitive relation ≤. We call ≤ the partial order (or just the

order) on poset P .

If 〈P,≤〉 is a poset, we shall denote by 〈P,≤〉du the order dual of 〈P,≤〉. Recall that the partial

order ≤du on 〈P,≤〉du is defined by x ≤du y if and only if x ≥ y for x, y ∈ P .

A poset 〈P,≤〉 is said to be a chain (or linearly ordered) if x ≤ y or y ≤ x for all x, y ∈ P .

A lattice L is a partially ordered set in which every pair of elements a, b in L has both a greatest

lower bound denoted a∧ b, and a least upper bound denoted a∨ b. A lattice L is called bounded if

L contains both a bottom element, usually denoted 0L, and a top element, usually denoted 1L. We

call L a complete lattice if every nonempty (possibly infinite) subset X of L has a greatest lower

bound, denoted
∧
X , and a least upper bound, denoted

∨
X . Observe that a complete lattice is

always bounded. It is clear that every chain is a lattice.

If L and L′ are lattices, then a mapping f : L→ L′ is called a lattice homomorphism if f preserves

(finite) meets and joins, that is to say, f(a ∧ b) = f(a) ∧ f(b) and f(a ∨ b) = f(a) ∨ f(b) for all

a, b ∈ L. If L and L′ are complete lattices, then we call f a complete lattice homomorphism if f

preserves arbitrary meets and joins, that is to say, f(
∧
X) =

∧

x∈X f(x) and f(
∨
X) =

∨

x∈X f(x)

for all nonempty subsets X of L.

4
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An element c of a complete lattice L is said to be compact if c ≤
∨
X , with X any nonempty

subset of L, implies c ≤
∨
Y for some finite subset Y of X . A lattice is called algebraic (or

compactly generated) if each of its elements is the join of compact elements. A nonzero element a

in a bounded lattice L is said to be an atom [resp. coatom] if b < a [resp. b > a] implies b = 0L

[resp. b = 1L]. A (bounded) lattice L is said to be atomic [resp. coatomic] if, for every b ∈ L,

b > 0L [resp. b < 1L], there exists an atom [resp. coatom] a such that a ≤ b [resp. a ≥ b].

A lattice ordered monoid is a structure 〈L;≤, ·, eL〉 where:

(L1) 〈L;≤〉 is a lattice.

(L2) 〈L; ·, eL〉 is a monoid with identity element eL.

(L3) The binary operation · respects the lattice ′∨′ join operation in the following sense:

a · (b ∨ c) = (a · b) ∨ (a · c) and (b ∨ c) · a = (b · a) ∨ (c · a) for all a, b, c ∈ L.

In the interests of brevity, we shall refer to L as a lattice ordered monoid in cases where the monoid

and the lattice operations are understood and no ambiguity might arise from their suppression in

the notation. Note that (L3) entails · will order preserving, that is, a ≤ b implies a · c ≤ b · c and

c · a ≤ c · b. If L has a top element 1L and this coincides with the monoid identity eL, we say that

the lattice ordered monoid is integral.

We say that a lattice ordered monoid L is left residuated if for every a, b ∈ L, there exists a largest

x ∈ L such that x · b ≤ a. In this situation we call x the left residual of a by b and denote it by

ab−1. Similarly, we say that L is right residuated if for every a, b ∈ L, there exists a largest element

x ∈ L such that b.x ≤ a, called the right residual of a by b and denoted by b−1a.

The following result is ring theoretic folklore.

Proposition 1.1 Let R be any ring with identity. Then 〈IdR; +,∩, ·, R〉 is a complete, lattice

ordered, left and right residuated, integral monoid, where the join is the operation + of ideal

addition, the meet is intersection ∩, and · is the monoid operation of ideal multiplication.

5
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Note that the ring R itself is the identity element with respect to ideal multiplication; it is also the

largest member of IdR which explains why the lattice ordered monoid is integral. If I, J ∈ IdR,

then IJ−1 = {x ∈ R : xJ ⊆ I} is the left residual of I by J , and J−1I = {x ∈ R : Jx ⊆ I} is the

right residual of I by J .

Proposition 1.2 [35, Proposition 5, p. 429] The following statements are equivalent for a complete

lattice ordered monoid L:

(a) L is right residuated;

(b) a · (
∨
X) =

∨

x∈X(a · x) for all a ∈ L and X ⊆ L.

Remark 1.3 It follows from the above that every lattice ordered monoid L satisfying the ACC is

two-sided residuated. This may be inferred from Statement (b) of the previous proposition. Indeed,

if L is a lattice ordered monoid satisfying the ACC and X ⊆ L, then
∨
X =

∨
X ′ for some finite

subset X ′ of X , but in every lattice ordered monoid, the monoid operation · distributes over finite

meets.

The following result sharpens [17, Proposition 4.15, p. 51].

Proposition 1.4 Let L be a complete lattice ordered monoid, a ∈ L and Y a nonempty subset

of L. If the right residual a−1b exists for all b ∈ Y, then the right residual a−1(
∧
Y ) exists and

a−1(
∧
Y ) =

∧
{a−1b : b ∈ Y }.

Proof. Fix a in L and suppose a−1b exists for all b ∈ Y. Put xb = a−1b for each b ∈ Y. Note that

a · (
∧

b∈Y xb) ≤ a · xb ≤ b for all b ∈ Y, whence a · (
∧

b∈Y xb) ≤
∧
Y. Now suppose a · c ≤

∧
Y

for some c ∈ L. Then a · c ≤ b for all b ∈ Y. Since xb = a−1b is the largest element in L satisfying

a · xb ≤ b, we must have c ≤ xb for all b ∈ Y. It follows that c ≤
∧

b∈Y xb
. We conclude that

∧

b∈Y xb
is the largest element c in L satisfying a · c ≤

∧
Y, that is,

∧

b∈Y xb
=
∧
{a−1b : b ∈ Y },

as required.
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If {L1, L2, . . . , Ln} is any finite family of (complete) lattice ordered monoids, it is easily shown that

the lattice and monoid structure on each Li induces a canonical lattice and monoid structure for

the cartesian product
∏n

i=1 Li = L1 ×L2 × · · · ×Ln. Moreover, the defining identities for a lattice

ordered monoid are passed from the Li to
∏n

i=1 Li. We thus have:

Theorem 1.5 Let {L1, L2, . . . , Ln} be any finite family of (complete) lattice ordered monoids.

Then
∏n

i=1 Li = L1 × L2 × · · · × Ln is canonically a (complete) lattice ordered monoid.

1.4 Congruence relations on the lattice ordered monoids

Let 〈L;≤, ·, eL〉 and 〈L′;≤, ·, eL′〉 be lattice ordered monoids. Let ϕ : L → L′ be a mapping that

satisfies the following conditions:

(H1) ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) for all a, b ∈ L;

(H2) ϕ(
∨
X) =

∨

x∈X ϕ(x) for all nonempty X ⊆ L;

(H3) ϕ(a · b) = ϕ(a) · ϕ(b).

We shall call a map ϕ satisfying the above a homomorphism of lattice ordered monoids. (Note the

lack of symmetry in conditions (H1) and (H2)).

Denote by ≡ϕ the congruence on L induced by ϕ. Thus

a ≡ϕ b⇔ ϕ(a) = ϕ(b) for all a, b ∈ L.

Denote by [a]≡ϕ the equivalence class of a. That is

[a]≡ϕ = {b ∈ L : ϕ(a) = ϕ(b)}.

As usual, we denote by L/ ≡ϕ the collection of all equivalence classes with respect to ≡ϕ, that is

L/ ≡ϕ= {[a]≡ϕ : a ∈ L}.

7
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Note that since ϕ is a homomorphism of lattice ordered monoids, L/ ≡ϕ inherits the same structure

from L with meets, joins and the monoid operation defined in the obvious way. Since ϕ preserves

arbitrary joins, each equivalence class [a]≡ϕ contains a largest element, namely
∨
[a]≡ϕ .

The map a 7→
∨
[a]≡ϕ constitute a nucleus on L. We remind the reader that a map σ from a lattice

L to itself is called a nucleus if:

(N1) σ is order preserving, i.e., a ≤ b implies σ(a) ≤ σ(b) for all a, b ∈ L;

(N2) σ(a ∧ b) = σ(a) ∧ σ(b) for all a, b ∈ L, (note that N2 is stronger than N1);

(N3) σ is idempotent, meaning σ(σ(a)) = σ(a) for all a ∈ L.

Note that some texts refer to a map σ satisfying the above conditions as a closure operator on L.

There is a canonical epimorphism of lattice ordered monoids from L to L/ ≡ϕ which takes a to

[a]≡ϕ . A version of the Homomorphism Theorem tells us that the homomorphism ϕ : L → L′ fac-

tors through the canonical epimorphism from L to L/ ≡ϕ. That is; the following diagram commutes.

L
ϕ //

canon.
��

L′

L/ ≡ϕ

canon. embed.

<<①①①①①①①①①

The canonical monomorphism from L/ ≡ϕ to L′ takes [a]≡ϕ to ϕ(a) ∈ L′ for each a ∈ L. If ϕ is

onto then the canonical embedding of L/ ≡ϕ into L′ becomes an isomorphism.

If {≡δ : δ ∈ ∆} is a family of congruences on L, then
⋂

≡δ is a congruence on L and we have a

canonical embedding of lattice ordered monoids given by:

L/
⋂

δ∈∆ ≡δ →֒
∏

δ∈∆(L/ ≡δ)

[a]⋂
δ∈∆≡δ

7→ {[a]≡δ
}δ∈∆.
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1.5 Torsion Theory - hereditary pretorsion classes

This section provides the torsion theoretic background that is necessary for what follows. For further

background and for the proof of the many unsubstantiated assertions made in this section, we refer

the reader to the texts [18, 17, 31].

We shall use the following abbreviations, A being a nonempty class of right R-modules:

(A1) CA is the class of all direct sums of modules in A;

(A2) HA is the class of all homomorphic images of modules in A;

(A3) SA is the class of all submodules of modules in A.

A nonempty class T of right R-modules is called a hereditary pretorsion class if it is closed under

(arbitrary) direct sums, homomorphic images and submodules, that is CT ⊆ T , HT ⊆ T and

ST ⊆ T . If A is a nonempty class of right R-modules, then SHCA is a hereditary pretorsion class,

indeed, it is the smallest such class containing A. In this situation we say that A subgenerates the

hereditary pretorsion class SHCA. If A = {M} is a singleton, we say that M subgenerates SHCA.

The subclass HCA of SHCA is the smallest class of right R-modules containing A that is closed

under direct sums and homomorphic images. In this situation we say that A generates HCA.

Every hereditary pretorsion class T of right R-modules has a singleton generator. Indeed, using the

fact that every M ∈ Mod-R is canonically a homomorphic image of
⊕

x∈M R/x−10, it is easy to

show that

T = HCC = HC {
⊕

C}where C is a representative set of cyclic modules in T . (1.1)

We shall denote by HPRR the set∗ of all hereditary pretorsion classes in Mod-R. It is easily checked

that any intersection of hereditary pretorsion classes is again a hereditary pretorsion class. Thus

HPRR has the structure of a complete lattice with respect to inclusion if X ⊆ HPRR, then

∗The fact that HPRR is a set and not a proper class is a consequence of the existence of a bijection, to be

described later in this section, between HPRR and the set of all right topologizing filters on R.
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∧
X

def
=
⋂
X , and

∨
X

def
= SHC(

⋃
X).

If T is a hereditary pretorsion class of right R-modules and M ∈ Mod-R, then there is a (unique)

largest submodule of M belonging to T , denoted by T (M), and called the T -torsion submodule of

M . If T (M) = M , or equivalently M ∈ T , we say that M is T -torsion and if T (M) = 0 we say

that M is T -torsion-free.

We call a submodule N of M ∈ Mod-R, a T -dense submodule [resp. T -pure submodule] of M if

M/N is T -torsion [resp. T -torsion-free].

The class of T -torsion-free right R-modules can be shown to be closed under submodules, direct

products, module extensions (this means if N ≤ M ∈ Mod-R, then M will be T -torsion-free

whenever N and M/N are T -torsion-free), and essential extensions see [31, Proposition 2.2, p.

140]. The last of these closure properties implies that the class of T -torsion-free modules is closed

under injective hulls for every module is an essential submodule of its injective hull.

1.6 Topologizing filters

A right topologizing filter on a ring R is a nonempty family F of right ideals of a ring R that satisfies

the following three conditions:

(F1) A ∈ F implies B ∈ F whenever B is a right ideal of R containing A;

(F2) A,B ∈ F implies A ∩ B ∈ F;

(F3) A ∈ F and r ∈ R implies r−1A
def
= {x ∈ R : rx ∈ A} ∈ F.

The set of all right topologizing filters on some fixed ring R, which we shall denote by FilRR; is

closed under arbitrary intersections, and thus has the structure of a complete lattice with respect to

inclusion.
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The lattice join in FilRR has an internal description which we provide below. If X ⊆ FilRR, then

∧

X =
⋂

X, and

∨

X = {K 6 RR : K ⊇
⋂

X ′ for some finite subset X ′ of
⋃
X}. (1.2)

The smallest element of FilRR is the singleton {R} whilst the largest element is the family com-

prising all right ideals of R. It is clear from Property (F1) that a member of FilRR will coincide

with the largest element of FilRR precisely if it contains the zero right ideal of R.

If T ∈ HPRR, define

FT
def
= {K 6 RR : R/K ∈ T } (1.3)

and if F ∈ FilRR, define

TF

def
= {M ∈ Mod-R : x−10 ∈ F ∀x ∈ M}. (1.4)

It is easily checked that FT is a member of FilRR and TF a member of HPRR. We shall call FT

the right topologizing filter on R associated with T and TF the hereditary pretorsion class in Mod-R

associated with F.

It follows from (1.4) that if M is any right R-module, then

TF(M) = {x ∈M : x−10 ∈ F}. (1.5)

Equation (1.4) also has the consequence that

R/K ∈ TF ⇔ r−1K ∈ F ∀r ∈ R

⇔ K ∈ F (by Property (F3)). (1.6)

Statements (1.3) and (1.6) imply that

FTF = F. (1.7)

The same statements also imply R/K ∈ TFT
if and only if R/K ∈ T , so TFT

and T possess the

same cyclic modules, whence

TFT
= T (1.8)
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in view of (1.1).

From statements (1.7) and (1.8) we deduce the following theorem.

Theorem 1.6 The mappings F 7→ TF and T 7→ FT are mutually inverse order preserving maps

between FilRR and HPRR and thus constitute mutually inverse lattice isomorphisms.

Proposition 1.7 [17, Proposition 2.16, p. 21] The following statements are equivalent for F ∈

FilRR:

(a) F is compact;

(b) TF is subgenerated by a finitely generated M ∈ Mod-R;

(c) TF is subgenerated by a cyclic M ∈ Mod-R;

(d) F = FTF = FSHC{R/K} for some K ≤ RR.

Noting that

TF = HC{R/K : K ∈ F} (by (1.1) and (1.6))

= SHC{R/K : K ∈ F} (because TF is closed under submodules)

=
∨

K∈F

SHC{R/K},

we have

F = FTF =
∨

K∈F

FSHC{R/K}. (1.9)

Inasmuch as each topologizing filter FSHC{R/K} appearing on the right-hand-side of Equation (1.9)

above is compact by the previous proposition, we have thus proved:

Proposition 1.8 [17, Proposition 2.17, p. 22] FilRR is an algebraic (i.e., compactly generated)

lattice.
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A key component of the structure FilRR derives from a binary operation : defined by

F : G
def
= {K ≤ RR : ∃H ∈ F such that K ⊆ H and h−1K ∈ G ∀h ∈ H}.

Inasmuch as H ∈ F if and only if R/H ∈ TF (by Equation (1.6)) and h−1K ∈ G ∀h ∈ H if and

only if H/K ∈ TG (by Equation (1.4)), it follows that K ∈ F : G if and only if there exists a short

exact sequence

0 → H/K → R/K → R/H → 0

with K ⊆ H ≤ RR such that H/K ∈ TG and R/H ∈ TF. This can be generalized to: M ∈ TF:G if

and only if there exists a short exact sequence

0 → N →M → M/N → 0

such that N ∈ TG and M/N ∈ TF. In other words, the hereditary pretorsion class associated with

F : G comprises all modules that are an extension of a module in the hereditary pretorsion class

associated with G by a module in the hereditary pretorsion class associated with F.

From the above exact sequence can be derived the identity

TF(M/TG(M)) = TF:G(M)/TG(M)

for all M ∈ Mod-R.

It is obvious from the definition of : that F : G ⊇ F,G and so F : G ⊇ F ∨G. It is known [17,

Proposition 3.3, p. 31] that if F,G ∈ FilRR and A ∈ FB ∈ G; then AB ∈ F : G.

Let F ∈ FilRR. Inasmuch as TF is closed under homomorphic images, it is easily seen that if

f ∈ HomR(M,N), then f [TF(M)] ⊆ TF(N). It is also clear from Equation (1.5) that if L ≤ M ,

then TF(L) = L ∩ TF(M).

Notice that the smallest topologizing filter {R} is an identity element with respect to :.
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Theorem 1.9 [17, Proposition 4.1, p. 43] If R is any ring then 〈FilRR;∨,∧, :, {R}〉
du is an

integral, left residuated, complete lattice ordered monoid.

The above theorem tells us, in particular, that the left residual FG−1 of F by G exists for all

F,G ∈ FilRR. Since it is the order dual of FilRR that is left residuated, note thatG−1F corresponds

with the smallest element H ∈ FilRR satisfying G : H ⊇ F. As was noted in the introduction to

this thesis, [FilRR]
du suffers from the deficiency that it is not, in general, right residuated. A major

theme of this thesis is the exploration of rings R that enjoy two-sided residuation.

If I is an ideal of ring R, then the family

η(I)
def
= {K ≤ RR : K ⊇ I}

is easily shown to constitute a right topologizing filter on R. Note that the hereditary pretorsion

class Tη(I) associated with η(I) coincides with {M ∈ Mod-R : MI = 0} which is identifiable with

the category of all right R/I-modules. Observe that η(I) is a compact member of FilRR, for

Tη(I) = SHC{R/I} (see Proposition 1.7). However, unless the ring R is commutative, not every

compact member of FilRR has the form η(I) for some I ∈ IdR.

A right topologizing filter F on a ring R is called jansian if it satisfies the equivalent conditions of

the theorem below. The set of all jansian right topologizing filters on a ring R shall be denoted by

JansRR.

Theorem 1.10 [17, Proposition 1.14 and Corollary 1.15, p. 9] The following conditions are equiv-

alent for a right topologizing filter F on a ring R:

(a) F is closed under arbitrary intersections;

(b)
⋂

F ∈ F;

(c) F = η(I) for some ideal I of R;

(d) F = {A ≤ RR : A ⊇ M−10} for some M ∈ Mod-R;
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(e) TF is closed under arbitrary direct products.

Observe that the smallest and largest elements of FilRR are jansian for they correspond with η(R)

and η(0), respectively.

Recall that a right R-module M is said to be finitely annihilated if M−10 = X−10 for some finite

subset X of M . This can be shown to be equivalent to the requirement that the right topologizing

filter on R associated with SHC{M} is jansian (see comments preceding Proposition 2.8).

We shall have need for the following theorem.

Theorem 1.11 [3, Corollary 3.3, p. 25] The following conditions on a ring R are equivalent:

(a) every F ∈ FilRR is jansian;

(b) every right R-module is finitely annihilated;

(c) R is right artinian.

It is easily shown that JansRR closed under arbitrary intersections, but it is not closed under

arbitrary joins in general. Topologizing filters which are joins of jansian topologizing filters are easily

characterized, however.

Let F ∈ FilRR. A subset X of F is said to be a cofinal set for F if, given any A ∈ F, there exists

B ∈ X such that A ⊇ B. We call F bounded if F has a cofinal set consisting of ideals of R.

Trivially, if R is commutative, then every F ∈ FilRR is bounded.

Theorem 1.12 [17, Proposition 2.6, p. 17] A right topologizing filter F on R is bounded if and

only if it is the join of a nonempty set of jansian topologizing filters.

The atoms of FilRR are easily described.

Theorem 1.13 [17, Corollary 2.24, p. 24] Let S be any simple right R-module. If H is the right

topologizing filter on R associated with SHC{S}, then H is an atom of FilRR. Moreover, every

atom of FilRR has the form FT where T = SHC{S} for some simple right R-module S.
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Coatoms in FilRR have a less conspicuous form in general. However, if R is a (commutative)

integral domain, it is easily checked that the family comprising all nonzero ideals of R is the unique

coatom of FilR.

The following is a key result.

Theorem 1.14 [17, Proposition 2.7, p. 17 and Proposition 3.4, p. 31] If R is any ring then the

mapping from IdR to [FilRR]
du defined by I 7→ η(I) is a one-to-one homomorphism in respect of

the binary join, binary meet, and multiplication operations, that also preserves arbitrary joins. Thus

there is an embedding of lattice ordered monoids of IdR into [FilRR]
du.

Remark 1.15 Theorem 1.14 asserts that a ring R is right artinian precisely if every member of

FilRR is jansian, that is to say, η, interpreted as a mapping from IdR into [FilRR]
du, is onto and

thus an isomorphism of lattice ordered monoids. Since IdR is two-sided residuated for all rings R

(see Proposition 1.1), this means that [FilRR]
du is two-sided residuated for all right artinian rings

R. Rings that possess the two-sided residuated property in respect of their topologizing filters need

not be artinain, however; as Theorem 2.12 shows. See also [34, Corollary 8, p. 91] which proves

that for any commutative noetherian ring R, FilRR is commutative (meaning the operation : is

commutative). Inasmuch as [FilRR]
du is left residuated for all rings R (Theorem 1.9), and the

notions of left residuated and right residuated coincide in a commutative lattice ordered monoid, it

follows that all commutative noetherian rings possess the two-sided residuation property.

Taking L = [FilRR]
du in Proposition 1.4 yields the next result. (Note that the joins in Proposition

1.16 below pertain to FilRR and thus correspond with meets in [FilRR]
du.)

Proposition 1.16 Suppose R is any ring, G ∈ FilRR and Y a nonempty subset of FilRR. If the

right residual G−1F exists in [FilRR]
du for all F ∈ Y, then the right residual G−1(

∨
Y ) exists in

[FilRR]
du and

G−1(
∨
Y ) =

∨
{G−1F : F ∈ Y }.
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Remark 1.17 Insofar as FilRR is compactly generated by Proposition 1.8 it follows from Proposi-

tion 1.16 that [FilRR]
du will be right residuated (and thus two-sided residuated in view of Theorem

1.9) if the right residual G−1F exists in [FilRR]
du for all compact F ∈ FilRR. This fact is needed

in the proof of Corollary 2.2.

We noted earlier in this section, that the hereditary pretorsion class associated with F : G comprises

all modules that are an extension of a module in the hereditary pretorsion class associated with G

by a module in the hereditary pretorsion class associated with F. In particular, taking F = G, we

see that TF:F is the class of all module extensions of modules in TF. Hence TF:F = TF precisely if TF

is closed under module extensions. We have thus proved the equivalence of Statements (a) and (c)

in the following theorem.

Theorem 1.18 [31, Theorem 5.1, p. 146] and [17, p. 55] The following statements are equivalent

for a right topologizing filter F on R:

(a) F is idempotent, i.e., F2 def
= F : F = F;

(b) If I ≤ RR and there exists some J ∈ F such that a−1I ∈ F ∀a ∈ J , then I ∈ F;

(c) TF is closed under module extensions.

A right topologizing filter F on R satisfying the equivalent conditions of the above theorem, is called

a right Gabriel filter on R. This name honours Gabriel who first introduced the notion in [14]. We

denote the set of all right Gabriel filters on R by G-FilRR. It follows from Theorem 1.14 that if I

is an ideal of R, then η(I) ∈G-FilRR if and only if I is idempotent. This means that both η(0)

and η(R) are members of G-FilRR, so G-FilRR is never empty. It is easy to show that G-FilRR

is closed under arbitrary intersections. Thus G-FilRR is a meet-complete subsemilattice of FilRR

and a complete lattice with respect to inclusion.
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1.7 Change of rings

In this section we show how a ring homomorphism between two rings induces structure preserving

maps between the ring’s respective sets of topologizing filters. We derive a correspondence theorem

in the process.

Proposition 1.19 Let R and T be arbitrary rings and ϕ : R → T a ring homomorphism. Then

the map ϕ∗ : FilTT → FilRR given by

ϕ∗(F) = {K ≤ RR : K ⊇ ϕ−1[L] for some L ∈ F}

is a complete lattice homomorphism, that is to say, ϕ∗ preserves arbitrary meets and joins. Moreover,

ϕ∗(F : G) ⊆ ϕ∗(F) : ϕ∗(G) for all F,G ∈ FilTT .

Proof. That ϕ∗(F) is a right topologizing filter on R is easily established using the fact that

ϕ−1[A ∩ B] = ϕ−1[A] ∩ ϕ−1[B] and r−1ϕ−1[A] = ϕ−1[ϕ(r)−1A] for all A,B ≤ TT and r ∈ R.

We first show that ϕ∗ preserves arbitrary meets. To this end, let {Fδ : δ ∈ ∆} be a nonempty subset

of FilTT . Since ϕ∗ is order preserving, the containment ϕ∗(
⋂

δ∈∆ Fδ) ⊆
⋂

δ∈∆ ϕ
∗(Fδ) is clear. It

remains to establish the reverse containment. Take K ∈
⋂

δ∈∆ ϕ
∗(Fδ). Thus K ∈ ϕ∗(Fδ) for all

δ ∈ ∆. Hence, there exists, for each δ ∈ ∆, a right ideal Lδ ∈ Fδ such that K ⊇ ϕ−1[Lδ]. It follows

that K ⊇
∑

δ∈∆ ϕ
−1[Lδ] = ϕ−1[

∑

δ∈∆ Lδ]. Since
∑

δ∈∆ Lδ ⊇ Lδ for each δ ∈ ∆, it follows that
∑

δ∈∆ Lδ ∈
⋂

δ∈∆ Fδ, so K ∈ ϕ∗(
⋂

δ∈∆ Fδ). Thus ϕ
∗(
⋂

δ∈∆ Fδ) ⊇
⋂

δ∈∆ ϕ
∗(Fδ), whence equality.

We now show that ϕ∗ preserves arbitrary joins. The containment ϕ∗(
∨

δ∈∆ Fδ) ⊇
∨

δ∈∆ ϕ
∗(Fδ) is

clear. Take K ∈ ϕ∗(
∨

δ∈∆ Fδ). Then K ⊇ ϕ−1[L] for some L ∈
∨

δ∈∆ Fδ. It follows from our

description of the join (see (1.2)) that there exists a finite subset ∆′ of ∆ and a right ideal Aδ ∈ Fδ

for each δ ∈ ∆′, such that L ⊇
⋂

δ∈∆′ Aδ. Then K ⊇ ϕ−1[L] ⊇ ϕ−1[
⋂

δ∈∆′ Aδ] =
⋂

δ∈∆′ ϕ−1[Aδ].

Clearly ϕ−1[Aδ] ∈ ϕ∗(Fδ) for all δ ∈ ∆′, so
⋂

δ∈∆′ ϕ−1[Aδ] ∈
∨

δ∈∆ ϕ
∗(Fδ) by (1.2), whence

K ∈
∨

δ∈∆ ϕ
∗(Fδ). The containment ϕ∗(

∨

δ∈∆ Fδ) ⊆
∨

δ∈∆ ϕ
∗(Fδ) is thus shown, whence equality.
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To complete the proof, it remains to show that ϕ∗(F : G) ⊆ ϕ∗(F) : ϕ∗(G) for all F,G ∈ FilTT .

Take K ∈ ϕ∗(F : G). Then K ⊇ ϕ−1[L] for some L ∈ F : G. Hence there exists H ∈ F such that

H ⊇ L and t−1L ∈ G for all t ∈ H . Observe that

ϕ−1[H ] ∈ ϕ∗(F) (1.10)

since H ∈ F. Take r ∈ ϕ−1[H ]. Inasmuch as

s ∈ r−1ϕ−1[L] ⇔ rs ∈ ϕ−1[L]

⇔ ϕ(rs) = ϕ(r)ϕ(s) ∈ L

⇔ ϕ(s) ∈ ϕ(r)−1L

⇔ s ∈ ϕ−1[ϕ(r)−1L],

we have r−1ϕ−1[L] = ϕ−1[ϕ(r)−1L]. Since t−1L ∈ G for all t ∈ H , it follows that ϕ(r)−1L ∈ G

for all r ∈ ϕ−1[H ], whence

r−1ϕ−1[L] = ϕ−1[ϕ(r)−1L] ∈ ϕ∗(G) for all r ∈ ϕ−1[H ]. (1.11)

Equations (1.10) and (1.11) imply that ϕ−1[L] ∈ ϕ∗(F) : ϕ∗(G), whence K ∈ ϕ∗(F) : ϕ∗(G). We

have thus shown that ϕ∗(F : G) ⊆ ϕ∗(F) : ϕ∗(G).

We point out, with reference to the previous result, that ϕ∗ is, in general, not a monoid homomor-

phism with respect to :.

Now let I ∈ IdR and π : R → R/I be the canonical ring epimorphism. Observe that in this

situation, for each F ∈ Fil (R/I)R/I ,

π∗(F) = {K ≤ RR : K ⊇ π−1[L] for some L ∈ F}

= {K ≤ RR : K ⊇ I and K/I ∈ F}. (1.12)

We remind the reader that Mod-(R/I) may be interpreted as a subcategory of Mod-R: if M ∈

Mod-(R/I) and x ∈M , then

xr
def
= x(r + I) for all r ∈ R. (1.13)
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Now take F ∈ Fil (R/I)R/I and let M ∈ Mod-(R/I). Then

x ∈ TF(M) ⇔ ∃K ≤ RR such that K ⊇ I, K/I ∈ F and x(K/I) = 0

⇔ ∃K ∈ π∗(F) such that x(K/I) = 0 [by (1.12)]

⇔ ∃K ∈ π∗(F) such that xK = 0 [because, by (1.13), xK = 0 ⇔ x(K/I) = 0]

⇔ x ∈ Tπ∗(F)(M).

We have thus shown that

TF(M) = Tπ∗(F)(M) (1.14)

for all M ∈ Mod-(R/I).

Proposition 1.20 Let I be an ideal of arbitrary ring R and π : R → R/I the canonical ring

epimorphism. Then

π∗(F : G) = [π∗(F) : π∗(G)] ∩ η(I)

for all F,G ∈ Fil (R/I)R/I .

Proof. By Proposition 1.19, π∗(F : G) ⊆ π∗(F) : π∗(G). It is also clear from (1.12) that π∗(F) ⊆

{K ≤ RR : K ⊇ I} = η(I) for every F ∈ Fil (R/I)R/I . Thus π
∗(F : G) ⊆ [π∗(F) : π∗(G)] ∩ η(I).

To establish the reverse containment, take K ∈ [π∗(F) : π∗(G)]∩ η(I). Then there exists H ≤ RR

such that H ⊇ K, R/H is Tπ∗(F)-torsion and H/K is Tπ∗(G)-torsion. Inasmuch as K ∈ η(I),

H ⊇ K ⊇ I. This means that the short exact sequence

0 −→ H/K −→ R/K −→ R/H −→ 0

in Mod-R, induces the following short exact sequence in Mod-(R/I)

0 −→ (H/I)/(K/I) −→ (R/I)/(K/I) −→ (R/I)/(H/I) −→ 0.
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Since H ∈ π∗(F) (because R/H is Tπ∗(F)-torsion), it follows from (1.12) that H/I ∈ F. Since

(H/I)/(K/I) ∼= H/K is Tπ∗(G)-torsion, it follows from (1.14) that (H/I)/(K/I) is TG-torsion. We

conclude that K/I ∈ F : G, so K ∈ π∗(F : G). We have thus shown that [π∗(F) : π∗(G)]∩ η(I) ⊆

π∗(F : G), whence equality.

If I is an ideal of ring R, then, in general, the interval [0, η(I)]
def
= {F ∈ FilRR : F ⊆ η(I)} of

FilRR is not closed under the monoid operation :, for η(I) : η(I) = η(I · I) = η(I2) (by Theorem

1.14) and η(I2) does not belong to [0, η(I)] unless I2 = I. This observation is, of course, consistent

with our earlier observation that ϕ∗ is, in general, not a monoid homomorphism with respect to :.

Let I be an ideal of arbitrary ring R. We define operation :I on [0, η(I)] by

F :I G
def
= (F : G) ∩ η(I)

for F,G ∈ [0, η(I)].

Remark 1.21 Note that if, in the above definition, the ideal I is idempotent, that is to say I2 = I,

then [0, η(I)] will be closed under the operation :, in which case the operations : and :I coincide.

In light of the previous definition and Proposition 1.20, we see that

π∗(F : G) = π∗(F) :I π
∗(G) (1.15)

for all F,G ∈ Fil (R/I)R/I , which is to say, π∗ : Fil (R/I)R/I → 〈[0, η(I)]; :I〉 is a monoid homo-

morphism.

As before, let I be an ideal of arbitrary ring R and π : R → R/I the canonical ring epimorphism.

Define map π∗ : [0, η(I)] → Fil (R/I)R/I by

π∗(F)
def
= {K/I : K ∈ F}

for F ∈ [0, η(I)]. It is easily checked that π∗(F) is indeed a member of Fil (R/I)R/I for every

F ∈ [0, η(I)].
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Theorem 1.22 (Correspondence Theorem) Let I be an ideal of arbitrary ring R and π : R → R/I

the canonical ring epimorphism. Then π∗ and π∗ are mutually inverse complete lattice and monoid

isomorphisms between Fil (R/I)R/I and 〈[0, η(I)]; :I〉.

Proof. We have already proven that π∗ is a complete lattice homomorphism by Proposition 1.19.

It is, furthermore, a monoid homomorphism by (1.15). To complete the proof, it therefore suffices

to show that π∗ and π∗ are mutually inverse bijections.

To this end, take F ∈ Fil (R/I)R/I . Let K ≤ RR with K ⊇ I. Then

K/I ∈ (π∗ ◦ π
∗)(F) = π∗(π

∗(F)) ⇔ K ∈ π∗(F) ⇔ K/I ∈ F.

Thus (π∗ ◦ π
∗)(F) = F.

Now take G ∈ [0, η(I)]. Then

K ∈ (π∗ ◦ π∗)(G) = π∗(π∗(G)) ⇔ K ⊇ I and K/I ∈ π∗(G) [by (1.12)] ⇔ K ∈ G.

Thus (π∗ ◦ π∗)(G) = G. We conclude that π∗ and π∗ are mutually inverse bijections, as required.

Inasmuch as [FilRR]
du is a complete lattice ordered monoid for all rings R by Theorem 1.9, the

following corollary to Theorem 1.22 is immediate.

Corollary 1.23 Let I be an ideal of arbitrary ring R. Then [Fil (R/I)R/I ]
du and 〈[0, η(I)]; :I〉

du

are isomorphic complete lattice ordered monoids.

Let I be an ideal of arbitrary ring R. Consider the mapping from FilRR to [0, η(I)] given by

F 7→ F ∩ η(I), F ∈ FilRR. That this mapping is onto and preserves arbitrary meets is obvious.

Moreover, if F,G ∈ FilRR, then
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[F ∩ η(I)] :I [G ∩ η(I)] = ([F ∩ η(I)] : [G ∩ η(I)]) ∩ η(I)

= [F : G] ∩ [F : η(I)] ∩ [η(I) : G] ∩ [η(I) : η(I)]) ∩ η(I)

= [F : G] ∩ η(I) [because F : η(I), η(I) : G and η(I) : η(I) all contain

η(I)].

We have thus proved the following proposition.

Proposition 1.24 Let I be an ideal of arbitrary ring R. The mapping from FilRR to 〈[0, η(I)]; :I〉

given by F 7→ F ∩ η(I), F ∈ FilRR, is onto, preserves arbitrary meets, and is a monoid homomor-

phism.

Theorem 1.25 (Preservation Theorem) Let I be an ideal of arbitrary ring R.

(a) If the monoid operation : on FilRR is commutative, then so is the corresponding monoid

operation on Fil (R/I)R/I .

(b) If every F ∈ FilRR is idempotent, that is to say, F : F = F, then the same is true of every

member of Fil (R/I)R/I .

(c) If [FilRR]
du is right residuated, then so is [Fil (R/I)R/I ]

du.

Proof. It follows from Theorem 1.22 and Proposition 1.24 that the composition of maps

F 7→ F ∩ η(I) 7→ π∗(F ∩ η(I))

from FilRR to Fil (R/I)R/I is onto, preserves arbitrary meets, and is a monoid homomorphism.

It follows that any property of FilRR that is characterizable in terms of an identity involving only

meets and the monoid operation, is passed from FilRR to Fil (R/I)R/I .

Inasmuch as the properties for FilRR appearing in (a) and (b) are identities involving the monoid

operation only, we may infer from the above explanation that the assertions made in (a) and (b)

hold.
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Regarding (c), Theorem 1.9 tells us that 〈FilRR;∨,∧, :, {R}〉
du is a complete lattice ordered

monoid, and therefore by Proposition 1.2, the right residuation property is characterizable by means

of the identity

G :

(
⋂

δ∈∆

Fδ

)

=
⋂

δ∈∆

(G : Fδ), G ∈ FilRR, {Fδ : δ ∈ ∆} ⊆ FilRR.

Since the above identity clearly involves only meets and the monoid operation, it follows that

assertion (c) holds.

Let {Ri : 1 ≤ i ≤ n} be a finite family of rings and put R =
∏n

i=1Ri. For each i ∈ {1, 2, . . . , n}

let πi : R → Ri be the canonical projection and put

Ii = ker πi = R1 × R2 × · · · ×Ri−1 × 0×Ri+1 × · · · × Rn.

Observe that R/Ii ∼= Ri and that each Ii is an idempotent ideal of R. This latter fact means that

the monoid operation :Ii on [0, η(Ii)] coincides with : for every i ∈ {1, 2, . . . , n}, as explained in

Remark 1.21.

We see from Corollary 1.23 that for each i ∈ {1, 2, . . . , n}, [0, η(Ii)]
du is a complete lattice ordered

monoid. Hence
∏n

i=1[0, η(Ii)]
du is a complete lattice ordered monoid by Theorem 1.5.

Consider the map from FilRR to
∏n

i=1[0, η(Ii)] given by

F 7−→ (F ∩ η(I1),F ∩ η(I2), . . . ,F ∩ η(In)). (1.16)

It follows from Proposition 1.24 that for each i ∈ {1, 2, . . . , n} the map from FilRR to [0, η(Ii)]

preserves arbitrary meets and is a homomorphism with respect to the monoid operation :. From

this it follows that the map defined in (1.16) is a complete lattice and monoid homomorphism from

FilRR to
∏n

i=1[0, η(Ii)]. Our objective is to show that the map (1.16) is bijective and thus an

isomorphism. To this end, we define a map from
∏n

i=1[0, η(Ii)] to FilRR given by

(G1,G2, . . . ,Gn) 7−→
n∨

i=1

Gi. (1.17)
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We claim that for each j ∈ {1, 2, . . . , n},
(

n∨

i=1

Gi

)

∩ η(Ij) = Gj . (1.18)

For each j ∈ {1, 2, . . . , n}, we certainly have (
∨n
i=1Gi) ∩ η(Ij) ⊇ Gj , for Gj ⊆

∨n
i=1Gi and

Gj ∈ [0, η(Ij)], so Gj ⊆ η(Ij). To establish the reverse containment, take K ∈ (
∨n
i=1Gi) ∩ η(Ij).

Since every right ideal of R =
∏n

i=1Ri has the form K1 ×K2 × · · · ×Kn for suitable right ideals

Ki of Ri, and since K ∈ η(Ij) by hypothesis, we must have

K = R1 ×R2 × · · · × Rj−1 ×Kj × Rj+1 × · · · × Rn (1.19)

for some right ideal Kj of Rj. Since K ∈
∨n
i=1Gi, there exist Ai ∈ Gi for each i ∈ {1, 2, . . . , n}

such that K ⊇
⋂n
i=1Ai (see (1.2)). Take i ∈ {1, 2, . . . , n}. Since Ai ∈ Gi ⊆ η(Ii), Ai has the

form

Ai = R1 ×R2 × · · · × Ri−1 ×Bi ×Ri+1 × · · · × Rn,

for some right ideal Bi of Ri. Then

K ⊇
n⋂

i=1

Ai = B1 × B2 × · · · × Bn.

The above, together with (1.19), imply that Kj ⊇ Bj, so

K ⊇ R1 ×R2 × · · · × Rj−1 × Bj × Rj+1 × · · · × Rn = Aj ∈ Gj.

We have thus shown that (
∨n
i=1Gi) ∩ η(Ij) ⊆ Gj , whence (1.18) holds.

We now show that for each F ∈ FilRR,

F =
n∨

i=1

(F ∩ η(Ii)). (1.20)

The containment F ⊇
∨n
i=1(F ∩ η(Ii)) is clear. To establish the reverse containment, take K ∈ F.

Write K = K1 ×K2 × · · · ×Kn with each Ki a right ideal of Ri. For each i ∈ {1, 2, . . . , n}, put
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Ai = R1 × R2 × · · · ×Ri−1 ×Ki × Ri+1 × · · · × Rn.

Since Ai ⊇ K and Ai ⊇ Ii for each i ∈ {1, 2, . . . , n}, we have Ai ∈ F ∩ η(Ii). It follows that

K =
⋂n
i=1Ai ∈

∨n
i=1(F ∩ η(Ii)). We have thus shown that F ⊆

∨n
i=1(F ∩ η(Ii)), whence equality.

Identities (1.18) and (1.20) imply that the maps defined in (1.16) and (1.17) are inverses of each

other. Thus [FilRR]
du and

∏n
i=1[0, η(Ii)]

du are isomorphic complete lattice ordered monoids. The

Correspondence Theorem (Theorem 1.22) tells us that for each i ∈ {1, 2, . . . , n}, [Fil (R/Ii)R/Ii ]
du

and [0, η(Ii)]
du are isomorphic complete lattice ordered monoids. Noting that R/Ii ∼= Ri for each

i ∈ {1, 2, . . . , n}, we have thus proved the following.

Theorem 1.26 Let {Ri : 1 ≤ i ≤ n} be a finite family of rings and put R =
∏n

i=1Ri. Then

[FilRR]
du and

∏n
i=1[FilRiRi

]du are isomorphic complete lattice ordered monoids.

Recall that rings R and S with identity are said to be (right) Morita equivalent if the categories

of unital right R-modules and unital right S-modules are equivalent in the usual category theoretic

sense. That is to say, there exist additive covariant functors F : Mod-R → Mod-S and

G : Mod-S → Mod-R such that FG ∼= 1Mod-S and GF ∼= 1Mod-R. We remind the reader that

Morita equivalence is a left-right symmetric notion.

Theorem 1.27 below asserts that if R and S are Morita equivalent rings, then the structures FilRR

and FilSS are isomorphic. We shall provide a very brief explanation of this fact. A detailed proof

may be found in [33, Theorem 2, p. 102].

If F and G are functors between the categories Mod-R and Mod-S defined as above, then it is easily

shown that they preserve and reflect monomorphisms, epimorphisms and direct sums. From this it

may be deduced that the mapping from the set HPRR of all hereditary pretorsion classes in Mod-R

to the set HPSS, given by T 7→ F [T ], is a bijection. Since there is a bijective correspondence

between the sets HPRR and FilRR for all rings R (see Theorem 1.6), the aforementioned bijection

between HPRR and HPSS induces a bijection between FilRR and FilSS, and this latter bijection

can be shown to preserve both the lattice and monoid operations.
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We thus have the following.

Theorem 1.27 If R and S are Morita equivalent rings, then [FilRR]
du and [FilSS]

du are isomorphic

complete lattice ordered monoids.

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2

Two-sided residuation in the lattice

ordered monoid of topologizing filters

2.1 Characterizations of two-sided residuation in FilRR for

an arbitrary ring

In this chapter we exhibit a number of equivalent conditions which characterize, in module theoretic

terms, when the right residual of a pair of elements in [FilRR]
du exists.

A submodule U of M ∈ Mod-R is called a hereditary pretorsion submodule of M if U = T (M) for

some hereditary pretorsion class T of Mod-R, or equivalently, U = TF(M) for some F ∈ FilRR.

Theorem 2.1 Let F and G be right topologizing filters on a ring R with associated hereditary

pretorsion classes TF and TG. Then the following statements are equivalent:

(a) The right residual G−1F of F by G exists;

(b) There exists a subgenerator M of TF such that the family of all TG-dense hereditary pretorsion

submodules of M has a smallest member;
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(c) For every subgenerator M of TF, the family of all TG-dense hereditary pretorsion submodules of

M has a smallest member.

Proof. (c)⇒(b) is obvious.

(b)⇒(a) Let M be a subgenertaor for TF satisfying (b). Denote by MG the smallest TG-dense

hereditary pretorsion submodule ofM . Put H = FSHC{MG}. We shall demonstrate that H = G−1F.

Consider the short exact sequence

0 → MG →M →M/MG → 0.

Since MG ∈ TH and M/MG ∈ TG (because MG is TG-dense in M), M ∈ TG:H. Since M is a

subgenerator for TF, TF ⊆ TG:H, whence F ⊆ G : H.

Now suppose F ⊆ G : H′ with H′ ∈ FilRR. Since M ∈ TF ⊆ TG:H′ , we must have M/TH′(M) =

TG:H′(M)/TH′(M) = TG(M/TH′(M)) ∈ TG, so TH′(M) is a TG-dense submodule of M ; TH′(M) is

also, quite obviously, a hereditary pretorsion submodule of M. It follows from the minimality of MG

that MG ⊆ TH′(M), so MG ∈ TH′. Since H is the smallest member of FilRR whose associated

hereditary pretorsion class contains MG, we must have H ⊆ H′. We conclude that H = G−1F.

(a)⇒(c) Let M be an arbitrary subgenerator for TF. Put H = G−1F. Note that G : H ⊇ F.

Consider the short exact sequence

0 → TH(M) → M →M/TH(M) → 0.

SinceG : H ⊇ F,M ∈ TF ⊆ TG:H. It follows thatM/TH(M) = TG:H(M)/TH(M) = TG(M/TH(M)) ∈

TG, so TH(M) is a TG-dense hereditary pretorsion submodule of M .

Let N be an arbitrary TG-dense hereditary pretorsion submodule ofM . Then N = TH′(M) for some

H′ ∈ FilRR.

Consider the short exact sequence

0 → N →M →M/N → 0.
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Since N ∈ TH′ and M/N ∈ TG, we must have M ∈ TG:H′ , whence TF = SHC{M} ⊆ TG:H′. This

implies F ⊆ G : H′, so H = G−1F ⊆ H′ and TH(M) ⊆ TH′(M) = N . We conclude that TH(M) is

the smallest TG-dense hereditary pretorsion submodule of M .

If N ≤ M ∈ Mod-R, standard theory tells us that the canonical epimorphism πN : M → M/N

induces a lattice isomorphism πN [−] from the set of all submodules of M containing N to the set

of all submodules of M/N , and that the mapping π−1
N [−] constitutes an inverse isomorphism.

If G ∈ FilRR, then the maps πN [−] and π
−1
N [−] restrict to mutually inverse bijections between the

sets LG[N,M ] of all TG-dense submodules of M containing N , and LG[M/N ] comprising all TG-

dense submodules ofM/N . To see this, observe that if N ⊆ L ≤M , then (M/N)/(L/N) ∼=M/L,

thus L will be TG-dense in M if and only if L/N = πN [L] is TG-dense in M/N .

We make use of these rudimentary observations, and adopt the notation used, in the next result.

Corollary 2.2 Let F and G be right topologizing filters on a ring R. Suppose F is compact so that

F = FSHC{R/A} for some A ≤ RR. The following statements are equivalent:

(a) The right residual G−1F of F by G exists;

(b) The family of all TG-dense hereditary pretorsion submodule of R/A has a smallest member;

(c) The family {B ∈ G : B ⊇ A and B/A is a hereditary pretorsion submodules of R/A} has a

smallest member.

Proof. Inasmuch as R/A is a subgenerator for TF, (a)⇒(b) follows from Theorem 2.1 ((a)⇒(c)),

whilst (b)⇒(a) is a consequence of Theorem 2.1 ((b)⇒(a)).

(b)⇔(c) Put X = {B ∈ G : B ⊇ A and B/A is a hereditary pretorsion submodule of R/A} and let

Y be the family of all TG-dense hereditary pretorsion submodules of R/A. Let πA : RR → R/A be

the canonical epimorphism. Observe that B ∈ X ⊆ LG[A,RR] if and only if πA[B] ∈ Y ⊆ LG[R/A].

This means that the map πA[−] restricts to a lattice isomorphism from X to Y . The set X will

thus possesses a smallest element, that is Statement (c) will hold, precisely if the set Y possess a

smallest element, that is, Statement (b) holds.
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Theorem 2.3 Let F, G be right topologizing filters on a ring R with associated hereditary pretorsion

classes TF and TG. The following statements are equivalent:

(a) The right residual G−1F′ of F′ by G exists for all F′ ∈ FilRR satisfying F′ ⊆ F;

(b) For each M ∈ TF the family of all TG-dense hereditary pretorsion submodules of M has a

smallest member;

(c) For each finitely generated M ∈ TF the family of all TG-dense hereditary pretorsion submodules

of M has a smallest member;

(d) For each cyclic module M ∈ TF the family of all TG-dense hereditary pretorsion submodules of

M has a smallest member;

(e) For each A ∈ F the family of all TG-dense hereditary pretorsion submodules of R/A has a

smallest member;

(f) For each A ∈ F the family {B ∈ G : B ⊇ A and B/A is a hereditary pretorsion submodule of

R/A} has a smallest member.

Proof. (a)⇒(b) TakeM ∈ TF and put F′ = FSHC{M}. SinceM is a subgenerator for TF′ it follows

from Theorem 2.1 ((a)⇒(c)), that the family of all TG-dense hereditary pretorsion submodules of

M has a smallest member, as required.

(b)⇒(c)⇒(d) is obvious.

(d)⇔(e) is an immediate consequence of the fact that for a right R-module M , M ∈ TF is cyclic if

and only if M ∼= R/A for some A ∈ F (see (1.6)).

(e)⇔(f) Take A ∈ F. Put X = {B ∈ G : B ⊇ A and B/A is a hereditary pretorsion submodule

of R/A} and let Y be the family of all TG-dense hereditary pretorsion submodules of R/A. In the

proof of Corollary 2.2 it was noted that X will have a smallest member precisely when Y does. The

equivalence of (e) and (f) follows.

(e)⇒(a) Note first that if (e) holds in respect of F,G ∈ FilRR, then it will hold for F′,G where F′

is any member of FilRR satisfying F′ ⊆ F. It thus suffices to verify that (e) implies the existence

of the right residual G−1F only.
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To this end, note that (e) and Corollary 2.2 ((b)⇒(a)) imply that the right residual G−1FSHC{R/A}

exists for all A ∈ F. Since

F =
∨

A∈F FSHC{R/A}

by (1.9), it follows from Proposition 1.16 that the right residual G−1F exists, as required.

If C is a nonempty class of right R-modules, we shall call a right R-module P projective with respect

to C or C-projective if, given any epimorphism π : A→ B with A,B ∈ C and any R-homomorphism

α : P → B, there exists an R-homomorphism β : P → A which makes the diagram below with

exact row commute.

A
π // B // 0

P

β

[[

α

OO

Recall that a submodule N of a right R-module M is said to be fully invariant in M if f [N ] ⊆ N

for every f ∈ End R(M).

The following lemma is needed for Theorem 2.5.

Lemma 2.4 Suppose right R-module P is projective with respect to the class SHC{P}. If U and

V are fully invariant submodules of P , then

U ⊆ V iff SHC{P/U} ⊇ SHC{P/V }.

Proof. Suppose U ⊆ V . Then P/V is an epimorphic image of P/U from which it follows that

P/V ∈ SHC{P/U}, whence SHC{P/U} ⊇ SHC{P/V }.

To establish the converse suppose SHC{P/U} ⊇ SHC{P/V } so that P/V ∈ SHC{P/U}. This

entails the existence of an index set ∆, a right R-module M , an epimorphism ψ : (P/U)(∆) → M ,
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and a monomorphism κ : P/V → M . Let π : P (∆) → (P/U)(∆) and ϕ : P → P/V denote the

canonical projections.

(P/U)(∆) ψ // //M

P (∆)

π

OOOO

Pα
oo ϕ // // P/V

?�

κ

OO

Since P is SHC{P}-projective and P (∆) and M both belong to SHC{P}, the homomorphism κϕ :

P → M can be factored through the epimorphism ψπ : P (∆) → M yielding an R-homomorphism

α : P → P (∆) making the above diagram commute.

Since κ is monic, ker κϕ = kerϕ = V . Since U is fully invariant in P , α[U ] ⊆ U (∆) = ker π, so

U ⊆ kerψπα = ker κϕ = V . Thus U ⊆ V , as required.

Theorem 2.5 Let R be a ring for which [FilRR]
du is two-sided residuated. If P is any finitely

generated right R-module that is projective with respect to SHC{P}, then P satisfies the DCC on

hereditary pretorsion submodules.

Proof. Suppose P ∈ Mod-R is finitely generated and SHC{P}-projective. Let

U1 ⊇ U2 ⊇ · · ·

be a descending chain of hereditary pretorsion submodules of P . Inasmuch as each Ui is fully

invariant in P , we obtain, in light of the previous lemma, the following ascending chain of hereditary

pretorsion classes in Mod-R.

SHC{P/U1} ⊆ SHC{P/U2} ⊆ · · ·

It is easily seen that T =
⋃

n∈N SHC{P/Un} is the join of the family {SHC{P/Un} : n ∈ N} in the

lattice HPRR of all hereditary pretorsion classes in Mod-R. Let G = FT be the right topologizing
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filter on R associated with T . Since [FilRR]
du is two-sided residuated, it follows from Theorem

2.3 ((a)⇒(b) or (a)⇒(c)), that P has a smallest T -dense hereditary pretorsion submodule V , say.

Since P/V ∈ T , we must have SHC{P/V } ⊆ T =
⋃

n∈N SHC{P/Un}. Since P and hence P/V is

a finitely generated right R-module, SHC{P/V } is a compact member of HPRR. It follows that

SHC{P/V } ⊆ SHC{P/Un} for some n ∈ N. Inasmuch as V is a fully invariant submodule of P ,

the previous lemma entails V ⊇ Un. Since each Ui is a T -dense hereditary pretorsion submodule

of P , it follows from the minimality of V that V ⊆ Ui for all i ∈ N. This implies Ui = Un for all

i ≥ n, so the descending chain U1 ⊇ U2 ⊇ · · · terminates.

The following corollary will be needed in the proof of Theorem 3.13.

Corollary 2.6 If R is a ring for which [FilRR]
du is two-sided residuated, then (R/I)R satisfies the

DCC on hereditary pretorsion submodules for all proper ideals I of R.

Proof. This is an immediate consequence of the previous theorem and the routine fact that for any

ring R and proper ideal I of R, (R/I)R is projective with respect to SHC{(R/I)R}.

Remark 2.7 We do not know if the converse of the above corollary holds. Nor do we know,

with reference to Theorem 2.5, whether [FilRR]
du is forced to be two-sided residuated if every

finitely generated and SHC{P}-projective P satisfies the DCC on hereditary pretorsion submodules.

Certainly, as results in Chapter 3 show, if the ring R is commutative, then the two conditions of

Corollary 2.6 are equivalent (see Theorem 3.13 ((b)⇔(h))).

2.2 Right fully bounded noetherian rings

In Remark 1.15 we noted that if R is a commutative noetherian ring, then FilRR is commutative and

from this can be drawn the easy inference that [FilRR]
du is two-sided residuated, for [FilRR]

du is

left residuated for all rings R. Inasmuch as right fully bounded noetherian rings (these will be defined

below) are a natural generalization of commutative noetherian rings and share many properties with
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their progenitor, it is natural to ask what properties relating to FilRR carry across from commutative

noetherian rings to fully bounded noetherian rings. Commutativity of FilRR is too much to expect,

however, for even in right artinain rings, and such rings are right fully bounded noetherian, ideal

multiplication need not commute and since IdR embeds in FilRR (Theorem 1.14) this would imply

the failure of commutativity in the larger FilRR. A more insightful question is to ask whether the

weaker two-sided residuation property holds for [FilRR]
du in all right fully bounded noetherian rings

R. The main theorem (Theorem 2.12) in this section answers this question in the affirmative.

Recall that a ring R is said to be right bounded if every essential right ideal of R contains a nonzero

two-sided ideals that is essential in RR. If R/P is right bounded for all prime ideals P of R, we say

that R is right fully bounded.

Following the standard notational convention, we shall henceforth use the acronym right ”FBN” to

abbreviate ”right fully bounded noetherian”.

Finitely annihilated modules have a torsion theoretic characterization that we shall need to exploit:

M is finitely annihilated if and only if

SHC{M} = SHC{R/I} = Tη(I),where I =M−10. (2.1)

Following Gabriel [14] we say that a ring R satisfies Condition H (on the right) if every finitely

generated right R-module is finitely annihilated.

Proposition 2.8 [5, Proposition 7.6, p. 101 and Proposition 7.8, p. 102] The following statements

are equivalent for a right noetherian ring R:

(a) R is right fully bounded;

(b) R satisfies Condition H on the right.

We shall call a submodule U of a right R-module M an annihilator submodule if

U = {x ∈M : xI = 0} for some I ∈ IdR.
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Lemma 2.9 Let R be a right FBN ring. If L is any finitely generated right R-module, then every

pretorsion submodule of L is an annihilator submodule.

Proof. Let L ∈ Mod-R be finitely generated. Suppose U = TF(L) is a hereditary pretorsion

submodule of L where F ∈ FilRR. Since R is right noetherian and L is finitely generated, so is U .

By Proposition 2.8, R satisfies Condition H, so U is finitely annihilated. Put I = U−10. Since U

is finitely annihilated, it follows from (2.1) that U is a subgenerator for Tη(I). Since U is in TF, we

must have Tη(I) ⊆ TF, whence Tη(I)(L) = {x ∈ L : xI = 0} ⊆ TF(L) = U .

On the other hand, Tη(I) = {x ∈ L : xI = 0} ⊇ U , so U = TF(L) = {x ∈ L : xI = 0} is an

annihilator submodule of L.

Lemma 2.10 If a ring R satisfies the ACC on ideals, then every right R-module satisfies the DCC

on annihilator submodules.

Proof. Let M ∈ Mod-R. Denote by L(M) the lattice of all submodules of M . It is easily checked

that the maps α : IdR → L(M) and β : L(M) → IdR defined by α(I) = {x ∈ M : xI = 0}

(I ∈ IdR) and β(N) = N−10 (N ∈ L(M)) constitute an (antitone) Galois connection between

the lattices IdR and L(M). It follows that if IdR satisfies the ACC, then the image of α, which

comprises the set of all annihilator submodules of M , satisfies the DCC.

The two previous lemmas now yield:

Corollary 2.11 Let R be right FBN ring. Then every finitely generated right R-module satisfies

the DCC on hereditary pretorsion submodules.

Theorem 2.12 If R is a right FBN ring, then [FilRR]
du is two-sided residuated.

Proof. Let R be a right FBN ring. Take F,G ∈ FilRR and let M ∈ TF be finitely generated.

By the previous corollary, the family of all TG-dense hereditary pretorsion submodules of M has

a minimal member. Since the families of TG-dense, and hereditary pretorsion, submodules of an
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arbitrary module are both closed under finite intersections, such a minimal member must be a

(unique) smallest member. It follows from Theorem 2.3 ((c)⇒(a)) that the right residual G−1F′ of

F′ by G exists for all F′ ∈ FilRR with F′ ⊆ F. In particular, the right residual G−1F of F by G

exists. Since [FilRR]
du is known to be left residuated for all rings R (Theorem 1.9), we conclude

that [[FilRR]
du is two-sided residuated.

Remark 2.13 A weakness of Theorem 2.12, is the absence of an example showing that no part of

the FBN hypothesis may be dispensed with for the theorem’s conclusion to remain valid. Certainly

there are non-noetherian rings R for which [FilRR]
du fails to be right residuated, as results in the

next show. However, we have no example of a right noetherian ring R for which [FilRR]
du is left

but not right residuated.
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Chapter 3

Topologizing filters in commutative rings

3.1 Two-sided residuation in FilRR

It is evident from the explanation provided in Remark 1.15 that if R is any ring for which (the

monoid operation : on) FilRR is commutative, then [FilRR]
du will be two-sided residuated. The

first main result of this section (Theorem 3.7) shows that the converse is true whenever the ring R

is commutative.

If R is a commutative ring, we may omit the subscript R in FilRR and write FilR in its place.

Let F ∈ FilRR. We shall call a subset X of F a cofinal set for F if given any A ∈ F there exists

B ∈ X such that A ⊇ B.

We shall make frequent use of the following result from [34, Lemma 3 and Remark 2, p. 90].

Lemma 3.1 Let R be an arbitrary ring and F,G ∈ FilRR. If {Iγ : γ ∈ Γ} is a cofinal set of

finitely generated right ideals for F and {Jθ : θ ∈ Θ} is a cofinal set of (two-sided) ideals for G,

then {IγJθ : γ ∈ Γ, θ ∈ Θ} is a cofinal set for F : G.

Lemma 3.2 Let R be a commutative ring.
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(a) If F,G ∈ FilRR both possess cofinal sets comprising finitely generated ideals, then F : G =

G : F.

(b) If I is a finitely generated ideal of R, then η(I) is central in FilRR, that is to say,

η(I) : F = F : η(I) for all F ∈ FilRR.

Proof. (a) Suppose {Iγ : γ ∈ Γ} and {Jθ : θ ∈ Θ} are cofinal sets of finitely generated ideals for

F and G, respectively. By Lemma 3.1, {IγJθ : γ ∈ Γ, θ ∈ Θ} is a cofinal set for F : G.

Interchanging the roles of F and G in Lemma 3.1, we infer that {JθIγ : γ ∈ Γ, θ ∈ Θ} is a cofinal

set for G : F. Since R is commutative, IγJθ = JθIγ for all γ ∈ Γ, θ ∈ Θ from which it follows that

F : G = G : F.

(b) Since {I} is a cofinal set for η(I) comprising a (single) finitely generated ideal, it follows from

Lemma 3.1 that {IK : K ∈ F} is a cofinal set for η(I) : F.

Now consider F : η(I). By definition, K ∈ F : η(I) if and only if there exists B ∈ F such that

B ⊇ K and B/K ∈ Tη(I), whence BI ⊆ K. Thus {BI : B ∈ F} is cofinal for F : η(I). Since R

is commutative, we have IK = KI for all K ∈ F, so the sets {IK : K ∈ F} and {BI : B ∈ F}

coincide. It follows that η(I) : F = F : η(I).

Proposition 3.3 Let R be a commutative ring for which [FilR]du is two-sided residuated. If I is

an arbitrary ideal of R, then η(I) is central in FilR.

Proof. Let I be an arbitrary ideal of R. Since the map η takes arbitrary (possibly infinite) joins in

IdR to meets in FilR (see Theorem 1.14), it follows that

η(I) = η

(
∑

a∈I

aR

)

=
⋂

a∈I

η(aR).

For each F ∈ FilR we have
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η(I) : F =

(
⋂

a∈I

η(aR)

)

: F

=
⋂

a∈I

(η(aR) : F) [since [FilR]du is left residuated, the monoid operation dis-

tributes over meets on the left - see dual of Proposition 1.2]

=
⋂

a∈I

(F : η(aR)) [since aR is a finitely generated ideal, η(aR) is central in

FilR by Lemma 3.2(b)]

= F :

(
⋂

a∈I

η(aR)

)

[by hypothesis, [FilR]du is right residuated, so the monoid

operation distributes over meets on the right - see Propo-

sition 1.2]

= F : η(I).

We conclude that η(I) is central in FilR.

Let P be a poset. Recall that a subset X of P is said to be downward [resp. upward] directed if,

given any pair of elements x1, x2 in X , there exists y ∈ X such that x1 ≥ y and x2 ≥ y [resp.

x1 ≤ y and x2 ≤ y].

We omit the proof of the following routine result.

Proposition 3.4 If X is any upward directed family in FilRR, then
⋃
X ∈ FilRR.

The following is [17, Proposition 3.17(1)∗, p. 39].

Proposition 3.5 If F ∈ FilRR and X is any upward directed family in FilRR, then

(
⋃
X) : F =

⋃

G∈X G : F.

Proposition 3.6 Let R be a commutative ring for which [FilR]du is two-sided residuated.

If F ∈ FilR and X is any upward directed family in FilR, then F : (
⋃
X) =

⋃

G∈X F : G.

∗This result assumes that the set X is a chain. However, the arguments used transfer mutatis mutandis to the

more general case where X is upward directed.
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Proof. Note first that since
⋃
X ⊇ G ∀G ∈ X , we have F : (

⋃
X) ⊇

⋃

G∈X F : G. Observe

that the family {η(I) : I ∈ F} is upward directed. This is because F is a downward directed family

in IdR, and the map η : IdR → FilR is order reversing . It follows from Proposition 3.5 that
⋃

I∈F η(I) ∈ FilR, whence F =
⋃

I∈F η(I). Then

F:
(⋃

X
)

=

[
⋃

I∈F

η(I)

]

:
(⋃

X
)

[because F =
⋃

I∈F η(I)]

=
⋃

I∈F

[

η(I) :
(⋃

X
)]

[by Proposition 3.5]

=
⋃

I∈F

[(⋃

X
)

: η(I)
]

[because η(I) is central by Proposition 3.3]

=
⋃

I∈F

[
⋃

G∈X

G : η(I)

]

[by Proposition 3.5]

=
⋃

G∈X

[
⋃

I∈F

G : η(I)

]

=
⋃

G∈X

[
⋃

I∈F

η(I) : G

]

[because η(I) is central]

=
⋃

G∈X

[F : G] [by Proposition 3.5].

Theorem 3.7 Let R be a commutative ring for which [FilR]du is two-sided residuated. Then FilR

is commutative, that is to say, F : G = G : F ∀F,G ∈ FilR.

Proof. Take F,G ∈ FilRR and write G =
⋃

I∈G η(I). Since G is a downward directed family in

IdR, {η(I) : I ∈ G} is an upward directed family in FilRR. Then
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F : G = F :

[
⋃

I∈G

η(I)

]

=
⋃

I∈G

[F : η(I)] [by Proposition 3.6]

=
⋃

I∈G

[η(I) : F] [by Proposition 3.3]

=

[
⋃

I∈G

η(I)

]

: F [by Proposition 3.5]

= G : F, as required.

Recall that a member F of FilRR is compact if and only if F = FSHC{R/K} for some cyclic right

R-module K, and that by (1.9) every F ∈ FilRR can be expressed as F =
∨

K∈F FSHC{R/K}. Recall

also that a submodule N of M ∈ Mod-R is called a hereditary pretorsion submodule of M , if

N = TF(M) for some F ∈ FilRR.

Proposition 3.8 Let M ∈ Mod-R. Suppose the family X = {N ≤ M : N = TF(M) for some

compact F ∈ FilRR} satisfies the maximum condition, that is to say, every nonempty subset of X

contains a maximal member, or equivalently, every ascending chain of objects in X , stabilizes. Then

every hereditary pretorsion submodule of M is a member of X .

Proof. Take F ∈ FilRR and write F =
∨

K∈F FSHC{R/K}. The map K 7→ SHC{R/K} clearly

constitutes an order reversing map from F to the set of hereditary pretorsion classes in Mod-R.

Since F is downward directed, the family {SHC{R/K} : K ∈ F} is upward directed. Thus

{FSHC{R/K} : K ∈ F} is an upward directed family in FilRR. It follows from Proposition 3.4, that

F =
⋃

K∈F FSHC{R/K}. Hence TF(M) =
⋃

K∈F TFSHC{R/K}
(M). Observe that since each FSHC{R/K}

is compact, Y = {TFSHC{R/K}
(M) : K ∈ F} is an upward directed subfamily of X . The hypothesis

implies that Y must have a largest member. Thus TF(M) = TFSHC{R/K}
(M) for some K ∈ F,

whence TF(M) ∈ X .
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Note that ifR is commutative, then for every idealK ofR, FSHC{R/K} = η(K), whence TFSHC{R/K}
(M) =

Tη(K)(M) = {x ∈M : xK = 0}.

We have thus proved the following:

Proposition 3.9 Let R be a commutative ring. The following statements are equivalent for a

submodule N of right R-module M :

(a) N = TF(M) for some compact F ∈ FilRR;

(b) N is an annihilator submodule of M , that is to say, N = {x ∈M : xK = 0} for some ideal K

of R.

The preceding two propositions yield the following result:

Proposition 3.10 Let R be a commutative ring and M a right R-module. If the family of all

annihilator submodules of M satisfies the maximum condition, that is to say, M satisfies the ACC

on annihilator submodules, then every hereditary pretorsion submodule of M is an annihilator sub-

module.

The following theorem provides several non-torsion theoretic characterizations of the two-sided resid-

uation property for a commutative ring.

Theorem 3.11 The following statements are equivalent for a commutative ring R:

(a) FilR is commutative;

(b) [FilR]du is two-sided residuated;

(c) The ring R/I satisfies the ACC on annihilator ideals for all proper ideals I of R;

(d) The ring R/I satisfies the DCC on annihilator ideals for all proper ideals I of R;

(e) (R/I)R satisfies the ACC on annihilator submodules for all proper ideals I of R;

(f) (R/I)R satisfies the ACC on hereditary pretorsion submodules for all proper ideals I of R;
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(g) (R/I)R satisfies the DCC on annihilator submodules for all proper ideals I of R;

(h) (R/I)R satisfies the DCC on hereditary pretorsion submodules for all proper ideals I of R.

Proof. (a)⇔(b) is Theorem 3.7.

(c)⇔(d) For any commutative ring R, the map K 7→ K−10 = {r ∈ R : Kr = 0} constitutes a

Galois connection on the set of annihilator ideals of R. Such a ring R will thus satisfy the ACC on

annihilator ideals if and only if it satisfies the DCC on annihilator ideals. The equivalence of (c) and

(d) follows.

(c)⇔(e) and (d)⇔(g) These equivalences are a consequence of the routine fact that the annihilator

ideals of R/I, considered as a ring, coincide with the annihilator submodules of (R/I)R.

(f)⇒(e) and (h)⇒(g) These equivalences are a consequence of the fact that for a module over

an arbitrary ring, every annihilator submodule is a hereditary pretorsion submodule. Indeed, the

annihilator submodules are precisely the hereditary pretorsion submodules with respect to jansian

topologizing filters.

(e)⇒(f) This follows from Proposition 3.10, taking M = (R/I)R and noting that the hereditary

pretorsion and annihilator submodules of M coincide under the assumption of (e).

(g)⇒(h) Since the chain of implications, (g)⇒(d)⇒(c)⇒(e) has already been established, we may

assume that Statement (e) holds. As explained in the proof of (e)⇒(f) above, the hereditary

pretorsion and annihilator submodules of (R/I)R coincide. The equivalence of (g) and (h) follows.

Thus far we have established the equivalences (a)⇔(b) and (c)⇔(d)⇔(e)⇔(f)⇔(g)⇔(h). To

complete the proof, we shall show that (b)⇒(h) and (h)⇒(b).

(b)⇒(h) is Corollary 2.6.

(h)⇒(b) Let F and G be arbitrary members of FilR and M an arbitrary nonzero cyclic right R-

module belonging to TF. (If no such M exists, then F = {R}, in which case G−1F = F and there

is nothing further to prove.) Since R is commutative, M ∼= (R/I)R for some proper ideal I of R.

Noting that the family of all TG-dense hereditary pretorsion submodules of M is closed under finite
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intersections, Statement (h) implies that the aforementioned family must have a smallest member.

It follows from Theorem 2.3 ((d)⇒(a)) that the right residual G−1F exists. Since F and G were

chosen arbitrarily, we may conclude that [FilR]du is right and thus two-sided residuated.

Remark 3.12 It is known [34, Proposition 31, p. 101] that if R is a commutative domain for which

FilR is commutative, then R satisfies the ACC on principal ideals. It is still unknown whether such

a ring R satisfies the ACC on all ideals, that is to say, is noetherian.

3.2 Semiartinian rings

A theorem of Shores [29, Theorem 6.1, p. 194] asserts that a commutative semiartinian ring R

(to be defined below) for which both soc (RR) and soc (RR/soc (RR)) are finitely generated as

right R-modules, is necessarily artinian. Shores also constructs, for each cardinal ℵ, a commutative

local semiartinian ring R with Jacobson radical J(R) such that soc (RR) has dimension 1 and

soc (RR/soc (RR)) dimension ℵ over the field R/J(R). This example shows that, in isolation,

the socle of a commutative semiartinian ring exercises no constraint on the ‘length’ of the ring. In

contrast, the main result of this section, Theorem 3.17, shows that ifR is a commutative semiartinian

ring for which FilR is commutative, then soc (RR) will be finitely generated only if R is artinian.

Given a right R-module M , the (ascending) Loewy series of M is an ordinal-indexed family

{socα(M)}α of submodules of M defined recursively as follows:

soc0(M) = 0,

socα+1(M)/socα(M) = soc (M/socα(M)), for ordinals α ≥ 0,

socβ(M) =
⋃

α<β soc
α(M), for limit ordinals β.

Observe that soc1(M) coincides with soc(M).

We call M semiartinian, or a Loewy module if socα(M) = M for some ordinal α. In this situ-

ation, the smallest such ordinal α is referred to as the Loewy length of M . Note that if M is
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semiartinian and finitely generated then α is not a limit ordinal. It is known that M ∈ Mod-R

is semiartinian if and only if every nonzero factor module of M has a nonzero socle [31, p. 182].

It follows from this equivalence that every artinian module is semiartinian. We call a ring R right

semiartinian if the module RR is semiartinian. For each ordinal α the module socα+1(M)/socα(M)

is called the αth Loewy factor of M . The number of summands in a direct sum decomposition of

socα+1(M)/socα(M) into simples is an invariant of M , denoted dα(M), and called the αth Loewy

invariant of M (see [29] for a more detailed exposition).

If S is any nonempty class of simple right R-modules and M ∈ Mod-R, we define socS(M) to be

the sum of all simple submodules of M that are isomorphic to some member of S. If S = {S} is a

singleton, we write socS(M) in place of soc{S}(M). The (ascending) S-Loewy series {socαS(M)}α

of M is defined in a manner entirely analogous to {socα(M)}α.

If R is any ring and K a right ideal of R, then standard theory tells us that R will be right artinian

if KR and (R/K)R are both artinian. This result can be strengthened if additional conditions are

placed on the ring R, as the following theorem shows.

Theorem 3.13 [29, Theorem 6.1, p. 194] The following conditions are equivalent for a commuta-

tive semiartinian ring R:

(a) R is artinian;

(b) R has an ideal K such that soc2(KR) and (R/K)R are artinian;

(c) The Loewy invariants d0 and d1 are finite, i.e., soc(RR) and soc2 (RR)/soc (RR) =

soc(RR/soc (RR)) are both finitely generated right R-modules.

Let R be a commutative ring such that FilR is commutative and let P be a maximal ideal of R.

Define S = {K ≤ RR : K ⊆ P and K is finitely generated }. S is clearly an upward directed

family of ideals of R. It follows that the family {K−10 : K ∈ S} is a downward directed family of

annihilator ideals of R. Since FilRR is commutative RR satisfies the DCC on annihilator submodules

by Theorem 3.13. Thus the family {K−10 : K ∈ S} contains a minimal member; since the family

46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



is also downward directed, it must have a smallest member, say (K∗)−10 where K∗ ∈ S. We claim

that p−10 ⊇ (K∗)−10 for all p ∈ P . Suppose not, that is p−10 6⊇ (K∗)−10 for some p ∈ P . Observe

that (pR +K∗)−10 = p−10 ∩ (K∗)−10 ⊂ (K∗)−10. Since K∗ is finitely generated, so is pR +K∗,

hence pR+K∗ ∈ S. The minimality of (K∗)−10 is thus contradicted and this establishes our claim.

Since p−10 ⊇ (K∗)−10 for all p ∈ P , we must have P−10 ⊇ (K∗)−10. The reverse containment

also holds since K∗ ⊆ P , whence equality P−10 = (K∗)−10.

Write K∗ =
∑n

i=1 tiR with {ti : 1 ≤ i ≤ n} ⊆ P . Then (K∗)−10 =
⋂n
i=1 t

−1
i 0. We have a

canonical embedding of right R-modules R/P−10 = R/(K∗)−10 = R/
⋂n
i=1 t

−1
i 0 →֒

∏n
i=1 tiR.

If Q is any ideal of R containing P−10, the above embedding restricts to an embedding

Q/P−10 →֒
n∏

i=1

tiQ.

Taking Q = (P 2)−10, we obtain (P 2)−10/P−10 →֒
∏n

i=1 ti(P
2)−10. For each i ∈ {1, 2, · · · , n} we

have ti(P
2)−10 ⊆ P (P 2)−10 ⊆ P−10. We thus have an embedding

(P 2)−10/P−10 →֒
n∏

i=1

P−10. (3.1)

For any integer n ≥ 0, if S = (R/P )R we know that socnS (RR) = {x ∈ R : xP n = 0} = (P n)−10.

In particular, socS (RR) = P−10 and soc2S (RR) = (P 2)−10. Equation (3.1) can thus be written as

follows:

soc2S (RR)/socS (RR) →֒
n∏

i=1

socS (RR). (3.2)

We claim that for each n ∈ N,

socn+1
S (RR)/soc

n
S (RR) →֒

m∏

i=1

socS (RR) (3.3)

for some m ∈ N. This can be proved using an inductive argument on n. The case n = 1 is (3.2).

To establish the inductive step, suppose

sock+1
S (RR)/soc

k
S (RR) →֒

l∏

i=1

socS (RR) (3.4)
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for some k, l ∈ N. Consider sock+2
S (RR)/soc

k+1
S (RR). If sock+2

S (RR) = sock+1
S (RR), there is

clearly nothing to prove, so suppose sock+2
S (RR) ⊃ sock+1

S (RR). Observe that P ⊇ sock+1
S (RR),

for otherwise R = P + sock+1
S (RR), whence

P k+1 = P k+2 + sock+1
S (RR)P

k+1

= P k+2 + 0

= P k+2,

so sock+1
S (RR) = (P k+1)−10 = (P k+2)−10 = sock+2

S (RR), a contradiction.

Putting R̄ = R/sockS (RR), we see that R̄ is a nontrivial factor ring of R and that Fil R̄ is commu-

tative by Theorem 1.25. Note also that S is canonically a simple right R̄-module, since S = R/P

and sockS (RR) ⊆ sock+1
S (RR) ⊆ P .

Applying (3.2) to the ring R̄ and simple right R̄-module S, we see that

soc2S (R̄R̄)/socS (R̄R̄) →֒
l′∏

i=1

socS (R̄R̄), (3.5)

for some l′ ∈ N. Now

soc2S (R̄R̄)/socS (R̄R̄) ∼= [soc2S (RR/soc
k
S (RR))]/[socS (RR/soc

k
S (RR))]

= [sock+2
S (RR)/soc

k
S (RR)]/[soc

k+1
S (RR)/soc

k
S (RR)]

∼= sock+2
S (RR)/soc

k+1
S (RR) (3.6)

as right R-modules. Similarly,

socS (R̄R̄) ∼= sock+1
S (RR)/soc

k
S (RR), (3.7)
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as right R-modules. Then

sock+2
S (RR)/soc

k+1
S (RR) ∼= soc2S (R̄R̄)/socS (R̄R̄) [by 3.6]

→֒
l′∏

i=1

socS (R̄R̄) [by 3.5]

∼=

l′∏

i=1

[sock+1
S (RR)/soc

k
S (RR)] [by 3.7]

→֒
l′∏

i=1

(
l∏

i=1

socS (RR)

)

[by 3.4]

∼=

ll′∏

i=1

socS (RR).

The inductive step is thus established.

The following result is an immediate consequence of the above analysis.

Proposition 3.14 Let R be a commutative ring for which FilR is commutative and let S be a

simple right R-module. Then the following conditions are equivalent:

(a) socS (RR) is finitely generated;

(b) socnS (RR)/soc
n−1
S (RR) is finitely generated for all n ∈ N;

(c) socnS (RR) is finitely generated for all n ∈ N.

Proposition 3.15 [29, Theorem 4.1, p. 189] Let R be a commutative ring and M a semiartinian

right R-module that contains only finitely many nonisomorphic simple submodules, that is to say,

soc (M) = socS (M) for some finite nonempty family S of nonisomorphic simple right R-modules.

Then for each ordinal α:

(a) socα (M) =
⊕

S∈S soc
α
S(M);

(b) dα(M) =
∑

S∈S d
α
S(M).

Theorem 3.16 The following conditions are equivalent for a commutative semiartinian ring R:
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(a) R is artinian;

(b) soc (RR) and soc2 (RR) are both finitely generated;

(c) FilR is commutative and soc (RR) is finitely generated.

Proof. (a)⇔(b) is Theorem 3.14.

(a)⇒(c) Suppose that (a) holds. The first part of (c) follows from [34, Proposition 2, p. 89]. The

second part follows from the fact that every artinian ring is noetherian and hence soc (RR) is finitely

generated.

(c)⇒(b) Suppose that (c) holds. Let S be a representative family of simple submodules of RR.

Since soc (RR) is finitely generated by hypothesis and socS (RR) ≤ soc (RR) for each S ∈ S, it

follows that each socS (RR) is finitely generated. Hence by Proposition 3.14(c), soc2S (RR) is finitely

generated for each S ∈ S. Since soc2 (RR) =
⊕

S∈S soc
2
S(RR) by Proposition 3.15(a) with S finite,

it follows that soc2 (RR) is finitely generated since it is a finite direct sum of finitely generated

modules. The proof of the theorem is thus completed.

3.3 A class of examples of commutative semiartinian rings

We construct a family of examples which serves to delineate earlier theory.

For the remainder of this section F will denote a field, V and U F -spaces, and µ : V × V → U a

symmetric F -bilinear map. For each pair of elements (v, v′) ∈ V × V , we shall denote µ(v, v′) by

v · v′.

We endow the set F × V × U with an F -algebra structure by taking addition to be natural and

defining multiplication by:

(a1, v1, u1) · (a2, v2, u2)
def
= (a1a2, a1v2 + a2v1, a1u2 + v1 · v2 + a2u1).

The above multiplication operation in F × V × U may be represented in terms of suitable 3 × 3

matrices thus:
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






a1 v1 u1

0 a1 v1

0 0 a1















a2 v2 u2

0 a2 v2

0 0 a2








=








a1a2 a1v2 + a2v1 a1u2 + v1.v2 + a2u1

0 a1a2 a1v2 + a2v1

0 0 a1a2







.

It is easily checked that the resulting structure, which we shall denote by 〈F, V, U, µ〉 is indeed

an F -algebra. Notice that the symmetry of the F -bilinear map µ guarantees that 〈F, V, U, µ〉 is

commutative.

If X and Y are F -subspaces of V and U , respectively, we define F -subspace X−1Y of V as follows:

X−1Y
def
= {v ∈ V : X · v ⊆ Y }

= {v ∈ V : x · v ∈ Y ∀x ∈ X}

We shall call V −10 = {v ∈ V : V · v = 0} the degenerate part of V .

Proposition 3.17 If V ′ is any F -subspace complement of V −10 in V , then 〈F, V, U, µ〉 and

〈F, V ′, V −10× U, µ′〉 are isomorphic F -algebras where µ′ is the restriction of µ to V ′.

Proof. It is routine matter to check that the map from 〈F, V, U, µ〉 to 〈F, V ′, V −10× U, µ′〉 given

by

(a, v′ + w, u) 7→ (a, v′, (w, u))

where a ∈ F, v′ ∈ V, w ∈ V −10 and u ∈ U , is the required isomorphism.

It follows from the above result that no generality is lost when considering the ring 〈F, V, U, µ〉, if

it is assumed that the degenerate part of V is trivial, that is to say, V −10 = 0. We shall henceforth

make this assumption.

The following result establishes a number of properties of 〈F, V, U, µ〉. We omit the routine proof

details.

Proposition 3.18 Let R = 〈F, V, U, µ〉. Then:
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(a) R is a commutative local F -algebra with unique maximal proper ideal J(R) = 〈0, V, U〉 =

{(0, v, u) : v ∈ V, u ∈ U}.

(b) soc (RR) = 〈0, 0, U〉 = {(0, 0, u) : u ∈ U} and soc2 (RR) = 〈0, V, U〉 = J(R) whence

soc3 (RR) = RR.

Thus RR is semiartinian with Loewy length 3.

(c) If I is any ideal of R satisfying soc (RR) ⊆ I ⊆ J(R), then I has the form I = 〈0,W, U〉 for

some F -subspace W of V .

(d) If I ′ is any ideal of R satisfying I ′ ⊆ soc (RR), then I
′ has the form I ′ = 〈0, 0, Y 〉 for some

F -subspace Y of U .

We now describe all ideals of R = 〈F, V, U, µ〉 that have the form K−1I = {r ∈ R : Kr ⊆ I} for

some I,K ∈ IdR. Our interest in such ideals stems from the fact that by Theorem 3.11 ((a)⇔(c))

a commutative ring R will be such that FilR is commutative if and only if for each proper ideal I

of R, the family of ideals {K−1I : K ∈ IdR} satisfies the ACC.

Lemma 3.19 The following assertions are equivalent for a proper nonzero ideal A ofR = 〈F, V, U, µ〉:

(a) A = K−1I for some I,K ∈ IdR;

(b) A = 〈0, X−1Y, U〉 for some F -subspaces Xand Y of V and U respectively.

Proof. (b)⇒(a) Suppose A satisfies (b). Put K = 〈0, X, U〉 and I = 〈0, 0, Y 〉. It is easily shown

that I and K are ideals of R and that K−1I = 〈0, X−1Y, U〉 = A.

(a)⇒(b) Suppose A = K−1I with I,K ∈ IdR. Note that A and K are proper ideals of R. The

latter ideal is proper because A is nonzero by hypothesis. Since R is local by Proposition 3.18(a),

A,K ⊆ J(R). Putting K ′ = K + soc (RR) we have
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[K ′]−1I = K−1I ∩ soc (RR)
−1I

⊇ K−1I ∩ soc (RR)
−10

= K−1I ∩ J(R)

= K−1I [because A = K−1I ⊆J (R)].

The reverse containment [K ′]−1I ⊆ K−1I clearly also holds since K ′ ⊇ K whence equality

[K ′]−1I = K−1I. It follows from the above that no generality is lost if we suppose that soc (RR) ⊆

K ⊆ J(R).

It follows from the above, and Proposition 3.18(c), that

K = 〈0, X, U〉 (3.8)

for some F -subspace X of V . Putting I ′ = I ∩ soc (RR) we have

K−1I ′ = K−1I ∩K−1soc (RR)

⊇ K−1I ∩ J(R)−1soc (RR) [because K ⊆ J(R)]

⊇ K−1I ∩ J(R) [because J(R)2 ⊆ soc (RR) by Proposition 3.18(b)]

= K−1I [because A = K−1I ⊆J (R)].

The reverse containmentK−1I ′ ⊆ K−1I clearly also holds since I ′ ⊆ I, whence equalityK−1I ′ = K−1I.

It follows from the above that no generality is lost if we suppose that I ⊆ soc (RR).

It follows from the above, and Proposition 3.18(d), that

I = 〈0, 0, Y 〉 (3.9)

for some F -subspace Y of U .

It is a simple exercise to show that if K and I are defined as in (3.8) and (3.9), then A = K−1I =

〈0, X−1Y, U〉, as required.

The following theorem follows immediately from the previous lemma and Theorem 3.11 ((a)⇔(c)).

53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Theorem 3.20 Let R = 〈F, V, U, µ〉. The following statements are equivalent:

(a) FilR is commutative;

(b) For each proper ideal I of R, the family {K−1I : K ∈ IdR} of ideals of R, satisfies the ACC;

(c) For each F -subspace Y of U , the family {X−1Y : X is an F -subspace of V } of F -subspaces

of V , satisfies the ACC.

The following corollary is also immediate.

Corollary 3.21 Let R = 〈F, V, U, µ〉. If dim FV is finite, then FilR is commutative.

We draw the reader’s attention to the fact that in the above corollary, there is no finiteness require-

ment on soc (RR) = 〈0, 0, U〉 in order that FilR be commutative. The consequence is a plentiful

supply of commutative non-artinian semiartinian rings R for which FilR is commutative.

In the next example we show that the sufficient condition of the previous corollary, is not a necessary

condition for FilR to be commutative.

Example 3.22 We show that choices for V, U and µ can be made such that dim FV and dim FU

are both infinite, but the ring R = 〈F, V, U, µ〉 is such that FilR is commutative.

Let T be the commutative F -algebra defined by

T
def
=

{


a w

0 a



 : a ∈ F,w ∈ W

}

where W is any infinite dimensional F -space. Take V = U = T with symmetric F -bilinear map

µ : T × T → T the usual multiplication map on T . Observe that dim FT is infinite because

dim FW is infinite. Let R = 〈F, V, U, µ〉 = 〈F, T, T, µ〉. We use Theorem 3.20, to show that FilR

is commutative. To this end, let Y be an F -subspace of T . It is easily seen that Y may be written

as
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Y =

{


ax sx

0 ax



 : x ∈ F

}

+




0 Z

0 0





for some fixed




a s

0 a



 ∈ T and F -subspace Z of W .

A routine calculation shows that if X is any F -subspace of T , then X−1Y has one of the following

four forms:

X−1Y =







0;

T ;





0 W

0 0




 = J(T );

{





bx tx

0 bx




 : x ∈ F

}

+






0 Z

0 0




 for some fixed






b t

0 b




 ∈ T.

It is clear from the above that the family {X−1Y : X is an F -subspace of T} admits no strictly

ascending chain of F -subspaces, so by Theorem 3.20 ((a)⇔(c)), FilR is commutative.

Example 3.23 In this example we choose V , U and µ such that dim FV is infinite, dim FU = 1,

but the ring R = 〈F, V, U, µ〉 is such that FilR is not commutative.

Let V = F (Ω), Ω an infinite index set, and U = F . The map µ : V × V → F , we take to be the

usual inner product given by

µ({aλ}λ∈Ω, {bλ}λ∈Ω)
def
=
∑

λ∈Ω aλbλ.

Take Y = 0 and, for every nonempty subset Ω′ of Ω, let XΩ′
def
= F (Ω′) interpreted in the natural

manner as an F -subspace of F (Ω). Observe that X−1
Ω′ 0 = XΩ\Ω′ for every proper nonempty subset

Ω′ of Ω. Note further that any strictly descending chain Ω1 ⊃ Ω2 ⊃ · · · of subsets of Ω induces
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a strictly ascending chain X−1
Ω1

0 ⊂ X−1
Ω2

0 ⊂ · · · of F -subspaces of V . It follows that the family

{X−10 : X is an F -subspace of V } does not satisfy the ACC, whence FilR is not commutative by

Theorem 3.20 ((a)⇔(c)).

3.4 Localization in commutative rings

Basic terminology and concepts are taken from texts [2, 16, 7, 27]. Throughout this section R is a

commutative ring with identity.

A nonempty subset S of a ring R is said to be a multiplicative subset of R if 1 ∈ S and S is closed

under multiplication, i.e., s1s2 ∈ S whenever s1, s2 ∈ S.

Consider R×S and define a relation ∼ on R×S by (r, s) ∼ (r′, s′) if and only if there exists u ∈ S

such that u(rs′ − r′s) = 0. It is easy to check that ∼ is an equivalence relation on R × S. We

denote the equivalence class of a pair (r, s) ∈ R× S by r
s
. The set

RS−1 def
= { r

s
: r ∈ R, s ∈ S}

of all equivalence classes on R × S is called the ring of fractions of R with respect to S. It is

routine to check that 〈RS−1,+, ·〉 is a commutative ring with identity with respect to addition and

multiplication defined by:

r

s
+
r′

s′
def
=

rs′ + r′s

ss′
and

r

s
·
r′

s′
def
=

rr′

ss′
.

The ring RS−1 comes with a natural ring homomorphism ϕS : R → RS−1 given by r 7→ r
1
(r ∈ R).

The following properties are easily established:

(a) ϕS(t) is a unit of RS−1 for all t ∈ S;

(b) Every a ∈ RS−1 is expressible in the form a = ϕS(r)ϕS(t)
−1 for some r ∈ R and some t ∈ S;

(c) The kernel of ϕS is the set {r ∈ R : rs = 0 for some s ∈ S}.
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Theorem 3.24 [7, Theorem 1, p. 395] Let S be a multiplicative subset of a commutative ring R.

Let A be a commutative ring and f : R → A a ring homomorphism such that f(t) is a unit of A

for all t ∈ S. Then there exists a unique ring homomorphism g : RS−1 → A such that g ◦ ϕS = f ,

i.e., the diagram below commutes.

R
f //

ϕS

��

A

RS−1

g

<<②②②②②②②②

It is easily checked that for each ideal I of R,

IS−1 def
=
{a

s
∈ RS−1 : a ∈ I, s ∈ S

}

is an ideal of RS−1. We thus have a map from IdR to IdRS−1 given by I 7→ IS−1.

We include a proof of the following theorem in the absence of a suitable reference.

Theorem 3.25 Let S be a multiplicative subset of a commutative ring R. Then:

(a) The map from IdR to IdRS−1 given by I 7→ IS−1 is onto, that is to say, every ideal of RS−1

has the form IS−1 for some I ∈ IdR.

(b) (
⋂n
i=1 Ii)S

−1 =
⋂n
i=1 IiS

−1 for every finite family {Ii : 1 ≤ i ≤ n} of ideals of R.

(c) (
∑

I)S−1 =
∑

I∈I IS
−1 for every nonempty family I of ideals of R.

(d) (I1I2 . . . In)S
−1 = (I1S

−1)(I2S
−1) · · · (InS

−1) for every finite family {Ii : 1 ≤ i ≤ n} of ideals

of R.

Proof. (a) Take K ∈ IdRS−1. It is easily seen that ϕ−1
S [K] = {r ∈ R : ϕS(r) ∈ K} is an ideal of

R. We shall show that (ϕ−1
S [K])S−1 = K. To this end, take

a

t
∈ K. Then ϕS(a) =

a

1
=
a

t
·
t

1
∈ K

since K is an ideal of RS−1 and
a

t
∈ K. Thus a ∈ ϕ−1

S [K], whence
a

t
∈ (ϕ−1

S [K])S−1. This shows

that K(ϕ−1
S [K])S−1.
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To establish the reverse containment take
a

t
∈ (ϕ−1

S [K])S−1 where a ∈ ϕ−1
S [K], t ∈ S. Inasmuch

as a ∈ ϕ−1
S [K] we can see that

a

1
= ϕS(a) ∈ K. Since K is an ideal of IdRS−1 with

a

1
∈ K, we

must have
a

t
=
a

1
·
1

t
∈ K. This shows that (ϕ−1

S [K])S−1 ⊆ K and hence (ϕ−1
S [K])S−1 = K.

(b) Suppose that x ∈ (
⋂n
i=1 Ii)S

−1. Then x =
a

s
for some a ∈

⋂n
i=1 Ii and s ∈ S, whence x =

a

s
∈

IiS
−1 for all i ∈ {1, 2, . . . , n}, so x ∈

⋂n
i=1 IiS

−1. This shows that (
⋂n
i=1 Ii)S

−1 ⊆
⋂n
i=1 IiS

−1.

On the other hand, if y ∈
⋂n
i=1 IiS

−1, then

y =
a1
s1

=
a2
s2

= · · · =
an
sn

for some ai ∈ Ii and si ∈ S for i ∈ {1, 2, . . . , n}. Take i ∈ {1, 2, . . . , n}. Since
a1
s1

=
ai
si

there

exists ui ∈ S such that ui(a1si − ais1) = 0, whence uia1si = uiais1. Since Ii is an ideal of

R and ai ∈ I, we must have uia1si = uiais1 ∈ Ii. Since R is commutative, the above entails

a = (u1u2 . . . un)a1(s1s2 . . . sn) ∈
⋂n
i=1 Ii, and so

y =
a1
s1

=
(u1u2 . . . un)a1(s1s2 . . . sn)

(u1u2 . . . un)s1(s1s2 . . . sn)
=
a

t

with t = (u1u2 . . . un)s1(s1s2 . . . sn) ∈ S. It follows that y ∈ (
⋂n
i=1 Ii)S

−1. Thus
⋂n
i=1 IiS

−1 ⊆

(
⋂n
i=1 Ii)S

−1 and hence (
⋂n
i=1 Ii)S

−1 =
⋂n
i=1 IiS

−1.

(c) If x ∈ (
∑

I)S−1, then there exist a finite subfamily {Ii : 1 ≤ i ≤ n} of I, elements ai ∈ Ii for

each i ∈ {1, 2, . . . , n}, and s ∈ S, such that

x =

∑n
i=1 ai
s

=
n∑

i=1

ai
s
.

This implies

x =

n∑

i=1

ai
s

∈
n∑

i=1

(IiS
−1) ⊆

∑

I∈I

IS−1,

and so, (
∑

I)S−1 ⊆
∑

I∈I IS
−1. To establish the reverse containment, take y ∈

∑

I∈I IS
−1,

then there exist a finite subfamily {Ii : 1 ≤ i ≤ n} of I, elements ai ∈ Ii and si ∈ S for each

i ∈ {1, 2, . . . , n}, such that

y =

n∑

i=1

ai
si
.

58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Define b1 = a1s2s3 . . . sn, bi = ais1s2 · · · si−1si+1sn for i ∈ {2, 3, . . . , n−1} and bn = ans1s2 . . . sn−1.

Putting t = s1s2 . . . sn, we see that bi ∈ Ii and
ai
si

=
bi
t
for each i ∈ {1, 2, . . . , n}. Hence

y =

n∑

i=1

ai
si

=

n∑

i=1

bi
t
=

∑n
i=1 bi
t

∈

(
n∑

i=1

Ii

)

S−1 ⊆
(∑

I
)

S−1.

This implies
∑

I∈I IS
−1 ⊆ (

∑
I)S−1, whence equality.

(d) Suppose x ∈ (I1I2 · · · In)S
−1. Then x =

a

s
for some a ∈ I1I2 · · · In and s ∈ S. Write

a =
∑k

i=1 a1ia2i · · · ani with a1i ∈ I1, a2i ∈ I2, · · · , ani ∈ In. Then

x =
k∑

i=1

a1ia2i · · ·ani
s

=
k∑

i=1

a1i
1

·
a2i
1

· · ·
ani
s

∈ I1S
−1I2S

−1 . . . InS
−1.

Thus (I1I2 . . . In)S
−1 ⊆ (I1S

−1)(I2S
−1) · · · (InS

−1).

On the other hand, if y ∈ I1S
−1I2S

−1 . . . InS
−1, then

y =
a1
s1

·
a2
s2

· · ·
an
sn

=
a1a2 . . . an
s1s2 . . . sn

for some ai ∈ Ii, si ∈ S for i ∈ {1, 2, . . . , n}.

This implies y =
a1a2 . . . an
s1s2 . . . sn

∈ (I1I2 . . . In)S
−1 since a1a2 . . . an ∈ I1I2 . . . In and s1s2 . . . sn ∈ S.

Thus (I1I2 . . . In)S
−1 ⊇ (I1S

−1)(I2S
−1) · · · (InS

−1) and hence equality.

Remark 3.26 The previous theorem tells us that if S is a multiplicative subset of a commutative

ring R, then the mapping from IdR to IdRS−1 given by I 7→ IS−1, is an onto homomorphism of

lattice ordered monoids.

Let P be a prime ideal of a commutative ring R. It is easily seen that S = R \ P is multiplicative

subset of R. We shall write RP in place of RS−1 and IP in place of IS−1 for each I ∈ IdR.

Inasmuch as IS−1 = RS−1 whenever I ∩S 6= ∅, it is easily seen that RP is a local ring with unique

maximal ideal PP . We call RP the localization of R at P .
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Proposition 3.27 [2, Corollary 3.13, p. 42] Let S be a multiplicative subset of a commutative ring

R. Then the map P 7→ PS−1 is a bijection from the set of prime ideals P of R disjoint from S to

the set of prime ideals of RS−1.

Let S be a multiplicative subset of a commutative ring R and let M be a right R-module. We

define a relation ∼ on M × S by (m.s) ∼ (m′, s′) if and only if there exists u ∈ S such that

(ms′ −m′s)u = 0. It is easy to check that ∼ is an equivalence relation on M × S. We denote the

equivalence class of a pair (m,s) by
m

s
. The set

MS−1 def
= {

m

s
: m ∈M, s ∈ S}

is called the module of fractions ofM with respect to S; it has the structure of a right RS−1-module

with addition and scaler multiplication given by

m

s
+
m′

s′
def
=

ms′ +m′s

ss′
and

m

s
·
r

t
=
mr

st
.

There is a canonical R-homomorphism ϕMS :M →MS−1 given by ϕMS (m) =
m

1
for m ∈M . Note

that KerϕMS = {m ∈M : ms = 0 for some s ∈ S}.

Proposition 3.28 [2, Corollary 3.4, p. 39] Let S be a multiplicative subset of a commutative ring

R; N , P submodules of a right R-module M . Then the following statements hold.

(a) (N + P )S−1 = NS−1 + PS−1.

(b) (N ∩ P )S−1 = NS−1 ∩ PS−1.

(c) (M/N)S−1 ∼=MS−1/NS−1.

3.5 Topologizing filters on the ring of fractions RS−1

Throughout this section R will denote a commutative ring with multiplicative subset S.

The mapping from IdR to IdRS−1 given by I 7→ IS−1 induces in turn a map from FilR to
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FilRS−1. For each F ∈ FilR define

ϕ̂S(F)
def
= {AS−1 : A ∈ F}. (3.10)

Proposition 3.29 Let S be a multiplicative subset of a commutative ring R. Then the following

statements hold.

(a) ϕ̂S(F) is a topologizing filter on RS−1 for all F ∈ FilR, so that ϕ̂S is a mapping from FilR to

FilRS−1.

(b) The mapping ϕ̂S : FilR→ FilRS−1 is onto.

(c) ϕ̂S preserves infinite meets.

(d) ϕ̂S preserves finite joins.

Proof. (a) Suppose F ∈ FilR, K ∈ ϕ̂S(F) and J is an ideal of RS−1 such that J ⊇ K. We

need to show that J ∈ ϕ̂S(F). Note that K ∈ ϕ̂S(F) implies that K = AS−1 for some A ∈ F by

(3.10). Since J is an ideal of RS−1 it has the form J = BS−1 for some ideal B of R by Theorem

3.25(a). Since J ⊇ K we have BS−1 ⊇ AS−1. Note that (A+ B)S−1 = AS−1 +BS−1 = BS−1

by Proposition 3.28(a). Since A + B ⊇ A ∈ F, it follows that A + B ∈ F, so J = BS−1 =

(A+B)S−1 ∈ ϕ̂S(F), whence Condition (F1) is satisfied.

Take K,H ∈ ϕ̂S(F). Then K = AS−1 and H = BS−1 for some A,B ∈ F. By Theorem 3.25(b),

K ∩H = AS−1 ∩BS−1 = (A ∩ B)S−1 ∈ ϕ̂S(F) since A ∩ B ∈ F. Hence (F2) is also satisfied.

To show that (F3) holds, take K ∈ ϕ̂S(F) and x ∈ RS−1. Then K = AS−1 for some A ∈ F

and x =
r

s
for some r ∈ R and s ∈ S. Take

q

t
∈ (r−1A)S−1 with q ∈ r−1A and t ∈ S.

Note that x
(q

t

)

=
rq

st
∈ AS−1 = K because rq ∈ A and st ∈ S. Thus

q

t
∈ x−1K and so

(r−1A)S−1 ⊆ x−1K. Since r−1A ∈ F, we have (r−1A)S−1 ∈ ϕ̂S(F). We have already shown that

ϕ̂S(F) satisfies (F1), from which we infer that x−1K ∈ ϕ̂S(F). This shows that Condition (F3) is

also satisfied. Thus ϕ̂S(F) is a topologizing filter on RS−1.
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(b) Recall that the natural ring homomorphism ϕS : R → RS−1 induces a map ϕ∗
S : FilRS−1 →

FilR given by ϕ∗
S(G)

def
= {I ≤ RR : I ⊇ ϕ−1

S [L] for some L ∈ G}. To show that ϕ̂S is onto, it

suffices to show that (ϕ̂S ◦ ϕ
∗
S)(G) = G for all G ∈ FilRS−1. Take G ∈ FilRS−1. Then

K ∈ (ϕ̂S ◦ ϕ
∗
S)(G) = ϕ̂S(ϕ

∗
S(G))

⇒ K = AS−1 for some A ∈ ϕ∗
S(G) [by (3.10)]

⇒ K ⊇ (ϕ−1
S [L])S−1 for some L ∈ G [by the definition of ϕ∗

S]

⇒ K ⊇ L for some L ∈ G.

The last of the above implications is a consequence of the identity

(ϕ−1
S [L])S−1 = L ∀L ∈ IdRS−1. (3.11)

To see this, note that if L ∈ IdRS−1, then

a

s
∈ L ⇔ ϕS(a) =

a

1
∈ L [because a

1
= a

s
· s
1
with s

1
a unit of RS−1]

⇔ a ∈ ϕ−1
S [L]

⇔
a

s
∈ (ϕ−1

S [L])S−1.

Since K ⊇ L ∈ G, we must have K ∈ G. Thus (ϕ̂S ◦ ϕ
∗
S)(G) ⊆ G.

On the other hand, if K ∈ G then, by definition of ϕ∗
S, we must have ϕ−1

S [K] ∈ ϕ∗
S(G). It follows

from (3.10) that (ϕ−1
S [K])S−1 ∈ ϕ̂S(ϕ

∗
S(G)) and since (ϕ−1

S [K])S−1 = K [by (3.11)] it follows

that K ∈ ϕ̂S(ϕ
∗
S(G)) and so, G ⊆ ϕ̂S(ϕ

∗
S(G)). Thus (ϕ̂S ◦ ϕ

∗
S)(G) = G, as required.

(c) We need to show that ϕ̂S preserves infinite meets, i.e., ϕ̂S(
⋂

δ∈∆ Fδ) =
⋂

δ∈∆ ϕ̂S(Fδ) for every

family {Fδ : δ ∈ ∆} ⊆ FilR. Clearly
⋂

δ∈∆ Fδ ⊆ Fδ for each δ ∈ ∆. Since ϕ̂S is order preserving,

we have ϕ̂S(
⋂

δ∈∆ Fδ) ⊆ ϕ̂S(Fδ) for each δ ∈ ∆. It follows that ϕ̂S(
⋂

δ∈∆ Fδ) ⊆
⋂

δ∈∆ ϕ̂S(Fδ).

To show the reverse containment, assume K = AS−1 ∈
⋂

δ∈∆ ϕ̂S(Fδ) with A ∈ IdR. Then

K ∈ ϕ̂S(Fδ) for each δ ∈ ∆, and so there exist Bδ ∈ Fδ for each δ ∈ ∆ such that AS−1 = BδS
−1.
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Putting B =
∑

δ∈∆Bδ, we have B ∈
⋂

δ∈∆ Fδ and BS
−1 = (

∑

δ∈∆Bδ)S
−1 =

∑

δ∈∆(BδS
−1) [by

Theorem 3.25(c)] which equals
∑

δ∈∆AS
−1 = AS−1. Thus K = AS−1 ∈ ϕ̂S(

⋂

δ∈∆ Fδ) [by (3.10)].

Hence ϕ̂S preserves arbitrary (infinite) meets.

(d) Let {Fi : 1 ≤ i ≤ n} be a finite subfamily of FilR. Clearly
∨n
i=1 Fi ⊇ Fi for each i ∈

{1, 2, . . . , n} and this implies ϕ̂S(
∨n
i=1 Fi) ⊇ ϕ̂S(Fi) for each i ∈ {1, 2, . . . , n}. It follows that

ϕ̂S(
∨n
i=1 Fi) ⊇

∨n
i=1 ϕ̂S(Fi).

On the other hand, take K ∈ ϕ̂S(
∨n
i=1 Fi). Then K = AS−1 for some A ∈

∨n
i=1 Fi. It follows

from our description of the join (see (1.2)) that there exist ideals Li ∈ Fi for each i ∈ {1, 2, . . . , n}

such that A ⊇
⋂n
i=1 Li. Then

K = AS−1

⊇ (
⋂n
i=1 Li)S

−1 [because A ⊇
⋂n
i=1 Li]

=
⋂n
i=1 LiS

−1 [by Theorem 3.25(b)]

∈
∨n
i=1 ϕ̂S(Fi) [because LiS

−1 ∈ ϕ̂S(Fi) for each i ∈ {1, 2, . . . , n}].

Thus K ∈
∨n
i=1 ϕ̂S(Fi) and so ϕ̂S(

∨n
i=1 Fi) ⊆

∨n
i=1 ϕ̂S(Fi), whence equality ϕ̂S(

∨n
i=1 Fi) =

∨n
i=1 ϕ̂S(Fi).

Let S be a multiplicative subset of a commutative ring R. We define

FS
def
= {A ≤ R : A ∩ S 6= ∅}. (3.12)

The following result is a special case of [31, Proposition VI.6.1, p. 148]. A more detailed proof may

be found in [33, Proposition III.2.4, p. 132].

Proposition 3.30 Let S be a multiplicative subset of a commutative ring R. Then FS is a (right)

Gabriel topology on R.

The following result shows that the Gabriel topology FS satisfies a weak form of centrality in FilR.
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Proposition 3.31 Let S be a multiplicative subset of a commutative ring R. Then

FS : G ⊆ G : FS

for all G ∈ FilR.

Proof. Note that FS has cofinal set {tR : t ∈ S} comprising principal (and thus finitely generated)

ideals of R. This is because an ideal A of R is such that A∩S 6= ∅ precisely if t ∈ A for some t ∈ S,

which is to say, A ⊇ tR for some t ∈ S. It follows from Lemma 3.1, that {tK : t ∈ S,K ∈ G} is a

cofinal set for FS : G. Take t ∈ S and K ∈ G and consider the short exact sequence

0 → K/tK → R/tK → R/K → 0.

Observe that the right R-module K/tK is annihilated by t and is thus TFS
-torsion. Since R/K

is TG-torsion, it follows that R/tK is TG:FS
-torsion, whence tK ∈ G : FS. Since the family

{tK : t ∈ S,K ∈ G} is cofinal in FS : G, we conclude that FS : G ⊆ G : FS.

Corollary 3.32 Let S be a multiplicative subset of a commutative ring R. Then

FS : G : FS = G : FS

for all G ∈ FilR.

Proof. Take G ∈ FilR. Certainly FS : G : FS ⊇ G : FS. By the previous proposition,

FS : G : FS ⊆ (G : FS) : FS

= G : (FS : FS)

= G : FS [because FS is a Gabrieal topology, so FS : FS = FS].

Thus FS : G : FS = G : FS.

Lemma 3.33 Let S be a multiplicative subset of a commutative ring R. The following statements

are equivalent for a right R-module M :
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(a) MS−1 = 0;

(b) M is a TFS
-torsion right R-module.

Proof. (a)⇒(b) Suppose (a) holds. If x ∈ M , then
x

1
=

0

1
. This implies that there exists t ∈ S

such that xt = 0, so x−10 ∩ S 6= ∅. Thus x−10 ∈ FS for all x ∈M , hence M is TFS
-torsion.

(b)⇒(a) Take
x

s
∈ MS−1. Since M is TFS

-torsion, x−10 ∈ FS, so x
−10 ∩ S 6= ∅. It follows that

xt = 0 for some t ∈ S which implies that
x

s
= 0. We conclude that MS−1 = 0.

We require the following generalisation of the previous lemma.

Lemma 3.34 Let S be a multiplicative subset of a commutative ring R. Let G ∈ FilR. The

following statements are equivalent for a right R-module M :

(a) MS−1 is a Tϕ̂S(G)-torsion right RS−1-module;

(b) M is a TG:FS
-torsion right R-module.

Proof. (a)⇒(b) Take x ∈M . Since
x

1
∈MS−1 and MS−1 is Tϕ̂S(G)-torsion,

(x

1

)

I = 0 for some

I ∈ ϕ̂S(G). Put I = AS−1 with A ∈ G. Then
(x

1

)

I = (xA)S−1 = 0. By the previous lemma,

xA must be a TFS
-torsion R-submodule of M . Consider the short exact sequence

0 → xA→ xR → xR/xA→ 0. (3.13)

Note that xR/xA is TG-torsion since it is an epimorphic image of R/A which is TG-torsion because

A ∈ G. It follows from (3.13) that xR is TG:FS
-torsion, so x ∈ TG:FS

(M). We conclude that M is

TG:FS
-torsion.

(b)⇒(a) Take
x

s
∈MS−1 with x ∈M . Put x−10 = A ∈ IdR. It is easily seen that

(x

s

)

(AS−1) =

0. Since M is TG:FS
-torsion, A ∈ G : FS, so there exists H ∈ G such that H ⊇ A and H/A is

FS-torsion. Consider the short exact sequence

0 → H/A→ R/A→ R/H → 0
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in Mod-R. This induces the following short exact sequence in Mod-RS−1:

0 → (H/A)S−1 → (R/A)S−1 → (R/H)S−1 → 0.

Since H/A is FS-torsion, it follows from the previous lemma that (H/A)S−1 = 0 which im-

plies (R/A)S−1 and (R/H)S−1 are isomorphic right RS−1-modules. By Proposition 3.28(c),

(R/H)S−1 ∼= RS−1/HS−1 and (R/A)S−1 ∼= RS−1/AS−1. Since H ∈ G, HS−1 ∈ ϕ̂S(G)

from which we infer that RS−1/HS−1 ∼= RS−1/AS−1 is Tϕ̂S(G)-torsion, whence AS
−1 ∈ ϕ̂S(G).

Since
(x

s

)

(AS−1) = 0,
x

s
∈ Tϕ̂S(G)(MS−1). Thus MS−1 is Tϕ̂S(G)-torsion.

Proposition 3.35 Let S be a multiplicative subset of a commutative ring R. Then:

(a) ϕ̂S(F : FS) = ϕ̂S(FS : F) = ϕ̂S(F) for all F ∈ FilR.

(b) ϕ̂S(F : G) = ϕ̂S(F) : ϕ̂S(G) for all F,G ∈ FilR.

Proof. We first show that ϕ̂S(F : G) ⊆ ϕ̂S(F) : ϕ̂S(G) for all F,G ∈ FilR. Take K ∈ ϕ̂S(F : G).

Then K = AS−1 for some A ∈ F : G. There exists therefore H ∈ F containing A such that H/A

is TG-torsion. Since H ∈ F, HS−1 ∈ ϕ̂S(F) and so RS−1/HS−1 ∼= (R/H)S−1 [by Proposition

3.28(c)] is Tϕ̂S(F)-torsion. Note also that HS−1/AS−1 ∼= (H/A)S−1 is Tϕ̂S(G)-torsion since H/A is

TG-torsion. Now consider the short exact sequence

0 → HS−1/AS−1 → RS−1/AS−1 → RS−1/HS−1 → 0.

Since HS−1/AS−1 is Tϕ̂S(G)-torsion and RS−1/HS−1 is Tϕ̂S(F)-torsion, it follows that K = AS−1 ∈

ϕ̂S(F) : ϕ̂S(G), and hence ϕ̂S(F : G) ⊆ ϕ̂S(F) : ϕ̂S(G).

(a) Take F ∈ FilR. Certainly ϕ̂S(F : FS) ⊇ ϕ̂S(F) since F : FS ⊇ F. To establish the reverse

containment, we observe that by the above argument, ϕ̂S(F : FS) ⊆ ϕ̂S(F) : ϕ̂S(FS). But

ϕ̂S(FS) = {RS−1}, for if I ∈ ϕ̂S(FS), then I = AS−1 for some A ∈ FS and this means A∩S 6= ∅,

whence I = AS−1 = RS−1. Since {RS−1} is the identity of FilRS−1 with respect to the monoid

operation, we obtain ϕ̂S(F : FS) ⊆ ϕ̂S(F) : {RS
−1} = ϕ̂S(F). Thus ϕ̂S(F : FS) ⊆ ϕ̂S(F), whence

equality ϕ̂S(F : FS) = ϕ̂S(F).
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The proof that ϕ̂S(FS : F) = ϕ̂S(F) is similar to the above.

(b) Take F,G ∈ FilR. It follows from the argument preceding the proof of (a) above that ϕ̂S(F :

G) ⊆ ϕ̂S(F) : ϕ̂S(G). It remains to establish the reverse containment. To this end, take K =

AS−1 ∈ ϕ̂S(F) : ϕ̂S(G) with A ∈ IdR. There exists therefore an ideal H ∈ ϕ̂S(F) containing

K such that H/K is Tϕ̂S(G)-torsion. Since H ∈ ϕ̂S(F), H = BS−1 for some B ∈ F. Noting

that (A + B)S−1 = AS−1 +BS−1 = BS−1 by Proposition 3.28(a), and that A + B ∈ F because

A + B ⊇ B ∈ F, we see that no generality is lost if we replace B with A + B and assume that

A ⊆ B. The short exact sequence

0 → B/A→ R/A→ R/B → 0 (3.14)

in Mod-R induces the short exact sequence

0 → (B/A)S−1 → (R/A)S−1 → (R/B)S−1 → 0

in Mod-RS−1. Inasmuch as H/K = BS−1/AS−1 ∼= (B/A)S−1 [by Proposition 3.28(c)] is Tϕ̂S(G)-

torsion, we infer from Lemma 3.34 that B/A is TG:FS
-torsion. It follows from (3.14) that R/A

is TF:G:FS
-torsion, hence A ∈ F : G : FS and K = AS−1 ∈ ϕ̂S(F : G : FS). This shows that

ϕ̂S(F) : ϕ̂S(G) ⊆ ϕ̂S(F : G : FS). The required containment follows noting that ϕ̂S(F : G : FS) =

ϕ̂S(F : G) by (a).

Propositions 3.29 and 3.35(b) now yield the following theorem.

Theorem 3.36 Let S be a multiplicative subset of a commutative ring R. Then ϕ̂S : [FilR]du →

[FilRS−1]du is an onto homomorphism of lattice ordered monoids.

Theorem 3.37 (Preservation Theorem) Let S be a multiplicative subset of a commutative ring R.

Then the following statements hold.

(a) If FilR is commutative then so is FilRS−1.

(b) If every member of FilR is idempotent then the same is true of every member of FilRS−1.
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Proof. Since the mapping ϕ̂S : FilR → FilRS−1 is onto [by Proposition 3.29(b)] and preserves

the monoid operation [by Proposition 3.35(b)] any property of FilR that is characterizable in terms

of an identity involving only the monoid operation, is passed from FilR to FilRS−1. The result

follows noting that (a) and (b) are such properties.

Remark 3.38 The value of Statement (b) of the previous theorem is tempered by the known fact

(see [39, Theorem 2.1, p. 547]) that a commutative ring R for which every member of FilR is

idempotent, is necessarily semisimple and thus a finite product of fields.

If S is a multiplicative subset of a commutative ring R, then Theorem 3.36 tells us that the mapping

ϕ̂S : [FilR]du → [FilRS−1]du is a homomorphism of lattice ordered monoids. Such a map ϕ̂S gives

rise to a canonical congruence relation ≡ϕ̂S
on FilR defined by:

F ≡ϕ̂S
G ⇔ ϕ̂S(F) = ϕ̂S(G). (3.15)

Proposition 3.39 Let S be a multiplicative subset of a commutative ring R. The following state-

ments are equivalent for F,G ∈ FilR:

(a) F ≡ϕ̂S
G, i.e., ϕ̂S(F) = ϕ̂S(G);

(b) F : FS = G : FS.

Proof. (a)⇒(b) Take M ∈ Mod-R. Then:

M is TF:FS
-torsion ⇔ MS−1 is Tϕ̂S(F)-torsion [by Lemma 3.34]

⇔ MS−1 is Tϕ̂S(G)-torsion [by (a)]

⇔ M is TG:FS
-torsion [by Lemma 3.34].

The above shows that the classes of TF:FS
-torsion and TG:FS

-torsion modules coincide from which

we deduce that F : FS = G : FS.

(b)⇒(a) is an immediate consequence of Proposition 3.35(a).
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Lemma 3.40 Let R be an arbitrary ring, F,G ∈ FilRR and H1,H2 ∈ FilRR with H1 ⊆ H2 and

H2 is idempotent (that is to say, H2 : H2 = H2, i.e., H2 is a right Gabriel topology on R). If

F : H1 ⊆ G : H1, then F : H2 ⊆ G : H2.

Proof. F ⊆ F : H1 ⊆ G : H1 ⊆ G : H2 [because H1 ⊆ H2]. Therefore, F : H2 ⊆ (G : H2) : H2 =

G : (H2 : H2) = G : H2 [because H2 is idempotent].

Theorem 3.41 Let {Sδ : δ ∈ ∆} be a family of multiplicative subsets of a commutative ring R.

Then the following statements are equivalent for F,G ∈ FilR:

(a) F ≡ϕ̂Sδ
G for all δ ∈ ∆;

(b) F is congruent to G with respect to the intersection of congruences
⋂

δ∈∆ ≡ϕ̂Sδ
;

(c) F : FSδ
= G : FSδ

for all δ ∈ ∆;

If, moreover, F and G commute with each FSδ
and also with

⋂

δ∈∆ FSδ
, that is to say, F : FSδ

=

FSδ
: F, G : FSδ

= FSδ
: G and also F : (

⋂

δ∈∆ FSδ
) = (

⋂

δ∈∆ FSδ
) : F and G : (

⋂

δ∈∆ FSδ
) =

(
⋂

δ∈∆ FSδ
) : G, then the above conditions are equivalent to:

(d) F : (
⋂

δ∈∆ FSδ
) = G : (

⋂

δ∈∆ FSδ
).

Proof. The equivalence of (a) and (b) is self-evident, whilst the equivalence of (a) and (c) is just

Proposition 3.39.

(d)⇒(c) Since
⋂

δ∈∆ FSδ
⊆ FSδ

for each δ ∈ ∆ and since each FSδ
is idempotent by Proposition

3.30, it follows from the previous lemma that F : FSδ
= G : GSδ

∀δ ∈ ∆.

(c)⇒(d) Suppose (c) holds. Then
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F : (
⋂

δ∈∆ FSδ
) = (

⋂

δ∈∆ FSδ
) : F [because F commutes with

⋂

δ∈∆ FSδ
]

=
⋂

δ∈∆(FSδ
: F) [by the left analogue of Proposition 1.2, noting

that FilR is always left residuated].

=
⋂

δ∈∆(F : FSδ
) [because F commutes with each FSδ

]

=
⋂

δ∈∆(G : FSδ
) [by (c)]

=
⋂

δ∈∆(FSδ
: G) [because G commutes with each FSδ

]

= (
⋂

δ∈∆ FSδ
) : G [by the left analogue of Proposition 1.2]

= G : (
⋂

δ∈∆ FSδ
) [because G commutes with

⋂

δ∈∆ FSδ
].

If R is a commutative ring, we shall denote by SpecmR the set of all maximal (proper) ideals of R.

For each P ∈ SpecmR, define multiplicative subset SP of R by

SP
def
= R\P.

Lemma 3.42 If R is any commutative ring, then
⋂
{FSP

: P ∈ SpecmR} = {R}, the identity of

FilR with respect to the monoid operation.

Proof. Let I be any proper ideal of R. Since I is proper, I ⊆ P for some P ∈ SpecmR. This

means that I ∩SP = ∅, which is to say, I /∈ FSP
and so I /∈

⋂
{FSP

: P ∈ SpecmR}. We conclude

that
⋂
{FSP

: P ∈ SpecmR} = {R}.

Proposition 3.43 Let R be a commutative ring for which FilR is commutative. Then
⋂
{≡ϕ̂SP

:

P ∈ SpecmR} is the identity congruence on FilR, that is, for all F, G ∈ FilR,

F = G ⇔ F ≡ϕ̂SP
G ∀P ∈ SpecmR.

Proof. Taking the family {Sδ : δ ∈ ∆} of Theorem 3.41 to be {SP : P ∈ SpecmR}, the result

follows from Theorem 3.41 ((a)⇔(d)) and the previous lemma.
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Remark 3.44 We have no example to show that the previous proposition fails if the requirement

that FilR is commutative, is dispensed with.

If R is a commutative ring for which FilR is commutative, then the previous proposition yields the

following subdirect decomposition:

[FilR]du ∼= [FilR]du/
(
⋂

P∈Specm R ≡ϕ̂SP

)

→֒
∏

P∈Specm R

([FilR]du/ ≡ϕ̂SP
) ∼=

∏

P∈Specm R

[FilRP ]
du.

With reference to the above sequence of mappings, recall that by Theorem 3.36, the mapping

ϕ̂SP
: [FilR]du → [FilRP ]

du

F 7→ ϕ̂SP
(F)

defines an onto homomorphism of lattice ordered monoids with ≡ϕ̂SP
the congruence on FilR

induced by ϕ̂SP
(see Section 1.4). It follows that

FilR/ ≡ϕ̂SP

∼= FilRP for each P ∈ SpecmR.

The aforementioned subdirect decomposition thus takes F in FilR onto {ϕ̂SP
(F)}P∈Specm R in

∏

P∈Specm R FilRP .

If F ∈ FilR is jansian, that is to say, F = η(I) for some I ∈ IdR, then it follows from [17,

Proposition 3.13, p. 37], that F : (
⋂

δ∈∆ Fδ) =
⋂

δ∈∆(F : Fδ) for all families {Fδ : δ ∈ ∆} in FilR.

Given any family {Sδ : δ ∈ ∆} of multiplicative subsets of R, we thus have, for jansian F,G ∈ FilR,

the following:

F ≡ϕ̂Sδ
G ∀δ ∈ ∆ ⇔ F : FSδ

= G : FSδ
∀δ ∈ ∆ [by Theorem 3.41 ((a)⇔(c))]

⇒
⋂

δ∈∆(F : FSδ
) =

⋂

δ∈∆(G : FSδ
)

⇔ F : (
⋂

δ∈∆ FSδ
) = G : (

⋂

δ∈∆ FSδ
) [because F and G are jansian].
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Taking the family {Sδ : δ ∈ ∆} to be {SP : P ∈ SpecmR}, it follows from the above and Lemma

3.42 that

F ≡ϕ̂Sδ
G ∀δ ∈ ∆ ⇔ F = G.

We have thus proved the following:

Corollary 3.45 Let R be an arbitrary commutative ring. For all jansian F,G ∈ FilR, we have

F = G ⇔ F ≡ϕ̂SP
G ∀P ∈ SpecmR.

Proposition 3.46 Let S be a multiplicative subset of a commutative ring R. Then the following

statements hold.

(a) If F ∈ FilR is jansian, then so is ϕ̂S(F).

(b) Every jansian G ∈ FilRS−1 has the form ϕ̂S(F) for some jansian F ∈ FilR.

Proof. (a) Suppose F ∈ FilR is jansian, i.e., F = η(I) for some I ∈ IdR. Then

ϕ̂S(F) = ϕ̂S(η(I)) = {AS−1 : A ∈ η(I)}

= {AS−1 : A ⊇ I}

= {AS−1 : AS−1 ⊇ IS−1}

= η(IS−1).

Hence ϕ̂S(F) is a jansian member of FilRS−1.

(b) If G is an arbitrary jansian member of FilRS−1, then G = η(K) for some K ∈ IdRS−1. Put

K = IS−1 with I ∈ IdR. Since the map ϕ̂S from FilR to FilRS−1 is onto by Proposition 3.29(b),

there exists F ∈ FilR such that G = ϕ̂S(F). It is easy to verify that G = ϕ̂S(F) = η(IS−1) if and

only if F = η(I), (i.e., F is jansian in FilR) and hence the result follows.

The above result tells us that the homomorphism ϕ̂S : [FilR]du → [FilRS−1]du restricts to a

homomorphism from [JansR]du onto [JansRS−1]du. We thus obtain the following diagram of

lattice ordered monoids and lattice ordered monoid homomorphisms.
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F
✤ // {ϕ̂SP

}P

[JansR]du � � //
∏

P [JansRP ]
du

IdR

ηR iso

OO

� � //
∏

P IdRP

iso
∏

P ηRP

OO

I ✤ // {IP}P

[Note that in the above diagram, products are indexed by the set SpecmR.]

In the above diagram, we have appended the relevant ring as subscript to each of the canonical

embedding maps η which take an ideal I onto the jansian topologizing filter η(I). The map
∏

P ηRP

is the canonical homomorphism induced by the family of homomorphisms {ηRP
: P ∈ SpecmR}.

3.6 An application of congruences on FilR

Recall that a commutative domain R is a Prüfer domain if and only if RP is a valuation domain for

all maximal ideals P of R. (The reader will find a brief introduction to valuation domains in the

early pages of Chapter 4.)

Our main result in this section (Theorem 3.55) proves that a Prüfer domain R for which FilR

is commutative, is necessarily noetherian and thus a Dedekind domain. This result extends [34,

Corollary 32, p. 102] which says that a valuation domain R for which FilR is commutative, is

noetherian and thus rank 1 discrete.

We start by extending results from Section 1 of Chapter 2. These result do not make the assumption

that the ring R is commutative.

The following result follows by taking A = 0 in the hypothesis of Corollary 2.2, so that F =

FSHC{R/A} = FSHC{R} = 1(1 = η(0)).
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Proposition 3.47 The following statements are equivalent for a right topologizing filter G on an

arbitrary ring R:

(a) The right residual G−11 of 1 by G exists;

(b) The family of all TG-dense hereditary pretorsion submodules of RR (that is the family of all

hereditary pretorsion submodules of RR that belong to G) has a smallest member.

Corollary 3.48 Let R be an arbitrary ring for which [FilRR]
du is two-sided residuated. Then for

each right topologizing filter G on R, the family of all hereditary pretorsion submodules of RR that

belong to G, has a smallest member.

Corollary 3.49 Let R be an arbitrary ring for which [FilRR]
du is two-sided residuated. Then RR

satisfies the DCC on hereditary pretorsion submodules.

Proof. Suppose [FilRR]
du is two-sided residuated and that, contrary to the statement of the

corollary, RR admits a strictly descending chain of hereditary pretorsion submodules

U1 ⊃ U2 ⊃ · · · .

Note that each Un is an ideal of R. Define

G
def
= {K ≤ RR : K ⊇ Un for some n ∈ N}.

It is clear that G is a bounded right topologizing filter on R. It follows from the previous corollary

that the family comprising all hereditary pretorsion submodules of RR that belong to G, has a

smallest member, say K. Since each Un is a hereditary pretorsion submodule of RR belonging to

G, it follows from the minimality of K that Un ⊇ K for all n ∈ N. However, since K ∈ G, we

must have K ⊇ Un for some n ∈ N, an impossibility.

Recall that an ideal I of an arbitrary ring R is called a right [resp. left] annihilator ideal if I =

A−10 = {r ∈ R : Ar = 0} [resp. I = 0A−1 = {r ∈ R : rA = 0}] for some A ∈ IdR.
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Observe that every left annihilator ideal of R is a hereditary pretorsion submodule of RR, indeed

0A−1 = Tη(A)(RR) for every A ∈ IdR.

If R is an arbitrary ring, the maps A 7→ A−10 and A 7→ 0A−1 represent a Galois connection between

the sets of left annihilator ideals of R, and right annihilator ideals of R. Thus R will satisfy the

DCC on left annihilator ideals of R, precisely if it satisfies the ACC on right annihilator ideals of R.

We shall make use of this equivalence in the next result.

A theorem in [34, Theorem 19, p. 98] states that for an arbitrary ring R, if FilRR is commutative,

then R satisfies the ACC on (right) annihilator ideals. As the following result shows, the theorem

remains valid if the requirement that FilRR is commutative is weakened to [FilRR]
du is two-sided

residuated.

Theorem 3.50 Let R be an arbitrary ring for which [FilRR]
du is two-sided residuated. Then R

satisfies the DCC on left annihilator ideals, and the ACC on right annihilator ideals.

Proof. Since left annihilator ideals are hereditary pretorsion submodules of RR, it follows from

Corollary 3.49 that R satisfies the DCC on left annihilator ideals. This in turn, is equivalent to the

ACC on right annihilator ideals as observed above.

Remark 3.51 If R is a semiprime ring, then the notions left annihilator ideal and right annihilator

ideal coincide. This allows us to omit the prefixes left and right when referring to annihilator ideals

in a semiprime ring.

It is known that the following statements are equivalent for a semiprime ring R:

(a) R satisfies the ACC on annihilator ideals;

(b) R satisfies the DCC on annihilator ideals;

(c) R is a finite subdirect product of prime rings.
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It is known that a commutative noetherian ring has finitely many minimal prime ideals [20, Corollary

3.14(a), p. 41]. Rings R for which [FilR]du is two-sided residuated enjoy the same property as the

next result shows.

Theorem 3.52 If R is an arbitrary ring for which [FilR]du is two-sided residuated, then R contains

finitely many minimal prime ideals.

Proof. Suppose that [FilR]du is two-sided residuated. Recall that radR denotes the prime radical

of R (see the end of Section 1.2). Since the two-sided residuation property is passed to factor

rings by Theorem 1.25, no generality is lost if we replace R by R/rad (R) and assume that R is

semiprime.

It follows from Theorem 3.50 and the previous remark that R is a finite subdirect product of

prime rings. Hence there are prime ideals P1, P2, · · · , Pn of R such that
⋂n
i=1 Pi = 0. Let Q be

a minimal prime ideal of R. Since Q ⊇
⋂n
i=1 Pi, the primeness of Q entails Q ⊇ Pi for some

i ∈ {1, 2, · · · , n}. The minimality of Q implies Q = Pi. Thus every minimal prime ideal of R is a

member of {Pi : 1 ≤ i ≤ n}.

Proposition 3.53 Let R be a Prüfer domain for which FilR is commutative. Then RP is a

(noetherian) rank 1 discrete valuation domain for every maximal ideal P of R.

Proof. Take P ∈ SpecmR. It follows from Statement (a) of Theorem 3.37 (Preservation Theorem),

that FilRP is commutative. Since RP is a valuation domain for which FilRP is commutative, RP

must be noetherian, and thus rank 1 discrete, by [34, Corollary 32, p. 102].

Proposition 3.54 Let R be a Prüfer domain for which FilR is commutative. Then every nonzero

prime ideal of R is maximal.

Proof. Suppose, contrary to the result, that R has nonzero prime ideal Q and maximal ideal P ,

such that Q ⊂ P . It follows from Proposition 3.27 that QP and PP are prime ideals of RP satisfying

0 ⊂ QP ⊂ RP . Thus RP has rank greater than 1, and this contradicts Proposition 3.53.
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We are now in a position to prove the main result of this section.

Theorem 3.55 The following statements are equivalent for a Prüfer domain R:

(a) R is noetherian and thus a Dedekind domain;

(b) FilR is commutative.

Proof. (a)⇒(b) This is clear since FilR is commutative in any commutative noetherian ring R by

[34, Corollary 8, p. 91].

(b)⇒(a) To show that R is noetherian it suffices to show that R/I is noetherian for all nonzero

ideals I of R (see for example [30, p. 172]). To this end, take I to be a nonzero ideal of R. Note

that since all nonzero prime ideals of R are maximal by Proposition 3.54, no two nonzero prime

ideals of R are comparable.

Let P be the set of all maximal ideals of R containing I. Take P ∈ P and consider P/I. We

claim that P/I is a minimal prime ideal of the ring R/I. Certainly, P/I is a prime ideal of R/I.

To establish minimality, suppose Q/I is a prime ideal of R/I contained in P/I with Q an ideal of

R satisfying I ⊆ Q ⊆ P . Since Q/I is a prime ideal of R/I, Q is a prime ideal of R. However, as

noted above, R contains no nonzero comparable prime ideals, hence Q = P and so Q/I = P/I.

This establishes our claim.

Since the commutativity of FilR is passed from R to any factor ring of R by Theorem 1.25 we may

infer from Theorem 3.52, that R/I has only finitely many minimal prime ideals. Thus {P/I : P ∈ P}

is finite, whence P is finite.

Note that since I * P for all P ∈ (SpecmR) \ P, we have IP = RP for all P ∈ (SpecmR) \ P.

Consider the canonical embedding

IdR →֒
∏

P∈Specm R

IdRP

K 7→ {KP}P∈Specm R
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Observe that the above embedding maps the interval [I, R] in IdR into
∏

P∈Specm R

[IP , RP ] ⊆
∏

P∈Specm R

IdRP . Since [IP , RP ] is a singleton for all P ∈ (SpecmR) \ P, we have

∏

P∈Specm R

[IP , RP ] ∼=
∏

P∈P

[IP , RP ].

Since IP is a nonzero ideal of the rank 1 discrete valuation domain RP , the interval [IP , RP ] is finite

for all P ∈ P. It follows that
∏

P∈P

[IP , RP ] is finite, so [I, R] is finite. This clearly implies that the

ring R/I is noetherian, as required.
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Chapter 4

Valuation domains

Our main theorem in this section asserts that a valuation domain R enjoys two-sided residuation

precisely if R is rank one discrete (this is equivalent to R having value group Z or that R is

noetherian [11, Proposition 1.7(b), p. 3]). This result thus provides us with a host of examples

of (commutative) rings which satisfy left-sided residuation only. For illustrative purposes we shall

provide a detailed analysis of the structure of FilRR in the case of two such examples, these being

the valuation domain R with value group R and the valuation domain R with value group Z× Z.

We start with a brief summary of those aspects of rudimentary valuation theory that have a direct

bearing on what follows. For further background, we refer the reader to the texts [10, 11].

Recall that a linearly ordered abelian group is a structure 〈G,+,≤〉 where 〈G,+〉 is an (additive)

abelian group and 〈G,≤〉 a linearly ordered poset (i.e., a chain) satisfying:

g1 ≤ g2 and h1 ≤ h2 imply g1 + h1 ≤ g2 + h2 for all g1, g2, h1, h2 ∈ G.

The subset G+ def
= {g ∈ G : g ≥ 0G} is called the positive cone of G.

A convex subgroup of a linearly ordered abelian group G is a subgroup H of G with the property

that whenever h1, h2 ∈ H and h1 ≤ t ≤ h2, then t ∈ H . We say that G is rank n if n is the length
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of a longest chain of nonzero convex subgroups of G. It is known that G has rank 1 if and only if

G is order isomorphic to an ordered subgroup of the additive group of reals R.

If G is a rank n linearly ordered abelian group, we say G is discrete if G is order isomorphic to Zn

ordered lexicographically.

If G is a linearly ordered abelian group, we adjoin to G the symbol ∞, to be regarded as larger than

every element of G, and set g +∞ = ∞+ g = ∞ for all g ∈ G.

Let F be a field. A valuation on F is a map v : F → G ∪ {∞} (no generality is lost if we assume

that v is onto) such that for all a, b ∈ F the following conditions hold:

(V1) v(a) = ∞ if and only if a = 0;

(V2) v(ab) = v(a) + v(b);

(V3) v(a+ b) ≥ min {v(a), v(b)}.

In the above situation, the subring Rv
def
= {a ∈ F : v(a) ≥ 0G} of F is called the valuation domain

associated with v and G the value group of Rv. Note that v restricts to a map from Rv onto

G+ ∪ {∞}.

Recall that a (lattice) filter on a lattice L is a nonempty subset X of L that is upward (meaning,

if x ≤ y and x ∈ X , then y ∈ X) and closed under finite meets (meaning, if x, y ∈ X , then

x∧ y ∈ X). Observe that if the lattice L is linearly ordered, then the requirement that X be closed

under finite meets is redundant.

If G is a linearly ordered abelian group, we shall denote by Fil (G+ ∪ {∞}) the set of all filters (or

equivalently, upward subsets) on G+ ∪ {∞}.

Let R be a valuation domain with value group G. There is a canonical correspondence be-

tween the ideals of R and the filters on G+ ∪ {∞} which we now describe. Define a map

v[ ] : IdR → Fil (G+ ∪ {∞}) by

v[I]
def
= {v(a) : a ∈ I} (I ∈ IdR),
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and a map v−1[ ] : Fil (G+ ∪ {∞}) → IdR by

v−1[X ]
def
= {a ∈ R : v(a) ∈ X} (X ∈ Fil (G+ ∪ {∞})).

The maps v[ ] and v−1[ ] are known ([11, Proposition 3.2, p. 11]) to constitute a pair of mutually

inverse order preserving maps.

Since G+ is linearly ordered, it follows that Fil (G+ ∪ {∞}) and thus IdR are linearly ordered by

inclusion. On the other hand, if R is any commutative integral domain whose ideal lattice is linearly

ordered by inclusion, then it is possible to construct a linearly ordered abelian group G and valuation

map v : Q→ G ∪ {∞} where Q denotes the field of fractions of R, such that R = Rv (see [11, p.

11]).

If R is a valuation domain with value group G, we say that R has rank n [resp. is rank n discrete]

if G has rank n [resp. is rank n discrete].

[34, Corollary 32, p. 102] asserts that if R is a valuation domain, then FilR is commutative if and

only if R is rank 1 discrete. Since the commutativity of FilR and the two-sided residuation property

coincide in commutative rings by Theorem 3.7, we obtain the following extension of [34, Corollary

32, p. 102].

Theorem 4.1 The following statements are equivalent for a valuation domain R:

(a) FilR is commutative;

(b) [FilR]du is two-sided residuated;

(c) R is noetherian, i.e., R is rank 1 discrete.

The following result of A. M. Viola-Prioli and J. E. Viola-Prioli [38, Lemmas 5 and 6, p. 24] shows

that in a ring whose right ideals are linearly ordered by inclusion, the right topologizing filters have

a conspicuous form.
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Theorem 4.2 Let R be a ring whose right ideals are linearly ordered by inclusion and I an ideal of

R. Then:

η(I) = {K ≤ RR : K ⊇ I}, and

η̂(I)
def
= {K ≤ RR : K ⊃ I}

are right topologizing filters on R. Moreover, every F ∈ FilRR has the form F = η(I) or F = η̂(I)

for some I ∈ IdR.

Proposition 4.3 Let R be a valuation domain. If A = aR is a nonzero principal ideal of R, then

every submodule of R/A is a hereditary pretorsion submodule.

Proof. Take 0 6= a ∈ R and put A = aR. Choose B ≤ RR with B ⊇ A. We must show that B/A

is a hereditary pretorsion submodule of R/A.

Since R is a valuation domain, it is easily seen that the family F = {K ≤ RR : K ⊇ b−1aR for

some nonzero b ∈ B}∗ is a member of FilR. We shall demonstrate that TF(R/A) = B/A. To this

end, note that for every b ∈ B,

b−1A = {r ∈ R : br ∈ A} =







R if b ∈ A,

b−1aR ⊂ R if b /∈ A.

In both of the above cases we see that b−1A ∈ F, so b + A ∈ TF(R/A). This shows that B/A ⊆

TF(R/A).

To establish the reverse containment, suppose 0 6= c + A ∈ TF(R/A). Then c−1A = {r ∈ R :

cr ∈ A} = c−1aR ∈ F. It follows from the definition of F that c−1aR ⊇ b−1aR for some nonzero

b ∈ B, whence baR ⊇ caR, so bR ⊇ cR (because a 6= 0), i.e., c ∈ bR ⊆ B. We conclude that

TF(R/A) ⊆ B/A, whence equality.

∗The symbol b−1 as it appears here in the definition of F, is intended to denote the inverse of b in the field of

quotients Q of R. If bR ⊇ aR, then the element b−1a belongs to R in which case b−1aR corresponds with a principal

ideal of R. If, on the other hand, bR ⊂ aR, then b−1aR is a cyclic R-submodule of QR properly containing R.
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Remark 4.4 The requirement in Proposition 4.3 that A = aR be a nonzero principal ideal cannot

be relaxed to an arbitrary nonzero ideal. Indeed, let R be a valuation domain of rank at least two

(an example of such is a valuation domain with value group Z × Z ordered lexicographically) and

P any nonzero non-maximal prime ideal of R. (If the value group of R is G = Z× Z and v is the

corresponding valuation map, then an ideal meeting these specifications is given by P = v−1[X ]

where X ∈ Fil (G+ ∪ {∞}) is given by X = {(m,n) ∈ G+ : m ≥ 1} ∪ {∞}.) Since R/P is not

a field, submodules of (R/P )R are plentiful. If, however, F ∈ FilR and 0 6= r + P ∈ TF(R/P ),

then r−1P ∈ F. The primeness of P means that P ∈ F, whence R/P ∈ TF, i.e., TF(R/P ) = R/P .

Thus (R/P )R contains no proper nonzero hereditary pretorsion submodule.

Proposition 4.5 Let R be a valuation domain, I a nonzero proper ideal of R, and P a nonzero

principal ideal of R contained in I. Put:

F=η(P )={K ≤ RR : K ⊇ P}, and

G= η̂(I) ={K ≤ RR : K ⊃ I}.

If the right residual G−1F exists, then I has a successor in the lattice of ideals of R.

Proof. Put X = {B ∈ G : B ⊇ P and B/P is a hereditary pretorsion submodule of R/P}.

Suppose the right residual G−1F exists. Since F = η(P ) is compact with R/P a cyclic subgenerator

for TF, it follows from Corollary 2.2 ((a)⇒(c)) that X has a smallest member.

Observe that the requirement B ⊇ P in the definition of X is redundant since B ∈ G implies

B ⊃ I ⊇ P . The requirement too that B/P be a hereditary pretorsion submodule of R/P is also

redundant in the light of Proposition 4.3. We conclude that X = G. Thus G = η̂(I) has a smallest

member, that is to say, I has a successor in IdR.

4.1 Illustrative examples

Example 4.6 Valuation domain R with value group Z× Z
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In this example, R shall denote a valuation domain with value group Z×Z ordered lexicographically,

and valuation map v : R → (Z × Z)+ ∪ {∞}. Such a ring R is not noetherian, so Theorem 4.1

tells us that the monoid operation : on FilR must be noncommutative and that [FilR]du must fail

to be right residuated.

It is easily checked that a nonzero ideal I of R is principal if and only if it has the form

I = I(m,n)
def
= {r ∈ R : v(r) ≥ (m,n) for some (m,n) ∈ (Z× Z)+} (4.1)

and is non-principal (that is to say, infinitely generated) if and only if it has the form

I = I(m,∞)
def
=
⋃

n∈Z

I(m,n) for some m ≥ 1. (4.2)

The multiplicative structure of IdR is captured in the following table.

Figure 4.1: Multiplication in IdR

· I(m,n) I(m,∞)

I(m′,n′) I(m′+m,n′+n) I(m′+m,∞)

I(m′,∞) I(m′+m,∞) I(m′+m,∞)

Adopting the notation of Proposition 4.5, it follows from this theorem that every proper member of

FilR corresponds with precisely one of the following three types†:

Type 1 : η(I(m,n)), (m,n) ∈ (Z× Z)+;

Type 2 : η(I(m,∞)), m ≥ 1;

Type 3 : η̂(I(m,∞)), m ≥ 1.

†We shall include in Type 3 the topologizing filter η̂(0) comprising all nonzero ideals of R. Multiplication by η̂(0)

is somewhat featureless since F : η̂(0) = η̂(0) : F = η̂(0) for all proper F ∈ FilR.
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Observe that members of FilR that have the form η̂(I(m,n)) do not correspond with an additional

type for it is easily shown that η̂(I(m,n)) = η(I(m,n−1)). Note also that

η(I(m,n)) ⊃
⋂

i∈Z

η(I(m,i)) = η(I(m,∞)) ⊃ η̂(I(m,∞))

for all m ≥ 1 and n ∈ Z, and that η(I(m,∞)) is the successor of η̂(I(m,∞)) in the lattice FilR.

What follows is an investigation of the multiplicative structure of FilR, the culmination of which is

the table in Figure 4.2.

Figure 4.2: Multiplication in FilR

: η(I(m,n)) η(I(m,∞)) η̂(I(m,∞))

η(I(m′,n′)) η(I(m′+m,n′+n)) η(I(m′+m,∞)) η̂(I(m′+m,∞))

η(I(m′,∞)) η(I(m′+m,∞)) η(I(m′+m,∞)) η̂(I(m′+m,∞))

η̂(I(m′,∞)) η̂(I(m′+m,∞)) η(I(m′+m−1,∞)) η̂(I(m′+m−1,∞))

Observe that those entries lying in both the first two rows and two columns of the above table

correspond with IdR seen as a substructure of FilR via the embedding η (see Theorem 1.14).

Note that topologizing filters on R of Types 1 and 3 possess cofinal sets of principal ideals and thus

commute in the light of Lemma 3.2(a).

We now compute the entries in the third row and column of the table in Figure 4.2.

Since {I(m′−1,i) : i ∈ Z} is a cofinal set for η̂(I(m′,∞)), it follows from Lemma 3.1 that the set

{I(m′−1,i)I(m,n) : i ∈ Z} = {I(m′+m−1,i+n) : i ∈ Z} = {I(m′+m−1,i) : i ∈ Z} is cofinal for

η̂(I(m′,∞)) : η(I(m,n)), whence

η̂(I(m′,∞)) : η(I(m,n)) = η̂(I(m′+m,∞)). (4.3)
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Interchanging the roles of (m′, n′) and (m,n) in (4.3) and using the fact that η̂(I(m,∞)) and

η(I(m′,n′)) commute by Lemma 3.2 ((a) or (b)), we may infer that

η(I(m′,n′)) : η̂(I(m,∞)) = η̂(I(m′+m,∞)). (4.4)

A similar application of Lemma 3.1 yields

η̂(I(m′,∞)) : η(I(m,∞)) = η(I(m′+m−1,∞)) (4.5)

and

η̂(I(m′,∞)) : η̂(I(m,∞)) = η̂(I(m′+m−1,∞)). (4.6)

It remains to compute η(I(m′,∞)) : η̂(I(m,∞)). We point out that Lemma 3.1 is inapplicable here

since η(I(m′,∞)) has no cofinal set of finitely generated ideals.

Since the operation : is order preserving, it follows that

η(I(m′,∞)) : η̂(I(m,∞)) ⊆ η(I(m′,n′)) : η̂(I(m,∞))

= η̂(I(m′+m,∞)) [by (4.4)].

We now establish the reverse containment. Note that

K ∈ η(I(m′,∞)) : η̂(I(m,∞)) ⇔ ∃H ∈ η(I(m′,∞)) such that H ⊇ K and ∀a ∈ H , a−1K ∈

η̂(I(m,∞))

⇔ ∃H ≤ RR such that H ⊇ I(m′,∞)+K and ∀a ∈ H , a−1K ∈

η̂(I(m,∞))

⇔ ∀a ∈ I(m′,∞), a
−1K ∈ η̂(I(m,∞))

⇔ ∀a ∈ I(m′,∞), ∃Ka ∈ η̂(I(m,∞)) such that aKa ⊆ K.
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Consider now the principal ideal K = I(m′+m−1,i). Let a be an arbitrary element in I(m′,∞). Then

aR ⊆ I(m′,n′) for some n′ ∈ Z. Putting Ka = I(m−1,i−n′), we see that Ka ∈ η̂(I(m,∞)) and aKa =

aRKa ⊆ I(m′,n′)I(m−1,i−n′) = I(m′+m−1,i) = K. We conclude that K ∈ η(I(m′,∞)) : η̂(I(m,∞)).

Thus {I(m′+m−1,i) : i ∈ Z} ⊆ η(I(m′,∞)) : η̂(I(m,∞)). Since {I(m′+m−1,i) : i ∈ Z} is a cofinal set

for η̂(I(m′+m,∞)), the above shows that η̂(I(m′+m,∞)) ⊆ η(I(m′,∞)) : η̂(I(m,∞)), whence the equality

η(I(m′,∞)) : η̂(I(m,∞)) = η̂(I(m′+m,∞)). (4.7)

Equations (4.3) - (4.7) complete the table in Figure 4.2.

The next two tables capture the residuated structure of [FilR]du. We again point out that whereas

the left residual FG−1 exists for all F,G ∈ FilR, the right residual G−1F must fail to exist for

certain choices of F and G in the light of Theorem 4.1.

In what follows, little generality is lost if we assume m > m′. We leave all but two computations

to the reader.

Figure 4.3: Left residuals in [FilR]du

FG−1 η(I(m,n)) η(I(m,∞)) η̂(I(m,∞))

η(I(m′,n′)) η(I(m−m′,n−n′)) η(I(m−m′,∞)) η̂(I(m−m′,∞))

η(I(m′,∞)) η(I(m−m′+1,∞)) η(I(m−m′,∞)) η(I(m−m′,∞))

η̂(I(m′,∞)) η(I(m−m′+1,∞)) η(I(m−m′+1,∞)) η(I(m−m′,∞))

}

F

︸ ︷︷ ︸

G

Taking I = I(m′,∞) and P = I(m,n) in Proposition 4.5 and noting that the ideal I(m′,∞) has no

successor in IdR, we see that the right residual η̂(I(m′,∞))
−1η(I(m,n)) cannot exist.
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Figure 4.4: Right residuals in [FilR]du

G−1F η(I(m,n)) η(I(m,∞)) η̂(I(m,∞))

η(I(m′,n′)) η(I(m−m′,n−n′)) η(I(m−m′,∞)) η̂(I(m−m′,∞))

η(I(m′,∞)) η̂(I(m−m′+1,∞)) η(I(m−m′,∞)) η̂(I(m−m′,∞))

η̂(I(m′,∞)) does not exist η(I(m−m′+1,∞)) does not exist

}

F

︸ ︷︷ ︸

G

The right residual η̂(I(m′,∞))
−1η̂(I(m,∞)) also fails to exist for η̂(I(m′,∞)) : η(I(m−m′,i)) = η̂(I(m,∞))

for all i ∈ Z, yet

η̂(I(m′,∞)) :

[
⋂

i∈Z

η(I(m−m′,i))

]

= η̂(I(m′,∞)) : η(I(m−m′,∞))

= η(I(m−1,∞))

+ η̂(I(m,∞)).

Example 4.7 Valuation domain with value group R

In this example R shall denote a valuation domain with value group R ordered in the usual fashion.

Such a ring R is not noetherian, so Theorem 4.1 tells us that the monoid operation on FilR must

be noncommutative and that [FilR]du must fail to be right residuated.

There are only two classes of nonzero ideals in R (see [10, Example 4.1, p. 68]) which we describe

below.

The nonzero principal ideals of R have the form:

I[r,∞)
def
= {x ∈ R : v(x) ≥ r} for some r ∈ R+, while
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the non-principal ideals have the form:

I(r,∞)
def
= {x ∈ R : v(x) > r} for some r ∈ R+.

The multiplicative structure of IdR is captured in Figure 4.5.

Figure 4.5: Multiplication in IdR

: I(r,∞) I[r,∞)

I(s,∞) I(r+s,∞) I(r+s,∞)

I[s,∞) I(r+s,∞) I[r+s,∞)

Adopting the notation of Theorem 4.2, it follows from this theorem that every proper member

of FilR corresponds with precisely one of the following types (in each of the descriptions below,

r ∈ R+):

Type 1 : η(I(r,∞));

Type 2 : η(I[r,∞));

Type 3 : η̂(I[r,∞)).

As was the case with Example 4.6, we note that members of FilR that have the form η̂(I(r,∞)) do

not correspond with an additional type for it is easily shown that η̂(I(r,∞)) = η(I[r,∞)). Note also

that

η(I(r,∞)) ⊃ η(I[r,∞)) ⊃ η̂(I[r,∞)).

Using procedures similar to those used in Example 4.6, we compute each of the entries in the

multiplication table shown in Figure 4.6. We again point out that those entries lying in both the

first two rows and two columns of the table correspond with IdR seen as a substructure of FilR

89

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Figure 4.6: Multiplication in FilR

: η(I(r,∞)) η(I[r,∞)) η̂(I[r,∞))

η(I(s,∞)) η(I(r+s,∞)) η(I(r+s,∞)) η(I(r+s,∞))

η(I[s,∞)) η(I(r+s,∞)) η(I[r+s,∞)) η̂(I[r+s,∞))

η̂(I[s,∞)) η̂(I[r+s,∞)) η̂(I[r+s,∞)) η̂(I[r+s−ǫ,∞))

via the embedding η. Note that topologizing filters on R of Types 1 and 3 possess cofinal sets of

principal ideals and thus commute in the light of Lemma 3.2(a).

Since the set {I[s−ǫ,∞) : ǫ > 0} is a cofinal set of principal (and thus finitely generated) ideals for

η̂(I[s,∞)), it follows from Lemma 3.1 that {I[s−ǫ,∞)I(r,∞) : ǫ > 0} = {I(r+s−ǫ,∞) : ǫ > 0} is a cofinal

set for η̂(I[r+s,∞)), whence

η̂(I[s,∞)) : η(I(r,∞)) = η̂(I[r+s,∞)). (4.8)

A similar application of Lemma 3.1 yields the next three equations:

η(I[s,∞)) : η̂(I[r,∞)) = η̂(I[r+s,∞)). (4.9)

η̂(I[s,∞)) : η(I[r,∞)) = η̂(I[r+s,∞)). (4.10)

η̂(I[s,∞)) : η̂(I[r,∞)) = η̂(I[r+s,∞)). (4.11)

To compute η(I(s,∞)) : η̂(I[r,∞)), we note first that Lemma 3.1 is not applicable since η(I(s,∞))

has no cofinal set of finitely generated ideals. We claim that η(I(s,∞)) : η̂(I[r,∞)) = η(I(r+s,∞)).

Applying the definition of the monoid operation :, we see that
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K ∈ η(I(s,∞)) : η̂(I[r,∞)) ⇔ ∃H ∈ η(I(s,∞)) such that H ⊇ K and ∀a ∈ H , a−1K ∈

η̂(I[r,∞))

⇔ ∃H ≤ RR such that H ⊇ I(s,∞) +K and ∀a ∈ H , a−1K ∈

η̂(I[r,∞))

⇔ ∀a ∈ I(s,∞), a
−1K ∈ η̂(I[r,∞))

⇔ ∀a ∈ I(s,∞), ∃Ka ∈ η̂(I[r,∞)) (i.e., Ka ⊃ I[r,∞)) such that

aKa ⊆ K.

Take arbitrary a ∈ I(s,∞) and put v(a) = s′ so that aR = I[s′,∞). Note that since a ∈ I(s,∞), we

must have s′ > s. Put ǫ = s′ − s > 0 and consider the ideal Ka
def
= I[r− ǫ

2
,∞) ⊃ I[r,∞). Then

aKa = I[s′,∞)I[r− ǫ
2
,∞) = I[s′+r− ǫ

2
,∞) = I[s+ǫ+r− ǫ

2
,∞) = I[s+r+ ǫ

2
,∞) ⊆ I(r+s,∞).

This shows that I(r+s,∞) ∈ η(I(s,∞)) : η̂(I[r,∞)), whence η(I(r+s,∞)) ⊆ η(I(s,∞)) : η̂(I[r,∞)).

To establish equality, suppose ideal K is such that K /∈ η(I(r+s,∞)). This means that K + I(r+s,∞)

and so K ⊂ I(r+s,∞). This entails K ⊆ I[r+s+ǫ,∞) for some ǫ > 0. Now choose a ∈ R such

that v(a) = s + ǫ
2
. Note that aR = I[s+ ǫ

2
,∞). It is clear that there can exist no ideal Ka that

meets both the requirements Ka ⊃ I[r,∞) and aKa ⊆ I(r+s+ǫ,∞). It follows from the above that

K /∈ η(I(s,∞)) : η̂(I[r,∞)). We have thus shown that:

η(I[s,∞)) : η̂(I[r,∞)) = η(I(r+s,∞)). (4.12)

Equations (4.8) - (4.12) complete the multiplication table for FilR shown in Figure 4.6.

The final two tables capture the residuated structure of [FilR]du. We leave the calculation of all

left residuals (see Figure 4.7) to the reader and provide details only in the single instance where

right residuation fails (see Figure 4.8). Little generality is lost if we again make the assumption that

r > s.

Consider the residual η̂(I[s,∞))
−1η(I(r,∞)). For this residual to exist, we require a smallest H in FilR

such that η̂(I[s,∞)) : H ⊇ η(I(r,∞)). Note that for each ǫ > 0, if H is chosen to be η̂(I[r−s+ǫ,∞)),
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then we see that by (4.11), η̂(I[s,∞)) : H = η̂(I[r+ǫ,∞)) ⊇ η(I(r,∞)). However, if H is chosen to

be
⋂

ǫ∈R+ η̂(I[r−s+ǫ,∞)) = η(I(r−s,∞)), then by (4.8), η̂(I[s,∞)) : H = η̂(I[r,∞)) + η(I[r,∞)). We

conclude that the right residual η̂(I[s,∞))
−1η(I(r,∞)) does not exist.

Figure 4.7: Left residuals in [FilR]du

FG−1 η(I(r,∞)) η(I[r,∞)) η̂(I[r,∞))

η(I(s,∞)) η(I(r−s,∞)) η(I(r−s,∞)) η̂(I[r−s,∞))

η(I[s,∞)) η(I[r−s,∞)) η(I[r−s,∞)) η̂(I[r−s,∞))

η̂(I[s,∞)) η̂(I[r−s,∞)) η̂(I[r−s,∞)) η̂(I[r−s,∞))

}

F

︸ ︷︷ ︸

G

Figure 4.8: Right residuals in [FilR]du

G−1F η(I(r,∞)) η(I[r,∞)) η̂(I[r,∞))

η(I(s,∞)) η(I(r−s,∞)) η(I(r−s,∞)) η̂(I[r−s,∞))

η(I[s,∞)) η(I[r−s,∞)) η(I[r−s,∞)) η̂(I[r−s,∞))

η̂(I[s,∞)) does not exist η̂(I[r−s,∞)) η̂(I[r−s,∞))

}

F

︸ ︷︷ ︸

G
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Chapter 5

Open problems and planned future work

This chapter lists some open problems that need to be addressed in our future work. It is known [34,

Example 30, p. 101] that there is a commutative non-noetherian semiprime ring R for which FilR is

commutative. On the other hand, we show in Example 4.1 that there is a commutative semiprime

non-noetherian ring R for which FilR is not commutative. This motivates the following questions:

(1) Let R be a commutative domain for which FilR is commutative. Is R necessarily noetherian?

It is known [34, Proposition 31 and Corollary 32] that if R is a commutative domain such that

FilR is commutative, then R satisfies ACC on principal ideals. For a chain domain R FilR is

commutative if and only if R is noetherian. In connection with this we raise the following question:

(2) Let R be a commutative ring for which FilR is commutative. Does R satisfy the ACC on prime

ideals?

We point out that in Remark 2.13 a weakness of Theorem 2.3, is the absence of an example showing

that no part of the FBN hypothesis may be dispensed with for the theorem’s conclusion to remain

valid. Certainly there are non-noetherian rings R for which [FilRR]
du fails to be right residuated

(for example rank 2 valuation domains). However, we have no example of a noetherian ring R for

which [FilRR]
du is right but not left residuated.

(3) Can we find an example of a noetherian ring R for which [FilRR]
du is right but not left

residuated?
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(4) Extend results on two-sided residuation in Mod-R to the Wisbauer category σ[M ], for a right

R-module M . Characterization and properties of hereditary pretorsion classes for M-ptors modules

and M-artnian modules in σ[M ].

It is known [15] that every residuated lattice ordered monoid L can be embedded in a larger residuated

lattice ordered monoid Lc which is Lc is obtained via the Dedekind-MacNeille completion. This

prompts the following question.

(5) Is the two sided residuated property passed from L to its completion in the case where L =

[FilRR]
du for some ring R?
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Index

R-homomorphism, 3

hereditary pretorsion submodule, 43

F -algebra, 50

F -spaces, 50

F -subspaces, 51

N -injective, 3

αth Loewy factor, 46

αth Loewy invariant, 46

TG-dense hereditary pretorsion submodules, 31

TG-dense hereditary pretorsion submodules, 30

TG-dense hereditary pretorsion submodule, 29

T -dense submodule, 10

T -pure submodule, 10

T -torsion submodule, 10

T -torsion-free, 10

T -torsion, 10

(ascending) S-Loewy series, 46

(ascending) Loewy series, 45

(bounded) right topologizing filter, 74

(noetherian) discrete rank 1 valuation domain, 76

ACC on annihilator submodules, 43

Dedekind domain, 73

Galois connection, 36

Loewy invariants, 46

Loewy length, 45

Loewy module, 45

Morita equivalent rings, 26

Morita equivalent, 26

Prüfer domain, 73

Residuated lattice ordered monoids, viii

additive covariant functors, 26

algebraic, 5

annihilator submodule, 35, 43

antisymmetric, 4

artinian, 3

associative ring, 2

atomic, 5

atom, 5

binary relations, viii

both left and right residuated, ix

bottom element, 4

bounded, 4, 15

canonical epimorphism, 8, 30

canonical projection, 24
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canonical structure preserving embedding, ix

chain (or linearly ordered), 4

closed under injective hulls, 10

coatomic, 5

coatom, 5

cofinal set, 15

commutative noetherian rings, 34

commutative noetherian ring, 16, 34

commutative residuated theory, viii

commutative semiartinian ring, 45

compactly generated, 5

compact, 5

complete lattice homomorphism, 4

complete lattice ordered monoid, 6, 14

complete lattice, 4, 9, 10

congruence, 8

convex subgroup, 79

correspondence theorem, 18

cyclic module, 31

degenerate, 51

direct product, 2

direct sums, 9

direct sum, 2

discrete, 80

distributes over finite meets, 6

distributive over finite joins, viii

downward [resp. upward] directed, 40

downward directed family in IdR, 41

downward directed family of annihilator ideals, 46

essential extension, 3

essential right ideal, 35

essential submodule, 3

essential, 35

family of congruences, 8

finite product of fields, 68

finite subset, 6

finitely annihilated, 15, 36

finitely generated, 31, 46

fully invariant, 32

functors, 26

generates, 9

greatest lower bound, 4

hereditary pretorsion classes, viii

hereditary pretorsion class, 9

hereditary pretorsion submodules, 30, 31

hereditary pretorsion submodule, 28, 42

homomorphic images, 9

ideal addition, 5

ideal lattice, ix

ideal multiplication, viii, 6, 35

idempotent ideal, 24

identity, 2

inclusion:, 9

injective hull (envelope), 3
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injective module, 3

integral monoid, 5

integral, 5

intersection of congruences, 69

inverse isomorphism, 30

isomorphic F -algebras, 51

jansian, 14

join of compact elements, 5

largest ideal, viii

lattice homomorphism, 4

lattice isomorphism, 30

lattice of submodules, 2

lattice ordered monoid, ix, 1, 5

lattice, 4

least upper bound, 4

left residual, viii, 5

left residuated, 5

left-right symmetric, 26

maximal essential extension, 3

maximal ideals, 77

maximum condition, 42

minimal injective module, 3

minimal prime ideals, 76

model theory, viii

monoid operation, 6

multiplicative subset, 56

mutually inverse bijections, 22, 30

mutually inverse lattice isomorphisms, 12

mutually inverse order preserving maps, 12

noetherian, 3

non-noetherian rings, 37, 93

nonisomorphic simple right R-modules, 49

nonisomorphic simple submodules, 49

nucleus, 8

order dual, 4, 14

order preserving, 5, 8

order reversing, 41

ordinal indexed family, 45

partially ordered set, 4

poset, 4, 40

pretorsion submodules, 36

prime ideals, 35

prime ideal, 3

prime radical, 3

projective, 32

rank n discrete, 81

rank n, 79, 81

reflexive, 4

residuated structures, viii

right Gabriel filter, 17

right [resp. left] annihilator ideal, 74

right artinain rings, 35

right artinian, 3

right bounded, 35
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right fully bounded noetherian rings, 34

right fully bounded, 35

right noetherian, 3

right residual, viii, 5, 16

right residuated, 5

right semiartinian, 46

right topologizing filters, 1, 30

right topologizing filter, 10

ring homomorphism, 18

ring of fractions of R with respect to S, 56

ring with identity, 5

semiartinian, 45

semisimple, 2

short exact sequence, 13

simple, 2

smallest member, 28

smallest topologizing filter, 13

socle, 2

subdirect decomposition, 71

subgenerates, 9

subgenerator M of TF, 29

subgenerator, 36

submodules, 9

symmetric F -bilinear map, 50

top element, 4, 5

torsion theory, viii

transitive, 4

two-sided ideal, 2

two-sided residuated, ix, 6, 36, 41

two-sided residuation, viii

unitary right R-module, 2

upward directed family in FilRR, 40

upward directed family of ideals, 46

upward directed subfamily, 42

valuation domain, 76

projective with respect to C or C-projective, 32

commutative semiartinian ring, 46
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Nomenclature

⊆ set containment, 1

⊂ proper set containment, 1

IdR the set of all two-sided ideals of R, 2

I E R I is a two-sided ideal of R, 2

RR all regular right R-mdules, 2

RR all regular left R-module, 2

Mod-−R the category of right R-modules, 2

L(M) lattice of submodules of M in Mod-R, 2

N ≤e M N is an essential submodule of M , 3

soc (M) socle of M , 2

DCC Descending Chain Condition, 3

ACC Ascending Chain Condition, 3
⊕

i∈I Ai arbitrary direct sum of Ri, 2
∏

i∈I Ai arbitrary direct product Ri, 2
⊕n

i=1Ai finite direct sum of Ri, 2

A(I) direct sum of I copies of A, 2

AI direct product of I copies of A, 2

socM socle of a module M , 2

N ≤M N is a submodule of M , 2

N →֒ M N is embedded in M , 2
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SpecR The spectrum of R, 3

radR The radical of R, 3

E(M) injective hull of M , 3

≤ order relation, 4

≥ dual of the order relation ≤, 4
∧
,∧ meet, 4

∨
,∨ join, 4

(P,≤) a poset, 4

eL an identity element with respect to L, 5

∩,
⋂

intersection, 5

c ≤
∨
X c less or equal the join of X , 5

ab−1 left residual of a by b, 6

b−1a right residual of a by b, 6

J−1I right residual of I by J , 6

IJ−1 left residual of I by J , 6
∏n

i=1 Li finite product of lattice ordered monoid, 7

≡ϕ congruence relation on a lattice induced by ϕ, 7

[a]≡ϕ the equivalence class of a with respect to ϕ, 7

L/ ≡ϕ the collection of all equivalences with respect to ≡ϕ, 7
∨
[a]≡ϕ the join of [a]≡ϕ , 8

{≡δ: δ ∈ ∆} a family of congruences on lattice L, 8

T hereditary pretorsion class of right R-modules, 8
⋃

union, 20

T (M) the T -torsion submodule of M , 9

HPRR the set of all hereditary pretorsion classes in Mod-R, 9

M/N factor module, 10

F filter, 10
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def
= defined as, 10

FilRR the set of right topologizing filters on a ring R, 10

FT right topologizing filter on R associated with T , 11

TF herditary pretorsion class in Mod-R associated with F, 11

x−10 the right annihilator of x by 0, 11

TF:G the hereditary pretorsion class associated with F : G, 11

F : G multiplication operation on FilRR, 13

G−1F the right residual of F by G, 14

FG−1 the left residual of F by G, 14

[FilRR]
du the dual order of FilRR, 14

η(I) smallest topologizing filters containing I, 14

G−1
∨
Y the right residual of the join of Y by G, 16

G-FilRR Gabriel filter, 17

ϕ−1(L) inverse image of L under a homomorphism ϕ, 18

Fil(R/I)R/I the right topologizing filter on R/I-module, 19

:I the multiplication operation : on filters in [0, η(I)], 21

{Ri : 1 ≤ i ≤ n} finite family of rings, 24
∏n

i=1Ri finite direct product of Ri, 24
∏n

i=1[FilRiRi
]du finite product of the order dual of FilRiRi

, 26

GF ∼= 1Mod-R the identity map on Mod-R, 26

GF ∼= 1Mod-S the identity map on Mod-S, 26

HPSS the hereditary pretorsion class of the category of right S-modules, 26

MG the smallest TG-dense hereditary pretorsion submodudle of M , 29

πN canonical epimorphism from M to M/N , 30

π[−] lattice isomorphism between M and M/N , 30

π−1[−] inverse isomorphism of π[−], 30

LG[N,M ] all TG-dense submodules of M containing N , 30
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LG[M/N ] all TG-dense submodules of M/N , 30

∼= an isomorphism, 30

End R(M) f is the set of all R-homomorphism from M to M , 32

∆ an index set, 32

(P/U)(∆) ∆ copies of P/U , 32

”FBN” ”right fully bounded noetherian”, 35

U−10 right annihilators of U by 0, 36

α a map from IdR into L(M), 36

β a map from L(M) into IdR, 36

{Iγ : γ ∈ Γ} a cofinal sets of finitely generated ideals for F, 38

{Jθ : θ ∈ Θ} a cofinal sets of finitely generated ideals for G, 38

{IγJθ : γ ∈ Γ, θ ∈ Θ} a cofinal set for F : G, 38

N natural numbers, 42

soc (RR) socle of RR, 45

J (R) Jacobson radical of a ring R, 45

socα (M) the αth socle of M , 45

socS(M) the socle of M relatve to S, 46

d0 the α0 Loewy invariants, 46

d1 the α1 Loewy invariants, 46

(P n)−1x set of elements of a ring x left annihilatored by P n, 47

⊂ strict set inclusion, 47

⊇ the dual of set inclusion, 47

⊃ the dual of strict set inclusion, 47

+ the dual of *, 47

µ : V × V → U µ is symmetric bilinear map from V × V to U , 50

∼ an equivalence relation, 56

ϕS a map from R to RS−1, 56
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g ◦ φS composition of φS with g, 57

R \ P complement of R in P , 59

IP the set of all prime ideals of RP , 59

PP the unique maximal ideal of RP , 59

MS−1 module of fractions of M with respect to S, 60

KerϕMS the kernel of the map ϕMS , 60

ϕ̂S a map from Fil R to FilRS−1, 61

ϕ∗
S a map from FilRS−1 to Fil R, 61

FS topologizing filter associated with S, 64

G+ positive cone of G, 88

∞ infinity, 79

v valuation map from a field F into G
⊕

{∞}, 80

Rv valuation domain associated with v, 80

Fil(G+ ∪ {∞}) the set of all filters on G+
⊕

{∞}, 80

v[−] a map from IdR into Fil(G+
⊕

{∞}), 80

v−1[−] a map from Fil(G+
⊕

{∞}) into IdR, 81

η̂(I) all right ideals of RR strictly containing I, 82

Z× Z a value group of a discrete rank two valuation domain R, 83

(Z× Z)+ the positive cone of Z× Z, 84

(m,n) an element of (Z× Z)+, 84

R a value group of a a valuation domain R, 97

R+ the positive cone of R, 97

ǫ epsilon representing small positive number, 94
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