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Summary

In this thesis, the Order Completion Method for nonlinear partial differential equation, in
the setting of convergence spaces, is interpreted in terms of the algebraic theory of gen-
eralised functions. In particular, certain spaces of generalised functions that are involved
in the construction of generalised solutions for nonlinear partial differential equations
through the Order Completion Method are identified with a differential chain of algebras
of generalise functions. By so doing, the generalised solutions for smooth nonlinear partial
differential equation obtained through Order Completion Method are interpreted as chain
generalised solutions. Moreover, the mentioned differential chain is shown to be related to
the Rosinger’s chain of nowhere dense algebras of generalised functions. This leads to an
interpretation of the existence result for the solution of smooth nonlinear partial differ-
ential equations obtained through the order completion method in the chain of nowhere
dense algebras.

Using techniques introduced by Verneave, we construct a chain of almost everywhere
algebras of generalised functions and show how the chain of algebras of generalised func-
tions associated with the order completion method is related to this chain of almost
everywhere algebras of generalised functions. We also discuss the embedding of the dis-
tributions into the chain of almost everywhere algebras of generalised functions. We
further show that the generalised solutions of nonlinear partial differential equations ob-
tained through the order completion method corresponds to a chain generalised solution
in the chain of nowhere dense algebras of generalized functions.

Finally, using the theory of chains of algebras of generalized functions, we construct
algebras of generalised functions that can handle certain types of singularities occurring
on sets of first Baire category, so called, space-time foam algebras.
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Preface

Ever since Newton and, independently, Leibnitz introduced the differential and integral
calculus, ordinary differential equations (ODEs) and partial differential (PDEs) have been
one of the central tools by which the laws o nature are given exact mathematical formula-
tion. While, initially, the equations used were mostly linear and of second order, general
nonlinear equations have become increasingly important with the emergence of sophisti-
cated scientific theorems of technologies, particularly in the second half of the twentieth
century.

For more than one hundred and fifty years from now there has been a general and
type independent existence result for solution of nonlinear PDEs, namely, the Cauchy -
Kovalevskaia Theorem [30, 50]. While the Cauchy - Kovalevskaia Theorem is completely
type independent it suffers from two major deficiencies. Firstly, it is restricted to the class
of analytic PDEs, with analytic initial data specified on a non characteristic analytic
hyperplane. Secondly, the solutions obtained through the theorem are local in nature.
That is, the solution may fail to exist on the entire domain of definition of the respective
PDE. Recall [1, 33, 71] that the initial value problem

Uy + uu, =0
u(z,0) =up(x), ze€R

does not admit a classical solution in R x [0, 4+00) whenever, uy(z) < 0 at even a single
x e R.

The local nature of classical solutions of PDEs, in general, has lead to the interest
in global nonclassical solutions of partial differential equations. Such solutions, usually
referred to as generalized solutions, are obtained as elements of suitable spaces of gen-
eralized functions, that is, objects which retain certain essential features of the usual
real or complex valued functions. Initial attempts at the exact formulation of the con-
cepts of generalized function and generalized solutions of PDEs, culminated in the work
of Schwartz [57], where the space D’(Q2) of distributions is introduced, we mention the
Ehrenpreis-Malgrange Theorem [21, 38] which states that any nonzero, constant coeffi-
cient differential operator

P(D)= ) C.D"

admits a solution of
P(D) =9

in D'(R™), where 6 € D'(R") is the dirac distribution. As a consequence of this result,

the equation
P =f
© University of Pretoria
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is solvable in D’(R") for any f € D’(R"). It is therefore clear that the theory of distribution
is highly clear in the context of linear constant coefficient PDEs.

In spite of the power of D'(Q2) - distributions in the context of linear, constant co-
efficient PDEs, the theory of distributions suffers from two major deficiencies. Firstly,
D'(€2) does not admit solutions of linear variable coefficient PDEs, even in the case where
the coefficients are smooth, [26, 34]. Secondly, the pointwise multiplication of smooth
functions cannot be extended to D’(Q2) is a reasonable way so that D’'(€2) becomes and
algebra, [51]. Thus the concept of solution of a generalised, nonlinear PDE cannot be
formulated in terms of the D’ - distributions alone.

In view of the mentioned limitations of the linear distribution theory of distributions,
in particular from the point of view of nonlinear PDEs, alternative, nonlinear theories
of generalized functions have been introduced, see for instance [41, 48]. In this thesis,
two such theories are investigated, namely, theory of algebras of generalized functions
[48, 51, 53, 73], focussing on so-called nowhere dense algebras, and the Order Completion
Method (OCM) [41, 68, 72]. We show that the OCM can be interpreted in terms of the
algebraic theory of generalized functions. The relationship between spaces of generalized
functions on which the OCM is based with certain nowhere dense algebras is established.
We also investigate the extent to which the mentioned nowhere dense algebra are able
to deal with singularities occurring in closed nowhere dense sets, and construct algebras
able to handle more general types of singularities.

The thesis is divided into two parts. Part I contains a concise introduction to the
general theories mentioned in the receding paragraph. The results presented here are
from the literature. It is made up of two chapters.

e Chapter one, contains a discussion on the main ideas involve in the algebraic nonlin-
ear theory of generalized functions. In particular, the general method of constructing
an algebra of generalized functions containing the distribution as a linear subspace
is discussed. In addition, we discussed the general method for constructing a chain
of algebra of generalized functions that contained the distributions.

e Chapter two contains the main ideas involve in the Order Completion Methods
as well the enrichment through convergence spaces. The structure and regularity
results for generalized solutions of partial differential equations, obtained through
the order completion method, is discussed.

Part II contains the original contribution of this work. That is, the algebraic interpreta-
tions of the spaces involved in the order Completion Method. It contains four chapters.
We briefly highlight the contents of these chapters below.

e In Chapter three we discuss the algebraic and chain structure of the spaces gener-
alized functions involved in the Order Completion Method. In particular we show
how these spaces can be represented as algebras of generalized functions forming a
differential chain of algebra of generalised functions. The existence result for gen-
eralised solutions of C*°-smooth PDEs obtained through the OCM is interpreted in
the context of chains of algebras of generalised functions.

e Chapter four deals with the nowhere dense algebras of generalised functions. We
recall the construction of Rosinger’s nowhere dense chain, Vernaeve’s almost ev-

erywhere algebras, see [49, 51 73 741 Rased on Vernaeve’s construction [73], we
© University of Pretoria
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construct a chain of almost everywhere algebras and study some of properties of
these chains. The relationship between the spaces involve in the OCM and the
nowhere dense and almost everywhere chains is established, leading to an existence
result for generalized solutions of C*°-smooth PDEs in these chains. Motivated by
the problem of constructing so-called space - time foam algebras [53, 65], we use
the nowhere dense and almost everywhere chains to construct algebras admitting
certain densely singular functions.

Concluding remarks which sets out the main results of the research work as well as
suggestions for future research in this areas are contained in Chapter five.

© University of Pretoria
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Introduction
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Chapter 1

Algebraic nonlinear theories of
generalised functions

1.1 Deficiencies of D'(1))

The linear theory of distributions, as well as certain generalization of it, has proven to
be very useful in the analysis of constant coefficient linear partial differential equations,
see for instance [26]. In this regard, we may recall [21, 38] that each linear, constant
coefficient partial differential operator

P(Dyu(x) = Y A.Du(x), x € R

laf<m
admits a fundamental solution. That is, there exists a distribution 7" € D'(R") so that
P(D)T =6,

where § € D'(R") is the Dirac delta distribution. From this it follows that for any
¢ € D(QQ), the equation
P(D)u(z) = p(z), x € Q

has a solution in D(£2).

Notwithstanding the usefulness of the D’-distribution in the analysis of linear constant
coefficient PDEs, the Schwartz distributions have some major deficiencies. One such
deficiency, referred to as the Lewy insufficiency, see [34], is the inability of the Schwartz
distribution to solve linear PDEs with nonconstant coefficient. Indeed, Hormander [26)]
showed that there exist C'"*°-smooth functions h for which the equation

Uy + iuy, — 2i(x + iy)u, = h,

has no distributional solution in any neighborhood of any point in R3.

A second and well known deficiency of the Schwartz distributions concerns the def-
inition of nonlinear operations, such as multiplication, on D'(£2). Each distribution
T € D'(Q2) can be multiplied with any C*°-smooth function u, the product w7 being
defined by

Tu:D(Q) > ¢ T(up) € R. (1.1)
© University of Pretoria
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Clearly (1.1) extends the usual multiplication of smooth functions. Indeed, for v € C*(2),
the product of the distribution 7;, associated with v through

TU:D(Q)BQDr—)/gpvdeR
Q
and a C*-smooth function u, as given by (1.1), is given by

uTy(p) = Ty(up) = / ouvdr = Ty ().
Q
It is not possible to extend the multiplication (1.1) to all of D'(€2) in such a way that
D'(Q), together with the usual vector space operations, is an algebra, see [50, 51]. In this
regard, Schwartz [58], see also [51], proved a version of the following result.

Theorem 1.1. Let A be an associative algebra so that C(R) C A, and uv is the usual
product of functions for each u,v € C(R). If D : A — A is a differential operator,
that is, D 1is linear and satisfies Leibnitz rule for derivatives of products of functions, so
that D restricted to C*(R) C A is the usual differentiation operation, then there is no
0€ A0 #£0, such that x6 = 0.

Theorem 1.1 is often interpreted in the following way. If § € D'(R) is the Dirac delta
distribution, then in view of (1.1), for any u € C*°(R) we have

(ud)(p) = d(up) = u(0)p, ¥ € D(Q).
Therefore, if € C*°(R) is the identity function on R, then
(#0)p = d(xp) = 0, ¢ € D(Q).

Hence, xd is the additive identity in D'(R). Therefore, if D'(Q2) were an algebra with
multiplication extending the usual pointwise product of smooth functions, then it follows
from Theorem 1.1 that 6 = 0, which is not the case. Therefore there cannot be reasonable
concept of multiplication on D'(€2).

In view of the above mentioned Lewy insufficiency and Schwartz impossibility re-
sults, it is a common belief that there is no general and convenient nonlinear theory of
generalized function. In particular, it is widely believed that there is no general and
type independent theory for generalized solutions of nonlinear PDEs. As a result, var-
ious ad hoc methods and techniques have been developed which are applicable only to
the particular types of nonlinear PDEs they were developed to handle, see for instance
[10, 44, 59, 61]. However in the late 1960s an alternative approach to dealing with the
Schwartz impossibility problem was introduced. This approach, summarized in the slogan
"algebra first’, is to construct suitable algebras of generalized functions that contain the
D'(Q2)-distributions as a linear subspace. The main ideas involved in this approach is the
subject of the remainder of this chapter.

1.2 Vector spaces of generalised functions

Generalized solutions to linear PDEs are typically constructed as elements of the com-

pletion of a suitably chosen locallv convex aoften metrizable, topological vector space.
© University of Pretoria
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Indeed, the Sobolev space W™P(Q)) as well as the space D'(Q2) of distributions may be
constructed as the completion of C*°(Q2) with respect to a suitable locally convex topology.
In this section, as a motivation for the construction of algebras of generalised functions
presented in Section 1.3, we recall briefly the abstract construction of the completion of
a metrizable topological vector space.
Let X be a metrizable, locally convex topological vector space. Consider the set

XN:{u:(un) V neN : }

U, € X
of sequences in X. With the usual termwise operations on sequences of function, the set
XN is in a natural way vector space. Let S be the set of all Cauchy sequences in X and let
V be the set of all sequences converging to zero in X'. Clearly S and V are linear subspaces
of XN, and V C S. The completion X* of X may the constructed as the quotient vector
space

(1.2)

Xt =8/V, (1.3)

equipped with a suitable metrizable, locally convex topology. Furthermore, one has a
vector space embedding

XCcX'=8/T (1.4)
which is defined by the linear injective mapping
v X Suriy(u) = (u)+V e X¥, (1.5)
where (u) € S is the constant sequence (u) = (u,) = (u, -+ ,u---).
The existence of the linear injection (1.4) - (1.5) depends on the neutriz condition
UrnCS, VNUrn =0, (1.6)

see [51]. Here

Urn(Q) = {(un) cal

1 ved :
Up =0, n€eN [’

and

O ={(0)}

is the null vector subspace in XN, The condition (1.6) is satisfied since the topology on
X is Hausdorff.
The inclusion Uy ny C S gives rise to a linear surjection

A:X>ur (u) €Uy,
while the condition V NUy n = O implies that the canonical quotient map
@ S3u—u+Ve X
is injective, when restricted to Ux n. Therefore
byt X D u qyoAu) € XF

defines a linear injection. o ]
© University of Pretoria
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1.3 Differential algebras of generalised functions

We now proceed to present the main points involved in the construction of algebras
of generalised functions, see for instance [49, 50, 51] for details. The construction is
essentially a variation of the construction of the completion of a metrizable topological
vector space outlined in Section 1.2.

Consider the Cartesian product

C¥(Q) = {u _ (un)ren (1.7)

vV AeA
U)\GCOO(Q) ’

where A is some infinite index set. Since the space C*(2) of infinitely differentiable
functions on €2 is a unital and commutative algebra with respect to the usual point-
wise operations on functions, so is space C*(€Q)*, when considered with componentwise
operations.

Let S be a subalgebra of C*(2)* and Z an ideal in S. The quotient algebra

AQ) =S/ (1.8)

can, to some extent, be interpreted as an algebra of generalized functions. The algebras
constructed in (1.8) are further particularised by introducing the following natural re-
quirements. Firstly, we require that the space C*°(Q2) is embedded as a subalgebra into
A(£2). Furthermore, the partial differential operators DP : C*°(2) — C>°(2), should be
extendable to A(€2) in a canonical way.

Concerning the first of these requirements, we note that

AT C®(Q) 3 u— AP (u) € C(Q)A, (1.9)
where AP (u)y = u for each A € A, defines a natural injective algebra homomorphism.
Let

3 velC>®(Q):
Z/{Xo: u:(u,\))\el\ vV AeA

Uy =70
Then the mapping A maps C*(2) bijectively onto U°. It is clear that
oo :C(Y) 2ur— AT(u) +Z € A(Q) (1.10)

defines an injective algebra homomorphism, provided only that the subalgebra S of
C>(Q)* and the ideal Z in S satisfy the neutrix condition

UD(Q) TS, UTPQ)NT =0, (1.11)

where O denotes null ideal in C*°(2)*. The neutrix condition (1.11) determines to a good
extent the structure of ideals Z which play a crucial role in the stability, generality and
exactness properties of algebras of generalized functions, see [51, Chapters 1, 3 and 6.

Let us now consider the second requirement, namely, the extension of the partial
differential operators

D?:C*®(Q) - C>®(Q), peN" (1.12)
© University of Pretoria
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Differential algebras of generalised functions 6

to the algebras of generalised functions constructed in (1.8). In this regard, we note that
each such partial differential operator extends to a linear mapping

DP : C®(Q)™ 3 (uy) — (DPuy) € C°(Q)*, pe N

An algebra (1.8) is called a differential algebra of generalize functions on §2 provided that
the differential operators DP, p € N™ on C*®(Q2) extend in a canonical way to linear
mappings

DP: A(Q) — A(Q)
that satisfy the Leibnitz rule

p _
Dr = DP9y D1 1.13
(uv) Z ( ¢ ) uD% (1.13)
a<p
for all u,v € A(Q).
For an algebra A(£2) given in (1.8), such an extension is possible whenever the subal-
gebra & and the ideal Z satisfy

DP(S)CS and DP(I)CZ, peN" (1.14)
In this case, we define the mappings DP : A(Q2) — A(Q) as
D?: A(Q) 2 (uy) + Z — (DPuy) + T € A(Q). (1.15)

If in addition to (1.14), the algebra S and ideal Z also satisfy (1.11) then the mappings
(1.15) are extensions of the usual partial differential operators acting on C*(f2), in the
sense that the diagram

A() D - A(Q)

A y

(1.16)

C>(9) - C(Q)

commutes for all p € N™.

As mentioned, differential algebras of generalized functions may provide a setting for
the multiplication of distributions. In this context, multiplications of distributions is
realized through a linear injection

E:D(Q)>Tw E(T) € AQ). (1.17)

Although the product ST of given distributions S and T may not be defined as a dis-
tribution, due to the Schwartz impossibility result, the product may be formed in any
differential algebra of generalized functions A(2) that admits an embedding (1.17). In

particular, the product ST of distributions S and 7" may be defined as the product of

E(S) and E(T) in A(Q). o )
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Embedding D'(?) into differential algebras 7

1.4 Embedding D'(2) into differential algebras

In this section we discuss briefly the details of the embedding (1.17) of distributions into
a differential algebra of generalized functions. Recall [49, 51, 63] that there exists a vector
space

Ve e ()t (1.18)
and a linear surjection
L:VE>s = L(s)=T e D'(Q) (1.19)
such that
Uy C vy (1.20)

with (1.19) an extension of the mapping
U D (up)y = (u) — T, € D'(Q) (1.21)
where the distribution 7, is defined as
T, D) 5 ¢ /Qu(x)w(ac)dm ER. (1.22)
If we denote by
Wi? (1.23)
the kernel of the mapping (1.19),
g VR /WL 2 u+ W — T e D'(Q) (1.24)

is a vector space isomorphism. In this case, the pair (V{°, L) is a representation of the
vector space D'(£2) of distributions on .
If, in addition, the vector subspaces Vi and W5° are such that

DPOVY) C VY, DPONVY) CWR, pe N” (1.25)
and
DP(L(u)) = L(DP(u), uweVy, peN" (1.26)
then the mappings
D'(Q) 3> u+ W — DPu+ W e D'(Q), pe N (1.27)

coincide with the distributional partial derivatives.

Definition 1.2. The pair (V3°, L) is called a C™-smooth representation of distribution if
(1.20) - (1.21) are satisfied. (V3°, L) is called a differentiable C*°-smooth representation

of distribution if, in addition, the condition (1 26) holds.
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Embedding D'(?) into differential algebras 8

The following theorem gives a sufficient condition for embedding of distribution into
an algebra of generalized functions.

Theorem 1.3. [51]Let S be a subalgebra in C°(Q)A and T an ideal in S such that the
neutriz condition (1.11) is satisfied. Suppose that (V3°, L) is a C™-smooth representation
of D'(Q), and V, W C C>®(Q)* are vector subspaces such that the diagram

C
" S - O®(Q)A
< c
W < %
(1.28)
C C
C v
Wi - VK
commutes. If
INVY=W=WgrnVy (1.29)
and
W +V =V, (1.30)
then
D(Q)3s+WL—s+WeV/Ws3s+W—s+ZeAQ) (1.31)

is a linear injection. If U C V), then the mapping E is an embedding of differential
algebras, when restricted to C=()) C D'(Q).

Remark 1.4. We note the following regarding Theorem 1.3.

1. In (1.31), the mapping V/W 3 s + W — s+ Wy € D'(Q) is an isomorphism of
vector spaces, while V/W 3 s+ W — s+ 7 € A(QQ) is a linear injection. Therefore
(1.31) does indeed define a linear injection D'(Q2) — A(£2).

2. It is important to note that the structure of the commutative diagram (1.28) is
not only sufficient for the existence of the embedding (1.17) but also necessary in
the following sense. Suppose A(Q2) = S/Z is an algebra of generalized functions,
with § and Z satisfying the neutrix condition (1.11), and (V{°, £) is a C*°-smooth
representation of D’'(£2). Assume that D'(Q2) C A(Q) in the sense that the diagram

Vovr——— v+ WL eD(Q)

(1.32)

v+T e A(Q)
© University of Pretoria
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commutes for some vector space
VCSnvy.

By setting W =Z NV, we obtain the commutative diagram (1.28).

In view of Theorem 1.3, and in particular the necessary and sufficient structure of

the commutative diagram (1.28), the following definitions are introduced, see for instance
[51].

Definition 1.5. Let (V3°, L) be a C®-smooth representation of the distributions. Then
(S,Z,V, W) is called a regularisation of (V3°, L) if the following conditions are satisfied.

1. 8 is a subalgebra of C*()A and T is an ideal in S that satisfy the neutriz condition
(1.11).

2. W CVCC®Q)N are vector spaces such that W =TINY = WNV and WP +V =
V.

If, in addition, we have UL C V), then (S,Z,V, W) is called C*°-smooth regular.

Definition 1.6. An ideal T in a subalgebra S of C*(Q)" is called regular if there exists a
C>-smooth representation (V°, L) of D'(2) and vector spaces W C V C C=(Q)* so that
(S,Z,V, W) is a regularisation of (V3°, L). If, in addition (V3°, L) is C*-smooth regular,
then T s called C*°-smooth reqular.

As mentioned, see also [51], the neutrix condition (1.11) determines, to a good extent,
the structure of ideals Z related to the stability, generality and exactness properties of
algebras of generalized functions. In particular, (1.11) characterizes the regular ideals,
among all cofinal invariant ideals in Z in C*>°(Q)N.

Definition 1.7. [49, page 81] An ideal T in C=(Q)N is cofinal invariant if, for all w €
C>=(Q)N we have

J weZ peN
V veNv>pu: — w el
w, = w,

A characterization of C'*°- regular ideals is given in the following
Theorem 1.8. A cofinal ideal T in C°(Q)N is C*®-regular if and only if T NUF = O

A large class of regular ideals is given by the so-called vanishing ideals, see for instance
[51, Section 6.1]

Definition 1.9. An ideal Z in C*°(Q)N is vanishing if

V u=(uy) €Z, peN :
dveN v>pu zeQ
u,(x) = 0.

Theorem 1.10. Every vanishina ideal in C(OWN is reqular.
© University of Pretoria
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Embedding D'(?) into differential algebras 10

Combining Theorems 1.8 and 1.10, we have the following.

Theorem 1.11. Every cofinal invariant, vanishing ideal in C*(Q)N is off-diagonal, hence
C>-smooth regqular.

According to [51, Proposition 2, p 238], an ideal in C*(Q)Y is vanishing if and only
if it is a proper ideal. Therefore every proper ideal in C*°(Q)N is C*°-smooth regular.
Consequently, there is a lot of freedom in terms of the way in which the distributions
can be embedded into differential algebras of generalised functions. However, it should
be noted that the linear embedding

E:D(Q) — AQ)

of distribution into a differential algebra A(£2) will in general not preserve the differential
structure of D’(Q2). That is, it may happen that for some T' € D’(Q2) the identity

DP(E(T)) = E(D?(T)), p€N" (1.33)

does not hold, where the derivative on the left of (1.33) is taken in the algebra A(€2), while
that on the right of (1.33) is the distributional derivative. This is the case even if the
C>°-smooth representation (Vg°, £) is differentiable. Furthermore, different embeddings
of D'(€2) into an algebra A(Q2) may not determine the same differential structure on D'(€2).
A sufficient condition for the identity (1.33) to hold is given in the following, see [51, |.

Theorem 1.12. Let (S,Z,V, W) be a C*°-smooth reqular reqularisation of a differentiable
representation (V3°, L) of the distributions. If S and T satisfy (1.14), and

DPV)cV, DPW) W, peN,

then DPE(T) = E(DPT) for all T € D'(Q2) and p € N, where E : D'(Q) — S/T is the
linear injection given by Theorem 1.3.

As mentioned, there is a lot of freedom in the way in which distributions may be
embedded into differential algebras of generalised functions. However, there is an essential
limitation on such embeddings. Indeed, an embedding of D'(Q2) into a differential algebra
cannot, at the same time, preserve both the algebraic structure of C(€2) and the differential
structure of D’(2). This limitation is due to a basic conflict between the trio of insufficient
smoothness, multiplication and differentiability, see [51]. The basic result in this regard
is given in the following

Theorem 1.13. Let A(Q2) = S/Z be a differential algebra, and
E:D(Q) — AQ)

a linear injection. Then one of the following holds
(@) 3 TeD(Q),peN"
DP(E(T)) # E(DPT)
(b) 3 w,veC(Q)
E(uv) # E(u)E(v)

One way in which this limitation can be overcome is through the use of chains of
algebras of generalised functions, see for instance [51, Chapter 6]. In the next section, we

recall briefly the main points regardine snch chains
© University of Pretoria
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1.5 Chains of algebras of generalised functions

As mentioned in Section 1.4, in particular Theorem 1.3, it is possible to construct an
algebra of generalised functions A(Q2) = S§/Z such that the diagram

C=(Q)—S—~ D'(Q)
E (1.34)
A()

commutes, with £ : D'(Q) — A(2) a linear injection, and £, the canonical injective
algebra homomorphism (1.10). In particular, this is the case when the ideal Z is C*°-
smooth regular. However, Theorem 1.13 shows that it is not possible to construct a
differential algebra A(2) admitting a linear embedding

E:D(Q) — AQ)

which is an algebra homomorphism when restricted to C°(2) € D'(Q) and preserves
distributional derivatives.

More generally, as will be explained at the end of this section, it is not possible to
construct a differential algebra A4(€2) admitting a linear embedding

E:D(Q) — AQ)
and the algebra homomorphism
Gm = C™()) — A(Q)
so that the diagrams
Dr

A(©) - A©)
E E (1.35)
D()—— - D(9)

and

G E (1.36)

© University of Pretoria
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commute.

In order to overcome the mentioned limitation of the embedding of D'(Q2) into a
differential algebra A(€2), the concept of a chain of algebras of generalized functions were
introduced, see [49, 50, 51].

Definition 1.14. Forl € N = NU {oo}, let A(Q) be a commutative and unital algebra.
Assume that, for all k,l € N such that k <1, there exists an algebra homomorphism

A AQ) = AF(Q).

Assume that for 1 > 0 and p € N", with |p| <l and |p| + k < [, there exists a linear
differential operator

DP - AHQ) — AR (Q)
that satisfies the Leibnitz rule

DP(uv) =Y ( 5 ) D~y D%y (1.37)

a<p
where DP, D1, DP~% : AH(Q) — A*(Q). If the diagram

o
AL(Q) ~AM(Q)

o7 AR

(1.38)
AM(Q)

commutes for all h, k,l € N such that h < k <1, then A = {(A(Q), A*(Q),7}) : k,l €
N, k < I} is called a chain of algebras of generalised functions. If, in addition, the
diagram

DP

A () AP ()
L v,l;'ﬂ (1.39)
A(Q) D’ - AP Q)

commutes for all 1 >k >0 and p € N* Inl <k e call the chain A differential.
© University of Pretoria
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In this section we outline how such chains of algebras of generalised functions may
be constructed. We give two possible ways in which such chains may be constructed, in
particular chains that contain the distributions.

1.5.1 First method for constructing chains of algebras of gener-
alised functions
The first is a simple extension of the construction of differential algebras of generalised

functions presented in_Section 1.2.
Suppose given [ € N = NU {oo}. Let A be an infinite index set, and let

cl)" = {U = (ux)ren (1.40)

V MeA :
U)\ECZ<Q).

Since the space C'(Q) of I-times continuously differentiable functions on € is a commuta-
tive algebra with unit element, with respect to the usual pointwise operations on functions,
the set C/(Q)" is also a commutative algebra with unit element, when considered with
the termwise operations on sequences of functions. For a subalgebra S of C!(2)*, and a
proper ideal Z! in S, the quotient algebra

A(Q) = S'/T! (1.41)

is a unital and commutative algebra. In view of the construction of differential algebras
of generalised functions discussed in Section 1.2, we call the algebra A'(Q)) an algebra of
generalized functions on €.

If for k£ <[, the inclusions

Stcsk 1'c Tt (1.42)
hold, then
o AQ) s u+ T u+TF € AMQ) (1.43)

defines an algebra homomorphism. Clearly, in this case the diagram (1.38) commutes for
h<k<I.
Suppose further that, for [ > 0 and p € N” with |p| <[ and k < |p| <[ we have

Dr(Sh Cc 8%, Dr(Th) C TF. (1.44)

Then
DP: ANQ) s u+ T DP(u) + I8 € A%(Q)

defines a linear differential operator that satisfies the Leibnitz rule (1.37). For k¥ <[ and
p € N™ such that |p| < k, the diagram (1.39) commutes. Hence we have the following.

Theorem 1.15. For each | € N, let S' be a subalgebra of C(Q)* and 7' an ideal in S'.
If (1.42) and (1.44) are satisfied, then A = {(AY(Q), A*(Q),7}) : k,leN, k<I}, with
A(Q) = SY/T' and ~% defined by (1.43), is a differential chain of algebras of generalised

functions. . . .
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Remark 1.16. A more general construction of a chain of algebras of generalised functions
is the following. Suppose given a subalgebra &' of C/(Q)* and an ideal Z! in &', for [ € N.
Assume that

al St S* (1.45)
is an algebra homomorphism, for k£ <[, such that
al(Th € 1", (1.46)
then
A ANQ) S u+ T ol (u) + I8 € AF(Q)

defines an algebra homomorphism, where A (Q) = S'/Z'. If, in addition to (1.46), we

have

U kol
Qy, = Qg 0y,

whenever h < k <, then
M=oY h<k<I

so that the diagram (1.38) commutes. If the inclusions (1.44) holds, then
A = {(AQ), A*(Q),1L) : kleN, k<I}
is a chain of algebras of generalised functions. If, in addition, the diagram

DP

Sk > Sk*m
! I—I|pl
Y Qk—|p|
4
N D Si=Irl

commutes for all k,] € N with & <1 and p € N*, |p| < k, then the chain
A = {(A(Q), A5(Q),L)  kLEN, k<)
is differential.

Let us now consider the problem of embedding the distributions into differential chains
of algebras of generalised functions given by Theorem 1.15. We therefore assume that
A(Q) = S'/T!, with S' and T' satisfying (1.42) and (1.44) for each | € N, so that
A = {(AYQ), A%(Q),4L) : k,1 € N, k <[} is a differential chain of algebras of generalised
functions. We proceed from the particular to the general, considering first the embedding
of C>(Q2) into AY(Q), for I € N. For each [ € N, let

Sl =8"nc>)?, I, =T'nce()? (1.47)
© University of Pretoria
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so that S is a subalgebra in C*°(Q)*, and Z' is an ideal in S, . Since Z!, C Z! and
Sf)o C &' it follows that

AL(Q) =8 /1! 5s+T — s+ T e A(Q) (1.48)

defines an algebra homomorphism. Furthermore, it follows from (1.47) that (1.48) is
injective. The following is therefore immediate.

Theorem 1.17. If S’ and I'_ satisfy the neutriz condition (1.11), then
C¥(Q)sur A(u) +Z, € AL(Q) 2 A(u) + I — Au) + I € A(Q)

defines an injective algebra homomorphism so that the diagram

"

A(Q) " ANQ)

C=(Q)

commutes for all k,l € N, k < 1. If, in addition, S', and T'_ satisfy (1.14) for all p € N",
then the diagram

Ay A ()

()=~ c(Q)

commutes for all | € N and p € N*, |p| < L.

We next consider the embedding of C'(2) into A'(Q2), for I € N. As can be expected,
the existence of an algebra embedding

Cl(Q) — A(Q), leN
is determined by the neutrix condition

U(Q) S, U@ NI = {0} (1.49)
© University of Pretoria
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where
3 vel(Q):
1 .
Uy =70

Theorem 1.18. Suppose that (1.49) is satisfied for each | € N. Then

C(Q) 3 ur Alu) +I' € AY(Q) (1.50)
defines an injective algebra homomorphism for each | € N. Furthermore, the diagrams
!
A (Q) = - A(Q)
— ‘<—>
cl(@) = CH(@)
and
Dr
AL(Q) g Al"’(Q)
c'(©) = ()

commutes for all I,k € N and p € N, [p| < [.

Remark 1.19. It should be noted that condition (1.49) implies that S', and Z'_ satisfy
(1.11). Moreover, in this case the diagram

C'() - AYQ)

commutes for all [ € N.

Lastly, we consider the embedding of distributions into chains of algebras of generalised
functions. The main result in this regard is a simple extension of Theorem 1.3. First we
briefly recall the following main points concerning the embedding of D’(2) into an algebra
of generalised functions.

Given any [ € N, there exists, see [49, 51], a vector subspace

Vi ccl)h (1.51)
© University of Pretoria
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and a linear surjection

L Visu=(uy) = Li(u) =T € D(Q) (1.52)

such that U} C Vi, with (1.52) an extension of the mapping
UL S (up)rer = u €CHQ) S u— T, € D(Q)

where the distribution 7T, is defined as
T, :D(2) 3¢ — / u(x)y(z)dr € R.
Q

Let WY, denote the kernel of the mapping (1.52). Then we have a vector space isomorphism
qlD,(Q) L VE/WE D (u) + Wh = T e D'(Q).
Thus we have the representation of distribution
D'(Q) = Vi/WE. (1.53)

The pair (V§, £;) will be called a C'-smooth representation of distribution if (1.51) - (1.53)
are satisfied.

Theorem 1.20. Let S be a subalgebra in CY(Q)* and I' an ideal in S' such that the
neutriz condition (1.49) is satisfied, and let (V§,L;) be a C'-smooth representation of
D'(Q). Suppose further that V', W' C CHQ)N are vector subspaces such that the diagram

- - Q)
= c
WL C W
(1.54)
C -
Wi - Vi
commutes. If, in addition, the identities
TNV =W =winV! (1.55)
and
WL+ V=V (1.56)
hold, then
D(Q)3s+ Wi s+ W eV /W s+ W s+T e A(Q) (1.57)

defines a linear injection E' : D'(Q) — AYQ) . Moreover, if U\ C V', then the mapping

E' is an algebra homomorphism, when restricted to CH(Q) C D'(Q).
© University of Pretoria
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The above theorem serves as motivation for the following definitions, see [51].

Definition 1.21. Let (V},L;) be a C'-smooth representation of D'(Q). The quadruple
(WL VL T SY) s called a regularization of (VX, L) if and only if the following hold.

(i) St is a subalgebra of C'(Q)* and I' an ideal in S so that the neutriz condition (1.49)
holds.

(ii) WV are vector subspaces of C'(Q)*.
(iii) The diagram (1.54) commutes.

(iv) "NV =W =WinV.

(v) WL+ V=V,

If, in addition to (i) to (v), the inclusion U\ C V' holds, then W', V!, T!,S") is said to be
a C'-smooth regularization of (Vi, L;).

Definition 1.22. An ideal ! in S' is reqular if and only if there exist a C'-smooth repre-
sentation (V4, L;) of D'(Q), vector subspaces W', V! C CH(Q)* such that (W', VLT S is
a reqularization. Furthermore, the ideal I is C'- smooth regular, if and only if (W', V!, T!, SY)
is a C'-smooth regularization of (V\, L;).

Next we consider the issue of consistency of the embedding of distributions in algebras
of generalised functions within a differential chain of algebras.

Theorem 1.23. Suppose that A = {(A'(Q), A¥(Q),~4) : k,1 €N, k <1} is a differential
chain of algebras of generalised functions, as given by Theorem 1.15. Assume that, for
each | € N, (V§,L;) is a C'-smooth representation of D'(R), and W', VI, T1,S") is a
reqularisation of (Vi, L;). If for each k <1 the inclusions

Vi VY, WL CWE, VTV W wk

hold, then the diagram

A(Q) " ANQ)

E! E*

D/(©)

commutes, with E* and E* given by (1.57). If each of the ideals T' is C'- smooth regular,
then E' is an algebra homomorphism, when restricted to C'(Q2) C D'(Y). If the inclusions

DP(W}) C W,l\_lp‘, DP(VIY VIl prowthy ¢ pi-lel, Drvly c yilel,
© University of Pretoria
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are satisfied for all | € N and p € N™ with |p| < I, then the diagram

DP
A(Q) - AW (Q)
E El-=lpl
D'(Q) D" - D(Q)

commutes.

1.5.2 An alternative way to construct chains of algebra contain-
ing the distributions

In this section we discuss an alternative method for constructing chains of algebra of
generalized functions containing the distributions, see [49], [50], [51].

Definition 1.24. A subset H C C®(Q) is said to be derivative invariant if DP(H) C H
for all p € N.

Clearly, H = C>(Q)" is derivative invariant.

Suppose given a derivative invariant subalgebra S of C>*(Q2)*, and a derivative invari-
ant, C*-smooth regular ideal Z in S. In this case, there exists a representation (V3°, £)
of D'(Q2) and vector spaces V, W of C*(Q)* so that (W, V,Z,S) is a C*-smooth regular-
isation of D'(Q2) = V/W5°, where Wy° is the kernel of £. For each [ € N, let

vV peN", <l
Wl:{wEW‘ %pweyy— } (1.58)
and let
S(W,V) (1.59)

denote the derivative invariant subalgebra in S generated by W' + V. Furthermore, let
(W, V) (1.60)
denote the ideal in §;(W, V) generated by W,. Lastly, we let
Vi=W aV. (1.61)

That is,
Vi=WaV={(wv) : weW, veV}

with componentwise addition and scalar multiplication. With the above notations, we

have the following, see [51, Section 6 41 )
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Theorem 1.25. If for each | € N, we set A () = S;(W,V)/L;(W, V), then the following
hold.

(i) Fork <l
A ANQ) S u+ (W, V) = u+ T,(W, V) € AF(Q)

defines an algebra homomorphism so that A = {(AL, A% L) + k1 €N, k <1} is
a differentiable chain of algebras of generalised functions.

(ii) For each | € N there exists a linear injection
E':D'(Q) = A(Q).
When restricted to C*(Q) C D'(R), the map E' is an algebra homomorphism.
(iii) For h,k,l € N, with h < k <, the diagram

v
| |
AQ) ) - AR : - AM(Q)
. . - (1.62)
oy o - D(Q)

commutes.

(iv) The differential operators DP : A(Q) — A¥(Q), with k + |p| < I, extend the usual
partial differential operators on C*>(£2).

1.5.3 Limitations of Embedding D'(2) into chains of algebra of
generalized functions

Let
A = {(A(Q), AQ), DIk N, k<)

be a differential chain of algebra of generalized functions. Based on [51, Theorem 9, pp.
68], we have the following

Theorem 1.26. Assume that for each | € N there exists a linear injection
E'D(Q) — AYQ)

so that the diagram

Al(Q) = Ak(Q)
E Ek (1.63)

D'(Q)
© University of Pretoria
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commutes. If for some | > 4, the mapping E' : D'(Q) — AYQ) is an algebra homomor-
phism when restricted to C'=1(Q) C D'(Q), then the diagram

A(Q) D* - AK(Q)
D(Q) Dr - D/(Q)

does not commutes.

Let us now return to the issue of obtaining a differential algebra A(€2), a linear injection
E : D(Q) — A(Q) and an algebra homomorphism ¢, : C™(Q) — A(f2) for some
m € N, so that the diagrams (1.35) and (1.36) commute. Setting

AQ) = AQ), E'=E, 4l =id, LLkeN, k<, (1.65)

we obtain a differential chain of algebra of generalized functions such that the diagrams
(1.63) (1.64) commutes, and for each | € N, E' restricted to C™(Q) C D'(Q) is an
algebra homomorphism. According to Theorem 1.26 this is impossible. Hence we have
the following

Corollary 1.27. If A(Q) is a differential algebra and E : D'(Q) — A(Q) is a linear
injection then one of the following holds

1. For somep e N*, T € D'(Q)

DP(E(T)) # E(D(T)).

2. For every m € N, there exists u,v € C™(§2) C D'(2) so that

1.6 Nonlinear Partial Differential Operators

We now recall the way in which nonlinear partial differential operators may be defined
on differential chains of algebras of generalised functions, see [51, Chapter 1, Sec. 13 &
Chapter 6, Sec. 5]. In this regard, let A = {(AY(Q),A(Q),7L) : k1 €N, k<I}bea
differential chain of algebras of generalised functions, given as in Theorem 1.15. That is,
AY(Q) = S'/T! where S is a subalgebra of C/(Q)* and Z! is an ideal in S’ so that (1.42)
and (1.44) are satisfied.

Consider a nonlinear PDE

Tu(x) = f(z), 2€Q (1.66)
where f € C*(£2), and the nonlinear differential operator 7" is given by

Tu(x) = F(x, ..., D’u(x),...), ©=€Q, |p|<m. (1.67)
© University of Pretoria
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Here F' : Q@ x RM — R, with M the cardinality of the set {p € N* : |p| < m}, is
C>-smooth. Clearly, the operator (1.67) defines mappings

T:CHQ) = C*Q), LkeN, k+m <L (1.68)

Applying each of the mappings in (1.68) termwise to elements of C'(Q)*, we obtain ex-
tensions

T:CHDA 3 (uy) = (Tuy) € CHQ?, LkeN, k+m<I1. (1.69)
of (1.68). Provided that the mappings (1.69) satisfy
TSHCS* LkeN, k+m<l

and
wveS, u—vel' =Tu)-Tw) eIt LkeN, k+m<I,

it follows that
T:AQ)>u+T — T(u) +I" € A¥(Q) (1.70)

is well defined. If, in addition, the neutrix condition (1.49) is satisfied, then (1.70) is an
extension of (1.68) in the sense that the diagram

T
A(Q) - Ak(Q)

A

C'() - CH(Q)
commutes for all [,k € N such that k +m < [.

Definition 1.28. A generalised function u+Z> € A>*(Q) is a chain generalised solution
of (1.66) in the chain A if

T(y=(u+Z%) =7(f +I%)
for all k,1 € N so that k +m < .

In [51, Chapter 7], chains of algebras of generalised functions, and chain generalised
solutions in such chains, are applied to the resolution of nowhere dense singularities of
weak solutions of certain polynomial nonlinear PDEs.
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Chapter 2

The order completion method

2.1 Solutions of continuous nonlinear PDEs through
order completion

In the 1994 monograph [41], Oberguggenberger and Rosinger introduced a general and
type-independent theory for the existence and basic regularity of solutions of large classes
of linear and nonlinear PDEs. Their method is based essentially on the order structure of
certain spaces of piecewise smooth functions, and the Dedekind order completion of these
spaces. This theory was subsequently dramatically enriched through the introduction
of convergence spaces, see [69, 70, 71, 72], resulting in a significant improvement of the
regularity of generalised solutions of nonlinear PDEs, as well as a clarification of the
structure of solutions obtained in [41].

In this section, we recall briefly the original results of Oberguggenberger and Rosinger
[41]. In this regard, consider a nonlinear PDE

T(x,D)u(x) = h(z),r € Q (2.1)

of order m, where 0 C R™ is an open set, h : 2 — R is continuous on (2, and the
differential operator T'(x, D) is defined through a jointly continuous function

F:OxRY R
by the expression
T(z, Dyu(x) = F(z,u(x), ..., D*u(z),...), |p| <m, (2.2)

where M is the cardinality of the set {p € N" : |[p| < m}. We assume that the mapping
F and the right hand term h satisfy the simple condition

vV xe
h(z) € int{F(x,&) : §= (gp)lp\ém € RM}-

Under this condition, the following fundamental approximation result holds, [41].

(2.3)

Theorem 2.1. Suppose that (2.3) holds. Then for all € > 0 there exists I'. C § closed
and nowhere dense and u® € C™(Q\I'.) such that

h(x) —e<Tl(r 77_\7/5(7“.\ < h(r)  x € Q\Fa
© University of Pretoria
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The Order Completion Method consists of using Theorem 2.1, interpreted in appropri-
ate function spaces, to construct generalised solutions of the PDE (2.1). This construction
is summarized below, see [6, 7, 41, 50|, for a detailed exposition.

In this regard, we consider the space C4(2) which is defined as follows: For any
m € N,

(2.4)

m . ) 3 I', C Q closed, nowhere dense :
Q) = {UQ—>R‘ we CmO\T,) }

Clearly, C™(2) € C™(Q2), m € N. Since the mapping F' that defines T'(x, D) through
(2.2) is continuous, it follows that if w € C™(Q\I',) with I', C Q closed nowhere dense,
then T'(z, D)u € C°(Q\I',). Hence the operator T'(x, D) induces a mapping

T(x, D) : C™(Q) — C2,(Q2). (2.5)
Define an equivalence relation on C?,(Q) as follows: For any u,v € C%,(2), we set

3 I' C Q closed nowhere dense :
U~ U= 1) u,ve COQ\T) (2.6)
2) u(z) =v(x), € Q\I.

The quotient space CY,(Q)/ ~ is denoted by M°(€2).
On the space C74(2) define an equivalence relation in the following way: For any
u,v € C(9Q), set

U~ v = Tu ~ To. (2.7)

The space M7 (2) is defined as the quotient space C'"(2)/ ~7 . The mapping (2.5)
induces an injective mapping

T : MIHQ) — MO(Q) (2.8)
in a canonical way, so that the diagram
\ T 0
na(§) " Cha(9)
q1 . qs (29)
T
M7 () " MO(Q)

commutes, with ¢ and ¢y canonical quotient mappings associated with the equivalence
relations (2.6) and (2.7), respectively. The mapping T is defined as follows: If U € M (2)
is the ~7 equivalence class generated by u € C74(€2), then T(U) is the ~ equivalence class
generated by Tu € C°,(Q).

On the space M°(Q), define a partial order as follows: For any H,G € M°(Q),

d heH, geG, I' C closed nowhere dense :
<G+ (1) h,g € CO(Q\D) (2.10)
(2) h<gonQ\Il.
© University of Pretoria
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On the space M7(Q2) define a partial order < through the mapping T as follows:
For any U,V € M7} (Q)
U<z Ve TU<TV in M(Q). (2.11)
With respect to the partial orders (2.10) and (2.11) on M°(Q) and M7 (), respectively,
the mapping T is an order isomorphic embedding [41]. That is, T' is injective and
vV UV eMPQ):
U<z V<TUZTV.

According to the McNeille Completion Theorem [37], see also [41, page 396 |, there exists
unique Dedekind complete partially ordered sets (M°(Q)f, <) and (M (Q)f, <), and
order isomorphic embeddings

irmp@) t M7 (Q) — MF(Q)F
and
iMO(Q) : MO(Q) — ./\/lO(Q)tt
so that the following universal property is satisfied: For every order isomorphic embedding

S MP(Q) — MO(Q)

there exists a unique order isomorphic embedding S* : MT(Q) — MO(Q) so that the
diagram

S
M(Q) - MO(Q)
ZM??(Q) lMO(Q) (212)
, S ,
M (Q)* - MO(Q)

commutes. In particular, there exists a unique order isomorphic embedding
T¢ : MP(Q)F — MO(Q),

which is an extension of the mapping T in the sense that the diagram

T
Mz () - MY(Q)
LM (9) Mo (2.13)
, T* |
7 (Q)F - MO(Q)F

© University of Pretoria
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commutes. In this way we arrive at an extension of the nonlinear PDE (2.1). Any solution
Ub € MZ(Q)* of the equation
TR = f

is interpreted as a generalized solution of (2.1).
The main existence and uniqueness result for solutions of the PDE (2.1) is stated
below, see [41, Theorem 5]

Theorem 2.2. If the PDE (2.1) satisfies the condition (2.3) then there exists a unique
solution U* € MF(Q)* of the equation

T = .

As shown in [2], this generalized solution to the PDE (2.1) may be assimilated with so
called Hausdorff continuous functions in H,;(Q2). Indeed, M%(Q)* is order isomorphic to
a subset of the space H, (£2) [4], [6]. A major deficiency of the OCM, is that the spaces
of generalized functions containing solutions of a PDE may to a large extent depend on
the particular nonlinear operator 7'(z, D). Furthermore, there is no concept of general-
ized partial derivative for generalized functions. These issues were recently resolved by
introducing suitable uniform convergence spaces, see [69, 68, 70, 72].

2.2 Structure and regularity of generalized solutions

In order to formulate the results obtained in [69, 70, 72] on the structure and regularity of
generalised solution of nonlinear PDEs obtained through the OCM, we recall the necessary
concepts from the theories of convergence spaces, order convergence on Riesz spaces and
normal semi-continuous functions.

2.2.1 Convergence spaces

In this section we discuss some of the basic concepts related to convergence spaces, uniform
convergence spaces and convergence vector spaces. For more details we refer the reader
to [11], [13], [19], [23], [31], from where the concepts discussed here are taken.

Convergence spaces

A convergence space is a set together with a designated collection of filters. Recall that
a filter F on a set X is a nonempty collection of subsets of X such that

(i) the empty set does not belong to F,
(ii) for all F € F and for all G C X, if G D F, then G € F,
(iii) if F,G € F, then FNG € F.

A subset B of a filter F is a filter basis for F if each set in F contains a set in B. The filter
F is said to be generated by B. We then write F = [B]. If A C X the filter generated A

is written as [A]. That is

Al={FC X -F> A},
© University of Pretoria
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In particular for z € X, [z] is the filter generated by {x}. The filter [z] is called the
principal ultrafilter generated by x. Recall that a filter G on X is called an ultrafilter if
G ¢ F for all filters F on X. The intersection of two filters F and G on X is defined as

FNG=[{FUG:FeFGEeG

If F is a filter on X, and G is a filter on Y, then the product of the filters F and G is
a filter on X x Y which is defined as

FxG=[{FxG:FeFQGeGgG}

If filters F and G on X are such that G C F, then we say that F is finer than G, or
alternatively G is coarser than F. If F and G are filters on X, such that F NG # () for all
e Fand all G € G then

FVG={FNG:FeFGeG}

is a filter on X. If (z,,) is a sequence in X, then we define the Frechét filter associated
with (z,,) as
((zn)) = [H{zn :n > K} o k € N}

If f: X — Y is a mapping then we define the image of a filter F under f as
FF)=H{fF): FerF}l
A convergence structure on a set X is defined as follows:

Definition 2.3. Let X be a nonempty set. A convergence structure on X is the mapping
A from X to the power set of the set of all filters on X that satisfies the following for all
x e X.

(1) ] € A(x)
(i) If F,G € AN(z), then F NG € \(z).
(111) If F € N(z), then G € N(x), for all filters G O F.

The pair (X, \) is called a convergence space. Whenever F € N x) we say F converges to
x and write “F — x”.

Definition 2.4. Let A and p be two convergence structures on the same set X. Then A
is finer than w (or p is coarser than \) if for every x € X, Ax) C p(x).

Example 2.5. Let X be a topological space. For each x € X, denote by V, the set of
open neighbourhoods of x. Then

FeMz) eV, CF, z€X

defines a convergence structure on X ) )
© University of Pretoria
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Example 2.6. Let M(R) denote the set of Lebesgue measurable functions f : R —
R, with the usual convention of identifying functions that are equal everywhere except
possibly on a set of measure 0. Then

4 FECR:
FeMNf)e 1) E has measure 0
2) Flx) — f(x)inR, 2 € R\ E

defines a convergence structure on M(R), see [11]. This convergence structure is not
induced by any topology on M(R) as in Example 2.5.

As Examples 2.5 and 2.6 show, the notion of a convergence space is a generalisation
of that of a topological space. Most topological notions can be extended to convergence
spaces. In particular, recall the following, see [11].

Definition 2.7. Let X be a convergence space, and Y a subset of X. A filter F on'Y
converges to y € Y in the subspace convergence structure on'Y if

[]—‘]X:{GQXH Fe]—“:}

FCG
converges to y in X.

Definition 2.8. Let X be a convergence space. A subset Y of X is a dense subspace of
X if
a(Y):{xeX’ 34 F afilter on Y : }:X.

[]:]X — X

Definition 2.9. Let {X; : i € I} be a collection of convergence spaces. A filter F on

HXi converges to x = (x;);e; with respect to the product convergence structure if for

iel

each v € I there exists a filter F; — x; so that 1_[.7:Z C F, where H.E 1s the filter with
icl iel

basis

(1)
(2) {iel : F,# X;} is finite

-

icl

1) FEeF, icl }

Definition 2.10. A convergence space X is Hausdorff if every filter on X converges to
at most one limit.

Definition 2.11. A convergence space X is first countable if for each F — x in X there
exists a coarser filter G on X with countable basis that converges to x

Definition 2.12. Let X and Y be convergence spaces. A function f : X — Y s
continuous if for each x € X,

f(F) — f(x) in Y whenever F — z in X.
We call f an embedding if it is injective, and f~' : f(X) — X is continuous. The function

f is an isomorphism if it is a suriectine embheddina
© University of Pretoria
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Uniform Convergence Spaces

Recall [11] that a uniformity on a set X is a filter & on X x X such that the following
conditions are satisfied.

(i) A CU for each U € U.
(i) IfU e U, then U™t € U.
(iii) For each U € U there are some V' € U such that VoV C U.

Here A = {(z,x) : © € X} denotes the diagonal in X x X. If U and V are subsets of
X x X then
U™l ={(z,y) € X x X : (y,x) € U},

and the composition of subsets U and V of X x X is defined as

LMV:{@meXxXlazeX: }

(x,z) € Vand (z,y) € U

A uniformity Ux on X induces a topology on X in the following way: A set A C X is
open in X if

V z€A:
3 UEZ/{Xi
U] C A

where Ulz] = {y € X|(x,y) € U}. A filter F on X is a Cauchy filter if and only if

The uniform space X = (X,U) is called complete if every Cauchy filter on X is convergent,
in the sense of Example 2.5.

A uniform convergence space generalises the notion of a uniform space to the broader
context of convergence spaces. In order to formulate the definition of a uniform conver-
gence space, we recall the following.

If U and V are filters on X x X then U ~! is defined as

U'=[{{Uu"':Ucuyl.
IfUoV #(forall U el and V €V then the filter U o V exists and it is defined as
UV =[{UoV: :U€el,V eV}

Definition 2.13. Let X be a set. A family Jx of filters on X x X s called a uniform
convergence structure on X if the following hold:

(i) [x] x [z] € Tx for every xv € X
(i) IfU € Tx andU CV, then V € Jx

wi) IfU,Y € Jx, thenUNV e Tv .
(i) Jf X © University of Pretoria
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(iv) IfU € Jx, then U™* € Jx.
(v) IfU,V € Jx, then U oV € Jx whenever U oV exists.
The pair (X, Jx) is called a uniform convergence space.

As mentioned, uniform convergence spaces generalize the concept of a uniform space
in the sense that every uniformity Ux on X give rise to a uniform convergence structure
Juy defined through

U e qu = Ux CU.

Every uniform convergence structure Jx on X induces a convergence structure Az,

on X defined by

V ze€ X :
YV F afilter on X :
FeAr (v) <= Fx[z] € Ix

The convergence structure Ay, is called the induced convergence structure.

Definition 2.14. A unform convergence space X is Hausdorff if the induced convergence
structure on X is Hausdorff.

Definition 2.15. Let X be a uniform convergence space with uniform convergence struc-
ture Jx. A filter U on'Y XY belongs to the subspace uniform convergence structure on
Y if

Ulxxx € Tx.

The concepts of uniform continuity, Cauchy filters, completeness and completion ex-
tend to uniform convergence spaces in a natural way. In this regard let X and Y be
uniform convergence spaces. A mapping f : X — Y is uniformly continuous if

YV Ue Jx
(f x HU) € Ty.

A uniformly continuous mapping f is called a uniformly continuous embedding if it is
injective and f~! is uniformly continuous on the subspace f(X) of Y. A uniformly con-
tinuous embedding is a uniformly continuous isomorphism if it is also surjective.

A filter F on X is called a Cauchy filter if
Fx Fe jx.

In particular, a sequence (x,) in X is a Cauchy sequence if (z,) is a Cauchy filter. A
uniform convergence space X is complete if every Cauchy filter on X is convergent with
respect to the induced convergence structure. Each Hausdorff uniform convergence space
can be completed, in the following sense, see [75].

Theorem 2.16. If X is a Hausdorff uniform convergence space, then there exists a com-
plete, Hausdorff uniform convergence space X* and a uniformly continuous embedding

ivo X — XE
© University of Pretoria
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such that ix(X) is dense in X*. Moreover, the completion X* of X satisfies the universal
property: If Y is a complete Hausdorff uniform convergence space and f : X — Y is
uniformly continuous, then there exists a uniformly continuous mapping

ffoXt Yy
such that the diagram
f
X Y
i ft (2.14)
Xt

commutes.

X* is called the Wyler completion of X. This completion is unique up to uniformly
continuous isomorphism.

Convergence vector spaces

Let V' be a vector space over the scalar field K of real or complex numbers. A convergence
structure \y on V is called a vector space convergence structure if the vector space
operations

+: (V,Av) x (Vo Av) — (Vo Ay)

and

K x (V,Av) — (‘/,Av)
are continuous. In this case V is called a convergence vector space.
Example 2.17. We recall some important examples of convergence vector spaces.

1. Every topological vector space is a convergence vector space. Recall [43], [56] that
a vector space V over the scalar field K of real or complex numbers is called a
topological vector space if V' is endowed with a topology 7y such that addition

+:(V,ry) x (V) — (V1)
and scalar multiplication
Kx (V,ry) — (V1)
are (jointly) continuous.

2. For convergence spaces X and Y, the continuous convergence structure on C(X,Y)
is defined as follows. A filter F on C(X,Y’) converges to f € C(X,Y) if for every
x € X and every filter G on X that converges to z, the filter

FG) =H{fly) : feF, yeG} : F€F, Geg}]

converges to f(z). We denote by C.(X,Y) the set C(X,Y") equipped with the con-
tinuous convergence structure.

If Y a convergence vector space, then C.(X,Y) is a convergence vector space. In

particular C.(X) = C.(X,R) is a converoence vector space.
© University of Pretoria
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O

A convergence vector space is equipped with a natural uniform convergence structure,
called the induced uniform convergence structure, which is denoted as Jy,. In this regard,

let V' be a convergence vector space with convergence structure Ay, and let U be a filter
on V x V. Then

d Fafilteron V:
UeJy (H)F — 0 (2.15)
(2)A(F) CU.

Here A(F) = [{A(F) : F € F}] where for any set FF C V
AF)={(z,y) eV XV :zx—yeF} (2.16)

The convergence structure induced by the uniform convergence structure Jy, agrees with
the vector space convergence structure Ay, that is, Az, = Ay. If V and W are convergence
vector space and a linear mapping f : V — W is continuous then f is uniformly
continuous, see [11, Proposition 2.5.3].

In a convergence vector space Cauchy filters are characterized as follows.

Proposition 2.18. A filter F on a convergence vector space V is a Cauchy filter if and
only if F — F converges to 0.

In general, the Wyler completion V¥ of a convergence vector space V is not a conver-
gence vector space. In particular, the convergence structure induced on V* by the uniform
convergence structure is not a vector space convergence structure, see [11, Section 2.3].
However, a suitable completion may be constructed for a large class of convergence vector
spaces, see for instance [24].

Theorem 2.19. Let V' be a Hausdorff convergence vector space. If every Cauchy filter F
in 'V is bounded, that is, there is some F' € F so that V(0)F — 0 where V(0) denotes the
neighbourhood filter at 0 in K, then there is a complete, Hausdorff convergence vector space
V¥ and a linear embedding iy : V. — V¥ such that iy (V) is dense in V*. Furthermore,
for every complete Hausdorff convergence vector space W and every continuous linear
mapping f : V — W there exists a continuous linear mapping f* : V¥ — W so that the
diagram

f

V w

iv 7t (2.17)

commutes.

The Structure of Completions

Of particular interest to us in this work is the structure of the underlying set of the

completion of a convergence vector snace In this reoard let X = (X, Jx) be a Hausdorff
© University of Pretoria
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uniform convergence space, and let X# = (X* Jy:) denote its completion, in the sense
of Theorem 2.16, and ¢ty : X — X* the canonical uniformly continuous embedding. We
recall how the set X* and the mapping tx may be constructed. Denote by C[X] the set
of all Cauchy filters on X. Then

Fr~oGe FNGeO[X] (2.18)
defines an equivalence relation on C[X], and
X! =C[X]/ ~c . (2.19)

That is, X* is the set of ~c-equivalence classes in C[X]. Furthermore, for each x € X,
the set Ax(z) C C[X] is a ~¢-equivalence class in C[X]. Indeed, if F,G € Ax(x), then
FNG e Ax(x) C C[X] so that F ~¢ G. Moreover, if F € Ax(z) and F ~¢ G for
some G € C[X], then FNG € C[X]. Since FNG C F and F € Ax(z), it follows [11,
Proposition 2.3.2] that F NG € Ax(x), hence G € Ax(x). Therefore

ix: X 32 Ax(z) € X

defines an injective mapping. According to Theorem 2.16, for each complete Hausdorft
uniform convergence space Y and every uniformly continuous map f : X — Y, there
exists a unique uniformly continuous map f* : X! — Y such that f = f* o ix. This
extension f* of f is defined in the following way: Since f is uniformly continuous, (f x
HNU) € Jy whenever U € Jx so that f(F) is Cauchy in Y whenever F is Cauchy in X.
As Y is complete and Hausdorff, there exist a unique y € Y so that f(F) — y in Y. We

therefore have a map
/e CX]—Y.

If F ~c G then FNG € C[X] so that
(f X IFNGxFNG) e Jy.
But

(f X IFNGXFNG) = f(FNG) x f(FNG) (2.20)
= f(F)NFG) x F(F)NF(G) (2.21)

so that f(F)N f(G) is Cauchy in Y hence convergent. Since Y is complete and Hausdorff
, it follows that f'(F) = f(G). Thus

ffXP=COX]) ~o3 [Fl o f(F)eY
is well defined. It remains to verify that f* is indeed an extension of f. That is,
froix=F.

For # € X, ix(z) = Mxz) € X*. Since f is continuous, f'(F) = f(z) for all F € ix(x) =
A(z). Hence f*oix(x) = f(x), as desired.
If X is a convergence vector space, and Jy is the induced uniform convergence struc-

ture, then X* is, in a natural way, a vector snace and the mapping ¢y is a linear injection.
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Indeed, it follows from Proposition 2.18 that if 7,G € C[X], then F + G € C[X]| and
aF € C[X] for all o € K.

Furthermore, F ~¢ G if and only if F — G — 0 in X. Indeed, if F ~¢ G, then
FNGel[X]sothat FNG—FNG —0in X. But FNG—-FNG CF—G, so that
F—-—G—0in X.

Conversely, if F — G — 0 in X for some F,G € C[X] then A(F — G) € Jx. But for
FeFand G e G, A(F-G) ={(w,v)lu—v e F—-G} D (FNG) x (FNG) so that
AF-G) C(FNG) x (FNG) Thus (FNG) x (FNG) € Jx so that FNG € C[X].
Hence F ~¢ G. It therefore follows that

[F1+ 1G] = [F+ 9] (2.22)
alF] =[aF], a €R (2.23

are well defined in X* = C[X]/ ~¢ . An elementary argument shows that X* is a vector
space over R with respect to the operations (2.22) and (2.23). The linearity of ix : X —
X* follows from the continuity of addition and scalar multiplication on X.

2.2.2 Order convergence

Most of the important spaces encountered in analysis, and in particular functional analy-
sis, are equipped with partial order in a natural way. For example, the space C°(X) of all
real valued continuous functions defined on a topological space X is equipped with the
usual point-wise order

vV u,v e CYX)

u§v<:>(v reX >

u(z) < wv(x).

Likewise, the space M (X) of all real valued measurable functions on a measure space
(X, T, p) is equipped with the almost everywhere point-wise order

Vo ou,ve M(X)

ug@@(a EcX, u(E)=0 )

u(z) <wv(z), € X\FE

Definition 2.20. A real ordered vector space L is a vector space equipped with a partial
order such that the following hold for all f,g,h € L.

(i) If f < g then f+h < g+ h.
(ii) If f >0 then af >0 for all real numbers a > 0.

Definition 2.21 (Riesz space). A Riesz space is an ordered vector space in which every
pair of elements (f,g) has a supremum sup(f,g) and an infimum inf(f, g) in L.

Definition 2.22. Let L be a Riesz space. For any element f € L, set
fr=sup(f,0) f~ =sup(—f,0)=—inf(f,0), |f|=f"+f =sup(f,—f).

Below are some examples of Ries7 snaces )
© University of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

4

3

A\ 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Denkleiers « Leading Minds  Dikgos hicie

Structure and regularity of generalized solutions 35

Example 2.23. (i) The space R", equipped with the partial ordering
r<y=uxp, <y, forz,y e R" 1<k <n,
is a Riesz space.

(ii) Let X be a topological space. The space C'(X) of all continuous real valued function
on X is a Riesz space with respect to the point-wise partial ordering.

Riesz spaces were introduced, independently, by F. Riesz [45, 46], L. V. Kantorovitch
(28, 29], and H Freudenthal [22]. The theory has been extensively developed, see for
instance [25, 32, 77].

Definition 2.24 (Archimedean Riesz space). A Riesz space L, is called Archimedean if
for allu € L,u > 0, the decreasing sequence (n"‘u:n =1,2,---) has infimum 0.

Definition 2.25 (Distributive lattice). A lattice L is said to be distributive if
inf(u, sup(v, w)) = sup(inf(u, v), inf (u, w))

and
sup(u, inf(v, w)) = inf(sup(u, v), sup(u, w))

hold for all u,v,w € L.

Definition 2.26 (o-distributive lattice). A lattice L is o-distributive, if
inf(u,sup A) = sup{inf(u,a) : a € A}

and
sup(u, inf B) = inf{sup(u,b) : b € B}

hold for all w € L and all countable sets A, B C L for which the supremum and infimum
exist.

Proposition 2.27. Any Riesz space L is a o-distributive lattice, see [36].

On a partially ordered set L, and in particular on a Riesz L, one may define a notion of
convergence of sequences in terms of the partial order on the set X. Several such notions of
convergence of sequences on partially ordered sets have been introduced in the literature,
see for instance [12, 18, 35, 36, 40]. It often turns out that these notions of convergence
of sequences cannot be associated with any topology. One such notion of convergence
of sequences defined through a partial order that is, in general, not topological, is order
convergence of sequences, [64, 67] .

Definition 2.28. A sequence (u,) in a partially ordered set X order converges to u € X
whenever

EI (Oén)7 (Bn) - X :
(l) (079 S Apt1 S Unp, S Bn—i—l S Bm n e N (224)

.. ) .n:,cN_Tl—M—;“_‘CInI GN
(i) Sup{@ University of Pretorlaﬁ " )
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For a Riesz space L, the condition (2.24) is equivalent to the following:

3 (\) C
(1) Apg1 < )\n, neN:

(i7) inf{\, :neN} =0

(170) |u —un| < Ap, n €N,

where definition of |- | is given in Definition 2.22. In general, order convergence sequences
is not topological as shown in the following

Example 2.29. Consider the Archimedean Riesz space C'(R), and the sequence (u,) C
C(R) given by

3=

l—nlz—g,) if |z—¢l<
un(z) = (2.25)

3=

where {g,, | n € N} = [0, 1]NQ. The sequence (u,,) does not order converge to 0. Indeed,the
complement of any finite subset of QN |0, 1] is dense in [0, 1]. For any Ny € N we therefore
have

sup{u, : n > No} = 1.

This means that a sequence (5,) € C(R) such that u, < 3, for all n € N cannot decrease
to 0.

Thus if there is a topology 7 on C°(R) that induces order convergence, then there is
some T-neighborhood V' of 0 and a subsequence (u,, ) of (u,) which is always outside of V.
Let (gn,) denote the sequence of rational numbers associated with the subsequence (u,, )
according to (2.25). Since the sequence (gy, ) is bounded, there exist a subsequence (g, )
of (gn,) that converges to some ¢ € [0, 1]. Let (Unkz) be the sequence associated with the
sequence of rational numbers (gy, ). Then

Ve>0:
dN. eN:
Up,, (v) = 0, whenever|z —g| > ¢ and ny, > N..

For each j € Nset ¢; = % and let the sequence (i, ) € C°(R) be defined as

0 ifler —q| > 2¢;
fimy, () = 4 1 ifle—aql <¢ (2.26)
%—%2 ife; <lr—q| <2

whenever N., < ny, < N, . The sequence (ftn, ) decreases to 0, and 0 < wu,, <
Ly, » for all 7. This means that the sequence (Unkl) order converges to 0. Therefore it
must eventually be in V| a contradiction. Thus the topology 7 cannot exist.

In [8], see also [62], a convergence structure, called the order convergence structure,

was defined on a Riesz space L which indnces the arder convergence of sequences.
© University of Pretoria
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Definition 2.30. Let L be a Riesz space. A filter F on L converges to u in L with respect
to the order convergence structure, denoted as Ay, if and only if

3 Qn); (Ba) C L

(
(2) (079 S Q41 S Bn+1 S ﬁna ne N
(i7) sup{ay, :n € N} =u =inf{f, : n € N}
(i13) [{[an, Bn) : m € N}] C F.

In [64], it was shown that any Riesz space equipped with the order convergence struc-
ture is a Hausdorff and first countable convergence space.

Theorem 2.31. [64] If L is a Riesz space, then the order convergence structure defines a
Hausdorff and first countable convergence structure on L. A sequence (u,) on L converges
to u € L if and only if it order converges to u € L. Furthermore, If L is an Archimedean

Riesz space, then the order convergence structure is a vector space convergence structure.

In what follows, we consider the case when a Riesz space L is also an algebra, [27, 42,
64, 76].

Definition 2.32. A Riesz algebra is a Riesz space that is also an associative algebra such
that

LY.Lt C L, (2.27)

where L™ denote the positive cone of L, defined as LT = {f € L : f > 0}. We note that
the inclusion in (2.27) is equivalent to

f<g= fh<gh
where f,g,€ L and h € L.
Definition 2.33. The multiplication in a Riesz algebra is called o-order continuous if
sup{ab:a € A,b € B} = apby (2.28)
holds for all countable sets A, B C Lt such that ag = sup A and by = sup B.
Note that in any Riesz algebra L, the identity
fo=rf"g"+f g —fg—fg"

holds for all f, g € L, where f*, f~ denote positive part and negative part of f respectively,
given by f* =sup{f,0} and f~ = sup{—f,0}.

Theorem 2.34. Let L be an Archimedean Riesz algebra with o-order continuous multi-

plication. Then the order converaence structure is an algebra convergence structure.
© University of Pretoria
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2.2.3 Normal lower semi-continuous functions

In this section we discuss some of the properties of the spaces of nearly finite normal lower
semi-continuous functions. In this regard, let X be a topological space, and denote by
R* the extended real line R* = R U {£o0}. Denote by A(X) the set of all extended real
valued function on X. That is

AX) = {u: X — R*Y.

Definition 2.35. A function u : X — R* is called lower semi-continuous at x € X if
u(z) = —o0 or
vV M <u(z):
14 VeV,:
yeV = M <u(y).

Definition 2.36. A function u : X — R* is called upper semi-continuous at r € X if
u(x) = 400 or
vV M > u(z):
d Vey,:
yeV = M >uy).

Definition 2.37. A function
u: X — R*

is called lower(upper) semi-continuous on X if it is lower(upper) semi-continuous at every
point of X.

Example 2.38. (i) A real valued function is continuous if and only if it is both upper
and lower semi-continuous.

(ii) The characteristic function x4 defined on a set A C X, that is,

(z) = 1 if z€A
XA =10 if 2¢ A

is lower semi-continuous if A is open and upper semi-continuous if A is closed.

(iii) Let the function f be defined by
-1 if <0
ﬂ@—{1 it >0
Then the function f is upper semi-continuous but not lower semi-continuous, at
x=0.

We recall [71] that the point-wise supremum of any collection of lower semi-continuous
functions is a lower semi-continuous function. That is, if A is a set of lower semi-continuous
functions on X, then the function

u: X 23 amdnlr) -ne AL € R
© University of Pretoria
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is lower semi-continuous. Similarly, the infimum of any collection of upper semi-continuous
functions is an upper semi-continuous function. That is, if B is a set of upper semi-
continuous functions on X, then the function

w: X 3x— inf{v(z):ve B} eR
is upper semi-continuous. In particular,

Vv ACCX):
(Du: X 3z — sup{v(z) : v € A} € R* is lower semi — continuous,
(2w : X 3z~ inf{v(z) : v € A} € R* is upper semi — continuous.

Conversely, if X is a metric space, then for each lower semi-continuous function u : X —

R we have that
3 ACC(X):
u(z) =sup{u(z) :ve A}z e X

while for every upper semi-continuous function w : X — R we have that
1 ACC(X):
w(z) = inf{v(x) :v e A}z € X.

We remark that the pointwise infimum of a set of continuous functions need not be the
infimum of such a set with respect to the pointwise order on C'(X). Indeed, consider the
sequence (u,) in C(R) which is defined by

1 —nlz| if |z] <

S|

un () =
0 it |z >

3=

The pointwise infimum of the set {u, : n € N} is the function
() = 1 if =0
10 if z#0
while the infimum of the set {u, : n € N} in C(R) is the function u(z) = 0, x € R. The
same is true of the pointwise supremum of a set of continuous functions.
The concept of normal lower semi-continuous function is formulated in terms of two
fundamental operators which are associated with semi-continuous functions, and extended

real valued functions in general, namely, the Baire operators. The Lower and Upper Baire
Operators, [3], [9], are mappings

I AX) = A(X)
and

S AX) = A(X)
defined by

I(u)(x) = sup{inf{u(y) : y€V} : VeV,} (2.29)
© University of Pretoria
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and
S(u)(x) = inf{sup{u(y) : yeV} : Ve V(x)}, (2.30)

respectively. The Baire operators I and S, as well as their composition [ o .S, are idem-
potent and monotone with respect to the usual pointwise order on A(X), given by

u< v e ( v i(i));:v(x) ) . (2.31)
That is, for all u,v € A(X) we have
I(I(w) = I(u), S(S(u)) = S(u), I(SI(S(w)))) =1(5(u)) (2.32)
and
I(u) < I(v)
u<v= | Su)<S) (2.33)
1(S(u)) < 1(5(v))
Furthermore, the inequalities
I(u) <u < S(u) (2.34)

are satisfied.
An easy computation shows that a function u € A(X) is lower semi-continuous if and
only if I(u) = u, while u is upper semi-continuous if and only if S(u) = u, see[5], [17].

Definition 2.39. A function u is normal lower semi-continuous whenever
I(S(u)) = u. (2.35)
A normal lower semi-continuous function is called nearly finite whenever the set
{re X : u(x) e R} (2.36)

is dense in X. In fact, due to the lower semi-continuity of a normal lower semi-continuous
function, one may assume that the set (2.36) is open and dense. We denote by NL(X)
the set of all nearly finite normal lower semi-continuous functions on X. That is,

(D) o S)u(z) =u(z), € X }

NL(X) = {u e A(X) ’ (2) {z € X : u(x) € R} is open and dense in X.

Note that every continuous, real valued function is nearly finite normal lower semi-
continuous. Thus we have C(X) C NL(X). Conversely, every u € NL(X) is nearly
continuous in a topologically large set in the following sense.

Theorem 2.40. For every u € NLY(X) and e > 0 the set
D.={re X wlu,z) <e}
contains an open and dense subset of X, where
w(u,z) = inf{sup{|u(z) —u(y)| :y € V}:V € V}

15 the modulus of continuity of u at » & X )
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The following are useful properties of the set N'L(X), see [69].

Proposition 2.41. (P;) For all u,v € NL(X) and for all dense sets D C X, we have

(V reD

u(z) < v(z) ) s

(Py) The set NL(X) is a Dedekind order complete lattice with respect to the pointwise
order. That 1s,

(i) every B C NL(X) satisfying

3 erNE(X)Z
V ueB

u S Uo,
has a supremum, which is given by

sup B = (I 0 S)(¢), where ¢(z) =sup{u(z) :u € B}, € X (2.37)

(ii) every A C NL(X) satisfying

= UOEN[,(X)Z
V ue A
UOSU;

has an infimum, which is given by

inf A= (I0S)(p), where p(x) =inf{u(z) :ue A}, € A  (2.38)

(Ps) The lattice NL(X) is fully distributive. That is

V ve NL(X):
V BCNL(X):
up = sup B = sup{inf{u, v} : u € B} = inf{ug, v}.

Corollary 2.42. If X is Baire space, then a function u € NL(X) is real valued and
continuous on a residual set, that is a set with complement of first Baire category

On the space N L(X) we introduce the algebraic operations &, ® and ® as the usual
point-wise operations on real functions, with understanding that the result of any opera-
tion involving 400 is again 00, with the appropriate sign determined as usual [63]. Note
that, for u,v € NL(X), the function u @ v may fail to be normal lower semi-continuous.

Indeed, if
1 ifr>0
“@)_{ 0 ife <0

and

v(x)_{ -1 ifz >0

ol n ife 0
© University of Pretoria
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then L i 0
-1 ifx=
(“@“)(‘”):{ 0 ifr#0

so that u @ v ¢ NL(R). We therefore define the algebraic oprations on N'L(X) in the
following way. For u,v € NL(X) and o € R we set

u+v=1I(Suev)), (2.39)
au = I(S(a ®u)), (2.40)
wo = 1(S(u®v)) (2.41)

Theorem 2.43. Let space the NL(X) be equipped with the algebraic operations defined
in (2.39) - (2.41). Then the following statements are true.

(i) NL(X) is a unital Archimedean f-algebra and hence a commutative algebra.

(ii) The multiplication on N'L(X) is o-order continuous.

2.2.4 Structure and regularity results

In this section, we recall briefly the main ideas underlying the reformulation of the OCM
in terms of convergence spaces. For [ € N, consider the space

ML Q) ={ue NLEK) :ue ()} (2.42)
The space ML™(Q) is a sublattice and a subalgebra of N'£(Q). In particular, the space
MLY(Q) = {u e NLIQ) :u e Co(Q)}, (2.43)
is o-order dense subalgebra of N'L(Q), see [69]. That is, for each u € N'L()
3 (M), () € MLYQ) -
() Mm< M <u<pp<p, neN, (2.44)
(77) sup{A,:n € N} =u=inf{u, : n € N}.
The partial derivatives
DP: C™(Q) — C%Q), peN", [p|<m
extends to the mappings
DP - ML™(Q) 5 u— (Io08)(DPu) € MLYQ), pe N, |p| <m.
The partial differential operator (2.2) induces a mapping
T : ML™(Q) — MLYQ) (2.45)
defined as follows

Tu= (IoS)(F(,u,--DPu---)). (2.46)
© University of Pretoria
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Within the current content, this gives rise to a first generalization of the PDE (2.1),
namely,

Tu=f (2.47)

where the unknown function u is not restricted to belong to C!(2), but may belong to the
larger space ML™(2). Proceeding in much the same way as in (2.7) - (2.9), we consider
the equivalence relation ~ induced by 7" through

Vo ou,v e ML) :

u~vp v <= Tu="Tv (2.48)

Denote by ML () the quotient space ML™(2)\ ~r . With the mapping (2.45) one
may associate in a canonical way an injective mapping

T : MLP(Q) — MLYAQ) (2.49)
such that the diagram
ML) o - ML°(Q)
qr id (2.50)
ML - ML(Q)

commutes. Here, q¢r denotes the canonical quotient map associated with the equivalence
relation (2.48), and id is the identity map on ML°(). Note that U € ML} () satisfies
the equation

TU = f (2.51)

if and only if each u € U satisfies (2.47). Hence a solution U € ML () of (2.51) is
the ~p-equivalence class of solutions to (2.47). In order to obtain a further extension of
(2.1), the following is introduced on ML°(2).

Definition 2.44. Let A consists of all nonempty order intervals in ML(Q). Let J,
denote the family of filters on ML(2) x ML°(Q) defined as follows:

(

ke N:

j=1, k-

A ={L}CA:

uj € NL(Q) : ' (2.52)
(i) L, CI), neN
(i) - sup{inf{lz}} = u; = inf{sup{ L }}

( (#d)  ([Aa] x [Aa]) N0 ([AR] X [Ag]) S U

W <€ w

UecJy)<—

Since M£L°(Q) is an Archimedean Riesz algebra with g-order continuous multiplica-
tion, we have the following as a consequence of Theorem 2.31 and 2.34, see [63].

Proposition 2.45. The convergence structure Az, is a first countable, Hausdorff algebra

convergence structure. . . )
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It was shown in [63] that the induced uniform convergence structure on ML"(Q) agrees
with the uniform convergence structure Jj.

Proposition 2.46. The uniform convergence spaces (ML (Q), Jo) and (ML (Q), Tx,)
are uniformly isomorphic. In particular, a filter F on ML"(Q) is Cauchy with respect to
Jo if and only if F — F — 0 with respect to Ag.

Cauchy sequences on ML"(Q) are characterized in the following way, see [63]

Proposition 2.47. A sequence in ML"(Q) is Cauchy with respect to Jy if and only if
there exists a set B C ) of first Baire category such that (u,(x)) is convergent in R for
all x € Q\B.

On the space ML (€2) we consider the initial uniform convergence structure Jr with
respect to the mapping T: For any filter U € MLT () x MLT(Q)

Ue Jr<= (TxT)U) € To (2.53)

Since the mapping T is injective, it follows that the space MLT () is uniformly iso-
morphic to the subspace T(MLF(Q)) of ML(Q), see [72]. Thus the mapping 7' is a
uniformly continuous embedding.

The Wyler completion of the space (ML’(Q2), Jo) is constructed as the space N'L(Q)
of nearly finite normal lower semi-continuous functions equipped with the uniform con-
vergence structure joﬁ defined as follows, see [72].

Definition 2.48. Let A consists of all nonempty order intervals in ML°(Q). Let J¢
denote the family of filters on NL(2) x NL() defined as follows

(3 keN:
Vo oi=1,-- k
4 Ay={Il :neN}CA:
Uecld; = (i) Ii,,CI neN (2.54)
(i0)  sup{inf{I,}} = u; = inf{sup{L,}}
(i) é(([/\i] X A]) O ([wi] < [wi])) € U.

The completion of the space MLT(Q) is denoted by NLT (), and is realized as
a subspace of N EO(Q). In particular, the mapping 7' extends uniquely to an injective
uniformly continuous mapping

Tt NLP(Q) — NL(Q).

This is summarized in the following commutative diagram.

T
ML) - ML(Q)
b R ¥ (2.55)
Tt
N L) - NLY(Q)

© University of Pretoria
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Here ¢ and v are the canonical uniformly continuous embeddings associated with the com-
pletions AL} (Q) and N'L(Q), of MLF(Q) and ML (Q) respectively. A first existence
and uniqueness result for generalized solutions of the PDE (2.1) is given below.

Theorem 2.49. For every f € C°(Q) satisfying (2.3), there ewists a unique U* €
NLE(Q) such that

T = .

Theorem 2.49 is essentially a reformulation of Theorem 2.2 in the context of uni-
form convergence spaces. Thus the mentioned deficiencies of the OCM also applies to
Theorem 2.49. However, by introducing a parallel construction of spaces of generalized
functions, which is independent of the particular nonlinear operator T, we may resolve
these difficulties. In this regard, consider the space C7(£2) defined in (2.4).

Equip the space ML™(£2) with the initial uniform convergence structure 7, with
respect to the mappings

DF - ML™(Q) — ML), |p| <m (2.56)
Definition 2.50. A filter on ML™(Q) belongs to T, if and only if

V peN" |p|<m:
(DP x DP)(U) € To.

Proposition 2.51. A filter F on ML™(Q) converges to u € ML™ () with respect to
the induced convergence structure A, if and only if DP(F) converges to DPu in ML ()
for every p € N, |p| < m. In particular, a sequence (u,) converges to u € ML™(Q) if and

only if
V peN" |p|<m:
DP(u,) order converges to DP(u) € ML(Q).

It is clear from Definition 2.50 that each of the mappings in (2.56) is uniformly con-
tinuous with respect to the uniform convergence structure, 7, and Jy of ML™(2) and
ML), respectively. In fact, see [70, 72], the mapping

D : ML™(Q) — ML Q)M
defined through
D(u) = (D) pj<m.

is a uniformly continuous embedding. Therefore, see [72], the mapping D extends uniquely
to an injective, uniformly continuous mapping

D! : NL™(Q) — NLO(Q)M, (2.57)

where N'L™(Q) denotes the completion of ML™(2). This gives a first and basic reg-
ularity result: The generalized functions in A'£%(Q2) may be represented, through their
generalized partial derivatives, as normal lower semi-continuous functions. Indeed, the
mapping (2.57) may be represented as

nﬁ(’)I\ = _(’T)I)ufll.ﬁ\l,,\/m:
© University of Pretoria
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where, for |p| < m, (D¥") denotes the unique uniformly continuous extension of DP to
NL™(Q).
In order to formulate the concept of a generalized solution of (2.1) in the space
NL™(€), the operator
T: ML™Q) — MLQ)

must be extended to NL™(Q) in a meaningful way. In this regard, we have the following
Theorem 2.52. The mapping

T: ML™Q) — ML)
defined in (2.45) - (2.46) is uniformly continuous.

In view of Theorem 2.52, the mapping 7" extends uniquely to a uniformly continuous
mapping

T NL™(Q) — NL(Q)

so that the diagram

T

ML™(E) ~ ML(Q)

© ¥ (2.58)
TH

NL™ () - NL(Q)

commutes. Here ¢ and v are the uniformly continuous embeddings associated with the
completion N'L™(Q2) and NL(Q) of ML™(Q) and ML°(RQ), respectively. The main
existence result for generalised solutions of (2.1) in N'L™ () is the following

Theorem 2.53. If for each x € ) there is some ( € R™ and neighborhoods V. and W of
x and ¢ so that

F(z,¢) = h(z)
and
F:VxW:.—R

is open, then there exists ut € N'L'(Q) such that
T*u* = h.

Theorem 2.53 provides some insight into the meaning and structure of the unique
generalized solution of (2.1) obtained Theorem 2.49. In this regard, observe that the
diagram

ML™(Q) 4 ML(Q)

qr T (2.59)

MLT ()
© University of Pretoria
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commutes. Since 7' is uniformly continuous and Tisa uniformly continuous embedding,
it follows that ¢r is uniformly continuous. Therefore there exists a unique uniformly
continuous extension

¢ NLP(Q) — NL(Q)
of gr. Since the diagram (2.59), the diagram

\ Tﬁ 0
NL™(Q) NLY(Q)

a7 T (2.60)

NLT (D)
also commutes. Since 7% is injective, it follows that for uf, vf € N'L™(9),
quuﬂ = quvﬁ = Thy? = TP,
That is, qﬁT is the canonical quotient map associated with the equivalence relation
uf ~r VF = Thf = Th

on N'L'(Q). Therefore, for a PDE (2.1) that satisfies the conditions of Theorem 2.53,
and hence also (2.3), we may interpret the generalized solution U* € NL7(Q) as the
~r-equivalence class

{u* € NL™(Q)|T*uf = h}.

Existence of C"*°-smooth generalized solutions

In the previous section we discussed the existence of generalised solution to nonlinear
PDEs of order at most m and obtained such solution in the space N'L™(Q) of generalized
functions which admits only generalized partial derivatives of arbitrary but fixed and
finite order m. In this section we discuss the existence of generalised solution in the space
NL>(Q) of generalised functions which admit generalised partial derivatives of all orders.
Details of the result discussed here are found in [66].

We consider the PDE,

T(xz,D)u(z) = h(z), x € Q. (2.61)
The differential operator T'(x, D) is defined by a C*°-smooth mapping
F:OxRY —R (2.62)
through

T(x,D)u(z) = F(z,u(z),--- ,DPu(x),---), x € Q, |p| <m (2.63)
© University of Pretoria
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for sufficiently smooth u : @ — R. The right-hand term h is a C*°-smooth function.
Assume that the PDE (2.61) satisfies

V xe€Q):
3 &(x) e RN
1 VeV, We Vg(z) : (2.64)

1) F*: V x W — RY" open,
2) F(x,&(x)) = (D°f(z))pern
where RY" is equipped with the product topology 7, the mapping
F*:QxRY — RY
is defined by setting
F* (2, (Ea)aenn) = (F(, -+ &ay - ) penn, (2.65)
where, for each § € N”, the mapping
FPoQxRY — R
is defined by setting
D*(T(z, D)u(x)) = FP(z, -+, Du(x),---), |a| <m+|p| (2.66)

for all u € C*°(2).
The nonlinear operator T'(x, D), which is a mapping

T:C0%(Q) — C*(Q) (2.67)
may be extended to the mapping
T: ML®(Q) — ML)
defined by setting
Tu=(IoS)(F(.,u,---,Du,---)), |p| <L (2.68)
Thus we have the first extension of the nonlinear PDE (2.61) given as
Tu=nh (2.69)
where u is in ML> ().

Theorem 2.54. The mapping T : ML™(Q) — ML>(Q) defined through (2.68) is
uniformly continuous.

As a consequence of Theorem 2.54, there exists a unique uniformly continuous exten-
sion
T NLZ(Q) — NL=(Q)
of T. This give rise to the concept of generalised solution of (2.61) as a solution u* €
N L) of the extended equation

T*u* = h. (2.70)
The main existence result for the C*-smooth PDE (2.61) is the following, see [66].

Theorem 2.55. Consider the nonlinear PDE of the form (2.61). If the nonlinear operator
T satisfies (2.64), then there exists some uf € N'L>(Q) that satisfies (2.70).

© University of Pretoria
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Part 11

Differential algebraic interpretation
of the order completion method
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Chapter 3

The spaces NL!(Q) as a chain of
algebras

In this chapter we show how the spaces of generalised functions introduced in [70, 72] may
be interpreted as a chain of algebras of generalised functions, as discussed in Section 1.5.
In this regard, it will be shown that N'L(Q) is, for each [ € N, an algebra of generalised
functions admitting an embedding of C'(€2) as a subalgebra. We then proceed to study
the chain structure

NLZ(Q) = - = NLHQ) = NLTHQ) — - = NLY(Q).

The existence result for generalised solutions of C*°-smooth PDEs, Theorem 2.55, is in-
terpreted in the differential-algebraic frame work.

3.1 NL'Q) as an algebra of generalised functions

Recall that, for I € N, N'L£'(Q) is the completion of ML'(Q) with respect to the Hausdorff
uniform order convergence structure given in Definition 2.54. Therefore, applying the
abstract construction of the completion of a uniform convergence space outlined in Section
2.2.4, we may express the set N'L/(Q) as

NL Q) = CIML(Q)]/ ~c -

The structure of the set A'L'(Q) is therefore determined, to a good extent, by the structure
of the Cauchy filters on ML'(€Q2). We thus turn first to an investigation of the structure
of such filters.

Proposition 3.1. The space ML) is a subalgebra of NL(Q). Furthermore, the differ-
ential operators

DP . MLYQ) — NL, |p| <1

are linear and satisfy the Leibnitz rule

Dr(uwv) =Y ( Z ) DP9y Dy

© Univérsity of Pretoria
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Proof. For u,v € MLY(Q) and a € R, it follows from the definition of ML'(Q2) and (2.39)
- (2.41) that there exists a closed, nowhere dense subset I' of €2 so that

(u+v)(z) =u(z) +v(z), (w)(z) =u(z)v(z) and(au)(z) = au(z), =€ OQ\I

The set ' may be chosen in such a way that u,v € CY(Q\I'). Then u+v, uv, au € CH{Q\T).
Hence u + v, uwv, au € MLY(Q).
Furthermore, for |p| <1,

DP(au + Bv)(x) = aDPu(z) + D v(x)
= aDPu(x) + fDPv(x), =€ Q\I

It follows from Proposition 2.41(P1) that D?(au + fv) = aDPu + fDPv, so that DP is
linear. That DP satisfies the Leibnitz rule follows in the same way. O]

Proposition 3.2. The induced convergence structure A\, on ML(Q) is a Hausdorff and
first countable algebra convergence structure.

Proof. According to Proposition 2.51, a filter F on ML'(Q) converges to u € ML)
if and only if D?(F) converges to DP(u) in ML"(Q) with respect to Ay for every |p| < L.
Assume that F — u and G — v in MLY(Q). Then D?(F) — DP(u) and DP(G) —
DP(v) in ML(Q), |p| <. By Proposition 2.45,

DP(F +G) =DP(F)+ DP(G) — DP(u) + D" (u)

in ML), |p| <. Hence F +G — u+v in MLY(Q).
In the same way it follows that, for « € R, (V + a)(F) — au, with V denoting the
neighbourhood filter at 0 € R. Lastly,

D'(FG) 2= ( 7; ) D 1yDh, |p| < 1.

q<p

By Proposition 2.45,
S < Z ) DV IFDIG — Y < Z ) DP9y D% = DP(uv) in ML),

q<p q<p

Hence FG — uv in MLY(Q).
To see that ); is Hausdorff, consider a filter F on ML) so that F — u and
F — v. Then [F]pypo) — w and [F] o) — v in MLY(Q). Since Ay is Hausdorff,
it follows that u = v so that \; is Hausdorff. It remains to show that )\; is first countable.
Consider a filter F € A;(0). Then for each |p| < [ there exists a sequence () in ML"(Q)
that decreases to 0, and
D*(F) 2 [{l=pp, pilin € N}

Let p, = sup{p? | |p| <1}, n € N. Then (u,) decreases to 0 in ML"(Q), and

DY(F) 2 {l~in ta] | n € N}, [pl < 1.

For each n € N let G,, = {u € MLY(Q) | DPu € [—jin, pt]}. Clearly, g = [{G, | n €
N}] € F. Furthermore, D?(gG) O [{[—pn, tn)|n € N}, |p| < 1. So that DP(g) — 0 in
ML), |p| < 1. Hence G — 0 in MLYR). Since ML Q) > u = u+v € MLYQ) is

continuous for every v € MLY(Q) it follows that M /() is first countable. O
© University of Pretoria
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Proposition 3.3. The uniform convergence structure J; on MLY(Q) is the uniform con-
vergence structure induced by the convergence structure \;.

Proof. According to Definition 2.50,
UeJ < (D" xD"U) e T, |Ip| <L (3.1)
It follows from (2.15) and Proposition 2.46that
V peN" |p|<I:
Ue T <= | 3 F,e€X0): (3.2)
A(Fp) € (DP x DP)(U).

In particular, upon setting

n (3.2), we find that
1 Fe /\0(0) :
U | V peN", |p <I: (3.3)
A(F) C(D? x DP)(U).

Let
=[{{u—v|(u,v) e U|U €U }}].

It follows from the fact that U/ is a filter on ML(Q) x MLY(Q) that G is a filter on
ML), Without loss of generality we may assume that F C [0]. Then

F={{u—v|(u,v) € A(F)}: FeF}.
Hence it follows from (3.3) that
FCDG), Il <l

Thus G — 0 in ML(Q). But A(g) C U so that (3.3) implies that

3 Gen):
UGJ,<:>( A(E@é zu). (3.4)

This completes the proof. O]

Basd on the abstract construction of the completion of a uniform converence space,
as discussed in Section 2.2.1, we may represent the set N'L/(Q) as

NL(Q) = CIML(Q)]/ ~c, (3.5)
where, due to Proposition 3.3,

FrnGe F—Ge D),
© University of Pretoria
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The representation of A'L'(Q2) can be further particularised. By Propostition 3.2, ); is
first countable. Hence for F € C[MLY(Q)] there exists G = [{G,|n € N}] — 0 in
MLHQ) so that G € F — F. Thus

V neN:
3 F,eF: (3.6)
F,—F, CG,.

For each n € N, select w € Fy N---N F,. Then (u,) — (u,) 2 G so that (u,) is a Cauchy
sequence in ML'(Q). Furthermore, (u,) ~¢ F so that each ~¢-equivalence class contains
a Cauchy sequence. Therefore we may represent N'L'(Q) as

NLY(Q) = CIMLUQ)]/ ~c.

where C,[ML'(Q)] denotes the set of Cauchy sequences in ML (Q), and for (u,), (v,) €
CS[M‘CZ(Q)v
(un) ~c (Un) = (U — v,) € N(0).

In view of (3.5), the structure of A'L'(€2) depends only on the properties of the Cauchy
sequences in ML'(Q). In this regard, we have the following

Proposition 3.4. A sequence (u,) in ML Q) is Cauchy sequence with respect to the
uniform convergence structure on [J; if and only if there exists a residual set R C ) such
that (DPu,(z)) is a convergent sequence in R for each © € R and p € N™ with |p| < I.

Proof. Tt follows from Proposition 3.2 and 3.3 that a sequence (u,) in ML'(Q) is Cauchy
if and only if (DPu,) is Cauchy in ML"(Q) for every |p| < I. The result now follows from
Proposition 2.47. O

By Proposition 3.4, we have that

4 R C(, aresidual set :
(up) ~c, (vp) <= | V peN", p| <, zeR: (3.7)
DPu,(x) — DPv,(x) — 0 in R.

In order to represent the space N'L'(Q) as an algebra of generalized functions, we show
that each ~¢, -equivalence class contains a sequence of C'-smooth functions. To do this,
we make use of the Principle of Partition of Unity, see [60].

Theorem 3.5. Let O be a locally finite open cover of an open subset €2 of R™. Then there
s a collection

{ov:Q—10,1]: U € O}
of C'-smooth functions ¢y such that the following hold:

(i) For each U € O, the support of ¢y is contained in U.

(i) > édu(z) =1, for each x € M.
veo © University of Pretoria
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A consequence of Theorem 3.5 is that disjoint, closed sets in € are separated by C'-
smooth, real valued functions. In this regard, let A and B be disjoint, nonempty, closed
subsets of 2. Then it follows from Theorem 3.5 that

3 pe i, [0,1]) :

(1) z € A= ¢(x)
(2) z € B= ¢(x)

1 (3.8)
0

Lemma 3.6. Let (u,) be a Cauchy sequence in ML (Q) with respect to J;. Then C'(Q)NN
[(un)]c, # O, where [(uy)]c, denotes the ~¢,-equivalence class generated by (uy,).

Proof. Let (u,) be a Cauchy sequence in ML'(Q). Then for each n € N, there exists a
closed, nowhere dense set I',, C Q so that u,, € CY(Q\I',). For each k € N, let

J yel,:
B = ¢l €N n })
n= e ({“7 ' |z —y|| < L

J yely,:
AF = er’ " }
" { |z —yl| > 2

and

Then for fixed n, k € N, B¥ and A% are disjoint, closed subsets of €2, and
r, c B
By Theorem 3.5, there exist for all n, k € N a function ¢} € CY(Q, [0, 1]) so that
v e A —= ¢ (z) =1
and
r € BY = ¢} (2) = 0.
Since u,, € CY(Q\I',,), it follows that
Unk = Undp € C'(Q).
Furthermore,
U k() = up(x), x€ AF
Since A¥ C A¥! for all n, k € N and

UAI:L = Q\Fnu

keN
it follows that

re NI, :

V Cc Q\I',, open, z € V :
Ky e N:

k > Kv, Y € V.

Up () = v ().

<C W W <

It therefore follows that (DPu,, i () — DPa () in R for every xz € Q\I,.
© University of Pretoria
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Let Ry = Q\ YT, It follows that for each n € N there exists a sequence (v, ) of
C'-smooth functions on € so that

(D0 1(x)) — DPuy(x), x € Ry, [p| <.

But (u,) is Cauchy in ML (Q) so there exists a residual set R; C Q so that (DPuy,(z)) is
convergent in R to same a(z) € R, [p| <I. Let R = RyN R;y. Then R is a residual subset
of €2, and

(DPu, k() — DP(un)(z), x € R, |p| <1,

and
(Dpun(x)) — Oz({lf), HAS Rv |p| S l

Thus there exists a strictly increasing sequence (k;,) of natural numbers so that
(DPvn i, (2)) — afx), z € R, |p| <1 (see Proposition3.4).

It now follows from Proposition 3.4 that (v,4,) C CY(f) is Cauchy in ML (). Further-
more,

(DPup(x) — DPopy, () — 0, z € R, |p| <1

so that (u,) ~c, (Vn,) by (3.7). This completes the proof. O
The main result of this section is the following.
Theorem 3.7. Let S', = C,[ML Q)] N CHQN and T, = X, (0) N CHQ)N. Then
(i) S, is a subalgebra of C'(Q)N and I, is an ideal in S.,.
(it) A(C'(Q)) € 8, and A(C'(Q)) NI, = {0}.

(iii) There exists a bijective mapping E', : NLY(Q) — S../T!, such that the diagram

s L nri)

QSCS Eés
(3.9)

S/ T

commutes. Here, qsi_is the canonical mapping associated with the quotient algebra
S' JT!., and the mapping L is defined as

S )

L:S 35u=(u,)— v e NC(Q), (3.10)

where ut is the limit of (u,) in N HON )
© University of Pretoria
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Proof. The result in (i) follows from Proposition 3.4. Indeed, by Proposition 3.4, (a,), (b,) €
8!, if and only if there exist residual sets R, and R; such that (DPa,(z)) and (DPb,(x))
converge in R for each € R, and x € R, respectively and for all [p| < [. It follows, by the
linearity of DP and the Leibnitz rule that S', is closed under addition and multiplication.
Since any (u,) € Z', is Cauchy, it follows that Z!, C S'.. Moreover, for any (a,) € S,
there exists residual set R, such that (DPa,(z)) converges in R, for every x € R, and
lp| < I. For any (u,) € Z!, there exists residual set R, such that (DPu,(r)) converges
to 0 for each x € R, and |p| < [. Thus for x € R = R, N R, and |p| < [ we have that
(DP(a,u,)(z)) converge to 0 in R by the Leibnitz rule. This implies that (a,)(u,) € Z.,.
Thus Z., is an ideal in S.,.

To proof the result in (ii), let u € CY(€2). Then the sequence A(u) converges to u in
NL£Y(Q) and hence it is Cauchy. Thus A(C*(Q)) C S... Moreover, A(u) € A(CHQ))NT.,,
implies that A(u) € Z',. Since ); is Hausdorff, it follows that A(u) converges to u = 0.
Thus A(CY(2)) NZ, = {0}.

We now proof the result in (iii). According to Lemma 3.6, the mapping L is surjective.
The quotient mapping gg:_is also a surjection. For u,v € S!. we have that

L(u) = L(v) <= uf = f
> [u] = [v]
<~ UuU~g, U
< (u—v) € N(0)
—u—-vel,
—=u+I, =v+T,
= qst, (u) = gs1,(v).
Hence L(u) = L(v) if and only if g5 (u) = gs:_(v), so that the mapping
Eis :Nﬁl(Q) 5 ul — qsés(L’l(uu)) € Sis/Iis (3.11)

is well defined on S',/Z..

Furthermore, since L is surjective, the mapping (3.11) is defined at each u* € N'L'()
so that gs: being surjective implies that is E!, is surjective. Moreover, the mapping E',
is injective. Indeed, for u*, v* € N'L'(Q) we have that

Eis(uﬁ) = Eés(vﬁ) ——u—vec I(l:s

for some u € L7Y(uf) and v € L™Y(v*), so that u ~¢, v. This implies u* = v* by (3.5).
Thus E', is a bijection. O

3.2 Chain Structure of {NL'(Q) : 1 €N}

In this section we show how the spaces of generalized functions N EZ(Q), | € N, may be
represented as a chain of algebras of generalized functions. By virtue of the definition of
the uniform convergence structure on MEI(Q), the partial derivative operators

DP . MLYQ) — MLFQ), k4 |p| <1 (3.12)
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are uniformly continuous. Hence there exists unique uniformly continuous extension
D NLHQ) — NLF(Q), k+p| <1 (3.13)

of the mappings in (3.12). On the other hand, since S, € C,[ML'(Q)] and T!, consists
of null sequences in ML'(Q), it follows by uniform continuity of the mapping in (3.12)
that

D"(I.,) € T, and DP(S,)C S, peN', [|p|<i-k, (3.14)
so that
DP : 8, /Tey 5 (u) + Iy = DP(u) + I, € Sp/I, (3.15)
define linear mappings that satisfy the Leibnitz rule.
Proposition 3.8. The diagram
v o—2 - NLHQ)
B 2, 310
St /Tt —— S/

commutes for all p € N*, I,k € N, so that k + |p| < with
D NLY(Q) — NLFQ), k+p| <L
given by (3.13) and

S

given by (3.15).
Proof. Fix u* € NLY(Q). According to Theorem 3.7, uf € L(u) for some u € S, and

cs?

El (u*) = u+Z.,. So DP(E!,(u")) = DP(u)+ZIF,. But DP*uf = L(DPu) so that, by Theorem
3.7, EX (DP*u?) = DPu + ZF, = DP(E! (u*). Thus the diagram (3.16) commutes. O

Observe that
Sl,.cS* and T, CIE (3.18)

for all [,k € N such that k& < [. Indeed, it follows directly from the definition of the
uniform convergence structure on ML (Q) and ML (), respectively, that the inclusion
map

MLNQ) > u s ue MLFQ)

is uniformly continuous. Thus (3.18) follows immediately from the definition of Z!, and
S!,. Thus

Vit Ses/Tis 3 (w) + Iy = u + I € SK) /L, (3.19)
© University of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

4

3

A\ 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

s + Loading Minds « Dikgo Dihicke

Chain Structure of {N'2'(Q) : [ € N} 58

defines an algebra homomorphism, see (1.42) and (1.43).
In view of Theorem 3.7 and Proposition 3.8, the spaces N'L'(Q2), and the differential
operators

DY NLY Q) — NLF(Q)
with |p| + k < I, may be identified with the algebras S',/Z,, with differential operators
P ST, — S*/TE defined in (3.15). Therefore we denote the algebras S._ /Z!, by
NLH(Q).
As a direct application of Theorem 1.15 we now have the following
Theorem 3.9. With the algebra homomorphism
v NLHQ) — NLF(Q)
define as in (3.19) and the differential operator
D NLY Q) — NLF(Q),
with k + |p| <1 define as in (3.17),
Ae = {NLY(Q),NLEQ), ) | k1N, k< 1}
1s a differential chain of algebra of generalized functions.

Proof. The result follows from (3.14), (3.18) and Theorem 1.15. O

Next we address the issue of embedding smooth functions into the chain A, of algebras
of generalised functions.

Theorem 3.10. For each | € N, there exists an injective algebra homomorphism
E. . CHQ) — NLY Q)

so that the diagram

Tn
’ [ N . k l h
NL (D) I N LY —— ~NL
Tk Th
(3.20)
&l gk, e
(y——E - Ch(Q)——S Ch(Q)

commutes. Here vL, %, AL are injective algebra homomorphisms defined by (3.19),
while E',, &M EF are linear injective algebra homomorphisms define as in (1.50).

cs? cs)

Proof. Since S., is contained in the set C[ML(Q)] of J; - Cauchy sequences in ML (Q),
it follows that U4(Q) C S',. Furthermore, Z, C X\/(0), so that, since )\, is Hausdorff

Tl NUL(Q) = {0}. The result now follows from Thearem 1.18. O
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3.3 Embedding of ML'(Q) into N'L'(Q)
The embedding C'(2) — N L' () extends in a natural way to an embedding
H - MLYQ) — NLYD). (3.21)
Theorem 3.11. For each | € N there exists an injective homomorphism
H! : MLY(Q) — NLY(Q).
so that the following hold.

(i) The diagram

Y
NLYQ) : -~ NL*(Q)
H} HE (3.22)
ML Q) —FC -MLF
commautes whenever k < 1.
1 The diagram
DP
NLY Q) = NLF(Q)
H HE (3.23)
co—o° - MLF
commutes whenever k + |p| < 1.
(iii) The diagram
!
ML) = “N L1 (Q)
C 53 (3.24)
c'(2)
commutes for all | € N.
Proof. Consider the map
H! : MLY(Q) 3w (u,) + T, € NLY(Q) (3.25)

where (u,) € S!, converges to u with respect to ). The existence of such a sequence

follows from Lemma 3.6. To see that T is well defined let (u,), (v,) be two sequences in
© University of Pretoria
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S!, converging to u with respect to \;. Based on Proposition 3.2 we conclude that (u, —v,,)
converges to 0 with respect to \;, so that (u, —v,) € Z.,. It follows from Proposition 3.2
that H!_ is an injective algebra homomorphism. Indeed, if H! (u) = H!.(v) for some
u,v € ML(Q), then there exists (u,) € S, that converges to u and v with respect to \;.
Since \; is Hausdorff, it follows that u = v. If (u,), (v,) € S!, converge to u,v € ML(Q)
with respect to A;, respectively, then (u,v,) converges to uv with respect to );. Hence

Ho(u) Hyo(v) = ((n) + Zeo)(0n) + I2)
= (unvn) + Iy
= Hy,(uv).
Linearity of H!, follows the same way.

(i) The commutativity of the diagram (3.22), follows immediately from th definitions
of the homomorphisms H'_, H: and ~%.

oc)

(ii Recall that, for k + |p| <[, the partial differential operator
DP - MLYQ) — MLF(Q)

is uniformly continuous, thus continuous with respect to the convergence structure
)\l and /\k Thus if
Htl)c(u) = (un) +Iéc

for some v € MLY(Q), then D?(u,) = (DPu,) converges to DPu in ML"(Q) with
respect to A\x. Hence
ch(ppu> = Dp(un) +I§s

By definition,
DP(Haou) = D (un) + I,

Thus (3.23) is commutative.
(iii) The embedding &, : C'(Q) — N LN(Q) is given by
Ei,(u) = A(w) + I,

where A : CY(Q) — 8!, maps each u € C/(Q) to the constant sequence with all
terms equal to u. Since this sequence converges to u with respect to \;, the result
follows immediately from the definition of the map H...

[]

3.4 Existence of Chain Generalised Solutions

In this section, we give an interpretation of the existence result for smooth PDEs, Theorem
2.55, in the context of the chain

Ape = {(NrE Nrk A1 eN, k<)
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of algebra of generalized functions. In particular, we show that the generalized solution
uf € NL>(Q) obtained through the Theorem 2.55 is a chain generalized solution, see
Definition 1.28 in Section 1.6. In this regard, consider the nonlinear partial differential
operator

T:CHQ) — C*Q), k+m<I (3.26)
of order at most m, defined through a C*°-smooth mapping
F:QxRY —R
by setting
Tu(x) = F(x,u(x), -+, DPu(z),---), |[p| <m (3.27)

for each z € . Since
T(C' () € C*(Q),
it follows that
T(Cl(Q)N) C Ck(Q)N.

Using (2.42), and owing to F' being C'*°-smooth, the mapping (3.26) may be extended to
a map

T: MLHQ) — MLF(Q) k+m <L (3.28)
It follows from Theorem 2.52 and the uniform continuity of the embedding
ML) s u—sue MLFQ) k<L

that (3.28) is uniformly continuous for all I, & € N such that k+m < [. Hence there exists
unique uniformly continuous extensions

T NLY(Q) — NLF (), k+m <L (3.29)

of (3.28).
On the other hand, in view of the construction of the extension of a uniformly contin-
uous map to the completion of its domain, see Section 2.2.1, the map

T:CHON 3 (up) = (Tw,) € CHOQN k+m <L

satisfies

T(S.,) C S

cs?

k4+m <l

and

(un) = (vn) € Ty = T(u,) = T(v,) €IE, k+m <1

cs)

Thus in view of (1.66) - (1.70), and since S!, and Z., satisfy the neutrix condition (1.49),
it follows that

T -NLQ)su+T, = Tu+I" e NCFQ) k+m <L (3.30)
© University of Pretoria
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defines an extension of (3.26). Using the same argument as in the proof of Theorem 3.9,
it follows that (3.29) and (3.30) are equal, in the sense that the diagram

i
N - NLHQ)

E!, E!, (3.31)

S/ Th I - Sttt

S

commutes for all [,k € N, k+m <1
Our main result is the following

Theorem 3.12. Assume that the PDE
T(x,D)u(x) = f(z), x€Q (3.32)

with f € C>®(Q) and T defined as in (3.27) satisfies (2.64). Then (3.32) admits a chain
generalized solution u+ I € NL*(Q).

Proof. According to Theorem 2.55, there exists a generalized solution u € NL*(2) of
the PDE (3.32). Thus there exists a sequence (u,) € S, so that

u=(u,) +ZI%

satisfies Tu = f in NL%(Q2). That is,

(Tu,) — feIX CIF, keN. (3.33)
By definition of the algebra homomorphism
AL NLH Q) — NLE(Q) (3.34)
we have
T(vi(w) = T(un) + Ik, k+m <1 (3.35)
and
W) =f+I, (3.36)

Thus (3.33), (3.35) and (3.36) imply that

T(v(w) =y (f+T®), k+m<l

© University of Pretoria



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

)

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA
Denkisiers « Leading Minds + Dikgo Dhioie

63

Chapter 4

Nowhere Dense Algebras

In this chapter we considered so-called nowhere dense algebra of generalized functions.
These are quotient algebras A = S/Z, where the ideal Z in S C C°(Q)" is defined in
terms of a dense vanishing condition. In particular, we consider Rosinger’s nowhere dense
algebra A (2), see [49, 50, 51], and the associated chain

ANd = {(Afld(Q%Al:Ld(Q%fﬁc) : kvl € N7 k S l}

of algebras of generalized functions, as well as Verneave’s almost everywhere algebra
A2(Q), see [73, T4]. Using Verneave’s construction of the algebra A%, we obtain a
differential chain

Age = {(AL(Q), Ao (), 1) -k LEN, k <1}

of algebras of generalized functions.

We considered the extent to which the distributions may be embedded into the chain
A,., as well as the way in which the chain A,. relates to the chain A,; and A, re-
spectively. This leads to an interpretation of Theorem 3.12 within the chains A,; and
A,., giving an existence result of a large class of nonlinear PDEs within the mentioned
chains of algebras of generalized functions. An application to so-called space-time foam
differential algebras of generalised functions.

4.1 Two Constructions of Nowhere Dense Algebras

4.1.1 Rosinger’s Nowhere Dense Algebra

In this section we discuss the construction of nowhere dense algebra of generalized func-
tions introduced by Rosinger, see [49], [50], [51]. In particular, we recall how the nowhere
dense chain of algebras of generalised functions is constructed, and discuss the embedding
of distributions into this chain. In this regard, let I € N and denote by Z! , the set of all
sequences of functions in C!(Q) satisfying the following asymptotic vanishing condition:

3 I' C Q closed nowhere dense :

V zeQ\I':
U= (Up)peny € Iy == { 3 V C Q\I', neighbourhood of #, Ny € N : (4.1)
v (TS V, n > NV .
un(y) =0
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In other words, the terms of the sequence (u,,) vanish at each point of the open and dense
subset Q\I', provided n € N is sufficiently large. The set Z', is an ideal in C'(Q)N as
stated in [49, Chapter 1 Sction 7]. The ideal Z!; C C' ()N is called the nowhere dense
ideals on €.

Furthermore, Z! ; satisfied the neutrix condition, and the inclusions

T, CcTr, k<l

and
DP(T!,) CIry Ipl+k <l

hold. In view of Theorem 1.15, we have

Theorem 4.1.
Ang = {(AL(Q), A4(), ) s kL €N, k <1}

1s a differential chain of algebras of generalized functions.

The algebra homomorphism
T Ana(Q) — AL(Q), k<1
is defined as (1.43). That is,
Yot A du+ Ty u+Th, € ALy (Q), k<l (4.2)
Since the neutrix condition (1.49) is satisfied, it follows from Theorem 1.18 that
E:CHY) s ur— A(u) +T, € AF4(Q).

defines an injective algebra homomorphism for each [ € N. Furthermore, the diagrams

Vih
“L’ll Ak ;l h
nd Vik nd Vih nd
(4.3)
& En Ex
- C
() = ~C* () = ~C"(Q)
and
’ Dp ot
AL(Q) Ay (Q)
gl " (4.4)
Dr
AL (Q) ~Ay ()

commute, for all h < k <l and all k+ [p| <.
We next discuss briefly the details of embedding the distributions D’(§2) into the chain
A4 Tt follows from a modification of Theorem 1.11 that Z'; is C'-regular in C*(Q)" for

every | € N. Therefore each of the aloehras A! .(O) admits a linear embedding of D’'(Q)
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which is an algebra homomorphism when restricted to C'(Q) € D’(Q). In what follows
we give an explicit construction of such a linear embedding. In this regard, we consider
suitable representations of the distributions. For [ € N, let

Vi = {(u,) € CHQ)"N : u, converges weakly to u € D'(Q)} (4.5)
and
Wi = {(u,) € CHON : wu, converges weakly to 0 € D'(Q)}. (4.6)
Clearly,
LV (up) = Tim u, € D'(Q2) (4.7)

is a linear surjection, where lim u, denotes the weak limit of (u,) € Vi. Furthermore,
n—o0

Ul c VY, and (4.7) is an extension of
UL s (uy) —ueC(Q)sur T, € D)

where for u € C'(Q), the distribution T, is defined by
T, D) 50 / (@) (z)dx € R.
Q

With, WY the kernel of the mapping (4.7), we have a vector space isomorphism
do@y : Vi/Wh 3 () + Wi T € D(Q), (4.8
and thus a representation of distributions given as
D'(Q) = Vi/WE. (4.9)

Due to the weak continuity of the differential operators DP, the pair (Vk, £;) is a C'-smooth
representation of the distributions.

In order to obtain a regularization for the representation (4.5) - (4.7) of the distribu-
tion, we set

I I I
Wha = ZLa N Wy

and

szd - szd D VII\I D Eizd
where L! ; is defined as follows. According to [51, Section 6.2] there exists algebraic bases
{a; i €I} and {b; : j € J} for W, and T}, N VY, respectively, such that {c : k € K} is
a basis for Wi N T}, where

K=INJ c¢.=a,=0b., kekK.

Furthermore, there exists an injection o : J\ K — I'\ K. The linear space L' is defined
as

‘szd = Qn;\.n_!n.ﬂ/_;\ + h:la e T\K}
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It follows from [51, Theorem 1 p 228] that
(Whis Vi T, CHQ)Y) (4.10)
is a regularization of the representation (Vk, £;) of D'(2). In particular, since
ACQ)) = U(©) SV,
it follows that the regularization (4.10) is C'-regular. That is, there exists a linear injection
E :D(Q) — A Q) (4.11)
so that the diagram

CHQ—S——DI(Q)

& 2 (4.12)

commutes.
Clearly the inclusions

l k l k l k
Vi Ve Vv E Wi Wia © Wi

hold for all & < I. Furthermore, the vector spaces Ll ; may be constructed in such a way
that
L, CLr, k<l
It then follows that
VISV k<L
Applying Theorem 1.23, we therefore have the following
Theorem 4.2. For all h,k,l € N with h < k < I, the diagram

’ Yin l
Yik
Al - A, 1t -,
(4.13)
El Ek Eh
d d
D D) D'(9)

commutes. Here vL, %~ are algebra homomorphisms defined by (1.43) while the
linear injections Ey, Ey, Ey are defined by (4.11).

Furthermore, for | € N, the map E restricted to C'(Q2) C D'(Q) is an algebra homo-
morphism. In particular, the diagram

CHQ———D'()
& 2 (4.14)

Ana(Q)

commutes. ] ] )
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4.1.2 Verneave’s Almost Everywhere Algebra

It is unknown whether or not a linear embedding
D'(Q) — AX(Q)

exists which commutes with the partial differential operators DP. However, the algebra
A (€2) and the chain A,,4 have some desirable properties. In particular, as shown in [51,
Theorem 1, Chapter 2], A(2) admits a global Cauchy - Kovalevskaia Theorem. An
analytic PDE with analytic initial conditions specified on a non-characteristic hyperplane
has a global generalized solution in A% which is analytic everywhere except possibly in
a closed nowhere dense set I

In order to address the issue of embedding D’'(2) into an algebra of generalised func-
tions which admits global generalised solutions of analytic nonlinear PDEs such that
distributional derivatives are preserved, Vernaeve [73] introduced the so called almost
everywhere algebras, the construction of which is now recalled.

Let My be a subset of {I' C Q : I'is closed and nowhere dense} that is closed under
the formation of finite unions. Consider the set

3 I'e Mg:

vV neN:
(1) up: Q2 —R:
(2) u, € C=(Q\IN)

£22(9) = { (un)

ae

(4.15)

With respect to componentwise operations on sequences of real valued functions, £2° is
an algebra over R. Let

V 2€0):
1 VeV, NeN:

I =1 (u,) € Ex Y oyevV.n>N: (4.16)
un(y) =0
and
4 I'e Mg :
Zoe={ (up) €€V neNzeQ\T': 3. (4.17)
up(x) =0

Both Zg and Z,. are ideals in £2(Q2), hence Zg + Z,. is an ideal as well. The almost
everywhere algebra A(Q)) is defined as

Ao () = €5 /(T + L) (4.18)

We note that the ideal Zr + Z,. may be expressed as

4 I'e M :
V 2e€Q:
Ig+Zoe =< (up) €€ 3 VeV, NeN: . (4.19)
V yeV\I, n>N:
un(y)zo
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With each partial differential operator
DP . C*(Q2) — C™(Q)

we may associate a relation

DP: E2(Q) — £22()
by setting

V neN:
DP(uy,) =< v, € Ege (Do, : Q2 — R: (4.20)
(2)DPuy,(x) = vy(z), z € Q\T.

where for (u,) € £2(€2), I' € My is the set associated with (u,) through (4.15).

It is easy to see, using (4.19), that DP(u,,) is an (Zg+Z,.-equivalence class in A () for
each (u,) € £2(2) and p € N™. Moreover, if (u,)— (v,) € Zg+Z,e, then DP(u,,) = DP(vy,)
for all p € N. Thus we have a mapping

DP: A () 3 (un) + (Zg + Zae) — DP(up) + (Zg + Zse) € Ao

ae?’

(4.21)

for each p € N™. The mappings (4.21) are linear and satisfy the Leibnitz rule for derivative
of products. Hence A%(2) is a differential algebra.
Since
U () € &), UT Q)N (Ze + Lae) = {0},

it follows that
C®(Q) 3 ur— AT (u) + (Zp + Zoe) € As2(2) (4.22)
defines an injective algebra homomorphism, with
A C®(Q) — C=(N C £2(Q)

defined as in (1.9). The homomorphism (4.22) commutes with the differential oper-
ator (4.21), hence (4.21) defines extensions of the classical differential operators DP :
C>®(Q2) — C>(Q).

We now discuss the embedding of D’(Q2) into A2(2). In this regards, recall that a
sequence (x,) in D(Q2) C C*(Q) is a unit sequence on § if

vV K C () compact :

4 NeN:

V neN, n>N:
Xn(x) =1, x € K

(4.23)

A sequence (1,) in D(2) is a strict delta sequence if

VVEVOI
4 NeN:
V neN, n>N:

a1l — 7
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/wnzl,nGN
Q

and there exists p > 0 so that

/ |t (2)|dz < p, n € N.
Q

For '€ D'(2) and ¢ € D(?), the convolution T x ¢ of T" and ¢ is defined as
Tx¢p:Q3x— T(r,0) €ER
where

Toly) =y —z), yeQ (4.24)

and

o(y) = d(—y), y € L. (4.25)

Note that, in (4.24) and (4.25), we are implicitly extending ¢ € D(2) to a function in
D(R™) by setting ¢(z) =0, x € R\ Q. It is well known, see for instance [55, Chapter 6],
that T'x ¢ € C>(Q), for all T € D'(2) and ¢ € D(Q?).

Finally, a smooth-part map is a linear surjection

F:D(Q) — 0%(Q)

such that
F(u)=u, ueC®Q)

and
DP(F(T))=F(D’T), TeD'(2), peN"

The existence of a smooth - path map is guaranteed whenever Q is convex, [73, 74]

Theorem 4.3. Let (1,) be a strict delta sequence, (x,) a unit sequence, and F : D'(2) —
C>* () a smooth - part map. Then

D(Q) > T = ((F(T) + [(T = F(T))xn] *tn) + (Zae + L)) € AZ(Q)

defines a linear injection which commutes with partial derivatives and is an algebra ho-
momorphism when restricted to C*(2) C D'().

The algebra A (€2) and A () are related to each other in the following way.
Theorem 4.4. There exists a surjective algebra homomorphism
A () — AZ(Q)

that commutes with partial derivatines )
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4.2 The chain of almost everywhere algebras

In this section we introduce, following the construction discussed in Section 4.1.2, the
almost everywhere chain A,. of algebras of generalized functions. We also consider the
embedding of distribution into this chain. Let M be a set of closed nowhere dense subset
of ) that is closed under the formation of finite unions of its elements. For [ € N, let

1 I'e Mg:
5318(9) = () ! 7(11)611: :: Q—R:
(2) u, € CHO\D)

(4.26)

Clearly, £!_(2) is an algebra over R with respect to the termwise operations on sequences
of functions. Following (4.16) and (4.17), we introduce the ideals

V 2e€Q:
1 VeV, NeN:

R l
Iy =« (un) € E,.(Q) vV neN n>N: (4.27)
u,(y) =0, yeV
and
4 I'e Mg:
T, =< (uy) €EL(Q)|V neN: (4.28)
up(x) =0, xe€Q\T
Lemma 4.5. For each | € N,
4 I'e My
V 2e€Q:
T4+ T =S (up) €& 3 VeV, NeN: : (4.29)
V neN, n>N:
Proof. Let (u,) be a sequence in E. . Then
(un) € Tt + T, <= (u,) = (a,) + (b,) for some (a,) € Zt and (b,) € T.,
3 I'e My
V ze:
~— | d VeV, NeN:
V neN, n>N:
un(y) =0, yeVN(Q\D)=VAT
Hence
4 I'e M,
V ze€Q:
T4+ T =S (un) €EL(Q)| 3 VeV, NeN:
V neN, n>N:
U’n(y)zoa yEV\F
0
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Define the algebra A!_(Q) as
Ae(Q) = Eoe/ (T + T (4.30)
Since
£e(Q) € Ee(Q) and T+ 7T, C Tj + I, (4.31)
whenever [ > k, it follows that
Tt Aoe(Q) S ut (T + T,) = u+ (T + Io,) € Ag(Q) (4.32)
defines an algebra homomorphism. By setting
3 I'heMp:
V 2€Q:
DP(u,) =< (v,) €EE ()T VeV, NeN: (4.33)

V neN, n>N:

vn(y) = DPun(y), y €V \(I'UTly)

for each (u,) € £.(Q) and |p|,k < I, where I' € My is the set associated with (u,)

through (4.26), we obtain a relation

Dv: L) = E5(Q), k+lpl <t

Proposition 4.6. For (u,), (u),) € E..(Q) and |p| + k < I, the following are true.

(i) D?(u,) — DP(u,) C Ik + TF.

(i3) If (v,) — (wy) € Ik + TE | for some (v,) € DP(u,) and (w,) € EE(Q), then (w,) €

Dr(uy,).

(i4i) aDP(u,) + BDr(u.,) C DP(au, + [u)

Proof. (i) Let (v,) and (w,) be sequences in DP(u,,). Then according to (4.33),

3 I't e My :

V ze€):

4 VieV,, NieN:

V neN, n>Np:

Un(y) = DPun(y), y€Vi\([T'UTY)

and

= FQEM(]:

V ze€Q:

4 VoeV,, N, eN:

V neN, n>Ny:

wy(y) = DPun(y), ye€ Va\(I'UTly).
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(iii)

where I" € M, is the set associated with (u,) through (4.26). Let Iy = I'; UT'y and
v = v; + vy. Then

V 2€Q:
V neNn>max{Ny;, No}:
Un(y) — wn(y) = DPun(y) — DPun(y) =0,
Thus (v,) — (w,) € ZE + IF which implies that D (u,,) — D?(u,) C Ik + ZF .

Let (v, — w,) € I, + I, for some (v,) € DP(u,) and (w,) € X (Q). Let Ty € M,
be the closed nowhere dense set associated with (v, — w,,) through Lemma 4.5, and
let I'y; € My be the closed nowhere dense set associated with (v,) through (4.33).
Let 'y =Ty UTs. Fix € Q). Then by Lemma 4.5, there exists V} € V, and N; € N
so that

v(y) —wn(y) =0, ye V\Iy, n>N.

By (4.33) there exists V5 € V, and Ny € N so that
vn(y) = DPun(y), y € Va\(L'UL2) n > No,

where I' € My is the closed nowhere dense se associated with (u,,) through (4.26).
If N =max{Ny, No} and V =V, N5, then

DPun(y) = wa(y) = va(y) —waly) =0, y € VA ('UTy), n =N,
so that w, (y) = DPu,(y), y € V\ ([ UTy), n > N. Hence (w,) € DP(u,).

Let (v,) € DP(u,) and (v),) € DP(u!). Then there exists I';, T'y, € My, so that for
every x € () there exists Ny, N, € N and Vi, V, € V,, so that

vn(y) = DP(u,)(y), y € Vi\(TUTY), n> N,
and

U, (y) = DP(uy)(y), y € Vo \ (I"UT), n> Ny,

where I', IV € M, are closed nowhere dense sets associated with (v,) and (v),),
respectively, through (4.26). Hence, for «, 5 € R,

av,(y) = aDP(u,)(y), y € Vi \ (T'UTY), n> Ny,
and
Bu,,(y) = BDP(uy,)(y), y € Vo \ (I"UTy), n> Ny
Thus
avn(y) + By (y) = aDP(u,)(y) + BDP (uy,)(y) = DP(au, + Buy,)(y),
Yy c (Vi N ‘/2) \ ((F U F,) U (Fl U Fg)), n Z maX{Nl, NQ}

which implies that
a(v,) + B(v),) € DP(au, + ful,).
Therefore
aDP(u,) + BDP(ul) C DP(au, + Bul,).
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In view of Proposition 4.6 above, we have the following.
Proposition 4.7. For all ,k € N and p € N s0 that |p| + k <
DP: A(Q) D (un) + (T +TL,) — Dr(u,) € A%(Q) (4.34)
is well defined and linear. Furthermore, (4.34) satisfies the Leibnitz rule

D? (((un) + (Zp + o)) ((0n) + (T + L))

-y < b ) DY (1) + (T + T1)) DY((0s) + (T + TL,))

q<p
Proof. That (4.34) is well defined and linear follows immediately from Proposition 4.6.
To see that the Leibnitz rule holds, consider

(un) + (T + Zae)s (vn) + (T + Tae) € Aue().
Then by (4.33) and (4.34),
D? (((un) + (T + Zoo)) (vn) + (T + L)) = DP((wnvn) + (T + L)) = DP(tnvn).
Let (w,) be a sequence in DP(u,v,). According to (4.33),

Fl € MO .

rzeN:

VeV, NeN:

neN, n>N:

wy(y) = DP(unvn)(y) = 3 < P ) DP=u, (y) D, (y), y eV \(TUTy)

a<p \ 4

where I' € M, is the set associated with (u,v,) € &L () through (4.26). This implies,
since DP satisfies Leibnitz rule, that

FleMoi
r e Q:

VeV, NeN:
neN, n>N:

wnl) = (1) D)D), eV EUT)

q<p

<C W <C Wl

< W <C W

so that for p, ¢ € N" the sequences DP~9u,, = wj, and D%, = w; for some sequences (wy,)
and (w!) in DP~4(u,) and D4(v,) respectively. Thus we have that

Dr(upvy,) = Z ( p ) Dr—=ay,, Div,,.

q
9<p
Hence according to (4.34) we have
D? (((un) + (T + o) ((0n) + (T + L))

_ ( b )mun@)mnw)
_ ( ; ) D () + (T + TL)) D ((w0) + (T + TL).

This completes the proof. . . O
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Theorem 4.8. -
Age = {AL(Q), AL ().} |1, keN, <1}

is a differential chain of algebras of generalized functions with ~yi defined in (4.32).

Proof. The commutativity of the diagram
I

AlL(9) T - Al ()

v A (4.35)

Ase(Q)

with h < k <[ follows immediately from (4.32).
Now consider the diagram

Afze(Q) Dp . A’cie(Q)
o o (4.36)
Al o) — - A¥(0)

with I’ <1, ¥ <1, |p|+k <l and |p|+ k" <I'. The commutativity of the diagram follows
immediately upon noting that for (u,) + (Z4 +Z.,) € A’ (Q),

D((wn) + (T + Toe)) = (vn) + (T + I
for any member (v,,) of the set DP(u,,). O

We now consider the embedding of the distributions into the chain A,.. A first result
in this regard is the following

Proposition 4.9. For each | € N, there exists an injective algebra homomorphism

cl Q) — AL () (4.37)
such that the diagrams
l
AL (Q)—— Tk ~AE(©)
(4.38)
CH() < - CH(Q)
and
Al () —D" ~ Ak (Q)
(4.39)
() Dr - CH(Q)

commutes, for all k <1 and |p| +k <1 resnectivelu
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Proof. The existence of the injective algebra homomorphism (4.37) follows immediately
from
Uy C E,.(Q), U N (T + T, = {0},
In particular, we obtain (4.37) by setting
CHQ) s ur A (u) + (T + I..) € AL (Q)

where A% (u) denotes the sequence in CHQ)N C & () with all terms equal to u. The
commutativity of the diagram (4.38) now follows immediately from (4.32).

Since for u € CYQ), and |p| + k < I, DPAR(u) = AX(DP(u)), it follows that the
diagram (4.39) commutes. O

Next we consider the embedding of D’(£2) into A .. In this regard we have the following.
Theorem 4.10. Assume that Q0 is convex. For each | € N, there exists a linear injection
Bl D/(Q) — AL (Q)
with the following properties.

(i) The diagram

AL (9) = - AE(Q)
BN B (4.40)
D'(Q2)
commutes, for all k <.
(ii) The diagram
AL (@) AL ()
D(Q) Dr - D'(Q)

commutes whenever k + [p| < I.

(iii) E'_ is an algebra homomorphism when restricted to C*(2) C D'(2). In particular,

the diagram
!

E . N .Al
\ / "

commutes for each | € N, with the algebm homomorphism C®(Q2) < AL _(Q) the

restriction of EF : C/(Q) — AL (O) #0 C=(O) . CH(Q).
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El

(iv) E!_ is not an algebra homomorphism when restricted to C'(Q) C D'(Q). In particu-
" A ()

lar, the diagram
D'(5)
\ / (4.43)
CY

does not commute, with the embedding C'(Q) — A'_(Q) given by Proposition 4.9.

)
Proof. According to Theorem 4.3, there exists a linear injection

EX . D'(Q) — AX(Q)

such that the diagrams

EOO
D'(Q) e A2 ()
C < (4.44)
C=(Q)
with O — A%((2). given in (4.22), and
Az (@) SA(Q)
B b (4.45)
D(Q) D’ - D'(Q)

commute for all pe N”.
For each [ € N, let

Eoe : D'(Q) 5 T = 7*(E2(T)) € AZ(Q).

Note that 7 : AX(Q) — Al _(Q) is injective if and only if (Z, + Z.,) (N EX(Q) =
(I8 +I2°). To see this, let (ZL+ZL. ) N EX(Q) = (ZF+Z2°). Then for any (u,), (v,) € £,
we have that

Yoo ((un) + (I + I2)) = v ((va) + (T3 + Z32))
= (un) + (T + Io.) = (va) + (T + I,
= (un) — (va) € (T +I,).

Since (u,) — (v,) € E2, it follows that (u,) — (v,) € (ZL +ZL )N EX(Q) = (T + I2).

ae’
Thus (u,) + (ZF + I2°) = (v,) + (TX + T Hence ~_ is injective. Conversely, let v._
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7

be injective. Take (u,) € (Zg¥ +Z2) N EX

ae?

and since 7 is injective, the inverse image

of (un) + (Z4 +ZL,) in AL (Q) is (u,) + (Z& + Z2°) in AZ(Q) so that (u,) € (T4 +ZL,)

implies (u,) € (Z + Z5°) Thus

(Tp +Toe) N S50 € (T + T37)-
From (4.31) we deduce that

Ex(Q) CEL(Q) and Ty + T2 CIp+1,,

Therefore, from (4.46) and (4.47) we have that

(Tp +Toe) N S3% = (T8 + I32).
We now show that the results in (i) - (iv) hold.

(i) It follows from Theorem 4.8 that
v o =~ whenever k <.

Hence for k <
o B, = El,

(ii) It follows from Theorems 4.3 and 4.8 that the diagram

DP

A () AL ()
U e
B, Az Y & e
Eg B
D) Dr D(Q)

commutes whenever |p| + k < [. Thus the result follows.

(iii) This follows immediately from Theorem 4.3.

(4.46)

(4.47)

(iv) Suppose that, for some [ € N, E!_ is an algebra homomorphism when restricted
to CY(Q)) € D'(Q).4 Since 7° : AX(Q) — AL (Q) is injective, it follows from (i)
that E2° is an algebra homomorphism when restricted to C'(2) < D’(Q) This is
impossible by Corollary 1.27. Therefore E!_ is not an algebra homomorphism when
restricted to C'(2) € D'(Q2). The fact that the diagram (4.43) does not commute

follows immediately.
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4.3 Functions with Nowhere Dense Singularities

In this Section, we consider the embedding of the spaces MEZ(Q) into the chain of algebras
of generalized functions considered in Section 4.1. We also consider the questions of wether
or not the embedding introduced here is compatible with the embedding of distribution
into the chains A,4 and A, as discussed in Section 4.1.

4.3.1 Embedding ML'(Q) into A4
For each [ € N and u € ML), there exists I' C Q closed and nowhere dense so that

ue CHQ\T) (4.49)

Applying Theorem 3.5, we find for each n € N a function ¢,, € C*°(£, [0, 1]) so that , for
each = € (),

3 ygel:
(P 1 )= o0 430
and
V yel:
Thus u, = ¢p,u € C'(Q) satisfies
J yel: )
= up(x) =0 4.52
(P 1 es ) 452
and
vV yel:
( T@_m>l)=:uwm:m@. (4.53)

for each = € €.
For each u € ML (Q), let

4

3 T C Q closed nowhere dense : )
(1) weCYHQ\T):
(2)VaeOT:

dV eV, NeN:
VyeV, n>N:
\ un(y) = u(y) )

T, =< (u,) € CYQ)N > . (4.54)

In view of the construction (4.50) - (4.53), Z, is non-empty for each u € ML'(Q). We will
use the following properties of the set Z, to construct the desired embedding of ML'(Q)
into AL ,(€2).

Proposition 4.11. The following is true for all u,v € ML(Q).

i) If (u,) € Z, and (v,) € Z,, then (un N e T .
() 4 (un) (v) © University of Pretoria
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(i1) If (u,) € Z,, and (vy,) € L, then (au, + Bvy) € Lauspo, for all a, [ € R.

(1ii) If (un), (ul,) € I, then (u, —ul) € Z,q4.

(iv) If (u,) € T, and (v, — v,) € Lnq for some (v,) € CHQ)N, then (v,) € I,.
(v) DY) C Tpuqay for all Jp] < 1.

(vi) If T, NI, # 0, then u = v.

Proof. (i) Let I'p,I'y C € be the closed, nowhere dense set associated with (u,) and

(vn) respectively, through (4.54). Then I' = 'y UT' is closed and nowhere dense and
u,v € CH(Q\T). Fix z € Q\ I'. Then according to (4.54), there exists Vy, Vi € V,
and Ny, N1 € N so that

un(y) = u(y), y€Vo, n>Ny

and
v(y) =v(y), yeVi, n> N

Hence the result follows upon setting V' =V, N V; and N = max{Ny, N;}.

(ii) The proof of (2) follows in the same way, and is therefore omitted.

(iii) Let T'o,I'y € €2 be the closed nowhere dense set associated with (u,) and (u])
respectively, through (4.54). Let I' = Iy UT';. For € Q \ I there exists, according
to (4.54), neighbourhoods V4 and V; of x and natural numbers Ny and N; so that

un(y) = uy), y€Vo, n>Ny

and
v(y) =v(y), yeVi, n> N

Setting V =V, NV}, and N = max{Ny, N}, we find that
un(y) —vn(y) =0, yeV, n>N.
Since V' is open, it follows that
DP(un(y) —vn(y)) =0, y €V, n= N, |p[ <L
Hence (u, —v,) € I,

(iv) Since (u, — v,) € Z!,, it follows from (4.1) that there exists Ty C Q closed and
nowhere dense so that

V ozeO\ly:

3 VoeV,,NgeN:

V yeVy, n> Ny:
un(y) — va(y) = 0.

(4.55)

Let I'y C €2 be the closed nowhere dense set associated with (u,) through (4.54).

Let ' = o UT;. Then u € CHO\N T and aceording to (4.54), we have for x € Q\ T
© University of Pretoria
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an open neighbourhood V; of x and a natural number /Ny so that Setting V' = VyNV;
and N = max{Ny, N;}, we find that

un(y) = uly), yeV, n=N.
Since z € Q\T' C Q\ Ty, (4.55) applies so that
vn(y) = uly), yeV, n=N.
Hence (v,) € Z,,.
(v) Let I' € Q be the closed nowhere dense set associated with (u,) through (4.54).
Then DPu € CP(Q\T) and for each z € Q\ T there exists V € V, and N € N so

that
un(y) =uly), yeV, n>N.

Since V' is open,
DPun(y) = DPu(y) = D*uly), y€V, n=N.
Hence (DPuy,) € Zpp(u)-

(vi) If Z, N Z, # 0, then it follows from (4.54) that u(x) = v(z) for all x in some open
and dense set D C €). Proposition 2.41 now implies that u = v.

O
Theorem 4.12. There exists, for each | € N, an injective algebra homomorphism
H o MLHQ) — AL ()
so that the diagrams
Mo  MLE(Q)
H,, Hy, (4.56)
A () — ()
and
ML (Q)—FC ~MLE ()
H,, Hh, (4.57)
!
Ana(©) . ~Ana(2)

commute for k + |p| < land k <1, respectively.

Proof. 1t follows from Proposition 4.11 (iii) and (iv) that Z, is an Z! ;-equivalence class
for each u € ML'(2), so that

H ML) s u— T, € A L(Q)

is well-defined. It follows from Proposition 4.11(vi) that H!, is injective,while proper-
ties (i) and (ii) of the same proposition imply that H!, is an algebra homomorphism.
Proposition 4.11 (5) implies the commutativity of the diagram (4.56), while the com-
mutativity of diagram (4.57) follows immediately from the definitions of the respective

algebra homomorphisms. o ] O
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4.3.2 Embedding ML'(Q) into A,

We now deal with the embedding of ML'(Q) into the chain A, introduced in Section
4.2. We consider the particular case where My = {I' C Q : T closed nowhere dense }.
In this regard, we have the following

Theorem 4.13. For each | € N there exists an injective algebra homomorphism

H. :MLN(Q) — AL (Q) (4.58)
so that the diagrams
ML (Q)—E ~MLF ()
H,, H, 459)
!
AL (@) AL ()
and
ML(Q—D" - MLF(Q)
i, e, (60
A )2 AL ()

commute whenever k <1 and k + |p| < [ respectively.

Proof. Let u € ML) for some [ € N. Then there exists I' € Mg so that u € CY(Q\T).
Let

F()EM(]I

xel:

Vev, NeN: (4.61)
neN, n>N:

un(y) =uly), yeV\(IUly)

It follows from Lemma 4.5 that (u, — v,) € I + Z._ for all (u,), (v,) € A,.

Assume that (u, — v,) € Zt + Z._ for some (u,) € A, and (v,) € ... Let T'; be the
closed nowhere dense set associated with (u, — v,) through Lemma 4.5, and let I'; be
the closed nowhere dense set associated with (u,) through (4.61). Let I' = I'y U Ts. Fix
x € 2. Then by Lemma 4.5, there exists V; € V, and N; € N so that

Ay = (un) € 5(l16<Q)

<C W <€ W

un(y) —vn(y) =0, ye V\I, n>Ni.
By (4.61) there exists V5 € V, and Ny € N so that
un(y) —uly) =0, y€Va\(I'UTy), n=>N,.
If N =max{Ny,No} and V =V, N V5, then

Un(y):“(“\ 2w e VAT n> N,
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so that (v,) € A,. It therefore follows that A, is an Z,, + Z! _-equivalence class so that
H., ML) s>u— A, €A, (4.62)

is well defined. That H!_ is an algebra homomorphism follows immediately upon noting
that
AuAv g Auw Aau+,6’v - aAu + ﬁAv

for all u,v € ML(Q) and «a, § € R. Indeed, if (u,) € A, and (v,) € A,, then there exists
I'1, 'y € Mg so that for every x € ) there exist Ny € N and Vi, V, € V,, so that

un(y) = uly), y € Vi\ (T UT), n> Ny,
and

vn(y) =v(y), y € Va\ (TUT), n> N,
where u € C/(Q\ T') and v € C/(Q2\ T”). Hence

un(Y)vn(y) = w(y)o(y), y € (Vin Vo) \ (FUT) U (1 UT,)), n>max{N;, Na}.

Thus (u,v,) € Ayy. The second inclusion follows in the same way. In order to show
that H!_ is injective, it is sufficient to show that, for u,v € MLYQ), u = v whenever
A, NA, # 0. Suppose that u € C{(Q\T) and v € C{(Q\ ) for some ', TV € M.
According to (4.61) thre exists I'g, 'y € M, so that for each x € Q) there exists V1, V, € V,
and Ny, Ny, € N so that

wy(y) =u(y), ye Vi \ (TULy), n >N,

and
wy(y) =v(y), y € Vo \ (I"UTY), n > Ns.

Hence u(y) = u,(y) = v(y) whenever n > max{N;, No} and y € (ViNV,)\ (TCUT")U(TqU
I'y). Thus v = v on an open and dense subset of {2so that u = v on by Proposition 2.41
The commutativity of the diagram (4.59) follows immediately from (4.32) and (4.62). To
see that (4.60) commutes, fix &,/ € N, [ > k and p € N” so that |p| + & < I. Then for
u € MLY(Q), it follows from (4.34) that

DP(Hp,(u)) = DP(un) = D*((un) + Iy + Io,)
for any (u,) € A,. But from (4.61), (4.33) and (4.62) that
Hy, (DPu) = Appy = DP(un) = DP((un) + Ipp + Zo,)
for any (u,) € A,. Therefore the diagram (4.60) commutes. O

We now consider the compatibility of the embedding of D’'(€2) into A,. obtained in
Theorem 4.8 with that of ML'(Q) discussed in Theorem 4.13 above. In this regard, let

MLLUOY = MrioynT! (Q).
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So that ML (Q) C D'(Q) and MLL(Q) € ML(S). As we show next, the commutativity
of diagram
El
D'(9) N A ()

c HL (4.63)

MLy ()
fails in a dramatic way.
Theorem 4.14. For each | € N, the following is true.
(i) The diagram (4.63) does not commute.
(ii) If 1 > 1, then there exists u € MLL(Q) so that
DP(Ege(u)) # D" (Ho,(u) in Ag (Q)
for some p € N™ with |p| = 1 and all k € N such that k < I.

Proof. (i) Since CY(Q) € MLL(Q) is a subalgebra of ML'(Q), the result follows imme-
diately from Theorem 4.10 (iv).

(i) Fix a = (a1, ,a,) € Q. Let T' = {x € Qlz; = a1}. Then ' € My, so that
u : 2 — R defined by
O i <oy
U<I>—{ 1 if x> aq }

belongs toM L§(Q) for every | € N. Furthermore, DPu = 0 for every p € N*. Thus
DP(H! (u)) =0in A* (Q), for all [p| =1 and k <. But for k <[ and |p| =1,

DP(Egou) = Ego(DPu) # 0 in Ag, (),

since DPu # 0 in D'(Q) and E!, is a linear injection.
[

In view of Theorem 4.14, a function u € ML,(Q) may have at least two distinct
representations in the algebra AL _(2), namely, £ (u) and H!_(u). These representations
are different in the sense that

Eqe(u) # Ha,(u)

and more generally,
DP(Bqe(u)) # DP(Hqe(u))

for some p € N" and all k so that k£ + |p| < [. In particular, the heaviside function

u € MLL(R) given by
() = 0 if <0
B O
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has representations H. (u), E. (u) € A (R), | € N, for which

a l _ a l _ : k
axHae(u) - 07 aane(u) - 5 7é 0 in Aae(R)

for all I € N and k + 1 < [. Therefore u is a chain generalized solution of the equation

ou
— = 4.64
5~ 0 (4.64)

in the chain A,.. In particular, u is a generalized solution of (4.64) in the algebra A (€2).
Clearly, u is not a generalized solution of (4.64) in the sense of distributions. It follows
that a generalized solution u € ML (€2) of a linear or nonlinear PDE

T(x, Dyu(x) = f(x)

in A2(€2) such as those given by [73, Theorem 10], may fail to be a solution in the sense
of distributions.

4.4 NL'(Q) and Nowhere Dense Algebras

In this section we show how the chain A, is related to the chains A,; and A,. considered
in Section 4.1. It is shown how the existence result for chain generalized solutions of

nonlinear PDEs in A,., Theorem 3.10, leads to corresponding existence result in the
chains A,z and A,..

4.4.1 The chain A, and A,

In order to establish the relationship between the chains A,. and A,,, we introduce an
auxiliary chain AY,. In this regard, we note that

T, cTI, cS!

cs?

leN. (4.65)

Indeed, for each (u,) € Z', there exists I' C Q closed and nowhere dense such that

V zeQ\T:

3 NeN:

V n>N, |pl<lI:
DPu,(x) =0

Thus (u,,) converges to 0 pointwise on an open and dense, hence residual, subset of €. It
follows from Proposition 3.4 that (u,) € Z',. Since Z! , is an ideal in C'(Q)N, it is also an
ideal in S!,. Furthermore, the inclusions,

l k l k
Ind - Ind’ Scs g S

cs)

C k<l
and

DY(T,,) C T8, DPIS' C SE o [p 4k <
© University of Pretoria
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imply that
ALy = {A(Q), A5(Q) Lk EN, k<)
with A4(Q) = S, /7!, and ~% defined as
Y ANQ) D (un) + Thy = (un) +Ihy € AF(Q) k<1 (4.66)

is a differential chain of algebras of generalized functions. The way in which A, is related
to A,q is given in the following

Theorem 4.15. For each | € N then there exists an injective algebra homomorphism
H': Ag(Q) — A,,()
and a surjective algebra homomorphism
G ALQ) — NLYQ)
such that the following hold.
(i) The diagrams

Ay() —L L)
" " (4.67)
As()—1 AL ()
and
AL(Q) ¢! NL(Q)
o o (4.68)
Ak () Gt NLHQ)
commute for all k < 1.
(ii) The diagrams
Ab(9) Dr - AB(9)
2 7k (4.69)
A () AL ()
and
A(Q) D A(Q)
ol ok (4.70)
Nl P° N LE(Q)

commute whenever k+ |p| <1 )
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Proof. For each | € N define H' and G' as

H = ALQ) 2 (up) + Ty (un) + T, € ALL(Q) (4.71)
and

G' AL D (uy) + T8y = (up) + T, € NLYQ) (4.72)

H' is well defined since S', C CY(Q)N, while G! also well defined since 7', C Z.,. Clearly
H' is injective, and G! is surjective.

The commutativity of the diagrams in (i) follows immediately from (4.66), (4.71) and
(4.72) as well as the definition of the algebra homomorphisms

i AL(Q) — AR (Q) k< (4.73)
and
L NLHQ) — NLF(Q) (4.74)

see (4.2) and (3.19).

The commutativity of the diagrams in (ii) follows in a similar way taking into account
the definitions of the differential operators in the algebras Al ,(Q), AL(Q) and N L' (),
respectively. O

As shown in Sections 3.3 and 4.3.1, each of the algebras A', and N'L' () contain
MLY Q) as a subalgebra. In particular, there exists injective algebra homomorphisms

H. : MLY(Q) — NLY(Q) (4.75)
and
H , MLHQ) — AL L(Q) (4.76)
so that the diagrams
o
NLI(Q) “NLH(Q)
Htl)c Hk
MLYQ) S MLE(Q)
(4.77)
H!, Hy,
!
’y \
ALy(©) ‘ Ak ()
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and
Dp
L) )
Héc Hk
MLY(Q) D - MLE(Q)
(4.78)
H, H,,
Dp 3
Abg(9) ALy (9)
commute whenever k£ <[ and k + |p| < [, respectively.
A trivial modification of Theorem 4.12 yields the following
Proposition 4.16. For each | € N, there exists an injective algebra homomorphism
I ML Q) — AL(Q)
such that the diagrams
i
Ap(9) "A5(92)
I \; (4.79)
MLYQ) S ~MLF(Q)
and
3\ Dp
Ab(€) mAG(R)
I Tk (4.80)
ML) Dr -MLH(Q)

commute, whenever k <1 and |p| + k < [, respectively.
As we show next, the homomorphism
H' : ALQ) — AL ()

and

G ALQ) — NLYQ)

leave ML'(Q) invariant. o )
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Theorem 4.17. The following diagrams
3\ Hl
Ab(€2) "ALa()
\ - (4.81)
ML Q)
and
Gl
Ab(€) "NL(Q)
\ o (4.82)
ML Q)

commute for all | € N.

Proof. For each u € ML),
To(u) = (un) + g

where (u,) € CH(Q)N C S, satisfies
vV xe Q\I':

4 VeVy, NeN:
V neN, n>N:

un(y) = uly), y € V.

(4.83)

where I' C € is closed, nowhere dense set so that u € C'/(Q\I'). Likewise, the map H' ,(u)
may be expressed as

H}y(uw) = (uy) + I}y

where (u,) € CH(Q)N satisfies (4.83). Clearly, (u,) € S, for any (u,) € C' ()" that
satisfies (4.83). Thus the commutativity of (4.81) follows from the Definition 4.71 of H'.

Since any sequence (u,) € C'(Q)N that satisfies (4.83) converges to u € ML'(Q) with
respect to A;, the commutativity of (4.82) follows the same way as that of (4.81), taking
into account the definition (3.25) of H... O

4.4.2 The chain A,. and A,

We now consider the relationship between the chain A,. and A .. In this regards, we note
that

=L+ )ncQNcT. cS., 1eN
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Indeed, for (u,) € Z} there exists, by Lemma 4.5, a closed nowhere dense set I' € M, so
that

V ze€:

3 VeV, NeN:

V neN, n>N:
un(y) =0, ye V\I.

Hence (u,) converges point-wise to 0 on the open and dense set Q\ T so that (u,) € Z.,.
Furthermore, the inclusions

ILc1k, S, .cst

cs)

l, keN (4.84)
and
DP(T}) C Iy, D*(S.) C Sk, k+Ipl <l (4.85)

hold. Therefore
Age = {(szev Bsefyllc)m ke N’ k< l}

is a differential chain of algebra of generalized functions, where
Bao(Q) = Se./ T
and
Vit Boe(Q) 3 (un) + I = (un) + I € B (Q) (4.86)
for all [,k € N with k& < [. The differential operators are defined in the usual way, that is
DP: BL () > (u,) + Th = DP(u,) +Zo € BE(Q), |p|+k <1

Theorem 4.18. For every | € N there exists an injective algebra homomorphism

Foe: Boo(Q) — A ()
and a surjective algebra homomorphism

Gl Boe(2) — NLI(Q)
so that the following hold.

(i) The diagrams

Fl
BL.(Q) - AL ()
o L (4.87)
Fk
r(Q) “ Al ()
and
Gl
B..(€) "N L)
3 3 (4.88)
Gk
r(Q) “ N L)

commute for all k <. o )
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(ii) The diagrams
B B, ()
. R (459
A (@ AL ()
and
B B, (9)
Gl Gk, (4.90)
NL(Q) D? NLF(Q)

commute whenever k + |p| < 1.

Proof. For each [ € N define algebra homomorphisms F!, and G!_ as
Foe : Boo(Q) 3 (un) + Iy = (un) + (T + Tac) € A () (4.91)
and
Ghe : Bo(Q) 3 (un) + I — (un) + I, € NLY(Q). (4.92)

Since St, C CY(Q)N C &, and Z, C (T}, + Z..) it follows that F!, is well defined. Also G',
is well defined since Z) C Z.,. The mapping F!, is injective since Z} = (ZL + Z!.) N S,
which implies that {(u,) +Z} € B, | F..((u,) +Z}) = 0} = {0}. G', is surjective since

T, C 1.

The commutativity of the diagrams in (i) follows immediately from (4.86), (4.91) and
(4.92) as well as the definition of the algebra homomorphisms

AL Q) — AR (Q) k< (4.93)
and
P NLYHQ) — NLF(Q) (4.94)

given by (4.32) and (3.19) respectively.
The commutativity of the diagrams in (ii) follows in a similar way taking into account

the definitions of the differential operators in the algebras AL (), B (Q) and N L'(Q)
respectively. O]

As shown in Section 4.3.2, if M, consists of all closed nowhere dense subsets of €2,
then each of the algebras Al (Q) contain MLY Q) as a subalgebra. In particular, there
exists for each [ € N an injective algebra homomorphism

H ML) — AL(Q) (4.95)
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so that the diagrams
i
Ve N L)
Héc Hk
MLYQ) S ~MLF(Q)
(4.96)
H! HF
Y ’)/l Y
A () : - AG()
and
DP
NE'©) NLHO)
Htl)c Hk
ML(Q) Dr - MLH(Q)
(4.97)
H! HF
Y Dp Y
Abe() Age(9)

commute whenever k < [ and k + |p| <[ respectively, where H'_ is defined by (4.75).
In view of Theorem 4.13 we have the following

Proposition 4.19. Assume that My, = {I' C QIT' is closed nowhere dense}. Then for
each | € N, there exists an injective algebra homomorphism

such that the diagrams

H., : MLY(Q) — BL(Q)

l

BL.(%) = ~B.(Q)

H! HE, (4.98)
MLYQ) S - MLF(Q)

and
DpP

B..(%) ~B;.(Q)

H, HE (4.99)
ML(Q) Dr - MLH(Q)

commute, whenever k <1 and |p| + k <1 resnectinelu
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We note that the algebra homomorphism
Hy,o(u) : MLY(Q) — By, (Q)
is obtained by setting
Hyo(u)(u) = (un) + I

where (u,) € 8., is any sequence satisfying (4.61). The existence of such a sequence is
guaranteed by Lemma 3.6.
We now show that the homomorphism

Fae : Bo(Q) — A (Q)

and
Gl BL () — NLY(Q)
leave the subalgebra ML'(Q) of B! () invariant.

Theorem 4.20. Assume that My = {I' C Q| is closed nowhere dense . Then the dia-
grams

Fl
B..(9) - "AL ()
H H, (4.100)
MLY Q)
and
Gl
B, () - NL'(Q)
H H. (4.101)
MLYQ)

commute for all | € N.

Proof. The proof is similar to that of Theorem 4.17 which we outline below.
For each u € ML (Q),
To(w) = (un) + oy

where (u,) € CH(Q)N C 8., satisfies

V ozeQ\I':
4 VeVy, NeN:
V neN, n>N:

un(y) = u(y), y € V.
© University of Pretoria
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where I' C 2 is closed, nowhere dense set so that u € C/(Q\I'). Likewise, the map H'_(u)
may be expressed as

H(lze(u) = (un) +Iqlzd

where (u,) € CH(Q)N satisfies (4.102). Clearly, (u,) € S, for any (u,) € CY(Q)N that
satisfies (4.102). Thus the commutativity of (4.100) follows from the definition (4.91) of
F!.

Since any sequence (u,) € C'(Q)N that satisfies (4.102) converges to u € ML (Q) with
respect to A\;, the commutativity of (4.101) follows the same way as that of (4.100), taking
into account the definition (3.25) of H! . O

4.4.3 Chain generalized solutions in A,; and A,

In this section we show how the existence result for chain generalized solutions of nonlinear
PDEs in A,. given in Theorem 3.10 leads to corresponding existence results in the chains
A,. and A, 4, respectively. In this regards, consider a polynomial nonlinear differential
operator

T=)Y a) [[ D, zeq (4.103)

1<i<h 1<j<k;

where h,k; € N, ¢, € C*(Q) and p;; € N" satisfies |p;;| < m foralli =1,---,h and
j=1,--- k. For f € C*(Q) we show that, under a mild assumption on the operator T’
the polynomial PDE,

Tu=f. (4.104)

admits a chain generalized solutions in A, 4 and A,. respectively.
We deal first with the case of solutions in A,4. In this regard, it is clear that

(1) C Iy
whenever k + m <[ and, obviously,
TC(QY) c MY, k+m <

Therefore, since Z! , is off diagonal, (u,) — (v,) € Z!, which implies (Tu,,) — (tv,) € Z¥,,
see Section 1.6, so that

Toa s ALg(Q) 3 (un) + T = Tlun) + Iy € Apy(Q) k+m <1

defines an extension of

T:CY Q) — C*(Q),
for £k +m <. In the same way,
T : NLYQ) 3 (up) + TL, = T(un) +ZE e NLF(Q), kE+m <1
and
Ty : AL(Q) 3 (up) +Zhy = T(up) +I%, € AN Q) k4+m <1

defines an extension of T : CY(Q2) — C*(O) _
© University of Pretoria
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Proposition 4.21. The diagrams
T
Ay() ; A(Q)
F, F*, (4.105)
Ty
Ana(©) 4 ~Ana(€2)
and
T
Ay() ; A(©)
G G" (4.106)
l \ Toc k
NL(Q2) NLF(Q)

commute whenever k +m < I, with F', and G', the algebra homomorphisms obtain in
Theorem 4.12

Proof. ¥or u = (u,) + I}, € A with k +m <1,
Tra(Fra(w)) = Tha((n) + T,)
=T(uy,) +IF,
and
Fr(To(u)) = Fyg(T(un) + Ip,)
= T(uy) + Iy

Hence (4.105) commutes. The commutativity of the diagram (4.106) follows in the same
way. L]

Theorem 4.22. If f € C™(R), and the operator T defined in (4.103) satisfies (2.63) to
(2.64) then the PDE

Tu=f (4.107)
admits a chain generalized solution in A,q4.

Proof. According to Theorem 3.12, there exists a chain generalized solution of (4.107) in
A,.. That is, there exists (u,) € S so that u = (u,) + Z., satisfies

for all I,k € N with & 4+ m < [. Since
G, ANQ) — NLYQ)

is surjective for each [ € N, it follows that there exists v = (v,) + Z', € AF(Q) so that
*(v) = u. It follows from Theorem 4.12 and Proposition 4.21 that

To((vn) +I7lld) =f +‘,Z’-7’1€d
for all k,1 € N so that k +m < [. In the same way, it follows that
Foa(v) = (vn) + 1575 € A(Q)

is a chain generalized solution of (4 107) in A_, ) O
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Let us now consider the existence of chain generalized solutions of the PDE (4.107) in
the chain A,.. It is clear that

(un) — (vn) € Ty = T(up) — T(v,) € IY
for all (uy), (v,) € C®(Q)N and k + m < 1. Thus
Ts : B (Q) € (un) + T} — T(u,) +IF € BF(Q)

is a well-defined extension of T': C*(2) — C*(Q), for all I,k € N such that m +k < [.
With each (u,) € £ _(Q) and k € N, we associate the set

F()EM()Z

r€N:

VeV, NeN: : (4.108)
neN, n>N:

Un(y) = Tun(y), y€V\T

Tae(un) = (UTL) € gc]LCe(Q)

< W << w

This gives rise to a relation
gflze(Q) 35 (up) Tae{un) C Efe(ﬂ),
It follows from Proposition 4.6 that

Tae(“n) - Tae(un) g IE‘ + Iclfe

and
(vn) € Tae(un)a ((vn) = (wn)) € Zg +:Z’-c]fe = (wy,) € Tae(un)

for all (u,) € () and [,k € N such that k& + m < I. Therefore,
Toe s AL(9) 3 () + (T + L) - Teltn) € A5, () (4.109)
is well-defined for all k,! € N such that m + k < [. Note that
Tae((n) + (T + Te)) = (vn) + (T + Tae)

where (v,) is any member of the set To.(u,). Since the ideal ZL + T!_ is off diagonal, it
follows that (4.109) is an extension of

T:CHQ) — C*(Q), k+m<IL

Proposition 4.23. For all k,1 € N so that m + k < I, the diagrams

T
B..(2) ° - BL,(Q)
Gl Gk, (4.110)
1rO) T, k
N L) - N LH(Q)
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UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
QA YUNIBESITHI YA PRETORIA

]
NL'(Q) and Nowhere Dense Algebras 96
and
T;
B..(2) : “BE, ()
Fy. Fk (4.111)

AL(©) L - AL ()

commute.

Proof. For u = (u,) + I} € B!, with k +m <,

Toc(Gée@L)) = Toc((un) + Iés)
=T (u,) + I,

and

GfLe(TB(u)) = Gse(TOJ’n) + Ié:)
= T'(un) + (Z¢;)

Hence (4.110) commutes. The commutativity of the diagram (4.111) follows in the same
way. O

Theorem 4.24. If f € C*(R), and the operator T defined in (4.103) satisfies (2.63) to
(2.64) then the PDE

Tu=f (4.112)
admits a chain generalized solution in A,e.

Proof. According to Theorem 3.12, there exists a chain generalized solution of (4.107) in
A,.. That is, there exists (u,) € S so that u = (u,) + Z., satisfies

for all I,k € N with & 4+ m < . Since
G BL(Q) — NLY(Q)

is surjective for each [ € N, there exists v = (v,,) +Z} € B2() so that G2 (v) = (u,) +Z.
It follows from Theorem 4.12 and Proposition 4.23 that

Ts((va) + Ty) = f + Iy
for all k,1 € N so that k +m < [. In the same way, it follows that
Foe(v) = () + I5" € Aj(Q)
is a chain generalized solution of (4.107) in A,.. O

Theorem 4.24 establishes the existence of chain generalized solution in A, for a large

class of PDEs, as demonstrated in the followine )
© University of Pretoria
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Example 4.25. Consider the PDE
Dyu(z,t) Z ci(x H DPiy(z,t), (z,6) e Q=0Q" xR (4.113)

1<i<h 1<j<k;

where Q' C R"! is open, h, k; € N, ¢; € C*(Q) and p;; € N" satisfies |p;;| < m for all
i=1,---,hand j=1,---  k;. The PDE (4.113) can be written in the form

T(z,t,D)u(x,t) =0, (z,t) €

where 0 denotes the zero function on Q. The operator T'(z,t, D) is defined through a
jointly continuous, C*°-smooth mapping

F:QxRMT R (4.114)

as
T(xz,t,D) = F(x,t,u(z,t), -+, DPu(x,t), -, Dyu(z,t)).

where M is the cardinality of {p;; | i=1---h, j=1---k;}. In particular,

F(x,t,& - &vs1) = & — Z H Epij (x,t) e Q=Q xR.

1<i<h 1<<k;

Since the PDE in (4.113) is a linear £, 1, it follows that the range of F' in R is given
by
Rp = {F(xatafl to 7§M+1)|<x’t) S Qv (xut)gl T ’§M+1) S RM+1} =R

Hence Rp is open and F' is surjective. Furthermore, Rp = intRr = R so that 0 € intRp.
Now define the mapping

F* QxR — RV
by setting
F(,t, (Evs)menn) = (FP (2,8, -+ &, i), B € NTH
where, for each 8 € N**! the mapping
FPoQx RV o RV
is defined by setting
DP(T(z,t, D)u(x,t)) = FP(x,t,--- , DPiu(z,t),--- , Dau(x,t)), |py| <m+ |8

for all u € C*(Q). Note that for each 3 € N**! F¥ is linear in at least one factor of
RN 50 that, for B' = nef, F? is independent of this factor. Hence

Vo (z,t) €
3 &(x,t) e RN Fo(x,t,&(x,t) =0
d Ve V(a:,t), W e V.f(z,t) :

F~ .V xWeRY" is open

Thus the PDE (4.113) satisfies (2.64). Therefore by Theorems 4.24, the PDE (4.113) has

a chain generalized solution in A -
© University of Pretoria
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4.5 Space-time Foam Algebras

Recently, see [39, 47, 52, 53, 54, 65], Rosinger introduced so-called space-time foam (STF)
algebras. These are differential algebras of generalized functions which can deal with
singularities that occur on a dense subset of €2, as opposed to the closed, nowhere dense
singularity set used in the nowhere dense algebra A%%(€2). The main motivation for this
work is to provide a mathematical model for space-time foam singularities in general
relativity, proposed by physicists in order to deal with quantum phenomena. Let us now
recall briefly the construction of such space-time foam algebras, see [39, 47, 52, 53|. Let
S be a collection of subsets of §2 such that

Y e6 = Q\Xisdensein (4.115)
and
vV 3, Y e6:
3 Ye6: (4.116)
Yuxcy”

Let L = (A, <) be a right directed partially ordered set. That is,

v MV eA
I NeA
)\’/\/ < N

For ¥ € &, the ideal I,y C C®(Q)" is defined as the set of A-sequences (uy)yen €
C>(Q)* that satisfy the asymptotic vanishing condition

V 2eQ\X:

3 AeA:

V o peNpu>N: (4.117)
V peNP:

DPu,(z) = 0.

Clearly, for all 3, € &, we have
YCY =75 CI.x
so that

Iie = |JZus (4.118)
Xe6

is an ideal in C>(Q)". Based on (4.118), we associate with the collection of singularity
sets the multi-foam algebra

Bres() = C*(Q)* I e. (4.119)

Note that, due to the denseness of 2\ ¥ in Q for each ¥ € &, it follows that the ideal
7. s satisfies the neutrix condition (1.11). Hence

C(Dd3u—sAN_()+Tr e B 0 1190
) © University of Pretoria re(&) ( )
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defines an injective algebra homomorphism where A is defined by. Furthermore, since
D'(Irs) CIrs, peN,
it follows that for each p € N
DP : B s(2) 3 (ux) + Zps(2) — DP(uy) + I € Bres(2) (4.121)
defines an extension of the differential operator
DP : C™(Q2) — C™(Q)

which is linear and satisfy the Leibnitz rule.
If we set
6 =6,={ C Q| T is closed nowhere dense}

then the construction (4.115) to (4.121) above reduces to that of the nowhere dense algebra
°(€2) discussed in Section 4.1.1.
In order to deal with singularities that occur on a dense subset of €2, using the con-
struction (4.115) to (4.121), the collection & of singularity sets must satisfy

1 Ye&:

Y is dense inf?. (4.122)

Condition (4.122) is clearly not satisfied by the collection &,,4, which gives rise to the
nowhere dense algebra A(€2). Given the utility of the algebra A%(€2), in particular when
it comes to the solution of nonlinear PDEs, solutions which may exhibit singularities in
closed nowhere dense subsets of €2, the following is a natural choice.
Let
GBuire—r = {X C Q | X is of first Baire category in 2} .

Clearly, S pire_r satisfies (4.115) and (4.116) so that
BBaire—I(Q) = COO(Q)A/IL,GBMTE,I (4123)

is a differential algebra of generalized functions admitting a canonical embedding of
C*(Q). Since G pyirer satisfies (4.122), it would seem that the algebra Bpgire—1(€2) can deal
with functions admitting singularities on dense subset of €2, in particular, on arbitrary
sets of first Baire category. However, in [65] it is shown that if L = (A, <) is countably
co-final, that is

d Ay C A countable :

vV AeA:

= /\(] S AO :

A< Ao,

then 7p, =17, so that

/GBa'LrefI
BBaire—I(Q) = ;.;C)l(Q)

In this section, we introduced an alternative construction of algebras admitting dense
singularities of a particular form based on the theory of chains of algebra of generalized

functions. o ]
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4.5.1 Constructing differential algebras from differential chains
of algebras

Let
A = {(A(Q), A5Q),70) | Lk e Nk <1}

be a differential chain of algebras of generalized functions . Among the algebras A'(Q)
in A, only A>(2) is a differential algebra. Our aim in this section is to construct, using
the algebras A'(Q), | € N, a differential algebra that is typically larger than the algebra
A>(€2). In this regard, let

AF(Q) = [(A(Q) € A(Q). (4.124)

leN

Since each
7+ A(Q) — A%(Q)

is an algebra homomorphism, it follows that A (£2) is a subalgebra of A°(Q2). Note that
AF(€) is not the trivial algebra {0}, except when 7§°(A>(£2)) = {0}. Indeed, due to the
commutative diagram (1.38), it follows that

0 (A*(Q)) C AF(Q).

Theorem 4.26. Let A be a differential chain of algebra of generalized functions. Let
A (00)(Q) be defined as in (4.124), and assume that v} is injective for all | € N. Then
for each p € N there exists a map

DP - AT () — AF(Q)
so that the following hold
(i) For each u € A(Q), DP(u) =~} (u) for all | € N so that |p| < 1.
(ii) DP is linear and satisfies the Leibnitz rule.
Proof. Since each 7} is injective and the diagram (1.38) commutes, it follows that

V o ue ArX(Q), leN:
3! ulEAl(Q):

4.125
(1) ~ho) = u 12)
(2) Yi(w) = up, k<1
In view of the commutativity of the diagrams (1.38) and (1.39), the diagram
DP
AZ(Q) g Ak(Q k
Jo
gl W A (4.126)
k/
A'(@) D - Ay

© University of Pretoria
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commutes for all p € N* [ > 1" > |p| and k, k" € N so that k + |p| <l and ¥ + |p| < I’
Hence for each u € AP(Q),p € N, I > 1" > |p| and k,k’ € N so that k + |p| < [ and
k' + |p| < U, we have

Yo (DPur) = 75 (DP (ur)) in A°(Q) (4.127)

Thus for each u € AF () and p € N" there exists a unique w € AP () so that
VE(DPuy) =w, 1€N, k4 [p| <L (4.128)
This proves the existence of a map
DP: AF(Q) — AF(Q),
for each p € N, so that Theorem 4.26(i) holds.
For u,v € AF(2) and «, 5 € R,
Yoloaw + Buy) = au + o
so that
(au + pv); = au, + Py
for all [ € N. Thus
DP(au + Bv) = ¥ (DP(au; + Bvy))
= ayy(DPw) + Byg (DPur)

for all [,k € N so that k + |p| < I. Hence
DP(au + pv) = aDP(u) + BDP(v).
In the same way, (uv); = wu; for all | € N. Hence

DP(uv) = 35 (D” (uyvr))

(5 (1) o)

q<p

=5 ()bt

q<p

whenever k + |p| < [. In fact, due to the commutativity of the diagrams (1.38) and (1.39)
we have

D(ue) = X (2 st ool (0t

q
q<p

whenever k,_, + |p — ¢| <l and k, + |q| < (. It therefore follows that
DP(uv) = < p ) DP~ 9y D%

for all u,v € AF(Q). o ) O
© University of Pretoria
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Assuming that ~{ is injective for each | € N, we have obtained a differential algebra
A2 () from the algebras A'(Q2), [ € N, in the chain A. Due to the commutativity of the
diagram (1.38), we have

77 (A™(Q) € AF(Q) € A(Q).

Thus, if 15° : A°(Q) — A%(Q) is also injective, it follows that A (Q) contains A>(£2)
as a subalgebra. Furthermore, due to (1.39), the diagram

\ Dp > 400
A (€) A ()

A=(Q) D - A%(Q)

commutes for all p € N" so that we may view A (Q2) as an extension of A>(Q2). It can
be shown that

% P AT(Q) — AF(Q)
is typically not an isomorphism, so that AZ°(2) is a proper extension of A>(Q).

We now investigate the extent the which properties of the chain A carry over to
the algebra AZ(€2). In particular, we consider the embedding of smooth functions and
distributions into the A (€2) as well as the existence of generalized solutions to nonlinear
PDEs.

Let us consider first the embedding of smooth functions into A ().

Theorem 4.27. Assume that 7 is injective for each | € N. Further assume that there
exists for each | € N an injective algebra homomorphism

C>(Q) — A(Q)

so that the diagram
!

- AS(Q)

AI(Q) Vi
\ / (4.130)
C=(Q)

commutes for alll,k € N with k < l. Then there exists an injective algebra homomorphism

C™(Q2) — AF(Q)

A% () % A(0)
\ / (4.131)
= (9)
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commautes.
If in addition, the diagram
Dr

Al(Q) AM(Q)
SN N (4.132)

(©) - O=(Q)

commutes for all p € N and [,k € N so that k + |p| <[ then the diagram

DP
A

- Ab(Q)
— i% (4.133)
2 - C=(9)

> ()

commutes.

Proof. If u € C=(Q), then ~{(u) = y&(u) for all I,k € N. Hence there exists a unique
w, € A%(Q) so that
vh(u) =w, 1 €N,

Consider the map
EF :C™(Q) 32 ur w, € A7 ().

Then E(u) = ~(u) for all u € C*®°(Q) and [ € N, and if 7} (u) = w, for all | € N,
then w, = E§°(u). The injectivity of E5° follows from that of 4. For u,v € C*°(2) and
a, B € R we have , for all [ € N,

Eg°(uv) = ~p(uv) = yp(u)y(v) = B (w) B (v)

and
E(au + Bv) = v (au + Bv) = avh(u) + By (v) = B (u) + BE (v)

so that E£§° is an algebra homomorphism.

The commutativity of the diagram (4.131) follows immediately from (4.130).

Now assume that (4.132) commutes for all p € N* and [,k € N such that k + |p| <.
Then for u € C*°(€2) we have, for [ > [p|,

DP(E;®(u)) = DP(3h(w))
— 34(D"(u))
— E2(D"(u)).

Hence the diagram (4.133) commutes. O

In the same way as above we ohtain the followine
© University of Pretoria
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Theorem 4.28. Assume that v} is injective for all | € N, and there exists a linear
mgjection,

E':D(Q) — A(Q)

so that the diagram

"

A(Q) "AN(Q)

X fo (4.134)

D'(SY)
commutes for all I,k € N so that k < 1. Then there exists a linear injection
EF :D'(Q) — AF(Q).

If, in addition, the diagram

DP
ANQ) AMQ)
£l EF (4.135)
(@) = - D(©)
commutes whenever |p| + k < I, then the diagram
\ Dr
AL(€) " AS(Q)
Eq E (4.136)
Dp

D'(Q)
commutes for all p € N".
Proof. For all [,k € N and T € D'(Q2), we have
W (E'(T)) = % (EXT)).
Hence for each T' € D'(Q) there exists a unique wr € AF(Q) C A(Q) so that
Y (ENT)) = wr in A%(Q), 1 € N.

Consider the map
EF:D(Q) 3T~ wr € AFX(Q).

Since each E' is a linear injection, it follows by arguments essentially simillar to those
employed in the proof of Theorem 4.27 that Eg° is a linear injection. The commutativity
of (4.136), subject to that of (4.135), follows likewise by arguments similar to those in

the proof of Theorem 4.27. . . O
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Let us now consider a polynomial nonlinear PDE
Tu=f (4.137)

of order at most m with f € C*°(Q2), and T defined as in (4.103). We observe that, due to
the polynomial nature of T, it admits an extension to any differential algebra containing
C>(2). Thus in view of Theorem (4.27), T" may be extended to AZ(12).

Theorem 4.29. Assume that v} is injective for each | € N and that the chain A admits
an embedding of C*>°(Q2). If there exists a chain generalized solution u € A>®(Q2) of (4.137)
in A, then there exists a solution of (4.137) in the algebra A (S2).

Proof. 1f u € A>*(Q) is a chain generalized solution of (4.137), then

T(v°(w) = f in AYQ) (4.138)
whenever m + k < [. In view of the fact that the diagram
,yOO
Ax(Q) : 348"(9&
Dp Dr A%(Q) (4.139)

Je() Aaom/

commutes for all p € N, it follows that the diagram

A=(Q) o utgomk
T T A (Q) (4.140)
P/ (s) *A?(Q%

commutes. It therefore follows from (4.138) that v5°(u) € AF () C A%(Q) is a solution
of (4.137) in AF(Q). O

4.5.2 Differential algebras with dense singularities

In this section we give two examples of differential algebras of generalized functions ob-
tained through the construction in Section 4.5.1, which are able to deal with dense sin-
gularities of a certain type. As a first illustrative example, we consider the following.

Example 4.30. Recall from Section 2.1 that, for [ € N,

Cfld(Q) = {u 0 — R‘ 4 I' C ), closed and nowhere dense : } .

u e CH{Q\T)

We claim that, in general,
(Cna() # Cra(Q).

© University of Pretoria
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In this regard, let = (0,1) and let {g, | » € N} be an enumeration of QN (0, 1). For
each [ € N and z € €, let

0 if v <
w(wy =4 O, rsa (4.141)
U0t Zf xr > q.

Then u; € (CHQ) \ CHHQ)) N C(Q) for all | € N. Let
1
u(z) = Ziul(x). (4.142)
leN

Since the series is uniformly convergent on (0, 1), it follows that u € C°(€2). More generally,
the series

1
uy(z) = Ziul(p(x) (4.143)
leN
is uniformly convergent on Q \ {q1,- -+ ,g,—1} for all p € N, so that u € C,(Q) for every

[ € N. Since {q; | I € N} is dense in €2, it follows that u is not C*°-smooth on any non-
empty open subset of (2. That is, u is singular on a dense subset of ). In particular,

u ¢ Cog(Q).

Example 4.30 may be extrapolated in a straight forward way to an arbitrary open set
Q C R". It follows that the set

(YMLI () \ ML) (4.144)

leN
is nonempty. In particular, there exists u € MLF(Q) = (ML (Q) such that u ¢ C(U)
leN

for every open subsets U of 2. As shown in Theorem 4.12 and 4.13, the algebras A%%(Q2)
and A2(€2) can handle singularities of functions in ML (£2). In particular, there exist
injective algebra homomorphisms

H> e MLZ(Q) — AZ(Q) (4.145)
and
H : MLZ(Q) — AX(Q) (4.146)
so that the diagrams
DP
na(€) Ana(Q)
Hy H (4.147)
Me=(Q)— D MLZ(Q)
and
DP
Az () A ()
HS H>® (4.148)
MLz (Q)—LDr MLZ(Q)
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commute for all p € N”. The method by which the embeddings (4.145) and (4.146) are
obtained does not yield an embedding

MLF(Q) = [VMLI(Q) = A(Q)

leN

or
MLT(Q) = [(YML(Q) = AZ(Q).
leN
In this regard, let us recall briefly the main points involved in the construction of the
embedding (4.145) and (4.146), respectively. We deal first with the embedding (4.145).
For u € ML>*(Q) there exists I' C €2 closed and nowhere dense so that u € C*°(Q\ T).

An application of the Principle of Partition of Unity , see Theorem 3.5, yields a sequence
(u,) in C(,[0,1]) so that

V 2zl

V neN:

1 Vey,:
Pn(y) =0, y €V,

reQ\I:

N eN:

VeV, :

Pn(y) =1, y€V.n > N.

The embedding (4.145) is obtained by setting

L <C

Hyg(u) = (ugn) + I3
Clearly this strategy will not deliver an embedding
MLF () — AX(Q)
since , as mentioned, there exists u € ML () so that
u¢ C*(U), U CQ open.

Let us now consider the construction of algebras of generalized functions that admit
embeddings of ML (€2). In this regard, we have the following

Theorem 4.31. The set
r0() = [ h(ALL()

leN

1s a differential algebra of generalized functions. Furthermore, the following is true
(i) There exists an injective algebra homomorphism

(2(0) s A%,.() (4.149)
© University of Pretoria
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such that the diagram
Dp
oo » | OO
And,O(Q) And,O(Q>

< l(_) (4.150)
() Dr C=(Q)

commutes for all p € N".

(ii) There exists a linear injection
[ao : D'(€Q) — Ax ()
so that the diagram

re
D(Q) - A%, ()

C — (4.151)

C>(02)
commutes.

Proof. Let
n0(Q) = [6(ALa(9))

leN

with 74 : AL, — AY, the algebra homomorphism defined by v ((u,) +Z' ;) = (u,) +Z°,.
Since each v}, is an algebra homomorphism, A%, is a subalgebra of A? ;. Each 4 is injective.
To see that this is so, observe that

I7l1d = Cl(Q)N ﬂzgd

for each [ € N. Indeed, Z!, C Z0, and Z!, C C/(Q)N so that Z!, C C/(Q)Y, then there
exists I' € Q) closed nowhere dense so that

V ozeOQ\I:
i VeV, NeN:

V neN, n>N: (4.152)
un(y) =0, yeV.
Since V € V, is open for each z, it follows that
V zeQ\Il':
i3 VeV, NeN:
V neN, n>N: (4.153)
vV peN" |p|<l: DPu,(y)=0, yeV.

© University of Pretoria
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Hence (u,) € Z., so that Z°, N CY{(Q)N C 7. If for (v,) € T',,

Yo((un) + Ihy) = v((va) + Iy,

then according to the definition of 7}, (u,) — (v,) € Z°,. But (u,) — (v,) € C' ()N so that
(un) — (v,) € I ;. Hence (u,,) + Z; = (v,) + I, so that 4} is injective.
It follows from Theorem 4.26 that there exists for each p € N™ a linear map

DP = A7G () — A7a ()

that satisfies the Leibnitz rule. Furthermore, DP(u) = ~¢(DPyqy (u)) for all u € A% (),
p € N and [,k € N so tha k|p| < L.
Item (i) follows immediately from (4.3), (4.4) and Theorem 4.27. The assertion in (ii)
follows directly from Theorem 4.2 and 4.28.
[

The following is an immediate consequence of Theorem 4.22 and Theorem 4.31.

Corollary 4.32. If a polynomial nonlinear PDE (4.104) satisfies (2.63) to (2.64), then
there exists a generalized solution u € A% (2) of (4.104).

We now show that A5 ((€2) admits an embedding of MLG(£2).

Theorem 4.33. There exists an injective algebra homomorphism
HiGo s MLFE(E) — AT 0(€)

so that the diagram

DP
%,O(Q) g ZZ,O(Q)
H3, HS, (4.154)
Meg (@2 ML ()

commutes for all p € N™.

Proof. It follows from Theorem 4.12 that there exists, for each [ € N, an injective algebra
homomorphism

HL o ML(Q) — AL(Q)
so that the diagram

. H, .
07« ML (Q) 4 Aild(ﬂ)%
MLE(Q) C LAY (Q) (4.155)
k HF %0’;"
ML () nd - ALy ()

commutes whenever k£ < [. Hence for each u € ML () there exists a unique w, €
A? (Q) so that

k k l l
Yo © Hn (21 =m. = (~ o H ,\_(u , k<L
(i ) © University of Pretoria )
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Hence the map
Hpygo s MLF(Q) S ur w, € Axyo(Q) C A% ()
is well defined. The injectivity of Hy , follows from the fact that the algebra homomor-
phisms H!, and ~ are injective.
Since the diagram
ot Higo 0
MLF(Q) nd,O(Q) A a(€2)

- 7 (4.156)
H,y

ML () ~ALa()

commutes for all [ € N, it follows that Hpy  is an algebra homomorphism. It follows from
Theorems 4.1 and 4.12 and the definition of H,3 , that

DP(H5o(u) = DP(y(HLy(u))
= 0 (DR (H}y(u)))
= 30 "(Hpg" (D ()
= Hgg(D*(w)

for all u € ML (2), p € N* and [ > |p|. Therefore the diagram (4.154) commutes. [

We now consider the construction of an algebra of generalized functions from the
almost everywhere algebra of generalized functions that admit embedding of MLF"(2).
In this regard, we have the following

Theorem 4.34. Assume €2 is convex. Then

oe0(Q) = [ 16 (AL ()

leN

is a differential algebra of generalized functions. Furthermore, the following hold.

(i) There exists an injective algebra homomorphism

C™(Q) = Az ,(2)

ae,0

such that the diagram

() (2
< N (4.157)
() D" - C=(Q)

commutes for all p € N". S )
© University of Pretoria
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(ii) There exists a linear injection

Loeo: D'(Q) — AEZ,0<Q)
so that the diagrams
/ 22’0 > 0
D (Q) ae,O(Q)
- N (4.158)
()
and
FOO
D) et "~ Aseo($2)
Dp Dr (4.159)
/ FSOP 0 00
D (Q> . Aae,O(Q>
commute.
Proof. Let

ae, 0 m’yO

leN

where 7} : AL, — A%, is an algebra homomorphism defined by ~{((u,) + (Z5 + ZL.)) =
(un) + (Z% + Ige). Note that ~ is injective for all [ € N. Indeed, for (uy,), (v,) € EL.(Q),
we have

Yo((un) + (T + L)) = v ((va) + (T + Toe))
= (un) + (Ip +I0.) = (va) + (I + I,
= (un) — (vn) € (Tp +I,).
But (ZL+Z.,) = EL(Q) N(Z%+ZL). The inclusion (Z,+Z,) C EL.(Q) N(Z%+ZL,) holds
trivially. the opposite inclusion follows immediately from Lemma 4.5. Hence
W((Un) + T+ 1)) = v((ve) + (T +1I..))
<~ (uy) — (vn) € IlE —i—Ifle
so that
(un) + (Tp + Io,) = (va) + (T + T,).

Item (i) follows immediately from Theorems4.10 and 4.27. The assertion in (ii) follows
immediately from Theorems 4.10 and 4.28.
[

An immediate consequence of Thearem 4 94 and Theorem 4.34 is the following.
© University of Pretoria
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Corollary 4.35. Assume that M consists of all closed, nowhere dense subsets of Q. If a
polynomial nonlinear PDE (4.104) satisfies (2.63) to (2.64), then there exists a generalized
solution u € Ag ;(S2) of (4.104).

Finally we establish the existence of an embedding of ML () into A3 .

Theorem 4.36. Assume that My consists of all closed, nowhere dense subsets of €.
There exists an injective algebra homomorphism

an M[’OO( >—>Aaeo< )

so that the diagram

DP
22,0(9) i 22,0(9)
Heeo o, (4.160)
DP

MLG () -MLF ()

commutes for all p € N"

Proof. Tt follows from Theorem 4.13 that there exists, for each [ € N, an injective algebra
homomorphism

H - ML(Q) — A ()
so that the diagram
Hl

o ML (©) A,(0)
MLE(Q) ! \;10 Q) (4.161)

0 - Ve ae
k k
L o

commutes whenever k < [. Hence for each u € ML°(Q) there exists a unique w,, € AY,(Q2)
so that

(%0 © Hye)(u) = wu = (5 0 Hye)(u), k, €N.

Hence the map

an M[’OO( )BUHwUGAan( )CAge(Q)

is well defined. The injectivity of Hgy, follows from the fact that the algebra homomor-
phisms H!_ and 7} are injective.
Since the diagram

[e.9]

0o \ ae,0 o C
M‘CO (Q) ae,O(Q> Age(Q>
- o (4.162)
Hl
ML) = A (Q)

© University of Pretoria
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ae

Theorems 4.8 and 4.13 and the definition of Hg , that

commutes for all [ € N, it follows that Hg , is an algebra homomorphism. It follows from

DP(Hggo(u) = DP(yo(H(u))

= 70 "(D?(Hi(u)))
= 2 " (Hee (D" ()
= Hy,(D"(u))

for all u € ML (), p € N" and [ > |p|. Therefore the diagram (4.160) commutes. [

© University of Pretoria
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Chapter 5

Concluding Remarks

5.1 Main results

We have shown that the underlying spaces of generalized functions, N'£'(Q), involve in
the Order Completion Method as formulated in the setting of convergence spaces, may be
represented as algebras of generalized functions. These algebra of generalized functions
are shown to form a differential chain A,. of algebras of generalized functions. Any
generalized solution in the underlying space may be interpreted as a chain generalized
solution.

We also considered chains of nowhere dense algebras, and established the way in which
such chains are related to the chain A,.. In particular, we considered the Rosinger’s
nowhere dense algebras, which constitutes the chain A, 4, and, based on a construction
introduced by Verneave [73, 74], see also [20], the chain A, of almost-everywhere algebras
was introduced. It was shown that the existence results for chain generalized solution of
nonlinear PDEs lead to corresponding existence results in A,; and A,., respectively.
The embedding of D’(Q2) and the spaces of smooth functions into the chains A,. was
also obtained. It was shown that chains A,; and A, admits embeddings of the spaces
NLH(Q) which preserve both the algebraic and differential structure of A'L'(Q). These
results demonstrates the extent to which these chains of are able to handle singularities
occurring on closed, nowhere dense set. The embedding of ML'(Q) into A,. was shown
not to be compatible with the embedding of D’'(€2) into the chain A,.. Thus a locally
integrable function in ML'(Q) may have more than one representation in the algebra
ALQ).

This leads naturally to the consideration of the questions of whether or not these
chains can deal also with singularities occurring on more general sets. In this regards, we
considered the problem of embedding the algebra

MLY(Q) = (ML)

leN

into a differential algebra A(€2). The question is motivated by the problem of constructing
so-called space-time foam algebras [52, 53].

A general method was introduced by which a differential algebra AJ°(€2) may be
constructed from the algebras in a differential chain A = {A(Q), A*(Q),7% | kK < 1}. In

general, the differential algebra A(0) is laroer than A°°(Q)); and may therefore be able
© University of Pretoria
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to deal with a larger class of singularities than the algebra A*(Q). It was shown how
properties of the chain A induces the corresponding properties of the algebra AS°(£2).
Applying the general method to the chains A,; and A,., we constructed algebras of
generalized function admitting embedding of MLG"(€2). The embedding of D’'(2) into
these algebras, as well as the existence of generalized solutions of a large class of nonlinear
PDEs in these algebras was also established.

5.2 Further research

As we have shown, there is a close connection between the spaces of generalised func-
tions upon which the Order Completion Method is based and, on the other hand, the
nowhere dense and almost everywhere algebras. The extent to which this connection can
be exploited in order to improve the regularity results of generalised solutions of nonlinear
PDESs obtained through the Order Completion Method is a possibly fruitful avenue for
future research. A further possibility for future research is the way in which the chain
A, relates to other differential algebras of generalized functions, such as the Colombeau
algebra [14, 15, 16].

© University of Pretoria
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