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Abstract

The event of a default for low-default portfolios, such as sovereign debt or banks, have re-

ceived much attention as a result of the increasing instabilities in financial markets. The lack

of sufficient default information on low-default portfolios complicates the protection of such

portfolios. Default protections have typically, in the past, relied on extreme value theory and

reporting the value at risk. The focus here, is the application of an engineering concept, ac-

celerated test techniques, to the problem of insufficient data on low-default portfolios. In the

application, high-default portfolios serve as stressed cases of low-default portfolios. Since

high-default portfolios have more data available, viewing it as a stressed case of a low-default

portfolio enables us to extrapolate the data to the low-default portfolio environment, and do

estimation such as estimating the default probability for a low-default portfolio. The flexible

framework through which the above is achieved, is provided.
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Chapter 1

Introduction

Simplicity is prerequisite for reliability.

–Edsger Dijkstra

Recent instabilities in financial markets along with increases in the number of trade assets

in portfolios, have led to questions about the effectiveness of existing risk modelling tech-

niques. In answer, a great deal of research has been done towards finding more appropriate

techniques or improving existing methods, Kiefer (2009). Determining the likelihood of rare or

extreme events is a key concern in the risk management of financial portfolios. Rare events will

not be within the range of the available observations. Low-default portfolios, such as banks

and sovereign, are characterized by the lack of data for the event of a default, an extreme event

for such portfolios, which lie outside the range of available observations. Financial institutions

are required by regulatory bodies to perform regular back testing on their rating models. Back

testing involves cross validation on time data and is problematic for low-default portfolios due

to insufficient data. For low-default portfolios the capital reserves needed for losses that might

be incurred, could be underestimated because of such difficulties.

Frequently, determining the likelihood of extreme events involves extreme quantile esti-

mation such as Value at Risk (VaR), expected shortfall and return level. These quantities form

part of a collective referred to as risk measures.

VaR could loosely be defined as the capital reserves needed for losses that might be incurred

over a holding period of a fixed number of days. Suppose X ≥ 0 is a random variable
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Chapter 1. Introduction 2

(rv) which models losses experienced by a portfolio over a certain fixed time, with a

continuous cumulative density function (CDF) FX . V aRp(X) can be defined as

V aRp(X) = F−1(1− p)

where F will be referred to as the loss distribution. More formally

V aRp(X) = sup{x ∈ < : P (X ≥ x) < 1− p}.

VaR quantifies the unconditional tail risk of a portfolio and is not a coherent measure of

risk as it is not sub-additive. This means the VaR of a combined portfolio can be larger

than the sum of the VaRs of its components.

Expected shortfall (ESp) is defined as the expected size of a loss which exceeds V aRp. Also

sometimes called the conditional VaR or mean excess (in an insurance setting)

ESp(X) = E(X|X > V aRp).

This measure of the tail risk has better theoretical properties than that of VaR.

Lastly, return level in layman’s terms is the maximum of maximum losses. If maxima ob-

served over successive non-overlapping periods of equal length n, have distribution G

then the return level is defined as

Rk
n = G−1(1− 1

k
).

The main challenge in implementing one of the above risk measures will be in estimating

the tail of FX , the loss distribution. Extreme value theory is applied as a possible solution to

this challenge, which is attractive because of the parametric form of the tail distribution.

1. Block maxima designs which considers the maxima obtained in successive period.

2. Excess over threshold defines a maximum as a value greater then a certain, high set,

threshold.

Some key concepts regarding these two methods are very briefly discussed.
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Chapter 1. Introduction 3

1. The Block maxima’s limiting distribution will follow one of the three extreme value

distributions, Frechet, Weibull or Gumbel distribution, Embrechts et al. (1999). These

distributions can be re-parametrized and represented as the general extreme value distri-

bution. In practice some norming constants of the limiting distribution are unknown and

an un-normalized version of the limiting distribution is also available. The return levels

of the limiting distribution are of interest.

2. The excess over threshold method is concerned with the conditional excess distribution.

Estimating this distribution becomes difficult because few observations are made above

the threshold level. Extreme value theory has offered an approximation to the distribu-

tion, the generalized Pareto distribution. The distribution can then be used to calculate

VaR or expected shortfall.

In both methods, Maximum Likelihood (ML) is used to estimate the parameters of the

generalized distributions. Gilli and Këllezi (2006) applied both the block maxima’s limiting

distribution and the conditional excess distribution to calculate quantities such as the return

level and the expected shortfall (defined in terms of VaR) of seven major stock market indices.

In their model the excess over threshold proved superior. Embrechts et al. (1999) applied

the methods to fire insurance data. McNeil and Frey (2000) studied the tail estimation of a

financial return series, stated to be stationary with a stochastic volatility structure leading to

dependent returns over time. They proposed an extreme value theory based method, using ex-

cess over threshold, which yields a VaR reflecting the current volatility background. This was

achieved by applying extreme value theory to the residual series after performing estimation

with models often encountered in econometrics.

Van der Burgt (2008) introduced a different method, to that which has been discussed

above, for calibrating low-default portfolios. This is done by differentiating the function for

the concave shape of the Cumulative Accuracy Profile curve, or the Lorentz curve as it is

frequently referred to in economics. The curve tracks the cumulative percentage of defaults

against the cumulative percentage of debtors. This function, measuring the shape of the curve

contains the parameter k, called the concavity which is used as a measure of the discriminatory

power of the rating model i.e. the ability to distinguish between defaults an non-defaults.

More frequently the accuracy ratio, or Gini coefficient, measures discriminatory power. A
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Chapter 1. Introduction 4

relationship exist between k and the accuracy ratio and is derived by Van der Burgt (2008).

The whole method is then applied to a portfolio with exposure to 87 sovereigns: their foreign

currency ratings.

Kiefer (2009) proposed a different method for modelling the number of defaults on a low

default portfolio, that does not solely rely on historical data. Using Bayes rule, uncertainty

about defaults are modelled in the same way that defaults themselves are modelled, with the

help of a probability distribution. Starting by considering the problem in the simplest way, as

one of independent Bernoulli sampling where in any given year there can either be a default

or not. Also stating that assumptions such as independence and identical distributions must

be subject to supervisory review. A prior distribution in the Bayesian approach marries the

experience of the portfolio manager about aspects of the default rate with what is observed in

the data.

Another process which relies on accurately estimating the probability of a default is that

of credit-scoring. An applicant will be granted credit based on their credit score. Stepanova

and Thomas (2002) showed how survival analysis techniques, which are used in reliability

and maintenance modelling, allow credit-scoring models to be built, by extending the Cox’s

proportional hazard model. The model was then applied to personal loan data. The main

advantage of survival analysis is that censored data may be included into the model. Survival

analysis models also enables not only the likelihood of a default to be determined, but also

how long it will be until the default occurs. Banasik et al. (1999) also applied proportional

hazard models to 50000 loans accepted between June 1994 and March 1997 with performance

descriptions up to July 1997 and showed that meaningful results can be obtained. The models

were compared with logistic regression results and shown to be competitive under certain

circumstances.

It is clear that an array of established methods, theories and models are available to deal

with the estimation of default probability for low-default portfolios. These methods are con-

stantly being improved upon while research is also conducted on possible new methods.

Towards introducing the proposed method of this paper for dealing with probability esti-

mation on low-default portfolios, consider briefly the following two notions.

High-default portfolio Portfolios for which the events under consideration are easily ob-

served. Whether it be loan defaults or severe losses on stock traded. It is straightforward
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Chapter 1. Introduction 5

to apply statistical methods to such data as censoring is not present in the data, the data

is consistent and large samples are available.

Accelerated testing Employed in manufacturing industries where it is necessary to collect

sufficient lifetime information on extremely reliable products. This is problematic as

only a few of these highly reliable units will fail (within the limited time available) un-

der normal operating conditions. accelerated test (AT)s are commonly used to induce

more failures so as to obtain more lifetime information that will be useful in reliabil-

ity analysis. To this end, certain controllable factors of these highly reliable products

are adjusted to higher-than-normal levels. Such factors might be stress, temperature or

pressure (multiple factors might also be used). The use of the word “accelerated” is mo-

tivated by obtaining reliability information more rapidly. It is then possible to quantify

the lifetime characteristics of the product at normal-at-use conditions.

Would it be possible to use the data available on high-default portfolios, to draw inference

on low-default portfolios as is done in accelerated testing? Could some link be established be-

tween the high frequency of observations for the high-default portfolios and the low frequency,

censored observations of the low-default portfolios? In attempting to answer this question, re-

search was first conducted on accelerated testing.

1.1 A review of accelerated tests: Basic concepts

It is necessary to extrapolate failure data collected from the AT, from high levels of stress to

normal operating conditions. The extrapolation typically follows from a physical justification

which motivates the model choice. A mixture of empirical model fitting with adequate experi-

ence in testing similar units could also justify the model chosen for extrapolation. Inference on

such characteristics as the reliability and the mean lifetime of devices, when under at use con-

ditions, are done. Stated differently: based on an assumed distributional model and a life-stress

relationship, the reliability at a specific mission time, under at use conditions, can be predicted

from data collected at higher stress levels. Statisticians have made significant contributions to

the development of appropriate models for AT data, Escobar and Meeker (2006). Although

we will focus on the application of ATs in the reliability industry, the theory also applies to
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Chapter 1. Introduction 6

other fields of study such as survival analysis, Ren (2004), or even shelf life in bioproduct

development, Rauk et al. (2014).

At first glance the mechanics of ATs seem to involve nothing more than regression analysis,

perhaps on complicated data such as censored data. ATs require us to extrapolate not only in

the accelerating factors but also time. Model choice is thus of critical importance as common

practices such as fitting curves to data presents inadequate results.

ATs are partitioned into qualitative and quantitative ATs. In qualitative accelerated test-

ing, the main interest is identifying failures and the modes which are causing these failures.

Qualitative ATs don’t attempt to make any predictions as to the product’s life under normal-

at-use conditions. Freels et al. (2015) and Silverman (1998) state that once such failure modes

are identified, corrective action is required and the design flaw needs to be removed, so the

product is improved upon. Ma et al. (2014) performed a highly accelerated life test to iden-

tify 3 failure mechanisms for thin films applied on glass. In quantitative ATs, the interest is

in predicting the life of a product, or more specifically, its life characteristics (Mean time to

failure (MTTF) or the estimated time at which the probability of failure will reach X%) at

normal-at-use conditions, from data obtained in the AT.

The focus here is on quantitative ATs. Intuitively, as the stress used in the AT becomes

higher, the duration of the test becomes shorter (failures are observed quicker). However, this

poses an additional challenge as uncertainty in the extrapolation increases as the deviation from

normal-at-use conditions are increased. Confidence intervals assist in providing a measure of

this uncertainty in extrapolation.

It is beneficial to differentiate among ATs based on the type of response variable. Differing

models and analyses are then performed depending on this response, Escobar and Meeker

(2006).

1. Accelerated binary test (ABT): Binary response variable. One-shot device test are com-

mon examples of these types of ABTs. The only information available is whether the

product has failed or not.

2. Accelerated life test (ALT): The test is directly related to the lifetime of the product.

Here the data is often right- or interval censored.

3. Accelerated repeated measures degradation test (ARMDT): The degradation, at different
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Chapter 1. Introduction 7

points in time, on a sample of units is measured. Instead of failure time data which can

be difficult to obtain. Degradation data provides more information than failure time data,

as units will not be censored, Wang et al. (2015).

4. Accelerated destructive degradation test (ADDT): These tests are similar to ARMDTs,

except that the measurements are destructive, so one can obtain only one observation per

test unit.

Further classification of ATs is done by considering the type of stress under which the test

operates, Nelson (2009).

1. Constant-stress: Each test item is subjected to a constant stress level, but stress level

may differ from item to item. The stress on each item is time independent and does not

change with time.

2. Step-stress: Each test item undergoes a pattern of increasing stress levels for a fixed

period of time. A test item initially starts at a pre-specified constant stress level for a

specified length of time. The stress levels are then increased and maintained step by step

at some pre-specified points of time during the experiment. The stress is time dependent

and varies as time progresses.

3. Progressive-stress: Each test item is subjected to continuously increasing stress levels

over time.

Since the actual modelling of the acceleration is challenging, the prediction of the lifetime

under normal operating conditions, based on observations from accelerated levels, becomes

even more so. Constant-stress tests are relatively simple to execute and model for reliability

estimation, and hence is preferable over the step-stress and progressive-stress tests. The focus

here will therefore be the constant-stress test. As an example, in an ALTs of white organic

light-emitting diode displays, both constant-stress and step-stress acceleration were applied,

Zhang et al. (2014).

1.1.1 Life distribution

When performing an accelerated life data analysis the point of departure should be to choose

a suitable life distribution. The term life distribution is used for describing the collection of
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Chapter 1. Introduction 8

statistical probability distributions that are often used in reliability engineering and survival

analysis. Life data could for instance include a time the product operated successfully (mea-

sured in hours, cycles or another relevant metric). Some distributions that better represent

life data are commonly called lifetime distributions. Popular choices include the Exponential,

Weibull, Log-normal and Gamma distribution.

Other distributions have been used in the literature such as the family of Exponentiated

distributions, Abdel Ghaly et al. (2015), because it is richer in that different hazard rates can

be accommodated. A mixture of distributions has also been applied to describe different failure

modes in products, Kim and Bai (2002).

The lifetime distribution is a function which describes the product at different stress levels.

Other important functions related hereto, are the probability density function (PDF) and CDF,

the latter used for calculating important reliability results and plots. These basic relationships

are now illustrated.

1.1.2 Life-stress relationships

After an appropriate life distribution has been explored, the failure rate is required in relating

stress factors, such that measurements taken during an experiment can be extrapolated back,

to the expected performance under normal operating conditions. The way in which the life

distribution changes across various stress levels, is quantified as a curve representing the re-

lationship between the rate of failure and the stress factors, such as a simple linear model;

however, this may not suffice to adequately describe the lifetime of products against the stress

factors. Various relationships between the lifetime of products and stress factors have been

proposed in the literature. Five common relationships are stated here, Wang and Kececioglu

(2000).

• Inverse power law relationship
The parameter θ(T ) relates to T in the form

θ(T ) =
1

γ0T γ1
.

• Arrhenius accelerated relationship
Based on the Arrhenius Law for simple chemical-reaction rates, it is one of the com-
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Chapter 1. Introduction 9

monly used acceleration models that predicts the failure time varying with temperature.

The parameter θ(T ) relates to temperature T in degree Celsius,

θ(T ) = exp

[
γ0 + γ1(

11605

T + 273.15
)

]
.

The Arrhenius life-stress model is formulated by assuming that the inverse reaction rate

of the process is proportional to life, thus the Arrhenius life-stress relationship is given

by

θ(T ) = exp
[
γ0 +

γ1
T

]
.

Different forms of the Arrhenius life-stress relationship is present in the literature un-

der the same name. The designer needs to be sure which form of the relationship is

required, Rauk et al. (2014). A life-stress relationship that is closely related to the above

relationship is the Eyring relationship

• Eyring accelerated relationship
Just as the Arrhenius relationship, Eyrings relationship is generally applied when ther-

mal stress is the acceleration variable. It relates the stress varying parameter to the stress

factor as follows

θ(T ) =
1

T
exp

[
−(γ0 −

γ1
T

)
]

.

It is clear that the difference between Eyrings relationship and the Arrhenius relationship

is the variable 1
T

.

• Log-linear relationship
This relationship is commonly used in practice due to its mathematical convenience.

It shows the relative importance of stress factors in influencing the failure behaviour,

regardless of whether the model is correct or not. The parameter θ(T ) relates to a stress

factor T in this case in the form

θ(T ) = exp[γ0 + γ1T ].

Note that when the transformation of the acceleration variable to T = 1
V

is applied, the

Arrhenius life-stress relationship is obtained, or when T = expV , the inverse-power

relationship is obtained.
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Chapter 1. Introduction 10

A final relationship to mention which might not always sufficiently describe the under-

lying relationship, is the Linear relationship.

• The Linear relationship
This simple relationship is given by

θ(T ) = γ0 + γ1T .

This life-stress relationship was assumed in a study of life test data under two failure

modes, Kim and Bai (2002), and a comparisons of test plans, Meeker (1984).

1.1.3 Parameter estimation methods

The chosen life distribution and life-stress relationship is applied to the sample data in order to

estimate the parameters of the distribution. Some of the more sophisticated methods, popular

in the literature, are:

• Least Squares (LS) methods

• Weighted Least Squares (WLS) methods

• ML methods

The ML method is commonly adopted in analysing reliability data due to its well-known

optimal properties. Depending on the data structure this method can be extended to

include the Expectation Maximization (EM) algorithm.

The mathematical details of the EM algorithm will be given in Chapter 2.

1.1.4 Reliability information

The most important information obtained from the AT is the reliability function. It is derived

using the CDF. The CDF gives the probability of an event (failure) occurring at a specific time,

and so, subtracting this probability from 1 yields the reliability function.
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R(t) = 1− F (t)

= 1−
∫ t

0

f(s)ds

=

∫ ∞
t

f(s)ds.

(1.1)

From this function other reliability results are calculated.

The conditional reliability function

This is defined as the probability of a product lasting the next test phase, given it successfully

lasted/survived the previous test phase

R(T, t) =
R(T + t)

R(T )
. (1.2)

The failure rate function

The failure rate determines the number of failures occurring per unit of time. It gives the

instantaneous failure rate and is also known as the hazard function

λ(t) =
f(t)

R(t)
. (1.3)

The mean life

This life characteristic was referred to in Section 1.1 (MTTF). The mean life function gives a

measure of the average time of operation to failure

T̄ = m =

∫ ∞
0

t.f(t)dt. (1.4)

1.1.5 Censored data

Often in reliability studies the time to an event is studied; however, problems arise because of

censoring within the data. When the time to an event is unknown for a subset of the data, it
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Chapter 1. Introduction 12

is said that the data is censored. This most often happens because the trial/testing period ends

before units have failed. In this section extensive use is made of concepts and examples dis-

cussed in Chapter 3 of the book: "Survival Analysis, Techniques For Censored and Truncated

Data" by Klein and Moeschberger (2005), in which time-to-event data is analysed. These data

appear in different ways which poses particular challenges when analysis on the data is per-

formed. As mentioned, censoring might be present within the life data, which imply that some

lifetimes are known exactly, and others only to have occurred within certain intervals. Data

may exhibit 4 characteristics within this framework. It may be

• Observed, truncated or censored.

• Right, left or interval censored.

• Type I, Type II or randomly right censored.

• Single or multiple censored.

These different types of censoring schemes lead to different likelihood functions. In order

to effectively work with censoring in analysis, careful examination of the design, which was

used when the survival data was obtained, is required.

Observed, truncated or censored

Observed data is the usual data which results from a typical experiment or process. In this, the

lifetime of every subject included in the sample is known and used as observed or recorded. If

this is the case, the estimate of the survival function S(t) reduces to the empirical survival func-

tion. Censoring implies that time to event is unknown for a subset of the data. Yildirim (2008)

proposed a mixture model in dealing with commercial mortgage backed securities where a

substantial proportion of loans are deemed long-term survivors of the study meaning they will

never default. These long-term survivor loans will fall in the censored grouped along with the

loans which will eventually default. Thus, the assumption of standard survival models that

the censoring is independent of the event is incorrect in this instance and the mixture model

may overcome this. Only 4.05% of the loans in the study experienced a default, thus heavy

censoring was present. Another feature of time to event studies, not to be confused with cen-

soring, is truncation. This is where only the lifetimes of subjects which lie within a certain
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Chapter 1. Introduction 13

observational window are observed. If it does not lie within this window no information on

the subjects’ lifetime is available. Different to censoring, where at least partial information is

available, truncation takes place when the subject is not included in the study. So the num-

ber of censored observations are known whereas the number of truncated observations are not

known. Klein and Moeschberger (2005) present Example 3.7 as an example of left truncation.

Data on ages at death of 462 individuals, who resided in a retirement home during a period

of 11 years, have been reported. To enter the old age home, one would have to be a certain

age. If an individual died before this age, he/she could not have entered the retirement cen-

tre and could thus not have been included in the study. Boyes et al. (1989) commented that

often when banks do credit-scoring, not all applicants who applied for credit are included in

the sample used to estimate credit assessment functions. Using a choice sample of applicants

who received credit and either defaulted or repaid, leads to a sample that is truncated as the

applicants who did not receive credit was not included in the sample. For the remainder of this

section the focus falls on censored data.

Right, left or interval censored

If there are patients included in a study with time to event greater than a certain value (the fixed

censoring time) the data is right censored. The following notation is defined in this regard. X ,

the exact lifetime of a specific individual in the study and Cr, the fixed censoring time (where

r is for right censored). The X’s are assumed to be independent and identically distributed

(IID) with PDF s(x) and survival function S(x). X is rarely observed and instead data from

right censored experiments can conveniently be noted by pairs of rvs (T, δ). The value of δ (an

indicator of whether an observation was observed, δ = 1, or was censored, δ = 0) is based on

the value of T . The exact lifetime X will be known if and only if X ≤ Cr in this case δ = 1.

Thus

δ =

1 if T = X,

0 if T = Cr.
(1.5)

The following is an equivalent definition of T

T = min(X;Cr)
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Chapter 1. Introduction 14

with δ equalling 1 or 0 as T equals X or Cr. It is important to note that Cr is considered fixed

and that (T, δ) is a pair of rvs.

It is now simple to extend these ideas to the case where left censored data is present. Left

censored data occurs when time to an event is less than a certain value. The event of interest has

occurred before the study began. The previous notation is now extended to the left censored

survival problem. Data from left censored experiments can be presented by pairs of rvs (T, ε).

ε is now the indicator of whether an observation is censored or not and the exact lifetime, X ,

will be known if and only if X ≥ Cl. Cl is the fixed censoring time (l is for left censored).

Thus

ε =

1 if T = X,

0 if Cl,
(1.6)

or

T = max(X;Cl)

with ε equalling 0 or 1 as T equals Cl or X .

Cheng et al. (2008) addressed a left censored data problem. They define intellectual capital

as being the difference between the market value and the book value of a company. Reporting

that the 62% of invested stocks that were spent on tangible assets in 1982 decreased to 16% by

1999. So, they identify the need for companies to sustain growth by continually investing in

intellectual capital. The purpose of their study was to investigate which factors drive the value

of a company’s intellectual capital. The intellectual capital of a company is distributed over

positive values and so the creation value is seen as being left censored. The Tobit model is

employed as a ML estimator of parameters for left censored data. The financial data of health

care firms listed on the S&P500 were used to assemble the Tobit model.

Data can also be interval censored and this occurs when subjects have periodic follow-

ups. For example: A study is conducted where patients are monitored for the occurrence of

a disease in three month intervals. Patients who are disease free after three months but not

after six months are interval censored as exact occurrence of the disease is not known. It is

only known to have occurred between three and six months after commencement of the study.

Interval censoring is a generalized case of left and right censoring. This can be seen if the left

end-point of the interval in which the event to occur, is set to Cr and the right end-point to
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Chapter 1. Introduction 15

infinity. In the reliability context one-shot device testing is an example of interval censored

data. During one-shot device testing binary data arises. Methods for analysing such data can

be found in the literature, Balakrishnan and Ling (2012). In Chapter 3 we will model interval

censored data.

Next, three types of right censoring is considered, which can easily be extended to left

censoring.

Type I, Type II or competing risk right censored data

Type I right censoring refers to situations where the event is observed if it occurs prior to some

pre-specified time. Here the censoring levels are known in advance but the number of censored

observations, c and the number of exact observations, r are random outcomes. When subjects

have different fixed censored times, this is known as progressive Type I censoring. This can,

for example, occur when two fixed censored times are given and certain subjects are kept in

the study beyond the first fixed censored time to be observed, until the second fixed censored

time.

Another Type I censoring that occurs, due to subjects entering the study at different times,

is called generalized Type I censoring. All subjects are still observed under the same fixed

censoring time Cr, but subjects have their own specific observed, fixed censoring times Cr-t.

For example, a person who entered the study at time t = 0, who has not experienced the event

by the end of the study, will have T = Cr. A person entering the study after it has commenced,

say at time t = 4, who has also not experienced the event by the end of the study will have

T = Cr − 4. These two patients have their own specific observed, fixed censoring times but

are observed under the same fixed censoring time, Cr. Note that in all instances of Type I

censoring, the censoring times are fixed.

Type II censoring refers to the case where the study continues until the first r subjects have

experienced the event. Here r, the number of exact observations, is pre-determined and the

censoring time, T (r) the rth ordered lifetime, is random. Type II censoring can be extended

to progressive Type II censoring as with Type I censoring. After observing the first r1 events,

a portion of the surviving subjects are removed from the study, and then the next r2 events

are recorded for the remaining subjects. It is important to note that for Type I censoring a

fixed censored time is present, while for Type II, a fixed number of censored subjects (or fixed
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Chapter 1. Introduction 16

number of exact observations) are present. This distinction is important when one constructs

the likelihood function of the data. A final type of right censoring of interest here, is compet-

ing risk censoring. A particular case of competing risk censoring, is random censoring. This

occurs when the marginal distribution of some event is considered, but due to competing risk,

such as loss to follow up or withdrawal from study, some subjects are removed from the study.

The time to event is not available for these subjects and random right censoring occurs. It

has been shown in the literature that in order to be able to identify the marginal distribution

from randomly censored data, the time to event, X , and censoring times C, are required to

be independent. Therefore, competing risks are random observations when the probability of

the event occurring in a setting, where all other risk cannot occur, is estimated. The additional

assumption of time to event being independent of the competing events, are also required.

Yildirim (2008) discussed the limitations of these independence assumptions and overcame

them by applying the mixture model. It is interesting to note that when an observation is cen-

sored, information about the exact lifetime, cannot be obtained. However, when it is observed

exactly, information about the observation limit of fixed censoring time, can be obtained. If

observation limits are random (as is the case here) this information cannot be obtained. Many

right censored medical studies are a combination of random censoring and Type I censoring.

For example, subjects may be observed for a fixed censored time of Cr, some of which will be

censored when this time ends, others may leave the study due to competing risks.

Phillips et al. (1996) analysed both fixed rate mortgage and adjustable rate mortgage ter-

minations using a national individual loan data set for 1986 to 1992. The mortgages that

originated between 1982 and 1989 were either terminated or censored between January 1986

and June 1992. At the end of the observance periods loans were either still current or removed

due to sale of servicing contracts (possibly switching to a different lender). This results in a

combination of random right censoring and Type I right censoring. Stepanova and Thomas

(2002) and Banasik et al. (1999) mentioned previously, also had competing risk in their loan

data.

Single or multiple censoring

When there is one censoring level, this is known as single censoring. This is for example,

Generalized Type I censoring or Type II censoring. When multiple censoring levels are present
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Chapter 1. Introduction 17

this is known as multiple censoring. This is Type I or Type II progressive censoring.

1.1.6 Introductory examples

As part of this introduction into ATs a few basic introductory examples are presented so as to

ease the reader into the concepts discussed thus far. These examples were constructed using

the Reliability procedure in SAS.

Example 1 A company has been collecting degradation data over a period of 4 years with the

purpose of calculating reliability after 5 years. With the degradation measurement decreasing

with time, failure is defined as a measurement of 150 or below. The following table gives the

degradation measurements over 4 years
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Chapter 1. Introduction 18

Table 1.1: Degradation data.

Year 1 Year 2 Year 3 Year 4

437 412 246 125

446 420 324 208

497 451 330 229

503 454 426 242

705 554 499 273

737 580 546 297

748 608 554 311

788 610 559 318

818 727 625 393

860 825 403

875 925 470

934

1124

1250

1350

A linear life-stress relationship was assumed together with a 2-parameter Weibull distri-

bution. The PDF and CDF for the Weibull distribution, are respectively given below

f(x) =


(β
η
)(
x

η
)β−1 exp−(

x
η
)β if x ≥ 0,

0 if x < 0.
(1.7)
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Chapter 1. Introduction 19

F (x) =

1− exp−(
x
η
)β if x ≥ 0,

0 if x < 0.
(1.8)

The SAS reliability procedure relates the stress factors to lifetime of products through the

Weibull scale parameter, by default, in the following way

η = exp(x‘β̂)

where x‘β̂ is a regression model containing an intercept term. That is a model of the form

µi = β0 + β1xi1 + . . . .

The parameters were estimated to be:

• β̂ = 3.618336 the Weibull shape parameter as seen in the Weibull PDF and CDF,

Equation 1.7 and Equation 1.8 respectively.

• γ0 = 7.154643 and γ1 = −0.331695 the regression parameters of the linear life-stress

relationship as listed in Section 1.1.2.

Note that SAS uses, by default, the ML estimation method in estimating the above obtained

parameters.

An excerpt of the output obtained from the reliability procedure is given below.
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Table 1.3: Exploratory Example 1: Weibull parameter estimates and group Weibull percentile esti-

mates.

Model Information

Input Data Set WORK.CLASSB

Analysis Variable deg Degradation

Distribution Weibull

The Weibull life distribution was used

Weibull Parameter Estimates

Parameter Estimate Standard Error Asymptotic Normal

95% Confidence Limits

Lower Upper

Intercept 7.1546 0.0946 6.9691 7.3402

year −0.3317 0.0357 −0.4016 −0.2618

EV Scale 0.2764 0.0316 0.2208 0.3459

Weibull Shape 3.6183 0.4142 2.8911 4.5285

The Weibull parameter estimates obtained as previously stated

Weibull Parameter Estimates

Parameter Estimate Standard Error Asymptotic Normal Group

95% Confidence Limits

Lower Upper

EV Location 6.8229 0.0649 6.6957 6.9502 1

EV Scale 0.2764 0.0316 0.2208 0.3459 1

Weibull Scale 918.6901 59.6663 808.8834 1043.4033 1

Weibull Shape 3.6183 0.4142 2.8911 4.5285 1

The Weibull parameter estimates obtained from the first years life data. Also given for years

two to four, but not shown here
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Weibull Percentile Estimates

Percent Estimate Standard Error Asymptotic Normal Group

95% Confidence Limits

Lower Upper

0.1 136.182599 33.0465551 84.6381212 219.117578 1

0.2 164.959416 36.5456496 106.856054 254.65669 1

0.5 212.586666 41.2163401 145.380084 310.861634 1

1 257.651917 44.6284918 183.48255 361.802856 1

2 312.490286 47.7628903 231.597448 421.637541 1

5 404.268201 51.1688781 315.450798 518.092773 1

10 493.250302 52.9839489 399.606932 608.837938 1

20 606.928947 54.1860843 509.498986 722.990147 1

30 690.925154 54.8986767 591.285575 807.355343 1

40 763.035269 55.768513 661.199059 880.556035 1

50 830.191178 57.0316114 725.609825 949.845728 1

60 896.759984 58.8949952 788.448426 1019.95063 1

70 967.05018 61.6711393 853.425902 1095.80228 1

80 1047.8218 66.010599 926.111971 1185.52676 1

90 1156.84265 73.8935791 1020.7129 1311.12765 1

95 1244.11286 81.823373 1093.64803 1415.27874 1

99 1401.10182 99.3190598 1219.35759 1609.93487 1

99.9 1567.24138 121.63514 1346.08754 1824.72943 1

The Weibull distribution percentiles obtained for the first years life data. Also given for
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years two to four, but not shown here

A probability plot showing the Weibull distribution being fitted to each group is given be-

low. Also shown is a plot of some of the estimated percentiles for each group. Note that for

each year the failure times seem to follow a straight line, indicating that the Weibull distribu-

tion does a good job in fitting the data for all years. The lines are also parallel, indicating that

the Weibull distribution is a good fit, Ramirez et al. (2001).

Graph 1.1: Exploratory Example 1 relation plot: 2-parameter Weibull life data and linear

stress-life relationship.

It is now easy to estimate the reliability after 5 years or in other words the probability
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that the degradation measurement will not be less than 150, the critical degradation level, in

5 years

R(5) = 1− F (150)

= 1− P (x(5) ≤ 150)

= 1− (1− exp−(
x
η
)β) from Equation 1.8

= exp (−(
150

exp (γ0 + γ15)
)β)

= exp (−(
150

exp (7.154643− 0.331695(5))
)3.618336)

= 0.841481.

(1.9)

Example 2 Consider the following times-to-failure data at 3 different stress levels.

Table 1.8: Time-to-failure data.

Stress 393 408 423

Time failed (hrs) 3850 3300 2750

4340 3720 3100

4760 4080 3400

5320 4560 3800

5740 4920 4100

6160 5280 4400

6580 5640 4700

7140 6120 5100

7980 6840 5700

8960 7680 6400

An Arrhenius life-stress relationship was assumed together with a 2-parameter Weibull

distribution. Similar output to that of Example 1 is given below.
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Table 1.9: Exploratory Example 2: Weibull parameter estimates and group Weibull percentile esti-

mates.

Model Information

Input Data Set WORK.CLASSB

Analysis Variable time Time

Distribution Weibull

Weibull Parameter Estimates

Parameter Estimate Standard Error Asymptotic Normal

95% Confidence Limits

Lower Upper

Intercept 4.0773 1.4382 1.2584 6.8961

istress 1861.6187 585.9728 713.1331 3010.1042

EV Scale 0.2330 0.0326 0.1772 0.3064

Weibull Shape 4.2916 0.5996 3.2636 5.6434

Weibull Parameter Estimates

Parameter Estimate Standard Error Asymptotic Normal Group

95% Confidence Limits

Lower Upper

EV Location 8.4783 0.0690 8.3431 8.6135 0.0023640662

EV Scale 0.2330 0.0326 0.1772 0.3064 0.0023640662

Weibull Scale 4809.1263 331.7239 4200.9936 5505.2920 0.0023640662

Weibull Shape 4.2916 0.5996 3.2636 5.6434 0.0023640662
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Weibull Percentile Estimates

Percent Estimate Standard Error Asymptotic Normal Group

95% Confidence Limits

Lower Upper

0.1 961.77605 239.482183 590.370735 1566.83439 0.0023640662

0.2 1130.49568 257.009882 724.026556 1765.15693 0.0023640662

0.5 1400.06066 278.616153 947.884159 2067.94242 0.0023640662

1 1646.43931 292.832493 1161.85699 2333.12914 0.0023640662

2 1937.32469 304.271277 1424.016 2635.66348 0.0023640662

5 2407.08752 313.661301 1864.54997 3107.48997 0.0023640662

10 2846.66378 315.726457 2290.49065 3537.88596 0.0023640662

20 3390.60372 314.301922 2827.30343 4066.13365 0.0023640662

30 3782.15487 313.744415 3214.61406 4449.89515 0.0023640662

40 4112.34511 315.494568 3538.23206 4779.61367 0.0023640662

50 4415.46296 320.07636 3830.65246 5089.55416 0.0023640662

60 4712.15321 328.184057 4110.89478 5401.35155 0.0023640662

70 5021.70301 341.141857 4395.67855 5736.88473 0.0023640662

80 5373.09147 361.946269 4708.52575 6131.45463 0.0023640662

90 5840.73653 399.933625 5107.20353 6679.62477 0.0023640662

95 6210.09425 437.918421 5408.46281 7130.5419 0.0023640662

99 6864.54735 520.654978 5916.30921 7964.76462 0.0023640662

99.9 7544.72967 624.31688 6415.16495 8873.18506 0.0023640662
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Graph 1.2: Exploratory Example 2 relation plot: 2-parameter Weibull life data and Arrhenius

life-stress relationship.

An explanation as to why the inverse stress was used in the model, is now given. As

mentioned in Example 1, the SAS reliability procedure relates the stress factors to the lifetime

of products through the Weibull scale parameter, by default, in the following way

η = exp(x‘β̂)

where x‘β̂ is a regression model containing an intercept term. That is a model of the form

µi = β0 + β1xi1 + . . . . (1.10)
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Specifying the Arrhenius life-stress relationship in the SAS procedure will lead to x (stress)

being transformed in Equation 1.10, in the following way

µi = β0 + β1(
1000

x+ 273.15
)i1 + . . . ,

which would lead to a Weibull scale parameter

η = exp(β0 + β1(
1000

x+ 273.15
)i1 + . . .).

In order to make use of the Arrhenius life-stress model as stated in Section 1.1.2, the

Weibull scale parameter should be defined as

η = exp(β0 + (
β1
x

)i1 + . . .)

which requires a regression equation of the form

µi = β0 + (
β1
x

)i1 + . . . .

It is thus easier to use the default linear life-stress relationship, and regress using the inverse

stress.

1.1.7 Additional considerations

ATs have been extensively modelled using a Bayesian approach to estimate and predict model

parameters, Sinha et al. (2003), Ling (2012), instead of the classical ML, LS or WLS methods

mentioned in Section 1.1.3.

Various test plans have been designed where levels of stress, allocation of units to stress,

time of inspection and number of units inspected are some of the factors considered and chosen

so as to satisfy optimal criteria, Meeker (1984), Morris (1987). These test plans are also

designed under different censoring schemes, Nelson and Kielpinski (1976).

Most devices can fail due to more than one failure mode. These multiple failure modes

need to be carefully considered as they effect the lifetime distribution at normal-at-use condi-

tion. The dominant failure mode at high stress may not be the dominant mode at low stress,

Nelson (1975), Kim and Bai (2002).
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1.2 Objectives of the study

• Conduct a broad review of the literature on reliability analysis, with specific focus on

censoring schemes, and ATs.

• Present examples of ATs, analysed in SAS.

• Apply the theory of accelerated testing to stock market data.

1.3 Contributions

• Apply the Log-normal distribution to one-shot device testing problems, formulated using

the EM algorithm.

• Formulate a low probability event in a stock market in terms of an AT scenario.

• Apply a one-shot device AT to simulated stock market data.

1.4 Dissertation outline

The rest of the study is structured as follows

• Chapter 2, as mentioned in Section 1.1.3, focusses on the mathematical details of ML

methods for parameter estimation, as well as particular examples.

• Chapter 3 introduces, intuitively, how one might go about applying ATs to financial

data by way of a few simulation example. Thus, fully introducing the proposed method

of this paper

• Chapter 4 gives a summary and conclusion of the study. Recommendations for further

research are also mentioned.

All SAS code used for the generation of examples and illustrations are provided in the

attached appendices:

• Appendix A provides the SAS code for the EM algorithm used in Chapter 2.
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• Appendix B provides the SAS code for the application presented in Chapter 3.

• Appendix C provides the acronyms used in the course of this work, along with their

respective definitions.

• Appendix D lists the proposed publication derived from this work.
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Chapter 2

Exploring the EM algorithm

In this chapter, the mathematical workings of the EM algorithm, will briefly be explored. The

EM algorithm is commonly implemented in statistical estimation problems involving incom-

plete data, or in problems which can be posed in a similar form, such as mixture estimation,

Friedman et al. (2001). The algorithm was first explicitly introduced by Hartley (1958) while

Dempster et al. (1977) described the method and presented useful examples. The EM al-

gorithm has since been used in many problems concerning the estimation of parameters in

incomplete data under various censoring schemes. Such schemes include progressive Type-I

interval censored data Chen and Lio (2010), right-censored data Scheike and Sun (2007), ran-

dom censored data Kundu and Dey (2009) and both left- and right censored data Balakrishnan

and Ling (2012), to name but a few. The focus of this chapter will be the application of the

algorithm to both left- and right censored data.

The chapter is structured as follows; Section 2.1 gives, at the hand of two examples, a

brief introduction of the algorithm. Section 2.2 will define the algorithm in terms of a problem

which will be presented more thoroughly in Chapter 3.

2.1 Introduction to the EM algorithm

The EM algorithm is an iterative method of ML estimation for incomplete data. ML estimates

are computed from the complete data likelihood instead of the observed likelihood, because

the observed likelihood might be numerically infeasible to maximise. The areas of application

30
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include

• Image analysis in medicine such as the ML reconstruction of emission tomography data,

as done by Green (1990) and Kay (1997).

• Engineering as presented throughout this paper.

• Genetics including human pedigree analysis as done by Ott (1977) or determining the

distribution of one part of an allele by applying the EM to genotype data, such as Kita-

mura et al. (2002).

In layman's terms the EM algorithm consists of the following steps:

1. Fill in missing values by estimating them

2. Estimate the parameters of the complete dataset

3. Use the estimates to re-estimate the missing data

4. Re-estimate the parameters from the updated complete data step

Step2–4 should be re-iterated until the parameters achieve the desired level of convergence.

Step 1–3 is known as the Expectation step (E-step), while step 4 defines the Maximisation

step (M-step) of the process, thus the EM algorithm. Before the above algorithm is presented

in formal mathematical notation, two elementary examples are given.

Example 3 Simple example given by Dempster et al. (1977).

Consider a 4 outcome multinomial distribution

p(x1, x2, x3, x4) =
n!

x1!x2!x3!x4!
π1

x1π2
x2π3

x3π4
x4 (2.1)

with

n = x1 + x2 + x3 + x4 and 1 = π1 + π2 + π3 + π4 . (2.2)
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Suppose the probabilities are related by a single parameter 0 ≤ θ ≤ 1 such that

π1 =
1

2
+

1

4
θ (2.3)

π2 =
1

4
− 1

4
θ (2.4)

π3 =
1

4
− 1

4
θ (2.5)

π4 =
1

4
θ . (2.6)

For an observation (x1, x2, x3, x4), the log-likelihood function is given by

l(θ) = ln (n!)− ln (x1!)− ln (x2!)− ln (x3!)− ln (x4!) + x1 ln (π1) + x2 ln (π2) + x3 ln (π3) + x4 ln (π4)

= x1 ln (
1

2
+

1

4
θ) + x2 ln (

1

4
− 1

4
θ) + x3 ln (

1

4
− 1

4
θ) + x4 ln (

1

4
θ) + constant

= x1 ln (
1

4
(2 + θ)) + (x2 + x3) ln (

1

4
(1− θ)) + x4 ln (

1

4
θ) + constant

= x1 ln (2 + θ) + (x2 + x3) ln (1− θ) + x4 ln (θ) + constant .

Differentiation with respect to θ yields

∂l(θ)

∂θ
=

x1
2 + θ

− x2 + x3
1− θ

+
x4
θ

.

The unknown parameter could be determined by solving the above, simple equation. How-

ever, for the purpose of this example the EM algorithm is employed. Suppose a five class

multinomial distribution is formed by splitting the first class into two classes, with associated

probabilities 1
2

and 1
4
θ respectively. The original variable x1 is now the sum of two components

v1 and v2.

p(v1, v2, x2, x3, x4) =
n!

v1!v2!x2!x3!x4!
π1,1

v1π1,2
v2π2

x2π3
x3π4

x4

with

n = v1 + v2 + x2 + x3 + x4 and 1 = π1,1 + π1,2 + π2 + π3 + π4
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and

π1,1 =
1

2

π1,2 =
1

4
θ

π2 =
1

4
− 1

4
θ

π3 =
1

4
− 1

4
θ

π4 =
1

4
θ .

Thus ,

l(θ) = ln (n!)− ln (v1!)− ln (v2!)− ln (x2!)− ln (x3!)− ln (x4!) + v1 ln (π1,1) + v2 ln (π1,2)

x2 ln (π2) + x3 ln (π3) + x4 ln (π4)

= v1 ln (
1

2
) + v2 ln (

1

4
θ) + x2 ln (

1

4
− 1

4
θ) + x3 ln (

1

4
− 1

4
θ) + x4 ln (

1

4
θ) + constant

= (v2 + x4) ln (
1

4
θ) + (x2 + x3) ln (

1

4
(1− θ)) + constant

= (v2 + x4) ln (θ) + (x2 + x3) ln (1− θ) + constant .

The above equation resembles the likelihood function of a binomial distribution with pa-

rameters n = v2 + x4 + x2 + x3 and π = θ.

The algorithm proceeds with the complete log-likelihood of a five class multinomial with

two missing observations v1 and v2

lc(θ) = (v2 + x4) ln (θ)) + (x2 + x3) ln ((1− θ)) + constant

setting the derivative equal to zero, as previously done, yields

∂l(θ)

∂θ
set
= 0

−x2 + x3
1− θ

+
v2 + x4
θ

= 0

so that the ML estimate for θ is
v2 + x4

v2 + x2 + x3 + x4
.
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Conditioning on the current value of the parameter θ(k) and the observed data x1, the E-

step of the iterative EM algorithm fills in the unobservable value with this expected value. It is

seen that v2 is a binomial variable as part of x1. Thus v2 is binomially distributed with n = x1

and π = 0.25θ
0.5+0.25θ

.

Let θ(k) be the value of θ after k iterations, so that

E[v
(k)
1 |θ(k), x1] = x1(

1
2

1
2

+ 1
4
θ(k)

) E[v
(k)
2 |θ(k), x1] = x1(

1
4
θ(k)

1
2

+ 1
4
θ(k)

) (2.7)

= v
(k)
1 = v

(k)
2

since v1 + v2 = x1 and θ = θ(k).

The M-step proceeds by maximizing E(k)
θ (lc(θ)) and because lc(θ) is a linear equation,

E
(k)
θ (lc(θ)) = (E

(k)
θ [v2] + x4) ln (θ) + (x2 + x3) ln (1− θ)

so that the maximum occurs at

θ(k+1) =
v
(k)
2 + x4

v
(k)
2 + x2 + x3 + x4

. (2.8)

The above theory is now practically applied by distributing 197 entities into 4 categories

x = (x1, x2, x3, x4)

= (125, 18, 20, 34)

where x is distributed exactly as in Equation 2.1 – 2.3. The initial estimate of θ is chosen to

be θ(0) = 0.1 and E[v
(0)
2 |θ(0), x1] is calculated from Equation 2.7 to be

E[v
(0)
2 |θ(0), x1] = x1(

1
4
θ(0)

1
2

+ 1
4
θ(0)

)

= 125(
1
4
(0.1)

1
2

+ 1
4
(0.1)

)

= 5.952381 .
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Table 2.1: Convergence of the EM algorithm for Example 3.

v k theta

5.952381 0 0.1

5.952381 1 0.5125229

25.49842 1 0.5125229

25.49842 2 0.6102501

29.223737 2 0.6102501

29.223737 3 0.624594

29.747172 3 0.624594

29.747172 4 0.6265252

29.81721 4 0.6265252

29.81721 5 0.6267822

29.82652 5 0.6267822

29.82652 6 0.6268163

The E-step of the algorithm has been performed to provide as initial guess for v2, it’s

conditional expected value. The M-step now treats this estimate, v2, as real data and improves

the estimate for θ using Equation 2.8.

θ(1) =
v
(0)
2 + x4

v
(0)
2 + x2 + x3 + x4

=
5.952381 + 34

25.49842 + 18 + 20 + 34

= 0.5125229 .

Continuing in this fashion, the value of θ stabilizes to less than 0.01% percent change at

0.6268163 in 6 iterations. As can be noted from Table 2.1.
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The programming details of this example can be found in Appendix A.

Example 4 Exponential left- and right censored data Flury and Zoppè (2000)

It is assumed that the lifetime of a product follows an exponential distribution with parameter

η having PDF

f(x, η) =
1

η
e−

x
η where x ∈ (0,∞); η > 0

and CDF

F (x, η) = 1− exp−x
η

.

If a rv z has a upper-truncated exponential distribution with parameter γ, truncated at q.

Then z has a PDF

g(z, γ) =
f(z, γ)

F (q, γ)
. (2.9)

If z has a lower-truncated exponential distribution then

g(z, γ) =
f(z, γ)

1− F (q, γ)
. (2.10)

Now, consider n of these exponentially distributed products that are tested until they all fail.

The failure times are recorded by the variable y. In a separate experiment m products are

tested, but only the number of products that fail at time t will be recorded. The number will be

denoted as r.

The missing data are the failure times of the products in the second experiment, denoted

by the variable v. Based on the complete data, the following likelihood function is obtained

lc(η; y, v) = ln {
n∏
i=1

[f(yi, η)]
m∏
j=1

[f(vj, η)]}

= ln {
n∏
i=1

[
1

η
e−

yi
η ]

m∏
j=1

[
1

η
e−

vj
η ]}

=
n∑
i=1

ln {1

η
e−

yi
η }+

m∑
j=1

ln {1

η
e−

vj
η } (2.11)

= −n ln η −
∑n

i=1 yi
η

−m ln η −
∑m

j=1 vj

η

= −(n+m) ln η − nȳ

η
−
∑m

j=1 vj

η
.
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Given a current value of the parameter η(k) and the observed data, the E-step of the it-

erative EM algorithm, fills in the unobservable value with this expected value. The expected

value is obtained by viewing the conditional density of v as a truncated density, truncated at t

(Equation 2.9 and 2.10).

m∑
j=1

E[v
(k)
j |η(k) = η,m, r, t] = (

r
∫ t
0
v(k) 1

η
e−

v(k)

η dv

F (t; η)
) + (

(m− r)
∫∞
t
v(k) 1

η
e−

v(k)

η dv

F (t; η)
) (2.12)

where

∫ t

0

v(k)
1

η
e−

v(k)

η dv = −v(k)e
−v(k)
η |t0 +

∫ t

0

e−
v(k)

η dv

= −te
−t
η − ηe

−v(k)
η |t0 (2.13)

= −te
−t
η − ηe

−t
η + η

and

∫ ∞
t

v(k)
1

η
e−

v(k)

η dv = −v(k)e
−v(k)
η |∞t +

∫ ∞
t

e−
v(k)

η dv

= te
−t
η − ηe

−v(k)
η |∞t (2.14)

= te
−t
η + ηe

−t
η .

Using Equation 2.13 and Equation 2.14 above, Equation 2.12 is further simplified

m∑
j=1

E[v
(k)
j |η(k) = η, r,m, t] = (

r
∫ t
0
v(k) 1

η
e−

v(k)

η dv

F (t; η)
) + (

(m− r)
∫∞
t
v(k) 1

η
e−

v(k)

η dv

1− F (t; η)
)

= (
r(−te

−t
η − ηe

−t
η + η)

1− e−
1
η
t

) + (
(m− r)(te

−t
η + ηe

−t
η )

e
−t
η

) (2.15)

= (
−rte

−t
η + rη(−e

−t
η + 1)

1− e−
1
η
t

) + (
(m− r)(t+ η)(e

−t
η )

e
−t
η

)

= (m− r)(t+ η) + rη + (
−rte

−t
η

1− e−
t
η

)

= v(k) . (2.16)
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From Equation 2.11

lc(η; y, v) = −(n+m) ln η − nȳ

η
−
∑m

j=1 vj

η
,

the following is now obtained by applying the results of Equation 2.15

Ev(k)|r,m,t,η(k)(lc) = −(n+m) ln η − nȳ

η
− (

1

η
)v(k)

= −(n+m) ln η − nȳ

η
− (

1

η
)[(m− r)(t+ η(k)) + rη(k) + (

−rte
−t
η(k)

1− e−
t

η(k)

)]

= −(n+m) ln η − (
1

η
)[nȳ + (m− r)(t+ η(k)) + rη(k) + (

−rte
−t
η(k)

1− e−
t

η(k)

)]

= −(n+m) ln η − (
1

η
)[nȳ + v(k)]

The kth M step determines the maximum with respect to the variable η, which given η(k),

occurs at

∂Ev(k)|r,m,t,η(k)(lc)

∂η
set
= 0

−(n+m)

η
+
nȳ + v(k)

η2
= 0

nȳ + v(k)

η2
=
n+m

η

nȳ + (m− r)(t+ η(k)) + rη(k) + ( −rte
−t
η(k)

1−e
− t

η(k)
)

n+m
= η(k+1) .

(2.17)

Starting with a positive number η = η(0), the algorithm is iterated until convergence.

The above results are further explored at the hand of a practical example. The lifetime of

n = 15 devices are simulated from the exponential distribution with η = 8. In keeping with

notation the lifetimes of these devices are denoted with y. Also simulated from this distribution

are the lifetimes, v, ofm = 20 devices. These devices are then left- and right censored at t = 3,
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Table 2.3: Number of the failures for Example 4.

The number of failures y-bar

5 7.9464866

so that v is unobserved. The simulated data reveals, in Table 2.3, that r = 5 of the m = 20

devices failed before t = 3 and that the average lifetime of the y devices are 7.9464866.

The initial estimate of η is chosen to be η(0) = 2 and
∑m

j=1E[v
(k)
j |η(k), r,m, t] is calculated

from Equation 2.15

m∑
j=1

E[v
(0)
j |η(0), r,m, t]

=
20∑
j=1

E[v
(0)
j |2, 5, 20, 3]

= (20− 5)(3 + 2) + 5(2) + (
−5(3)e

−3
2

1− e− 3
2

)

= 80.691746 .

Here the E-step of the algorithm has been performed and a initial guess for the unobserved

data v, is it’s conditional expected value. In the M-step, this estimate is treated as real data

and the estimate for θ is improved upon, using Equation 2.17.

η(1) =
nȳ +

∑m
j=1E[v

(0)
j |η(0), r,m, t]

n+m

=
15(7.9464866) + 80.691746

15 + 20

= 5.7111156 .

Continuing in this fashion, it is seen from Table 2.5 that the value of η stabilizes to less

than 0.1% percent change at 8.5623948 in 11 iterations.

The programming details of this example can be found in Appendix A.

The steps of the EM algorithm can now be given in mathematical notation.

The EM algorithm

Given a likelihood function Lc(η; y, v) where y is the observed data and v the unobserved data,

the ML estimates are determined by the marginal likelihood of the observed data Lc(η; y).
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Table 2.5: Convergence of the EM algorithm for Example 4.

v k theta

80.691746 0 2

80.691746 1 5.7111156

137.51312 1 5.7111156

137.51312 2 7.3345834

162.00889 2 7.3345834

162.00889 3 8.0344626

172.55128 3 8.0344626

172.55128 4 8.3356737

177.0862 4 8.3356737

177.0862 5 8.4652428

179.03658 5 8.4652428

179.03658 6 8.5209679

179.87533 6 8.5209679

179.87533 7 8.5449324

180.23603 7 8.5449324

180.23603 8 8.5552379

180.39114 8 8.5552379

180.39114 9 8.5596696

180.45784 9 8.5596696

180.45784 10 8.5615753

180.48652 10 8.5615753

180.48652 11 8.5623948
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1. Calculate Ev|y,η(k)(lc), the expected value of the log-likelihood function with respect to

the conditional distribution of v, given y and the current estimate of η(k)

2. Find the next iterate of the parameter η(k+1) by maximizing this quantity

The algorithm then iterates between the above two steps until the specified convergence is

reached in terms of the difference between η(k) and η(k+1).

Example 4 is a classical example in the literature on an AT with a binary outcome; know

as one-shot device testing. In the next section the same logic is applied to lifetimes that are

Log-normally distributed.

2.2 The EM algorithm for Log-normal, left- and right cen-

sored data

Nelson and Kielpinski (1976) presented theory for ALTs were a linear link-function is used

for Log-normal data in a right-censored scheme. Meeker (1984) focused on planning ALTs for

Weibull and Log-normal distributions in a Type I censoring scheme. Li et al. (2015) described

a sampling plan for ALTs for Log-normal data that is right censored, when the acceleration

factors are both known and unknown. Balakrishnan and Ling (2014) implemented the EM

algorithm for Gamma distributed lifetimes. Balakrishnan and Ling (2012) and Balakrishnan

and Ling (2013) for the Exponential and Weibull distributed lifetimes, respectively. Vernic

et al. (2009) implemented the EM algorithm to a two component Log-normal mixture model

and a two components mixture model having truncated Log-normal mixture models. The

results given in last named article can be used in one-shot device testing where the Log-normal

lifetimes are both left- and right censored.

Consider M devices placed under a single stress factor xi and tested at time Ti. The

combination of xi (different levels of the single stress) and Ti (different inspection times)

define certain test conditions for current group i where i = 1, 2, . . . , I . In each test condition

there are M devices, leading to MI devices being tested. If the device survives past the

inspection time, the device is denoted as a success. If the device failed before the inspection

time, it will be denoted as a failure. For each stress xi, the number of failures ri (out of M )

is recorded at each inspection time Ti. It is assumed that the true, but unobserved, lifetimes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2. Exploring the EM algorithm 42

vij where i = 1, 2, . . . , I and j = 1, 2, . . . ,M are independent and identically Log-normal

distributed variables with PDF

f(v) =
1

vσ
√

2π
e−[

(ln v−µ)2

2σ2
], v > 0;

where the location parameter is µ ∈ IR and the scale parameter σ > 0.

The stress factor can now be related to one or both of the parameters, through a link func-

tion, as described in Chapter 1. It this instance the location parameter is related to the stress

factor through a linear link-function

µi = β0 + β1xi .

The EM algorithm will estimate the parameters β0 and β1 in the M-step while the expected

lifetimes will be approximated in the E-step.

The log-likelihood function based on the complete data is given by

lc(β0, β1) =
I∑
i=1

M∑
j=1

ln (
1

vijσ
√

2π
e−

(ln vij−µ)
2

2σ2 )

=
I∑
i=1

M∑
j=1

[−ln(vij)− ln(σ
√

2π)− (ln(vij)− β0 − β1xi)2

2σ2
] .

(2.18)

The parameter estimates are obtained through the following equations

∂lc(β0, β1)

∂β0

set
= 0

I∑
i=1

M∑
j=1

[
ln(vij)− β0 − β1xi

σ2
] = 0

∑I
i=1

∑M
j=1[ln(vij)− β1xi]
IM

= β0 .

(2.19)

For the solution of β1 an iterative formula is adopted
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∂lc(β0, β1)

∂β1

set
= 0

I∑
i=1

M∑
j=1

[
(ln(vij)− β0 − β1xi)xi

σ2
] = 0

∑I
i=1 xi

∑M
j=1[ln(vij)− β(k)

0 ]∑I
i=1Mx2i

= β
(k+1)
1 .

(2.20)

Recall that if v ∼ lnN(µ;σ) then ln (v) ∼ N(µ;σ). Thus, making the necessary substitu-

tion u = ln v, u becomes a normally distributed rv. From Equation 2.19 and Equation 2.20 it

is seen that E[ln(vik)|µi, Ti,M, ri, xi] will be required in the expectation step. It is calculate

as follows,

M∑
j=1

E[ln(vij)|µi, Ti,M, ri, xi]

=
ri
∫ Ti
0

ln (vi)
1

viσ
√
2π
e−

(ln(vi)−µi)
2

2σ2 dv∫ Ti
0

1
viσ
√
2π
e−

(ln(vi)−µi)2

2σ2 dv
+

(M − ri)
∫∞
Ti
ln(vi)

1
viσ
√
2π
e−

(ln(vi)−µi)
2

2σ2 dv∫∞
Ti

1
viσ
√
2π
e−

(ln(vi)−µi)2

2σ2 dv

Now apply the transformation u = ln(v) so that vdu = dv

=
ri
∫ ln(Ti)
−∞ ui

1
σ
√
2π
e−

(ui−µi)
2

2σ2 du∫ ln(Ti)
−∞

1
σ
√
2π
e−

(ui−µi)2

2σ2 du
+

(M − ri)
∫∞
ln(Ti)

ui
1

σ
√
2π
e−

(ui−µi)
2

2σ2 du∫∞
ln(Ti)

1
σ
√
2π
e−

(ui−µi)2

2σ2 du

= term1 + term2 .

(2.21)

Now let w = u−µi
σ

so that dw = 1
σ
du and u = wσ + µi
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term1 =
ri
∫ ln(Ti)−µi

σ

−∞ (wiσ + µi)
1√
2π
e−

wi
2

2 dw∫ ln(Ti)−µi
σ

−∞
1√
2π
e−

wi
2

2 dw

=
ri
∫ ln(Ti)−µi

σ

−∞ wiσ
1√
2π
e−

wi
2

2 dw

φ( ln(Ti)−µi
σ

)
+ riµi

=
ri[
−σ√
2π
e

−w2
i

2 ]
ln(Ti)−µi

σ
−∞

φ( ln(Ti)−µi
σ

)
+ riµi

=
ri[
−σ√
2π

(e
−(ln(Ti)−µi)

2

2σ2 )]

φ( ln(Ti)−µi
σ

)
+ riµi

(2.22)

term2 =
(M − ri)

∫∞
ln(Ti)−µi

σ

(wσ + µi)
1√
2π
e−

w2

2 dw∫∞
ln(Ti)−µi

σ

1√
2π
e−

w2

2 dw

= (M − ri)µi +
(M − ri)

∫∞
ln(Ti)−µi

σ

(wσ) 1√
2π
e−

w2

2 dw

1− Φ( ln(Ti)−µi
σ

)

= (M − ri)µi +
(M − ri)[ −σ√2πe

−w2

2 ]∞ln(Ti)−µi
σ

1− Φ( ln(Ti)−µi
σ

)

= (M − ri)µi +
(M − ri)[ σ√

2π
e

−(ln(Ti)−µi)
2

2σ2 ]

1− Φ( ln(Ti)−µi
σ

)
.

(2.23)

Using the above Equation 2.22 and Equation 2.23, Equation 2.21 is completed

M∑
j=1

E[ln(vij)|µi, Ti,M, ri, xi]

ri[
−σ√
2π

(e
−(ln(Ti)−µi)

2

2σ2 )]

φ( ln(Ti)−µi
σ

)
+ riµi + (M − ri)µi +

(M − ri)[ σ√
2π
e

−(ln(Ti)−µi)
2

2σ2 ]

1− Φ( ln(Ti)−µi
σ

)
.

(2.24)

If the values of β0 and β1 at the kth-step are β(k)
0 and β(k)

1 , then the (k + 1)-step of the EM

algorithm proceeds by:
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1. Computing the missing data in Equation (2.24) by using β(k)
0 and β(k)

1 for i = 1, 2, . . . , I

2. Starting with β(k)
0 for fixed E[ln(vij)|µi, Ti,M, ri, xi] i = 1, 2, . . . , I find β(k+1)

1 itera-

tively from Equation (2.20)

3. Given β(k+1)
1 , compute β(k+1)

0 from Equation (2.19)

4. Repeat steps 1–3 until convergence occurs.

2.3 Summary

A brief glimpse into one of the estimation methods for a binary response variable AT has now

been given. It is seen than theEM algorithm provides flexibility with regards to the type of life-

time distribution, link-function, number of stress factors and estimable parameters assumed.

It is easy to see where the method may be extended for the above mentioned, although the

derivations will become more complex and additional methods such as the Newton Raphson

algorithm will be needed Balakrishnan and Ling (2013). The same estimation methods applied

in this Chapter can be in the next chapter where the data will be exponentially distributed, a

left-and right censored scheme will be assumed for an AT where a single stress factor will be

used and a single parameter will be related to this stress factor via a power link function.
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Chapter 3

Simulation exploration

Now that a thorough understanding of ATs have been obtained, and more specifically of one-

shot device testing, the question presented in the introduction can be returned to. Would it

be possible to use the data available on high-default portfolios, to draw inference on low-

default portfolios as is done in accelerated testing? Could some link be established between

the high frequency of observations for the high-default portfolios and the low frequency, cen-

sored observations of the low-default portfolios? Could this be achieved by applying the ATs

framework to the problem, thus presenting a different method in dealing with insufficient data

for low-default portfolios?

These questions are explored in this chapter by way of simulation studies. Section 3.1,

introduces the Log-normal stock price of a company and the outline of the proposed model.

Section 3.2 implements the model on simulated data and reports the results. Note that all

programming information can be found in Appendix B.

3.1 The log-returns of a company

Consider the percentage return of a company, and assume that the percentage returns are Nor-

mally distributed

rt ∼ N(µ, σ) (3.1)

the Normal PDF given in (3.2)

46
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f(r) =
1

σ
√

2π
e−[

(r−µ)2

2σ2
], (3.2)

where the location parameter is µ ∈ IR and the scale parameter σ > 0.

Following from (3.1) the price of said stock is then Log-normally distributed

rt = ln
pt
pt−1

∴ pt = pt−1e
rt

∼ lnN(µ, σ) .

(3.3)

To see if the above assumptions are valid, a test of Normality is done on actual stock data.

The 6 month stock data of 431 companies trading in the health sector was obtained along with

the market capitalization (CAP) of each company. An excerpt of the data is given in Table 3.1.
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Table 3.1: An excerpt of the 6 month stock data for 431 companies with their market CAP given in the

first row.

Obs Company AAC ABBV ABC

1 . 376613466.30 92484920568.00 16311214010.00

2 13MAY2016 20.35 62.15 74.71

3 16MAY2016 20.49 61.91 73.76

4 17MAY2016 20.61 62.44 74.40

5 18MAY2016 19.70 59.87 74.20

6 19MAY2016 19.82 60.06 74.46

7 20MAY2016 19.60 59.63 75.14

8 23MAY2016 19.81 59.75 75.00

9 24MAY2016 20.00 59.73 74.37

10 25MAY2016 21.58 61.08 74.59

11 26MAY2016 21.28 61.00 74.04

12 27MAY2016 20.60 61.99 73.78

13 31MAY2016 21.52 62.71 74.20

14 01JUN2016 21.08 62.93 74.76

15 02JUN2016 22.15 62.87 75.81

16 03JUN2016 22.13 64.76 76.70

17 06JUN2016 21.39 62.13 76.30

18 07JUN2016 21.71 62.59 76.39

19 08JUN2016 22.21 62.21 76.31

The test for Normality was performed on the returns of five of the 431 companies. The
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p-values of the Shapiro-Wilk Normality tests are given in Table 3.3. It can be seen that based

on this p-value 2 of the 5 reject for Normality. For these two companies, the full output is given

below. Upon closer inspection it is seen that they do not reject for the Kolmogorov-Smirnov

test and the model continuous under the assumption of Normal returns.

Table 3.3: The p-value of the Shapiro-Wilk Normality tests.

Obs JNJ AGRX MNOV NDRM TLGT

1 0.022427 0.50030 0.10968 0.40769 .004073165

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.975816 Pr < W 0.0224

Kolmogorov-Smirnov D 0.06471 Pr > D >0.1500

Cramer-von Mises W-Sq 0.10132 Pr > W-Sq 0.1088

Anderson-Darling A-Sq 0.621744 Pr > A-Sq 0.1039

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.967848 Pr < W 0.0041

Kolmogorov-Smirnov D 0.069769 Pr > D 0.1320

Cramer-von Mises W-Sq 0.163666 Pr > W-Sq 0.0168

Anderson-Darling A-Sq 0.965512 Pr > A-Sq 0.0159

In order to investigate and apply reliability theory methods to stock price data, the follow-

ing needs to be considered:

• Stress factor
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In a single stress model, as will be implemented in this chapter, the life-stress relation-

ship needs to, in essence, regress the parameter(s) of a distribution on a stress factor.

Within the frame work of the current problem, market CAP for each company is cho-

sen as the factor displaying how much "stress" each company is operating under. With

the understanding that companies with larger market CAP perform more stable in said

market, thus are operating under lower stress.

• The parameters under consideration
Intuitively it is expected that a small company (smaller market CAP), being the stressed

version of a large company, should exhibit higher volatility due to market fluctuations.

This will be exhibited through σ. σ Will be chosen larger or smaller when simulating

data for small and large companies respectively .

• Failure of a stock price
Finally it is necessary to define a failure for such a process. This is done in the follow-

ing way. For a highly stressed company, that is to say small company, the percentage

return is calculated. The loss of this small company is then calculated as Lt = −Rt.

The (1 − α)th percentile of the loss is denoted and any percentage loss, for any size

company, above this now fixed percentile value, is considered a failure. The stock prices

are observed at certain intervals (inspection times) and it is then noted how many dif-

ferent companies (different market CAPs) exhibited a loss above this fixed threshold.

With large companies having the possibility of never displaying a loss above this level.

Only the number of companies experiencing a loss above this level is known, while the

exact time until this level was reached, is not known. Also, the company might have

experienced this loss well before the inspection time, or might only experience it after

the exception time. Leading to observations being left- and right censored.

A visual inspection may assist in deciding if the premise that smaller companies are more

stressed than larger companies could be entertained. Figure 3.1 shows the Normal returns for a

small CAP and large CAP company. The market CAP of the companies are displayed in Table

3.7.
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Table 3.7: The market CAP of two companies for which the returns are compared.

Obs JNJ ABEO

1 314000000000 213015214.1

Figure 3.1: The returns of a big CAP company vs. that of small CAP company that are given in the

table above.

It appears as though companies that have a smaller market CAP are more volatile in relation

to that of companies with large market CAP. The phrase in relation is important as it is noted

that the volatility is mean reverting towards zero and is seldom less than, or greater than−0.15
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Figure 3.2: The standard deviation of the returns vs. the market CAP.

and 0.15 respectively. To further investigate what was intuitively and visually inspected above,

the standard deviation of the Normal returns, σ, are regressed on the market CAP. First note

that the standard deviations are very sensitive to a change in market CAP as can be seen in

Figure 3.2 where the standard deviation ranges from 0 to 0.2 for market CAP values ranging

from 0 to 3 billion.

The standard deviation of the log-returns explode as the market CAP approach zero. Con-

firming, once again, that as market CAP decrease the returns of a company become more

volatile. It is difficult to simulate data when working with such a sensitive scale. To make the

data more tractable a negative log transformation is performed on the standard deviation of the
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Figure 3.3: The log transformed standard deviation of the returns vs. the market CAP.

returns, see now the updated Figure 3.3

A non-linear model is now used to regress the log of the standard deviation of the returns

on market CAP

−log(σ) = α + β ln (MarketCAP ) .

The parameter estimates are given in Table 3.9
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Table 3.9: The parameter estimates of the non-linear model.

Parameter Estimate Approx Std Error Approximate 95% Confidence Limits

beta 0.1931 0.00827 0.1769 0.2094

alpha −0.4899 0.1659 −0.8159 −0.1639

so that

−log(σ) = α + β ln (MarketCAP )

= −0.4899 + 0.1931ln(MarketCAP ) . (3.4)

A graphical representation of the fit is given in Figure 3.4
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Figure 3.4: The negative log transformed standard deviation of the returns vs. the market CAP.

It is now possible to simulate realistic data that compares well to that which is observed in

the stock market. In the next section such data is simulated using the assumptions introduced

in this section.

3.2 Simulation results

Following the model assumptions set out in Section 3.1 and adopting notation discussed in Sec-

tion 2.2, the Normal returns of M = 1000 companies are simulated, sigma as in Equation 3.4

and µ assumed zero. For a highly stressed company, that is to say small company, the percent-
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age return is calculated. The loss of this small company is then calculated as Lt = −Rt. The

(1− 0.05)th percentile of the loss is denoted. Any percentage loss, for any size/stressed com-

pany, above this now fixed percentile value, is considered a failure. These returns are inspected

at 3 different inspection times, T = (400, 200, 133), during a 400 day period. The companies

operate under 100 different stress levels i.e. market CAPs, x = (0.1, 0.11, 0.12, . . . , 1) in bil-

lions. This leads to 300 test conditions. So that I = 300 with i = 1, 2, . . . , I . The simulation

results obtained for 30 of the 300 test conditions are given below.

Obs markCapp r IT M

1 100000000 891 400 1000

2 100000000 873 200 1000

3 100000000 870 133 1000

4 200000000 504 400 1000

5 200000000 514 200 1000

6 200000000 474 133 1000

7 300000000 265 400 1000

8 300000000 244 200 1000

9 300000000 265 133 1000

10 400000000 153 400 1000

11 400000000 138 200 1000

12 400000000 153 133 1000

13 500000000 83 400 1000

14 500000000 94 200 1000

15 500000000 97 133 1000

16 600000000 53 400 1000

17 600000000 50 200 1000
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Obs markCapp r IT M

18 600000000 43 133 1000

19 700000000 35 400 1000

20 700000000 32 200 1000

21 700000000 27 133 1000

22 800000000 25 400 1000

23 800000000 16 200 1000

24 800000000 21 133 1000

25 900000000 15 400 1000

26 900000000 15 200 1000

27 900000000 14 133 1000

28 1000000000 14 400 1000

29 1000000000 15 200 1000

30 1000000000 16 133 1000

The data is graphically represented in 3.5 from where it can be seen that the number of

failures decrease as companies become less stressed.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 3. Simulation exploration 58

Figure 3.5: The failure data for companies of different market CAPs evaluated at different inspection

times.

The following step towards implementing a one-shot device testing scheme to the data is to

investigate the lifetime distribution. This distribution is assumed to have the same PDF across

the different levels of stress although the parameters may differ. The stress, market CAP, is

thus set and it is observed how long it takes for two thousand companies, operating under such

stress, to fail. The failure threshold still defined in terms of the smaller more stressed company.

The empirical distribution is given in Figure 3.6
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Figure 3.6: The empirical lifetime distribution with a Log-normal, Exponential, Weibull and Gamma

distribution superimposed.

and it is tested whether the distribution could possible be of form Gamma, Weibull, Expo-

nential of Log-normal. The results of these test are given below.

Goodness-of-Fit Tests for Gamma Distribution

Test Statistic p Value

Kolmogorov-Smirnov D 0.01577822 Pr > D >0.250

Cramer-von Mises W-Sq 0.05313777 Pr > W-Sq >0.500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 3. Simulation exploration 60

Goodness-of-Fit Tests for Gamma Distribution

Test Statistic p Value

Anderson-Darling A-Sq 0.53696894 Pr > A-Sq 0.191

Goodness-of-Fit Tests for Weibull Distribution

Test Statistic p Value

Cramer-von Mises W-Sq 0.04810609 Pr > W-Sq >0.250

Anderson-Darling A-Sq 0.50222404 Pr > A-Sq 0.222

Goodness-of-Fit Tests for Exponential Distribution

Test Statistic p Value

Kolmogorov-Smirnov D 0.01680341 Pr > D >0.250

Cramer-von Mises W-Sq 0.06842699 Pr > W-Sq >0.500

Anderson-Darling A-Sq 0.61994318 Pr > A-Sq >0.250

Goodness-of-Fit Tests for Lognormal Distribution

Test Statistic p Value

Kolmogorov-Smirnov D 0.0731895 Pr > D <0.010

Cramer-von Mises W-Sq 3.5885961 Pr > W-Sq <0.005

Anderson-Darling A-Sq 23.2801268 Pr > A-Sq <0.005

It is seen that only the Log-Normal distribution is rejected as fit for the data. It is now

possible to use all of the above obtained information in the SAS reliability procedure. The

reliability procedure is implemented with the Exponential distribution as lifetime distribution,

since it was introduced in Chapter 2 and was not rejected as a possible fit for the lifetime
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distribution. It is also a simple distribution in the sense that only one parameter can be related

to the stress factor. For completeness, the PDF and CDF are given again below.

f(x, η) =
1

λ
e−

x
λ where x ∈ (0,∞);λ > 0

F (x, λ) = 1− exp−x
λ

.

Further more, a linear link function is implemented. However, it is seen that the model

collapses for this link function (Table 3.16).

Table 3.16: The estimates obtained by implementing a linear link function.

Exponential Parameter Estimates

Parameter Estimate Standard Error Asymptotic Normal

95% Confidence Limits

Lower Upper

Intercept 4.4913 0.0098 4.4720 4.5105

Mc 0.0000 0.0000 0.0000 0.0000

Shape 1.0000 0.0000 1.0000 1.0000

So a power link function is implemented.
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Table 3.18: The estimates obtained by implementing a power link function.

Exponential Parameter Estimates

Parameter Estimate Standard Error Asymptotic Normal

95% Confidence Limits

Lower Upper

Intercept −34.6564 0.1566 −34.9633 −34.3495

Mc 2.1248 0.0081 2.1089 2.1407

Shape 1.0000 0.0000 1.0000 1.0000

The power link function relates the parameter λ of the exponential distribution to the stress

factor, market CAP, in the following way

λ = eβ0+β1 ln (marketCAP ) (3.5)

= e−34.6564+2.1248 ln (marketCAP ) .

It is now possible to answer questions such as, what is the probability, for a company,

having a market CAP of 1 billion, to experience a loss exceeding our cut off point, within the

next 100 days? Stated differently, what is the probability of this portfolio failing within the

next 100 days?

F (100) =

∫ 100

0

1

λ
e−

x
λdx

=

∫ 100

0

1

e−34.6564+2.1248 ln (marketCAP )
exp(− x

e−34.6564+2.1248 ln (marketCAP )
)dx

=

∫ 100

0

1

e−−34.6564+2.1248 ln (marketCAP )
exp(− x

e−34.6564+2.1248 ln (marketCAP )
)dx

= 1− exp (− 100

e−34.6564+2.1248 ln (marketCAP )
)

= 0.0084342 .

(3.6)
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A graph of the exponential PDF with parameter defined as in Equation 3.5 is give in Figure

3.7 for 4 companies of different market CAP.

Figure 3.7: The lifetime distribution as obtained from the reliability procedure for 4 companies of

different market CAP.

From the above graph it can clearly be seen that a linear link would not be appropriate to

relate the stress factor , market CAP, to the parameter of the exponential lifetime distribution.

The whole process described up and to this point is now repeated with a failure of a com-

pany defined at a higher percentile/threshold. For a highly stressed company, that is to say

small company, the percentage return is calculated. The loss of this small company is then

calculated as Lt = −Rt. The (1 − 0.01)th percentile of the loss is set. Any percentage loss,
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for any size/stressed company, above this now fixed percentile value, is considered a failure.

The relevant output follows.

Figure 3.8: The failure data for companies of different market CAPs evaluated at different inspection

times.

The data becomes censored much sooner with mostly 100% non-failures already occurring

at a market CAP value of 0.09 billion and so, to be able to model accurately, it is necessary to

simulate companies with intermediate market CAP values as well.

It can again be seen that the exponential distribution is not rejected as possible lifetime

distribution;
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Figure 3.9: The empirical lifetime distribution with a Log-normal, Exponential, Weibull and Gamma

distribution superimposed.

Goodness-of-Fit Tests for Exponential Distribution

Test Statistic p Value

Kolmogorov-Smirnov D 0.01707516 Pr > D >0.250

Cramer-von Mises W-Sq 0.09689988 Pr > W-Sq >0.250

Anderson-Darling A-Sq 0.71751227 Pr > A-Sq >0.250

Once again, the linear-link function delivers no results.
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Table 3.21: The estimates obtained by implementing a linear link function.

Exponential Parameter Estimates

Parameter Estimate Standard Error Asymptotic Normal

95% Confidence Limits

Lower Upper

Intercept 5.3759 0.0561 5.2661 5.4858

Mc 0.0000 0.0000 0.0000 0.0000

Shape 1.0000 0.0000 1.0000 1.0000

The power link function is modelled.

Table 3.23: The estimates obtained by implementing a power link function.

Exponential Parameter Estimates

Parameter Estimate Standard Error Asymptotic Normal

95% Confidence Limits

Lower Upper

Intercept −35.8415 0.8766 −37.5597 −34.1234

Mc 2.6216 0.0535 2.5167 2.7264

Shape 1.0000 0.0000 1.0000 1.0000

The power link function relates the parameter λ of the exponential distribution to the stress

factor, market CAP, in the following way

λ = eβ0+β1 ln (marketCAP ) (3.7)

= e−35.8415+2.6216 ln (marketCAP ) .
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A graph of the exponential PDF with parameter defined as in Equation 3.7 is give in Figure

3.7 for 3 companies of different market CAP. From the graph, it is clear why a linear link

function was not suitable.

Figure 3.10: The lifetime distribution as obtained from the reliability procedure for 4 companies of

different market CAP.

It is now possible to answer questions such as, what is the probability, for a company,

having a market CAP of 1 billion, to experience a loss exceeding our cut off point of 99.9%,

within the next 100 days? Stated differently, what is the probability of this portfolio failing

within the next 100 days?
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F (100) =

∫ 100

0

1

λ
e−

x
λdx

=

∫ 100

0

1

e−35.8415+2.6216 ln (marketCAP )
exp(− x

e−35.8415+2.6216 ln (marketCAP )
)dx

=

∫ 100

0

1

e−35.8415+2.6216 ln (marketCAP )
exp(− x

e−35.8415+2.6216 ln (marketCAP )
)dx

= 1− exp (− 100

e−35.8415+2.6216 ln (marketCAP )
)

= 0.0000009 .

(3.8)

The probability in Equation 3.8 is largely reduced from the probability obtained in Equa-

tion 3.6. This is expected. As the failure threshold moves into the tail of the distribution, the

failure becomes less and less likely.

Other interesting analyses are also possible such as observing how the probability to fail

behaves within a fixed time, for companies operating under different levels of stress i.e. market

CAPs. This is displayed in Figure 3.11 and 3.12. Figure 3.12 could be considered an enlarged

view of Figure 3.11, obtained by focusing on a smaller range of market CAP values.
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Figure 3.11: The probability of a default at a fixed time for companies of different market CAPs.
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Figure 3.12: The probability of a default at a fixed time for companies of different market CAPs from

a smaller range.

It is clear that as the company becomes less stressed (greater market CAP) the probability

of a failure decreases exponentially. However, the probability of failure for any size company

is larger if considered for a longer period of time. This can be seen more clearly in Figure 3.13

and Figure 3.14.
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Figure 3.13: The probability of a default at different times for companies of different market CAPs.
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Figure 3.14: The probability of a default at different times for companies of different market CAPs

from a smaller range.
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Chapter 4

Concluding comments

Financial stock return data was considered and one-shot device testing under ATs was applied

to the stock market data of 431 companies trading in the health sector. One-shot device testing

is a case of interval censored data which required us to discretize the data. In doing so, the

default probability for a low-default portfolio (reliability at mission time) could be estimated.

Section 4.1 gives a summary of the study and Section 4.2 gives recommendations on future

research.

4.1 Summary

The problem addressed is that of very little (or even none) data available for low-default port-

folios. Towards this it was seen that different methods exist in dealing with low-default port-

folios, such as extreme value theory or deriving the cumulative accuracy profile curve or using

proportional hazard models. A possible new method has been proposed in dealing with such

portfolios. The proposed method applies the framework of AT and consequently the basic

building blocks of ATs needed to be established. Towards understanding estimation techniques

used in ATs, the EM algorithm was explored. Understanding the programming component of

this method was also investigated and presented for two popular examples in the literature.

There is vast literature available on ATs. However, there are none available on how to apply

these methods to financial data, or more specifically, to financial time series data. It was seen

that the framework used in ATs could be applied to stock market data and deliver basic initial

73
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results. This new proposed model should by no means be viewed as a completed model, but

merely serves as a point of departure into exploring the parallel between ATs and the problem

of insufficient data for low-default portfolios. These basic initial results made it possible to ob-

tain the probability of a failure for a stock and to observe the relationship between the length

of time the stock is traded and the failure probability as well as the size of the company and

the failure probability.

4.2 Future work

Research can be launched into more accurately defining the lifetime distributions, but also the

validity of the assumption that the distribution remains the same across different stress levels.

Once confident in the distribution, it can be investigated if multiple parameters could be linked

to multiple stress factors. In ATs there are physical models concerning temperature or textile

strengths which justify the use of certain link function. As their is not yet such justifications

when applying ATs to financial data, a strong possibility for future research also exist here.

If a different AT were to be applied such as ALT, discretizing the data would not be nec-

essary as it was when doing one-shot device testing. Essentially different censoring schemes

could be considered. When the data was discretized, inspection times were chosen and data

simulated accordingly. M companies of market capitalization size i were tested. Sampling

techniques and optimal test designs can be further researched in this regard.

Another strong assumption that needs to be addressed is that of independence. Testing the

validity of the assumption that failure events for companies trading in the same sector are in

fact independent of each other.
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Appendix A

The coding Appendix for Chapter 2

The relevant SAS code for examples presented in Chapter 2 is presented here. The code is

available form an online GitHub repository: Online code

A.1 SAS code for Example 3 from Chapter 2

* For LaTex o u t p u t ;

ods _ a l l _ c l o s e ;

%l e t MyPath = C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \ c h a p t e r s \

c h a p t e r 1 ;

ods g r a p h i c s / o u t p u t f m t =png ;

p roc iml ;

* S e t a seed v a l u e t o make r e s u l t s comparab le ;

c a l l r a n d s e e d ( 4 5 ) ;

*The 4 c l a s s m u l t i n o m i a l ;

x = { 1 2 5 , 1 8 , 2 0 , 3 4 } ;

*The d e s i r e d l e v e l o f a c c u r a c y ;

acc = 0 . 0 0 0 1 ;

*The i n i t i a l g u e s s f o r t h e t a ;

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 

https://github.com/anel-oppel/MSc_Accelerated_Finance_SAS_code


Appendix A. The coding Appendix for Chapter 2 81

t h e t a = 0 . 1 ;

* Repea t u n t i l d e s i r e d a c c u r a c y i s a c h i e v e d OR i f c o n v e r g e n c e

does n o t occur , a v o i d i n f i n i t e l oop ;

do j =1 t o 100 u n t i l ( d i f f =1) ;

k= j −1;* For PRINT m a t r i x ;

v2=x [ 1 , ] # ( 0 . 2 5 # t h e t a ) / ( 0 . 5 + 0 . 2 5 # t h e t a ) ; *The E−s t e p ;

m a t r i x = m a t r i x / / ( v2 | | k | | t h e t a ) ; * Update t h e PRINT m a t r i x

;

t h e t a _ o l d = t h e t a ;

t h e t a =( v2+x [ 4 , ] ) / ( v2+x [ 2 , ] + x [ 3 , ] + x [ 4 , ] ) ; *The M−s t e p ;

k= j ; * For PRINT m a t r i x ;

m a t r i x = m a t r i x / / ( v2 | | k | | t h e t a ) ; * Update t h e PRINT m a t r i x

;

d i f f = ( ( abs ( t h e t a _ old− t h e t a ) ) < acc ) ; * T e s t i f a c c u r a c y

has been a c h i e v e d ;

end ;

* For LaTeX o u t p u t ;

ods h tml f i l e ="&MyPath . \ Outpu t \ EX1 \ G e n e t i c L i n k a g e . htm " g p a t h ="

&MyPath . \ F i g u r e s \ EX1 " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ EX1 \ G e n e t i c . t e x " (

no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ EX1 " ;

*PRINT m a t r i x t o show each c o n v e r g e n c e s t e p ;

p r i n t m a t r i x [ l a b e l ="" colname ={" v " " k " " t h e t a " } ] ;

q u i t ;
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A.2 SAS code for Example 4 from Chapter 2

* For LaTeX o u t p u t ;

ods _ a l l _ c l o s e ;

%l e t MyPath = C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \ c h a p t e r s \

c h a p t e r 1 ;

ods g r a p h i c s / o u t p u t f m t =png ;

p roc iml ;

* S e t a seed v a l u e t o make r e s u l t s comparab le ;

c a l l r a n d s e e d ( 2 ) ;

acc = 0 . 0 0 1 ; *The d e s i r e d l e v e l o f a c c u r a c y ;

n =15; *The number o f i t e m s f o r which t h e l i f e t i m e s a r e known ;

e t a =8; *The r e a l v a l u e o f e t a ;

m=20; *The number o f i t e m s f o r which we don ’ t know t h e

l i f e t i m e s ;

t =3 ; *The i n s p e c t i o n t ime ;

y=J ( n , 1 , . ) ; *The m a t r i x t h a t w i l l c o n t a i n t h e known l i f e t i m e s ;

v=J (m, 1 , . ) ; *The m a t r i x t h a t w i l l c o n t a i n t h e " unknown "

l i f e t i m e s ;

c a l l r andgen ( y , ’ e x p o n e n t i a l ’ , e t a ) ; * G e n e r a t e t h e known

l i f e t i m e s ;

c a l l r andgen ( v , ’ e x p o n e n t i a l ’ , e t a ) ; * G e n e r a t e t h e " unknown "

l i f e t i m e s ;

r =( v<= t ) [ + , ] ; *The number o f i t e m s t h a t f a i l e d − we don ’ t know

t h e e x a c t l i f e t i m e s ;

p r = r | | ( y [ + , ] / nrow ( y ) ) ; *To be used i n t h e E−s t e p ;

* For LaTeX o u t p u t ;
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ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ EX2 \ r . t e x " ( no top

nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ EX2 " ;

p r i n t p r [ l a b e l = " " colname ={" The number o f f a i l u r e s " " y−b a r " } ]

;

e t a =2; *The i n i t i a l g u e s s f o r e t a ;

* Repea t u n t i l d e s i r e d a c c u r a c y i s a c h i e v e d OR i f c o n v e r g e n c e

does n o t occur , a v o i d i n f i n i t e loop ;

do j =1 t o 100 u n t i l ( d i f f =1) ;

k= j −1;* For PRINT m a t r i x ;

v2 =(m−r ) # ( t + e t a ) + r # e t a +(− r # t # exp(− t / e t a ) ) / (1−exp(− t /
e t a ) ) ; *The E−s t e p ;

m a t r i x = m a t r i x / / ( v2 | | k | | e t a ) ; * Update t h e PRINT m a t r i x ;

e t a _ o l d = e t a ;

e t a =( n # ( y [ + , ] / nrow ( y ) ) +v2 ) / ( n+m) ; *The M−s t e p ;

k= j ; * For PRINT m a t r i x ;

m a t r i x = m a t r i x / / ( v2 | | k | | e t a ) ; * Update t h e PRINT m a t r i x ;

d i f f = ( ( abs ( e t a _ old−e t a ) ) < acc ) ; * T e s t i f a c c u r a c y has

been a c h i e v e d ;

end ;

* For LaTeX o u t p u t ;

ods h tml f i l e ="&MyPath . \ Outpu t \ EX2 \ Exp . htm " g p a t h ="&MyPath . \

F i g u r e s \ EX2 " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ EX2 \ exp . t e x " ( no top

nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ EX2 " ;
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*PRINT m a t r i x t o show each c o n v e r g e n c e s t e p ;

p r i n t m a t r i x [ l a b e l ="" colname ={" v " " k " " t h e t a " } ] ;

q u i t ;
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Appendix B

The coding Appendix for Chapter 3

The relevant SAS code for examples presented in Chapter 3 is presented here. The code is

available form an online GitHub repository: Online code

B.1 SAS code for Section 3.1 from Chapter 3

* Im po r t t h e s t o c k d a t a ;

PROC IMPORT OUT= DISSN .MERGEDDATA

DATAFILE= "C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \

c h a p t e r s \ cha

p t e r 2 \ Rea lDa ta \ merged1479114290141 . csv "

DBMS=CSV REPLACE ;

GETNAMES=YES ;

DATAROW=2;

RUN;

p roc iml ;

* S t o r e t h e s t o c k d a t a i n m a t r i x X wi th column names e q u a l t o

t h e s t o c k names ;

use d i s sN . mergedData ;

r e a d a l l i n t o x [ colname=names ] ;
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c l o s e d i s sN . mergedData ;

* C r e a t e a column v e c t o r from t h e marke t c a p i t a l i z a t i o n v a l u e s ;

MC=x [ 1 , ] ‘ ;

c a l l s o r t (MC) ;

MC=MC[ 1 : 2 5 0 ] ;

c r e a t e d i s sN . MCcol from MC[ colname ={ ’MC’ } ] ;

append from MC;

q u i t ;

* Im po r t an e x c e r p t o f t h e s t o c k d a t a t o be p r i n t e d ;

PROC IMPORT OUT= DISSN . DataMerged _ e

DATAFILE= "C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \

c h a p t e r s \ cha

p t e r 2 \ Rea lDa ta \ DataMerged _ e . x l s x "

DBMS=EXCEL REPLACE ;

RANGE=" S he e t 1 $ " ;

GETNAMES=YES ;

MIXED=NO;

SCANTEXT=YES ;

USEDATE=YES ;

SCANTIME=YES ;

RUN;

* For LATeX ;

ods _ a l l _ c l o s e ;

%l e t MyPath = C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \ c h a p t e r s \

c h a p t e r 2 ;

ods g r a p h i c s / o u t p u t f m t =png ;
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ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ da t aE . htm " g p a t h ="&
MyPath . \ F i g u r e s \ Rea lDa ta \ da t aE " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \ da t aE . t e x

" ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta \ da t aE " ;

* P r i n t and e x p e r t o f s t o c k d a t a t o show what d a t a t a b l e l o o k s

l i k e ;

p roc p r i n t d a t a =DISSN . DataMerged _ e ;

run ;

q u i t ;

p roc iml ;

* For LATeX ;

ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ NumberOfCompanies . htm "

g p a t h ="&MyPath . \ F i g u r e s \ Rea lDa ta \ NumberOfCompanies " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \

NumberOfCompanies . t e x " ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta \ NumberOfCompanies " ;

* S t o r e t h e s t o c k d a t a i n m a t r i x x wi th column names e q u a l t o

t h e s t o c k names ;

use d i s sN . mergedData ;

r e a d a l l i n t o x [ colname=names ] ;

c l o s e d i s sN . mergedData ;

MC=x [ 1 , ] ;

*Do n o t i n c l u d e t h e f i r s t row : Market c a p i t a l i z a t i o n ;

x=x [ 2 : nrow ( x ) , ] ;
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mx= n c o l ( x ) ; *The number o f columns i n t h e m a t r i x i . e . t h e

number o f companies ;

p r i n t mx[ l a b e l = ’ ’ colname ={ ’ Number o f companies ’ } ] ;

nx=nrow ( x ) ; *The number o f rows i n t h e m a t r i x i . e . t h e number

o f p r i c e s f o r each company ;

x t _1=x [ 1 : nx−1 , ] ; * C r e a t e t h e l a g g e d p r i c e s t o be used i n r e t u r n

c a l c u l a t i o n ;

x t =x [ 2 : nx , ] ;

RtX= l o g ( x t / x t _ 1) ; * D ef in e a r e t u r n by t h e l o g of t h e r e t u r n s ;

s t e p =do ( 1 , nx−1 ,1) ; * C r e a t e t h e t ime v a r i a b l e a g a i n s t which each

r e t u r n v a l u e w i l be p l o t t e d ;

s t e p = s t e p ‘ ;

RtXs= s t e p | | RtX ;

s2 = ( ( ( RtX−(Rtx [ + , ] / ( nx−1) ) ) ##2) [ + , ] ) / ( nx−2) ; * C a l c u l a t e t h e

s t a n d a r d d e v i a t i o n o f t h e r e t u r n s f o r each company ;

* p r i n t s2 ;

s t d =(Mc / / s q r t ( s2 ) ) ‘ ; * C r e a t e a m a t r i x compromis ing of t h e

Market c a p i t a l i z a t i o n and s t a n d a r d d e v i a t i o n o f t h e r e t u r n s

, f o r each company ;

c a l l s o r t ( s t d , 1 ) ;

* C r e a t e a d a t a t a b l e from t h e r e t u r n v a l u e s f o r each company ;

c r e a t e d i s sN . ALL_ Rt from RtXS [ colname =({ ’ s t e p s ’ } | | names ) ] ;

append from RtXs ;

* C r e a t e a d a t a t a b l e from t h e marke t c a p i t a l i z a t i o n v a l u e s f o r

each company ;

c r e a t e d i s sN .MC from MC[ colname =( names ) ] ;
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append from MC;

* C r e a t e a d a t a t a b l e from t h e marke t c a p i t a l i z a t i o n v a l u e s and

s t a n d a r d d e v i a t i o n o f t h e r e t u r n s , f o r each company ;

c r e a t e d i s sN . s t d from s t d [ colname ={ ’MC’ ’ s t d ’ } ] ;

append from s t d ;

q u i t ;

* For LATeX o u t p u t ;

ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ N o r m a l i t y \ N o r m a l i t y .

htm " g p a t h ="&MyPath . \ F i g u r e s \ Rea lDa ta \ N o r m a l i t y " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \ N o r m a l i t y \

N o r m a l i t y . t e x " ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta \ N o r m a l i t y " ;

* T e s t i f i t i s r e a s o n a b l e t o assume t h a t t h e lo gg ed r e t u r n s

a r e n o r m a l l y d i s t r i b u t e d ;

* S e l e c t companies JNJ AGRX MNOV NDRM TLGT l o g r e t u r n s ;

*Use ods t r a c e t o p r i n t on ly s p e c i f i c t a b l e s ;

ods t r a c e on ;

ods s e l e c t t e s t s f o r n o r m a l i t y ;

p roc u n i v a r i a t e d a t a = d i s sN . ALL_ Rt normal ;

v a r JNJ AGRX MNOV NDRM TLGT ;

o u t p u t o u t = d i s s n . u n i v a r probn = JNJ AGRX MNOV NDRM TLGT ;

run ;

ods t r a c e o f f ;

q u i t ;

* For LATeX o u t p u t ;
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ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ N o r m a l i t y \ N o r m a l i t y p .

htm " g p a t h ="&MyPath . \ F i g u r e s \ Rea lDa ta \ N o r m a l i t y " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \ N o r m a l i t y \

N o r m a l i t y p . t e x " ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta \ N o r m a l i t y " ;

* P r i n t on ly t h e Shap i ro−Wilk n o r m a l i t y t e s t p−v a l u e s ;

p roc p r i n t d a t a = d i s sN . u n i v a r ;

run ;

q u i t ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename =" smal lVSbig " ;

ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ smal lVSbig . h tml " g p a t h

="&MyPath . \ F i g u r e s \ Rea lDa ta " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \ smal lVSbig

. t e x " ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta " ;

************** Graphing p r o c e d u r e t o g raph t h e l o g r e t u r n s o f a

s e l e c t e d smal l−cap and l a r g e−cap company a g a i n s t t ime ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _STEPS _ JNJ _STEPS2 _ABEO;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ The r e t u r n s o f a b i g cap and

s m a l l cap company ’ ;
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l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y ;

s e r i e s p l o t x=_STEPS y=_ JNJ / name= ’ s e r i e s ’

c o n n e c t o r d e r = x a x i s l i n e a t t r s =( c o l o r =CX639A21 ) ;

s e r i e s p l o t x=_STEPS2 y=_ABEO / name= ’ s e r i e s 2 ’

c o n n e c t o r d e r = x a x i s l i n e a t t r s =( c o l o r =CX8CA6CE ) ;

d i s c r e t e l e g e n d ’ s e r i e s ’ ’ s e r i e s 2 ’ / opaque= f a l s e

b o r d e r = t r u e h a l i g n = l e f t v a l i g n = bot tom

d i s p l a y c l i p p e d = t r u e a c r o s s =1 o r d e r =rowmajor

l o c a t i o n = i n s i d e ;

e n d l a y o u t ;

e n d l a y o u t ;

endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . ALL_RT t e m p l a t e = s g d e s i g n ;

dynamic _STEPS="STEPS" _ JNJ =" JNJ " _STEPS2="STEPS" _ABEO="ABEO

" ;

run ;

************End of g r a p h i n g p r o c e d u r e ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename ="MC" ;

ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \MC. h tml " g p a t h ="&
MyPath . \ F i g u r e s \ Rea lDa ta " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \MC. t e x " (

no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta " ;
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* P r i n t t h e Market c a p i t a l i z a t i o n v a l u e s f o r t h e companies f o r

which t h e r e t u r n s were g raphed i n above p r o c e d u r e ;

p roc p r i n t d a t a = d i s s n .MC;

v a r JNJ ABEO;

run ;

q u i t ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename =" s t d . " ;

ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ s t d . h tml " g p a t h ="&
MyPath . \ F i g u r e s \ Rea lDa ta " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \ s t d . t e x " (

no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta " ;

************** Graphing p r o c e d u r e t o g raph t h e s t a n d a r d

d e v i a t i o n o f t h e log−r e t u r n s f o r each company a g a i n s t t h e

marke t c a p i t a l i z a t i o n v a l u e s f o r each company ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _MC _STD ;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ V a r i a b i l i t y vs . marke t Capp ’ ;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y ;

s c a t t e r p l o t x=_MC y=_STD / name= ’ s c a t t e r ’ ;

e n d l a y o u t ;

e n d l a y o u t ;
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endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . STD t e m p l a t e = s g d e s i g n ;

dynamic _MC="MC" _STD="STD " ;

run ;

************End of g r a p h i n g p r o c e d u r e ;

p roc iml ;

use d i s s n . s t d ;

r e a d a l l i n t o x ;

* Trans fo rm t h e s t a n d a r d d e v i a t i o n s by a p p l y i n g t h e n e g a t i v e

l o g ;

x [ ,2]=− l o g ( x [ , 2 ] ) ;

c r e a t e d i s sN . s t d _Log from x [ colname ={ ’MC’ ’ Log_ s t d ’ } ] ;

append from x ;

q u i t ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename =" l o g _ s t d " ;

ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ s t d _Log . h tml " g p a t h ="&
MyPath . \ F i g u r e s \ Rea lDa ta \ " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \ s t d _Log .

t e x " ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta \ " ;

************** Graphing p r o c e d u r e t o g raph t h e n e g a t i v e l o g

s t a n d a r d d e v i a t i o n ( t r a n s f o r m e d s t a n d a r d d e v i a t i o n ) o f t h e
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log−r e t u r n s f o r each company a g a i n s t t h e marke t

c a p i t a l i z a t i o n v a l u e s f o r each company ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _MC _LOG_STD ;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ Log ( v a r i a b i l i t y ) vs . marke t Capp ’

;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y ;

s c a t t e r p l o t x=_MC y=_LOG_STD / name= ’ s c a t t e r ’ ;

e n d l a y o u t ;

e n d l a y o u t ;

endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . STD_LOG t e m p l a t e = s g d e s i g n ;

dynamic _MC="MC" _LOG_STD=" ’LOG_STD ’ n " ;

run ;

************End of g r a p h i n g p r o c e d u r e ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename =" n l i n _ model " ;

ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ n l i n _ model . h tml " g p a t h

="&MyPath . \ F i g u r e s \ Rea lDa ta \ " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \ n l i n _ model

. t e x " ( no top nobo t )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Appendix B. The coding Appendix for Chapter 3 95

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta \ " ;

* Per form a non− l i n e a r r e g r e s s i o n t o u n d e r s t a n d how t h e

t r a n s f o r m e d s t a n d a r d d e v i a t i o n s move wi th marke t

c a p i t a l i z a t i o n ;

g o p t i o n s r e s e t = a l l ;

p roc n l i n d a t a = d i s s n . s t d _ l o g ;

p a r a m e t e r s b e t a =2 a l p h a = 2 . 6 ;

s w i t c h = l o g ( mc ) ;

model l o g _ s t d = a l p h a + b e t a * s w i t c h ;

o u t p u t o u t = d i s s n . n l i n o u t _ l o g p red =p l c l = l c l u c l = u c l parms=

b e t a _0 b e t a _1 ;

run ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename =" n l i n " ;

ods h tml f i l e ="&MyPath . \ Outpu t \ Rea lDa ta \ s t d _Log . h tml " g p a t h ="&
MyPath . \ F i g u r e s \ Rea lDa ta \ " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ Rea lDa ta \ n l i n . t e x " (

no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \ Rea lDa ta \ " ;

************** Graphing p r o c e d u r e t o g raph t h e non− l i n e a r model

which r e l a t e s t h e t r a n s f o r m e d s t a n d a r d d e v i a t i o n s t o t h e

marke t c a p i t a l i z a t i o n ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _MC _LOG_STD _MC2 _P ;
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b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ The p r e d i c t e d l o g v a r i a t i o n as a

f u n c t i o n o f Log (CAP) ’ ;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y ;

s c a t t e r p l o t x=_MC y=_LOG_STD / name= ’ s c a t t e r ’ ;

s e r i e s p l o t x=_MC2 y=_P / name= ’ s e r i e s ’ c o n n e c t o r d e r =

x a x i s l i n e a t t r s =( c o l o r =CX8CA6CE ) ;

d i s c r e t e l e g e n d ’ s c a t t e r ’ ’ s e r i e s ’ / opaque= f a l s e

b o r d e r = t r u e h a l i g n = l e f t v a l i g n = bot tom

d i s p l a y c l i p p e d = t r u e a c r o s s =1 o r d e r =rowmajor

l o c a t i o n = i n s i d e ;

e n d l a y o u t ;

e n d l a y o u t ;

endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . NLINOUT_LOG t e m p l a t e = s g d e s i g n ;

dynamic _MC="MC" _LOG_STD=" ’LOG_STD ’ n " _MC2="MC" _P="P " ;

run ;

B.2 SAS code for Section 3.2 from Chapter 3

B.2.1 This code generates Figure 3.5

The code also generates the simulation results given in the table before Figure 3.5

* For LATeX o u t p u t ;

ods _ a l l _ c l o s e ;

%l e t MyPath = C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \ c h a p t e r s \

c h a p t e r 2 ;
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ods g r a p h i c s / o u t p u t f m t =png ;

* S i m u l a t e d a t a t o be used i n one−s h o t d e v i c e t e s t ;

p roc iml ;

c a l l s eed ( 2 7 ) ;

* i m p o r t t h e p a r a m e t e r s o f t h e non− l i n e a r model ;

use d i s s n . n l i n o u t _ l o g ;

r e a d a l l i n t o s t d ;

s t d = s t d [ 1 , n c o l ( s t d )−1: n c o l ( s t d ) ] ;

* p r i n t s t d ;

* t h e p e r c e n t i l e v a l u e a t which a f a i l u r e w i l l be d e f i n e d ;

a l p h a = 0 . 0 5 ;

N=400; * a c t u a l l y t h e t ime v a r i a b l e , l e t t h e p r o c e s s run from t

=0 t o t =400;

M=1000; *The number o f companies each o f marke t c a p i t a l i z a t i o n

s i z e S ;

mu=0;

**************** S e l e c t t h e f a i l u r e t h r e s h o l d based on t h e

p e r c e n t i l e o f a s m a l l marke t c a p i t a l i z a t i o n company ;

smal lCap =0.01 * (10 ** 9) ;

X= l o g ( smal lCap ) / / { 1 } ;

f a c t o r = s t d *X;

s i gm af =exp(− f a c t o r ) ; * c r e a t e t h e s t a n d a r d d e v i a t i o n o f t h e

r e t u r n based on t h e o u t p u t from t h e non− l i n e a r model ;

* p r i n t s i g maf ;

T c l l =( p r o b i t ( a l p h a ) * s i gm af ) +mu ; *The p e r c e n t i l e which w i l l be

t h e f a i l u r e t h r e s h o l d ;

* p r i n t T c l l ;

Tc lu =( p r o b i t (1− a l p h a ) * s i gm af ) +mu ;

* p r i n t Tc lu ;
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****************End ;

do s =0 .1 t o 1 by 0 . 1 ; * change 0 . 1 t o 0 . 0 1 make comparab le ;

markCapp=s * (10 ** 9) ; *The s t r e s s f a c t o r i n B i l l i o n s ;

X= l o g ( markCapp ) / / { 1 } ;

f a c t o r = s t d *X;

sigma=exp(− f a c t o r ) ; * c r e a t e t h e s t a n d a r d d e v i a t i o n o f

t h e r e t u r n based on t h e o u t p u t from t h e non− l i n e a r

model ;

* p r i n t s igma ;

c a l l r a n d s e e d ( 0 ) ;

Rt=J (N, 1 , 0 ) ;

c o u n t =J ( 1 , 3 , 0 ) ;

************************************* ;

do r =1 t o 3 ; *The number o f i n s p e c t i o n t i m e s ;

do k=1 t o M; * The number d e v i c e s unde r c u r r e n t

t e s t c o n d i t i o n ;

c a l l r andgen ( Rt , " Normal " , Mu, Sigma ) ;

* P o p u l a t e t h e r e t u r n m a t r i x ;

*** Let ’ s say we a r e i n t e r e s t e d i n a

l o s s and n o t a g a i n ;

Rt=−Rt ;

* c o u n t t h e number o f f a i l e d companies

unde r c u r r e n t t e s t c o n d i t i o n , a f a i l u r e i s a l o s s above

t h r e s h o l d ;

i f ( ( ( Rt [ 1 : i n t (N−1 / r ) , ] ) >= Tclu ) [ + ] ) >0

t h e n c o u n t [ , r ]= c o u n t [ , r ] + 1 ;

end ;

* C r e a t e d a t a m a t r i x ;

DATAM=DataM / / ( markCapp | | c o u n t [ , r ] | | i n t (N / r ) ) ;

end ;
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end ;

* C r e a t e t h e d a t a m a t r i x ;

NMat= r e p e a t (M, nrow (DATAM) ) ;

p r i n t Nmat ;

DATAM=DATAM | | NMat ;

c r e a t e d i s sN . r e l i a from DATAM[ colname ={ ’ markCapp ’ ’ r ’ ’ IT ’ ’M’

} ] ;

append from DATAM;

q u i t ;

* For LATeX o u t p u t ;

ods h tml f i l e ="&MyPath . \ Outpu t \SIMM\ d a t a . htm " g p a t h ="&MyPath . \

F i g u r e s \SIMM" ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ SIMM\ d a t a . t e x " (

no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \SIMM" ;

* P r i n t t h e d a t a m a t r i x ;

p roc p r i n t d a t a = d i s sN . r e l i a ;

run ;

q u i t ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename =" f a i l s " ;

ods h tml f i l e ="&MyPath . \ Outpu t \SIMM\ f a i l s . htm " g p a t h ="&MyPath

. \ F i g u r e s \SIMM" ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ SIMM\ f a i l s . t e x " (

no top nobo t )
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n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \SIMM" ;

************** Graphing p r o c e d u r e t o g raph t h e number o f f a i l e d

companies unde r each t e s t c o n d i t i o n

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _MARKCAPP _R _ IT ;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ The f a i l u r e s o b s e r v e d f o r

d i f f e r e n t s i z e companies a t 3 d i f f e r e n t i n s p e c t i o n t i m e s ’ ;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y / x a x i s o p t s =( d i s c r e t e o p t s =(

t i c k v a l u e f i t p o l i c y = s p l i t r o t a t e ) ) ;

b a r c h a r t c a t e g o r y =_MARKCAPP r e s p o n s e =_R / group =_ IT

name= ’ b a r ’ s t a t =mean g r o u p d i s p l a y = C l u s t e r c l u s t e r w i d t h

= 0 . 8 5 ;

d i s c r e t e l e g e n d ’ b a r ’ / opaque= f a l s e b o r d e r = t r u e

h a l i g n = r i g h t v a l i g n = t o p d i s p l a y c l i p p e d = t r u e a c r o s s =1 o r d e r =

rowmajor l o c a t i o n = i n s i d e ;

e n d l a y o u t ;

e n d l a y o u t ;

endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . RELIA t e m p l a t e = s g d e s i g n ;

dynamic _MARKCAPP="MARKCAPP" _R="R" _ IT =" IT " ;

run ;
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*************End ;

B.2.2 This code generates Figure 3.6

The code also generates the goodness-of-fit tables for the Log-Normal, Exponential,Gamma

and Weibull distribution given after Figure 3.6

* For LATeX o u t p u t ;

ods _ a l l _ c l o s e ;

%l e t MyPath = C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \ c h a p t e r s \

c h a p t e r 2 ;

ods g r a p h i c s / o u t p u t f m t =png ;

ods h tml f i l e ="&MyPath . \ Outpu t \SIMM \ \ L i f e \ l i f e . htm " g p a t h ="&
MyPath . \ F i g u r e s \SIMM\ L i f e " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ SIMM\ L i f e \ l i f e . t e x

" ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \SIMM\ L i f e " ;

* Dete rmine t h e l i f e d i s t r i b u t i o n by s i m u l a t i o n ;

p roc iml ;

*To make o u t p u t comparab le i f needed ;

c a l l r a n d s e e d ( 4 5 ) ;

* Im po r t t h e p a r a m e t e r s o f t h e non− l i n e a r model ;

use d i s s n . n l i n o u t _ l o g ;

r e a d a l l i n t o s t d ;

s t d = s t d [ 1 , n c o l ( s t d )−1: n c o l ( s t d ) ] ;

* p r i n t s t d ;

*The p e r c e n t i l e v a l u e a t which a f a i l u r e w i l l be d e f i n e d ;

a l p h a = 0 . 0 5 ;
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N=500; * A c t u a l l y t h e t ime v a r i a b l e ;

mu=0;

**************** S e l e c t t h e f a i l u r e t h r e s h o l d based on t h e

p e r c e n t i l e o f a s m a l l marke t c a p i t a l i z a t i o n company ;

smal lCap =0.01 * (10 ** 9) ;

X= l o g ( smal lCap ) / / { 1 } ;

f a c t o r = s t d *X;

s i gm af =exp(− f a c t o r ) ; * C r e a t e t h e s t a n d a r d d e v i a t i o n o f t h e

r e t u r n based on t h e o u t p u t from t h e non− l i n e a r model ;

* p r i n t s i g maf ;

T c l l =( p r o b i t ( a l p h a ) * s i gm af ) +mu ; *The p e r c e n t i l e which w i l l be

t h e f a i l u r e t h r e s h o l d ;

* p r i n t T c l l ;

Tc lu =( p r o b i t (1− a l p h a ) * s i gm af ) +mu ;

* p r i n t Tc lu ;

*The s t r e s s l e v e l a t which t h e l i f e d i s t r i b u t i o n w i l l be

a s s e s s e d . Assuming t h e d i s t r i b u t i o n r e m a i n s t h e same a t a l l

s t r e s s l e v e l s ;

s = 0 . 0 4 5 ;

markCapp=s * (10 ** 9) ; * t h e s t r e s s f a c t o r i n B i l l i o n s ;

X= l o g ( markCapp ) / / { 1 } ;

f a c t o r = s t d *X;

sigma=exp(− f a c t o r ) ; * c r e a t e t h e s t a n d a r d d e v i a t i o n o f t h e

r e t u r n based on t h e o u t p u t from t h e non− l i n e a r model ;

* p r i n t s igma ;

* c a l l r a n d s e e d ( 0 ) ;

Rt=J (N, 1 , 0 ) ;

do k=1 t o 2000 ;
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c a l l r andgen ( Rt , " Normal " , Mu, Sigma ) ; * P o p u l a t e t h e

r e t u r n m a t r i x ;

i f ( ( Rt>Tclu ) [ + ] ) >0 t h e n do ;

i d x = l o c ( Rt>= Tclu ) ;

min=min ( i d x ) ; * Dete rmine t h e f i r s t t ime a t

which t h e r e t u r n s went above t h e l o s s

t h r e s h o l d ;

t = t / / min ;

end ;

end ;

c r e a t e d i s s n . l i f e from t [ colname ={ ’ t ’ } ] ;

append from t ;

q u i t ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename =" l i f e h " ;

ods h tml f i l e ="&MyPath . \ Outpu t \SIMM\ L i f e \ l i f e h . htm " g p a t h ="&
MyPath . \ F i g u r e s \SIMM\ L i f e " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ SIMM\ L i f e \ l i f e h . t e x

" ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \SIMM\ L i f e " ;

* T e s t i f t h e l i f e d i s t r i b u t i o n i s Weibul l , Lognormal , Gamma or

E x p o n e n t i a l ;

p roc u n i v a r i a t e d a t a = d i s s n . l i f e normal ;

v a r t ;

h i s t o g r a m / w e i b u l l l o g n o r m a l gamma e x p o n e n t i a l ;

run ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Appendix B. The coding Appendix for Chapter 3 104

q u i t ;

B.2.3 This code generates Table 3.16–3.18

* For LATeX o u t p u t ;

ods _ a l l _ c l o s e ;

%l e t MyPath = C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \ c h a p t e r s \

c h a p t e r 2 ;

ods g r a p h i c s / o u t p u t f m t =png ;

************************************* P r e p a r e t h e d a t a f o r t h e

r e l i a b i l i t y p r o c e d u r e ;

d a t a d i s s n . r e l i a ;

s e t d i s s n . r e l i a ;

obs=_n_ ;

run ;

q u i t ;

p roc iml ;

use d i s s n . r e l i a ;

r e a d a l l i n t o x [ colname=names ] ;

x= r e p e a t ( x , 2 ) ;

c a l l s o r t ( x , n c o l ( x ) ) ;

* p r i n t x ;

c r e a t e d i s s n . r e l i a 1 from x [ colname=names ] ;

append from x ;

q u i t ;

d a t a d i s s n . f i n _ r e l i a ;

s e t d i s s n . r e l i a 1 ( drop =obs ) ;

obs=_n_ ;
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* I f T1 i s m i s s i n g ( . ) , t h e n T2 r e p r e s e n t s a l e f t −c e n s o r i n g

t ime ;

i f mod ( obs , 2 ) =0 t h e n do ;

t 1 = . ;

t 2 =IT ;

f a i l = r ;

Mc=markCapp ;

end ;

* I f T2 i s mis s ing , T1 r e p r e s e n t s a r i g h t−c e n s o r i n g t ime ;

i f mod ( obs , 2 ) ^=0 t h e n do ;

t 1 =IT ;

t 2 = . ;

f a i l =M−r ;

Mc=markCapp ;

end ;

run ;

d a t a d i s s n . f i n _ r e l i a ;

s e t d i s s n . f i n _ r e l i a ( drop = IT r markCapp M) ;

run ;

q u i t ;

*******************************************End d a t a

p r e p a r a t i o n ;

* For LATeX o u t p u t ;

ods g r a p h i c s on / imagename =" r e l i a " ;

ods h tml f i l e ="&MyPath . \ Outpu t \SIMM\ r e l i a \ r e l i a . htm " g p a t h ="&
MyPath . \ F i g u r e s \SIMM\ R e l i a " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . \ SIMM\ R e l i a \ r e l i a .

t e x " ( no top nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s \SIMM\ R e l i a " ;
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*Run t h e r e l i a b i l i t y p r o c e d u r e wi th a l i n e a r −l i n k f u n c t i o n ;

ods t r a c e on ;

ods s e l e c t modprmest ;

p roc r e l i a b i l i t y d a t a = d i s s n . f i n _ r e l i a ;

d i s t r i b u t i o n e x p o n e n t i a l ;

f r e q f a i l ;

* l o g s c a l e mc ;

model ( t 1 t 2 ) = Mc;

r p l o t ( t 1 t 2 ) = Mc /
p p l o t

f i t = model

noconf

p l o t d a t a

p l o t f i t 10 50 90

;

run ;

ods t r a c e o f f ;

q u i t ;

*Run t h e r e l i a b i l i t y p r o c e d u r e wi th a power−l i n k f u n c t i o n ;

ods t r a c e on ;

ods s e l e c t modprmest p a r m e s t ;

p roc r e l i a b i l i t y d a t a = d i s s n . f i n _ r e l i a ;

d i s t r i b u t i o n e x p o n e n t i a l ;

f r e q f a i l ;

* l o g s c a l e mc ;

model ( t 1 t 2 ) = Mc / r e l a t i o n =pow ;

make ’ modprmest ’ o u t = d i s s n . f i n _ r e l i a _ graphMEst ;

make ’ p a r m e s t ’ o u t = d i s s n . f i n _ r e l i a _ g r a p h e s t ;

r p l o t ( t 1 t 2 ) = Mc /
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p p l o t

f i t = model

r e l a t i o n =pow

noconf

p l o t d a t a

p l o t f i t 10 50 90

;

run ;

ods t r a c e o f f ;

q u i t ;

B.2.4 This code generates Figure 3.7

* For LaTex o u t p u t ;

ods _ a l l _ c l o s e ;

%l e t MyPath = C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \ c h a p t e r s \

c h a p t e r 2 ;

ods g r a p h i c s / o u t p u t f m t =png ;

p roc iml ;

* Im po r t t h e e x p o n e n t i a l p a r a m e t e r a t each marke t cap l e v e l ;

use d i s s n . F in _ r e l i a _ g r a p h e s t ;

r e a d a l l i n t o x [ colname=names ] ;

c l o s e d i s s n . F in _ r e l i a _ g r a p h e s t ;

c a l l s eed ( 4 5 ) ;

* Im po r t t h e l i n k f u n c t i o n p a r a m e t e r s ;

use d i s s n . F in _ r e l i a _ graphMest ;

r e a d a l l i n t o xy [ colname=names ] ;

c l o s e d i s s n . F in _ r e l i a _ graphMest ;

*The l i n k f u n c t i o n p a r a m e t e r s ;

B0=xy [ 1 , 1 ] ;
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B1=xy [ 2 , 1 ] ;

* Im po r t t h e marke t cap v a l u e s ;

use d i s s n . r e l i a ;

r e a d a l l i n t o mc ;

c l o s e d i s s n . r e l i a ;

mc=mc [ , 1 ] ;

************ S i m u l a t e t h e e x p o n e n t i a l d i s t r i b u t i o n f o r

d i f f e r e n t marke t cap v a l u e s ;

M=1000;

v=J (M, 1 , . ) ;

u=J (M, 1 , . ) ;

y=J (M, 1 , . ) ;

e t a =x [ , 2 ] ;

do j =1 t o 11 by 2 ; * p l o t on ly f o r 5 companies

mmc=mmc / / mc [ j , ] ;

y [ , 1 ] = mc [ j , ] ; *The marke t cap v a l u e ;

parm= e t a [ j + 1 , ] ;

c a l l r andgen ( v , ’ e x p o n e n t i a l ’ , parm ) ; *An e x p o n e n t i a l

v a r i a b l e ;

* i f j <=3 t h e n p r i n t v ;

u [ , 1 ] = ( 1 / parm ) * exp(−v / parm ) ; *The e x p o n e n t i a l pdf

e v a l u a t e d a t v , t h e e x p o n e n t i a l v a r i a b l e s ;

DataM=dataM / / ( y | | v | | u ) ;

end ;

l i n k =1 / exp ( b0+b1* l o g ( dataM [ , 1 ] ) ) ;

DataM=DataM | | l i n k ;

* S t o r e t h e s i m u l a t e d d a t a ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Appendix B. The coding Appendix for Chapter 3 109

c r e a t e d i s s n . F in _ r e l i a _ graph from DataM [ colname ={ ’ marketCapp ’ ,

’ y ’ , ’ d i s t ’ , ’ l i n k ’ } ] ;

append from DataM ;

q u i t ;

* For LaTeX o u t p u t ;

ods g r a p h i c s on / imagename =" d e n s i t i e s " ;

ods h tml f i l e ="&MyPath . \ Outpu t . htm " g p a t h ="&MyPath . \ F i g u r e s " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . d e n s i t i e s . t e x " ( no top

nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s " ;

************** Graphing p r o c e d u r e t o g raph e x p o n e n t i a l

d i s t r i b u t i o n f o r d i f f e r e n t marke t c a p i t a l i z a t i o n ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _Y _DIST _MARKETCAPP;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ The l i f e −t ime d i s t r i b u t i o n s f o r

d i f f i r e n t marke t cap v a l u e s ’ ;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y ;

s e r i e s p l o t x=_Y y=_DIST / group =_MARKETCAPP name= ’

s e r i e s ’ c o n n e c t o r d e r = x a x i s ;

d i s c r e t e l e g e n d ’ s e r i e s ’ / opaque= f a l s e b o r d e r = t r u e

h a l i g n = r i g h t v a l i g n = t o p d i s p l a y c l i p p e d = t r u e a c r o s s

=1 o r d e r =rowmajor l o c a t i o n = i n s i d e ;

e n d l a y o u t ;
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e n d l a y o u t ;

endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . FIN_RELIA_GRAPH t e m p l a t e = s g d e s i g n ;

dynamic _Y="Y" _DIST="DIST " _MARKETCAPP="MARKETCAPP" ;

run ;

B.2.5 This code generates Figure 3.11– 3.14

* For LaTex o u t p u t ;

ods _ a l l _ c l o s e ;

%l e t MyPath = C : \ Use r s \ Anel \ Desktop \D_ d i s s e r t a t i o n \ c h a p t e r s \

c h a p t e r 2 \ round2 ;

ods g r a p h i c s / o u t p u t f m t =png ;

p roc iml ;

* Im po r t t h e r e l i a b i l i t y p a r a m e t e r s f o r t h e l i n k f u n c t i o n ;

use d i s s n . F in _ r e l i a _99_ graphMest ;

r e a d a l l i n t o xy [ colname=names ] ;

c l o s e d i s s n . F in _ r e l i a _99_ graphMest ;

B0=xy [ 1 , 1 ] ;

B1=xy [ 2 , 1 ] ;

t ime =50;

* E v a l u a t e f o r a f i x e d t ime , how p r o b a b i l i t y o f f a i l u r e changes

wi th marke t CAP;

do r =1 t o 4 ;

T= t ime # r ;

do j =0 .1 t o 1 by 0 . 1 ;

k= j *10** 9 ;
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v a l =1−exp(−T / ( exp ( B0+B1# l o g ( k ) ) ) ) ;

dataM=dataM / / ( T | | k | | v a l ) ;

end ;

end ;

c r e a t e d i s s n . I n t e r p G r a p h from DataM [ colname ={ ’ t ime ’ , ’ marketCap

’ , ’ F t ’ } ] ;

append from DataM ;

q u i t ;

* For LaTex o u t p u t ;

ods g r a p h i c s on / imagename =" i n t e r p 1 " ;

ods h tml f i l e ="&MyPath . \ Outpu t . htm " g p a t h ="&MyPath . \ F i g u r e s " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . i n t e r p 1 . t e x " ( no top

nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s " ;

************** Graphing p r o c e d u r e t o g raph above ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _ marketCap _ Ft _TIME ;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ The p r o b a b i l i t y o f a d e f a u l t a t

t ime T=50 ,100 ,150 and 200 f o r d i f f i r e n t marke t CAPs ’ ;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y ;
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s e r i e s p l o t x=_ marketCap y=_ Ft / group =_TIME name= ’

s e r i e s ’ c l u s t e r w i d t h =0 .85 c o n n e c t o r d e r = x a x i s

g r o u p o r d e r = d a t a ;

d i s c r e t e l e g e n d ’ s e r i e s ’ / opaque= f a l s e b o r d e r = t r u e

h a l i g n = r i g h t v a l i g n = t o p d i s p l a y c l i p p e d = t r u e a c r o s s

=1 o r d e r =rowmajor l o c a t i o n = i n s i d e ;

e n d l a y o u t ;

e n d l a y o u t ;

endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . INTERPGRAPH t e m p l a t e = s g d e s i g n ;

dynamic _ marketCap =" marketCap " _ Ft =" F t " _TIME="TIME " ;

run ;

************End g r a p h i n g p r o c e d u r e ;

p roc iml ;

* Im po r t t h e r e l i a b i l i t y p a r a m e t e r s f o r t h e l i n k f u n c t i o n ;

use d i s s n . F in _ r e l i a _99_ graphMest ;

r e a d a l l i n t o xy [ colname=names ] ;

c l o s e d i s s n . F in _ r e l i a _99_ graphMest ;

B0=xy [ 1 , 1 ] ;

B1=xy [ 2 , 1 ] ;

t ime =50;

* E v a l u a t e f o r a f i x e d t ime , how p r o b a b i l i t y o f f a i l u r e changes

wi th marke t CAP;

do r =1 t o 4 ;

T= t ime # r ;

* For s m a l l e r marke t CAP v a l u e s ;
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do j =0 .01 t o 0 . 1 by 0 . 0 1 ;

k= j *10** 9 ;

v a l =1−exp(−T / ( exp ( B0+B1# l o g ( k ) ) ) ) ;

dataM=dataM / / ( T | | k | | v a l ) ;

end ;

end ;

c r e a t e d i s s n . I n t e r p G r a p h 2 from DataM [ colname ={ ’ t ime ’ , ’

marketCap ’ , ’ F t ’ } ] ;

append from DataM ;

q u i t ;

* For LaTex o u t p u t ;

ods g r a p h i c s on / imagename =" i n t e r p 2 " ;

ods h tml f i l e ="&MyPath . \ Outpu t . htm " g p a t h ="&MyPath . \ F i g u r e s " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . i n t e r p 2 . t e x " ( no top

nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s " ;

************** Graphing p r o c e d u r e t o g raph above ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _ marketCap _ Ft _TIME ;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ The p r o b a b i l i t y o f a d e f a u l t a t

t ime T=50 ,100 ,150 and 200 f o r d i f f i r e n t marke t CAPS ’ ;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;
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l a y o u t o v e r l a y ;

s e r i e s p l o t x=_ marketCap y=_ Ft / group =_TIME name= ’

s e r i e s ’ c o n n e c t o r d e r = x a x i s ;

d i s c r e t e l e g e n d ’ s e r i e s ’ / opaque= f a l s e b o r d e r = t r u e

h a l i g n = r i g h t v a l i g n = t o p d i s p l a y c l i p p e d = t r u e a c r o s s

=1 o r d e r =rowmajor l o c a t i o n = i n s i d e ;

e n d l a y o u t ;

e n d l a y o u t ;

endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . INTERPGRAPH2 t e m p l a t e = s g d e s i g n ;

dynamic _ marketCap =" marketCap " _ Ft =" F t " _TIME="TIME " ;

run ;

************End g r a p h i n g p r o c e d u r e ;

p roc iml ;

* Im po r t t h e r e l i a b i l i t y p a r a m e t e r s f o r t h e l i n k f u n c t i o n ;

use d i s s n . F in _ r e l i a _99_ graphMest ;

r e a d a l l i n t o xy [ colname=names ] ;

c l o s e d i s s n . F in _ r e l i a _99_ graphMest ;

B0=xy [ 1 , 1 ] ;

B1=xy [ 2 , 1 ] ;

marketC =0 .1 *10** 9 ;

* E v a l u a t e how p r o b a b i l i t y o f f a i l u r e changes ove r t ime f o r a

f i x e d marke t CAP v a l u e ;

do j =10 t o 1000 by 1 ;

v a l =1−exp(− j / ( exp ( B0+B1# l o g ( marketC ) ) ) ) ;

dataM=dataM / / ( j | | marketC | | v a l ) ;
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end ;

c r e a t e d i s s n . I n t e r p G r a p h 3 from DataM [ colname ={ ’ t ime ’ , ’

marketCap ’ , ’ F t ’ } ] ;

append from DataM ;

q u i t ;

* For LaTex o u t p u t ;

ods g r a p h i c s on / imagename =" i n t e r p 3 " ;

ods h tml f i l e ="&MyPath . \ Outpu t . htm " g p a t h ="&MyPath . \ F i g u r e s " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . i n t e r p 3 . t e x " ( no top

nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s " ;

************** Graphing p r o c e d u r e t o g raph above ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _TIME _FT _MARKETCAP;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ The p r o b a b i l i t y o f f a i l u r e w i t h i n

t ime f o r a company of s p e c i f i c marke t CAP ’ ;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y ;

s e r i e s p l o t x=_TIME y=_FT / group =_MARKETCAP name= ’

s e r i e s ’ c o n n e c t o r d e r = x a x i s ;

d i s c r e t e l e g e n d ’ s e r i e s ’ / opaque= f a l s e b o r d e r = t r u e

h a l i g n = r i g h t v a l i g n = t o p d i s p l a y c l i p p e d = t r u e a c r o s s
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=1 o r d e r =rowmajor l o c a t i o n = i n s i d e ;

e n d l a y o u t ;

e n d l a y o u t ;

endgraph ;

end ;

run ;

p roc s g r e n d e r d a t a =DISSN . INTERPGRAPH3 t e m p l a t e = s g d e s i g n ;

dynamic _TIME="TIME" _FT="FT" _MARKETCAP="MARKETCAP" ;

run ;

************End g r a p h i n g p r o c e d u r e ;

p roc iml ;

* Im po r t t h e r e l i a b i l i t y p a r a m e t e r s f o r t h e l i n k f u n c t i o n ;

use d i s s n . F in _ r e l i a _99_ graphMest ;

r e a d a l l i n t o xy [ colname=names ] ;

c l o s e d i s s n . F in _ r e l i a _99_ graphMest ;

B0=xy [ 1 , 1 ] ;

B1=xy [ 2 , 1 ] ;

marketC =0.01 *10** 9 ; * s m a l l e r marke t CAP v a l u e

* E v a l u a t e how p r o b a b i l i t y o f f a i l u r e changes ove r t ime f o r a

f i x e d marke t CAP v a l u e ;

do j =10 t o 1000 by 1 ;

v a l =1−exp(− j / ( exp ( B0+B1# l o g ( marketC ) ) ) ) ;

dataM=dataM / / ( j | | marketC | | v a l ) ;

end ;

c r e a t e d i s s n . I n t e r p G r a p h 4 from DataM [ colname ={ ’ t ime ’ , ’

marketCap ’ , ’ F t ’ } ] ;

append from DataM ;
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q u i t ;

* For LaTex o u t p u t ;

ods g r a p h i c s on / imagename =" i n t e r p 4 " ;

ods h tml f i l e ="&MyPath . \ Outpu t . htm " g p a t h ="&MyPath . \ F i g u r e s " ;

ods t a g s e t s . t a b l e s o n l y l a t e x f i l e ="&MyPath . i n t e r p 4 . t e x " ( no top

nobo t )

n e w f i l e = t a b l e s t y l e s h e e t =" s a s . s t y " ( u r l =" s a s " ) g p a t h ="&MyPath . \

F i g u r e s " ;

************** Graphing p r o c e d u r e t o g raph above ;

**************Code e x p o r t e d form ODS G r a p h i c s d e s i g n e r ;

p roc t e m p l a t e ;

d e f i n e s t a t g r a p h s g d e s i g n ;

dynamic _TIME _FT _MARKETCAP;

b e g i n g r a p h ;

e n t r y t i t l e h a l i g n = c e n t e r ’ The p r o b a b i l i t y o f f a i l u r e w i t h i n

t ime f o r a company of s p e c i f i c marke t CAP ’ ;

l a y o u t l a t t i c e / r o w d a t a r a n g e = d a t a c o l u m n d a t a r a n g e = d a t a

r o w g u t t e r =10 c o l u m n g u t t e r =10;

l a y o u t o v e r l a y ;

s e r i e s p l o t x=_TIME y=_FT / group =_MARKETCAP name= ’

s e r i e s ’ c o n n e c t o r d e r = x a x i s ;

d i s c r e t e l e g e n d ’ s e r i e s ’ / opaque= f a l s e b o r d e r = t r u e

h a l i g n = r i g h t v a l i g n = t o p d i s p l a y c l i p p e d = t r u e a c r o s s

=1 o r d e r =rowmajor l o c a t i o n = i n s i d e ;

e n d l a y o u t ;

e n d l a y o u t ;

endgraph ;

end ;
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run ;

p roc s g r e n d e r d a t a =DISSN . INTERPGRAPH4 t e m p l a t e = s g d e s i g n ;

dynamic _TIME="TIME" _FT="FT" _MARKETCAP="MARKETCAP" ;

run ;

************End g r a p h i n g p r o c e d u r e ;
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Appendix C

Acronyms

Provide a short introduction to the appendix here. Mention that acronyms are listed alphabeti-

cally and typeset in bold, with the meaning of the acronym alongside. Also note that you must

include acronyms using useacronym for them to show up here. If there are no acronyms

defined in your text, this introduction will also not be displayed:

ABT Accelerated binary test

ADDT Accelerated destructive degradation test

ALT Accelerated life test

ARMDT accelerated repeated measures degradation test

AT accelerated test

CAP capitalization

CDF cumulative density function

EM Expectation-Maximization

IID independent and identically distributed

LS Least Squares

MFFT Mean time to failure
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ML Maximum Likelihood

PDF probability density function

rv random variable

VaR Value at Risk

WLS Weighted Least Squares
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Appendix D

Derived publications

The following publication is derived from this dissertation:

• A. Oppel, M.T. Loots, F.J.C. Beyers. “Parallel consideration of low probability events in

stock markets and one-shot device testing.” Scandinavian Actuarial Journal (In prepa-

ration).
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