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Summary

After recalling some prerequisites from universal algebra in Chapter 1, we
recount in Chapter 2 the general theory of deductive (logical) systems. As
working examples, we consider the exponential-free fragment CLL of linear
logic and some of its extensions, notably the relevance logic Rt and its frag-
ment R (which lacks a sentential ‘truth’ constant t of Rt). In Chapter 2,
we focus on what it means for two deductive systems to be equivalent (in
the sense of abstract algebraic logic). To be algebraizable is to be equiv-
alent to the equational consequence relation |=K of some class K of pure
algebras. This phenomenon, first investigated in [11], is explored in detail
in Chapter 3, and nearly all of the well-known algebraization results for
familiar logics can be viewed as instances of it. For example, CLL is alge-
braized by the variety of involutive residuated lattices. The algebraization
of stronger logics is then a matter of restriction. In particular, Rt corre-
sponds in this way to the variety DMM of De Morgan monoids, which is
studied in Chapter 4. Moreover, the subvarieties of DMM algebraize the
axiomatic extensions of Rt.

The lattice of axiomatic extensions of Rt is naturally of logical interest,
but our perspective allows us to view its structure through an entirely al-
gebraic lens: it is interchangeable with the subvariety lattice of DMM. The
latter is susceptible to the methods of universal algebra. Exploiting this
fact in Chapter 5, we determine (and axiomatize) the minimal subvarieties
of DMM, of which, as it happens, there are just four. It follows immediately
that Rt has just four maximal consistent axiomatic extensions; they are de-
scribed transparently. These results do not appear to be in the published
literature of relevance logic (perhaps for philosophical reasons relating to
the status of the constant t).

The new findings of Chapter 5 allow us to give, in Chapter 6, a simpler
proof of a theorem of K. Świrydowicz [59], describing the upper part of the
lattice of axiomatic extensions of R. Among the many potential applica-
tions of this result, we explain one that was obtained recently in [52]: the
logic R has no structurally complete axiomatic consistent extension, except
for classical propositional logic.
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Introduction

The subject matter of this dissertation belongs to algebraic logic, i.e., we are
motivated by problems concerning particular logics, which we seek to solve
using the methods of universal algebra. In the last few decades, efforts of
this kind have undergone a great deal of unification. The algebraization of
the wide family of substructural logics by varieties of residuated structures
bears witness to this; see [28].

Abstract algebraic logic goes further, in that it treats classes of logics
with arbitrary signatures, i.e., special logical connectives such as ¬,∧ and
→ are not assumed present (see [12, 14, 22, 23, 24]). The familiar alge-
braization theorems for classical, intuitionistic, modal and substructural
logics, involving Boolean, Heyting, interior and full Lambek algebras (re-
spectively) are all encompassed by Blok and Pigozzi’s influential general
theory of algebraization, proposed in [11].

From a mathematical point of view, this is best explained by associating
with each algebraizing class K a ‘two-dimensional’ logic, viz. the equational
consequence relation |=K of K. That object can be compared more directly
with the (typically sentential) logic that it algebraizes. The term ‘deductive
system’ accommodates multi-dimensional systems of this sort, as well as
traditional sentential (one-dimensional) logics, considered as consequence
relations. The algebraization phenomenon is then a special case of a natural
notion of equivalence for arbitrary deductive systems. All of this is explained
in Chapters 2 and 3 below.

An important consequence of the general theory is that, when a vari-
ety K algebraizes a sentential logic `, there is a transparent lattice anti-
isomorphism between the extensions of ` and the subquasivarieties of K,
taking axiomatic extensions onto subvarieties. The tools of universal al-
gebra are well suited to investigating the structure of a subvariety lattice,
especially in the widely applicable congruence distributive case. This often
simplifies the study of the lattice of axiomatic extensions of `, which is a
natural logical problem.

These considerations apply especially to the family of relevance logics.
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INTRODUCTION vii

As we recount in Chapter 4, Dunn showed that the principal system Rt of
Anderson and Belnap [2] is algebraized by the variety DMM of De Morgan
monoids ; see [19, 2]. Two striking results about De Morgan monoids deserve
mention here: Slaney [54, 55] established that the free 0–generated De
Morgan monoid is finite, and described all the subdirectly irreducible 0-
generated De Morgan monoids, while Urquhart [64] proved that DMM has
an undecidable equational theory.

Nevertheless, the algebraic analysis of relevance logics via De Morgan
monoids is a rather neglected topic. Possible philosophical reasons for this
are touched on in Section 4.2, where we discuss a fragment R of Rt. In
particular, the published literature seems to contain no algebraic analysis
of the subvariety lattice of DMM.

In Chapters 5 and 6 of the present dissertation, we initiate an attempt
to fill this gap. We identify the minimal varieties of De Morgan monoids,
and hence the maximal consistent axiomatic extensions of Rt, of which
there are just four. The result yields a simpler proof of a description (due
to Świrydowicz [59]) of the upper part of the lattice of axiomatic extensions
of R. That description has led, in turn, to the identification (in [52]) of the
structurally complete axiomatic extensions of R. In our account of this ma-
terial, some findings of Slaney are presented in a more self-contained manner
(and in more standard terminology), such as his implicit determination of
the simple 0-generated De Morgan monoids.
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Chapter 1

Preliminaries

1.1 Algebras

In the field of universal algebra, an algebra A is a non-empty set A, called
the universe of A, together with a set of basic operations (a.k.a. fundamen-
tal or distinguished operations) on A. Each basic operation is a function
from An into A for some n ∈ ω and n is called the arity of the operation.
(Here, ω denotes the set of non-negative integers. From now on, algebras
denoted by A,B,C, . . . are understood to have universes A,B,C, . . . , re-
spectively.)

Example 1.1. Semigroups are algebras with one associative binary op-
eration. In other words, an algebra A = 〈A; ·〉 is a semigroup if for all
a, b, c ∈ A,

a · (b · c) = (a · b) · c. (1.1)

An (algebraic) signature or type is a set F of symbols (called operation
symbols), together with a function ϕ : F → ω, called the arity function
of F . We say that f ∈ F is n-ary if ϕ(f) = n. (The arity function of a
signature will always be denoted by ϕ in what follows.)

We say that an algebra A has signature (or type) F (and we write
A = 〈A;F〉), provided that, to each symbol f ∈ F there corresponds
exactly one basic operation of A, denoted by fA, such that the arity of
fA is ϕ(f). If, in addition, the set F is finite, we say that A has finite
type. An algebra is said to be finite (resp. trivial) if its universe is a finite
set (resp. a singleton). We often leave out the superscripts when denoting
operations if the underlying algebra is clear. For example, every semigroup
has a signature of F = {·}, with arity ϕ(·) = 2. When two algebras have
the same signature, they are said to be similar .
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CHAPTER 1. PRELIMINARIES 2

Example 1.2. An algebra A = 〈A; ·A, eA〉 is a monoid if it is a semigroup
with an element eA, called an identity (for ·A), and for every a ∈ A

a ·A eA = a and eA ·A a = a. (1.2)

So, the signature of a monoid is {·, e} with arity function

ϕ : · 7→ 2

e 7→ 0.

As above, it is often convenient to write a ·A b instead of ·A(a, b) for binary
operations. Operations with arity 0 are called distinguished elements or
constants ; they take no arguments and specify a certain element in an
algebra. We often specify the signature using a list of symbols followed by
a list of numbers, e.g., for monoids we could say that they have a signature
·, e with type (2, 0). Operation symbols with arity 0, such as e is this case,
are called constant symbols .

Definition 1.3. A lattice is an algebra 〈L;∧,∨〉 of type (2, 2) such that for
every a, b, c ∈ L,

a ∧ (b ∧ c) = (a ∧ b) ∧ c a ∨ (b ∨ c) = (a ∨ b) ∨ c
a ∧ a = a a ∨ a = a

a ∧ b = b ∧ a a ∨ b = b ∨ a
a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a

The first condition is called associativity , as with semigroups. The sec-
ond condition is called idempotence, the third commutativity and the last
absorption. The operation ∧ is called ‘meet’ and ∨ is called ‘join’.

Lattices will be very important structures throughout this thesis, and
we will focus on them in the next section, from a different point of view.

Definition 1.4. Let A and B be algebras in the same signature F .

(i) B is a subalgebra of A if B ⊆ A and fB = fA|Bn for every f ∈ F ,
where n = ϕ(f). Thus, the operations of B are just the operations of
A restricted to the appropriate cartesian powers of B.

(ii) A function h : A→ B is a homomorphism from A to B if, for every
f ∈ F with n = ϕ(f), and all a1, . . . , an ∈ A,

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).
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CHAPTER 1. PRELIMINARIES 3

Let h be a homomorphism from A to B. If h is injective, we call it
an embedding . If h is surjective (i.e., onto), then B is a homomorphic im-
age of A. If h is bijective then it is called an isomorphism, and we write
h : A ∼= B. When such an h exists, we say that A and B are isomorphic,
and we write A ∼= B. As in the case of familiar algebras, compositions
of homomorphisms are homomorphisms, and inverse functions of isomor-
phisms are isomorphisms.

While we are talking about images of functions, let’s introduce some
notation. We denote the identity function on a set A by idA. Let f : A→ B
be a function. For any X ⊆ A, we define f [X] := {f(x) : x ∈ X}. If Y ⊆ B,

then
←−
f [Y ] = {x ∈ A : f(x) ∈ Y }.

If h : A → B is a homomorphism of algebras and X (resp. Y ) is a

subalgebra of A (resp. B), then h[X] (resp.
←−
h [Y ]) is the universe of a

subalgebra of B (resp. A), which we denote by h[X] (resp.
←−
h [Y ]). In

particular, if h is an embedding, then A is isomorphic to a subalgebra of
B.

Definition 1.5. Let I be some (index) set, and let Ai be an algebra for
every i ∈ I, where all these algebras have signature F . Recall that the
Cartesian product of these sets, denoted

∏
i∈I Ai, is the set of all functions

g from I into
⋃
i∈I Ai such that g(i) ∈ Ai for all i ∈ I. We write the direct

product B of these algebras as
∏

i∈IAi. The universe of B is defined to be∏
i∈I Ai and, for every f ∈ F such that n = ϕ(f), and all g1, . . . , gn ∈ B,

we define

(fB(g1, . . . , gn))(i) = fAi(g1(i), . . . , gn(i)), for i ∈ I.

For each j ∈ I, the jth projection pj :
∏

i∈I Ai → Aj, sending each g to
g(j), is a (surjective) homomorphism from

∏
i∈IAi to Aj.

As usual, when I is finite, with cardinality m, we can represent the
elements of

∏
i∈IAi as tuples of length m, and the operations simply act

coordinate-wise.

If B is an algebra and hi is a homomorphism from B to an algebra Ai,
for every i in some set I, then we can define a homomorphism∏

i∈I

hi : B →
∏
i∈I

Ai

b 7→ f,

where f : I →
⋃
i∈I Ai, and f(i) = hi(b), for every i ∈ I.

Given a class of (similar) algebras K, we let S(K) stand for the class
of all subalgebras of members of K. Similarly, H(K) and P(K) stand for
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CHAPTER 1. PRELIMINARIES 4

the classes of homomorphic images and products, respectively. The direct
product of the empty subfamily of K is understood to be a trivial algebra
in the same signature. I(K) denotes the class to algebras isomorphic to
members of K.

A binary relation θ on a set A is called an equivalence relation if it is

reflexive: for any a ∈ A, 〈a, a〉 ∈ θ;

symmetric: if 〈a, b〉 ∈ θ then 〈b, a〉 ∈ θ;

transitive: if 〈a, b〉, 〈b, c〉 ∈ θ then 〈a, c〉 ∈ θ.

Given an algebraA, we say that θ is a congruence onA if it is an equivalence
relation on A and it is compatible with the operations, i.e., for any f ∈ F ,
such that n = ϕ(f),

if 〈a1, b1〉, . . . , 〈an, bn〉 ∈ θ then 〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ θ.

We often write a ≡θ b instead of 〈a, b〉 ∈ θ. Let θ be an equivalence relation
on set A. For any a ∈ A, the equivalence class of a is

a/θ := {b ∈ A : a ≡θ b}.

We denote A/θ := {a/θ : a ∈ A}. The following function is called the
canonical surjection:

qθ : A→ A/θ

a 7→ a/θ.

Given a congruence θ of an algebra A, we define an algebra A/θ, to have
universe A/θ, and for any f ∈ F such that n = ϕ(f),

fA/θ(a1/θ, . . . , an/θ) := fA(a1, . . . , an)/θ.

It follows from the definition of congruence that the operations of A/θ
are well-defined, and that A/θ is a homomorphic image of A, under the
homomorphism qθ.

In fact, we can say more, but first we need to define the kernel of a
homomorphism h : A→ B,

kerh := {〈a, b〉 : h(a) = h(b)}.
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CHAPTER 1. PRELIMINARIES 5

Theorem 1.6 (Homomorphism Theorem [5, Thm. 1.22]). Let A and B
be similar algebras, and let h : A → B be a homomorphism with kernel θ.
Then θ is a congruence on A and there is a unique injective homomorphism
h̄ : A/θ → B such that h̄ ◦ qθ = h. If h is surjective, then h̄ is an
isomorphism.

A/θ

�
�
��

?

A -B
h

qθ
h̄

1.2 Lattices

In Definition 1.3, we defined lattices as algebras that satisfy certain equa-
tions. Despite the fact that it will be important for us later that they can be
defined in this way, it is more natural to think of them as special partially
ordered sets.

Let A be a set. A binary relation ≤ on A is a partial order if ≤ is
reflexive, transitive and anti-symmetric, i.e.,

if a ≤ b and b ≤ a then a = b.

In this case we say that 〈A;≤〉 is a poset (short for partially ordered set),
provided that A 6= ∅.

Let 〈A;≤A〉 and 〈B;≤B〉 be posets. A map h : A→ B is said to be

� order-preserving or isotone if, whenever a ≤A b, then h(a) ≤B h(b);

� order-reversing or antitone if, whenever a ≤A b, then h(b) ≤B h(a);

� order-reflecting if, whenever h(a) ≤B h(b), then a ≤A b.

Let ≤ be a partial order on A, and X ⊆ A. Then the infimum of X, if
it exists, is an element a ∈ A such that a ≤ b for any b ∈ X, and whenever
c ≤ b for all b ∈ X, then c ≤ a. In words, the infimum of X is the largest
element of A that is a lower bound of every element of X. We denote the
infimum of X by inf(X). Dually we can define the supremum of X, sup(X),
as the smallest element of A that is an upper bound of every element of
X, if it exists. Note that if inf(∅) (resp. sup(∅)) exists, then it must be the
greatest (resp. least) element of A, with respect to ≤.
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CHAPTER 1. PRELIMINARIES 6

Characterization 1.7 ([5, Def. 2.1]). Let A be a lattice. Define a binary
relation ≤ on A as follows: for any a, b ∈ A,

a ≤ b iff a ∧ b = a.

Then ≤ is a partial order on A. Also, a ∧ b = inf({a, b}) and a ∨ b =
sup({a, b}), for all a, b ∈ A.

Conversely, let 〈A,≤〉 be a poset, such that inf({a, b}) and sup({a, b})
exist for all a, b ∈ A. Then 〈A;∧,∨〉 is a lattice, where we define a ∧ b :=
inf({a, b}) and a ∨ b := sup({a, b}), for any a, b ∈ A.

Whenever we are working with a lattice, we will use the symbol ≤ to
denote the partial order given above. We also define the notation

∧
X :=

inf(X) and
∨
X := sup(X), and call these the meet and join of X, respec-

tively. Similarly, we say that a poset 〈A,≤〉 is a lattice if inf({a, b}) and
sup({a, b}) exist for any a, b ∈ A.

Theorem 1.8 ([5, Prop. 2.3]). Let h be a map from lattice A to lattice
B. Then h is a lattice isomorphism if and only if h is order-preserving,
order-reflecting and surjective.

Definition 1.9. A lattice L is called complete if, for every subset X of L,
both inf(X) and sup(X) exist.

Let A be a set. We let P(A) denote the power-set of A, i.e., the set of
all subsets of A. Then 〈P(A),∩,∪〉 is a complete lattice, with partial order
⊆.

Lemma 1.10. Let 〈A,≤〉 be a poset, such that inf(X) exists for any X ⊆ A.
Then 〈A;≤〉 is a complete lattice, where for any X ⊆ A,

sup(X) = inf({a ∈ A : b ≤ a for every b ∈ X}).

Definition 1.11. Let A be a set. A subset S of P(A) is called a closure
system over A if for every X ⊆ S, we have

⋂
X ∈ S. In this context, we

interpret
⋂
∅ as A (and

⋃
∅ as ∅).

It is clear from Lemma 1.10 that if S is a closure system of A, then
〈S,⊆〉 is a complete lattice. It is interesting to note that the converse is
also true, cf. [5, Thm. 2.26]:

Fact 1.12. Every complete lattice is isomorphic to a closure system over
some set.

Definition 1.13. Let A be a set. A closure operator over A is a function
C : P(A)→ P(A) such that for all X, Y ⊆ A
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CHAPTER 1. PRELIMINARIES 7

(i) X ⊆ C(X),

(ii) C(C(X)) = C(X),

(iii) if X ⊆ Y then C(X) ⊆ C(Y ).

Theorem 1.14 ([29, pp. 24,31]). Let A be a set.

(i) If S is a closure system over A then

CS : X 7→
⋂
{Y ∈ S : X ⊆ Y }

is a closure operator over A and CS[P(A)] = S.

(ii) If C is a closure operator over A, then C[P(A)] is a closure system
over A and CC[P(A)] = C. Furthermore

∨
C[P(A)]X = C (

⋃
X ), for

any X ⊆ C[P(A)].

Definition 1.15. A closure operator C over a set A is called algebraic if,
for every X ⊆ A,

C(X) =
⋃
{C(Z) : Z is a finite subset of X}.

Definition 1.16. Let L be a complete lattice.

(i) An element a ∈ L is called compact if for every X ⊆ L, whenever
a ≤

∨
X, then there exists a finite Z ⊆ X such that a ≤

∨
Z.

(ii) L is called an algebraic lattice if every element is the join of a set of
compact elements.

Theorem 1.17 ([5, Thm. 2.30]). Let C be an algebraic closure operator
over a set A. Then C[P(A)] is an algebraic lattice. The compact elements
of C[P(A)] are those sets of the form C(Y ) for Y a finite subset of A.

The following result is useful when exploiting Theorem 1.17.

Theorem 1.18 ([29, Lem. 3, p. 24]). Let S be a closure system over a set
A, and suppose that

⋃
X ∈ S for every non-empty subset X of S that is

directed (i.e., whenever Y, Z ∈ X , then Y ∪ Z ⊆ W for some W ∈ X ).
Then the closure operator CS over A is algebraic.
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CHAPTER 1. PRELIMINARIES 8

When the assumptions of Theorem 1.17 hold, we call S an algebraic
closure system over A.

We will often make use of these theorems to show that certain structures
are complete—possibly algebraic—lattices. In the interest of keeping all the
lattice definitions in one place, we will introduce a bit of lattice terminology,
before we get to examples of closure systems.

A lattice L is bounded is there exist ⊥,> ∈ L such that ⊥ ≤ a ≤ > for
all a ∈ L. The elements ⊥ and > are called the bounds of L.

An element a of a lattice L is called meet-irreducible provided that,
whenever a = b ∧ c, with b, c ∈ L, then a = b or a = c.

Let L be a complete lattice. An element a ∈ L is said to be completely
meet-irreducible (in L) if, whenever a =

∧
X, where X ⊆ L, then a ∈ X.

Theorem 1.19 ([5, Lemma 3.22]). Suppose that a is an element of a com-
plete lattice L. The following are equivalent.

(i) a is completely meet-irreducible

(ii) There is an element c ∈ L such that a < c and for every b ∈ L, if
a < b then c ≤ b.

Let b and c be elements of a lattice. We say that c is a cover of b, if
b < c and there are no elements strictly between b and c. In this case we
also say that b is a subcover of c. If a lattice L has a least element ⊥, then
the covers of ⊥ in L (if any) are called the atoms of L.

We can define join-irreducible and completely join-irreducible elements
dually.

Definition 1.20. A lattice L is distributive if, for every a, b, c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). (1.3)

If a lattice L is distributive, then

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (1.4)

holds for all a, b, c ∈ L, and conversely. We refer to (1.3) and (1.4) as
distributive laws.

Remark 1.21. An element a of a lattice L is said to be join-prime provided
that, whenever a ≤ b ∨ c, with b, c ∈ L, then a ≤ b or a ≤ c. In this case,
clearly, a is join-irreducible. In a distributive lattice, the converse holds,
i.e., an element is join-irreducible if and only if it is join-prime. (The reason
is that the relation a ≤ b∨ c amounts to a = a∧ (b∨ c), which distributes.)
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Definition 1.22. A Boolean algebra is a bounded distributive lattice L,
with bounds ⊥,>, in which every element a ∈ L has a complement , i.e.,
there exists a′ ∈ L such that a ∨ a′ = > and a ∧ a′ = ⊥.

When we treat these structures as algebras (rather than posets), we nor-
mally give them the signature ∧,∨, ′ (but note that > and ⊥ are definable
as x ∨ x′ and x ∧ x′, respectively).

Definition 1.23. Let L be a lattice. A subset F of L is a lattice filter of
L if F is upward-closed (i.e., whenever a ∈ F and a ≤ b ∈ L then b ∈ F )
and closed under meets (i.e., whenever a, b ∈ F then a ∧ b ∈ F ).

1.3 More on Algebras

Let us now return to congruences of algebras. Let A be an algebra. One
can show easily that the intersection an arbitrary collection of congruences
of A is still a congruence of A. Therefore, the set of congruences of A forms
a closure system over A×A. We let Con(A) denote the complete lattice of
congruences of A. We denote the corresponding closure operator by

ΘA : X 7→
⋂
{θ ∈ Con(A) : X ⊆ θ}, for any X ⊆ A× A.

ΘA(X) is called the congruence of A generated by X. The least element
of Con(A) is the identity congruence idA := {〈a, a〉 : a ∈ A} of A. Notice
that idA is the same object as the identity function on A and that every
congruence of A must contain idA, because of reflexivity. The greatest
element of Con(A), called the total congruence, is A2 := A× A.

Congruence lattices are extremely important in universal algebra. We
can characterize joins in Con(A) as follows:

Theorem 1.24 ([5, Prop. 2.16]). Let Σ be a set of congruences of algebra
A. Then, in Con(A), we have 〈a, b〉 ∈

∨
Σ if and only if there exist

c1, . . . , cn ∈ A and ψ1, . . . , ψn−1 ∈ Σ such that

a = c1 ≡ψ1 c2 ≡ψ2 · · · ≡ψn−1 cn = b.

For any algebra A, the union of a directed non-empty subset of Con(A)
is easily shown to be a congruence of A, so Con(A) is both an algebraic
closure system over A × A and an algebraic lattice (w.r.t. set inclusion),
and ΘA is an algebraic closure operator over A × A (see Theorem 1.17
and Theorem 1.18). In particular, the compact elements of ConA are the
finitely generated congruences of A, i.e., the relations of the form ΘA(X),
where X is a finite subset of A× A.
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An algebra A is said to be simple if it has just two congruences (as
below), in which case A must be non-trivial.

ss idAA
2

Con(A) :

By the Homomorphism Theorem (Theorem 1.6), every homomorphic image
of a simple algebra A is either trivial or isomorphic to A. The Homomor-
phism Theorem is sometimes called the First Isomorphism Theorem.

Let θ and ψ be congruences of an algebra A, such that θ ⊆ ψ. We define
a binary relation ψ/θ on A/θ by

ψ/θ := {〈a/θ, b/θ〉 : 〈a, b〉 ∈ ψ}.

Theorem 1.25 (The Second Isomorphism Theorem [5, Thm. 3.5]). Let
θ ⊆ ψ be congruences on an algebra A. Then ψ/θ is a congruence on A/θ.
The algebras (A/θ)/(ψ/θ) and A/ψ are isomorphic.

If L is a lattice with elements a ≤ b, then the interval I[a, b] is defined
to be {c ∈ L : a ≤ c ≤ b}. This is obviously a sublattice of L, i.e., a
subalgebra of 〈L;∧,∨〉.

Theorem 1.26 (The Correspondence Theorem [5, Thm. 3.6]). Let A be
an algebra and let θ be a congruence on A. Then the map

I[θ, A2]→ Con(A/θ)

ψ 7→ ψ/θ

is a lattice isomorphism.

s

s
sθ

idA

A2

s
s

idA/θ

(A/θ)2

-

-

Con(A) Con(A/θ)

When it comes to subalgebras, we wish to identify each subalgebra of an
algebraA with its universe, so that we can take intersections of subalgebras.
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But notice that it is possible (if A has no constants in its signature) that
the intersection of the universes of two subalgebras of A may be empty.
Our definition of an algebra does not allow the universe of an algebra to be
empty. So, we need to define a subuniverse of an algebra A to be a subset
of A that is closed with respect to the basic operations of A. Notice that if
B is a subalgebra of A, then B is a subuniverse of A. Conversely, if B is a
non-empty subuniverse of A, then we can can restrict the operations of A
to the set B to form a subalgebra of A with universe B.

Now, intersections of subuniverses of A are again subuniverses of A,
as are the unions of directed non-empty families of subuniverses. For any
X ⊆ A, therefore, we can define SgA(X) to be the smallest subuniverse of
A that contains X; we call it the subuniverse of A generated by X. The
function SgA is an algebraic closure operator over A. Notice that SgA(X)
can only be empty if X is empty and A has no constant in its signature;
that combination of cases shall not arise here. We say that an algebra A is
m-generated , where m is a cardinal, if SgA(X) = A, for some X ⊆ A, where
the cardinality of X is at most m. If, moreover, m ∈ ω, we say that A is
finitely generated . Note, therefore, that A cannot be 0-generated unless it
has some constants in its signature. In this case, A is 0-generated if and
only if it contains no proper subalgebra.

Theorem 1.27 ([5, Cor. 3.3]). Suppose that h : A→ B is a surjective ho-
momorphism of algebras. If A is generated by X ⊆ A, then B is generated
by h[X].

We will now introduce an extremely important class of algebras, namely
subdirectly irreducible algebras. Their usefulness far outweighs their slightly
complicated definition.

Definition 1.28. An algebra B is a subdirect product of algebras Ai, for
i in some index set I, if B is a subalgebra of

∏
i∈IAi and for every i ∈ I,

pi|B : B → Ai is surjective, where pi is the ith projection from
∏

j∈IAj

onto Ai.

An embedding h : B →
∏

i∈IAi is called subdirect if h[B] is a subdirect
product the Ai’s. In this case, each Ai is a homomorphic image of B.

Definition 1.29. An algebra A is called subdirectly irreducible (SI) if for
every subdirect embedding h : A →

∏
i∈IAi, there is a j ∈ I such that

pj ◦ h : A→ Aj is an isomorphism.

Thankfully there is a characterization which is much easier to visualise.
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Theorem 1.30 ([5, Thm. 3.23]). An algebra A is subdirectly irreducible if
and only if idA is completely meet-irreducible in Con(A).

Notice that because of Theorem 1.19, an algebra A is SI iff it has a
smallest non-identity congruence.

ss
s

idA

A2

Con(A):

The main reason why subdirectly irreducible algebras are important is
because of the following theorem; see [7] or [5, Thm. 3.24].

Theorem 1.31 (Birkhoff’s Subdirect Decomposition Theorem). Every al-
gebra A is isomorphic to a subdirect product of subdirectly irreducible alge-
bras (that are homomorphic images of A).

Definition 1.32. An algebra A is said to be finitely subdirectly irreducible
(FSI) if idA is meet-irreducible in Con(A).

Notice that simple algebras are subdirectly irreducible, since the iden-
tity congruence of a simple algebra has only one cover, namely the total
congruence. Furthermore, it is clear from Theorem 1.30 that subdirectly
irreducible algebras are finitely subdirectly irreducible.

Let K be a class of algebras. We let Ps(K) denote the class of subdirect
products of members of K. KSI and KFSI denote the subclasses of K consist-
ing of subdirectly irreducible and finitely subdirectly irreducible algebras,
respectively.

Let I be a set. A filter over I is a family U of subsets of I such that

� I ∈ U ;

� if X ∈ U and X ⊆ Y then Y ∈ U ;

� if X, Y ∈ U then X ∩ Y ∈ U .

In other words U is a lattice filter of the lattice 〈P(I),∩,∪〉. We call U a
proper filter if ∅ /∈ U .

A proper filter U over I is called an ultrafilter if

� whenever X ∪ Y ∈ U , then X ∈ U or Y ∈ U .
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CHAPTER 1. PRELIMINARIES 13

Equivalently, an ultrafilter over I is a maximal proper filter over I.

Let Ai be an algebra for every i in set I, and A =
∏

i∈IAi. For a, b ∈ A
we define

[[a = b]] := {i ∈ I : ai = bi},
where the subscript means the ith coordinate. Let U be an ultrafilter over
I. We define

ηU = {〈a, b〉 ∈ A2 : [[a = b]] ∈ U}.
ηU is a congruence of A (in fact we only need U to be a filter for this to
be true). The algebra A/ηU is called an ultraproduct of the Ai’s, and we
sometimes write A/U instead of A/ηU . If all the Ai’s are the same algebra
B, then A/U is called an ultrapower of B. If K is a class of algebras then
we let Pu(K) denote the class of ultraproducts of members of K.

Theorem 1.33 ([5, Ex. 5.1.3]). Every algebra can be embedded into an
ultraproduct of finitely generated subalgebras of itself.

1.4 First-Order Languages and Free

algebras

In the next chapter we will introduce some logical structures. They will be
equipped with signatures in which the operation symbols resemble logical
connectives, such as ‘not’, ‘and’, etc. At times, it will also be necessary
to refer explicitly to syntactic aspects of the first-order theories of some of
these logical structures. First-order languages are themselves equipped with
logical connectives, again like ‘not’, ‘and’, etc., which must not be confused
with the lower order operations of the logical structures, despite the formal
similarities. In anticipation of this need, and to prevent potential confusion,
some basic concepts of first-order logic are recalled briefly below.

In any first-order language we have following (first-order) logical con-
nectives: ∀, ∃, ⇒, &, t and ∼. We choose to let t and ∼ stand for
(first-order) ‘disjunction’ and ‘negation’, respectively; the rest have their
usual meanings.

In addition to these special symbols, a first-order language L comprises
the following disjoint sets:

� an infinite set of variables ;

� a set of predicate or relation symbols , each of which has a positive
integer associated with it. If the integer n is associated with predicate
symbol p, then p is said to be n-ary ;
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� a set of operation symbols (a.k.a. function symbols), each of which has
a non-negative integer (its arity) assigned to it.

Expressions are finite strings of these symbols.

We recursively build the terms of L in the following way:

1. variables and 0-ary operation symbols (a.k.a. constant symbols) are
terms;

2. for each positive integer n, and each n-ary operation symbol f , if
α1, . . . , αn are terms, then the expression f(α1, . . . , αn) is a term;

3. no other expressions are terms.

Now, for each positive integer n, and each n-ary predicate symbol p, if
α1, . . . , αn are terms then the expression p(α1, . . . , αn) is called an atomic
formula of L. We can then build up the first-order formulas of L recursively,
using the atomic formulas and the first-order connectives in the following
way:

� atomic formulas are first-order formulas;

� if Φ and Ψ are first-order formulas and x is a variable, then ∼Φ,
Φ⇒ Ψ , Φ&Ψ , Φ t Ψ , (∀x)Φ and (∃x)Φ are first-order formulas.

A first-order formula Φ is called a sentence if every occurrence of a
variable x in Φ lies within the scope of an appropriate quantifier, i.e., within
a subformula of Φ of the form (∀x)Ψ or of the form (∃x)Ψ . Every first-order
formula Φ has a universal closure, which is the sentence obtained by placing
appropriate universally quantified variables on the left of Φ.

Example 1.34. The first-order language L of algebras with signature F ,
has F as its set of operation symbols and it has just one (binary) predicate
symbol ≈, formalizing equality. Like every first-order theory, it has an
infinite set Var of variables, disjoint from F . The recursive definition of
terms of L can be paraphrased as follows. We define

Fm0 = {x : x ∈ Var or x is some f ∈ F , where ϕ(f) = 0}

and, for each n ∈ ω,

Fmn+1 = Fmn∪{f(α1, . . . , αk) : f ∈ F , k = ϕ(f) and α1, . . . , αk ∈ Fmn}.
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Then FmF(Var) =
⋃
n∈ω Fmn is the set of terms of L. We often shorten

FmF(Var) to Fm(Var) if the signature is clear from the context, and to
Fm if Var is also clear.

Notice that for every term α ∈ Fm(Var), there is a smallest n such
that α ∈ Fmn. We say that the complexity of α, denoted #α, is n. In
other words, #α is the number of occurrences of non-constant operation
symbols in α. To prove that some statement holds for all terms, we will
often perform induction on the complexity of a term.

The atomic formulas of L are then just equations , i.e., expressions of
the form α ≈ β, where α and β are terms. Examples of first-order formulas
of L are quasi-equations , i.e., expressions of the form(

(α1 ≈ β1) & . . . & (αn ≈ βn)
)
⇒ (α ≈ β),

where α1, . . . , αn, β1, . . . , βn, α, β are terms.

In the jargon of model theory, algebras with signature F are structures
for L. The demand that such an algebra satisfy a sentence of L is defined
recursively, in a natural way. For example, to demand that a lattice L
should satisfy the first-order sentence

(∃y)((∀x)(y ∧ x ≈ y))

is just to demand that it should have a bottom element. For any a, b ∈ L,
recall that a ≤ b if and only if a ∧ b = a. Similarly, we use the formal
abbreviation x � y for x ∧ y ≈ x.

Theorem 1.35 ( Loś’ Theorem). Let A =
∏

i∈IAi/U be an ultraproduct
and Ψ a sentence of the first-order language of A. Then A satisfies Ψ if
and only if

{i ∈ I : Ai satisfies Ψ} ∈ U .

In particular, if A is an ultrapower of B, then A satisfies exactly the same
first-order sentences as B.

Corollary 1.36. If B is a finite algebra and A is an ultrapower of B, then
A ∼= B.

Definition 1.37. Let K be a class of algebras and U an algebra in the same
signature. Let X ⊆ U . We say that U is free for K over X if for every
A ∈ K and every function h : X → A, there is a unique homomorphism
h̄ : U → A which extends h. (This implies that U = SgU (X).)
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Definition 1.38. Given a signature F and a disjoint set of variables Var ,
we define the (F–) term algebra over Var , denoted FmF(Var) or Fm for
short, as follows: The universe of Fm is Fm. For every f ∈ F such that
n = ϕ(f), we let fFm be the operation that maps an n-tuple (α1, . . . , αn)
to the term f(α1, . . . , αn).

Let A be an algebra in the signature F . Let h : Var → A be a function.
We will define a function h̄ : Fm → A recursively on the complexity of a
term α ∈ Fm. Suppose that #α = 0. If α ∈ Var then h̄(α) := h(α). If
α = f ∈ F , with ϕ(f) = 0, then h̄(α) := fA.

Now suppose that h̄(β) is defined for all terms β such that #β ≤ n. Let
α be a term such that #α = n+1. Then α = f(β1, . . . , βm) for some f ∈ F
with ϕ(f) = m and terms βi with #βi ≤ n for every i ≤ m. We define

h̄(α) := fA(h̄(β1), . . . , h̄(βm)).

It is not difficult to see that h̄ is a homomorphism from Fm to A. If
we let AlgF denote the class of algebras with signature F , then FmF(Var)
is free for AlgF over Var ; see [5, Thm. 4.21]. For this reason we sometimes
call Fm the absolutely free algebra in our given signature.

Since Var is infinite, we may assume that it contains the denumerable
sequence of distinct variables x1, x2, x3, . . . . For n ∈ ω, we define

Fm(n) = {α ∈ Fm : the variables occurring in α are among x1, . . . , xn}.

If α ∈ Fm(n), we say that α is an n-ary term, and sometimes write α as
α(x1, . . . , xn) to indicate this. If A is an algebra, with a1, . . . an ∈ A, then
αA(a1, . . . , an) denotes h(α), where h : Fm→ A is a homomorphism such
that h(xi) = ai for i = 1, . . . , n. The function αA : Fmn → A is called a
term operation. We define an A-evaluation to be any homomorphism from
Fm to A. By the freedom of Fm, every A-evaluation is determined by
its action on Var .

When we say that an algebra A satisfies a (quasi-)equation Ψ , we mean
that A satisfies the universal closure of Ψ . Thus, A satisfies α ≈ β if
h(α) = h(β) for every A-evaluation h. More generally, A satisfies(

(α1 ≈ β1) & . . . & (αn ≈ βn)
)
⇒ (α ≈ β)

provided that, for every A-evaluation h,

if h(αi) = h(βi) for every i ≤ n, then h(α) = h(β).

If Ψ is a sentence, equation or quasi-equation, then we use the notation
A |= Ψ to signify that A satisfies Ψ .
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A class K of algebras is said to satisfy Ψ if every algebra in K satisfies
Ψ , in which case we write K |= Ψ . We define a K-evaluation to be an
A-evaluation for some A ∈ K.

The compatibility of congruences and homomorphisms with basic oper-
ations extends to term operations (by induction on complexity). Moreover,
the following holds.

Theorem 1.39 ([5, Thm. 4.32]). Let A be an algebra and Y ⊆ A. Then

SgA(Y ) = {αA(a1, . . . , an) : α ∈ Fm(n) for n ∈ ω and a1, . . . , an ∈ Y }.

1.5 Varieties and Other Classes of Algebras

In the exposition so far, we have introduced several basic class operators ;
they are I, H, S, P, Ps and Pu. Although there are some set-theoretic
difficulties with this, all of these are closure operators on the collection of
all classes of similar algebras. (For any such class K, note that I(K) and P(K)
are proper classes, not sets.) There are ways to overcome the foundational
difficulties, as we will show in the case of varieties.

We can compose basic class operators to form yet more class operators
and these form a certain hierarchy. For example, I S(K) consist of all al-
gebras that can be embedded into members of K. For class operators O1

and O2, we write O1 ≤ O2 if, for every class K of similar algebras, we have
O1(K) ⊆ O2(K).

The following relations in this hierarchy are well-known; see for instance
[5, Lem. 3.41, Thm. 5.4].

Theorem 1.40.

(i) SH ≤ HS

(ii) PS ≤ SP

(iii) PH ≤ HP

(iv) Ps ≤ SP

(v) I ≤ H

(vi) OI ≤ IO, where O is any of the basic class operators

(vii) Pu ≤ HP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 1. PRELIMINARIES 18

(viii) Pu S ≤ SPu

(ix) Pu P ≤ SPPu

(x) SP ≤ Ps S, hence I S PPu ≤ I Ps SPu

In particular, a class K of similar algebras is closed under all of I, S and
P if and only if K = I S P(K). Similarly, K is closed under H, S and P if and
only if K = HSP(K) [61]. Finally, K is closed under I, S, P and Pu, if and
only if K = I S PPu(K) [39, 30].

Definition 1.41. A class K of algebras is called a variety if it is axiomatized
by equations, i.e., there exists a set of equations X such that K is the class
of all algebras that satisfy all the equations in X.

Theorem 1.42 (Birkhoff’s Theorem [6]). A class K of algebras is variety
if and only if K = HSP(K). Furthermore, if an algebra A satisfies all
equations satisfied by K, then A ∈ HSP(K).

Because of this theorem, we define the class operator V = HSP. We call
V(K) the variety generated by K, as it is the smallest variety that contains
K. The theorem establishes a bijection between varieties and the sets of
equations that they satisfy. It is this correspondence that allows us to
circumvent the set-theoretic difficulties we discussed earlier. In particular,
the intersection of a set of varieties in a common signature is still a variety.
If V is a variety, then we can talk about the set of subvarieties of V. It is
clear that this set is the universe of a complete lattice, ordered by inclusion,
called the subvariety lattice of V.

In Birkhoff’s Subdirect Decomposition Theorem (Theorem 1.31), the
subdirectly irreducible subdirect factors of an algebra A belong to every
variety containing A, as they belong to H(A). This yields the following
more informative statement.

Theorem 1.43. Every variety V is determined by its subdirectly irreducible
members. In particular, V = I Ps(VSI). More generally, for any two vari-
eties V and W in the same signature, V ⊆ W if and only if VSI ⊆ WSI .

For every cardinal m and class K of similar algebras, there is an algebra
F K(m) that is free for K over a set of cardinality m (unless m = 0 and K has
no constant symbol); this algebra is unique up to isomorphism and belongs
to I S P(K). See for instance [5, Sec. 4.3].

Theorem 1.44 ([6]). For every variety K, we have K = V(F K(ℵ0)).
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Definition 1.45. A class K of similar algebras is a quasivariety if it is
axiomatized by some set of quasi-equations.

An analogue of Birkhoff’s Theorem exists for quasivarieties:

Theorem 1.46 ([39, 30]). A class K of similar algebras is a quasivariety if
and only if it is closed under I, S, P and Pu. Thus, the smallest such class
containing K is I S PPu(K).

We refer to Q(K) := I S PPu(K) as the quasivariety generated by K.

Definition 1.47. A variety V is said to be congruence distributive if Con(A)
is a distributive lattice for every A ∈ V.

Example 1.48 ([25]). If A is a lattice, possibly with additional operations,
then Con(A) is a distributive lattice.

The following well-known theorem was proved in [32] (or see [34] or [5,
Thm. 5.10]).

Theorem 1.49 (Jónsson’s Theorem). Let V be a congruence distributive
variety, and suppose that V = V(K). Then VFSI ⊆ HSPu(K).

Theorem 1.50 ([10]). In a congruence distributive variety V, the following
are equivalent:

(i) for each A ∈ V, the intersection of any two compact (i.e., finitely
generated) congruences of A is compact;

(ii) VFSI is closed under S and Pu.

The following lemma is an immediate consequence of Theorem 1.46 and
Theorem 1.40(x). (For a stronger result, see [15, Lem. 1.5].)

Lemma 1.51. For any algebra C, each subdirectly irreducible member of
Q(C) can be embedded into an ultrapower of C.

1.6 Involutive Residuated Lattices

Residuated structures will be important examples in later chapters, because
of their relationship with substructural logics (in particular, relevance log-
ics). A standard text on this subject is [28].

Definition 1.52. An involutive (commutative) residuated lattice, or briefly,
an IRL, is an algebra A = 〈A;∧,∨, ·,¬, e〉 comprising a commutative
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monoid 〈A; ·, e〉, a lattice 〈A;∧,∨〉 and a unary operation ¬, called an
involution, such that A satisfies ¬¬x = x and

x · y ≤ z iff ¬z · y ≤ ¬x. (1.5)

Here, ≤ denotes the lattice order and ¬ binds more strongly than any other
operation symbol.

Setting y = e in (1.5), we see that ¬ is antitone (order-reversing).

Theorem 1.53. Any IRL satisfies De Morgan’s laws:

¬(x ∧ y) = ¬x ∨ ¬y (1.6)

¬(x ∨ y) = ¬x ∧ ¬y (1.7)

Proof. We prove only (1.6), as (1.7) follows similar reasoning. Here we use
Characterization 1.7 and show that ¬(x∧ y) = sup{¬x,¬y}. We first show
that ¬(x ∧ y) is an upper bound of ¬x and ¬y. Recall that x ∧ y ≤ x, so
since ¬ is antitone, ¬x ≤ ¬(x ∧ y). Similarly ¬y ≤ ¬(x ∧ y).

We still need to show that ¬(x ∧ y) is the least upper bound of ¬x
and ¬y. Suppose z is an upper bound of ¬x and ¬y. But then ¬z ≤ x
and ¬z ≤ y, since ¬ is antitone and ¬¬x = x. Therefore ¬z ≤ x ∧ y, so
¬(x ∧ y) ≤ z, as required.

Theorem 1.54. In an IRL, · is compatible with the order in the sense
that, if x ≤ y then x · z ≤ y · z.

Proof. By the reflexivity of ≤ we know that y · z ≤ y · z. Applying (1.5)
we see that ¬(y · z) · z ≤ ¬y. But ¬y ≤ ¬x, since ¬ is antitone. So, by the
transitivity of ≤, we have ¬(y · z) · z ≤ ¬x. Applying (1.5) again, we see
that x · z ≤ y · z, as required.

We define x→ y := ¬(x·¬y) and f := ¬e, where→ is called residuation.

Theorem 1.55. Any IRL satisfies the law of residuation:

x · y ≤ z iff y ≤ x→ z (1.8)

Proof. From (1.5) we know that x · y ≤ z if and only if x · ¬z ≤ ¬y. The
latter condition holds if and only if y ≤ ¬(x · ¬z), since ¬ is antitone. But
¬(x · ¬z) = x→ z by definition.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 1. PRELIMINARIES 21

The law of residuation is a powerful tool that we will use often. In
a sense, → compensates for the fact that we do not have multiplicative
inverses (which would make 〈A; ·, e〉 a group). It is not difficult to show that
if x has a multiplicative inverse, i.e., an element x−1 such that x · x−1 = e,
then x→ y = x−1 · y.

The following properties will be used so often that they deserve to be
proved here.

Theorem 1.56. The following are properties of IRLs:

(i) x · (x→ y) ≤ y

(ii) x ≤ y iff e ≤ x→ y

Proof. (i) follows from the law of residuation, once we note that x → y ≤
x→ y by reflexivity of ≤.

For (ii), notice that

x ≤ y iff x · e ≤ y iff e ≤ x→ y,

since x · e = x and by the law of residuation.

The following properties of IRLs are well-known and not difficult to
prove.

Theorem 1.57. IRLs satisfy the following with regard to involution:

(i) ¬x = x→ f

(ii) x→ y = ¬y → ¬x

(iii) x · y = ¬(x→ ¬y)

Theorem 1.58. The following are properties of IRLs:

(i) e ≤ x→ x

(ii) If x ≤ y then y → z ≤ x → z, i.e., → is order reversing in the first
coordinate.

(iii) If x ≤ y then z → x ≤ z → y, i.e., → is order preserving in the
second coordinate.

(iv) (x · y)→ z = y → (x→ z)

(v) (x→ y) · (y → z) ≤ x→ z
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(vi) x · (y ∧ z) ≤ (x · y) ∧ (x · z)

(vii) x · (y ∨ z) = (x · y) ∨ (x · z)

We let IRL denote the class of all IRLs.

Theorem 1.59. The class IRL is a variety.

Proof. It can be shown that IRL is axiomatized by the following equations,
together with those for lattices and commutative monoids; see [31].

x ≤ y → (y · x)

x · (x→ y) ≤ y

x · (y ∧ z) ≤ (x · y) ∧ (x · z)

(x→ y) ∧ (x→ z) = x→ (y ∧ z)

x = ¬¬x
x→ ¬y = y → ¬x
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Chapter 2

Deductive Systems:
unifying logic and algebra

The aim of this chapter is to explain what it means for a logic to be alge-
braized by a class of algebras. Following Blok and Pigozzi [11] (also see [12,
14, 22, 23, 24]), we will establish a common framework that unifies algebras
and logics. In this framework, the basic notion is a mathematical structure
called a deductive system. We proceed by first explaining what we mean by
a sentential logic. We will then define the equational consequence relation
of a class of algebras. It will then be shown that the notion of a deduc-
tive system encompasses both of these concepts. For a recent exposition of
abstract algebraic logic see [49], which was the main source of the precise
definitions and notation for this text.

2.1 Finitary Sentential Logics

To set the stage, all the structures that we are concerned with are in an
algebraic language. An algebraic language consists of an algebraic signature
and an infinite set of variables. We will assume throughout the chapter that
a fixed but arbitrary algebraic signature F and an infinite set of variables
Var are given. Elements of Var are often denoted by the letters p, q, r, . . . ,
possibly with indices.

Let FmF(Var) be the absolutely free algebra over Var in the given
signature F (see Definition 1.38). When no confusion will arise, we will
simply write Fm. Recall that the elements of Fm are what an algebraist
would call terms. We define a substitution to be a homomorphism from
Fm to itself, i.e., an endomorphism of Fm. Note the similarity between
substitutions and evaluations (see Section 1.4). In fact, a substitution is

23
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CHAPTER 2. DEDUCTIVE SYSTEMS 24

just an Fm-evaluation.

The logics Rt and R that will be studied in this thesis will be introduced
in Chapter 4 as sentential formal systems. We start our exposition with a
discussion about formal systems in general.

Each formal system L is defined in a certain language. In the present
context the language is F and Var . In the logical context we call F the
set of (logical) connectives . The elements of Fm are called the formulas
of L.1 A rule Γ / α is a pair that consists of a set Γ of formulas, called the
premises of the rule, together with a formula α, called the conclusion of the
rule. We say that a rule Γ / α is finite if Γ is a finite set.

Definition 2.1. A (sentential) formal system L over F and Var consists
of a set of formulas, called the axioms of L, together with a set of rules,
called the inference rules of L. If all the inference rules of L are finite, then
L is said to be finitary .

From now on, unless we say otherwise, all formal systems are assumed
to be finitary.

Example 2.2. Let CLL be the following formal system. The connectives
of CLL are ∧,∨, ·,→,¬, t with type (2, 2, 2, 2, 1, 0).

Axioms of CLL:

A1 p→ p (identity)

A2 (p→ q)→ ((r → p)→ (r → q)) (prefixing)

A3 (p→ (q → r))→ (q → (p→ r)) (exchange)

A4 (p ∧ q)→ p

A5 (p ∧ q)→ q

A6 ((p→ q) ∧ (p→ r))→ (p→ (q ∧ r))
A7 p→ (p ∨ q)
A8 q → (p ∨ q)
A9 ((p→ r) ∧ (q → r))→ ((p ∨ q)→ r) (disjunction)

A10 t

A11 t→ (p→ p)

A12 p→ (q → (q · p))
A13 (p→ (q → r))→ ((q · p)→ r)

A14 (p→ ¬q)→ (q → ¬p) (contraposition)

A15 ¬¬p→ p (double negation)

1Formulas can be defined in more generality (see Section 2.3) but in the sentential
case formulas and terms are the same thing.
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Inference rules of CLL:

MP p, p→ q / q (modus ponens)

AD p, q / p ∧ q (adjunction)

CLL is the exponential-free fragment of classical linear logic and it will
be an important example throughout this and the next chapter.

A reader who is familiar with classical logic might be unfamiliar with
the · symbol. To alleviate this curiosity we will mention here that · can be
interpreted as ‘co-tenability’, i.e., one intuitive reading of p·q is ‘p and q can
be simultaneously true’. Another is that p · q is the strongest proposition
r such that p implies q → r. Classical logic (see Example 2.8 below) may
be got from CLL by adding certain axioms. In classical logic, · and ∧
(ordinary conjunction) coincide. Further philosophical discussion will be
postponed until Chapter 4.

Let L be an arbitrary formal system. For any substitution h : Fm →
Fm and any formula α ∈ Fm we say that h(α) is a substitution instance
of α.

Given a set Γ ∪ {α} ⊆ Fm of formulas, a proof of α from Γ in L is a
finite sequence of formulas, terminating with α, such that each item in the
sequence is one of the following:

1. an element of Γ,

2. a substitution instance of an axiom of L,

3. a substitution instance of the conclusion of an inference rule of L,
where the same substitution turns the premises of the rule into pre-
vious items in the sequence.

If such a proof exists, we write Γ `L α and we call Γ / α a derivable rule of
L. We say that α is a theorem of L when ∅ `L α, in which case we write
`L α. The deducibility relation of L, denoted `L, is just the set of derivable
rules of L, so it is a binary relation between subsets of Fm and elements of
Fm.

Following the abstract algebraic logic tradition we adopt the following
definition.

Definition 2.3. A sentential logic is the deducibility relation `L of a (sen-
tential) formal system L (over the same language). We say that `L is
axiomatized by L.
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This definition differs from an older tradition (see Definition 2.18) of
identifying logics with their sets of theorems alone, which is less amenable to
mathematical analysis. Note that our definition allows us to have different
axiomatizations of a logic, so long as they produce the same derivable rules.
To avoid notational clutter, we regularly attribute to a formal system L the
significant properties of its deducibility relation `L.

Example 2.4. The following constitutes a formal proof in CLL of the
theorem

p→ ¬¬p. (2.1)

.

1 ¬p→ ¬p A1

2 (¬p→ ¬p)→ (p→ ¬¬p) A14

3 p→ ¬¬p 1, 2, MP

The purpose of this example is to explain, once and for all, how the given
definition of substitution corresponds exactly to our intuition. To show
that 1 is a legitimate step in the proof, we observe that it is a substitution
instance of axiom A1. Intuitively, we replace every occurrence of p in A1
with the term ¬p. Recall that there is an infinite set of variables Var , that
generates Fm, and that p ∈ Var . Now define a function h : Var → Fm
that maps p to ¬p and all other elements of Var to themselves. Since Fm
is absolutely free, we know that h extends uniquely to a homomorphism,
say h′ : Fm → Fm. Recall that A1 is p → p. So, a substitution instance
of it is h′(p→ p) = h(p)→ h(p) = ¬p→ ¬p.

In a similar way, we choose a function g : Var → Fm such that g(p) =
¬p and g(q) = p to show that 2 is a substitution instance of A14. The
last step is of course, modus ponens with ¬p → ¬p substituted for p and
p→ ¬¬p substituted for q.

Example 2.5 (suffixing). The following is a theorem of CLL:

(p→ q)→ ((q → r)→ (p→ r)) (2.2)

Proof. The formal proof is as follows.

1 (q → r)→ ((p→ q)→ (p→ r)) A2

2
((q →r)→ ((p→ q)→ (p→ r)))

→ ((p→ q)→ ((q → r)→ (p→ r)))
A3

3 (p→ q)→ ((q → r)→ (p→ r)) 1,2 MP
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Let’s consider an example where we establish a rule.

Example 2.6. The following is a demonstration that

q → p `CLL ¬p→ ¬q. (2.3)

To the proof of Example 2.4, we add:

4 (p→ ¬¬p)→ ((q → p)→ (q → ¬¬p)) A2

5 (q → p)→ (q → ¬¬p) 3,4, MP

6 q → p

7 q → ¬¬p 5,6, MP

8 (q → ¬¬p)→ (¬p→ ¬q) A14

9 ¬p→ ¬q 7,8, MP

Note that 6 is a valid step in the proof, because it is one of the premises
of the rule we are trying to establish.

When we justify the derivability of a rule, we will typically not present
the actual sequence of steps that constitute a proof. Instead our steps will
be of the form Γ `L α. Recall that this should be read as “there is a proof
in L of α from Γ.” When we reference such a step as motivation for another
step, say Γ′ `L β where Γ ⊆ Γ′, it is understood that a proof in L of β
from Γ′ could be exhibited, and would include (as a subsequence) a proof
of α from Γ. Moreover, when we apply the same substitution to every step
of a proof, the resulting sequence is still a proof. These two principles are
exploited in step 2 of Example 2.7. Finally, we sometimes abbreviate proofs
by combining two steps (at least) into one, as exemplified in steps 3 and 5
of Example 2.7.

Example 2.7 (converse of A13). The following is a theorem of CLL:

((q · p)→ r)→ (p→ (q → r)) (2.4)

Proof.

1 `CLL p→ (q → (q · p)) A12

2 `CLL (q → (q · p))→ (((q · p)→ r)→ (q → r)) (2.2)

3
`CLL [p→ (q → (q · p))]

→ [p→ (((q · p)→ r)→ (q → r))]
2, A2, MP

4 `CLL p→ (((q · p)→ r)→ (q → r)) 1, 3, MP

5 `CLL ((q · p)→ r)→ (p→ (q → r)) 4, A3, MP
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Let L be a sentential logic. Whenever we add to L a set of axioms to
get a formal system L′, we say that `L′ is an axiomatic extension of `L.
Notice that `L ⊆ `L′ .

Example 2.8. Classical propositional logic (CPL) is the axiomatic exten-
sion of CLL obtained by adding the axioms:

C1 (p→ (p→ q))→ (p→ q) (contraction)

C2 p→ (q → p) (weakening)

We abbreviate (p → q) ∧ (q → p) as p ↔ q. The theorems of CPL
include (p · q) ↔ (p ∧ q) and (p → p) ↔ (q → q) and (p → p) ↔ t. To
this extent, · and t are redundant in CPL (but not in CLL). The formula
p → p is often abbreviated in CPL by a constant symbol, such as > or 1,
rather than t.

2.2 Equational Consequence Relations

In the previous section we defined the sentential logic axiomatized by a
formal system. Recall that the aim of this chapter is to explain what it
means for a logic to be algebraized by a certain class of algebras. In this
section we return to our study of classes of algebras and establish notions
and syntax that will allow us to view classes of algebras in a way that is
comparable to our notion of a logic.

Let K be a class of algebras in our fixed signature F . Recall that a
K-evaluation is a homomorphism from Fm into some algebra A ∈ K and
it is determined entirely by its action on the elements of Var .

Definition 2.9. |=K is the binary relation between sets of equations and
equations (in our language), such that for any set of equations Σ∪{α ≈ β},

Σ |=K α ≈ β if and only if, for every K-evaluation h, if h(µ) =
h(ν) for all µ ≈ ν ∈ Σ, then h(α) = h(β).

We call |=K the equational consequence relation of K.

Notice the similarity between this definition and what it means for K
to satisfy an equation or quasi-equation. Specifically, ∅ |=K α ≈ β if and
only if K satisfies the equation α ≈ β. We often abbreviate ∅ |=K α ≈ β
as |=K α ≈ β. Similarly, if Γ ∪ {α ≈ β} is a finite set of equations, then
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Γ |=K α ≈ β if and only if K satisfies the quasi-equation(
&

(µ≈ν)∈Γ
µ ≈ ν

)
⇒ (α ≈ β).

The difference in emphasis here is that |=K is defined as a binary relation,
just like a sentential logic in the previous section.

Generalized quasi-equations are defined like quasi-equations, except that
we allow them to have an infinite set of premises. Notice that, unlike quasi-
equations, generalized quasi-equations are not generally formulas of the
first-order language of K, owing to their possibly infinite length.

We say that |=K is finitary if, whenever Σ |=K α ≈ β, then there exists
a finite Σ′ ⊆ Σ, such that Σ′ |=K α ≈ β.

Let’s establish some important properties of |=K.

Theorem 2.10. For any set of equations Σ ∪ Σ′ ∪ {α ≈ β},

(i) if (α ≈ β) ∈ Σ then Σ |=K α ≈ β.

(ii) if Σ′ |=K µ ≈ ν for all (µ ≈ ν) ∈ Σ, and Σ |=K α ≈ β, then
Σ′ |=K α ≈ β.

(iii) if Σ |=K α ≈ β , then h[Σ] |=K h(α) ≈ h(β) for all substitutions h,

where we define h[Σ] := {h(µ) ≈ h(ν) : (µ ≈ ν) ∈ Σ}.

Proof. (i) and (ii) follow simply from the definitions. To prove (iii), let g
be any evaluation into some A ∈ K such that

g(h(µ)) ≈ g(h(ν)) for all (µ ≈ ν) ∈ Σ.

Notice that g◦h is also an A-evaluation, so gh(α) = gh(β), as required.

When dealing with |=K, we can assume, without loss of generality, that
K is closed under isomorphisms, subalgebras and direct products, because
of the following lemma.

Lemma 2.11. Σ |=K α ≈ β iff Σ |=I S P(K) α ≈ β.

Proof. The implication from right to left is obvious, as K ⊆ I S P(K).

For the other implication, suppose that Σ∪{α ≈ β} is a set of equations
such that Σ |=K α ≈ β. Let g : A → B be an embedding from some
algebra A into some algebra B ∈ K. Let h be an A-evaluation such that
h(µ) = h(ν) for any µ ≈ ν ∈ Σ. Note that g ◦ h is a B-evaluation and
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that gh(µ) = gh(ν) for any µ ≈ ν ∈ Σ. But then gh(α) = gh(β), because
B ∈ K. Therefore h(α) = h(β), because g is an embedding.

Now suppose that A =
∏

i∈I Bi, where I is some index set and Bi ∈ K
for all i ∈ I. Again, let h be an A-evaluation such that h(µ) = h(ν) for
any µ ≈ ν ∈ Σ. Let pi be the ith projection from A onto Bi. Here pi ◦ h
is a Bi-evaluation. Also, for any µ ≈ ν ∈ Σ and any i ∈ I we have that
pih(µ) = pih(ν), so that pih(α) = pih(β). This means that h(α) and h(β)
agree in every coordinate, i.e. h(α) = h(β).

A class K of algebras is called a prevariety if it is closed under I,S and
P. Recall that the smallest such class containing K is I S P(K). The result
above can be generalised to a statement similar to Birkhoff’s theorem for
varieties. In particular:

Theorem 2.12. If a class K of algebras is axiomatized by generalized quasi-
equations, then it is a prevariety.

The converse is problematic: If K is a prevariety, then it is axiomatized
by the generalized quasi-equations that it satisfies, but these might not all
be expressible in the fixed algebraic language that we are using, even if we
allow for infinite expressions. The reason is that the cardinality of Var may
be insufficient. Under certain assumptions, the question of whether every
prevariety can be axiomatized using a set (as opposed to a proper class) of
variables is independent of axiomatic set theory (with the axiom of choice);
see [1].

The aforementioned problem with the cardinality of Var vanishes if |=K

is known to be finitary. This is essentially the content of the next result,
which is a variant of Theorem 1.46.

Theorem 2.13. Let K be a prevariety. Then the following conditions are
equivalent:

(i) K is a quasivariety (axiomatized by quasi-equations).

(ii) |=K is finitary.

(iii) K is closed under ultraproducts.

We can uniquely associate every formal equation α ≈ β with a pair of
terms in our language, namely 〈α, β〉 ∈ Fm×Fm. Although this is an ob-
vious observation, it leads to an important connection between congruences
and equational consequence.
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A congruence θ of an algebraA is called a K-congruence ifA/θ ∈ K. The
following facts are easily verified. When K is a prevariety, the set ConK(A)
of K-congruences of A is closed under arbitrary intersections, whence it
becomes a complete lattice (with intersections as meets) when ordered by
set inclusion. When K is a quasivariety, then ConK(A) is also closed under
the unions of non-empty directed subsets, so by Theorems 1.17 and 1.18, it
is an algebraic lattice.

Theorem 2.14. Suppose that K is a quasivariety and let θ ⊆ Fm × Fm.
Then θ is a K-congruence of Fm if and only if, whenever Σ |=K α ≈ β and
Σ ⊆ θ, then 〈α, β〉 ∈ θ.

Proof. Suppose that θ ∈ Con(Fm) such that Fm/θ ∈ K. Now suppose
that Σ |=K α ≈ β and Σ ⊆ θ. Let q be the canonical surjection from Fm
to Fm/θ. Note that q is an Fm/θ-evaluation. Also, q(µi) = q(νi) for any
µi ≈ νi ∈ Σ since Σ ⊆ θ. But then q(α) = q(β) (because Fm/θ ∈ K), i.e.,
〈α, β〉 ∈ θ.

Conversely, suppose that θ is a subset of Fm × Fm that satisfies the
second condition. Let α, β, γ ∈ Fm. It clear from the definition that
|=K α ≈ α so that 〈α, α〉 ∈ θ. Therefore θ is reflexive.

Now suppose that 〈α, β〉 ∈ θ. It is also clear from the definitions that
α ≈ β |=K β ≈ α, so that 〈β, α〉 ∈ θ. Therefore θ is symmetric. Similarly,
transitivity of θ follows easily from the fact that α ≈ β, β ≈ γ |=K α ≈ γ.

Now, let f be any operation symbol in F , such that ϕ(f) = n. Suppose
that 〈α1, β1〉, . . . , 〈αn, βn〉 ∈ θ. We want to show that

〈f(α1, . . . , αn), f(β1, . . . , βn)〉 ∈ θ.

This will follow if we can show that

α1 ≈ β1, . . . , αn ≈ βn |=K f(α1, . . . , αn) ≈ f(β1, . . . , βn).

Let h be any evaluation into an algebra A ∈ K, such that h(αi) = h(βi) for
all i ≤ n. Then

h(f(α1, . . . , αn)) = fA(h(α1), . . . , h(αn))

= fA(h(β1), . . . , h(βn))

= h(f(β1, . . . , βn)).

So far we have shown that θ is a congruence of Fm. To show that it
is a K-congruence, suppose that Σ |=K α ≈ β. It suffices to show that
Σ |={Fm/θ} α ≈ β, because K is axiomatized by quasi-equations. Let h be
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any Fm/θ-evaluation such that h(µ) = h(ν) for any (µ ≈ ν) ∈ Σ. For
any x ∈ Var we know that h(x) is some (non-empty) θ-equivalence class.
So, for any x ∈ Var we choose some αx ∈ h(x). We uniquely extend the
mapping x 7→ αx to a substitution g. If we let q denote the canonical
surjection from Fm to Fm/θ, then q ◦ g = h, since these functions agree
on Var . From Theorem 2.10(iii), we know that g[Σ] |=K g(α) ≈ g(β). For
each (µ ≈ ν) ∈ Σ,

qg(µ) = h(µ) = h(ν) = qg(ν),

so 〈g(µ), g(ν)〉 ∈ ker q = θ. Therefore 〈g(α), g(β)〉 ∈ θ, by assumption. But
then h(α) = qg(α) = qg(β) = h(β) as required.

In the next section we will introduce a mathematical structure, called a
deductive system, which encompasses equational consequence relations and
sentential logics. We will then be in a position to finally say what it means
for a logic to be algebraized by a class of algebras. When we explore the
details of algebraization in Chapter 3, the intuition that formal equations
are related to congruences, will act as our guiding principle.

2.3 Deductive Systems

Let us now turn to the promised unifying structure.

A consequence relation on a set A is a binary relation ` from subsets of A
to elements of A satisfying the following postulates, for all B∪C∪{a} ⊆ A:

� if a ∈ B then B ` a (reflexivity);

� if C ` b for all b ∈ B and B ` a, then C ` a (transitivity).

From these postulates it follows easily that

� if B ` a and B ⊆ C, then C ` a (monotonicity).

We say that ` is finitary if, in addition to the two postulates above, it
satisfies

� if B ` a then B′ ` a for some finite B′ ⊆ B (finitarity).

Recall that in Section 2.1 we fixed an algebraic language, F and Var .
Also recall that we took formulas for a sentential formal system or logic to
be the same thing as terms in our language, i.e., elements of Fm. We now
wish to broaden our definition of formulas.
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Let R be the set of predicate symbols of some first-order language (see
Section 1.4) with operation symbols F and variables Var . An R–formula
is an atomic formula of the same first-order language, i.e., a formula of the
form r(α1, . . . , αk) where r ∈ R is a k-ary predicate symbol and α1, . . . , αk
are terms in Fm.

Definition 2.15. An R-deductive system is a consequence relation ` over
the set of R–formulas, such that for any set of R–formulas Γ ∪ {α},

� if Γ ` α then h[Γ] ` h(α) for every substitution h (substitution-
invariance),

where the substitution instance h(r(α1, . . . , αk)) of anR–formula r(α1, . . . , αk)
is defined to be r(h(α1), . . . , h(αn)).

From now on, a deductive system will mean an R-deductive system for
some suitable R as above, and its formulas will be the set of R–formulas.

For example, consider the first-order language of algebras in F and Var ,
where equality is the only (binary) predicate symbol. The atomic formulas
of this language are just formal equations. An R-deductive system is called
a 2-dimensional deductive system (briefly, a 2-deductive system) if R con-
tains a single binary predicate symbol. Theorem 2.10 shows that equational
consequence relations |=K are, in fact, 2-deductive systems, where we in-
terpret h(α ≈ β) as h(α) ≈ h(β) for every substitution h. Here, ‘formulas’
are equations, not terms.

A sentential deductive system can be defined abstractly as anR-deductive
system where R contains only a single unary predicate symbol, say r. In
this case, ‘hiding’ the r and identifying each atomic formula r(α) with the
term α, we can take the formulas of the system to be just terms. In the
finitary case, this clearly encompasses the notion of a sentential logic `L,
defined earlier. Conversely, we understand the first-order language of a sen-
tential logic `L to be the first-order language equipped with F , Var and
just one unary predicate symbol r, called the truth-predicate. Intuitively
r(α) means that term α is asserted.

In the abstract algebraic logic tradition, there is actually no distinction
between ‘logic’ and ‘deductive system’. We follow this tradition in our
informal remarks, but in Definition 2.18, we will define a ‘logic over a
deductive system’. In that context, the words have distinct meanings.

From here on, we will use the same symbols as in Section 2.1, α and Γ,
to denote formulas and sets of formulas of deductive systems. But in the
present context these need not refer to terms, except in the sentential case.
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Let ` be a deductive system. As with sentential systems, the theorems
of ` are the formulas α such that ∅ ` α, which we abbreviate as ` α. Γ/Π
will denote {Γ/α : α ∈ Π}. If Γ ` α for all α ∈ Π, we often write Γ ` Π.
Also Γ, α ` Π means Γ∪{α} ` Π, and Γ a` Π means ‘Γ ` Π and Π ` Γ’.

We can now broaden our definition of formal system to include our
wider notion of formulas, by repeating essentially verbatim Definition 2.1,
and only changing what we mean by ‘formulas’ to include R–formulas.

Fact 2.16 ([35]). Every finitary deductive system ` is the deducibility re-
lation of a formal system (in this wider sense).

Indeed, the theorems of ` can serve as axioms in one such formal system,
with the other finite derivable rules serving as inference rules.

We could further broaden our definition of a formal system so that the
fact above holds even for non-finitary deductive systems, but this would for
instance require a discussion about infinite proofs, which falls outside the
scope of this text.

As an aside, our definition also allows formulas to be sequents, such as
α1, . . . , αn . β1, . . . , βm, i.e., pairs of finite sequences of terms. Thus, Γ ` α
might abbreviate an instance of a so-called ‘cut-rule’, such as,

γ . β σ, β, π . δ

σ, γ, π . δ

In this way, sequential systems (a.k.a. Gentzen systems) may be regarded
as deductive systems, amply justifying the extra generality in the definition.
In this dissertation, however, we shall be concerned, almost exclusively, with
sentential deductive systems and equational consequence relations.

Now that we have set up our common framework, we can define what
it means for a deductive system ` to be algebraized by a class of algebras.
Given a class of algebras K in the same algebraic language, we will say that
` is algebraized by K if the deductive systems ` and |=K are equivalent, in a
certain natural sense. We will now discuss what it means for two deductive
systems to be equivalent.

Suppose that ` is a deductive system. A set T of formulas of ` is called
a `–theory provided that

whenever Γ ` α and Γ ⊆ T then α ∈ T .

Notice that Theorem 2.14 states that the theories of an equational con-
sequence relation |=K are exactly the K-congruences θ of Fm.
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Example 2.17. The set of theorems of a deductive system ` is a `–theory.

Proof. Let T be the set of theorems of `, i.e., T = {α : ` α}. Suppose that
Γ ` β and Γ ⊆ T . Notice that ∅ ` γ for every γ ∈ Γ, so by transitivity,
∅ ` β, i.e., β ∈ T .

As already mentioned, there is a tendency to refer to any deductive
system informally as a ‘logic’. However, the following definition is more
orthodox:

Definition 2.18. A logic over ` is a `–theory that is closed under substi-
tution.

It is easy to check that intersections of theories are again theories, so
that the set of theories of ` becomes a complete lattice when ordered by set
inclusion; see Lemma 1.10. The corresponding closure operator is denoted
by Cn`, standing for ‘consequences of’. So, for any set Γ of formulas, the
theory generated by Γ is

Cn` Γ = {α : Γ ` α}.

Therefore, T is a theory if and only if Cn` T = T . Also,

Γ ` α iff Cn`{α} ⊆ Cn` Γ. (2.5)

This means that ` can be recovered from its lattice of theories 〈Th`;∩,∨〉.
However, the lattice operations do not express the substitution-invariance
of `, which amounts to this:

whenever T is a theory of `, then so is h−1[T ], for every substi-
tution h.

This leads us to the following definition of Jónsson [8, 9].

Definition 2.19. Two deductive systems with the same language are equiv-
alent if there is a lattice isomorphism Λ between their lattices of theories
such that

Λ(h−1[T ]) = h−1[Λ(T )]

for all theories T and substitutions h.

We can reword this definition by defining the theory algebra of ` to be
〈Th`;∩,∨, h−1 (h ∈ Sub)〉, which is a lattice with extra unary operations
h−1 indexed by the set Sub of all substitutions h. Then two deductive
systems are equivalent if and only if their theory algebras are isomorphic.
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Thus, the notion of equivalence is symmetric. The isomorphism Λ in Defi-
nition 2.19 is called an equivalence.

This definition of equivalence is algebraically natural and elegant, but
is rather abstract from the point of view of general logic. Thankfully, a
syntactic characterisation is available that does not venture into the realm
of theory algebras.

Let `1 and `2 be deductive systems in the same language. A translation
from `1 to `2 is understood here to be a function τ from formulas of `1

to sets of formulas of `2; it is said to be definable if

τ (h(α)) = h[τ (α)] for any substitution h.

In the latter case, τ is determined by its action on ‘atoms’, such as variables
in the sentential case, and pairs of variables in the equational case. Indeed,
the formulas to which the atoms are sent explicitly define the action of τ
on all formulas α.

Specifically, a definable translation τ from a sentential system `1 to a
2-deductive system `2 can be specified as a set of pairs 〈τ l(p), τ r(p)〉, where
each coordinate is a unary term. (Recall that p denotes a variable.) When
`2 is an equational consequence relation, it is natural to treat 〈τ l(p), τ r(p)〉
as an equation τ l(p) ≈ τ r(p). Then

τ (α) = {τ l(α) ≈ τ r(α) : 〈τ l(p), τ r(p)〉 ∈ τ}.

Similarly, if `1 is a 2-deductive system and `2 is a sentential system, and
ρ is a definable translation from `1 to `2, then ρ is determined by a set of
binary terms, ρ(p, q).

Example 2.20. Recall `CPL is the deducibility relation of classical propo-
sition logic (see Example 2.8), and let BA denote the variety of Boolean
algebras (see Definition 1.22). A definable translation τ from `CPL to
|=BA is given by

τ : α 7→ {α ≈ t}.
Here t is interpreted, in any Boolean algebra, as the top element, and · as
∧. We interpret ¬x as the complement of x in the context of BA. Lastly
we define x→ y := ¬x ∨ y in BA. Under these conventions, the signatures
of CPL and BA become the same.

When a translation τ of a sentential system is known to be definable,
it can be specified by its action on the variable p. Indeed, for any formula
α, letting h be a substitution with α = h(p), we have τ (α) = τ (h(p)) =
h[τ (p)]. When introducing such a τ , therefore, we often write, for example:
τ = {p ≈ t} or τ = {〈p, t〉}.
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In general, in a 2-deductive system with binary relation r, we can iden-
tify every formula r(α, β) with the pair 〈α, β〉. A definable translation ρ
from |=BA to `CPL is given by

ρ : 〈α, β〉 7→ {α→ β, β → α}.

Again, if we write ρ = {p → q, q → p}, then, for every substitution h, we
have ρ(h(p), h(q)) = h[ρ(p, q)] = {h(p)→ h(q), h(q)→ h(p)}.

For any definable translation τ , we shall abbreviate⋃
γ∈Γ

τ (γ) as τ [Γ], and {α : τ (α) ⊆ Γ} as τ−1[Γ].

The next result is the main theorem on equivalence. It follows from [27,
Sec. 4], which generalizes both [11, Thm. 3.7(ii)] and [9, Thm. 5.5].

Theorem 2.21. Deductive systems `1 and `2 are equivalent iff there are
definable translations τ and ρ such that the following hold for any set Γ∪{α}
of formulas of `1 and any formula ψ of `2:

(1) Γ `1 α iff τ [Γ] `2 τ (α);

(2) ψ a`2 τ [ρ(ψ)].

In this case, an equivalence Λ from `1 to `2 is given by

Λ : T 7→ Cn`2 τ [T ] = ρ−1[T ], for any theory T of `1 .

Remark. By the symmetry of equivalence, the conjunction of (1) and (2)
could be replaced, in Theorem 2.21, by that of

(3) Σ `2 ψ iff ρ[Σ] `1 ρ(ψ);

(4) γ a`1 ρ[τ (γ)],

where Σ ∪ {ψ} is any set of formulas of `2 and γ is any formula of `1.

Proof of Theorem 2.21. Here we prove only that if definable translations τ
and ρ satisfying (1)–(4) exist, then `1 and `2 are equivalent.

We begin by showing that Cn`2 τ [T ] = ρ−1[T ] for any theory T of `1.
Let ψ ∈ ρ−1[T ], so that ρ(ψ) ⊆ T . Therefore,

τ [ρ[ψ]] ⊆ τ [T ] ⊆ Cn`2 τ [T ].
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Furthermore, from (2) we have that τ [ρ[ψ]] `2 ψ. But then ψ ∈ Cn`2 τ [T ],
since the latter is a `2–theory.

Conversely, suppose that ψ ∈ Cn`2 τ [T ]. This means that τ [T ] `2 ψ.
From (2) we know that ψ `2 τ [ρ(ψ)], which implies that τ [T ] `2 τ [ρ(ψ)].
By (1) it follows that T `1 ρ(ψ). Therefore ρ(ψ) ⊆ T , as required.

This shows, in particular, that ρ−1[T ] is a `2–theory, for every `1–
theory T . By symmetry, τ−1[T ] is a `1–theory, for every `2–theory T .

Let Λ be as in the theorem’s statement. Now, to show that Λ is order-
preserving, suppose that T and T ′ are `1-theories such that T ⊆ T ′. It is
clear that τ [T ] ⊆ τ [T ′], so that Cn`2 τ [T ] ⊆ Cn`2 τ [T ′].

To show that Λ is order-reflecting, suppose that Cn`2 τ [T ] ⊆ Cn`2 τ [T ′].
It follows that τ [T ′] `2 τ [T ]. By (1) it follows that T ′ `1 T , hence T ⊆ T ′

(as T ′ is a theory).

To prove surjectivity, let T2 be any theory of `2. Let T1 = τ−1[T2]. As
noted above, T1 is a `1–theory. For any ψ ∈ T2, we know from (2) that
ψ `2 τ [ρ(ψ)], so τ [ρ(ψ)] ⊆ T2. It follows that ρ(ψ) ⊆ τ−1[T2] = T1, i.e.,
ψ ∈ ρ−1[T1]. This shows that T2 ⊆ Λ(T1).

Now suppose that ψ ∈ Λ(T1) = ρ−1[T1]. It follows that ρ(ψ) ⊆ T1 =
τ−1[T2]. But then τ [ρ(ψ)] ⊆ T2. Again from (2) it follows that ψ ∈ T2.
Therefore T2 = Λ(T1), showing that Λ is onto.

Let h be any substitution and let T be any `1 theory. Let ψ ∈
Λ(h−1[T ]) = ρ−1[h−1[T ]]. Then h[ρ(ψ)] ⊆ T . Since ρ is a definable transla-
tion we have that h[ρ(ψ)] = ρ[h(ψ)]. But this implies that h(ψ) ∈ ρ−1[T ],
showing that ψ ∈ h−1[Λ(T )]. The reverse inclusion is similar.

The definable translations τ and ρ in Theorem 2.21 are unique up to
inter-derivability in `2 and `1, respectively, i.e., if τ ′ and ρ′ also witness
the equivalence between `1 and `2 then,

τ (α) a`2 τ
′(α) and ρ(β) a`1 ρ

′(β),

for all `1–formulas α and `2–formulas β, cf. [11, Thm. 2.15]. Moreover,
in Theorem 2.21, if `1 is finitary, then τ can be chosen finite, in the sense
that τ (α) is a finite set of formulas, for every α. By symmetry, if `2 is
finitary, then ρ can be chosen finite; see the proof of [9, Thm. 6.3].

It is worthwhile for us to put these observations together into an explicit
characterization of algebraization for the structures that we care about.

Characterization 2.22. A sentential deductive system ` is algebraized
by a class of algebras K iff there exists a set τ consisting of pairs of the
form 〈τ l(p), τ r(p)〉, where τ l and τ r are unary terms, and a set ρ of binary
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terms, such that for any set of terms Γ ∪ {α} and any equation β ≈ γ we
have

(1) Γ ` α iff τ [Γ] |=K τ (α);

(2) β ≈ γ ��K τ [ρ(β, γ)].

The conjunction of (1) and (2) can be replaced by

(3) Σ |=K α ≈ β iff ρ[Σ] ` ρ(α, β);

(4) γ a` ρ[τ (γ)].

We say that ` is elementary algebraizable if it is equivalent to a finitary
equational consequence relation. In this case we know that ` is algebraized
by a quasivariety K, by Lemma 2.11 and Theorem 2.13. Moreover, K can
be shown unique [11], so it is called the equivalent quasivariety of `.

Example 2.23. The simplest example of algebraization is that of CPL by
BA. We know that a formula is a theorem of CPL if an only if it evaluates
to the top element t of any Boolean algebra. In fact, we only need to
consider evaluations into the 2-element Boolean algebra. (The reason for
this is proved in Theorem 5.23.) The same is true more generally for the
rules of CPL. For every set of formulas Γ ∪ {α, β},

Γ `CPL α iff {γ ≈ t : γ ∈ Γ} |=BA α ≈ t.

Furthermore, it is easy to see that

α ≈ β |=BA {t ≈ α→ β, t ≈ β → α}

and
{t ≈ α→ β, t ≈ β → α} |=BA α ≈ β.

Thus, if we let τ = {〈t, p〉} and ρ = {p → q, q → p}, as in Example 2.20,
then τ and ρ witness the algebraization of CPL by BA, in the sense of
Characterization 2.22.

2.4 Extensions

We say that a deductive system `′ is an extension of ` (a deductive system
in the same language), when `′ ⊇ `. It is an axiomatic extension of ` if
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there is a set ∆ of formulas, closed under substitution, such that for any
set Γ ∪ {α} of formulas, we have

Γ `′ α iff Γ ∪∆ ` α.

If a deductive system ` is itself finitary and axiomatized by L, then
all the finitary extensions of ` can be obtained by adding axioms and/or
inference rules to L. (The proof uses Fact 2.16.) Similarly, the axiomatic
extensions of ` all arise by adding axioms to the formal system L, but not
adding new inference rules. Thus, in the sentential case, the above defini-
tion coincides with the one before Example 2.8. Obviously, the axiomatic
extensions of a finitary system are finitary.

Given a deductive system `, it is clear that intersections of extensions
of ` are again extensions of `, which means that the extensions of ` form
a complete lattice, ordered by ⊆, in which meets are intersections.

For the rest of this section, we will consider a formal system to simply be
a set of finite inference rules, where its axioms are simply special inference
rules with an empty set of premises.

Theorem 2.24. The finitary extensions of a deductive system ` form a
lattice ordered by inclusion.

Proof. Let `′ and `′′ be finitary extensions of `. We claim that `′ ∩ `′′ is
a finitary extension of `. Clearly `′ ∩ `′′ is an extension of `, so it remains
to show that it is finitary. Let Γ/α ∈ `′ ∩ `′′. Then Γ `′ α and Γ `′′ α.
By finitarity, there exist finite Π,Π′ ⊆ Γ such that Π `′ α and Π′ `′′ α. If
we let Γ′ = Π ∪ Π′ then Γ′ is a finite subset of Γ and Γ′/α ∈ `′ ∩ `′′.

By Fact 2.16, we know that `′ and `′′ can be axiomatized by formal
systems L and K respectively. We claim that `L∪K is smallest finitary
extension containing both `′ and `′′. It is clear that `L ⊆ `L∪K and
`K ⊆ `L∪K. Now suppose that `′′′ is a finitary extension of ` which
contains both `′ and `′′. In particular, `′′′ will contain every inference
rule of both K and L (including the axioms, thought of as rules of the form
∅/β). It is easy to see, once we recall that `′′′ is itself axiomatized by a
formal system, that a proof of α from Γ in `L∪K can be transformed into
a proof in `′′′.

So, the finitary extensions of ` forms a lattice in which the meet is just
intersection and the join is as described.

We can show that the set of axiomatic extensions of ` forms a lattice by
associating each axiomatic extension with its set of theorems. Specifically,
referring to Definition 2.18, we have the following.
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Theorem 2.25. A set of formulas is a logic over a deductive system ` if
and only if it is the set of all theorems of some axiomatic extension of `.

Proof. Suppose that T is a logic over `, i.e., T is a `–theory closed under
substitutions. We define a binary relation `′ from sets of `–formulas to
`–formulas by

Γ `′ α iff Γ ∪ T ` α,
and we claim that `′ is an axiomatic extension of `.

It is clear that if Γ ` α then Γ `′ α, by the monotonicity of `. If we can
show that `′ is a deductive system, then it will follow from its definition
that it is an axiomatic extension. The fact that `′ is transitive and reflexive
follows easily from the monotonicity of `. To prove substitution-invariance,
suppose that Γ `′ α, and let h be any substitution. Then

Γ ∪ T ` α, ∴ h[Γ] ∪ h[T ] ` h(α), ∴ h[Γ] ∪ T ` h(α), ∴ h[Γ] `′ h(α).

Conversely, suppose that `′ is an axiomatic extension of `. Let T be the
set of theorems of `′. Then, as in Example 2.17, T is a `′–theory. It is
easy to see from the definition of a theory that T is then also a `–theory.
Furthermore, it follows from the substitution-invariance of `′ that T is
closed under substitutions.

The fact that the axiomatic extensions of ` form a lattice then follows
easily from the fact that arbitrary intersections of logics over ` are again
logics over `. Theorem 2.25 also explains why logicians are specifically
interested in the axiomatic extensions of deductive systems.

Theorem 2.26. Let `L and `S be finitary deductive systems, axiomatized
by formal systems L and S respectively. If `L and `S are equivalent, then
the definable translations τ and ρ, from Theorem 2.21, induce mutually
inverse lattice isomorphisms between the finitary extensions of `L and those
of `S. The isomorphism in one direction is given by

h : `L′ 7→ `S′ ,

where `L′ is any finitary extension of `L and

S′ = S ∪
⋃{

τ [Γ]/τ (α) : Γ `L′ α and Γ is finite
}
.

The isomorphism g in the other direction is defined in a similar way, but
uses ρ instead of τ .

Furthermore, each `L′ is equivalent to h(`L′), witnessed by the same
translations τ and ρ.
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Proof. Without loss of generality τ and ρ can be assumed finite (see the
remarks before Characterization 2.22).

It is clear that h(`L′) is an extension of `S for every extension `L′ of
`L, since S ⊆ S′.

Let’s show that h is order-preserving. Suppose that `L′ ⊆ `L′′ . It
follows from the definition that S′ ⊆ S′′, so h(`L′) = `S′ ⊆ `S′′ = h(`L′′).

We can show in a similar way that g is order-preserving. It remains to
show, by Theorem 1.8, that h and g are mutually inverse functions.

Let `L′ be a finitary extension of `L. Suppose that Γ `L′ α, where
Γ might be infinite. By finitarity, there exists a finite Γ′ ⊆ Γ such that
Γ′ `L′ α, so τ [Γ′] `S′ τ (α), by definition. By monotonicity and the fact that
τ [Γ′] ⊆ τ [Γ], we have τ [Γ] `S′ τ (α). Let L′′ be the axiomatization of g(`S′)
indicated in the theorem statement, so g(`S′) = `L′′ . Then ρ[τ [Γ]] `L′′
ρ[τ (α)]. But since L′′ is an extension of L, and by Theorem 2.21(4), we
can conclude that Γ `L′′ α. Therefore, `L′ ⊆ gh(`L′).

Before we prove the reverse inclusion, take note of the following claim,
which we will prove after the main argument is completed.

Claim 1: Whenever Σ `S′ ψ, then ρ[Σ] `L′ ρ(ψ).

Suppose that Γ `L′′ α. Then there is a proof ~α = α1, . . . , αn of α from
Γ in L′′. We will now replace certain αi’s in ~α with proofs of αi from Γ
in L′, so that the new sequence will be a proof of α from Γ in L′. Let
αi be a step in ~α. If αi is a member of Γ or is a substitution instance of
the conclusion of an (axiom or) inference rule of L, we leave it unchanged.
Otherwise, αi is an f–substitution instance of the conclusion of an inference
rule of L′′, where the rule belongs to ρ[Σ]/ρ(ψ) and Σ `S′ ψ. By Claim 1,
ρ[Σ] `L′ ρ(ψ), so, since `L′ is substitution-invariant, f [ρ[Σ]] `L′ f [ρ(ψ)].

Now, since αi ∈ f [ρ(ψ)], there is a proof ~βi of αi from f [ρ[Σ]] in L′. Notice
that every element of f [ρ[Σ]] is αj for some j < i. If we replace every αi ∈ ~α
by ~βi, then the resulting sequence is a proof of α from Γ in L′.

Therefore, gh(`L′) ⊆ `L′ . We have shown that the composition of g
and h is the identity function on the lattice of finitary extensions of `L. By
symmetry the composition of h and g is the identity function on the lattice
of finitary extensions of `S. This shows that h is a lattice isomorphism,
with g as its inverse, as required.

We still need to show that `L′ is equivalent to h(`L′) = `S′ . If Γ `L′ α,
then, as we showed at the start of the proof, τ [Γ] `S′ τ (α).

Conversely, suppose that τ [Γ] `S′ τ (α). By finitarity there is a finite
subset X of τ [Γ] from which we can derive τ (α) in S′. In particular,
since τ is finite and by monotonicity, we can choose X to be τ [Γ′] for
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some finite Γ′ ⊆ Γ. Notice that ρ[τ [Γ′]]/ρ[τ (α)] ⊆ gh(`L′) = `L′ , so
that ρ[τ [Γ′]] `L′ ρ[τ (α)]. But then Γ′ `L′ α, by Theorem 2.21(4), since
`L ⊆ `L′ . Therefore, Γ `L′ α, by monotonicity. Lastly, it is clear from the
relation `S ⊆ `S′ that, for any `S–formula ψ,

ψ a`S′ τ [ρ(ψ)].

Proof of Claim 1. Suppose that Σ `S′ ψ. Let ~ψ = ψ1, . . . , ψn be a proof of ψ
from Σ in S′. We will show that ρ[Σ] `L′ ρ(ψ) by induction on n. Suppose
that n = 1. If ψ(= ψ1) is an element of Σ, then ρ[Σ] `L′ ρ(ψ), by reflexivity.
Suppose that ψ is an f–substitution instance of an S′ axiom ψ′. If ψ′ is an
axiom of S, then `L ρ(ψ′), by Theorem 2.21(3). Since `L is substitution-
invariant and ρ is definable, `L ρ(f(ψ′)). Therefore `L′ ρ(ψ), since `L′ is
an extension of `L. To complete the basis step we need to consider the case
where ψ′ ∈ τ (γ), where γ is some theorem of L′. Since `L′ is an extension of
`L, we know that γ `L′ ρ[τ (γ)], by Theorem 2.21(3). Therefore, `L′ ρ(ψ′).
Again, the fact that `L′ ρ(ψ) follows from substitution-invariance and the
definability of ρ.

Now suppose that ρ[Σ] ` ρ(ψi) for all i < n. In the cases where ψn is
either a member of Σ or an axiom of S′ we can use an argument similar
to the base case. Since `L′ is substitution-invariant and ρ is definable, we
can assume without loss of generality that ψ(= ψn) is the conclusion of an
inference rule Σ′/ψ of S′, where Σ′ ⊆ {ψ1, . . . , ψn−1}. If Σ′/ψ is an inference
rule of S, then ρ[Σ′] `L ρ(ψ). Therefore ρ[Σ] `L ρ(ψ), by transitivity and
the induction hypothesis. It remains to consider the case where Σ′/ψ is in
τ [Γ]/τ (γ) and Γ `L′ γ. By the induction hypothesis and Theorem 2.21(4),

ρ[Σ] `L′ ρ[Σ′] and ρ[τ [Γ]] `L′ Γ and Γ `L′ γ and γ `L′ ρ[τ (γ)].

Therefore ρ[Σ] `L′ ρ[τ (γ)], by the fact that Σ′ = τ [Γ] and transitivity. In
particular, since ψ ∈ τ (γ), we have ρ[Σ] `L′ ρ[ψ].

Corollary 2.27 (Blok & Pigozzi [11]). Let ` be a finitary deductive system
(elementarily) algebraized by quasivariety K. Then the lattice of finitary
extensions of ` is anti-isomorphic to the lattice of subquasivarieties of K.2

Proof. By Theorem 2.26, the finitary extensions of `map onto those of |=K.
As K is a quasivariety, the quasi-equations that hold in K are exactly the fi-
nite rules belonging to |=K. So, there is an obvious lattice anti-isomorphism

2An anti-isomorphism between lattices is an isomorphism from one to the order-dual
of the other.
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CHAPTER 2. DEDUCTIVE SYSTEMS 44

between the finitary extensions of |=K and the subquasivarieties of K. Com-
posing these two maps we see that the lattice of finitary extensions of ` is
anti-isomorphic to the lattice of subquasivarieties of K.

Corollary 2.28. Let ` be a finitary deductive system (elementarily) al-
gebraized by variety V. Then the lattice of axiomatic extensions of ` is
anti-isomorphic to the lattice of subvarieties of V.

Proof. Recall that the axiomatic extensions of ` are obtained by adding
axioms to any formal system axiomatizing `. From Theorem 2.26, notice
that the lattice isomorphism h will map axiomatic extensions of ` to ax-
iomatic extensions of |=V. But rules with an empty set of premises, in the
language of |=V, are just equations. So, the lattice of axiomatic extensions
of |=V is anti-isomorphic to the lattice of subvarieties of V. Therefore, com-
posing the restriction of h to the axiomatic extensions of ` with this lattice
anti-isomorphism, we get the desired result.

The following picture explains the situation. Notice that the trivial
variety satisfies all equations, and so is contained in any subvariety of V.
We say that a deductive system is inconsistent if each of its formulas is a
theorem of it. Clearly, any sentential system has an inconsistent system as
its largest extension.

s

s

trivial

V

s

s

`

inconsistent

Z
Z
Z
Z
ZZ~�

�
�
�
��>

Subvarieties of V Axiomatic extensions of `

Recall, from the introduction, that we will be exploring ‘maximal’ exten-
sions of the ‘logics’ Rt and R (which we will define in Chapter 4). They are
finitary sentential logics that are algebraized by varieties. The central point
to take away from this discussion is that we can study the finitary [resp.
axiomatic] extensions of these logics by studying the subquasivarieties [resp.
subvarieties] of their corresponding algebras.
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CHAPTER 2. DEDUCTIVE SYSTEMS 45

2.5 Fragments

Let ` be a sentential deductive system. Recall that ` has a signature
F which was fixed at the start of this chapter. For every F ′ ⊆ F the F ′-
fragment of ` is the set of rules Γ/α in `, such that the formulas in Γ∪{α}
contain only the connectives from F ′.

For every algebra A with signature F and every F ′ ⊆ F , the F ′-reduct
of A is the algebra 〈A;F ′〉, i.e., it is the algebra obtained when the opera-
tions indexed by F −F ′ are deleted from A. (We also call A an expansion
of 〈A;F ′〉.) Given a class of algebras K, the class of F ′-subreducts of K is
the class of all algebras in the signature F ′ that embed into the F ′-reduct
of an algebra in K, i.e., if K′ is the class of F ′-reducts of members of K, then
the F ′-subreduct class of K is I S(K′).

Lemma 2.29 (Mal’cev [38]). If K′ is the class of F ′-reducts of quasivariety
K, then Q(K′) = I S(K′).

Proof. Recall that Q = I S PPu ≥ I S; see Theorem 1.40. To show that
I S PPu(K′) ⊆ I S(K′), it suffices to demonstrate that K′ is already closed
under Pu and P.

IfA′ =
∏

i∈IA
′
i, whereA′i ∈ K′ for every i ∈ I, then there existAi ∈ K

(i ∈ I), such that each A′i is a reduct of Ai. But then A =
∏

i∈IAi ∈ K,
since K is a quasivariety. And it is easy to see that A′ is the F ′-reduct of
A.

Similarly, it is easy to see that any ultraproduct of members in K′ is
the reduct of an ultraproduct in K, where we use the same ultrafilter in the
latter case.

Theorem 2.30 (Blok & Pigozzi [11, Cor. 2.12]). Let ` be a sentential
deductive system, with signature F . If ` is algebraizable, then so is any
F ′-fragment of `, where F ′ contains all the connectives that occur in the
definable translations τ and ρ. If, moreover, ` is algebraized by quasivari-
ety K, then the F ′-fragment of ` is algebraized by the F ′-subreduct class of
K.

Proof. If we let K′ be the class of F ′-reducts of K, then it is clear from
Characterization 2.22, that (1) and (2) continue to hold when ` is replaced
by its F ′-fragment and K by K′. Notice that |=K′ is still finitary. So, by
Lemma 2.11 and Theorem 2.13, K′ can be replaced by Q(K′) in 2.22, and
the latter is equal to S(K′), by Lemma 2.29.
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Chapter 3

Algebraization

In the previous chapter we established what it means for a deductive system
` to be algebraized by a class of algebras K. This notion entails the existence
of two definable translations τ and ρ. In this chapter we will discuss the
details of how we might go about finding these translations (and how we
might show that they do not exist for non-algebraizable deductive systems).
The strategy is to explore some of the properties of ρ and τ , and apply these
insights to the specific example of the logic CLL (Example 2.2). The goal
is to show that CLL is algebraized by the class IRL of involutive residuated
lattices; see Section 1.6. Once this algebraization is established we will be
able to use the same ρ and τ to algebraize the logic Rt in the next chapter.

3.1 Equivalence Formulas

Recall that in Section 2.2 we noticed that formal equations, like elements
of congruences of Fm, are essentially pairs of terms. This identification
allowed us to prove Theorem 2.14. In the language of the framework estab-
lished in Section 2.3, Theorem 2.14 states that the theories of an equational
consequence relation |=K are exactly the K-congruences of Fm. Moreover,
the theory lattice of |=K is same thing as the K-congruence lattice of Fm,
as meets are intersections in both cases.

Let ` be a sentential logic that is algebraized by a class of algebras K,
via definable translations τ and ρ. Recall, from Characterization 2.22, that
we can suppose that ρ is a set of binary terms and that τ consists of pairs
of unary terms. Also, recall that the equivalence from (the theory algebra
of) ` to (that of) |=K is given by

Λ : T 7→ Cn` τ [T ] = ρ−1[T ].
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CHAPTER 3. ALGEBRAIZATION 47

We can use the connection between theories and congruences to see that ρ
will satisfy certain properties.

Definition 3.1. A set ρ of binary formulas of a sentential logic ` is called
a set of equivalence formulas for ` if

(i) ` ρ(p, p)

(ii) {p} ∪ ρ(p, q) ` q

(iii) ρ(p1, q1) ∪ · · · ∪ ρ(pn, qn) ` ρ(α(~p), α(~q)) for all n-ary formulas α,

where ~p abbreviates p1, . . . , pn and similarly for ~q. We say that ` is [finitely]
equivalential if it has a [finite] set of equivalence formulas.

An intuitive reading of ρ(p, q) is ‘p is equivalent to q’. The first condition
captures the idea that statements should be equivalent to themselves. The
second is a form of modus ponens, i.e., if p is asserted and p is equivalent
to q, then we can assert q. The last condition is called the replacement
property : if pi is equivalent to qi for i ≤ n, then a statement α is equivalent
to the statement that is got by replacing some occurrences in α of pi with
qi.

Theorem 3.2. The definable translation ρ from |=K to ` is a set of equiv-
alence formulas.

Proof. Let T be the set of theorems of `. By Example 2.17, T is a theory
of `. Therefore Λ(T ) = ρ−1[T ] is a |=K–theory, i.e., a K-congruence of
Fm (see Theorem 2.14). Since congruences are reflexive we have that
〈p, p〉 ∈ ρ−1[T ]. But this means that ρ(p, p) ⊆ T , proving the first condition
of Definition 3.1.

To prove the second condition, recall that {p} ∪ ρ(p, q) ` q will hold if
and only if

Cn`{q} ⊆ Cn`{p} ∪ ρ(p, q).

Let T = Cn`{p}∪ρ(p, q). The result will follow if we can show that q ∈ T .
First notice that 〈p, q〉 ∈ ρ−1[T ] = Λ(T ). Secondly, because T ` p, we have
that τ (p) ⊆ Cn |=K

τ [T ] = Λ(T ). Consequently, since Λ(T ) is a congruence,

τ l(q) ≡Λ(T ) τ
l(p) ≡Λ(T ) τ

r(p) ≡Λ(T ) τ
r(q),

for any 〈τ l, τ r〉 ∈ τ . Therefore τ (q) ⊆ Λ(T ) = ρ−1[T ]. In other words
ρ[τ (q)] ⊆ T . From the definition of theory we have that T ` ρ[τ (q)], from
which it follows, by Theorem 2.21(4), that T ` q, as required.
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CHAPTER 3. ALGEBRAIZATION 48

To prove the last condition of Definition 3.1 we use a similar method.
Let

T = Cn` ρ(p1, q1) ∪ · · · ∪ ρ(pn, q1).

Then 〈p1, q1〉, . . . , 〈pn, qn〉 ∈ ρ−1[T ]. As ρ−1[T ] is a congruence, and hence
compatible with terms operations, we have 〈α(−→p ), α(−→q )〉 ∈ ρ−1[T ].

Items (i) and (ii) of Definition 3.1 suggest that implication is the pro-
totype for ρ. Taking (iii) into consideration, however, we see that ρ better
simulates a bi-conditional ↔. This intuition holds up in the case of CLL.

Example 3.3. {p→ q, q → p} is a set of equivalence formulas for CLL.

Proof. The first condition of Definition 3.1 follows simply from axiom A1
and the second from modus ponens. Let’s prove the third condition. Let α
be an n-ary formula. Let

Γ = {p1 → q1, q1 → p1, . . . , pn → qn, qn → pn}.

We want to show that Γ ` α(−→p ) → α(−→q ) and Γ ` α(−→q ) → α(−→p ). We
proceed by induction on the complexity #α of α.

First, if α(p1, . . . , pn) = pi for some i = 1, . . . , n, then clearly Γ ` pi → qi
and Γ ` qi → pi, because {pi → qi, qi → pi} ⊆ Γ. Secondly, if α is t, then
by a substitution instance of A1 we have ` t→ t.

For the inductive step suppose that β and γ are terms such that

Γ ` {β(−→p )→ β(−→q ), β(−→q )→ β(−→p ), γ(−→p )→ γ(−→q ), γ(−→q )→ γ(−→p )}.

To simplify the notation, let’s say r1 = β(−→p ), r2 = γ(−→p ), s1 = β(−→q ) and
s2 = γ(−→q ). This allows us to rewrite the above as

IH Γ ` {r1 → s1, s1 → r1, r2 → s2, s2 → r2}. (induction hypothesis)

Suppose that α = ¬β. Recall that in Example 2.6 we proved that

q → p `CLL ¬p→ ¬q.

Using the induction hypothesis and an appropriate substitution we can say
that Γ `CLL ¬r1 → ¬s1. In our original notation this means that

Γ `CLL ¬β(−→p )→ ¬β(−→q ) i.e. Γ `CLL α(−→p )→ α(−→q )

as required. The arrow in the other direction follows simply from the sym-
metry of the problem. The proofs for the other connectives follow a similar
pattern to this one.
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CHAPTER 3. ALGEBRAIZATION 49

Suppose that α = β ∧ γ.

1 `CLL (r1 ∧ r2)→ r1 A4

2 Γ `CLL (r1 ∧ r2)→ s1 1, IH, A2, MP×2

3 Γ `CLL (r1 ∧ r2)→ s2 A5, IH, A2, MP×2

4 Γ `CLL ((r1 ∧ r2)→ s1) ∧ ((r1 ∧ r2)→ s2) 1, 2, AD

5 Γ `CLL (r1 ∧ r2)→ (s1 ∧ s2) 3, A6, MP

Now suppose that α = β ∨ γ.

1 `CLL s1 → (s1 ∨ s2) A7

2 Γ `CLL r1 → (s1 ∨ s2) IH, 1, A2, MP×2

3 Γ `CLL r2 → (s1 ∨ s2) IH, A8, A2, MP×2

4 Γ `CLL (r1 → (s1 ∨ s2)) ∧ (r2 → (s1 ∨ s2)) 2, 3, AD

5 Γ `CLL (r1 ∨ r2)→ (s1 ∨ s2) 4, A9, MP

Suppose that α = β · γ.

1 `CLL s2 → (s1 → (s1 · s2)) A12

2 Γ `CLL r2 → (s1 → (s1 · s2)) IH, 1, A2, MP×2

3 Γ `CLL s1 → (r2 → (s1 · s2)) 2, A3, MP

4 Γ `CLL r1 → (r2 → (s1 · s2)) IH, 3, A2, MP

5 Γ `CLL (r1 · r2)→ (s1 · s2) 4, A13, MP

Suppose that α = β → γ. Here we use suffixing, (2.2), from Exam-
ple 2.5.

1 `CLL (r2 → s2)→ ((s1 → r2)→ (s1 → s2)) A2

2 Γ `CLL (s1 → r2)→ (s1 → s2) IH, 1, MP

3 `CLL (s1 → r1)→ ((r1 → r2)→ (s1 → r2)) (2.2)

4 Γ `CLL (r1 → r2)→ (s1 → r2) IH, 3, MP

5 Γ `CLL (r1 → r2)→ (s1 → s2) 4, 2, A2, MP×2
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CHAPTER 3. ALGEBRAIZATION 50

It turns out (see notes after Theorem 3.15), that a logic has at most one
set of equivalence formulas, up to inter-derivability. This means that we can
be confident that, in our algebraization of CLL, ρ will be {p→ q, q → p}.
However, this is only half of what is needed to establish the algebraization
of CLL; we still need to find τ . This is what we will do in the next section.

3.2 Semantics

Let ` be a sentential logic algebraized by K. In this section we will explore
some properties of the definable translation τ , which translates formulas
of ` into equations of |=K. In particular, τ should translate theorems of
` into equations that hold in K. If we consider the theorems of ` to be
‘true’ statements, then τ will tell us which elements of a particular algebra
A ∈ K can be considered ‘true’; they are the elements of A which satisfy
the equations of τ . This intuition leads us to the study of semantics , which
will give us a useful perspective from which to approach τ . A semantics for
a logic ` consists of a class of mathematical objects, called models, together
with a precise definition of what it means for a rule to be valid in a model.
Furthermore we require that the soundness and completeness relations,

Γ ` α iff the rule Γ/α is valid in every model,

hold for all sets Γ ∪ {α} of formulas of `.

This is exactly what condition (1) of Characterization 2.22 specifies:

Γ ` α iff τ [Γ] |=K τ (α).

In this case the models are the algebras of K. Recall that τ is a set of
equations. We specify that a rule Γ/α is valid in an algebra A ∈ K, if
for every A-evaluation h, whenever h(τ l(γ)) = h(τ r(γ)) for every γ ∈ Γ,
then h(τ l(α)) = h(τ r(α)), for every 〈τ l, τ r〉 ∈ τ . This is the definition of
an algebraic semantics for `, which was made precise by Blok and Pigozzi
[11].

For deductive systems, there are three types of structure that are com-
monly used for semantics. In one, the structures include topologies. For
example, Kripke semantics for modal or intuitionistic logics can (sometimes)
be extended to a duality which incorporates topology. In another, they are
algebras (as above). In the last case they are structures called matrices.

Recall that, with every deductive system, we have associated a first-
order language. In the case of a sentential deductive system there is a
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hidden unary predicate symbol, called the truth predicate. For every first-
order theory there is a canonical semantics. In this semantics, each n-ary
predicate symbol is associated with an n-ary relation in the models. For
the first-order theory of a sentential system ` the models are pairs 〈A;F 〉
where A is an algebra in the same signature as ` and F is a unary relation,
associated with the truth predicate. In other words, F is just a subset of A.
Such a pair is called a matrix . The elements of F are called the designated
elements of this matrix.

We will soon see that every sentential system has a non-trivial semantics
of this kind. The aim of this section is, roughly speaking, to show how we
can change the matrix model semantics of an algebraizable sentential logic
to an algebraic semantics, by eventually defining F using equations. These
equations will be those contained in τ . Along the way we will apply our
observations to the logic CLL in the form of examples, and end this section
with a proof that CLL is algebraized by IRL. It will be convenient for us to
change the definition of IRL to distinguish the operation→ and stipulate the
axiom x → y = ¬(x · ¬y). As every IRL has the same terms, congruences
and subalgebras as its → expansion, we may systematically confuse IRL
with the resulting variety.

Let ` be a fixed but arbitrary sentential logic throughout.

We say that matrix 〈A, F 〉 (in the signature of `) validates a rule Γ/α,
written 〈A, F 〉 |= Γ/α, if, for every A-evaluation h,

whenever h[Γ] ⊆ F , then h(α) ∈ F .

If K is a class of matrices, then ‘K |= Γ/α’ means ‘〈A, F 〉 |= Γ/α for every
〈A, F 〉 ∈ K’.

A matrix model of ` is a matrix 〈A, F 〉 that validates every derivable
rule of `, that is to say, if Γ ` α then 〈A, F 〉 |= Γ/α. In this case, we also
say that F is a `–filter of A. We let Mod(`) denote the class of all matrix
models of `.

If ` is axiomatized by a formal system L, then, to show that 〈A, F 〉
is a matrix model of `, it is only necessary to check that 〈A, F 〉 validates
all the axioms and inference rules in L. This follows by induction on the
length of a proof in L.

Example 3.4. A subset T of Fm is a `–theory if and only it is a `–filter
of Fm, i.e., 〈Fm, T 〉 ∈ Mod(`).

Proof. Let Γ/α be any rule such that Γ ` α. Suppose that T is a `–theory.
We need to show that 〈Fm, T 〉 |= Γ/α. Let h be any Fm-evaluation, i.e.,
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any substitution. Then h[Γ] ` h[α], since ` is substitution invariant. Now,
if h[Γ] ⊆ T , then h(α) ∈ T , since T is a theory.

Conversely, let T be a `–filter of Fm. Suppose that Γ ` α and Γ ⊆ T .
But then α ∈ T , as witnessed by the identity function on Fm.

It is easy to show that Mod(`) forms a semantics for ` in the following
sense.

Theorem 3.5. Γ ` α if and only if Mod(`) |= Γ/α.

Proof. The forward direction is clear from the definition. For the reverse
direction, let Γ/α be a rule such that Mod(`) |= Γ/α. Recall that Γ ` α
if and only if Cn` ({α}) ⊆ Cn` (Γ). Let T = Cn` (Γ). From Example 3.4
above we know that 〈Fm, T 〉 ∈ Mod(`). In particular this means that
〈Fm, T 〉 ` Γ/α. From the definition of T we know that Γ ⊆ T . If we let
h be the identity map from Fm to itself, then we see that h(α) = α ∈ T .
Therefore Cn` ({α}) ⊆ T as required.

Given formal system L, we often shorten Mod(`L) to Mod(L).

Example 3.6. Let A be an IRL, with lattice order ≤, and define F≤ :=
{a ∈ A : e ≤ a}. Then 〈A, F≤〉 ∈ Mod(CLL).

Proof. Notice from the definition that we require matrix models of a sen-
tential system to have the same signature as the sentential system. It is for
this reason that we included → into the signature of IRLs for this section.
There is still a slight inconsistency in this regard, since CLL has a constant
symbol t and IRLs have a constant symbol e. We prefer to keep this ambi-
guity, as e is a natural symbol for a multiplicative identity, whereas t has a
natural logical meaning. We will henceforth use whichever symbol is more
appropriate without comment.

We need to show that 〈A, F≤〉 |= Γ/α, whenever Γ `CLL α. Recall that
we have an axiomatization of CLL given in Example 2.2. Therefore, we
only have to check that 〈A, F≤〉 validates all the axioms and inference rules
of CLL. For brevity, we define F := F≤.

Let h be any A-evaluation. In particular, let a := h(p), b := h(q) and
c := h(r).

By Theorem 1.58(i), e ≤ a → a = h(p → p). This means that h(p →
p) ∈ F . Since h was chosen arbitrarily, we conclude that 〈A, F 〉 validates
A1. From Theorem 1.56(ii), it follows that e ≤ e → (a → a), validating
A11. While we’re at it, A10 is validated by the simple fact that e ≤ e. We
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will use Theorem 1.56(ii) so often in this proof that we will do so without
comment.

Certainly a ∧ b ≤ a and a ∧ b ≤ b, so that e ≤ (a ∧ b) → b and
e ≤ (a∧ b)→ b. This respectively validates A4 and A5. The validity of A7
and A8 follows similarly from a ≤ a ∨ b and b ≤ a ∨ b.

While we are catching low hanging fruit, notice that A15 follows from
the fact that ¬¬a ≤ a. Similarly, A14 follows from Theorem 1.57(ii), i.e.,
a→ ¬b ≤ b→ ¬a.

For A12 we need to increase the complexity slightly. We know that
a · b ≤ b · a, since · is commutative. If we now apply the law of residuation
we get a ≤ b→ (b · a), which shows that e ≤ a→ (b→ (b · a)).

To prove the validity of A13 we notice that

e ≤ (a→ (b→ c))→ ((b · a)→ c)

will follow it we can show that a→ (b→ c) ≤ (b · a)→ c. This will in turn
follow from the law of residuation if we can show (b ·a) · (a→ (b→ c)) ≤ c.

But this last statement is true, because

(b · a) · (a→ (b→ c)) = b · (a · (a→ (b→ c))) ∵ associativity

≤ b · (b→ c) ∵ Theorem 1.56(i)

≤ c ∵ Theorem 1.56(i)

The second-to-last inequality also uses the compatability of · with the
lattice order (Theorem 1.54). Using similar reasoning, we can show that
A3 is valid, by successive applications of the law of residuation (in reverse),
which show that

e ≤ (a→ (b→ c))→ (b→ (a→ c)) iff a · (b · (a→ (b→ c))) ≤ c.

The right-hand inequality is true, because

a · b · (a→ (b→ c)) = b · a · (a→ (b→ c)) ∵ commutativity

≤ b · (b→ c) ∵ Theorem 1.56(i)

≤ c ∵ Theorem 1.56(i).

By a similar method we can show for A2 that

e ≤ (a→ b)→ ((c→ a)→ (c→ b)) iff c · (c→ a) · (a→ b) ≤ b.

The right-hand-side clearly follows from two successive applications of The-
orem 1.56(i). For A6:

e ≤ ((a→ b) ∧ (a→ b))→ (a→ (b ∧ c)) iff a · ((a→ b) ∧ (a→ b)) ≤ b ∧ c.
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To prove this we use Theorem 1.58(vi), i.e., the fact that IRL’s satisfy
x · (y ∧ z) ≤ (x · y) ∧ (x · z).

a · ((a→ b) ∧ (a→ b)) ≤ (a · (a→ b)) ∧ (a · (a→ c))

≤ b ∧ c

Before we get to the inference rules, we need to prove A9 which will
follow from

e ≤ ((a→ c)∧(b→ c))→ ((a∨b)→ c) ⇐⇒ (a∨b)·((a→ c)∧(b→ c)) ≤ c

Here we use Theorem 1.58(vii), i.e., x · (y ∨ z) = (x · y) ∨ (x · z).

Notice that

a · ((a→ c) ∧ (b→ c)) ≤ (a · (a→ c)) ∧ (a · (b→ c))

≤ (a · (a→ c))

≤ c.

Similarly, b · ((a→ c)∧ (b→ c)) ≤ c. Therefore the join of these two terms
falls below c, as required.

Let’s now show that MP is valid in A. Suppose e ≤ a and e ≤ a → b.
From the last inequality it follows that a ≤ b. So by transitivity of ≤ we
get e ≤ b as required.

Finally, for AD, suppose e ≤ a and e ≤ b. Then e ≤ a ∧ b, since a ∧ b is
the greatest lower bound of a and b.

To justify all the work that went into proving this example, recall that
we will eventually show that CLL is algebraized by IRL. We are trying to
find the definable translations that witness this. We already mentioned in
Section 3.1 that ρ will be {p → q, q → p}. We will eventually show that
τ (α) = {e∧α ≈ e}, or using the notation introduced in Sections 1.4 and 2.3,
τ = {e � p}. Example 3.6 shows that if Γ `CLL α, then τ [Γ] |=IRL τ (α).
The goal for the rest of this section is to establish the converse. In particular,
what hinders us is that the class of matrix models of CLL, Mod(CLL), is
too ‘large’. For instance, Example 3.4 tells us that Mod(CLL) contains all
the matrices of the form 〈Fm, T 〉 for all CLL-theories T . Notice that Fm
is not contained in IRL, and that for any particular algebra (such as Fm)
there are many filters that qualify a matrix for membership of Mod(CLL).
In an effort to reduce the size of Mod(CLL), in such a way that (since we
hope that CLL is algebraizable) each algebra has only one CLL–filter, we
need to consider the reduced matrix models of CLL.
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We say that 〈A, F 〉 is reduced if it is model-theoretically simple. This
means that it is impossible to map A onto an algebra B with a homo-
morphism that preserves and reflects the subset F , unless the map is an
isomorphism.

Equivalently, in algebraic terms:

Characterization 3.7. A matrix 〈A, F 〉 is reduced iff no congruence re-
lation on A makes F a union of congruence classes, except for the identity
congruence.

Let Mod∗(`) denote the class of reduced matrix models of `. As with
Mod, we often shorten Mod∗(`L) to Mod∗(L), for a given formal system L.
Let 〈A, F 〉 be some fixed matrix, in the same language as `, for the rest of
this section. Let θ ∈ Con(A).

We say that θ is compatible with F if F is a union of θ-classes, i.e.,

whenever a ∈ F and a ≡θ b, then b ∈ F .

Lemma 3.8. Let Σ = {ψ ∈ ConA : ψ is compatible with F}. Then the
join of Σ in ConA is compatible with F .

Proof. Notice that the identity congruence of A, denoted idA, is compatible
with every subset of A. In particular, idA ∈ Σ so that Σ is non-empty.

Let a ∈ F and let θ =
∨

Σ. Let b ∈ A such that a ≡θ b. By Theo-
rem 1.24, there exist c1, . . . , cn ∈ A such that

a = c1 ≡ψ1 c2 ≡ψ2 · · · ≡ψn−1 cn = b,

where ψi ∈ Σ for i = 1, . . . , n− 1.

From this we can infer that c2 ∈ F since ψ1 is compatible with F and
c1 = a ∈ F . By a similar argument we can conclude that c3, . . . , cn are in
F , so that b = cn ∈ F .

This lemma allows us to define ΩAF as the largest congruence of A that
is compatible with F .

Blok and Pigozzi [11] called ΩAF the Leibniz congruence of F , because
Leibniz proposed that two entities are equal if they have the same prop-
erties. The Leibniz congruence identifies the elements of A that have the
same properties definable in the first-order language of A. This follows
from the observation that, a ≡ΩAF b if and only if,

α(a, c1, . . . , ck−1) ∈ F ⇐⇒ α(b, c1, . . . , ck−1) ∈ F,
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for every k-ary term α ∈ Fm and all c1, . . . , ck−1 ∈ A (see for instance [11,
Thm. 1.5]). The Leibniz operator of ` is constituted by the maps

F 7→ ΩAF (F a ` –filter of A)

taken over all algebras in the signature of `. Recall that the development of
equivalence formulas in Section 3.1 was motivated by following our intuition
about the notion of ‘equivalence’. The characterization above suggests that
the Leibniz operator will play some part in this narrative. In fact, we will
see after Theorem 3.15 that the Leibniz operator is the end goal of that
particular story.

One of the reasons for introducing the Leibniz operator is that it allows
us to characterise what it means for a matrix to be reduced. It is clear from
Characterization 3.7 that 〈A, F 〉 is reduced if and only if ΩAF = idA.

Define F/ΩAF = {a/ΩAF : a ∈ F}, where a/ΩAF denotes the ΩAF -
equivalence class of a, that is a/ΩAF = {b ∈ A : a ≡ΩAF b}. The following
is an important property of the Leibniz operator that we use regularly in
this section.

Lemma 3.9. If b/ΩAF ∈ F/ΩAF , then b ∈ F .

Proof. Suppose b/ΩAF ∈ F/ΩAF for some b ∈ A. Then there exists a ∈ F
such that b/ΩAF = a/ΩAF . This means that a ≡ΩAF b, but since ΩAF is
compatible with F , we have that b ∈ F .

To simplify our notation, we abbreviate 〈A/ΩAF , F/ΩAF 〉 as 〈A∗, F ∗〉.

Theorem 3.10. 〈A∗, F ∗〉 is reduced.

Proof. Suppose that ΩA∗
F ∗ ) idA∗ . Let θ := ΩA∗

F ∗.

Now, by the Correspondence Theorem (Theorem 1.26), there exists φ ∈
Con(A) such that φ/ΩAF = θ. In particular ΩAF ( φ.

Now we show that φ is compatible with F . Let a ∈ F and b ∈ A such
that a ≡φ b. We have that a/ΩAF ≡θ b/ΩAF . Now a/ΩAF ∈ F ∗ by
definition. But then b/ΩAF ∈ F ∗ since θ is compatible with F ∗. So, by
Lemma 3.9 we have that b ∈ F . Therefore φ is compatible with F .

This contradicts the maximality of ΩAF .

Another consequence of Lemma 3.9 is:

Theorem 3.11. 〈A, F 〉 |= Γ/α if and only if 〈A∗, F ∗〉 |= Γ/α.
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Proof. First suppose that 〈A, F 〉 |= Γ/α. Let h be an A∗-evaluation such
that h[Γ] ⊆ F ∗.

For any variable x ∈ Var choose an element ax from h(x) ∈ A∗, i.e.
h(x) = ax/Ω

AF . Define a mapping

g : Var → A

x 7→ ax.

We can extend g uniquely to a homomorphism g′ : Fm → A, since Fm
is absolutely free over Var . Let q : A → A∗ be the canonical surjection.
Note that q ◦ g′ = h, since these functions agree on Var . In particular, for
any γ ∈ Γ, we have g′(γ)/ΩAF = h(γ) ∈ F ∗. Therefore, by Lemma 3.9,
it follows that g′(γ) ∈ F for any γ ∈ Γ. By assumption, since g′ is an
A-evaluation, g′(α) ∈ F . Therefore h(α) = g′(α)/ΩAF ∈ F ∗.

Conversely, suppose that 〈A∗, F ∗〉 |= Γ/α. Let h be an A-evaluation
such that h[Γ] ⊆ F . Then q ◦ h is an A∗-evaluation, and qh[Γ] ⊆ F ∗, so
that by assumption qh(α) ∈ F ∗, i.e. h(α)/ΩAF ∈ F ∗. By Lemma 3.9 we
have that h(α) ∈ F .

The following is an immediate corollary of Theorems 3.10 and 3.11:

Corollary 3.12. If 〈A, F 〉 ∈ Mod(`) then 〈A∗, F ∗〉 ∈ Mod∗(`).

Now we get to the main theorem of this discussion so far. In our model-
theoretic semantics, established in Theorem 3.5, we only have to focus our
attention on the reduced matrix models.

Theorem 3.13. Γ ` α iff Mod∗(`) |= Γ/α.

Proof. Necessity follows from Theorem 3.5, since Mod∗(`) ⊆ Mod(`). For
sufficiency, use Theorems 3.10 and 3.11.

Now that we have shown why we can restrict our attention to the reduced
matrix models of `, it is worthwhile to make precise some of the intuitions
we established at the start of this section.

Definition 3.14. A logic ` is truth-equational if there exists a set of unary
equations,

τ = {δi(x) ≈ εi(x) : i ∈ I},

such that for all reduced matrix models 〈A, F 〉 of ` and all a ∈ A, we have

a ∈ F iff (δAi (a) = εAi (a) for all i ∈ I).
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The reason for this name is that τ allows us to define the ‘true’ elements
of A (these are the elements of F ), using equations. It turns out that a
sentential logic is algebraizable if and only if it is truth-equational and
equivalential (see Definition 3.1).

If B is an IRL and a ∈ B, then we write [a) := {b ∈ B : a ≤ b}
and (a] := {b ∈ B : b ≤ a}. For our algebraization of CLL, we need to
prove that if τ [Γ] |=IRL τ (α) then Γ `CLL α. We shall show that the reduced
matrix models of CLL are exactly the matrices of the form 〈B, [eB)〉, where
B ∈ IRL. This will allow us to conclude that CLL is truth-equational with
τ = {e ∧ x ≈ e}. To demonstrate this, we first need to show that these
matrices are reduced, which will follow from the remarkable theorem below.

Theorem 3.15 ([14, Thm. 3.1.2]). Suppose that ρ be a set of equiva-
lence formulas for ` and 〈A, F 〉 ∈ Mod(`). Then ΩAF = {〈a, b〉 ∈ A2 :
ρA(a, b) ⊆ F}.

Proof. Let θ = {〈a, b〉 ∈ A2 : ρA(a, b) ⊆ F}. Let’s first show that θ ∈
ConA. We have that ` ρ(p, p), therefore ρ(a, a) ⊆ F for any a ∈ A.
Therefore θ is reflexive.

Let ρj ∈ ρ. Note that by an instance of Definition 3.1(iii) we have that

ρ(p, q),ρ(p, p) ` ρ(ρj(p, p), ρj(q, p)).

Furthermore, from Definition 3.1(ii) we can deduce that

ρj(p, p),ρ(ρj(p, p), ρj(q, p)) ` ρj(q, p).

Using properties of consequence relations and Definition 3.1(i) we infer

ρ(p, q) ` ρj(q, p).

Suppose that ρA(a, b) ⊆ F . We then have that ρj(b, a) ∈ F . Since ρj was
chosen arbitrarily we can conclude that θ is symmetric.

Using a similar argument we have that

ρ(p, p),ρ(q, r) ` ρ(ρj(p, q), ρj(p, r))

and
ρj(p, q),ρ(ρj(p, q), ρj(p, r)) ` ρj(p, r),

so that
ρj(p, q),ρ(q, r) ` ρj(p, r).
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Since ρj was chosen arbitrarily we can say that

ρ(p, q),ρ(q, r) ` ρ(p, r).

Suppose that ρA(a, b) ⊆ F and ρA(b, c) ⊆ F . From the argument above
can conclude that ρA(a, c) ⊆ F . So, θ is transitive.

Let f be a connective of ` with arity n. Suppose that

a1, . . . , an, b1, . . . , bn ∈ A,

such that ρA(ai, bi) ⊆ F for every i ≤ n. Then it follows simply from Defini-
tion 3.1(iii) that ρA(fA(a1, . . . , an), fA(b1, . . . , bn)) ⊆ F , since f(p1, . . . , pn)
is an n-ary formula.

Therefore θ ∈ Con(A), and it remains to show that θ is the largest con-
gruence compatible with F . Let a ∈ F and let b ∈ A such that ρA(a, b) ⊆ F .
We can see clearly from Definition 3.1(ii) that b ∈ F . Therefore θ is com-
patible with F .

Let φ be any congruence of A that is compatible with F . Let 〈a, b〉 ∈ φ
and let ρj ∈ ρ. We know that ρAj (a, a) ∈ F . Furthermore, we have that
ρAj (a, a) ≡φ ρAj (a, b). But then ρAj (a, b) ∈ F , since φ is compatible with F .
Since ρj was chosen arbitrarily, ρA(a, b) ⊆ F , which means that φ ⊆ θ, and
we are done.

Recall that in Section 3.1 we found an explicit set of equivalence formulas
for CLL. Theorem 3.15 allows us to use these to calculate explicitly the
Leibniz congruences of the matrix models of CLL. In particular, we can
show that matrices of the form 〈B, [eB)〉, where B ∈ IRL, are reduced.

Example 3.16. Let A ∈ IRL, and let F≤ = {a ∈ A : e ≤ a} (as in
Example 3.6). Then 〈A, F≤〉 ∈ Mod∗(CLL).

Proof. From Example 3.6 we already know that 〈A, F≤〉 ∈ Mod(CLL). It
remains to check that 〈A, F≤〉 is reduced. This will follow if we can show
that ΩAF≤ = idA. By Theorem 3.15 and Example 3.3,

ΩAF≤ = {〈a, b〉 ∈ A2 : {a→ b, b→ a} ⊆ F≤}.

Suppose that e ≤ a → b and e ≤ b → a. Then a ≤ b and b ≤ a, so that
a = b, as required.

Theorem 3.15 shows us that the Leibniz operator and equivalence for-
mulas are intrinsically linked. But notice that the Leibniz congruence is
defined for any matrix, not just the matrix models of equivalential systems,
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i.e., it does not rely on the existence of certain terms. In particular, the
Leibniz operator is defined for every sentential logic. From the way we
defined the Leibniz operator of `, we can see that its action is totally de-
termined by the signature of ` alone; it is only its domain (the `–filters of
an algebra) which depends on `. In this way, the Leibniz operator justifies
the ‘abstract’ in abstract algebraic logic.

Another consequence of Theorem 3.15 is that it guarantees the unique-
ness (up to inter-derivability) of equivalence formulas for a given senten-
tial deductive system, and partially proves the converse of Characteriza-
tion 2.22.

A natural question we might ask is: how does the Leibniz operator of `
act on Fm? In Example 3.4 we showed that the `–filters of Fm are exactly
the theories of `. Also notice that the target of ΩFm is a set of congruences
of Fm, just like the theories of an equational consequence relation in the
same language as Fm. It turns out that, if ` is algebraized by class K,
then ΩFm will witness the equivalence (isomorphism) between (the theory
algebras of) ` and |=K. In fact, we can characterize the algebraizability of
` purely by means of its Leibniz operator.

Fact 3.17. The sentential logic ` is algebraizable if and only if the Leibniz
operator of ` is order-preserving, injective and commutes with homomor-
phic inverse images. (See [14] and its references.)

Notice that there is no mention of the equivalent class of algebras in this
characterization. If we wanted to show that ` is not algebraizable, then we
would simply have to find an algebra, with one or more `–filters, that con-
tradict any of the three conditions above. There are many interesting meta-
logical properties of deductive systems that can be characterised purely by
means of their Leibniz operators. As with algebraizability, we can use these
characterizations to falsify such properties. Examples include showing that
a certain sentential logic is not equivalential or truth-equational [11, 48].

Before we return to the algebraization of CLL, we present a final bit of
abstract algebraic logic theory, which we will need later.

Notice that intersections of `–filters are again `–filters. So, for any
algebra B with the same signature as `, the set of `–filters of B forms a
complete lattice.

The following theorem proves some of the claims made earlier about
ΩFm.

Theorem 3.18 (Blok & Pigozzi [11, Thm. 5.1]). Suppose the sentential
deductive system ` is algebraized by quasivariety K, with τ and ρ as in
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Characterization 2.22. For every algebra B, in the signature of `, the
Leibniz operator ΩB is an isomorphism between the lattices of `–filters and
K-congruences of B. In particular,

ΩBF = {〈a, b〉 ∈ B2 : ρB(a, b) ⊆ F}

and the inverse isomorphism is given by

HB : θ 7→ {a ∈ B : τB(a) ⊆ θ}.

Proof. Recall from Theorem 3.2 that ρ is a set of equivalence formulas, so
that by Theorem 3.15 it is indeed true that

ΩBF = {〈a, b〉 ∈ B2 : ρB(a, b) ⊆ F}. (3.1)

Let B be an algebra with the same signature as ` and F a `–filter on
B. We show that ΩBF is a K-congruence. Recall from the definition that
ΩBF is a congruence of B. Let Σ∪{α ≈ β} be a set of equations, such that
Σ |=K α ≈ β. Let h be anyB-evaluation. Suppose that 〈h(µ), h(ν)〉 ∈ ΩBF
for every 〈µ, ν〉 ∈ Σ. So by the observation above,

ρB(h(µ), h(ν)) ⊆ F for every 〈µ, ν〉 ∈ Σ.

Now by Characterization 2.22(3), ρ[Σ] ` ρ(α, β). Thus, ρB(h(α), h(β)) ⊆
F , since F is a `–filter, i.e., 〈h(α), h(β)〉 ∈ ΩBF .

Therefore Σ |={B/ΩBF} α ≈ β, whenever Σ |=K α ≈ β. So, because K is
axiomatized by quasi-equations, B/ΩBF ∈ K, as required.

Now let θ be an arbitrary K-congruence of B, and let HBθ be defined
as in the statement of the theorem. We can use the dual of the argument
above, with Characterization 2.22(1) in place of Characterization 2.22(3),
to show that HBθ is a `–filter of B.

Now we prove that ΩBHBθ = θ. For all a, b ∈ B we have 〈a, b〉 ∈
ΩBHBθ iff τB(ρB(a, b)) ⊆ θ. But by Characterization 2.22(2),

p ≈ q ��K τ [ρ(p, q)],

so we have τB(ρB(a, b)) ⊆ θ iff 〈a, b〉 ∈ θ. Thus ΩBHBθ = θ.

Dually, we can show that HBΩBF = F in a similar way, using Char-
acterization 2.22(4) instead of Characterization 2.22(2). Therefore ΩB and
HB are mutually inverse bijections.

It remains to show that ΩB is order-preserving and order-reflecting.
From Characterization 2.22(4), we get that a ∈ F iff ρB[τB(a)] ∈ F iff
τ (a) ⊆ ΩBF . So for all `–filters F and G, if ΩBF ⊆ ΩBG then F ⊆ G.
The converse follows from (3.1).
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Let us return now to the algebraization of CLL. Recall that we have
already shown that the matrices 〈B, [eB)〉, where B ∈ IRL, are reduced
models of CLL. We still need to show that they are exactly the reduced
matrix models of CLL. The following fact will bring us part of the way.

Example 3.19. Let 〈A, F 〉 ∈ Mod∗(CLL). Define a binary relation ≤F
on A by a ≤F b iff a→ b ∈ F . Then A is an IRL whose lattice order is ≤F .

Proof. We first show that ≤F is a lattice order.

Let us start by proving that ≤F is anti-symmetric. Suppose a, b ∈ A
such that a ≤F b and b ≤F a. In other words a → b ∈ F and b → a ∈ F .
By Example 3.3 and Theorem 3.15 we have that 〈a, b〉 ∈ ΩAF . Now, since
〈A, F 〉 is reduced, we know that ΩAF = idA. Therefore a = b.

Secondly, we know that `CLL p→ p by A1. Therefore, a→ a ∈ F , for
any a ∈ A, since F is a `CLL–filter. This means that a ≤F a, i.e., ≤F is
reflexive.

Lastly, suppose a, b, c ∈ A such that a ≤F b and b ≤F c, i.e., a→ b ∈ F
and b→ c ∈ F . By A2,

(b→ c)→ ((a→ b)→ (a→ c)) ∈ F,

because F is a `CLL filter. Then a→ c ∈ F by two applications of modus
ponens. Therefore ≤F is transitive.

So far, we have shown that ≤F is a partial order. We claim that a ∧ b
is the infimum of {a, b} with respect to ≤F . By A4 and A5 we respectively
have that (a∧b)→ a ∈ F and (a∧b)→ b ∈ F . So a∧b ≤F a and a∧b ≤F b,
i.e., a ∧ b is a lower bound of a and b. Now consider any c ∈ A such that
c ≤F a and c ≤F b, i.e., c → a ∈ F and c → b ∈ F . By adjunction we
have that (c → a) ∧ (c → b) ∈ F . Then by A6 and modus ponens we get
c→ (a∧ b) ∈ F , i.e., c ≤F a∧ b. Therefore a∧ b is the greatest lower bound
of a and b.

Now we show that a∨ b is the supremum of a and b. By A7 and A8 we
have that a ≤F a ∨ b and b ≤F a ∨ b. Let c ∈ A such that a → c ∈ F and
b→ c ∈ F . By adjunction we see that (a→ c)∧ (b→ c) ∈ F . By applying
modus ponens to A9 we obtain (a ∨ b) → c ∈ F . Therefore, a ∨ b is the
least upper bound of a and b.

We can therefore conclude that ≤F is a lattice order of A with lattice
operations ∨ and ∧. We make use of this fact when we prove the rest of
the requirements that show A is an IRL.
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Let’s move on to the monoid operation. We start by showing commu-
tativity.

1 `CLL p→ (q → (q · p)) A12

2 `CLL (p · q)→ (q · p) 1, A13, MP

By symmetry we see that (a · b) → (b · a) ∈ F and (b · a) → (a · b) ∈ F .
Therefore, a · b = b · a, by the antisymmetry of ≤F .

Now we show that t is the identity element for ·.

1 `CLL t→ (p→ p) A11

2 `CLL (p · t)→ p 1, A13, MP

and

1 `CLL t→ (p→ (p · t)) A12

2 `CLL p→ (p · t) 1, A10, MP

Since we have already shown that · is commutative we see that t is indeed
the identity element for · (and we call it e in the context of A).

To show the associativity of · we use the converse of A13, i.e., (2.4) from
Example 2.7.

1 `CLL (q · r)→ (p→ (p · (q · r))) A12

2 `CLL r → (q → (p→ (p · (q · r)))) 1, (2.4), MP

3
`CLL (q → (p→ (p · (q · r))))

→ ((p · q)→ (p · (q · r)))
A13

4 `CLL r → ((p · q)→ (p · (q · r))) 3, 2, A2, MP×2

5 `CLL ((p · q) · r)→ (p · (q · r)) 4, A13, MP

The converse uses a similar argument.

1 `CLL r → ((p · q)→ ((p · q) · r)) A12

2
`CLL ((p · q)→ ((p · q) · r))

→ (q → (p→ ((p · q) · r)))
(2.4)

3 `CLL r → (q → (p→ ((p · q) · r))) 2, 1, A2, MP×2

4 `CLL (p · (q · r))→ ((p · q) · r) 3, A13×2, MP×2

That A satisfies the law of double-negation follows from `CLL ¬¬p→ p
and `CLL p→ ¬¬p (see A15 and Example 2.4).
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We will now show that → satisfies the law of residuation:

a · b ≤F c iff b ≤F a→ c.

If (a · b) → c ∈ F , then b → (a → c) ∈ F by (2.4) and modus ponens.
Conversely, if b → (a → c) ∈ F , then (a · b) → c ∈ F by axiom A13 and
modus ponens.

We need to check (1.5):

a · b ≤F c iff ¬c · a ≤F ¬b.

Suppose that a · b ≤F c. By the law of residuation b ≤F a → c, i.e.,
b → (a → c) ∈ F . It follows that a → (b → c) ∈ F using axiom A3
and modus ponens. We can adapt the argument in Example 2.6 to prove
that (a → c) → (¬c → ¬a) ∈ F . By axiom A2 and modus ponens
b→ (¬c→ ¬a) ∈ F . We can then use A3, A13, A2 and multiple executions
of modus ponens to conclude that (¬c · b) → ¬a ∈ F . The converse uses
similar tools.

It remains to show that a → b = ¬(a · ¬b), because we took this as
an axiom in order to include → in the signature of IRLs. Since ≤F is
reflexive a · ¬b ≤F a · ¬b. If we then apply (1.5), we get a · ¬(a · ¬b) ≤F b.
But then ¬(a · ¬b) ≤F a → b by the law of residuation. It is easy to see
that a · (a → b) ≤F b, since the argument proving Theorem 1.56(i) only
uses the law of residuation. But then a · ¬b ≤F ¬(a → b), by (1.5). We
know that ¬ is antitone with respect to ≤F by setting b = e in (1.5), so
a→ b ≤F ¬(a · ¬b).

From this point on, the discussion will change perspective, from the
general to the specific. What have been considered examples up to this
point will now become the main focus of our discussion. We can now finally
characterize the reduced models of CLL.

Theorem 3.20. Mod∗(CLL) = {〈A, [eA)〉 : A ∈ IRL}.

Proof. Let K be the class on the right. Example 3.16 shows that K ⊆
Mod∗(CLL).

For the reverse inclusion, let 〈A, F 〉 ∈ Mod∗(CLL). From Example 3.19
we know that A ∈ IRL, with lattice order ≤F . It remains to show that
F = [eA), or using the notation established in Example 3.6, that F = F≤F

.
For all a ∈ A,

a ∈ F iff e→ a ∈ F iff e ≤F a iff a ∈ F≤F
.
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CHAPTER 3. ALGEBRAIZATION 65

Finally, as promised, we can establish the algebraizability of CLL.

Theorem 3.21. `CLL is (elementarily) algebraizable, with IRL as its equiv-
alent quasivariety.

Proof. We need to show that the deductive systems `CLL and |=IRL are
equivalent. We let ρ(α, β) = {α→ β, β → α} and τ (α) = {α ∧ e ≈ e}.

From Characterization 2.22, we need to show that, for any set of formu-
las Γ ∪ {α, β},

Γ `CLL α iff {e � γ : γ ∈ Γ} |=IRL e � α (3.2)

α ≈ β ��IRL {e � α→ β, e � β → α}. (3.3)

It follows from the definitions that {e � γ : γ ∈ Γ} |=IRL e � α means
the same as {〈A, [eA)〉 : A ∈ IRL} |= Γ/α. But from Theorem 3.20,
{〈A, [eA)〉 : A ∈ IRL} = Mod∗(CLL). By Theorem 3.13,

Mod∗(CLL) |= Γ/α iff Γ `CLL α.

Therefore, statement (3.2) holds.

To show statement (3.3), let A ∈ IRL. For any a, b ∈ A,

a = b iff a ≤ b and b ≤ a iff e ≤ a→ b and e ≤ b→ a.
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Chapter 4

Relevance Logics and Their
Algebras

In this chapter we will finally introduce the relevance logics Rt and R. Using
the tools we developed in Chapters 2 and 3 it will be easy to show that they
are algebraized by the varieties of De Morgan monoids and relevant algebras
respectively. Once this is established we will explain some of the history
and motivation behind relevance logics.

4.1 Rt and R

Definition 4.1. Let Rt be the sentential logic obtained by adding the
following axioms to the axiomatization of CLL, given in Example 2.2: First,
we add contraction (axiom C1 from Example 2.8), i.e.,

(p→ (p→ q))→ (p→ q).

Secondly, we add the distribution axiom:

R1 (p ∧ (q ∨ r))→ ((p ∧ q) ∨ (p ∧ r)) (distribution)

Notice that Rt is an axiomatic extension of CLL. From Corollary 2.28,
we know that Rt will be algebraized by a subvariety of IRL.

Definition 4.2. De Morgan monoids are IRLs that are distributive (as
lattices) and that satisfy the square-increasing law ,

x ≤ x · x. (4.1)

Let DMM denote the variety of all De Morgan monoids. The following
was essentially established by Dunn [19] (see [2]).
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CHAPTER 4. RELEVANCE LOGICS AND THEIR ALGEBRAS 67

Theorem 4.3. Rt is algebraized by DMM.

Proof. The proof follows exactly the form of Theorem 3.21, where we prove
the algebraization of CLL. However, we need to expand Theorem 3.20, to
include our extra axioms. Specifically, we need to prove that Mod∗(Rt) is
exactly the class of matrices of the form 〈A, [eA)〉, where A is a De Morgan
monoid.

First we let 〈A, F 〉 ∈ Mod∗(Rt) and we will show thatA is a De Morgan
monoid. Because of Example 3.19, we know that A ∈ IRL, where the lattice
order is defined as a ≤F b iff a → b ∈ F . It remains to check that A is
distributive and satisfies the square-increasing law.

For any a ∈ F , by contraction,

(a→ (a→ (a · a)))→ (a→ (a · a)) ∈ F,

and by A12, a→ (a→ (a · a)) ∈ F . So by modus ponens, a→ (a · a) ∈ F ,
hence, a ≤F a · a.

Let a, b, c ∈ A. Since we already know that ≤F is a lattice order, we
have that (a ∧ b) ∨ (a ∧ c) ≤F a ∧ (b ∨ c); see Section 1.2. The reverse
inequality follows directly from the distribution axiom.

Conversely, let A be any square-increasing distributive IRL, with lattice
order ≤. Define F≤ := {a ∈ A : e ≤ a}. We need to show that 〈A, F≤〉 ∈
Mod∗(Rt). Because of Example 3.6, we just need to prove that 〈A, F≤〉
validates C1 and R1. Let a, b, c ∈ A.

Note that by Theorem 1.58(iv), a → (a → b) = (a · a) → b. By the
square-increasing law a ≤ a · a. Now, since → is order-reversing in the first
coordinate (Theorem 1.58(ii)), (a · a)→ b ≤ a→ b. Therefore,

a→ (a→ b) ≤ a→ b. (4.2)

By Theorem 1.56(ii), e ≤ (a→ (a→ b))→ (a→ b).

Since A is distributive we know that a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c). So
by Theorem 1.56(ii), e ≤ (a ∧ (b ∨ c)) → ((a ∧ b) ∨ (a ∧ c)). Therefore,
〈A, F≤〉 ∈ Mod∗(Rt).

It is true that if 〈A, F 〉 ∈ Mod∗(Rt), then F = F≤F
, using the same

argument as in Theorem 3.20. Therefore,

Mod∗(Rt) = {〈A, [eA)〉 : A ∈ DMM}.

Recall from the Introduction that the main theorem we are building
towards, Theorem 5.33, characterizes the maximal consistent axiomatic ex-
tensions of Rt. Now that we have established the algebraization of Rt by
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CHAPTER 4. RELEVANCE LOGICS AND THEIR ALGEBRAS 68

DMM, we can say by Corollary 2.28, that the lattice of axiomatic exten-
sions of Rt is anti-isomorphic to the lattice of subvarieties of DMM. The
following picture depicts this anti-isomorphism.

s

s

trivial

DMM

s

s

Rt

inconsistent

Z
Z
Z
Z
ZZ~�

�
�
�
��>

Subvarieties of DMM Axiomatic extensions of Rt

It is clear that the maximal consistent axiomatic extensions of Rt are the
subcovers (see Section 1.2) of the inconsistent logic in the lattice of ax-
iomatic extensions of Rt. These extensions will correspond with the covers
of the trivial variety in the lattice of subvarieties of DMM, via the anti-
isomorphism of Corollary 2.28. Recall that covers of the bottom element
of a lattice are called atoms. Therefore, if we can find the atoms of the
subvariety lattice of DMM, then we have found the consistent axiomatic
extensions of Rt. This is the strategy that we will follow in the following
chapter.

Once we prove our main result, we will use it in Chapter 6 to describe
the upper part of the lattice of axiomatic extensions of the relevance logic
R, defined below.

Definition 4.4. Let R be the sentential logic obtained from Rt by deleting
the connective t from the signature and also removing axioms A10 and A11
(the axioms containing t) from the axiomatization of Rt.

The top of the lattice of axiomatic extensions of R was described by
Świrydowicz in [59]. Our contribution here is to give an alternative proof
of his characterization, which exploits a deeper connection between R and
Rt, proved in the next theorem.

The following is an example of a separation theorem; see [51]. It shows
that the axioms for Rt were chosen in such a way that we can axiomatize
the t-free fragment of Rt by removing the axioms that do not contain t.

Theorem 4.5. R is the t-free fragment of Rt.

Proof. Suppose Γ `Rt α, where t does not occur in any member of Γ∪{α}.
We must show that Γ `R α.
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CHAPTER 4. RELEVANCE LOGICS AND THEIR ALGEBRAS 69

Since Rt is finitary, we can assume, without loss of generality, that Γ is
finite. Therefore, we may assume that the variables occurring in members
of Γ ∪ {α} are among p1, . . . , pn. Define

rn := |p1| ∧ · · · ∧ |pn|,

where |β| := β → β, for all formulas β.

Consider a proof in Rt of α from Γ. Replacing every occurrence of t in
this proof by rn, we obtain a finite sequence of formulas of R, terminating
in α. It’s therefore enough to show that every formula in this sequence is
provable from Γ in R.

Given that t and t → |p| are the only axioms of Rt involving t (A10
and A11), and that no member of Γ or inference rule of Rt involves t, it’s
enough to show that, for any formula β in (at most) the variables p1, . . . , pn,
the formulas rn and rn → |β| are theorems of R.

First, by A1, |pi| is a theorem of R for every i ≤ n, so by AD, rn is a
theorem of R.

We show that `R rn → |β| by induction on the complexity of β. It is
true in the base case (where β is a variable necessarily among p1, . . . , pn),
in view of the axioms A4 and A5.

Suppose γ and δ are formulas, such that #γ,#δ < #β, and

IH `R rn → |γ| and `R rn → |δ|. (induction hypothesis)

We need to prove that `R rn → |¬γ| and `R rn → |γ2δ| for every connec-
tive 2 among ·,→,∧,∨.

We can obtain the results for · and ∨ from the others, by noting that
(p · q)↔ ¬(p→ ¬q) and (p∨ q)↔ ¬(¬p∧¬q) are theorems of R and that
{p→ q, q → p} is a set of equivalence formulas for R. (See Definition 3.1(iii)
and note that the proof of Example 3.3 makes no use of t and its postulates.)
So, we need only consider the connectives ¬,∧ and →.

Consider the case where β = ¬γ. Notice that our proof of p → ¬¬p
(2.1) in Example 2.4 does not use A10 or A11, so it is still a theorem of R.
Therefore,

1 `R γ → ¬¬γ (2.1)

2 `R (γ → γ)→ (γ → ¬¬γ) 1, A2, MP

3 `R (γ → ¬¬γ)→ (¬γ → ¬γ) A14

4 `R (γ → γ)→ (¬γ → ¬γ) 3, 2, A2, MP×2

5 `R rn → (¬γ → ¬γ) IH, 4, A2, MP ×2
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CHAPTER 4. RELEVANCE LOGICS AND THEIR ALGEBRAS 70

Now suppose that β = γ ∧ δ.

1 `R γ → (rn → γ) IH, axiom A3, MP

2 `R (γ ∧ δ)→ γ A4

3 `R (γ ∧ δ)→ (rn → γ) 1, 2, A2, MP×2

4 `R (γ ∧ δ)→ (rn → δ) similar

5 `R (γ ∧ δ)→ ((rn → γ) ∧ (rn → δ)) 3, 4, AD, A6, MP

6 `R ((rn → γ) ∧ (rn → δ))→ (rn → (γ ∧ δ)) A6

7 `R (γ ∧ δ)→ (rn → (γ ∧ δ)) 6, 5, A2, MP×2

8 `R rn → ((γ ∧ δ)→ (γ ∧ δ)) 7, A3, MP

Lastly, suppose β = γ → δ. Then,

1 `R (δ → δ)→ ((γ → δ)→ (γ → δ)) A2

2 `R rn → ((γ → δ)→ (γ → δ)) 1, IH, A2, MP×2

At this point we might hope to use Theorem 2.30 to algebraize R. But
notice that the algebraization of Rt is witnessed by the same definable trans-
lations as CLL. In particular, one of the translations is τ (α) = {e � α},
which contains the symbol t, in the guise of e. Therefore, our situation does
not satisfy the conditions of Theorem 2.30. Thankfully, we can overcome
this situation using the following lemma:

Lemma 4.6. For any element a of an IRL, e ≤ a if and only if a→ a ≤ a.

Proof. First suppose that e ≤ a. Then a → a ≤ e → a = a, because → is
order-reversing in the first coordinate.

Now suppose that a → a ≤ a. We know that e ≤ a → a, by Theo-
rem 1.58(i), so the result follows by transitivity of ≤.

Thus in the algebraization of Rt by DMM, the translation τ = {e � x}
can be replaced by τ = {|x| � x}.

Definition 4.7. Let RA denote the class of all e-free subreducts of De
Morgan monoids. RA is called the class of relevant algebras .

Corollary 4.8. R is algebraized by RA, as witnessed by ρ = {p→ q, q → p}
and τ = {|x| � x}.
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Proof. By Lemma 4.6, ρ = {p → q, q → p} and τ = {|x| � x} witness
the algebraization of Rt by DMM. Notice that t is no longer part of the
definition of τ . Therefore, we may use Theorem 2.30 to conclude that the
t-free fragment of Rt is algebraized by the t-free subreduct class of DMM.
By Theorem 4.5, the former is R and the latter is RA, by definition.

4.2 Motivation and History of R and Rt

Now that we have introduced the logics Rt and R, as well as their alge-
braizations, it is a good time to interrupt the mathematics and discuss their
origins and motivations. After this digression we will analyse De Morgan
monoids, which will lead to the main new results of this thesis.

Both R and Rt are part of a family of logics called relevance logics.
The first such logic was called Entailment, normally denoted E, and was
introduced by Anderson and Belnap [2].1 Interest in E soon shifted to the
more well-behaved logic R, which is sometimes called the principal relevance
logic. Originally these logics were intended to be alternatives to classical
logic, with the express purpose of avoiding some of the so-called paradoxes
of material implication (which identifies p→ q with ¬p∨ q). These include
the weakening axiom p → (q → p), which, when interpreted intuitively,
states that if p is true then q implies p. The paradox lies in the fact that
q can be any statement, even something unrelated to p. The relevance
logicians wanted a logic where α would imply β only if α is relevant to β.
This demand found its expression in the form of a variable-sharing principle,
called the relevance principle, which states that for a formula α→ β to be
a theorem, α and β must at least share a variable. R satisfies this demand;
see [3]. Unfortunately Rt does not share this principle, as witnessed by
A11. However, Rt does of course satisfy the principle for theorems that do
not contain t, as these are the theorems of R, by Theorem 4.5.

As we have noted, the relationship between Rt and DMM was essentially
established by Dunn [19]. In the 1960’s, this was not an obvious connection,
because implicational postulates—as opposed to properties of fusion—had
been emphasized by the Anderson-Belnap school of relevance logicians. As
we mentioned before, · can be interpreted as co-tenability, i.e., one intuitive
reading of p · q is ‘p and q can be simultaneously true’. Another way to
understand fusion is by analogy with proof-theoretic Gentzen systems, for
the reader who is familiar with them. A typical rule of many Gentzen
systems is:

1Although, see [18, 46] for an interesting independent development.
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α,Γ . β

Γ . α→ β

The analogy with the law of residuation is clear. We can intuitively identify
· with the ‘comma’ in sequents used in Gentzen systems.

Relevance logicians attach more philosophical significance to a relational
(Kripke-like) semantics for Rt, supplied by Routley and Meyer [53], than
to the algebraic semantics. Urquhart [65] extended the former to a categor-
ical duality between DMM and a category of enriched topological spaces,
whose intelligibility owes much to the distributive law for ∧ and ∨. Slaney
and Meyer [58] have re-interpreted the relational semantics as a philosoph-
ically neutral tool for the analysis of multiple-agent reasoning, thus freeing
it from prior commitments to ‘relevance’ and from objections to material
implication. For further semantic insights, see [62, 63].

The name ‘De Morgan monoid’ is due to Dunn [19], and the analogy
with De Morgan lattices/algebras is clear, where De Morgan lattices are dis-
tributive lattices with an involution, and De Morgan algebras are bounded
De Morgan lattices. Felicitously, according to Pratt [47], the law of residu-
ation is also implicit in Augustus De Morgan’s paper [17] of 1860, perhaps
its earliest appearance.

The relevance logic literature is equivocal, however, as to the precise
definition of a De Morgan monoid. Our definition conforms with Dunn and
Restall [20], Meyer and Routley [44, 53], Slaney [54] and Urquhart [64], yet
other papers by some of the same authors entertain a discrepancy. In all
sources, the identity element of a De Morgan monoid A is assumed to exist
but, in [55, 56, 57] for instance, it is not distinguished, i.e., the symbol for
e (and likewise f) is absent from the signature of A. That locally innocu-
ous convention has significant global effects: it would prevent DMM from
being a variety, as it would cease to be closed under subalgebras, and the
tight correspondence between axiomatic extensions of Rt and subvarieties
of DMM would disappear. The discrepancy is no oversight: some ‘subal-
gebras’ named in [55] really do omit the identity element of a parent De
Morgan monoid, but only when a different identity element is available in
the subalgebra (as is guaranteed if the subalgebra is finitely generated—
see below—but not generally). The practice of not distinguishing identity
elements harks back to the relevance principle of R.

This may explain why we have found in the literature no statement of
our Theorem 5.33, identifying the only four maximal consistent axiomatic
extensions of Rt, although the algebras defining these extensions were well
known.

Because RA is closed under subalgebras, its study accommodates the
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relevance principle without sacrificing the benefits of accurate algebraiza-
tion. For the algebraist, however, De Morgan monoids have much in com-
mon with ordered abelian groups (residuals being a partial surrogate for
multiplicative inverses), whereas relevant algebras are less intuitive, being
semigroup-based, rather than monoid-based. In fact RA has some alge-
braically forbidding features. For instance, RA lacks the congruence exten-
sion property (unlike DMM); see [16, p.289].

Further work on relevant algebras can be found in [21, 36, 37, 52, 60].

It is sometimes easiest to obtain a result about relevant algebras indi-
rectly, as a corollary of a more swiftly established property of De Morgan
monoids. This is exactly what we will do in Section 6.1. Thus, De Morgan
monoids are a useful tool, even for those logicians who which to eschew
sentential constants, such as t.

In 1996, Urquhart [65, p.263] observed that

[t]he algebraic theory of relevant logics is relatively unexplored,
particularly by comparison with the field of algebraic modal
logic.

In the same vein, in a paper in 2001, Dunn and Restall [20, Sec. 3.5] wrote:

Not as much is known about the algebraic properties of De Mor-
gan monoids as one would like.

These remarks pre-date many papers on residuated structures—see the bib-
liography of [28], for instance. But the latter have concentrated mainly on
varieties incomparable with DMM (e.g., Heyting and MV-algebras), larger
than DMM (e.g., IRLs and full Lambek algebras) or smaller (e.g., Sugihara
monoids), so the remarks remain pertinent.

In particular, an algebraic analysis of the axiomatic extensions of Rt (via
the interchangeable subvariety of DMM) is still missing, perhaps because
of the equivocal formal status of e (and despite interest in the problem
descernable in [40, 41]). Here we initiate an attempt to fill this gap, using
algebraic methods.
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Chapter 5

The Variety of De Morgan
Monoids

In this chapter we will shift our focus away from the logics Rt and R, and
instead focus on their algebraic counter-parts. Specifically, in this chap-
ter we do an algebraic analysis of variety of De Morgan monoids, which
algebraizes Rt, as we established in Theorem 4.3. The main result, Theo-
rem 5.30, at the end of this chapter, is a characterization of the atoms of
the subvariety lattice of De Morgan monoids. As discussed in Section 4.1,
we can then use the tools we developed in Chapters 2 and 3 to easily obtain
a characterization of the maximal consistent axiomatic extensions of Rt.
We will also use the results in this chapter to obtain easier proofs of results
about relevant algebras in Chapter 6.

5.1 De Morgan Monoids

We start with an algebraic analysis of De Morgan monoids. Recall that,
in Section 1.6, we defined a term f := ¬e. Because of Theorem 1.57(i)
(¬x = x→ f), we know that the involution of an IRL is determined by f .
We did not find much use for this symbol so far, but it will play a larger
role in this chapter.

Theorem 5.1. The following are basic properties of De Morgan monoids:

(i) x ∧ y ≤ x · y;

(ii) If x, y ≤ e, then x ∧ y = x · y;

(iii) x · ¬x ≤ f .
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CHAPTER 5. THE VARIETY OF DE MORGAN MONOIDS 75

(iv) e ≤ x ∨ ¬x;

Proof. By the square-increasing law and Theorem 1.54, we have

x ∧ y ≤ (x ∧ y) · (x ∧ y) ≤ x · y,

which proves (i).

For (ii), suppose that x, y ≤ e. We already know that x · y ≤ x ∧ y by
(i). For the other inequality, notice that x · y ≤ x · e = x and similarly
x · y ≤ y, so x · y ≤ x ∧ y.

To prove (iii), notice that, x · ¬x = x · (x→ f) ≤ f .

By (i) and (iii), x ∧ ¬x ≤ f , from which (iv) follows by De Morgan’s
laws and the fact that ¬ is antitone.

The following generalizes a result of Slaney [54, T39, p. 491] (where
only the case a = f was discussed).

Lemma 5.2. Let A be a De Morgan monoid with f ≤ a ∈ A. Then
a3 = a2.

Proof. As f ≤ a, we have ¬a ≤ ¬f = e ≤ a → a, by Theorem 1.58(i).
So, from the fact that → is order preserving in the second coordinate and
Theorem 1.58(iv), we obtain

a→ ¬a ≤ a→ (a→ a) = a2 → a.

Using Theorem 1.58(v) and Theorem 5.1(i), we infer that

a→ ¬a = (a2 → a) ∧ (a→ ¬a) ≤ (a2 → a) · (a→ ¬a) ≤ a2 → ¬a.

Thus, ¬(a2 → ¬a) ≤ ¬(a → ¬a), i.e., a2 · a ≤ a · a, i.e., a3 ≤ a2. The
reverse inequality follows from the square-increasing law and the fact that
· is compatible with the lattice order.

Unless we say otherwise, if ⊥ and > denote elements of a De Morgan
monoid A, then they denote the least and greatest element, respectively. If
these exist, then A is said to be bounded, and ⊥,> are called its bounds.
Note, however, that ⊥ and > are not generally distinguished elements of
A, so they are not always retained in subalgebras. Notice that ¬> = ⊥
and ¬⊥ = >.

Theorem 5.3. For any bounded De Morgan monoid A,

(i) ⊥ · a = ⊥ for any a ∈ A;
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(ii) > ·> = >.

Proof. For (i) it suffices to show that ⊥ · a ≤ ⊥, which will follow from the
law of residuation if ⊥ ≤ a→ ⊥. This is clearly true, since ⊥ is the bottom
element.

(ii) follows from the fact that > = e ·> ≤ > ·>.

A De Morgan monoid is said to be integral if e is its greatest element.

Theorem 5.4. A De Morgan monoid is integral iff it is a Boolean algebra
in which the operation ∧ is duplicated by ·.

Proof. It suffices to prove necessity. Suppose A is an integral De Morgan
monoid. Since e is the top element of A, it is easy to see that f is its
least element. Therefore, A is bounded. All the elements of A are below
e, so, by Theorem 5.1(ii), · coincides with ∧. Since we know that A is
distributive (by definition), it remains to show that A is complemented.
For every element a ∈ A, we will show that its complement is ¬a. By
Theorem 5.1(iv), e ≤ a ∨ ¬a. But e is the top element so e = a ∨ ¬a. This
is enough, since it follows from De Morgan’s laws that f = ¬a ∧ a.

Although the statement of the following theorem is not new, the proof
given here has not yet been published, and was found by our collaborator
Tommaso Moraschini. Also see the notes before Corollary 6.6, where we
use this theorem to show that finitely generated relevant algebras are also
bounded.

Theorem 5.5. Every finitely generated De Morgan monoid is bounded.

Proof. Let {a1, . . . , an} be a finite set of generators for a De Morgan monoid
A. Let

c := e ∨ f ∨
∨
i≤n

(ai ∨ ¬ai), and b = c2.

We will show that ¬b ≤ a ≤ b for all a ∈ A.

Notice that in any De Morgan monoid we can define ∨ in terms of ∧ and
¬, by De Morgan’s laws. This implies, by Theorem 1.39, that every element
of A has the form αA(a1, . . . , an) for some n-ary term α(x1, . . . , xn) in the
signature ·,∧,¬, e. The proof is by induction on the complexity #α of α.
We shall write ~x and ~a for the respective sequences x1, . . . xn and a1, . . . , an.

For the case #α = 0, note that e, a1, . . . , an ≤ c ≤ b, by the square-
increasing law. Likewise, f,¬a1, . . . ,¬an ≤ c ≤ b, so that by involution
properties, ¬b ≤ e, a1, . . . , an.
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Now, suppose that #α ≥ 1 and that ¬b ≤ βA(~a) ≤ b for all terms β
with #β < #α.

It follows from the induction hypothesis and basic properties of IRLs
that, if α has the form ¬β(~x) or β1(~x) ∧ β2(~x), then ¬b ≤ αA(~a) ≤ b. It
remains to prove that the last assertion holds when α is β1(~x) · β2(~x) for
some less complex terms β1 and β2.

By the induction hypothesis and the order-compatibility of ·, it is clear
that (¬b)2 ≤ β1(~a) · β2(~a) ≤ b2. Recall that f ≤ c ≤ b. Then, since ¬ is
antitone, ¬b ≤ e. But then (¬b)2 = ¬b ∧ ¬b = ¬b, by Theorem 5.1(ii). On
the other hand, c3 = c2, by Lemma 5.2, so b2 = c4 = c2 = b. Therefore,
¬b ≤ αA(~a) ≤ b, as required.

Given a De Morgan monoid A, we say that a set F ⊆ A is a deductive
filter of A if F is a lattice filter containing e. Recall from Definition 1.23
that F is a lattice filter if it is upward closed and, whenever a, b ∈ F , then
a ∧ b ∈ F .

Owing to Theorem 5.1(i), if a, b ∈ F , then a · b ∈ F . In fact, we can
define the deductive filters of an IRL to be its lattice filters that contain
e and are also closed under ·. Many of the results to follow also hold for
the deductive filters of IRLs. Note that the upper bounds of e (including e
itself) constitute the smallest deductive filter of any IRL.

It is easy to see that arbitrary intersections of deductive filters are again
deductive filters. We will let DFil(A) denote the lattice of deductive filters
of A and let DFgA denote the corresponding closure operator. The deduc-
tive filter generated by X ⊆ A is DFgA(X), and it is the smallest deductive
filter of A containing X. It is also easy to see that the unions of directed
non-empty subfamilies of DFil(A) are deductive filters. Therefore, DFil(A)
and the operator DFgA are algebraic; see Theorem 1.18 and Theorem 1.17.

Theorem 5.6. The deductive filters of a De Morgan monoid A are precisely
the Rt–filters of A.

Proof. Let F ∈ DFil(A). Let h be any A-evaluation. For any axiom α of
Rt, we know from the algebraization of Rt, in Theorem 4.3, that e ≤ h(α).
In particular, h(α) ∈ F since e ∈ F and F is upward-closed. Let’s now
consider the inference rules of Rt. Suppose that h(p), h(q) ∈ F. Then,
h(p) ∧ h(q) ∈ F , which takes care of AD. Lastly, suppose that

h(p), h(p)→ h(q) ∈ F.

As mentioned above, h(p) · (h(p) → h(q)) ∈ F . But, by Theorem 1.56(i),
h(p) · (h(p)→ h(q)) ≤ h(q), so h(q) ∈ F . Therefore, F is an Rt–filter of A.
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Conversely, let F be an Rt–filter of A. By AD it is clear that if a, b ∈ F ,
then a ∧ b ∈ F . Suppose that a ∈ F and a ≤ b. Recall that by A6
a → (a ∨ b) ∈ F , so by modus ponens, a ∨ b = b ∈ F . Lastly, since t is a
theorem of Rt (A10), we have that e ∈ F .

Recall that Rt is algebraized by the variety DMM, as witnessed by
ρ = {p→ q, q → p} and τ = {〈e ∧ x, e〉}. Let A be a De Morgan monoid.
By Theorem 3.18, we know that the lattice of Rt–filters of A is isomorphic
to the lattice of DMM-congruences of A. But since DMM is a variety, all
congruences of A are DMM-congruences. Therefore, by Theorem 5.6 above,
the lattices DFil(A) and Con(A) are isomorphic. This observation lead to
the following theorem. (Recall that p↔ q abbreviates (p→ q) ∧ (q → p).)

Theorem 5.7. Let A be a De Morgan monoid.

(i) If F is a deductive filter of A then ΩAF , the Leibniz congruence of
F , is given by {〈a, b〉 ∈ A : a↔ b ∈ F}.

(ii) If θ ∈ Con(A) then the set {b ∈ A : b ≥ a, for some a ∈ e/θ} is a
deductive filter of A coinciding with HA(θ), from Theorem 3.18.

(iii) The maps ΩA and HA are mutually inverse lattice isomorphisms be-
tween Con(A) and DFil(A).

Proof. By the discussion preceding the theorem we know that DFil(A) and
Con(A) are isomorphic. Theorem 3.18 says that this isomorphism is

ΩA : F 7→ {〈a, b〉 ∈ A : ρA(a, b) ⊆ F},

where ρ = {p→ q, q → p} and its inverse is

HA : θ 7→ {a ∈ A : τA(a) ⊆ θ}

where τ = {〈x ∧ e, e〉}. Clearly, ρ is inter-derivable, in Rt, with {(p →
q) ∧ (q → p)}.

Let θ ∈ Con(A) and F = {b ∈ A : b ≥ a, for some a ∈ e/θ}. We
will show that F = HA(θ). For every b ∈ F , there exists a ∈ e/θ such
that a ≤ b. Notice that a ∈ HA(θ), because 〈a, e〉 ∈ θ, which implies that
〈a ∧ e, e〉 ∈ θ. But since HA(θ) is a deductive filter, and hence upward-
closed, b ∈ HA(θ).

Conversely, suppose that a ∈ HA(θ), i.e., 〈a∧e, e〉 ∈ θ. Then a∧e ∈ e/θ
and a ≥ a ∧ e, so a ∈ F .
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It is interesting to note the similarities between the role that deduc-
tive filters play in the theorem above, and how normal subgroups behave
in group theory. In particular, the normal subgroups of a group form a
lattice, which is isomorphic to its congruence lattice. In most introductory
abstract algebra courses, congruences are left out entirely. For example,
the Homomorphism Theorem (Theorem 1.6) can be rephrased for groups,
by defining the kernel of a group homomorphism h : A → B, to be the
normal subgroup of A consisting of all the elements of A that are mapped
to the identity of B. In our case, the kernel of a De Morgan monoid homo-
morphism corresponds to the upward-closure of all the elements that are
mapped to e. It is a striking feature of the Leibniz operator that, whenever
a sentential logic ` is algebraized by a variety K, then for any A ∈ K, ΩA is
an isomorphism between the `–filters of A and Con(A). This means that
we can think of the `–filters as analogous to normal subgroups for groups.

Recall that, by Birkhoff’s Subdirect Decomposition Theorem (Theo-
rem 1.31), any variety is determined by its subdirectly irreducible mem-
bers. Because of this, much of our algebraic analysis aims to gain insight
into the structure of subdirectly irreducible De Morgan monoids. Further-
more, subdirectly irreducible algebras are characterized by the structure of
their congruence lattices; see Theorem 1.30. The correspondence between
deductive filters and congruences is an indispensable tool in this regard.

Lemma 5.8. Let A ∈ DMM. For all a1, . . . , am ∈ A, where m ∈ ω,

DFgA(a1, . . . , am) = [e ∧ a1 ∧ · · · ∧ am).

Thus, every finitely generated deductive filter of A is principal (i.e., gener-
ated by a single element).

Proof. Let F = [e ∧ a1 ∧ · · · ∧ am). Clearly, F is a lattice filter containing
{a1, . . . , am}. It remains to show that F is the smallest such filter. So, let
G be any deductive filter containing {a1, . . . , am}. By definition G contains
e. Also, G is closed with respect to meets, so e ∧ a1 ∧ · · · ∧ am ∈ G. But
then F ⊆ G, since G is upward-closed.

In the relevance logic literature a De Morgan monoid is said to be ‘prime’
if it is finitely subdirectly irreducible. The reason is item (i) of the next
theorem. We choose to not follow this convention, because of the universal
algebraic significance of finitely subdirectly irreducible algebras.
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Theorem 5.9. Let A ∈ DMM.

(i) A is finitely subdirectly irreducible (FSI) iff e is join-irreducible iff e
is join-prime.

(ii) A is subdirectly irreducible (SI) iff there is a greatest element strictly
below e.

(iii) A is simple iff e has just one strict lower bound.

Proof. (i): It suffices to prove the first equivalence, in view of Remark 1.21.

⇒: Suppose that A is FSI. Now suppose that e = a ∨ b for some
a, b ∈ A. In particular a, b ≤ e. Therefore, by Lemma 5.8, DFgA(a) = [a)
and DFgA(b) = [b). For every c ∈ DFgA(a)∩DFgA(b), we see that a, b ≤ c.
But then c ≥ a∨b = e, i.e., c ∈ [e). Recall that [e) is the smallest deductive
filter of A. Therefore DFgA(a) ∩ DFgA(b) = [e). Since A is FSI, by
Definition 1.32, the identity congruence of A is meet-irreducible in Con(A).
By Theorem 5.7, since [e) corresponds to the identity congruence, it is meet-
irreducible in DFil(A). Therefore DFgA(a) = [e) or DFgA(b) = [e), i.e.,
a = e or b = e.

(i) ⇐: Assume that e is join-irreducible in A, and let F and G be
deductive filters of A, such that F ∩G = [e). We must show that F = [e)
or G = [e). Suppose, on the contrary, that a ∈ F and b ∈ G, where e 6≤ a
and e 6≤ b, i.e., a ∧ e < e and b ∧ e < e. For every d ∈ A such that
a ∧ e, b ∧ e ≤ d, we have d ∈ F ∩G = [e), i.e., e ≤ d. This shows that e is
the join of a ∧ e and b ∧ e, contradicting the join-irreducibility of e.

(ii): To show the forward direction, the proof of (i) can be adapted; the
details are left to the reader. For the other direction, suppose that c is the
largest element strictly below e and let F be any deductive filter of A. We
show that [c) ⊆ F , whenever [e) ( F . If b ∈ F , but not in [e), then b
cannot be an upper bound of e. In particular, b ∧ e < e, so there exists
a ∈ F , such that a < e. But then a ≤ c, hence,

[c) ⊆ [a) ⊆ F.

(iii) follows easily from (ii), by noticing that, if c is the only strict lower
bound of e, then [c) = A. So, [c) corresponds to the total congruence
A2. Conversely, if e has more than one lower bound, then there is a chain
e > a > b, so [e), [a), [b) are distinct deductive filters of A, contradicting
simplicity.

We proceed by giving some results about the structure of FSI De Morgan
monoids.
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Theorem 5.10. Let A be a FSI De Morgan monoid, and a ∈ A. Then
e ≤ a or a ≤ f . Thus, A = [e) ∪ (f ].

Proof. By Theorem 5.1(iv) e ≤ a ∨ ¬a. So, because A is FSI, e ≤ a or
e ≤ ¬a, by Theorem 5.9(i). In the latter case, a ≤ f , because ¬ is order-
reversing.

The next lemma is a straightforward consequence of the law of residua-
tion (i.e., (1.8) from Theorem 1.55).

Lemma 5.11. The following conditions on a bounded De Morgan monoid
A are equivalent (where ⊥ ≤ a ≤ > for all a ∈ A).

(i) > · a = > whenever ⊥ 6= a ∈ A.

(ii) a→ ⊥ = ⊥ whenever ⊥ 6= a ∈ A.

(iii) > → b = ⊥ whenever > 6= b ∈ A.

Definition 5.12. Following Meyer [41], we say that a De Morgan monoid
is rigorously compact if it is bounded and satisfies the equivalent conditions
of Lemma 5.11.

Theorem 5.13. Let A be a bounded FSI De Morgan monoid. Then A is
rigorously compact.

Proof. Let ⊥ 6= a ∈ A. It suffices to show that > · a = >. By the law of
residuation,

> · a ≤ f iff a ≤ > → f = ¬> = ⊥ iff a = ⊥,

which is false. Therefore, > · a 6≤ f , so by Theorem 5.10,

e ≤ > · a.

Using this and the fact that > = >2 (by Theorem 5.3(ii)) we infer that

> = > · e ≤ >2 · a = > · a ≤ >,

whence > · a = >.

Corollary 5.14. Finitely generated FSI De Morgan monoids are rigorously
compact.

Proof. Let A be a finitely generated FSI De Morgan monoid. Since A is
finitely generated, it is bounded, by Theorem 5.5. But then, since A is also
FSI, A is rigorously compact, by Theorem 5.13.
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An element a of an IRL A is said to be idempotent if a · a = a. We
say that A is idempotent if all of its elements are. In the next result, the
implication (i) ⇒ (ii) is well known, but we have not found (ii) ⇒ (iii) in
the literature.

Theorem 5.15. Let A be a De Morgan monoid. The following are equiv-
alent.

(i) f 2 = f .

(ii) f ≤ e.

(iii) A is idempotent.

Proof. (i) ⇒ (ii): It suffices to show that if A is an IRL in which f 2 ≤ f ,
then f ≤ e in A. Suppose that f 2 ≤ f . By Theorem 1.57(iii),

f · f = ¬(f → ¬f) = ¬(f → e).

Then ¬(f → e) ≤ f , hence, since ¬ is antitone, we obtain e = ¬f ≤ f → e.
Therefore, f ≤ e, by Theorem 1.56(ii).

(ii) ⇒ (iii): Let a ∈ A. Using properties of involution, we see that

a = ¬¬a = ¬a→ f.

If f ≤ e, then f ≤ ¬a → ¬a, by Theorem 1.58(i), and since → preserves
order in its second coordinate, a ≤ ¬a → (¬a → ¬a). By (4.2) in Theo-
rem 4.3,

¬a→ (¬a→ ¬a) ≤ ¬a→ ¬a,
the last of which is equal to a→ a, because of Theorem 1.57(ii). Therefore,
a ≤ a → a, so that, a · a ≤ a, by the law of residuation. But then a2 = a,
as De Morgan monoids are square-increasing.

(iii) ⇒ (i) is trivial.

5.2 Sugihara Monoids

Idempotent De Morgan monoids are called Sugihara monoids . The class
SM of Sugihara monoids is obviously a subvariety of DMM. The extension
RMt of Rt by the mingle axiom p → (p → p) is algebraized by SM. This
is an easy consequence of Corollary 2.28 and its proof.

Sugihara monoids are very well understood, cf. Dunn’s contributions to
[2]. Because of this, we will recount only what pertains directly to Theo-
rem 5.30 below, despite the fact that a full understanding of the subvarieties
of SM contributes to our understanding of the subvarieties of DMM.
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Definition 5.16. An IRL is said to be semilinear if it is a subdirect product
of totally ordered IRLs. (Recall that an IRL A is totally ordered if for any
a, b ∈ A, we have a ≤ b or b ≤ a.)

Theorem 5.17 ([31]). A De Morgan monoid is semilinear if and only if it
satisfies

e ≤ (x→ y) ∨ (y → x). (5.1)

Proof. (⇒): Notice that (5.1) abbreviates an equation. So, it suffices to
show that every totally ordered IRL satisfies (5.1), as equations persist in
subdirect products. So, let A be a totally ordered IRL, and let a, b ∈ A.
By symmetry, we may assume that a ≤ b. Then e ≤ a→ b , so

e ≤ (a→ b) ∨ (b→ a).

(⇐): Let A be a De Morgan monoid that satisfies (5.1). By Birkhoff’s
subdirect decomposition theorem,A is a subdirect product of SI De Morgan
monoids Ai, for i ∈ I. It suffices to show that each Ai is totally ordered.
Fix i ∈ I. Now, Ai satisfies (5.1), because (5.1) is an abbreviated equation
and Ai is a homomorphic image of A. So, for each a, b ∈ A, because (5.1)
gives e ≤ (a → b) ∨ (b → a), we have e ≤ a → b or e ≤ b → a, by
Theorem 5.9(i), i.e., a ≤ b or b ≤ a.

Corollary 5.18. Every Sugihara monoid is semilinear.

Proof. Let A be a Sugihara monoid, and let a, b ∈ A. It suffices, by The-
orem 5.17, to show that A satisfies e ≤ (a → b) ∨ (b → a). By Theo-
rem 5.1(iii), a · ¬a ≤ f and b · ¬b ≤ f , so, by commutativity and idempo-
tence, (a · ¬b) · (b · ¬a) ≤ f · f = f . But then, (a · ¬b) ∧ (b · ¬a) ≤ f , by
Theorem 5.1(i). Finally, by De Morgan’s law, we get

e ≤ ¬((a · ¬b) ∧ (b · ¬a)) = ¬(a · ¬b) ∨ ¬(b · ¬a) = (a→ b) ∨ (b→ a),

as required.

We say that a Sugihara monoid is odd if e = f . The reason for this name
will become clear in view of the next theorem. Notice that if a De Morgan
monoid satisfies e = f then it is an odd Sugihara monoid, by Theorem 5.15.

Example 5.19. The set of all integers is the universe of an odd Sugihara
monoid S with identity e = 0 in which the lattice order ≤ is the usual total
order. In S, x · y is the integer in {x, y} with the larger absolute value if
|x| 6= |y|; otherwise x · y = x ∧ y. The involution is just additive inversion.
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For each odd positive integer 2n + 1, we use S2n+1 to denote the sub-
algebra of S with universe

S2n+1 = {−n,−n+ 1, . . . ,−2,−1, 0, 1, 2, . . . , n− 1, n}.

Theorem 5.20. For each n ∈ ω, every n-generated subdirectly irreducible
odd Sugihara monoid is isomorphic to S2m+1 for some m ≤ n.

Proof. Let A be a subdirectly irreducible odd Sugihara monoid and X a
generating set for A, with |X| ≤ n. Let

Y := X ∪ {e} ∪ {¬a : a ∈ X}.

Notice that Y has 2m + 1 elements, for some m ≤ n. Now, since A is SI
and semilinear (by Corollary 5.18), A is totally ordered. It follows that Y
is closed under ∧ and ∨.

Let a, b ∈ A. We claim that, a · b = a or a · b = b. By symmetry we may
assume that a ≤ b. Then a = a · a ≤ a · b ≤ b · b = b. If e ≤ a · b, then

a · b = a · (b · b) = (a · b) · b ≥ e · b = b,

so a · b = b. Similarly, if a · b ≤ e then a · b = a. Since A is totally ordered,
this completes the proof of the claim.

The claim shows that Y is closed under ·. Since A is odd, i.e., e = ¬e,
Y is also closed under ¬. It follows that Y is a subuniverse of A, hence
A = Y (because Y ⊇ X).

It is clear that there is a bijection betweenA and S2m+1 which preserves
∧, ∨ and ¬.

Recall that for any a ∈ A we defined |a| = a → a. First we establish
that |a| is the largest element of {a,¬a}, or equivalently, whichever one of
a or ¬a is an upper bound e.

Suppose that e ≤ a. Since a is idempotent, a · a = a, so by the law of
residuation a ≤ a→ a. Furthermore, ¬a = e ·¬a ≤ a ·¬a, so by properties
of involution,

a→ a = ¬(a · ¬a) ≤ ¬¬a = a.

Therefore, a = a→ a. The result for e ≤ ¬a follows by symmetry, once we
note that a→ a = ¬a→ ¬a.

It remains to show, for all a, b ∈ A, that a · b is the element of {a, b}
with the larger ‘absolute value’, whenever |a| 6= |b|, and that a · b = a ∧ b,
whenever |a| = |b|.
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Suppose that |a| = |b|. If a = b then clearly a · b = a · a = a. If b = ¬a,
then,

a · b = a · ¬a = ¬¬(a · ¬a) = ¬(a→ a) = ¬|a| = a ∧ ¬a = a ∧ b.

Lastly, suppose that |a| < |b|. We are required to prove that a · b = b.
Suppose not. Then a · b = a by the claim above. Notice that a 6= b,
so either a < b or b < a, since A is totally ordered. If a < b, then
a · b ≤ b · b = b < a, a contradiction. Therefore b < a. If a ≤ e, then
a · b ≤ e · b = b < a, again contradicting the fact that a · b = a. Therefore
e < a. Notice that b < ¬a ≤ e, since |a| ≤ |b|. But then b · ¬a = b,
otherwise ¬a = b · ¬a ≤ b · e = b < ¬a, a contradiction. Also, notice that
a · ¬a = ¬a, since |a| = |¬a| and ¬a ≤ a. Therefore,

a = a · b = a · ¬a · b = ¬a · b = b,

contradicting the assumption that |a| 6= |b|.

It is worthwhile to mention the following, even though it will not be
needed directly. We say that a Sugihara monoid is even, when f < e. It
is easy to expand the proof above to show that every finitely generated
even SI Sugihara monoid is isomorphic to some S2m+2, which is defined
in a similar way to S2m+1 in Example 5.19, except that we remove 0, so
that 1 becomes the identity element e. In this way we have a complete
description of the finitely generated SI Sugihara monoids. Notice that S2

is the 2-element Boolean algebra.

ss
s
−1

0 = e

1

S3:

Corollary 5.21. S3 is, up to isomorphism, the only simple finitely gener-
ated odd Sugihara monoid.

Proof. By Theorem 5.9(iii), S3 is simple, owing to the fact that −1 is the
only strict lower bound of 0 (the identity). Also, S3 is clearly generated by
1.

Conversely, suppose that A is a simple finitely generated odd Sugihara
monoid. By Theorem 5.20, A is isomorphic to S2n+1 for some n ∈ ω. Since
A is non-trivial, n 6= 0. Furthermore, if n > 1, then there is more than
one strict lower bound of 0 in S2n+1. The only remaining option is S3.
Therefore, A ∼= S3.

Theorem 5.22. Every non-Boolean Sugihara monoid has a non-trivial odd
Sugihara monoid as a homomorphic image.
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Proof. Let A be a non-Boolean Sugihara monoid. Since SM is a variety and
by Birkhoff’s Subdirect Decomposition Theorem, A is a subdirect product
of subdirectly irreducible members of SM. At least one of these members B
is non-Boolean and there exists a homomorphism h from A onto B. Note
that if B is odd, then we are done. So suppose that e 6= f in B, i.e., f < e
by Theorem 5.15.

By Theorem 5.10, B is the union of (f ] and [e), which are disjoint.
Furthermore, since B is non-Boolean, there exists an element strictly above
e, by Theorem 5.4.

We define θ := idB ∪ {(e, f), (f, e)} and claim that θ is a congruence of
B. It is easy to see that θ is an equivalence relation. It is also easy to see
that θ is compatible with ¬ and e. The fact that θ is compatible with ∧
and ∨ follows from the fact that there are no elements between e and f .

To show that θ is compatible with ·, the only non-trivial part we need
to show is that a · e ≡θ a · f , for every a ∈ A. We show that a = a · f for
any a 6= e. First notice that

a · f ≤ a · e = a.

Recall that either a ≤ f or e < a. In the first case a = a · a ≤ a · f , so
a = a · f . In the second case, notice that e 6≤ a → e, otherwise a ≤ e,
by Theorem 1.56(ii). So, since B is a totally ordered, a → e ≤ f , hence
e ≤ a · f by laws of involution. Therefore,

a = a · e ≤ a · a · f = a · f.

5.3 Varieties of De Morgan Monoids

In this section we will finally characterize the atoms of the subvariety lattice
of DMM. We start by characterizing all the simple 0-generated De Morgan
monoids. In [54, 55], Slaney describes all the 0-generated finitely subdirectly
irreducible members of DMM (he called them prime constant De Morgan
monoids). Only three of these algebras (depicted below) are simple. For
our purposes, only the simple ones will prove important, so it is easier to
identify them via a direct argument.
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Here 2 (= S2) is just the 2-element Boolean algebra. Notice that, by
Lemma 5.2 and Theorem 5.3, the information given in the pictures is enough
to determine the entire algebra in each case; the details will become clear
in the proof of Theorem 5.24.

It is now easy for us to give a short proof of the following very well
known fact.

Theorem 5.23. Every finitely subdirectly irreducible Boolean algebra is iso-
morphic to 2. Consequently, every Boolean algebra is isomorphic to a sub-
direct product of copies of 2, whence BA = Q(2).

Proof. It is clear from Theorem 5.9(iii) that 2 is simple, and hence finitely
subdirectly irreducible.

Suppose that A is a finitely subdirectly irreducible Boolean algebra.
So, e is the top element of A, and ¬e = f is the bottom element. Suppose
that c ∈ A, such that f < c < e. Notice that f < ¬c < e, by properties
of involution. Also c ∨ ¬c = e, since ¬c is the complement of c. But
this contradicts the fact that e is join-irreducible in A, by Theorem 5.9(i).
Therefore, e and f are the only elements of A.

In particular, 2 is, up to isomorphism, the only simple Boolean algebra.

Theorem 5.24. Every simple 0-generated De Morgan monoid is isomor-
phic to 2, C4 or D4.

Proof. Let A be a simple 0-generated De Morgan monoid. By definition, A
is non-trivial. Suppose that A 6∼= 2. Then A cannot be integral, otherwise
it would be a Boolean algebra by Theorem 5.4, and hence isomorphic to 2,
by Theorem 5.23.

Suppose that A is idempotent. Then f ≤ e, by Theorem 5.15. We
cannot have e = f , as then {e} would be a proper subuniverse of (the non-
trivial) A, contradicting the fact that A is 0-generated. Therefore, f < e.
Now, since A is simple, e has just one strict lower bound, by Theorem 5.9,
so f is the least element of A. But then e is the greatest element of A, i.e.,
A is integral, a contradiction. Therefore A is not idempotent.

By Theorem 5.15, f 6≤ e and f 6= f 2. But since A is square-increasing,
f < f 2, hence ¬(f 2) < e. Since A is simple, we have that ¬(f 2) is the
bottom element of A, so f 2 is the top element. Consequently, a · ¬(f 2) =
¬(f 2) for all a ∈ A, by Theorem 5.3(i). Also, since A is bounded and
FSI, it is rigorously compact, by Theorem 5.13, so a · f 2 = f 2, whenever
¬(f 2) 6= a ∈ A. It follows that {e, f, f 2,¬(f 2)} ⊆ A is closed with respect
to · and ¬.
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There are two possibilities for the order: e < f or e 6≤ f . If e 6≤ f ,
then e ∧ f < e, whence e ∧ f is the bottom element ¬(f 2), by simplicity of
A. If we then apply De Morgan’s law, we see that e ∨ f = f 2. In the case
where e < f , we see that ¬(f 2) < e < f < f 2. Either way, {e, f, f 2,¬(f 2)}
is the universe of a four-element subalgebra of A. Therefore, since A is
0-generated, A = {e, f, f 2,¬(f 2)}. Thus, A ∼= C4 if e < f and A ∼= D4 if
e 6≤ f .

Now that we have found all the simple 0-generated De Morgan monoids,
we can use universal algebraic tools, which we will develop now, to prove
our characterization of the minimal subvarieties of DMM.

Theorem 5.25 (Jónsson [33]). If a non-trivial algebra A of finite type is
finitely generated, then A has a simple homomorphic image.

Proof. Let A = SgA({a1, . . . , an}) have finite type F , where, without
loss of generality, 1 ≤ n ∈ ω. By Theorem 1.39, we know that A =
{αA(a1, . . . , an) : α is an n-ary term}. Let

X = {a1, . . . , an} ∪ {gA(a1, . . . , a1) : g ∈ F}.

Let Y = X ×X. Notice that Y is finite. We claim that A× A = ΘA(Y ).

Let b ∈ A. Then b = αA(a1, . . . , an) for some n-ary term α. We first
show, using induction on the complexity of α, that 〈b, a1〉 ∈ ΘA(Y ). Once
this is shown then the claim follows easily from the transitivity and sym-
metry of ΘA(Y ).

Suppose that #α = 0, i.e., α is a variable or a constant. If it is a
variable, then clearly

〈b, a1〉 = 〈ai, a1〉 ∈ Y ⊆ ΘA(Y ), for some i ≤ n.

If α is a constant symbol, then 〈αA, a1〉 ∈ Y ⊆ ΘA(Y ). Now suppose that
α is g(β1, . . . , βm), where 〈βA

i (−→a ), a1〉 ∈ ΘA(Y ), for some g ∈ F and each
i ≤ m. Then

gA(βA
1 (−→a ), . . . , βA

m(−→a )) ≡ΘA(Y ) g
A(a1, . . . , a1) ≡ΘA(Y ) a1.

We have shown that the congruence A × A is finitely generated. We
still need to show that A has a simple homomorphic image. We will prove,
using Zorn’s Lemma, that A has a maximal proper congruence, say θ. By
the Correspondence Theorem, A/θ will then have only two congruences,
namely the trivial and total congruences. In other words, A/θ is simple.
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Let Σ = {θ ∈ Con(A) : θ ( A× A}. Notice that Σ is non-empty, since
the trivial congruence belongs to Σ, because A is non-trivial. Let Σ0 be
a non-empty chain in Σ. Then clearly

⋃
Σ0 is an upper bound of Σ0. It

remains to prove that
⋃

Σ0 ∈ Σ.

As Con(A) is algebraic, and as chains are directed,
⋃

Σ0 is a congruence,
but we still need to show that

⋃
Σ0 is proper subset of A × A. Suppose,

towards a contradiction, that
⋃

Σ0 = A × A. This means that Y ⊆
⋃

Σ0.
Since Y is finite and Σ0 is a chain, Y ⊆ θ for some θ ∈ Σ0. But then
θ = A× A, a contradiction.

Corollary 5.26. Every non-trivial variety of finite type has a simple finitely
generated member.

Proof. Let K be such a non-trivial variety. Then there exists a non-trivial
algebra A ∈ K. In particular, there exist a, b ∈ A such that a 6= b. Now
let B = SgA({a, b}), so B is a finitely generated subalgebra of A. Notice
that B ∈ K, since K is closed under subalgebras. By Theorem 5.25, B
has a simple homomorphic image C, which is contained in K since K is
closed under homomorphic images. Furthermore, by Theorem 1.27, C is
generated by the images of the generators of B.

For varieties of finite type, Corollary 5.26 strengthens Magari’s Theorem
(cf. [13, Thm. II.10.13]), which states that every non-trivial variety has a
simple member.

Definition 5.27. A variety K has the congruence extension property (CEP)
provided that, for every A ∈ K and every subalgebra B of A,

if θ ∈ Con(B), then there exists α ∈ Con(A) such that α ∩B2 = θ.

Theorem 5.28. The variety DMM has the congruence extension property.

Proof. Let A ∈ DMM and B a subalgebra of A. We shall show that for
every deductive filter F of B, there exists a deductive filter G of A such
that B ∩G = F .

Let F be a deductive filter of B. So DFgA(F ) is a deductive filter of A.
Clearly, F ⊆ B∩DFgA(F ). For the reverse inclusion, let b ∈ B∩DFgA(F ).
As DFil(A) is an algebraic closure system, DFgA(b) is compact in DFil(A),
hence there is a finite subset F ′ of F such that DFgA(b) ⊆ DFgA(F ′), i.e.,
b ∈ DFgA(F ′). By Lemma 5.8, DFgA(F ′) = [a)A, where a is either e or
the meet (in A) of the elements of F ′. Thus, a ∈ F , because F ′ is a finite
subset of F and because B is a subalgebra of A. Therefore b ∈ F , since
a ≤ b, which shows that B ∩DFgA(F ) ⊆ F .
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Finally, let θ be a congruence of B. Let F = HB(θ), from Theorem 5.7.
Then F ∈ DFil(B) and θ = {〈a, b〉 ∈ B2 : a ↔ b ∈ F}, by Theorem 5.7.
By the above argument, if we let G = DFgA(F ), then F = B ∩ G. By
Theorem 5.7, the relation

θG = {〈a, b〉 ∈ A2 : a↔ b ∈ G}

is a congruence of A, and we claim that B2 ∩ θG = θ. It suffices to show
that for all a, b ∈ B, we have 〈a, b〉 ∈ θG iff 〈a, b〉 ∈ θ. Let a, b ∈ B.
Then 〈a, b〉 ∈ θG iff a ↔ b ∈ G iff a ↔ b ∈ F (because a ↔ b ∈ B) iff
〈a, b〉 ∈ θ.

One reason for introducing the congruence extension property is to prove
the following theorem. Its proof can easily be extended to every variety with
the CEP.

Corollary 5.29. Non-trivial subalgebras of simple De Morgan monoids are
simple.

Proof. LetA be a simple De Morgan monoid andB a non-trivial subalgebra
of A. Suppose that B is not simple, i.e., there exists θ ∈ Con(B) such that
idB ( θ ( B2. By Theorem 5.28, there exists θ′ ∈ Con(A) such that
θ′ ∩ B2 = θ. Notice that θ′ 6= A2, otherwise θ = B2. Also, θ′ 6= idA,
otherwise θ = idB. Therefore, idA ( θ′ ( A2, contradicting the fact that A
is simple.

Now we can finally prove the main new result of this thesis.

Theorem 5.30. The distinct classes V(2), V(S3), V(C4) and V(D4) are
precisely the minimal (non-trivial) varieties of De Morgan monoids.

Proof. Let X be any of the four algebras 2, S3, C4 or D4. Notice that
V(X), being a class of lattices, is congruence distributive. Therefore, by
Jónsson’s Theorem (Theorem 1.49), the SI members of V(X) are contained
in HSPu(X). Since X is finite, by Corollary 1.36, any ultrapower of X
is isomorphic to X. Furthermore, in the case where X = S3, the only
proper subalgebra of X is the trivial subalgebra. In the other cases, X
is 0-generated, i.e., has no proper subalgebra. Lastly, since X is simple,
the homomorphic images of X are either trivial or isomorphic to X. Since
SI algebras are non-trivial, all the SI members of V(X) are isomorphic to
X. Now, since varieties are determined by their SI members, V(X) has no
proper non-trivial subvariety, and V(X) 6= V(Y ), whenever Y is any one
of the four algebras except X.
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Conversely, let K be a minimal (non-trivial) subvariety of DMM. Then
it is easy to see that K is generated by any one of its non-trivial members.
By Corollary 5.26, K has a finitely generated simple (hence non-trivial)
member A. So V(A) = K. Let B be the smallest subalgebra of A, so B is
0-generated. Now, if B is non-trivial, then K = V(B). Furthermore, B is
simple, by Theorem 5.28. In this case, by Theorem 5.24, B is isomorphic
to 2, C4 or D4. On the other hand, if B is trivial, then the identity e = f
holds in A. So, A is a finitely generated simple odd Sugihara monoid, by
Theorem 5.15. Therefore, by Corollary 5.21, A ∼= S3, so K = V(S3).
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Before we axiomatize these varieties, we prove the following lemma.

Lemma 5.31. If a non-trivial De Morgan monoid A satisfies e ≤ f and
x ≤ f 2, then C4 can be embedded into A.

Proof. Suppose A satisfies e ≤ f and x ≤ f 2. Then A satisfies ¬(f 2) ≤ x,
by involution properties. In A, if e = f , then f 2 = e2 = e, whence ¬(f 2) =
¬e = f , yielding ¬(f 2) = f 2, i.e., A is trivial. This is a contradiction,
so e < f . By Theorem 5.15, therefore, f < f 2, i.e., ¬(f 2) < e. Thus,
C4 ∈ I S(A).

Theorem 5.32. Consider the following equations.

e ≤ (x→ (y ∨ ¬y)) ∨ (y ∧ ¬y) (5.2)

e ≤ (f 2 → x) ∨ (x→ e) ∨ ¬x (5.3)

x ∧ (x→ f) ≤ (f → x) ∨ (x→ e) (5.4)

x→ e ≤ x ∨ (f 2 → ¬x) (5.5)

(i) V(2) is axiomatized adding x ≤ e to the axioms of DMM;
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(ii) V(S3) by adding e = f , (5.1) and (5.2);

(iii) V(D4) by adding x ≤ f 2, x ∧ ¬x ≤ y and (5.3);

(iv) V(C4) by adding x ≤ f 2, e ≤ f , (5.1), (5.4) and (5.5).

Proof. Let X ∈ {2,S3,C4,D4}. It can be verified mechanically that X
satisfies the proposed axioms for V(X). Let A be an SI algebra satisfying
the putative axioms for V(X). It suffices to show that A ∼= X.

Suppose X is 2. Since e is the greatest element of A, we have A ∼= 2,
by Theorems 5.4 and 5.23.

Let a be the largest element of A strictly below e, which exists by
Theorem 5.9(ii), because A is SI. Then, by properties of involution, ¬a
is the smallest element of A strictly above f . Furthermore, if X is S3 or
C4, then A is totally ordered, by Theorem 5.17, because (5.1) signifies that
A is semilinear.

Suppose that X = S3. In A, since e = f , we have a < e < ¬a,
and there is no other element in this interval. We claim that there is no
element of A strictly above ¬a. Suppose, with a view to contradiction, that
b > ¬a. By (5.2) and the fact that e is join-prime (Theorem 5.9(i)), we
know that e ≤ b → (a ∨ ¬a) or e ≤ a ∧ ¬a. Since a ∧ ¬a = a < e, we
have b ≤ a ∨ ¬a = ¬a, a contradiction. This vindicates the above claim.
Now suppose b ∈ A − {a, e,¬a}. Since A is totally ordered, the claim
shows that b < a, but then ¬b > ¬a, contradicting the claim. Therefore,
A = {a, e,¬a}, from which it follows easily that A ∼= S3.

If X is C4 or D4, then A satisfies x ≤ f 2. In particular, A is bounded
(with lower bound ¬(f 2)), and therefore rigorously compact, by Theo-
rem 5.13.

Suppose that X = D4. Notice that b ∧ ¬b = ¬(f 2) for any b ∈ A.
First we show that e is incomparable with f in A. If e ≤ f , then e =
e ∧ f = ¬(f 2), i.e., e is the bottom element of A, forcing A to be trivial
by Theorem 1.56(ii). On the other hand, if f ≤ e then A is idempotent by
Theorem 5.15, so again ¬(f 2) = ¬f = e. Either way, this contradicts the
fact that A is SI.

Recall that a is the greatest element strictly less than e. Thus, a < f ,
by Theorem 5.10. But then a ≤ e ∧ f = ¬(f 2), showing that a = ¬(f 2).
This means that there is no element between ¬(f 2) and e in A. It follows
by properties of involution that there is also no element between f and f 2.
Now suppose that b ∈ A, such that ¬(f 2) < b < f . Then, by (5.3),

e ≤ (f 2 → ¬b) ∨ (¬b→ e) ∨ b.
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Since A is rigorously compact and ¬b 6= f 2, we have f 2 → ¬b = ¬(f 2).
So, because e is join-prime, e ≤ ¬b → e or e ≤ b. The last condition is
false, for otherwise e ≤ b < f . Therefore, ¬b ≤ e, i.e., f ≤ b, contrary to
assumption. Therefore, there is no element between ¬(f 2) and f . Then
there is also no element between e and f 2 in A, by properties of involution.
But then A = {¬(f 2), e, f, f 2}, because, by Theorem 5.10, every element of
A is either above e or below f . In this case A ∼= D4.

Lastly, supposeX = C4. Notice thatC4 embeds intoA, by Lemma 5.31.
Recall that a < e, so, by (5.5),

e ≤ a→ e ≤ a ∨ (f 2 → ¬a).

So, since e is join-prime and a < e, we have f 2 ≤ ¬a. But then a = ¬(f 2).
It follows that there is no element between ¬(f 2) and e in A, nor is there
an element between f and f 2.

Suppose, with a view to contradiction, that b ∈ A − {¬(f 2), e, f, f 2}.
By Theorem 5.10, e ≤ b or e ≤ ¬b, so we may suppose, without loss of
generality, that e < b. In particular, by the previous paragraph and since
A is totally ordered, e < b < f . But then e ≤ b→ f , so by (5.4),

e ≤ b ∧ (b→ f) ≤ (f → b) ∨ (b→ e).

So, since e is join-prime, b ≤ e or f ≤ b, a contradiction. Thus,A ∼= C4.

Now that we have found the atoms of the subvariety lattice of DMM
and produced axiomatizations for them, we can use the strategy set out
in Section 4.1 to give a transparent description of the maximal consistent
axiomatic extensions of Rt.

Theorem 5.33. Let Λ be the lattice anti-isomorphism from Corollary 2.28,
from the subvariety lattice of DMM onto the lattice of axiomatic extensions
of Rt. The maximal consistent axiomatic extensions of Rt are exactly

Λ(V(2)) =`CPL, Λ(V(S3)), Λ(V(C4)) and Λ(V(D4)).

This means that, for each axiomatic consistent extension L of Rt, there
exists B ∈ {2,S3,C4,D4} such that the theorems of L all take values ≥ e
on any B-evaluation. Axioms for these extensions of Rt follow systemati-
cally from Theorem 5.32, in view of Theorem 2.26. For example, after the
obvious simplifications, (5.1) becomes the axiom (p → q) ∨ (q → p), while
(5.5) becomes (p→ t)→ (p ∨ (f 2 → ¬p)).
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Chapter 6

Some Applications

In this chapter we will use some of the results from the previous chapter to
prove results about relevant algebras. The results in this chapter are not
new, but we believe that the proofs given here are easier than the published
versions. In particular, we will use our characterization of the minimal
subvarieties of DMM to describe the lower part of the subvariety lattice of
RA. The outcome is a result of Świrydowicz [59]. Our approach, unlike
his, does not employ the somewhat complex ternary relation structures
of [53] that provide a relational semantics for R. Following Raftery and
Świrydowicz [52], we then show how the result can be exploited to identify
the structurally complete axiomatic extensions of R.

6.1 Relevant Algebras

Recall that we use the notation |x| to abbreviate x→ x, and that the class
RA was introduced in Definition 4.7.

Theorem 6.1. Let A ∈ RA, with a, b ∈ A.

(i) ||a|| = |a|;

(ii) ||a| ∧ |b|| ≤ |a| ∧ |b| .

Proof. We know thatA is a subalgebra of some algebraB which is a reduct
of a De Morgan monoid. In B we know that e ≤ |a|, by Theorem 1.58(i),
so by Lemma 4.6, ||a|| ≤ |a|. Furthermore, by two applications of Theo-
rem 1.56(i),

a · (a→ a) · (a→ a) ≤ a.
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So, by two applications of the law of residuation, |a|2 ≤ |a|, and then
|a| ≤ |a| → |a|. Therefore, ||a|| = |a| in B, but since A is a subalgebra of
B, the equality holds in A as well.

For (ii), notice that e ≤ |a| and e ≤ |b| in B. Therefore, e ≤ |a| ∧ |b|.
But then ||a| ∧ |b|| ≤ |a| ∧ |b|, by Lemma 4.6.

The following theorem provides one of the main tools for transitioning
between relevant algebras and De Morgan monoids.

Theorem 6.2. Every finitely generated relevant algebra is the e-free reduct
of a De Morgan monoid.

Proof. Let A ∈ RA, such that A is generated by a1, . . . , an ∈ A. We claim
that ē := |a1| ∧ · · · ∧ |an| is an identity element of A. Let b ∈ A. We will
show that b · ē = b.

We know that A is a subalgebra of some algebra B, which is a reduct of
a De Morgan monoid. So, B has an identity e, and e ≤ |ai| for every i ≤ n,
because of Theorem 1.58(i). Therefore, e ≤ ē, and multiplying throughout
by b, we have b ≤ b · ē in B, hence, also in A.

Notice that, since De Morgan’s laws are equations that do not contain
e, they also hold in relevant algebras. So, by Theorem 1.39, there is some
n-ary term α, in the signature ∧, ·,¬, such that b = αA(a1, . . . , an). Now
we show that b · ē ≤ b by induction on the complexity of α.

If b is one of the generators, say aj, then

b · ē ≤ b · |aj| = b · (b→ b) ≤ b.

Assume that c, d ∈ A, such that c · ē ≤ c and d · ē ≤ d. If b = ¬c, then
(¬c) · ē ≤ ¬c, by (1.5). Suppose that b = c ∧ d. Then

(c ∧ d) · ē ≤ c · ē ≤ c.

Similarly, (c ∧ d) · ē ≤ d. Therefore (c ∧ d) · ē ≤ c ∧ d.

Now, suppose that b = c · d. Then, by the square-increasing law,

c · d · ē ≤ c · ē · d · ē ≤ c · d.

We will use the following notation: If A is a De Morgan monoid, then
A− will denote the e-free reduct of A. Furthermore, whenever we use the
term ‘reduct’ in this section, we really mean ‘e-free reduct’.

Also, if K is a variety of De Morgan monoids, then K− will denote the
class of reducts of the members of K. Note that

if A ∈ DMM then V(A)− ⊆ V(A−). (6.1)
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Indeed, every equation satisfied by A− is an e-free identity of A, and there-
fore of V(A), and therefore of V(A)−.

The operation of taking e-free reducts preserves many structural proper-
ties, as exemplified by the following lemma. Crucially however, the subalge-
bras of a reduct of a De Morgan monoid need not contain e, and they need
not be reducts of De Morgan monoids themselves, unless they are finitely
generated.

Lemma 6.3. If A is a De Morgan monoid, then Con(A−) = Con(A). In
particular, if A is simple, FSI or SI, then so is A−.

Proof. It is clear from the definition of a congruence that θ is a congruence
of A− if and only if θ is a congruence of A, because the demand that θ
should be compatible with e is already captured by the reflexivity of θ.

Theorem 6.4. RA is a variety.

Proof. We already know from Lemma 2.29 that RA is a quasivariety, i.e.,
RA = I S PPu(RA). It remains to show that RA is closed with respect to
homomorphic images.

Let A ∈ RA and let h be a homomorphism from A onto an algebra B.
We need to show that B is a subreduct of a De Morgan monoid.

By Theorem 1.33, B can be embedded into an ultraproduct
∏

i∈I Bi/U ,
where Bi is a finitely generated subalgebra of B for every i ∈ I.

Fix i ∈ I. Let {b1, . . . , bn} be a set of generators for Bi. Choose

aj ∈
←−
h [{bj}] for every j ≤ n. Let Ai = SgA(a1, . . . , an), so that Ai is a

finitely generated subalgebra of A. By Theorem 6.2, Ai is a reduct of some
De Morgan monoid, which by Lemma 6.3 has exactly the same congruences
as A. If we let hi = h|Ai

, then hi is a homomorphism onto Bi. So, by the
Homomorphism Theorem, if we let θ = kerhi, then Ai/θ ∼= Bi. Therefore
Bi is a reduct of a De Morgan monoid, hence Bi ∈ RA.

Therefore B ∈ I S Pu(RA) = RA, as required.

Although we will not need to rely on it, the following theorem provides
an axiomatization of RA (cf. [50]), and it can be rephrased in terms of pure
equations, like those in Theorem 1.59.

Theorem 6.5. An algebra 〈A; ·,∧,∨,¬〉 is a relevant algebra if and only if
the following hold: 〈A;∧,∨〉 is a distributive lattice, 〈A; ·〉 is a commutative
semigroup and for all a, b, c ∈ A,

1. ¬¬a = a ≤ a · a,
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2. a ≤ b iff ¬b ≤ ¬a,

3. a · b ≤ c iff a · ¬c ≤ ¬b,

4. a ≤ a · (¬(b · ¬b) ∧ ¬(c · ¬c)).

The only published proof of the next corollary, viz. [60, Prop. 5], is quite
complicated. The boundedness of finitely generated relevant algebras has
been known for a long time. Świrydowicz attributes it in [60] to Meyer
and to Dziobiak (independently). This is the first of several situations in
which results for De Morgan monoids are used to simplify investigations
into relevant algebras.

Corollary 6.6. Every finitely generated relevant algebra is bounded.

Proof. Let A be a finitely generated relevant algebra. By Theorem 6.2, A
is a reduct of a De Morgan monoid, which is also finitely generated (by the
same set). Therefore, by Theorem 5.5, A is bounded.

Theorem 6.7. Every non-trivial relevant algebra A has a copy of 2− as a
subalgebra.

Proof. As A is non-trivial, there exist a, b ∈ A such that a 6= b. Let
B = SgA(a, b), so that B is a non-trivial finitely generated member of RA.
By Corollary 6.6, B is bounded. Let > and ⊥ denote the respective upper
and lower bounds of B. It is an easy consequence of Theorem 5.3 that
{>,⊥} is the universe of a subalgebra of B that is isomorphic to 2−.

Clearly, when a Boolean algebra A is thought of as an integral De Mor-
gan monoid, it has the same term operations as its e-free reductA−, because
e is definable as x→ x. Thus, by Theorem 5.23, the variety BA of Boolean
algebras can be identified with V(2−) = Q(2−).

Corollary 6.8. Let K be any non-trivial subquasivariety of RA. Then
V(2−) ⊆ K. In other words, Boolean algebras constitute the smallest non-
trivial (quasi)variety of relevant algebras.

Proof. Let A be a non-trivial member of K. It follows from Theorem 6.7
that 2− ∈ I S(A) ⊆ I S(K) = K, since K is a quasivariety.

Corollary 6.9. CPL is the only maximal consistent finitary extension of
R.
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Proof. Since R is algebraized by RA, its finitary extensions are algebraized,
via the same definable translations, by the subquasivarieties of RA, as in
Corollary 2.27. This process, applied to V(2−) = BA, yields CPL, by
Example 2.23. The result therefore follows from Corollary 6.8, because the
correspondence in Corollary 2.27 is a lattice anti-isomorphism.

We shall show that V(S3
−), V(C4

−) and V(D4
−) are exactly the covers

of V(2−) in the subvariety lattice of RA.

ss
s

@
@

s
�
�

s

s

trivial

V(2−)

V(C4
−) V(S3

−)

V(D4
−)

RA

Subvarieties of RA

Lemma 6.10. V(S3
−), V(C4

−) and V(D4
−) are distinct covers of V(2−)

in the subvariety lattice of RA.

Proof. Let X be one of S3
−, C4

− or D4
−. By Lemma 6.3, the algebras X

and 2− are simple. As in the proof of Theorem 5.30, Jónsson’s Theorem
allows us to conclude that every subdirectly irreducible member of V(X)
is isomorphic to 2− or to X. The only difference in the present argument
is the fact that X has just one non-trivial proper subalgebra, and it is
isomorphic to 2−.

Since varieties are determined by their subdirectly irreducible members,
there are no subvarieties of RA between V(2−) and V(X), and V(X) 6=
V(Y ), for any Y ∈ {S3

−,C4
−,D4

−} such that Y 6= X.

To show that these varieties are exactly the covers of V(2−) within RA
requires a bit more work, essentially because RA lacks the congruence ex-
tension property. We start by defining deductive filters for relevant algebras
and exploring some of their properties.

For any A ∈ RA, we say that F ⊆ A is a deductive filter of A if F is a
lattice filter of A and |a| ∈ F for all a ∈ A.
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Theorem 6.11. F is a deductive filter of A ∈ RA if and only if F is an
R–filter of A.

Proof. Suppose that F is a deductive filter of A. Let α be an axiom of
R. In particular, `R α. From the algebraization of R, Corollary 4.8,
A |= |α| � α, because A ∈ RA. So, for any A-evaluation h, we have
|h(α)| = h(|α|) ≤ h(α). But |h(α)| ∈ F , so h(α) ∈ F .

Let h be any A-evaluation. If h(p), h(q) ∈ F then, since F is a lattice
filter, h(p ∧ q) = h(p) ∧ h(q) ∈ F . Therefore, F validates adjunction. Now
suppose that h(p), h(p→ q) ∈ F . A is a subalgebra of some B ∈ RA such
that B is a reduct of De Morgan monoid. In B we know that the following
hold, because of Theorem 5.1(ii) and Theorem 1.56(i):

h(p) ∧ h(p→ q) ≤ h(p) · (h(p)→ h(q)) ≤ h(q).

But then h(q) ∈ F , since F is a lattice filter and all the above are elements
of A.

Conversely, suppose that F is an R–filter. To establish the fact that F
is a lattice filter, we can use the same reasoning as in Theorem 5.6. Lastly,
for any a ∈ A, we know that a→ a ∈ F , because of A1.

Let A be a relevant algebra. As with De Morgan monoids, we let
DFil(A) denote the lattice of deductive filters of A and DFg(X) the small-
est deductive filter of A that contains X, for any X ⊆ A.

Theorem 6.11 implies, via Theorem 3.18, that DFil(A) ∼= Con(A), since
RA is a variety (Theorem 6.4).

Theorem 6.12. Let A be a relevant algebra, with a, b ∈ A.

(i) DFgA(a) = {d ∈ A : a ∧ |c| ≤ d for some c ∈ A};

(ii) DFg(a) ∩DFg(b) = DFg(a ∨ b).

Proof. For (i), let F = {d ∈ A : a ∧ |c| ≤ d for some c ∈ A}. Then a ∈ F ,
since a ∧ |a| ≤ a. First we show that F is a deductive filter of A. Suppose
that b ∈ F and b ≤ c. Then there exists d ∈ A such that a ∧ |d| ≤ b. But
then a ∧ |d| ≤ c, from which we can conclude that c ∈ F .

Suppose b, c ∈ F . Then there exist d, d′ ∈ A, such that a ∧ |d| ≤ b and
a ∧ |d′| ≤ c. Therefore,

b ∧ c ≥ a ∧ |d| ∧ |d′| ≥ a ∧ ||d| ∧ |d′||,

by Theorem 6.1(ii). Consequently, b ∧ c ∈ F . Lastly, for any b ∈ A, we
know a ∧ |b| ≤ |b|, so |b| ∈ F . Therefore F is a deductive filter of A.
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It remains to show that F is the smallest deductive filter containing a.
So, let G be a deductive filter containing a. Let b ∈ F . Then, there exists
d ∈ A, such that a ∧ |d| ≤ b. Since a ∈ G and |d| ∈ G, we have that
a ∧ |d| ∈ G. But then b ∈ G, as required.

Now we show (ii). Let a, b ∈ A. Since a, b ≤ a ∨ b, we know that
a ∨ b ∈ DFg(a) and a ∨ b ∈ DFg(b), hence, a ∨ b ∈ DFg(a) ∩DFg(b).

Let c ∈ DFg(a)∩DFg(b). So, there exist d, d′ ∈ A, such that a∧ |d| ≤ c
and b ∧ |d′| ≤ c. In particular, c ≥ a ∧ |d| ∧ |d′| and c ≥ b ∧ |d| ∧ |d′|.
Therefore,

c ≥ (a ∧ |d| ∧ |d′|) ∨ (b ∧ |d| ∧ |d′|)
= (a ∨ b) ∧ (|d| ∧ |d′|)
≥ (a ∨ b) ∧ ||d| ∧ |d′||.

The second step follows from distributivity, and the last inequality follows
from Theorem 6.1(ii). Therefore c ∈ DFg(a ∨ b).

Corollary 6.13. The class of FSI members of RA is closed under subalge-
bras and ultraproducts.

Proof. Let A ∈ RA. Note that the isomorphism between DFil(A) and
Con(A) preserves compactness (like any isomorphism between complete
lattices). Therefore DFil(A) is algebraic, so by Theorem 1.17, a deductive
filter F is compact in DFil(A) if and only if it is finitely generated.

Clearly, DFgA(a1, . . . , an) = DFgA(a1∧· · ·∧an), so every finitely gener-
ated deductive filter ofA is principal (as with De Morgan monoids). There-
fore, by Theorem 6.12(ii), the intersection of any two compact deductive
filters is compact.

We can therefore use Theorem 1.50 to conclude that RAFSI is closed
under subalgebras and ultraproducts.

Before we show that our three algebras are exactly the covers of V(2−),
we need the following theorem about De Morgan monoids. It is a weaker
version of [55, Thm. 1]. (The full version does not require the image to be
simple.)

Theorem 6.14 (Slaney [55, Thm. 1]). Every homomorphism from an FSI
De Morgan monoid into a simple 0-generated De Morgan monoid is an
isomorphism or has C4 as its image.

Proof. Suppose thatA is an FSI De Morgan monoid and h is a non-bijective
homomorphism into a simple 0-generated algebra B. Then h[A] = B, as
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B is 0-generated. Thus, h is not injective, i.e., there exist a, b ∈ A, such
that h(a) = h(b) and a 6= b. By Theorem 1.56(ii), e 6≤ a ↔ b, hence
¬(a↔ b) 6≤ f . But since A = (f ] ∪ [e) (by Theorem 5.10), e ≤ ¬(a↔ b).

But then e ≤ h(a)↔ h(b) and e ≤ ¬(h(a)↔ h(b)). It follows that,

e ≤ h(a)↔ h(b) ≤ f.

If e = f in B, then {e} is the universe of a trivial subalgebra of B. So,
sinceB is 0-generated,B is trivial, contradicting the simplicity assumption.
Therefore, e < f in B. From Theorem 5.24, we know that the only simple
0-generated De Morgan monoid which satisfies this property is (isomorphic
to) C4.

Lemma 6.15. Let K be a subvariety of RA, not consisting entirely of
Boolean algebras. Then there existsX ∈ {S3

−,C4
−,D4

−} such that V(X) ⊆
K.

Proof. By Birkhoff’s Subdirect Decomposition Theorem, there existsA ∈ K
such that A is non-Boolean and subdirectly irreducible.

By Theorem 1.33, A can be embedded into an ultraproduct of finitely
generated non-trivial subalgebras of itself. If each of these subalgebras
were Boolean, thenA would be Boolean, a contradiction. We may therefore
choose a non-Boolean finitely generated subalgebra B of A. Note that B is
FSI, by Corollary 6.13, and non-trivial. Then there exists B+ ∈ DMM such
that B is a reduct of B+, by Theorem 6.2. Now B+ is finitely generated,
finitely subdirectly irreducible (by Lemma 6.3) and non-trivial.

Notice that, by (6.1),

V(B+)− ⊆ V(B) ⊆ V(A) ⊆ K.

Since the varieties generated by 2,S3,C4 and D4 are minimal subvarieties
of DMM, by Theorem 5.30, at least one of these algebras is a member of
V(B+). If any of S3,C4 or D4 is a member of V(B+), then we are done.

Now consider the case when 2 ∈ V(B+). By Jónsson’s Theorem,
2 ∈ HSPu(B+), since 2 is subdirectly irreducible. This means that there
exists an algebra C which has 2 as a homomorphic image, and can be em-
bedded into an ultrapower

∏
B+/U . By Corollary 6.13, C is FSI. But then,

by Theorem 6.14, C ∼= 2, because 2 simple and 0-generated. So 2 embeds
into

∏
B+/U . In particular,

∏
B+/U is idempotent, by Theorem 5.15,

since f ≤ e in 2. Then by  Loś’ Theorem (Theorem 1.35), B+ is idempo-
tent. Since B+ is also non-Boolean, Theorem 5.22 tells us that B+ has
a homomorphic image D which is a non-trivial odd Sugihara monoid. In
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particular, V(D) has a simple finitely generated (odd) member, by Corol-
lary 5.26, which must be isomorphic to S3, by Corollary 5.21. So,

S3
− ∈ V(D)− ⊆ V(B+)− ⊆ K.

We can now infer the following result of Świrydowicz [59].

Theorem 6.16. V(S3
−),V(C4

−) and V(D4
−) are exactly the covers of

V(2−) in the subvariety lattice of RA.

Proof. This follows from Lemma 6.10 and Lemma 6.15.

Corollary 6.17. The sentential deductive systems corresponding to V(S3
−),

V(C4
−) and V(D4

−) are exactly the three maximal non-classical axiomatic
extensions of R.

6.2 Structural Completeness in R

In this last section we present a recent result by Raftery and Świrydowicz, in
[52], where they characterize the structurally complete axiomatic extensions
of R. As their proof relies heavily on Theorem 6.16, which was the main
result of the previous section, it is of interest to recount it here. This result
also suggests an avenue for future research on Rt and De Morgan monoids.

A finite rule Γ/α in the language of a deductive system ` is said to be
admissible in ` provided that, for every substitution h,

if ` h(γ) for every γ ∈ Γ, then ` h(α).

Clearly all finite derivable rules of a deductive system are admissible, but
the converse need not hold. For example, Meyer and Dunn [42] proved
that, whenever α and ¬α ∨ β are theorems of R, then so is β. The rule
p,¬p∨ q/q, which is called the disjunctive syllogism, is therefore admissible
in R. It is not derivable in R, however, as witnessed by C4

−, evaluating p
to e and q to ¬(f 2).

Definition 6.18. A finitary deductive system ` is said to be structurally
complete if it contains all of its admissible rules.

Equivalently, ` is structurally complete if and only if each of its proper
finitary extensions has some new theorem—as opposed to having nothing
but new rules of derivation. This property has an algebraic characterization
if a deductive system is algebraizable. Its statement is anticipated in [4]; a
proof can be found in [45, Sec. 7].
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Theorem 6.19. A finitary deductive system algebraized by a variety K
is structurally complete if and only if every proper subquasivariety of K
generates a proper subvariety of K.

Notice that R is not structurally complete, as the disjunctive syllogism
is not derivable in R. It is then natural to ask which axiomatic extensions
of R are structurally complete. The following theorem provides a satisfying
answer, especially since structural completeness is not generally inherited
by subvarieties [4, Ex. 2.14.4].

Theorem 6.20 (Raftery & Świrydowicz [52, Thm. 4]). No consistent ax-
iomatic extension of R is structurally complete, except for CPL.

Proof. Let K be a non-Boolean subvariety of RA. Then K = V(A), where
A is a free ℵ0-generated algebra in K, by Theorem 1.44. By Theorem 6.16,
K includes an algebra B that is one of S3

−, C4
− or D4

−. Furthermore, by
Corollary 6.8, 2− ∈ K. So if we let C := A×B×2−, then C ∈ K. Because
V(C) is closed under homomorphic images, A ∈ H(C) ⊆ V(C), whence
K = V(C), because K = V(A).

We claim that K 6= Q(C). This will follow ifB /∈ Q(C). AsB is simple,
and hence subdirectly irreducible, it suffices, by Lemma 1.51, to show that
B can’t be embedded into an ultrapower of C. Now, B is a finite algebra
of finite type, so the attribute of lacking a subalgebra isomorphic to B
is first-order definable. Thus, by  Loś’ Theorem, B won’t embed into an
ultrapower of C unless it embeds into C itself.

Suppose, with a view to contradiction, that h is an embedding from B
into C. Let p be the projection from C onto 2−. The homomorphism p ◦h
maps e either to e or to f .

Notice that for all three possible choices of B, f → e ≤ f . So, since
homomorphisms preserve order, ¬ph(e)→ ph(e) ≤ ¬ph(e). In the first case
where ph(e) = e, we have that in 2−, f → e ≤ f , but

f → e = ¬(f · f) = ¬(f ∧ f) = ¬f = e.

Then e ≤ f in 2−, a contradiction.

In the second case, where ph(e) = f ,

ph(e)→ ph(e) = f → f = ¬f = e.

But in B, we have e→ e = e, so e = f in 2− a contradiction.

Therefore, B cannot be embedded into C, which vindicates the claim
that Q(C) 6= K = V(C). Thus, Q(C) is a proper subquasivariety of K
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which fails to generate a proper subvariety of K. That completes the proof,
in view of Theorem 6.19.

The argument of Meyer and Dunn can also be used to show that the dis-
junctive syllogism is admissible in Rt (see for instance [43]). In particular,
Rt is not structurally complete. It would be an interesting research question
to determine the structurally complete axiomatic extensions of Rt. This
open problem is the topic of an ongoing investigation by T. Moraschini, J.
Raftery and the author. The situation for Rt is known to be more compli-
cated than for R. For example, it is known that there are infinitely many
structurally complete axiomatic extensions of the logic RMt. They include
all the varieties of odd Sugihara monoids; see for instance [26, Thm. 7.3].
It is possible that our new understanding of the bottom part of the subva-
riety lattice of DMM, in Theorem 5.30, could give us some insight into this
question.
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[60] K. Świrydowicz, There exists exactly two maximal strictly relevant ex-
tensions of the relevant Logic R, Journal of Symbolic Logic 64 (1999),
1125–1154.

[61] A. Tarski, A remark on functionally free algebras, Annals of mathe-
matics 47 (1946), 163–165.

[62] A. Urquhart, Semantics for relevant logics, Journal of Symbolic Logic
37 (1972), 159–169.

[63] A. Urquhart, Relevant implication and projective geometry, Logique
et Analyse 26 (1983), 345–357.

[64] A. Urquhart, The undecidability of entailment and relevant implica-
tion, Journal of Symbolic Logic 49 (1984), 1059–1073.

[65] A. Urquhart, Duality for algebras of relevant logics, Studia Logica 56
(1996), 263–276.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Symbols and Abbreviations

Γ `L α α is provable from Γ in L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

a ≡θ b 〈a, b〉 ∈ θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A ∼= B A and B are isomorphic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

O1 ≤ O2 O1(K) ⊆ O2(K) for every class K of similar algebras . . . . 17

K |= Ψ K satisfies Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Γ/Π {Γ/α : α ∈ Π} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Γ/α Rule with premises Γ and conclusion α . . . . . . . . . . . . . . . . . 34

Γ ` α Γ/α is a derivable rule of ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

(a] Set of lower bounds of a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

[a) Set of upper bounds of a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

#α Complexity of term α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A− e-free reduct of De Morgan monoid A . . . . . . . . . . . . . . . . . . 96

α(x1, . . . , xn) n-ary term with variables among x1, . . . , xn . . . . . . . . . . . . . 16

αA(a1, . . . , an) Term operation evaluated at a1, . . . , an ∈ A . . . . . . . . . . . . 16

⊥ Least (bottom) element of a lattice . . . . . . . . . . . . . . . . . . . . . 76

> Greatest (top) element of a lattice. . . . . . . . . . . . . . . . . . . . . . 76

A−B Set difference, i.e., {a ∈ A : a /∈ B} . . . . . . . . . . . . . . . . . . . . . 93

a/θ Equivalence class of a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CEP Congruence extension property . . . . . . . . . . . . . . . . . . . . . . . . . 90

110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



SYMBOLS AND ABBREVIATIONS 111

FSI Finitely subdirectly irreducible . . . . . . . . . . . . . . . . . . . . . . . . . 12

IRL Involutive residuated lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

SI Subdirectly irreducible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

|β| β → β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

BA Class of Boolean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

DFil(A) Lattice of deductive filters of De Morgan monoid A . . . . 78

DMM Variety of De Morgan monoids . . . . . . . . . . . . . . . . . . . . . . . . . 67

FmF(Var) Absolutely free algebra over Var . . . . . . . . . . . . . . . . . . . . . . . 16

KFSI Finitely subdirectly irreducible members of K . . . . . . . . . . 12

ΘA(X) Congruence of A generated by X ⊆ A× A . . . . . . . . . . . . . . 9

Cn`X Theory of ` generated by a set X of `–formulas . . . . . . . 35

DFgA(X) Deductive filter of A generated by X ⊆ A . . . . . . . . . . . . . . 78

SgA(X) Subuniverse of A generated by X . . . . . . . . . . . . . . . . . . . . . . 11

H(K) Class of homomorphic images of members of K . . . . . . . . . . 4

←−
h [X] Preimage of X under h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

h[X] Image of X under h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I(K) Class of isomorphic copies of members of K . . . . . . . . . . . . . . 4

idA Identity function and identity congruence on A . . . . . . . . . . 3

inf(X) Infimum of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IRL Variety of IRLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

K− Class of e-free reducts of the members of K . . . . . . . . . . . . . 96

Con(A) Congruence lattice of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CPL Classical propositional logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Rt Relevance logic with t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

R Relevance logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



SYMBOLS AND ABBREVIATIONS 112

Mod(`) Class of matrix models of ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Mod∗(`) Class of reduced matrix models of ` . . . . . . . . . . . . . . . . . . . 56

ω Set of non-negative integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Ω Leibniz operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

P(X) Set of subsets (powerset) of X . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

P(K) Class of direct products of members of K . . . . . . . . . . . . . . . . 4

ϕ Arity function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1∏
i∈IAi Direct product of the algebras Ai for i ∈ I . . . . . . . . . . . . . . 3∏
i∈I Ai Cartesian product of the sets Ai for i ∈ I . . . . . . . . . . . . . . . . 3∏
i∈IAi/U Ultraproduct of Ai for i ∈ I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Ps(K) Class of subdirect products of members of K . . . . . . . . . . . 12

Pu(K) Class of ultraproducts of memebers of K . . . . . . . . . . . . . . . 13

Q(K) Quasivariety generated by class K of similar algebras . . . 19

RA Variety of relevant algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

S(K) Class of subalgebras of members of K . . . . . . . . . . . . . . . . . . . . 4

KSI Subdirectly irreducible members of K . . . . . . . . . . . . . . . . . . . 12

Sn n-element SI Sugihara monoid. . . . . . . . . . . . . . . . . . . . . . . . . . 85

sup(X) Supremum of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

`L Deducibility relation of formal system L . . . . . . . . . . . . . . . . 25

V(K) Variety generated by class K . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Index

A
absolutely free algebra 16
algebra 1

m-generated 11
finite 1
finitely subdirectly irreducible 12
similar 1
simple 10
subdirectly irreducible 11
trivial 1

algebraic
closure operator 7
closure system 8
lattice 7

algebraic language 23
algebraization 34

elementary 39
anti-isomorphism 43
anti-symmetric 5
antitone 5
arity 1
arity function 1
associativity 2
atom 8
atomic formula 14

B
basic operation 1
Boolean algebra 9
bounds 8

C
canonical surjection 4

Cartesian product 3
classical propositional logic 28
closure operator 6
closure system 6
commutativity 2
compact 7
complement 9
complexity 15
congruence 4

K-congruence 31
generation 9

congruence extension property 90
connective 24
consequence relation 32
constant symbol 2
constants 2
Correspondence Theorem 10
cover 8

D
De Morgan monoid 67

integral 77
deducibility relation 25
deductive filter

De Morgan monoid 78
relevant algebra 99

deductive system 33
2-deductive system 33
equivalence 35
equivalential 48
formula 33
sentential 33
truth-equational 58

113

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



INDEX 114

designated elements 52
direct product 3
directed subset 7
distinguished elements 2

E
embedding 3
equation 15
equational consequence relation 28
equivalence class 4
equivalence formulas 48
equivalence relation 4
evaluation 16
expansion 45
extension 39

axiomatic 28, 39

F
filter

lattice 9
matrix 52
principal 80

finitary
consequence relation 32
deductive system 34, see also

consequence relation
equational consequence relation

29
formal sytem 24

finitely generated
algebra 11
congruence 9

first-order language 13
formal system 24, 34
formula 24, 34
fragment 45
free algebra 15

G
generalized quasi-equation 29
Gentzen system 34

H
homomorphic image 3

homomorphism 2
kernel 4

Homomorphism Theorem 5

I
idempotence 2, 83
identity 2
inconsistent 44
infimum 5
involution 20
involutive residuated lattice 19
isomorphism 3
isotone 5

J
Jónsson’s Theorem 19
join-irreducible 8
join-prime 8

L
lattice 2

algebraic 7
bounded 8
complete 6
distributive 8
filter 9

law of residuation 20
Leibniz congruence 56
Leibniz operator 57
logic 25, 33, see also deductive

system
logic over a deductive system 35

M
matrix 52

reduced 56
meet-irreducible 8
monoid 2

O
operation symbol 1
order-preserving 5
order-reflecting 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



INDEX 115

order-reversing 5

P
partial order 5
poset 5
predicate symbol 13
prevariety 30
projection 3
proof 25

Q
quasi-equation 15
quasivariety 19

R
reduct 45
relation symbol 13
relevant algebra 71
relevant logic 72
residuation 20
rigorously compact 82
rule 24

admissible 103
derivable 25
finite 24

S
semantics 51
semigroup 1
semilinear 84
sentence 14
sentential logic 25
signature 1
square-increasing law 67
structurally complete 103
subalgebra 2
subcover 8
subdirect embedding 11
subdirect product 11
subreduct 45
substitution 23
substitution instance 25
subuniverse 11

subvariety lattice 18
Sugihara monoid 83

odd 84
supremum 5

T
term 14, 15
term algebra 16
term operation 16
theory 34

algebra 35
lattice 35

totally ordered 84
translation 36

definable 36
truth-predicate 33
type 1

finite 1

U
ultrafilter 12
ultrapower 13
ultraproduct 13
universal closure 14
universe 1
upward-closed 9

V
variety 18

congruence distributive 19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 


	Declaration
	Acknowledgments
	Summary
	Contents
	Introduction
	Preliminaries
	Algebras
	Lattices
	More on Algebras
	First-Order Languages and Free algebras
	Varieties and Other Classes of Algebras
	Involutive Residuated Lattices

	Deductive Systems
	Finitary Sentential Logics
	Equational Consequence Relations
	Deductive Systems
	Extensions
	Fragments

	Algebraization
	Equivalence Formulas
	Semantics

	Relevance Logics and Their Algebras
	Rt and R
	Motivation and History of R and Rt

	The Variety of De Morgan Monoids
	De Morgan Monoids
	Sugihara Monoids
	Varieties of De Morgan Monoids

	Some Applications
	Relevant Algebras
	Structural Completeness in R

	Bibliography
	Symbols and Abbreviations
	Index

