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Abstract

The classical theory of risk neutral derivative pricing relies on the
underlying market model being Markovian and complete. We present
the theory of stochastic differential equations relevant to risk neutral
pricing, with a particular focus on the Markov property and its links
to partial differential equations. We demonstrate when this classical
theory can still be applied to derivative pricing in models with path
dependent volatility.

A link between these models and the local volatility framework is
derived via the representation of local volatility as the conditional ex-
pectation of some, more complicated, process. Julien Guyon used this
link as a tool in fitting a large class of models to the market. We
will propose a fitted, complete and Markovian market model, which
incorporates past asset levels in future volatility levels. The numerical
implementation of such a model is addressed through a Monte Carlo
scheme incorporating Guyon’s particle method, as well as a finite dif-
ference scheme.

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Acknowledgement

I would like to thank my supervisor Dr Van Zyl, whose guidance and en-
couragement has helped me grow as an aspiring mathematician. Thank you
for answering my long technical emails with equally lengthy replies when
direct communication was not possible. I would also like to acknowledge
Prof Swart who was always willing to listen and comment on any ideas I
had whenever I knocked on his door.

Lastly I would like to thank my parents. They have afforded me the
honour and privilege of an education and have always supported me in
pursuing my passion, mathematics.

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Contents

1 Introduction 7

2 Measure theory, stochastic calculus, and martingale pricing 8
2.1 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Stochastic calculus . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Stochastic Differential Equations . . . . . . . . . . . . . . . . 17
2.5 Stochastic functional differential equations . . . . . . . . . . . 22
2.6 Martingale pricing . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Local volatility 29
3.1 Dupire’s equation . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Local volatility in terms of implied volatility . . . . . . . . . . 33
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1 Introduction

A paper on option pricing almost surely begins by mentioning Myron Sc-
holes and Fischer Black’s work in deriving the Black-Scholes option pricing
framework [4], and since this dissertation is in this space, it is no exception.

Although the 1973 paper was a hallmark moment for modern finance,
the Black-Scholes framework is not without criticism, least of all in its treat-
ment of the volatility of the underlying, which is assumed constant.

The existence of so called “volatility smiles” is a clear violation of the
assumption of constant volatility. Some of the more well studied alterna-
tives to constant volatility include local and stochastic volatility models. In
the local volatility framework much of the classical theory is retained, but
the volatility dynamics are limited and remain unrealistic. At the opposite
end, most stochastic volatility models give richer dynamics, but markets lose
completeness and much of the classical theory collapses.

There is another class of models that, until recently, has received compar-
atively less attention to the two just mentioned. Path dependent volatility
models have begun to attract more interest, and this is well deserved. They
offer much of the desirable qualities of their counterparts, while sacrificing
less. We will see that it is possible to have a complete model which incorpo-
rates past information into future volatility levels, while still retaining the
Markov property, somewhat of a contradiction.

In this dissertation we will present the most important literature so far
in this field, and look to unify some of the work into a single framework. The
eventual goal will be to arrive at a fitted, complete and Markovian market
model, for which we can derive a pricing PDE.

We will begin by discussing the underlying mathematical theory, before
reviewing the relevant work done in the field of local volatility with Dupire’s
work in this field being of particular importance [14]. The link between local
and path-dependent volatility, and the key to fitting our model to the mar-
ket, is a classical theory by Gyöngy [22] which we will present and discuss.

We will then launch into the current path-dependent volatility theory
before proposing our final model. Finally, we discuss numerical techniques
for the application of our chosen model. In particular we consider a finite
difference method for a pricing PDE, as well as a Monte Carlo scheme that
makes use of the particle method of Julien Guyon [20].
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2 Measure theory, stochastic calculus, and mar-
tingale pricing

In this section we lay the foundations for the rest of the dissertation. In
an attempt to make the dissertation self contained, we will give a brief de-
scription of the mathematical framework under which we work, as well as
present some key results that will be used in the work that follows.

2.1 The basics

A natural starting point is to discuss the space in which we work. All def-
initions and results can be viewed under the context of a probability space
(Ω,F ,P), where Ω is the whole space, F is a σ-field made up of subsets
of Ω and P is a probability measure, meaning it is a function P : F → R
such that all the usual axioms for a measure are satisfied and in addition
P(Ω) = 1.The σ-field can be interpreted as the set of events in the space Ω,
and the function P is said to assign a probability to each of these events.
We say that a function f : X → R on the measure space (Ω,F ,P) is F-
measurable (or simply measurable if there is no possible ambiguity) if the
set {f ∈ B} is in F for every B ∈ B(R). Here we have used the shorthand
{fεB} := {x ∈ X : f(x)εB}.

The stage is now set for us to define random variables. A random variable
is simply a measurable function f mapping Ω to R. Every random variable
f : X → R gives rise to a measure

µf (B) := P
(
{fεB}

)
(2.1)

on R defined on the σ-field of Borel sets BεB(R). We call µf the distribu-
tion of f , and we define the function F (x) := P(f ≤ x) as the cumulative
distribution of f .

We say that a sequence of random variables {fn} converges to f in
measure if for every ε > 0 we have that

lim
n→∞

P
(
ω : |fn(ω)− f(ω)| > ε

)
= 0.

In probability theory the concepts of expected value and variance of a
random variable are of particular importance. In order to define these two
crucial quantities we must discuss integration with respect to a probability
measure P.

Consider a measurable simple function φ on Ω. This is a function that
can be written in the form φ =

∑n
i=1 aiχAi , where n is some finite whole

number, ai are constants, Ai are measurable sets with Ai = [x : φ(x) =

8
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ai] and χAi is the characteristic function of the set Ai. The characteristic
function is defined for any set A by

χA(x) =

{
1 if x ∈ A
0 if x /∈ A .

The integral of this type of function over Ω with respect to P is defined
as ∫

Ω
φdP =

n∑
i=1

aiP(Ai).

Using this definition we can define the integral of a non-negative random
variable f as∫

Ω
fdP = sup

[ ∫
Ω
φdP : φ ≤ f, φ is a measure simple function

]
.

The integral of any measurable random variable, not necessarily non-negative,
is then defined by subtracting the integral of the absolute value of the neg-
ative part of the function from the integral of the non-negative part. Over
a set E, the integral is simply equal to the integral of the function fχE .

A function is said to be integrable if the integral of its absolute value is
finite. The usual properties, such as linearity and that the absolute value of
the integral is less than the integral of the absolute value, hold in this setting.

We can now define the expected value of a random variable f , with
respect to a probability measure P, simply as

EP(f) :=

∫
Ω
fdP

and the variance as

var(f) :=

∫
Ω

(
f − EP(f)

)2
dP

= EP(f2)− (EP(f))2.

Next we consider the key concept of conditional expectation. We will use
the most general definition which involves conditioning on a σ-field, however
this easily translates to conditioning on a set or a random variable by simply
considering the σ-field generated by that set or random variable respectively.
With that in mind the definition is as follows [8]:

Definition Let f be an integrable function on our usual probability space
and let G be a σ-field contained in F . Then the conditional expectation
of f given G is defined as the random variable EP(f |G) such that

1. EP(f |G) is G-measurable.

9
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2. For any A ∈ G ∫
A
EP(f |G)dP =

∫
A
fdP.

In addition to the expected properties, such as linearity etc, some less
obvious properties that will be useful are

1. If a r.v f is F-measurable then, for any integrable r.v g, E(fg|F) =
gE(g|F).

2. If a r.v f is independent of F then E(f |F) = E(f).

3. If we have sigma fields F ,F1,F2 such that F1 ⊆ F2 ⊆ F then

E
(
E(f |F2)

∣∣F1

)
= E(f |F1).

Now that most of the tools from measure theory have been defined we will
state some key results from the subject that will be used in this dissertation.
The first is a famous lemma from one of the main contributors to the subject.

Theorem 2.1 (Fatou’s Lemma) Let {fn} be a sequence of measurable
functions, fn : Ω→ R+, and let f = lim infn→∞ fn. Then

EP(f) ≤ lim inf
n→∞

EP(fn).

Proof See Theorem 3 page 57 in [9].

This can be extended to conditional expectation in the natural way so
that under the same conditions and for any σ-field G we have that

EP(f |G) ≤ lim inf EP(fn|G).

The next result sets the scene for a change of measure. This is important
in the context of finance since we will often move from the risky to a risk
neutral world, which are linked by a change of probability measure. First
we must define the concept of absolute continuity. Suppose we have two
measures P and Q, we say that Q is absolutely continuous with respect to
P, written Q << P, if for every A ∈ F such that P(A) = 0 we have that
Q(A) = 0.We can now state the Radon-Nikodym Theorem.

Theorem 2.2 (Radon-Nikodym Theorem) Let (Ω,F) be a measurable
space, and P and Q finite measures on (Ω,F). If Q << P then there exists
a measurable function f : Ω→ R+ such that for all subsets A ∈ F

Q(A) =

∫
A
fdP.

The function f is called the Radon-Nikodym derivative of Q with respect
to P and is denoted by dQ

dP .
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Proof See Theorem 5 on page 139 of [9].

If we have that Q << P and P << Q, we say that the measures P and Q are
equivalent. A trivial, but important, fact for probability measures is that

Q << P⇒ Q(A) = 1 where A ∈ F is such that P(A) = 1

this can be easily shown by considering Ac, which has measure zero, and the
fact that P(Ω) = Q(Ω) = 1.

We have now defined most the key concepts and results we will need
to dive into some important definitions and results concerning stochastic
processes.

2.2 Stochastic processes

A stochastic process can be defined as a family of random variables
(
X(t)

)
parametrized by t ∈ T ⊂ R. We will often use the notation X to denote a
stochastic process where possible. If T = {1, 2, 3 . . . } then X is said to be a
discrete-time random process, but when T is some interval in R (typically
[0,∞)) then X is said to be a continuous-time stochastic process.

We will consider processes over a time period [0, T ], and so we need to
introduce a concept that captures the information flow over this interval. A
filtration, denoted by (Ft)t≥0, is a family of σ-fields satisfying

F0 ⊆ Fs ⊆ Ft ⊆ FT , for every s, t ∈ [0, T ] such that s < t.

For each t ∈ [0, T ] the σ-field Ft can simply be interpreted as the infor-
mation available at time t.

We need to extend the concept of measurability to stochastic processes.
A process X is said to be adapted to a filtration (Ft)t≥0, if X(t) is Ft-
measurable for every t ∈ T .

We call a process X a martingale with respect to Ft and a measure P if

1. EP(|Xt|
)
<∞ for all t ≥ 0

2. EP(Xt|Fs
)

= Xs for all t ≥ s ≥ 0

If we replace equality with ≤ (≥) then we say that X is a supermartingale
(submartingale). An important result from the study of martingales was
due to Joseph Doob.
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Theorem 2.3 (Doob’s Martingale inequality) Let X be a continuous
submartingale taking non-negative real values, either in discrete or continu-
ous time. Then, for any constant C > 0 and p ≥ 1,

P
(

sup
u∈[0,T ]

Xu ≥ C
)
≤

E(Xp
T )

Cp
.

Proof See Proposition 4.1 on page 68 of [8].

Obviously this inequality also holds when X is a martingale.

Another important concept will be that of the σ-field generated by a
random variable f . This is the smallest σ-field containing all sets of the
form {f ∈ B} where B ∈ B(R). This can be naturally extended to the
concept of a filtration generated by a random process. A deep and useful
result relating to this concept is presented next

Theorem 2.4 (Doob-Dynkin) Let f be a random variable. Then each
σ(f)-measurable random variable g can be written as

g = φ(f)

for some Borel function function φ : R→ R.

Proof see proposition 3 on page 8 of [36].

A stopping time with respect to a filtration Ft and an index set T , is a
random variable τ taking values in T such that for each t ∈ T the set

{τ ≤ t} ∈ Ft.

We will often be interested in a process up to some unknown future time,
for this reason for every process X and stopping time τ we define a new pro-
cess by Xτ (t) := X(t ∧ τ), referred to as X stopped at τ .

There is a class of processes, called local martingales, which will be of
particular importance for our purposes. They can be defined as follows.

Definition Let X be an Ft adapted stochastic process. Then X is called
an Ft-local martingale if there exists a sequence of Ft-stopping times (sn)
such that

1. the sequence is almost surely increasing

2. P(sk →∞ as k →∞) = 1

3. the stopped process
Xk
t := X(sk ∧ t)

is an (Ft)-martingale for every k.

12
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Clearly all martingales are local martingales, but the converse is not
necessarily true. A typical example of a local martingale which is not a
martingale, is the reciprocal of the norm of Brownian Motion in R3 (see
example 2 on page 37 of [35]). We will often define a new measure via a
Radon-Nikodym derivative, which is a local martingale. However we will
need the process to be a true martingale in order for our new measure to
have the desired properties. Therefore, it is important for us to understand
when a local martingale is a true martingale.

We see that the definition only requires the existence of a sequence of
stopping times, and does not say anything about its form. We will be
particularly interested in the following sequence of random times

τn = inf{t ≥ 0, |Xt| > n}

for any process X. That τn is a stopping time follows by noticing that, for
any t ≥ 0,

{τn ≤ t} = {ω ∈ Ω : Xs(ω) ≥ n for some s ∈ [0, t]}

=
⋃

s∈[0,t]

{Xs ≥ n} ∈ Ft.

The following result shows that a local martingale stopped using the
above sequence of stopping times, is a martingale. We will need the following
lemma (see, for example, [3]).

Lemma 2.5 Let Xt be a martingale on (Ω,Fn,P) and τ be a stopping time.
Then Xτ

t is a true martingale, where Xτ
t := X(t ∧ τ) is the stopped version

of Xt.

Proof We only prove the lemma for a discrete time local martingale Xn.
Define the discrete time process h by hn := χ{n≤τ} n = 1, 2, . . . . Clearly

{n ≤ τ} = {n < τ}c = {n− 1 ≤ τ}c ∈ Fn−1.

Which shows that hn is Fn−1 measurable or predictable. Clearly we also
have that

Xτ
n =

n∑
k=0

hk(Xk −Xk−1)

which yields the following
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E(Xτ
n|Fn−1) = E

( n∑
k=0

hk(Xk −Xk−1)
)

= E
(
hn(Xn −Xn−1) +

n−1∑
k=0

hk(Xk −Xk−1)|Fn−1

)
= E(hnXn|Fn−1)− E(hnXn−1|Fn−1) +

n−1∑
k=0

E(hk(Xk −Xk−1)|Fn−1)

= hnXn−1 − hnXn−1 +

n−1∑
k=0

hk(Xk −Xk−1) = Xτ
n−1

which shows that Xτ
n is a martingale.

Proposition 2.6 Let Xt be a continuous local martingale on (Ω, (Ft),F ,P)
such that X0 = 1. Let

τn = inf{t ≥ 0, |Xt| > n}.

Then, for n ∈ N the process Xn
t := X(τn ∧ t) is a bounded martingale.

Proof Let (sk) be the sequence of stopping times described in the definition
of a local martingale, so that Xk

t := X(t ∧ sk) is a true martingale. Then
for any s, t ∈ [0, T ], such that s ≤ t, and for any k, n ≥ 0 we have that

E(X(t ∧ sk ∧ τn)|Fs) = X(s ∧ sk ∧ τn).

Since Xk
t is a martingale, and τ is a stopping time, so that by our lemma,

the process stopped by τn is a martingale. Taking the limit as k → ∞ on
both sides we get that

E(X(t ∧ τn)|Fs) = X(s ∧ τn).

Notice that we were able to take the limit inside the expectation since, by
the construction of τn, the stopped process X(t ∧ sk ∧ τn) is bounded by n.
Therefore, all the conditions of Lebesgue’s dominated convergence Theorem
hold (See, for example, Theorem 10 on page 63 of [9]), and we can take the
limit inside the integral.This completes the proof.

2.3 Stochastic calculus

The most important process that we will encounter is the Wiener process, or
alternatively, Brownian motion. This is a process W that starts at 0 almost
surely (with probability 1), which has almost surely continuous sample paths
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and finally for any finite sequence of times 0 < t1 < · · · < tn and Borel sets
B1, . . . , Bn ⊂ R we have that

P
(
{W (t1) ∈ B1, . . . ,W (tn) ∈ Bn

)
=

∫
B1

. . .

∫
Bn

p(t1, 0, x1)p(t2 − t1, x1, x2) . . . p(tn − tn−1, xn−1, xn)dxn . . . dx1,

where p(t, x, y) = 1√
2πt
e−

(x−y)2

2t is called the transition density of W . The

Wiener process also happens to be a martingale.

We are now ready to define the stochastic integral, which is the essential
ingredient in the discussion of stochastic differential equations. We start by
defining the stochastic integral for the class of piecewise constant processes,
known as step processes. Let g be such a process, the integral over [a, b] is
defined as ∫ b

a
g(s)dW (s) :=

n−1∑
k=0

g(tk)
[
W (tk+1)−W (tk)

]
where the set {tk; k = 0, . . . n} is a partition so that a = t0 ≤ t1 ≤ · · · ≤
tk = b. It is important to notice that in the definition we use the value of g
at the lower bound of each interval, unlike in the Riemann case, this choice
will effect the properties and value of a stochastic integral.

We can extend this to general random variables using the definition
above and the concept of L2 convergence.

Definition The space L2(Ω,F ,P), is the space of equivalence classes of
square integrable measurable functions with respect to the measure Q. i.e
for any f ∈ L2(Ω,F ,P) we have that∫

|f |2dP <∞.

We will write L2(Ω,F ,P) = L2(P) when no ambiguity is possible. It can be

shown that the function ||f − g||2 =

(∫
|f − g|2dP

)1/2

, defines a norm so

that the pair (L2, || · ||2) is a norm space.

In addition, it can be shown that convergence in L2 implies convergence in
measure. For the proof of this see, for example, Theorem 5 on page 123 of [9].

Using this, for any process f we set up a sequence of step processes fn
that converge to f in the sense that

lim
n→∞

E
(∫ ∞

0
|f(t)− fn(t)|2dt

)
= 0.
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We then define the stochastic integral of f as the random variable,∫ b

a
f(s)dW (s) = lim

n→∞

∫ b

a
fn(s)dW (S)

it is possible to prove that the right hand side converges to a random variable
in L2, and it can be shown that the result does not depend on our choice of
an approximating sequence of functions.

We are now in a position to discuss stochastic differentials. As is stan-
dard, we work with a process X in the probability space (Ω,F , (Ft)t≥0,P).
Assume that there exists a real number a, and two adapted processes µ and
σ such that we have

X(t) = a+

∫ t

0
µ(s)ds+

∫ t

0
σ(s)dW (s), for all t ≥ 0

then for ease of notation we say that X has stochastic differential

dX(t) = µ(t)dt+ σ(t)dW (t)

with initial condition
X(t) = a.

A stochastic process X is called an Itô process if it has almost surely
continuous paths and can be represented as

X(t) = a+

∫ t

0
µ(s)ds+

∫ t

0
σ(s)dW (s), for all t ≥ 0

where σ(s), µ(s) are adapted processes such that

E(

∫ t

0
|σ(s)|2ds) <∞

and ∫ t

0
|µ(s)|ds <∞, a.s

for all t > 0. If these properties hold we say that σ and µ are in M2
t and L1

t

respectively.

With this notation we can present the workhorse of stochastic calculus,
Itô’s formula.

Theorem 2.7 (Itô’s formula) Suppose the process X is an Itô process,
and let f be a C1,2-function (first and second order derivatives are con-
tinuous). Define the process Z(t) := f(t,X(t)). Then Z has stochastic
differential given by

df(t,X(t)) =
∂f

∂t
dt+

∂f

∂x
dX +

1

2

∂2f

∂x2
(dX)2
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where we use the following formal multiplication table

(dt)2 = 0

dt · dW = 0

(dW )2 = dt.

Proof See the proof of Theorem 7.5 on page 196 of [8].

This theorem extends to the case of a multidimensional process in a natu-
ral way. Given a process, Itô’s formula allows us to calculate its stochastic
differential. Often we will be interested in the reverse of this by asking the
question: given a stochastic differential, can we find a stochastic process
that satisfies it?

2.4 Stochastic Differential Equations

Throughout this subsection we will consider the d-dimensional stochastic
differential equation (SDE)

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t) on t ∈ [0, T ] (2.2)

with initial value X(0) = x0. Here W (t) = [W1(t), . . . ,Wm(t)]T is an m-
dimensional Wiener process and x0 is a F0-measurable, Rd valued random
variable with finite variance. The functions µ : Rd × [0, T ] → Rd and σ :
Rd × [0, T ] → Rd×m are both Borel measurable. We define the solution of
this problem as follows:

Definition An Rd-valued stochastic process X on t ∈ [0, T ] is called a
solution to (2.2) if it has the following properties:

1. X has a.s continuous paths and is Ft adapted.

2. µ(t,X(t)) ∈ L1
t and σ(t,X(t)) ∈M2

t

3. X satisfies (2.2) for every t ∈ [0, T ]

A solution X is called unique if

P(X(t) = Y (t) for all t ∈ [0, T ]) = 1

for any other solution Y . Putting the definition more simply: when finding
a solution to an SDE we are looking for an Itô process which has the correct
stochastic differential.

It will be important to have conditions under which there exists a unique
solution to (2.2). The following results and their proofs can be found in, for
example, [34].
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Theorem 2.8 Assume that there exists positive constants C1,C2,C3 and C4

such that

1. (Lipschitz condition) for all x, y ∈ Rd and t ∈ [0, T ]

|µ(t, x)− µ(t, y)|2 ≤ C1|x− y|2 (2.3)

|σ(t, x)− σ(t, y)|2 ≤ C2|x− y|2 (2.4)

2. (Linear growth condition) for all (t, x) ∈ [0, T ]× Rd,

|µ(t, x)|2 ≤ C3(1 + |x|) (2.5)

|σ(t, x)|2 ≤ C4(1 + |x|). (2.6)

The there exists a unique solution process X to equation (2.2).

Proof See Theorem 3.1 on page 69 of [34].

An essential property for our purposes will be the so-called Markov property
of a stochastic process. Simply put, if a process has the Markov property it
has no memory. When considering possible future states of the process the
only information that needs to be considered is the current position. More
formally we can define the Markov property as follows.

Definition A d-dimensional Ft-adapted process X(t) is called a Markov
Process if: for all 0 ≤ s ≤ t <∞ and A ∈ B(Rd),

P(X(t) ∈ A|Fs) = P(X(t) ∈ A|X(s)). (2.7)

We follow [34] and define the transition probability of a Markov process
X(t) as the function P (s, t, x, A) defined on 0 ≤ s ≤ t < ∞, x ∈ Rd and
A ∈ B(Rd), with the properties:

1. For every 0 ≤ s ≤ t <∞ and A ∈ B(Rd),

P (s, t,X(s), A) = P(X(t) ∈ A|X(s)).

2. For every 0 ≤ s ≤ t < ∞ and x ∈ Rd P (s, t, x, ·) is a probability
measure on B(Rd).

3. P (s, t, ·, A) is Borel measurable for every 0 ≤ s ≤ t < ∞ and A ∈
B(Rd)

4. For every 0 ≤ s ≤ t <∞, x ∈ Rd and A ∈ B(Rd) it holds that

P (s, t, x, A) =

∫
Rd
P (r, t, y, A)P (s, t, dy,A).

This is known as the Chapman-Kolmogorov equation.
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Using this notation we can write the Markov property in (2.7) as

P(X(t) ∈ A|Fs) = P (s, t,X(s), A).

Making use of the above definition and notation we can formulate an
elegant result concerning the solution on an SDE.

Theorem 2.9 Let X(t) be a solution of the equation

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t) on 0 ≤ t

whose coefficients satisfy the conditions of Theorem 2.8, for some initial
condition X0 = x ∈ R. Then X is a Markov process with respect to the
filtration generated by W , whose transition probability is defined by

P (s, t, x, A) = P(Xx,s(t) ∈ A)

where Xx,s(t) is the solution of the equation

Xx,s(t) = x+

∫ t

s
µ(u,Xx,s(u))du+

∫ t

s
σ(u,Xx,s(u))dW (u) on t ≥ s.

Proof For any t > 0, by construction we have that

X(t) = x+

∫ t

0
µ(t,Xt)dt+

∫ t

0
σ(t,X(t))dW (t)

= x+

∫ s

0
µ(t,Xt)dt+

∫ s

0
σ(t,X(t))dW (t) +

∫ t

s
µ(t,Xt)dt+

∫ t

s
σ(t,X(t))dW (t)

= X(s) +

∫ t

s
µ(t,Xt)dt+

∫ t

s
σ(t,X(t))dW (t)

= XX(s),s(t).

Since X and XX(s),s satisfy the same SDE, and by assumption we have
uniqueness, we must have that XX(s),s(t) = X(t) almost surely. Clearly the
process XX(s),s is determined by increments of the form W (t) −W (s) and
therefore is independent of F(s). We also have that X(s) is Fs measurable.

Using this and the properties of conditional expectation gives

E
(
f(Xt)|Fs

)
= E

(
f(XX(s),s(t)|Fs

)
= E

(
f(XX(s),s(t)

)
|x=X(s).

Next we would like to study when the solution of an SDE has a density
function, and if we can derive some useful properties of this density assuming
that it exists, and for this we will need the classical Hörmander’s Theorem.
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We present this result as seen in [24]. We will consider an n dimensional
stochastic differential equation of the form

dX(t) = V0(X(t))dt+

m∑
i=1

Vi(X(t)) ◦ dWi, (2.8)

where V0, . . . , Vm are smooth vector fields on Rn, i.e V0, . . . , Vm are vectors
who’s components are functions taking values in R. W1, . . . ,Wm are all in-
dependent standard n dimensional Wiener processes and ◦ is the usual dot
product. We assume throughout that all theses vectors fields satisfy the
conditions necessary to guarantee that a solution of (2.8) exists, and that
derivatives of all orders exist.

The Lie bracket between two vector fields U and V on Rn denoted by
[U, V ] is the vector field defined by

[U, V ](x) = DV (x)U(x)−DU(x)V (x),

where D is the derivative operator such that (DU)i,j = ∂Ui
∂xj

. For any SDE

of the form of (2.8) we can then define a collection of vector fields Vk by the
recursive relationship

V0 = {Vi : i > 0}, Vk+1 = Vk ∪ {[U, Vj ] : U ∈ Vk and j ≥ 0}

and we define the vector spaces Vk(x) by

Vk(x) = span{V (x) : V ∈ Vk}.

Using this notation we can state the seminal result of Hörmander.

Theorem 2.10 (Hörmander’s Theorem) If a stochastic differential equa-
tion of the form of (2.8) satisfies the parabolic Hörmander condition, i.e we
have that

∪k≥1Vk(x) = Rn for every x ∈ Rn,

then its solutions admits a smooth density with respect to the Lebesgue mea-
sure.

Proof See [24].

This Theorem tells us that, if the coefficients of a SDE are such that the
parabolic Hörmander condition is satisfied, the solution to the SDE has a
density function and that density function is smooth.

We will also be interested in whether or not the density, given it exists,
is strictly positive. In other words, under what conditions can we say that
a solution to an SDE can achieve any value with positive probability. The
following proposition will be useful for the special cases in mind.
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Proposition 2.11 If the process X is of the form

Xt =

∫ t

0
σ(ξu)dWu

where ξ is a nonexplosive stochastic process with a transition density function
f , and σ(·) > ε for some ε > 0, then Xt has a strictly positive density on R.

Proof For any t > 0, let {tnj } be a partition of the interval [0, t] such that

0 = tn1 ≤ tn2 ≤ · · · ≤ tnn = t, and tni+1 − tni = t
n for every i. Consider the

random variable

Xn
t :=

n∑
i=1

σi∆Wi

where σi := σ(ξ(tni )) and ∆Wi = W (tni+1) −W (tni ) for every i = 1, . . . , n.
Now, let b > 0 be an arbitrary real value then

P(|Xn
t | > b) = P

(∣∣∣∣ n∑
i=1

σi∆Wi

∣∣∣∣ > b

)

= E
(
P
(∣∣ n∑

i=1

σi∆Wi

∣∣ > b|σi = xi, for i = 1, . . . , n
))

=

∫ ∞
ε

. . .

∫ ∞
ε

P
(∣∣ n∑

i=1

σi∆Wi

∣∣ > b|σi = xi, for i = 1, . . . , n
)
fσ(x1, . . . , xn)dx1 . . . dxn

=

∫ ∞
ε

. . .

∫ ∞
ε

P
(∣∣ n∑

i=1

xi∆Wi

∣∣ > b
)
fσ(x1, . . . , xn)dx1 . . . dxn

=

∫ ∞
ε

. . .

∫ ∞
ε

P
(
|Z| > b

)
fσ(x1, . . . , xn)dx1 . . . dxn, where Z ∼ N(0,

1

n

n∑
i=1

x2
i )

≥
∫ ∞
ε

. . .

∫ ∞
ε

P
(
|Zε| > b

)
fσ(x1, . . . , xn)dx1 . . . dxn, where Z ∼ N(0, ε2)

= P(|Zε| > b)

= P
(∣∣Zε

ε

∣∣ > b

ε

)
= 2Φ

(
− b

ε

)
> 0 (2.9)

where Φ(·) is the standard normal distribution. By the construction of Xn
t

we know that

Xn
t

L2

−→ Xt

and since convergence in mean implies convergence in measure taking limits
on either side of

P(|Xn
t | > b) > 0
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we have that
P(|Xt| > b) > 0.

Since this argument holds for any b > 0 we have shown that X achieves all
values in R with positive probability.

Notice that this argument will also hold if X is of the form

Xt = x+

∫ t

0
σ(ξu)dWu

for any x ∈ R, i.e
dXt = σ(ξt)dWt.

We have shown that if X can be written as the stochastic integral of a
strictly positive and integrable random variable, then X has a strictly posi-
tive density on the whole of R, provided that the density exists.

2.5 Stochastic functional differential equations

We now come to the subject of Stochastic functional differential equations
(SFDEs), the theory of which is far less developed then that of ordinary
SDEs. Throughout we will be working with a d-dimensional equation of the
form:

dX(t) = µ(t, (X(u), t−τ ≤ u ≤ t))dt+σ(t, (X(u), t−τ ≤ u ≤ t))dW (t) t ∈ [0, T ],
(2.10)

where τ > 0 is fixed. Clearly at time t, we have that the drift and volatil-
ity functions do not only depend on X at time t as in (2.2), but instead
depend on X over the whole interval [t− τ, t]. As in the case of the ordinary
SDE we need to ask ourselves how the solution will be defined and under
what condition will that solution exist? Again we take definitions and results
as found in [34]. For any fixed τ > 0 we define C

(
[−τ, 0];Rd) as the space of

continuous functions φ : [−τ, 0]→ Rd with the norm ||φ|| := supτ≤u≤0 |φ(u)|.

We say that the stochastic functional differential equation has initial data
X0 = ψ(u) for −τ ≤ u ≤ 0 where ψ is an F0-measurable, C

(
[−τ, 0];Rd) val-

ued random variable such that E(||ψ||2) <∞.

We can now define the solution as follows

Definition An Rd- valued stochastic process X on −τ ≤ t ≤ T is called
a solution to equation (2.10), with initial data ψ as above, if it has the
following properties:

1. It is continuous and X is Ft-adapted
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2. µ(t, (X(u), t− τ ≤ u ≤ t)) ∈ L1([0, T ];Rd) and

σ(t, (X(u), t− τ ≤ u ≤ t)) ∈ L2([0, T ];Rd×m)

3. X0 = ψ and, for every 0 ≤ t ≤ T ,

X(t) = ψ(0)+

∫ t

0
µ(s, (X(s), t−τ ≤ s ≤ t))ds+

∫ t

0
σ(s, (X(s), t−τ ≤ s ≤ t))dB(s), a.s

A solution X is called unique if any other solution Y is such that

P({X(t) = Y (t) for all − τ ≤ t ≤ T}) = 1.

As in the case of ordinary stochastic differential equations we then have
some results regarding the existence and uniqueness of solutions.

Theorem 2.12 Assume that there exists positive constants C1, C2, C3 and
C4 such that

1. (uniform Lipschitz condition) for all φ, ξ ∈ C([−τ, 0];Rd) and t ∈ [0, T ]

|µ(t, φ)− µ(t, ξ)|2 ≤ C1||φ− ξ||2

|σ(t, φ)− σ(t, ξ)|2 ≤ C2||φ− ξ||2.

2. (linear growth condition)for all (t, φ) ∈ [0, T ]× C([−τ, 0];Rd)

|µ(t, φ)|2 ≤ C3(1 + ||φ||2)

|σ(t, φ)|2 ≤ C4(1 + ||φ||2).

Then there exists a unique solution X to equation (2.10) with initial data
X0 = ψ(u) for −τ ≤ u ≤ 0.

Proof See the proof of Theorem 2.2 on page 150 of [34].

As one might expect there is no result for stochastic functional differential
equations that is equivalent to the one concerning the Markov property of an
ordinary stochastic differential equations. In fact in most cases the solution
to equation (2.10) will be non-Markovian.

A typical example, and one we will encounter in later chapters, is that
of the stochastic delay equation. Which takes the general form

dX(t) = F (t,X(t), X(t− τ))dt+G(t,X(t), X(t− τ))dW (t)

on t ∈ [0, T ] with initial data ψ as above, where F,G : R× R× [0, T ]→ R.
A less trivial example, and one that may depend on the entire path of the
r.v, is

dX(t) = F (t,X(t))dt+ sup
s∈[a,t]

|X(s)|G(t,X(t))dW (t).

Here a is some nonnegative constant, and F,G : R× [0, T ]→ R.

We will now present several important results for the application of
stochastic calculus to finance.
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2.6 Martingale pricing

We start with the martingale representation Theorem. This Theorem guar-
antees that every martingale adapted to the filtration generated by the
Wiener process can be represented by a stochastic integral of another adapted
process.

Theorem 2.13 (The Martingale Representation Theorem) Let W be
a Wiener process, and assume that the filtration (Ft)t≥0 is defined as

Ft = σ(Ws, s ≤ t), t ∈ [0, T ],

and let M be any Ft-adapted martingale. Then there exists a uniquely de-
termined Ft-adapted process ξ such that M has the representation

M(t) = M(0) +

∫ t

0
ξ(u)dW (u), t ∈ [0, T ]. (2.11)

If the martingale M is in L2 then ξ is in L2.

Proof See, for example, Theorem 11.2 in [3].

This result will be useful in the quest of proving that certain market models
are complete. The next Theorem is one that allows us to derive the dynam-
ics of stochastic processes, driven by Wiener processes, under a change of
measure.

Theorem 2.14 (Girsanov) Let W (t), t ∈ [0, T ], be a standard Brownian

motion on (Ω,F ,P). Let h be any adapted process such that
∫ T

0 |h(u)|du <∞
a.s, and let

Lt = e
∫ t
0
h(u)dW (u)− 1

2

∫ t
0
|h(u)|2du, t ∈ [0, T ],

and suppose that EP(Lt) = 1. If we define a probability measure Q on the
measurable space (Ω,F) by dQ = LtdP, then the process

W̄ (t) := W (t)−
∫ t

0
h(u)du, t ∈ [0, T ], (2.12)

is a standard Brownian motion under the measure Q. We call ht the Gir-
sanov Kernel of the measure transformation.

Proof See, for example, Theorem 11.3 in [3].

Since we will be primarily interest in the risk neutral world, this will be an
extremely important tool for us to have control over the change to the risk
neutral measure. In the conditions for the Girsanov Theorem we require
EP(LT ) = 1. Therefore, it will be useful to have a condition for Lt, or
equivalently h(t), under which this holds. The standard result to use in this
regard is Novikov’s condition.
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Theorem 2.15 (Novikov’s Condition) Assume that the Girsanov Ker-
nel ht is such that

EP
[
e

1

2

∫ T
0
||ht||2dt] <∞. (2.13)

Then L, as defined in the previous Theorem, is a martingale and in partic-
ular EP [Lt] = 1.

However this can be difficult to verify in some cases. When our mea-
sures are related through two stochastic differential equations, there is a
more useful condition. Before we look at this special case, let us consider
the following general setting:

Let (Ω,Ft,F ,P) be a probability space, on the compact interval [0, T ].
Suppose we define a measure Q by

dQ = LTdP, on FT

where LT is some FT -measurable, nonnegative and integrable random
variable. By definition, LT is the Radon-Nikodym derivative of Q with
respect to P on FT which, by the Radon-Nikodym Theorem, implies that
Q << P on FT .

Now, for every t ≤ T we have that Ft ⊆ FT , and as a consequence
Q << P on Ft. This implies the existence of the Radon-Nikodym derivative
for every t < T , and so we can define the random process Lt on [0, T ] by

Lt =
dQ
dP

, on Ft.

Let us narrow our focus slightly to the case where Lt, as defined above,
is a nonnegative P-Local martingale with L0 = 1. Clearly, in order for Q
to be a probability measure we require that EP(LT ) = 1. The following
proposition, as found in [27], is useful for proving when this is the case.

Proposition 2.16 Define the stopping time τn = inf{u : L(u) > n} ∧ T ,
and set Ln(t) = L(t ∧ τn). Define the measure Qn via dQn

dP
∣∣
Ft = Lnt so that

for A ∈ Ft, Qn(A) = EP(LnTχA). Then the following are equivalent:

1. L is a martingale

2. EP(LT ) = 1

3. Qn(τn < T )→ 0 as n ↑ ∞.

If any of these conditions hold then Q is well defined and Q is absolutely
continuous with respect to P.
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Proof Let us begin by noticing that

lim inf Ln(t) = lim inf L(t ∧ τn) = L(t)

and that Ln(t) is a true martingale by (2.6). As a consequence, for every
s, t ∈ [0, T ] with s < t, by Fatou’s Lemma for conditional expectation we
have that

EP(L(t)|Fs) ≤ lim inf EP(Ln(t)|Fs)
= lim inf Ln(s)

= L(s) (2.14)

which implies that L is a supermartingale. For the implication that (1) ⇒
(2) notice that

EP(LT ) = EP(EP(LT |F0)
)

= EP(L0) = 1.

For the reverse implication suppose that (1) does not hold. This implies
that there exist an s ∈ [0, T ] such that EP(LT |Fs) 6= L(s), and since L is a
supermartingale we must have

EP(LT |Fs) < L(s)

⇒ EP(EP(LT |Fs)|F0

)
< EP(L(s)|F0)

≤ L0 = 1

⇒ EP(LT |F0) < 1

⇒ EP(EP(LT |F0)
)
< 1

EP(LT ) < 1

so that (2) does not hold. For the remaining implications recall that Ln is
a true martingale and that

1 = EP(LnT ) = EP(Ln(T )χ{τn=T}) + EP(Ln(T )χ{τn<T})

= EP(L(T )χ{τn=T}) + Qn({τn < T}).

We then take limits on both sides of the above equation. If (3) holds then
Qn({τn < T}) goes to zero so that EP(L(T )χ{τn=T})→ 1, and by uniqueness

of limits EP(LT ) = 1. Finally, if (2) holds then Doob’s martingale inequality
for p = 1, C = n gives,

P(τn < T ) = P(supLt > n) ≤ 1

n
→ 0

which implies that EP(Ltχ{τn=T}) → 1, so that Qn({τn < T}) → 0 by the
equation above.

For any A ∈ FT we can, therefore, safely define Q(A) = EP(LTχA),
which in turn implies that if P(A) = 0 then Q(A) = 0 and we have that
Q << P.
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We are now ready to consider a special type of measure transformation.
Consider a general probability space (Ω,F ,P0), and consider the following
stochastic differential equations,

dXt = µ0(t,Xt)dt+ σ(t,Xt)dWt (2.15)

dXt = µ1(t,Xt)dt+ σ(t,Xt)dWt (2.16)

and let P, Q be the law of the solution of (2.15) and (2.16) respectively,
for a given initial condition X0 = x0 ∈ R. Also, assume that σ(t, ·) > 0
and σ, µi are such that both equations have unique solutions. Let us also
assume that the filtration is right-continuous and complete with respect to
the measure 1

2(Q + P).

If we define the process B0 and B1 as the solutions to the following

dB0
t =

dXt − µ1(t,Xt)

σ(t,Xt)

dB1
1 =

dXt − µ0(t,Xt)

σ(t,Xt)
.

Then B0 and B1 are standard Wiener processes under P and Q respectively,
and by defining

θt :=
µ1(t,Xt)− µ0(t,Xt)

σ(t,Xt)

we have that
dB0

t = dB1
t + θtdt.

Under the above conditions we have the following proposition.

Proposition 2.17 If Q
( ∫ T

0 θ2
udu <∞

)
then Q << P

Proof Define
Lt := e

∫ t
0
θudB0

u− 1

2

∫ t
0
θ2udu.

By the Itô formula this process solves the SDE,

dLt = θtLtdB
0
t , L0 = 1

and is therefore a P-Local martingale. We also have that

L−1
t = e−

∫ t
0
θudB0

u+ 1

2

∫ t
0
θ2udu

= e−
∫ t
0
θudB1

u− 1

2

∫ t
0
θ2udu

so by our assumption we have that Q(inf L−1
t = 0) = 0.
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Now let τn and Qn be defined as in proposition (2.16). Under Qn the
process X solves

dXt = σ(t,Xt)dWt + (µ1(t,Xt)χ{t≤τn} + µ1(t,Xt)χ{t>τn})dt.

Path-wise uniqueness then implies that

Qn(τn < T ) = Qn(supYt > n) = Q(inf Y −1
t <

1

n
)→ 0

so that by proposition 2.16 we have that L is a P-martingale and that Q <<
P

By interchanging the roles of P and Q we get the following corollary

Corollary 2.18 If
∫ T

0 θ2
udu is almost surely finite under both Q and P then

Q is equivalent to P

The above results will be extremely useful in our quest to find a martin-
gale measures in the market models that we consider, where a martingale
measure is defined as a measure under which the discounted price process is
a martingale.

Martingale measures are extremely useful and in particular they allow
us to make use of the martingale pricing Theorem

Theorem 2.19 Assuming the existence of a short rate rt, the arbitrage free
process for the any contingent financial cliam at time T (a T -claim) X is
given by

V (t,X) = EQ(e∫ Tt r(s)dsX|Ft
)

where Q is a martingale measure.

Proof See, for example, Theorem 10.9 in [3].

We now have the theoretical background necessary for us to understand and
construct certain market models of interest. In particular, our goal will be
to find a model which has path dependent volatility, yields a pricing partial
differential equation and is fitted to the market. We start our quest for such
a model, ironically, by presenting the theory of local volatility.
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3 Local volatility

3.1 Dupire’s equation

In essence, local volatility models seek to solve the problem of volatility
smiles. In his seminal paper on the subject Dupire aimed to solve the prob-
lem by formulating the following question: Is there a spot process for the
underlying that is compatible with observed smiles, and also retains com-
pleteness as in the Black-Scholes framework? [14].

In order to satisfy the first part of the question, we assume that the
prices for European options of all strikes K and maturities T are given. This
will ensure that the correct prices are built into the model and so will fit
the smile. In order to satisfy the requirement for completeness, we must not
introduce a new source of randomness into the model for the underlying. We
are therefore looking for a process with the following risk neutral dynamics:

dSt
St

= (rt − dt)dt+ σ(t, St)dWt. (3.1)

Here Wt is a Wiener process, rt is the instantaneous forward rate implied
by the yield curve (we will assume this is a known deterministic function
of t), dt is the dividend yield (we will use µt := rt − dt) and σ(t, St) is a
deterministic function of the current spot and time (the local volatility) [14].
Dupire then goes on to derive a form for the function σ(t, St) based on the
above, and with µt = 0. We will prove the result for any µt.

We will need the following preliminary results which is a simple applica-
tion of the martingale pricing Theorem to a European call option.

Theorem 3.1 (European Call option) The price of a standard Euro-
pean call is equal to the discounted expected payoff conditional on the current
underlying price. For an option with maturity T strike K, this can be written
as:

Ct = e−
∫ T
t
r(s)dsEt,x[(ST −K)+]

Ct = Dt,TEt,x[(ST −K)+],

where Et,x(·) = E(·|St = x), E = (·) is the expectation under the risk

neutral measure and Dt,T := e−
∫ T
t
r(s)ds.

If there exists a transition probability density p(t0, x0; t, x), going from
state (t0, x0) to (t, x), then (??) can be written as follows:

Ct = Dt,T

∫ ∞
0

(s−K)+p(T, s)ds

= Dt,T

∫ ∞
K

(s−K)p(T, s)ds,
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where we have written p(t0, x0; t, x) := p(t, x) for brevity.

Notice that if we fix the current time t, (??) gives us the price of a call as
a function of the strike K and maturity T, Ct(T,K).

Theorem 3.2 (Fokker-Plank equation) Assume that St, the solution of
(3.1), has transition density p(s, y; t, x). Then p will satisfy the Fokker−Plank equation

∂

∂t
p(s, y; t, x) = − ∂

∂x
[µtxp(s, y; t, x)] +

1

2

∂2

∂x2
[σ2(t, x)x2p(s, y; t, x)] (3.2)

Proof See page 76 in [3].

We are now in a position to derive the main result from [14].The deriva-
tion is as in [10], but we provide additional detail that was omitted. If we let
p(T, x) denote the risk neutral density for the underlying at time T (again
adopting our short hand p(t0, x0; t, x) := p(t, x)), then Theorem (3.1) gives
us:

Ct = Dt,T

∫ ∞
K

(s−K)p(T, s)ds (3.3)

From this relationship we can get the following:

1. First derivative with respect to K:

∂C

∂K
= −Dt,T

∂

∂K

∫ K

∞
(s−K)p(T, s)ds

= −Dt,T

[
∂

∂K

∫ K

∞
sp(T, s)ds− ∂

∂K
K

∫ K

∞
p(T, s)ds

]
= −Dt,T

[
Kp(T,K)−

∫ K

∞
p(T, s)ds−Kp(T,K)

]
∂C

∂K
= −Dt,T

∫ ∞
K

p(T, s)ds. (3.4)

2. Second derivative with respect to K:

∂2C

∂K2
= −Dt,T

∂

∂K

∫ ∞
K

p(T, s)ds

1

Dt,T

∂2C

∂K2
= p(T,K). (3.5)

3. finally, the first derivative with respect to the maturity

∂C

∂T
=

∂

∂T
Dt,T

∫ ∞
K

(s−K)p(T, s) +Dt,T

∫ ∞
K

(s−K)
∂

∂T
p(T, s)

∂C

∂T
= −r(T )Dt,T

∫ ∞
K

(s−K)p(T, s)ds+Dt,T

∫ ∞
K

(s−K)
∂

∂T
p(T, s)ds

∂C

∂T
= −r(T )Ct +Dt,T

∫ ∞
K

(s−K)
∂

∂T
p(T, s)ds. (3.6)
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For the next part of the derivation we will need Theorem (3.2). Since p(T, s)
is a density function, it satisfies (3.2) i.e:

∂

∂T
p(T, s) = − ∂

∂s
[µT sp(T, s)] +

1

2

∂2

∂s2
[σ2(T, s)s2p(T, s)]. (3.7)

By substituting (3.7) into (3.6), we get the following expression.

∂C

∂T
= −rTCt +Dt,T

∫ ∞
K

(s−K)

(
− ∂

∂s
[µT sp(T, s)] +

1

2

∂2

∂s2
[σ2(T, s)s2p(T, s)]

)
ds

= −rTCt +Dt,T

(
− µT

∫ ∞
K

(s−K)
∂

∂s
[sp(T, s)]ds

+
1

2

∫ ∞
K

(s−K)
∂2

∂s2
[σ2(T, s)s2p(T, s)]ds

)
(3.8)

We derive the main result from equation (3.8) by simplifying the two
integrals. In order to do this we first notice that combining equations (3.3)
and (3.4) gives: ∫ ∞

K
sp(T, s)ds =

C

Dt,T
− K

Dt,T

∂C

∂K
. (3.9)

Now we consider the first integral:

µT

∫ ∞
K

(s−K)
∂

∂s
[sp(T, s)]ds = [µT (s−K)sp(T, s)]∞K − µT

∫ ∞
K

[sp(T, s)]ds

this by integration by parts. We assume that p(t, s) decays exponentially
as s → ∞, this means that the term in brackets will converge to 0 at the
boundary as s → ∞. Using the assumption and equation (3.9), we have
that:

µT

∫ ∞
K

(s−K)
∂

∂s
[sp(T, s)]ds = [0− 0]− µT

∫ ∞
K

[sp(T, s)]ds

µT

∫ ∞
K

(s−K)
∂

∂s
[sp(T, s)]ds = −µTC

Dt,T
+
µTK

Dt,T

∂C

∂K
. (3.10)

We use integration by parts again for the second integral∫ ∞
K

(s−K)
∂2

∂s2
[σ2(T, s)s2p(T, s)]ds =

[
(s−K)

∂

∂s
σ2(T, s)s2p(T, s)

]∞
K

+

∫ ∞
K

∂

∂s
[σ2(T, s)s2p(T, s)]ds

⇒
∫ ∞
K

(s−K)
∂2

∂s2
[σ2(T, s)s2p(T, s)]ds = [0− 0] +

[
σ2s2p(T, s)

]∞
K

⇒
∫ ∞
K

(s−K)
∂2

∂s2
[σ2(T, s)s2p(T, s)]ds = σ2(T,K)K2p(T,K)

⇒
∫ ∞
K

(s−K)
∂2

∂s2
[σ2(T, s)s2p(T, s)]ds = σ2(T,K)

K2

Dt,T

∂2C

∂K2
. (3.11)
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Again we have assumed that the transition density behaves appropriately at
the boundary as s gets very large. If we now substitute expressions (3.10)
and (3.11) into (3.8). We get:

∂C

∂T
= −rTCt +Dt,T

[
µTC

Dt,T
− µTK

Dt,T

∂C

∂K
+

1

2
σ2(T,K)

K2

Dt,T

∂2C

∂K2

]

⇒ ∂C

∂T
=

1

2
σ2(T,K)K2 ∂

2C

∂K2
+ µT

(
C − ∂C

∂K

)
− rT + C (3.12)

⇒ σ2(T,K) =
∂C
∂T + dTC + (rT − dT )K ∂C

∂K
1
2K

2 ∂2C
∂K2

(3.13)

⇒ σ(T,K) =

√√√√ ∂C
∂T + dTC + (rT − dT )K ∂C

∂K
1
2K

2 ∂2C
∂K2

. (3.14)

Notice that if we set r(T ) = 0 we recover the result from [14] exactly.
Equation (3.12) is known as Dupire’s forward equation. Equation (3.14)
describes a mapping from the surface of call prices as a function of (T,K) to
a volatility surface σ = σ(T,K). It is often considered the definition of local
volatility and we sometimes denote this σ2 as σ2

LV . The volatility surface
that the equation describes is the unique function that, when used in (3.1),
gives the correct prices for European options of all strikes and maturities,
i.e it fixes the volatility smile.

There are some noticeable issues with formula (3.14). Firstly we no-
tice the possibility for imaginary local volatility if the expression under the
square root is negative, however this possibility is removed by considering
arbitrage arguments. In the denominator, K2 is always positive and ∂2C

∂K2

can also be show to always be positive by considering a infinitesimal butter-
fly spread [30]. No arbitrage also implies that a calendar spread must have
positive value, this ensures the positivity of the numerator [30].

The second issue with (3.14) is one of stability. In practice we do not
have a full continuum of option prices and so there is no analytical formula
for the option price surface. This means we have to use numerical approx-
imations for the derivatives in the formula. Since there is only one term in
the denominator of the equation, and this term includes the second deriva-
tive with respect to strike, there are potential stability issues when this
derivative is small since numerical errors are large relative to the derivative
value at these points resulting in large absolute errors. An option has a very
small dual gamma when it is far out-of-the-money, this effect is exaggerated
for options of short maturity. The issue of stability can be addressed by
considering a clever change of variables.
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3.2 Local volatility in terms of implied volatility

The Black-Scholes implied volatility of an option can be considered a mea-
sure of its price. In fact, options are often traded using implied volatilities
and not price. The goal of this section will be to express equation (3.12) in
terms of the implied volatility of the European options and not their prices.
We provide additional detail and insight, as well as a slight change, to the
method presented in [18].

The goal is to express the derivatives in (3.12) using implied volatilities.
Without loss of generality we can assume t = 0 and S0 as our initial state.
We start by defining the following dimensionless parameters:

y := ln
K

FT
(3.15)

w(S0, T,K) := σ2
imp(S0, T,K)T.

Here we use the futures price FT = S0e
∫ T
0 µtdt. These parameters are

known as the “log strike” and the “Black Scholes implied Total variance”
respectively. With these new parameters we have that C(S0, T,K, σ) =
C(S0, T, y(T,K), w(T,K)). We also have, by the definition of implied volatil-
ity:

C(S0, T,K, σ) = CBS(S0, T,K, σimp(S0, T,K)). (3.16)

Where CBS is the price obtained using the Black-Scholes formula. By the
seminal paper on option pricing [4] we know:

CBS(S0, T,K, σ) = e−
∫ T
0 rtdt[FTN(d1)−KN(d2)]

d1 =
1

σ
√
T

[
ln

(
S0e

∫ T
0 µtdt

K

)
+

(
σ2

2

)
(T )

]
(3.17)

d2 = d1 − σ
√
T .

This is for a process of the form (3.1). Using the new parameters, defined
in (3.15), in equation (3.17) we have the following:

CBS(FT , y, w) = S0e
−

∫ T
0 dtdt[N(d1) + eyN(d2)]

d1 = − y√
w

+

√
w

2
(3.18)

d2 = − y√
w
−
√
w

2
.

It is now relatively easy to derive the following expressions using total
derivatives and relationship (3.16).

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



1. First Derivative with respect to K

∂C

∂K
=
∂C

∂y

∂y

∂K
+
∂C

∂w

∂w

∂K

⇒ ∂C

∂K
=
∂C

∂y

1

K
+
∂C

∂w

∂w

∂K
. (3.19)

2. Second derivative with respect to K

∂2C

∂K2
=

∂

∂K
(
∂C

∂y

1

K
+
∂C

∂w

∂w

∂K
)

= − 1

K2

∂C

∂y
+

1

K

∂

∂y
(
∂C

∂K
) +

∂C

∂w

∂2w

∂K2
+
∂w

∂K

∂

∂w
(
∂C

∂K
)

= − 1

K2

∂C

∂y
+

1

K

∂

∂y
(
∂C

∂y

1

K
+
∂C

∂w

∂w

∂K
) +

∂C

∂w

∂2w

∂K2
+
∂w

∂K

∂

∂w
(
∂C

∂y

1

K
+
∂C

∂w

∂w

∂K
)

= − 1

K2

∂C

∂y
+

1

K

(∂2C

∂y2

1

K
+

∂2C

∂w∂y

∂w

∂K

)
+
∂C

∂w

∂2w

∂K2
+
∂w

∂K

( ∂2C

∂y∂w

1

K
+
∂2C

∂w2

∂w

∂K

)
⇒ ∂2C

∂K2
=

1

K2

(∂2C

∂y2
− ∂C

∂y

)
+

2

K

∂2C

∂w∂y

∂w

∂K
+
∂C

∂w

∂2w

∂K2

+
∂2C

∂w2

( ∂w
∂K

)2
. (3.20)

3. First derivative with respect to T

∂C

∂T
=
∂C

∂T

∂T

∂T
+
∂C

∂y

∂y

∂T
+
∂C

∂w

∂w

∂T

=
∂C

∂T
+
∂C

∂y
(dT − rT ) +

∂C

∂w

∂w

∂T

∂C

∂T
= −dTC +

∂C

∂y
(dT − rT ) +

∂C

∂w

∂w

∂T
. (3.21)

For the final derivative we used y = ln(KS0
) −

∫ T
0 (rt − dt)dt to get ∂y

∂T =
dT − rT . The fact that (3.16) holds together with formula (3.18) gives us
∂C
∂T = −dTC. Substituting expressions (3.19),(3.20) and (3.21) into (3.12)
gives the modified Dupire equation:

σ2(T,K) =
(−dTC + ∂C

∂y (dT − rT ) + ∂C
∂w

∂w
∂T ) + dTC + (rT − dT )K(∂C∂y

1
K + ∂C

∂w
∂w
∂K )

1
2K

2( 1
K2 (∂

2C
∂y2 − ∂C

∂y ) + 2
K

∂2C
∂w∂y

∂w
∂K + ∂C

∂w
∂2w
∂K2 + ∂2C

∂w2 ( ∂w∂K )2)

σ2(T,K) =
∂C
∂w

∂w
∂T +K(rT − dT )∂C∂w

∂w
∂K

1
2

(
∂2C
∂y2 − ∂C

∂y +K ∂2C
∂w∂y

∂w
∂K +K2 ∂C

∂w
∂2w
∂K2 +K2 ∂2C

∂w2

(
∂w
∂K

)2) .
(3.22)
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In order to simplify further we use some simple identities from [18] de-
rived from formula (3.18). Again we assume that relationship (3.16) holds.

∂2C

∂w2
=
(
− 1

8
− 1

2w
+

y2

2w2

)∂C
∂w

(3.23)

∂2C

∂w∂y
=
(1

2
− y

w

)∂C
∂w

(3.24)

∂2C

∂y2
− ∂C

∂y
= 2

∂C

∂w
. (3.25)

Substituting these identities into (3.22) gives us:

σ2(T,K) =
∂w
∂T +K(rT − dT ) ∂w∂K

1
2

[
2 +K( 1

2 −
y
w ) ∂w∂K +K2 ∂2w

∂K2 +K2(− 1
8 −

1
2w + y2

2w2 )
(
∂w
∂K

)2] . (3.26)

This is the equation seen in [18]. Finally we remember the goal of this
section was to express equation (3.12) in terms of implied volatility and not
Black-Scholes implied total variance. We therefore use the definition of w
to get the partial derivatives in equation (3.26) in terms of σimp.

∂w

∂K
= 2σimpT

∂σimp
∂K

(3.27)

∂2w

∂K2
= 2T (

∂σimp
∂K

)2 + 2σimpT
∂2σimp
∂K2

(3.28)

∂w

∂T
= σ2

imp + 2TσimpT
∂σimp
∂T

. (3.29)

After much work we are finally able to express the formula for local volatility
as a function of the implied volatility, as in [30], by substituting equations
(3.27),(3.28) and (3.29) into (3.26) and performing some algebraic manipu-
lations:

vL = σ2(T,K)

=
σ2
imp + 2Tσimp

∂σimp
∂T + 2(rT − dT )KTσimp

∂σimp
∂K(

1 +Kd1

√
T
∂σimp
∂K

)2
+K2Tσimp

(
∂2σimp
∂K2 − d1

√
T
(∂σimp

∂K

)2) . (3.30)

With d1 as in equation (3.17) with σ = σimp. We see that the trans-
formation from call prices to implied volatility results in a denominated
with multiple terms, unlike the one term in (3.14). This means small er-
rors resulting from numerical approximations for the derivatives will not be
compounded. Therefore (3.26) is a more stable formula.

In the two preceding subsections we have derived formulas for the local
volatility function, without giving a proper interpretation of what the local
volatility represents. It is possible to gain more insight in to the nature
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and interpretation of the local volatility function by considering a stochastic
volatility model and a result from measure theory that has grown in impor-
tance since its application to volatility models was discovered. We discuss
this result next.

3.3 Gyöngy’s mimicking process

Option traders make trading decisions based on future expectations, it is
therefore natural to assume that Black-Scholes implied volatility for an op-
tion is a measure of the markets’ expectations for volatility over the life of
that option. Although this is a tempting line of thought, it is wrong, since
implied volatility is in fact a measure of price and can not be considered a
statistical measure [37]. This reasoning is, however, useful when applied to
local volatility.

Derman et al. [11] were able to show the following.

Proposition 3.3 (Local Volatility as a conditional expectation) Assume
that a process has dynamics,

dSt
St

= µtdt+ σtdWt, (3.31)

S0 = x

where Wt is a standard Wiener process under some measure, µt is a
deterministic function and σt follows a, as yet, unspecified random process.
If, in addition to this, we have risk-neutral prices for all European options
then the local variance, σ2

LV as in (3.13), is the conditional risk-neutral
expectation of the instantaneous future variance of the underlying given that
ST = K. In other words we have that:

σ2(T,K) = E(σ2
T |ST = K). (3.32)

Proof We will prove this result for the case when St has dynamics as in
(3.31) with µt = r where r > 0 is a constant, since we can always move to
this case from (3.31) using a change in measure.

Assuming that the transition density for the spot price, p(t, x), exists we
recall that the price of a call option at time 0 is

C = e−rTE0,x[(ST −K)+]

= E0,x

(
e−rT (ST −K)χ{ST>K}

)
, (3.33)

where χ{ST>K} is the characteristic function of the set {ST > K}. We note
that the characteristic function has the following properties:
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∂

∂s
χ{s>K} = δ(s−K) (3.34)

∂

∂K
χ{s>K} =

∂

∂K
(1− χ{K>s})

= −δ(s−K), (3.35)

where δ(·) is the Dirac-delta function. Using this, and assuming that we
have the appropriate integrability conditions required for Fubini’s Theorem
to hold, we have the following useful identities

∂C

∂K
= e−rT

∂

∂K
E0,x((ST −K)χ{ST>K})

= e−rT
(
E0,x((K − ST )δ(ST −K))− E0,x(χ{ST>K})

= −e−rTE0,x(χ{ST>K}) (3.36)

∂2C

∂K2
= e−rTE0,x(δ(ST −K)). (3.37)

Next we consider the function g(t, x) = e−rt(x − K)χ{x>K}. Clearly this
gives

g1 = −rg
g2 = e−rt(x−K)δ(x−K) + e−rtχ{x>K} = e−rtχ{x>K}

g22 = e−rtδ(x−K).

Applying the Itô formula to the process g(T, ST ) then gives that

d(e−rT (ST −K)+) = −re−rT (ST −K)χ{sT>K} + e−rTχ{ST>K}dST +
1

2
e−rtδ(ST −K)d〈S〉T

= −re−rT (ST −K)χ{sT>K}dT + e−rTχ{ST>K}(ST rdT + STσT dWT ) +
1

2
e−rtδ(ST −K)(S2

Tσ
2
T dT )

= e−rT
(
Krχ{sT>K} +

1

2
δ(ST −K)S2

Tσ
2
T

)
dT + e−rTχ{ST>K}STσT dWT .

This, together with (3.33), implies that

dC = e−rTE0,x

((
Krχ{sT>K} +

1

2
δ(ST −K)S2

Tσ
2
T

)
dT + χ{ST>K}STσTdWT

)
since the expected value of a stochastic integral is always 0 we have that

∂C

∂T
= e−rTE0,x

(
Krχ{sT>K} +

1

2
δ(ST −K)S2

Tσ
2
T

)
= e−rTKrE0,x(χ{sT>K}) + e−rT

1

2
K2E0,x(δ(ST −K)σ2

T ).

We can write the second term as

e−rT
1

2
K2E0,x(δ(ST −K)σ2

T ) = e−rT
1

2
K2E0,x(σ2

T |ST = K)E0,x(δ(ST −K)),
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which gives

∂C

∂T
= e−rTKrE0,x(χ{sT>K}) + e−rT

1

2
K2E0,x(σ2

T |ST = K)E0,x(δ(ST −K)),

using equations (3.36) and (3.37) gives,

∂C

∂T
= −Kr ∂C

∂K
+

1

2
K2E0,x(σ2

T |ST = K)
∂2C

∂K2

so that, finally we have

E0,x(σ2
T |ST = K) =

∂C
∂T +Kr ∂C∂K

1
2K

2 ∂2C
∂K2

.

Comparing this equation with (3.13) (in the case where dT = 0) it is
clear that

E0,x(σ2
T |ST = K) = σ2

LV .

Dupire also proved a similar result in [15], however, neither were first in ar-
riving to this conclusion. The work done by Dupire and Derman et al. can
be considered an application of a more general result proposed by Krylov
[32] and proved by Gyöngy [22]. The Theorem is as follows:

Theorem 3.4 (Gyöngy’s Theorem) Suppose that ξt is a real-valued one-
dimensional Itô process starting at 0 with dynamics

dξt = α(t, ω)dt+ β(t, ω)dWt, (3.38)

where Wt is a k-dimensional Wiener process on the probability space
(Ω, P,Ft), α(t, ω) and β(t, ω) are bounded Ft non-anticipative processes
such that ββT is uniformly positive definite. Then there exists another, one-
dimensional, stochastic process ξ̃t which has the same marginal probability
distribution as ξt for all t, and ξ̃t is a solution of the SDE

dξ̃t = a(t, ξ̃t)dt+ b(t, ξ̃t)dW̃t (3.39)

with non-random coefficients a and b on some space (Ω, P̃ , F̃t). These co-
efficients have the simple interpretation

a(t, x) = E[α(t, ω)|ξt = x]

b(t, x) =
√
E[ββT (t, ω)|ξt = x]. (3.40)
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The result was then extended by Brunick and Shreve [7]. They were
able to relax the regularity conditions on β(t, ω), requiring only integrabil-
ity. This allowed the result to be applied to the popular stochastic volatility
model created by Heston [26]. Since we have already proved a special case
of this result (the most relevant case for our purposes) and considering that
the proof of the Theorem requires advanced measure theory and is beyond
the scope of this dissertation, we will not prove it here. What is important
for our purposes is the insight it gives.

Gyöngy’s result tells us that if we have a process with random coeffi-
cients, subject to some conditions, there is a process which solves an SDE
with non-random coefficients and has the same marginal distribution as the
original process. The new process is said to be a simpler mimicking process
of the original [1]. At this point we remember that the value of a European
call is only dependent on the risk neutral density of the underlying at expiry
conditional on the initial state. The Theorem, therefore, tells us that if we
have an underlying that is governed by a process with stochastic volatil-
ity, such as the one in [26], then there is a new process with non-random
volatility that generates the same European option prices. If we compare
equation (3.32) with (3.40), we see that this new process has a volatility
coefficient of the exact same form as the one shown by Dupire in [14]. This
essentially shows that the Dupire local volatility function is the best non-
random approximation to a random volatility process that generates the
current market prices for European options. This is a nice justification for
the use of local volatility models.

3.4 Construction of the implied volatility surface

Up to this point we have proved general results that hold for all local volatil-
ity models given certain assumptions, these results are widely accepted and
used. Throughout we have assumed that a full continuum of option prices
is known, which in turn means that the we have a full, continuous and suffi-
ciently smooth implied volatility function that we can use in formula (3.30)
in order to generate a Local volatility surface. This is, of course, a naive
assumption since in reality we only have option prices for a finite number of
maturities and strikes.

This leads to the question of how to construct the implied volatility sur-
face, and it is in this area where debate is most fierce. The various methods
of construction can be grouped into three broad groups, theoretical con-
struction, representations based on interpolation and smoothing techniques,
and finally, parametric representations.
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3.4.1 Theoretical construction

This type of construction normally involves a stochastic volatility model.
From the stochastic volatility model it may be possible to derive a analyti-
cal expression for the implied volatility surface, and then obtain the appro-
priate derivatives that are used in (3.30). This technique can be employed
in the frameworks such as that of the Heston volatility model [26] and the
stochastic-αβρ ,or SABR, model [23].

As an example we will look at the SABR model. In this framework we
have the following dynamics:

dFt = αtF
β
t dW

1
t

dαt = ναtdW
2
t (3.41)

dW 1
t · dW 2

t = ρdt,

where Ft is the forward price with F0 = S0e
(r0−d0)T , αt the volatil-

ity function starting at α0 = α, ν is the volatility of volatility and ρ the
correlation between the two Wiener processes. Using this, the following
approximation for the implied volatility surface was derived in [23]:

σimp(F0,K) ≈α(F0K)
β−1
2

[
1 +

(1− β)2

24
ln

(
F0

K

)
+

(1− β)4

1920
ln4

(
F0

K

)]−1(
z

x(z)

)
[

1 +

(
α2(1− β)2

24(F0K)1−β
+

ρβνα

4(F0K)
1−β
2

+
2− 3ρ2

24
ν2

)
T

]
, (3.42)

where,

z =
ν

α
(F0K)

1−β
2 ln

(
F0

K

)
(3.43)

x(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
. (3.44)

This formula can then be used to get analytic expressions for the deriva-
tives in formula (3.30), however it should be clear by looking at formula
(3.42), that the resulting expression will be too large to be written into a
computer programme if we want timely results. This highlights the main
issue with these kind of theoretical construction: they are very computation-
ally expensive. We can, of course, generate a volatility surface on a discrete
grid using (3.42), and then numerically approximate the derivatives, but
this will introduce more errors.
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The second issue is one concerning the fit of the model to the data. We
see that in the construction of the model we have some parameters, namely
α, β and ρ. These can be selected to minimize the error between the market
data and the implied volatility the model generates at these specific strikes
and maturities, however their is no guarantee that all the market data will
fit onto the generated surface exactly.

Despite these technical issues, it has been shown that deriving the volatil-
ity surface with more technical approximations does lead to some predictive
power [19], and the volatility surface generated has realistic dynamics.

Another subclass of such constructions are those based on Levy pro-
cesses. These processes are useful when we have steep short term skews.
They allow for jumps in the diffusion process. Some popular models of this
form are the model by Kou [31], and the variance gamma model by Carr et
al. [33].

3.4.2 Interpolation and smoothing

We can also construct a implied volatility surface by interpolating market
data, and then smooth the resulting surface so that the derivatives in for-
mula (3.30) are stable.

Kahale [28] proposes a method that involves uses piecewise convex poly-
nomials that mimic the Black-Scholes pricing formula. This results in an
arbitrage free price surface, and so is any resulting volatility smile.

Another scheme, that was proposed as a candidate for this problem in
[16] and [6], is the interpolation of the volatility surface using Thin Plate
Splines. The surface is then smoothed out, the resulting surface may not
go through each data point exactly, but the smoothing can be controlled so
that we lie within the bid-ask spread at these points.

These kinds of schemes have a computational advantage over those in
the preceding sub section and they also fit market data more closely. They
do not, however, allow us to derive analytical derivatives of the volatility
surface and they do not have the same predictive power either.

3.4.3 Parametric construction

These methods are extremely popular due to their simplicity and usefulness.
In [13] it was proposed that the volatility surface be approximated as a
quadratic function of the moneyness M := ln

(
F
K

)√
T , i.e:

σimp(M , T ) = b1 + b2M + b3M
2 + b4T + b5MT. (3.45)
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When applied to oil markets, it was found in [5] that the method gives a
very rough average of the volatility surface due to the assumption that the
quadratic function is the same across all maturities. It was proposed that
each maturity be treated separately. A quadratic function of moneyness was
fitted across all strikes for each maturity, and then data was interpolated
between each maturity. Safex use a method of this form for liquid ALSI
option (which is an option on a future) [30]. For this reason we will discuss
their method in detail.

Safex fits a three-parameter quadratic polynomial to the market data for
each traded expiry [30], i.e a function of the form:

σimp(M) = βk0 + βk1M + βk2M
2, (3.46)

where k = 1, 2, ..., n are the n listed expiries, M := K/F is the money-
ness. We remember that the ALSI options are options on the ALSI futures
contract, and so our spot price is the futures level F . βki for i = 1, 2, 3 are
parameters that we can choose for each listed expiry. βk1 is known as the
correlation term, no-spread-arbitrage requires that −1 < βk1 < 0, for all k.
This also ensures that the function gives the desirable property that volatil-
ity is negatively correlated with the spot price. βk2 is known as the volatility
of volatility (vol-of-vol) parameter, and no-calendar-spread arbitrage con-
vexity condition implies that βk2 > 0, for all k [30].

Equation (3.46) describes n parabolas that can be fitted to the market,
giving n skews. The goal, however, is to get a three-dimensional surface. To
do this Safex gives a functional form for the At-the-Money (ATM) volatility
term structure. It is the following exponential:

σATM (t) =
θ

tλ
. (3.47)

Here t is the time to expiry, λ controls the slope (which may be positive
or negative), and θ controls the short term ATM curvature. In order to link
the two models in (3.46) and (3.47), and to ensure our resulting surface is
continuous we assume that:

βi(t) =
θi
tλi
, for i = 1, 2, 3. (3.48)

Notice we have dropped the subscript k, and the β’s are now a function
of t instead. This is because we have moved away from the discrete number
of listed expiries to a continuous setting. We now have

σimp(t,M) =
θ0

tλ0
+
θ1

tλ1
M +

θ2

tλ2
M2. (3.49)
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This fully describes a 3D volatility surface and we can select the 3 parameters
to fit the market data using optimization techniques. Switching back to the
strike price and futures level we have that

σimp(t,M) =
θ0

tλ0
+
θ1

tλ1

K

F
+
θ2

tλ2

(
K

F

)2

. (3.50)

It is now a straight forward exercise to obtain the derivatives:

∂σimp
∂K

=
θ1

Ftλ1
+

2θ2K

F 2tλ2

∂2σimp
∂K2

=
2θ2

F 2tλ2
(3.51)

∂σimp
∂t

= −λ0
θ0

t(λ0+1)
− λ1

Kθ1

Ft(λ1+1)
− λ2

K2θ2

F 2t(λ2+1)
.

These are the derivatives that can be used in formula (3.30). The parameters
θi and λi for i = 0, 1, 2 are published every two weeks by Safex.
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4 Path dependent volatility

4.1 A general model

We now begin the hallmark chapter of this dissertation by introducing path
dependent models in their most natural form, as done in [25]. The con-
struction of the model contains more heuristics than rigour. However, it is
included only to build an intuition for the following subsections. With this
in mind, suppose that we have a financial market with a risk-free asset and
a single risky asset over the time period [0, T ]. We assume that the risk-free
asset, defined as the process B, has dynamics governed by the equation

dBt = rBtdt, t ∈ [0, T ], (4.1)

for some constant r > 0. In addition, we assume that the risky asset has
dynamics of the form

dSt = µStdt+ ΣtdWt, t ∈ [0, T ], (4.2)

where W is a Brownian motion under some probability measure P, and µ is
a positive constant representing the drift under the measure P. Σ is assumed
to be a stochastic process, such that the filtration generated by S is the same
as the filtration generated by W , meaning that, knowing W up to time t
is equivalent to knowing S up to time t. This filtration will be denoted by
(Ft)t≥0 := (σ(Su, u ≤ t)). In order to force our model to have some desired
properties, we make the following assumptions about the process Σ,

1. We assume that Σ is adapted to the filtration (Ft). This will ensure
that future values of Σ are only influenced by past and the present
values of St and not future values. i.e that the process in not antici-
pative.

2. Σ is such that the risky asset prices are positive. i.e that St > 0, for
all t ∈ [0, T ].

The first assumption together with the Doob-Dynkin Theorem suggests
that Σ should be of the form

Σt = f(t, (Su, u ≤ t)),

where f(t, ·) is some Borel measurable function. The second assumption will
force Σ to be of the form [25]

Σt = Stσ(t, (Su, u ≤ t)), (4.3)

where again σ(t, ·) is a Borel measurable function. We then have, with these
two assumptions, a financial market model with dynamics
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dBt = rBtdt, (4.4)

dSt = µStdt+ Stσ(t, (Su, u ≤ t))dWt, t ∈ [0, T ]. (4.5)

Clearly we have a geometric model where the volatility term σ(t, ·) is a
function of the entire path of S from time zero to time t. For this reason,
we will call any model of the form of (4.4)-(4.5) a path-dependent volatility
model.

Essential to the success of any diffusion model is the existence of a
martingale measure Q. This measure can be constructed by setting ht =
−µ+r

σ(t,(Su,u≤t)) in Theorem 2.14. Whether or not ht satisfies the conditions for

the Theorem to hold will depend on the properties of the function σ(t, ·).
For now, if we assume that σ(t, ·) has the necessary properties and that the
martingale measure does exist (we will address this question more rigorously
when considering specific models), then the Q dynamics of the model are

dBt = rBtdt, (4.6)

dSt = rStdt+ Stσ(t, (Su, u ≤ t))dWt, t ∈ [0, T ]. (4.7)

It should be clear at this point that the Q Brownian motion W is the only
source of randomness in the above model. The fact that we have an equal
number of risky assets and Brownian motions suggests that this market is
complete. This can be shown, as in [25], using the martingale representation
Theorem. We first construct a self financing portfolio consisting of the risk-
free and risky asset defined as

Vt = αtBt + ∆tSt. (4.8)

The self financing condition implies that

dVt = αtdBt + ∆tdSt.

This, together with 4.7, implies that

dVt = r(∆tSt) + αtBt)dt+ ∆tσ(t, (Su, u ≤ t))StdWt. (4.9)

We can then use the martingale representation Theorem to prove that this
portfolio can be used to replicate any financial claim at time T. We re-
fer to any such claim as a “T -claim”. This is formulated in the following
proposition.

Proposition 4.1 (Completeness) For every T -claim X with finite vari-
ance, there exists a unique self-financing portfolio defined by (4.8) such that
VT = X a.s.
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Proof Define the random variable Mt := EQ
[
e−rTX|Ft

]
, clearly M is a Q

martingale since, for every s ∈ [0, T ] such that s < t,

EQ[Mt|Fs] = EQ

[
EQ
[
e−rTX|Ft

]
|Fs
]

= EQ
[
e−rTX|Fs

]
= Ms.

Therefore by the martingale representation Theorem there exists a process
ξ adapted to (Ft)t≥0 such that

Mt = M0 +

∫ t

0
ξudWu, t ∈ [0, T ]

= EQ
[
e−rTX

]
+

∫ t

0
ξudWu. (4.10)

Therefore, in order to have that V (T ) = X we must have that

1. V0 = EQ[e−rTX]

2. dVt = ξtdWt.

The first condition is straight forward. By (4.9), the second condition re-
quires us to set

∆t =
ξt

Stσ(t, (Su, u ≤ t))
(4.11)

and, αt = Vt −∆tSt. (4.12)

The above does not give us a way of calculating the hedging strategy ex-
actly. We have only shown that the process ξ exists, not what it is explicitly.
Regardless, we have shown that a hedging strategy exists for any claim with
finite variance, and so the market is complete. This highlights one of the
major advantages of path-dependent volatility models: they can incorporate
past data, making room for richer volatility dynamics, while still retaining
completeness.

There are, however, some serious difficulties that arise in the pricing of
contingent claims under such a model. To illustrate this, we look at the
simplest example of an equation of the form of (4.5).
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4.2 A Delayed model

4.2.1 The model and its solution

We will now consider the following market model, suggested in [2], as a spe-
cial case of equations (4.4) and (4.5). One advantage of this model is that
we get a closed form solution to the price of a European call in a certain
domain of t ∈ [0, T ]. In this section we will replicate the results found in [2],
varying the method of derivation only slightly, while providing more detail
and discussion of the results and their derivations.

Suppose we have a risk-free asset, B, with dynamics as in (4.4), fur-
thermore suppose we have a risky asset with P dynamics governed by the
following SDE

dSt = µStdt+ σ(S(t−b))StdWt, t ∈ [0, T ] (4.13)

St = f(t), t ∈ [−b, 0]. (4.14)

Here µ and b are positive constants and the function σ : R→ R is assumed
to be strictly positive and Lipschitz continuous. The filtration which we
consider is as it is in section 4.1. The initial process f : Ω → C([−b, 0],R)
is F0-measurable with respect to the Borel σ-algebra of C([−b, 0],R). We
recall, by our brief study of stochastic functional equations, that this is
enough information to guarantee a unique solution to (4.13) with initial
data (4.14). The solution to this equation was found in [2], we will verify
their result by the following proposition.

Proposition 4.2 For a given F0-measurable function, f , the stochastic pro-

cess S defined by St = f(0)eµt+
∫ t
0 σ(f(u−b))dWu− 1

2

∫ t
0 σ

2(f(u−b))du solves (4.13)-
(4.14) when t ∈ [0, b].

Proof 4.2 We start by defining the following process and its quadratic vari-
ation as

Nt = µt+

∫ t

0
σ(f(u− b))dWu

〈N,N〉t =

∫ t

0
σ2(f(u− b))du

taking differentials we then have

dNt = µdt+ σ(f(t− b))dWt

d〈N,N〉t = σ2(f(t− b))dt.
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Next we consider the function g : [0, b] × R2 → R defined by g(t, x, y) =

f(0)ex−
1
2
y, remembering that f(0) is known since t ∈ [0, b] and f is F0-

measurable. By the Itô formula

dSt = dg(t,Nt, 〈N,N〉t)

= g(t,Nt, 〈N,N〉t)dNt −
1

2
g(t,Nt, 〈N,N〉t)d〈N,N〉t +

1

2
g(t,Nt, 〈N,N〉t)

(
dNt

)2
=
(
µSt +

1

2
Stσ

2(f(t− b)− 1

2
Stσ

2(f(t− b)
)

+ Stσ(f(t− b))dWt

= µStdt+ σ(St−b)StdWt (4.15)

since t ∈ [0, b] implies that t − b ∈ [−b, 0] so that f(t − b) = St−b. Clearly
S(0) = f(0) and so we have shown that the proposed solution satisfies
equations (4.13) and (4.14) when t ∈ [0, b].

Using this solution and following the same argument we can show that

St = Sbe
µ(t−b)+

∫ t
b σ(Su−b)dWu− 1

2

∫ t
b σ

2(Su−b)du

solves the stochastic functional differential equation on the interval t ∈
[b, 2b]. Then by induction we can construct a solution over the whole interval
[0, T ]. This has the form

St = f(0)eµt+
∫ t
0 σ(Su−b)dWu− 1

2

∫ t
0 σ

2(Su−b)du (4.16)

or alternatively, for any s ∈ [0, T ] such that s < t,

St = Sse
µ(t−s)+

∫ t
s σ(Su−b)dWu− 1

2

∫ t
s σ

2(Su−b)du. (4.17)

Clearly, when f(t) > 0 for all t ∈ [−b, 0], we will have that St > 0 for all
t ∈ [0, T ], and so the solution has the desirable property of being strictly
positive at all times. We can now proceed with the question of pricing a
contingent claim.

4.2.2 Option pricing

Consider a European call option with maturity time T and strike price K on
our risky asset S. This will be done, as in [2], using the martingale pricing
technique. The first step is to find the appropriate measure, Q, under which
the discounted share price is a martingale, this is equivalent to the stock
price having a drift of µ = r in (4.13). In order to find the new measure
we can use Girsanov’s Theorem. By Girsanov’s Theorem, assuming that h
satisfies certain conditions, the process

dW̄t := dWt − htdt, t ∈ [0, T ], (4.18)
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is a Q-Brownian motion. Substituting the above into (4.13) in order to get
the Q dynamics of S gives

dSt = (µ+ σ(St−b)ht)Stdt+ σ(St−b)StdW̄t, t ∈ [0, T ].

So if we choose ht = r−µ
σ(St−b)

then the discounted share price will be

a martingale under Q. All that we must check is that this choice of h
satisfies the necessary conditions for the Girsanov Theorem to hold. We
must first verify that

∫ T
0 |hu|

2du < ∞ a.s. This follows from the fact that
S is a.s continuous, and therefore a.s bounded on the interval [0, T ] for any
0 < T <∞. So that, for any 0 < T <∞, there exists a δ > 0 such that

St < δ, for all t ∈ [0, T ] a.s .

Now we recall that σ : R→ R was assumed to be strictly positive, therefore
1

σ(x) is bounded on the interval (0, δ), meaning that there exists an ε > 0
such that

1

σ(x)
< ε for all x ∈ (0, δ)

using this we have that∫ T

0
|hu|2du =

∫ T

0
| r − µ
σ(Su−b)

|2du

<

∫ T

0
|(r − µ)ε|2du

=
(

(r − µ)ε
)2

(T ) <∞.

Next we must check whether it holds that EP (Lt) = 1 where

Lt = e
∫ t
0 hudWu− 1

2

∫ t
0 |hu|

2du, t ∈ [0, T ],

in order to prove this we will follow the argument given in [2]. First we
notice that, for every u ∈ [0, T ], hu is known at time u− b since knowing hu
only requires knowledge of the stock price up to time u−b. Mathematically,
this means that hu is Fu−b measurable. Therefore given the information up

to time T − b the integral
∫ T
T−b hudWu is simply the stochastic integral of

a known function since hu is known over the whole interval [T − b, T ]. The
integral is, therefore, a Gaussian variable with mean zero and variance

var

(∫ T

T−b
hudWu

)
= EP

[( ∫ T

T−b
hudWu

)2]
=

∫ T

T−b
EP(hu)2du, by the itô isometry

=

∫ T

T−b
h2
udu.
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By the theory of moment generating functions of normally distributed ran-
dom variables we get

EP(e∫ TT−b hudWu |FT−b
)

= e
1
2

∫ T
T−b h

2
udu

and, as a consequence,

EP
(
e
∫ T
T−b h(u)dW (u)− 1

2

∫ T
T−b h

2(u)du
∣∣FT−b) = e−

1
2

∫ T
T−b h

2(u)duEP
(
e
∫ T
T−b h(u)dW (u)

∣∣FT−b) = 1

we can use this to derive the following proposition by induction.

Proposition 4.3 The following relation holds for all k ∈ Z+

EP
(
e
∫ T
0 hudWu− 1

2

∫ T
0 h2

udu
∣∣FT−kb)

= e
∫ T−kb
0 hudWu− 1

2

∫ T−kb
0 h2

udu (4.19)

Proof Let us consider the case when k = 1,

EP
(
e
∫ T
0 hudWu− 1

2

∫ T
0 h2

udu
∣∣FT−b)

= EP
(
e
∫ T
T−b hudWu+

∫ T−b
0 hudWu− 1

2

∫ T
T−b h

2
udu− 1

2

∫ T−b
0 h2

udu
∣∣FT−b)

= e
∫ T−b
0 hudWu− 1

2

∫ T−b
0 h2

uduEP
(
e
∫ T
T−b hudWu− 1

2

∫ T
T−b h

2
udu
∣∣FT−b), by measurability

= e
∫ T−b
0 hudWu− 1

2

∫ T−b
0 h2

udu. (4.20)

Clearly the proposition holds for k = 1. Assume that is holds for k = n ∈
Z+. We then have that

EP
(
e
∫ T
0 hudWu− 1

2

∫ T
0 h2

udu
∣∣FT−nb)

= e
∫ T−nb
0 hudWu− 1

2

∫ T−nb
0 h2

udu

Taking conditional expectation of the above with respect to FT−(n+1)b gives,
by the tower property,

EP
(
e
∫ T
0 hudWu− 1

2

∫ T
0 h2

udu
∣∣FT−(n+1)b

)
= EP

(
e
∫ T−nb
0 hudWu− 1

2

∫ T−nb
0 h2

udu
∣∣FT−(n+1)b

)
= EP

(
e
∫ T−nb
T−(n+1)b hudWu+

∫ T−(n+1)b
0 hudWu− 1

2

∫ T−nb
T−(n+1)b h

2
udu− 1

2

∫ T−(n+1)b
0 h2

udu
∣∣FT−(n+1)b

)
= e

∫ T−(n+1)b
0 hudWu− 1

2

∫ T−(n+1)b
0 h2

uduEP
(
e
∫ T−nb
T−(n+1)b hudWu− 1

2

∫ T−nb
T−(n+1)b h

2
udu
∣∣FT−(n+1)b

)
= e

∫ T−(n+1)b
0 hudWu− 1

2

∫ T−(n+1)b
0 h2

udu.
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So the proposition holds for n + 1 and therefore it holds for all k ∈ Z+ by
induction.

Let k ∈ Z+ be such that 0 ≤ T − kb ≤ b. We then make use of the
tower property of conditional expectation again by taking expected values
of equation (4.19) conditional on F0 remembering that F0 ⊆ FT−kb. This
gives

EP
(
e
∫ T
0 hudWu− 1

2

∫ T
0 h2

udu
∣∣F0

)
= EP

(
e
∫ T−kb
0 hudWu− 1

2

∫ T−kb
0 h2

udu|F0

)
= 1, since T − kb ≤ b.

Then, finally, taking unconditional expected values of the above gives

EP
[
Ep
(
e
∫ T
0 hudWu− 1

2

∫ T
0 h2

udu
∣∣F0

)]
= EP (1)

⇒ EP
[
e
∫ T
0 hudWu− 1

2

∫ T
0 h2

udu

]
= 1

⇒ EP(Lt) = 1

and so we have proven that h satisfies the conditions for the Girsanov Theo-
rem and the process defined in (4.18) is, in fact, a standard Brownian motion
under the measure Q defined by dQ = LtdP.

This means that the dynamics of St under Q follow the SDE

dSt = rStdt+ σ(St−b)StdWt, t ∈ [0, T ]

which, by setting µ = r in (4.17), has the solution

St = Sse
r(t−s)+

∫ t
s σ(Su−b)dWu− 1

2

∫ t
s g

2(Su−b)du (4.21)

for any s, t ∈ [0, T ] with s < t.

Clearly we have found a probability measure under which the discounted
stock price is a martingale. It was also shown, in the previous subsection,
that a model of this form is complete, which implies that our martingale
measure is unique. We can, therefore, use the martingale pricing formula
(see, for example, Theorem 10.19 in [3]) to deduce that the unique price of
any T-claim paying Ψ(ST ) (for some integrable Ψ(·)) at time t must be of
the form

V (t, St) = EQ(e−r(T−t)Ψ(ST )|Ft
)
.
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For a European call option with strike K and maturity T , Ψ(ST ) =
(ST −K)+. We, therefore, have that

V (t, St) = EQ(e−r(T−t)(ST −K)+|Ft
)
. (4.22)

Let us consider the case, as in [2], when t ∈ [T −b, T ], in other words, we
are trying to price a call option within the last observation window. From
equation (4.21)

ST = Ste
r(T−t)+

∫ T
t σ(Su−b))dWu− 1

2

∫ T
t σ2(Su−b)du

Obviously St is Ft-measurable. We also have that, because of the limits of
the integrals and the assumption that t ∈ [T − b, T ],

t ≤ u ≤ T
⇒t− b ≤ u− b ≤ T − b ≤ t.

This implies that −1
2

∫ T
t σ2(Su−b))du is also Ft-measurable since it is a

Riemann integral of a known function. The fact that Su−b is a known
over [t, T ] also implies that σ(Su−b) is Ft-measurable and so the integral∫ T
t σ(Su−b)dWu, given Ft, has a normal distribution with mean zero and

variance Σ2 =
∫ T
t σ2(Su−b)du. If we take z to represent a standard normal

variable and define m := −1
2

∫ T
t σ2(Su−b)du, x := St then (4.22) implies

that

V (t, x) = EQ(e−r(T−t)(xer(T−t)+Σz+m −K)+|Ft
)

=
e−r(T−t)√

2π

∫ ∞
−∞

(
xer(T−t)+Σz+m −K

)+
e−

z2

2 dz (4.23)

Now, consider the inequality

xer(T−t)+Σz+m −K ≥ 0

⇒z ≥
ln
(
K
x

)
− r(T − t)−m

Σ
:= a

which implies, by (4.23), that

V (t, x) =
e−r(T−t)√

2π

∫ ∞
a

(
xer(T−t)+Σz+m −K

)
e−

z2

2 dz

=
e−r(T−t)√

2π

(
xer(T−t)+m

∫ ∞
a

eΣze−
z2

2 dz −K
∫ ∞
a

e−
z2

2 dz

)
=
e−r(T−t)√

2π

(
xer(T−t)+m+ Σ2

2

∫ ∞
a

e−
(z−Σ)2

2 dz −K
∫ ∞
a

e−
z2

2 dz

)
= xem+ Σ2

2 Φ(−a+ Σ)− e−r(T−t)KΦ(−a)
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so that, finally, we have,

V (t, St) = StΦ(d1)− e−r(T−t)KΦ(d2) (4.24)

where,

d1 =
ln
(
St
K

)
+ r(T − t) + 1

2

∫ T
t σ2(Su−b)du√∫ T

t σ2(S(u− b))du
(4.25)

d2 =
ln
(
St
K

)
+ r(T − t)− 1

2

∫ T
t σ2(Su−b)du√∫ T

t σ2(S(u− b))du
. (4.26)

We have found a closed form solution for the price of a European call option
when t ∈ [T − b, T ], this is the main appeal of this model, and it demon-
strates that under certain conditions the classical theory of option pricing
can be preserved in path-dependent volatility models.There are, however,
some issues.

If we again assumed that t ∈ [T − b, T ], and approached the problem by
constructing a self-financing replicating portfolio consisting of the risk-free
and risky asset (or alternatively use the Feynmann-Kac formula and (4.22))
we would have arrived at the conclusion that the discounted price of the
contingent claim, F , must obey the following Black-Scholes style PDE [2]

∂F (t, x)

∂t
= −1

2
σ(St−b)

2x2∂
2F (t, x)

∂x2
− rx∂F (t, x)

∂x
+ rF (t, x) (4.27)

F (T, x) = (x−K)+x > 0. (4.28)

If one wanted to construct a numerical scheme for the above terminal value
problem the challenges are obvious. The dependence of the problem on St−b
makes it impossible to set up a discrete scheme on some fixed domain in
R2. In addition to this, when we consider the problem when t ∈ [0, T − b]
it becomes impossible to derive a similar terminal value problem because in
this region the solution is “anticipating” or “forward looking” with respect
to the filtration (Ft)t≥0, meaning it is not adapted to the filtration. The
goal of this dissertation, as is clear from the title, is to identify and study
models which allow for a dependence on the past but still preserve partial
differential equation approach to the pricing of derivatives. With that goal
in mind, this simple case has shown that models of the form of (4.4)-(4.5)
and the theory of stochastic functional differential equations will not serve
our purpose. We will, therefore, not consider another model of this form in
the remaining sections.

4.3 The Hobson and Rogers model

Before beginning with our next model we will try to understand the possi-
ble thought process and inspiration behind its creation. Again, we recall the
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purpose of this dissertation: to identify a model that allows the volatility to
depend on past values, while still preserving the PDE approach to deriva-
tive pricing. A key step in the PDE approach is when we assume that the
price on a contingent claim at time t has the form F (t, St). This amounts to
assuming that the contingent claim admits a Markovian realisation and this
assumption will only hold if the underlying process has the Markov property.

Clearly then, if we wish to conserve the PDE approach, it is crucial
that our underlying model has the Markov property. We can motivate the
intuition of what follows with the following simple example: suppose we
have a probability space (Ω,F ,P) and a discrete (possibly non-Markovian)
process X = {Xn, n = 1, 2, . . . } taking values in R. We let the filtration(
Ft, t ∈ N

)
be the filtration generated by X so that X is (Ft) adapted. Now,

if we define the process Y =
{
Yn =

(
Xn−1, Xn−2, . . . , X1

)
, n = 1, 2, . . .

}
then the joint process

(
X,Y

)
has the following property

E
(
(Xn, Yn)|Fn−1

)
= E

(
(Xn, Yn)|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1

)
= E

(
(Xn, Yn)|Xn−1 = xn−1, Yn−1 = yn−1

)
, where yn−1 = (xn−2, . . . , x1)

= E
(
(Xn, Yn)|(Xn−1, Yn−1)

)
.

This shows that the joint process is Markov. What we have illustrated
is that, by defining a random variable that summarises the entire path of
some (possibly non-Markovian) process, we have constructed a joint process
that has the Markov property.

The question becomes, how do we implement the above logic for a contin-
uous time process describing a stock price? This question was first answered
by David Hobson and Leonard Rogers in [27]. Their results, and a discus-
sion thereof, will now be presented.

4.3.1 The HR model

The model starts as follows: suppose we have a stochastic process St repre-
senting the price of a risky asset at time t, and a risk-free asset B that earns
interest at a constant rate r. We define the discounted log price of the asset
as Zt = ln

(
e−rtSt

)
. Next, in what is the crucial innovation of this model,

we define the deviation function of order m, denoted D
(m)
t , by

D
(m)
t :=

∫ t

−∞
λeλ(u−t)(Zt − Zu)mdu. (4.29)

Here λ is a constant parameter, and so D(m) represents the exponentially
weighted mth moment of the historical log price. λ essentially describes the
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rate at which past information is forgotten. The next logical step will be to
make some assumptions concerning the dynamics of our stock price, in line
with more standard models we assume that the discounted log price solves
the SDE

dZt = µ(D
(1)
t , . . . , D

(n)
t )dt+ σ(D

(1)
t , . . . , D

(n)
t )dWt (4.30)

for some n ∈ N. This is the dynamics under a measure P. Where σ(·)
and µ(·) are Lipschitz functions taking values in R, σ(·) is strictly positive
and bounded, and W is a standard Wiener process. A key feature is that
there is still only one driving Wiener process. This, along with the fact
that we have one tradable risky asset, means that the model will retain
completeness. Next we prove a crucial result that appears as Lemma 3.1 in
[27].

Theorem 4.4 (Zt, D
(1)
t , . . . , D

(n)
t ) forms a Markov process. The mth devi-

ation process D
(m)
t satisfies the coupled SDEs

dD
(m)
t = mD

(m−1)
t dZt +

m(m− 1)

2
D

(m−2)
t d 〈Z〉t − λD

(m)
t dt (4.31)

Proof 4.4 Let us begin by proving the second part of the lemma, the first

will follow form this. We can write D
(m)
t in the following form

eλtD
(m)
t =

∫ t

−∞
λeλ(u)(Zt − Zu)mdu

=
m∑
k=0

(
m

k

)
(Zt)

k

∫ t

−∞
λeλu(−Zu)m−kdu. (4.32)

Then, by taking differentials on both the left and right of equation (4.32)
we have

d
(
eλtD

(m)
t

)
= λeλtD

(m)
t dt+ eλtdD

(m)
t (4.33)
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and

d

( m∑
k=0

(
m

k

)
(Zt)

k

∫ t

−∞
λeλu(−Zu)m−kdu

)

=
m∑
k=0

(
m

k

)
d

(
(Zt)

k

∫ t

−∞
λeλu(−Zu)m−kdu

)

=
m∑
k=0

(
m

k

){
d
(
(Zt)

k
) ∫ t

−∞
λeλu(−Zu)m−kdu+ (Zt)

kd

(∫ t

−∞
λeλu(−Zu)m−kdu

)
+ d
(
(Zt)

k
)
d

(∫ t

−∞
λeλu(−Zu)m−kdu

)}

=

m∑
k=0

(
m

k

){(
kZk−1

t dZt +
k(k − 1)

2
Zk−2
t d〈Z〉t

)∫ t

−∞
λeλu(−Zu)m−kdu

+ (Zt)
kλeλt(−Zt)m−kdt+

(
kZk−1

t dZt +
k(k − 1)

2
Zk−2
t d〈Z〉t

)
λeλt(−Zt)m−kdt

}

=

m∑
k=0

(
m

k

){(
kZk−1

t dZt +
k(k − 1)

2
Zk−2
t d〈Z〉t

)∫ t

−∞
λeλu(−Zu)m−kdu

+ (Zt)
kλeλt(−Zt)m−kdt+ 0

}
, by the Itô multiplication table

=

m∑
k=0

(
m

k

){
kZk−1

t

∫ t

−∞
λeλu(−Zu)m−kdu

}
dZt

+
m∑
k=0

(
m

k

){
k(k − 1)

2
Zk−2
t

∫ t

−∞
λeλu(−Zu)m−kdu

}
d〈Z〉t

+

{
m∑
k=0

(
m

k

)
(−1)m−k

}
λeλtZmt dt

=m
m∑
k=1

(
m− 1

k − 1

){∫ t

−∞
λeλu(−Zu)m−1−(k−1)du

}
Zk−1
t dZt

+
m(m− 1)

2

m∑
k=2

(
m− 2

k − 2

){∫ t

−∞
λeλu(−Zu)(m−2)−(k−2)du

}
Zk−2
t d〈Z〉t

+ {0}λeλtZmt dt

=eλt

{
mD

(m−1)
t dZt +

m(m− 1)

2
D

(m−2)
t d〈Z〉t

}
. (4.34)
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Equating (4.33) and (4.34), multiplying by e−λt and solving for dD
(m)
t will

give us (4.31). In order to prove that the system (Zt, D
(1)
t , . . . .D

(m)
t ) is

a Markov process, it will be enough to show that the diffusion and drift
coefficients in equation (4.31) are smooth enough for each m. Substituting
the SDE for Zt into equation (4.31) gives

dD
(m)
t =mD

(m−1)
t

(
µ(D

(1)
t , . . . , D

(n)
t )dt+ σ(D

(1)
t , . . . , D

(n)
t )dWt

)
+
m(m− 1)

2
D

(m−2)
t

(
σ2(D

(1)
t , . . . , D

(n)
t )dt

)
− λD(m)

t dt

=

(
mD

(m−1)
t µ(D

(1)
t , . . . , D

(n)
t )− λD(m)

t +
m(m− 1)

2
D

(m−2)
t σ2(D

(1)
t , . . . , D

(n)
t )

)
dt

+mD
(m−1)
t σ(D

(1)
t , . . . , D

(n)
t )dWt (4.35)

since, by assumption, µ and σ are Lipschitz the drift and diffusion coefficients
above will be sufficiently smooth in order to guarantee that the joint process
is Markov.

Another important observation of the process D(m) is that it is adapted
to the filtration generated by Z, since knowing Zs for all s < t allows us
to calculate the integral in (4.29). The filtration generated by Z will be
denoted by Ft.

Now that we have our process in a workable form and we are sure that
the joint process is Markov, we can proceed with the problem of option
pricing in this model.

4.3.2 Option pricing in the HR model

Let us consider the case where n = 1 in (4.30). Since we are only considering
the first order deviation function we can adopted the notation D(1) = D
without risking any ambiguity. Theorem 4.4 and equation (4.30) then gives
us

dBt = rBtdt (4.36)

dDt = dZt − λDtdt (4.37)

dZt = µ(Dt)dt+ σ(Dt)dWt (4.38)

we can then substitute (4.30) into the second of our three equations to get

dBt = rBtdt (4.39)

dDt = (µ(Dt)− λDt)dt+ σ(Dt)dWt (4.40)

dZt = µ(Dt)dt+ σ(Dt)dWt. (4.41)
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Throughout the rest of this dissertation we will refer to the above set of
equations as the HR model. As in [27], we will use the martingale approach
to the problem of pricing a T -claim with payoff Φ(St). Therefore, our first
goal will be to find a measure under which the discounted option price is
a martingale or, equivalently, a measure under which the process St has a
drift coefficient r. Let us consider the P dynamics of St. By the definition
of Zt we have that St = eZt+rtand so, using the Itô formula applied to the
function f(t, z) = ez+rt gives us

df(t, Zt) = dSt = f1dt+ f2dZt +
1

2
f22d〈Z〉t (4.42)

= St
(
r + µ(Dt) +

1

2
σ2(Dt)

)
dt+ Stσ(Dt)dWt. (4.43)

Therefore, the appropriate Girsanov kernel for us to consider in Theorem
2.14 is the function

h(t) =
−µ(Dt)− 1

2σ
2(Dt)

σ(Dt)

and we define a new measure Q by dQ
dP
∣∣
Ft = Lt, where

Lt = e
∫ t
0 h(u)dW (u)− 1

2

∫ t
0 |h(u)|2du, t ∈ [0, T ].

i.e

dLt = htLtdWt, on [0, T ]

L0 = 1.

In order to ensure that this is a feasible choice, we must consider the
conditions in Theorem 2.14. We remember that the solution function will
be a.s continuous and that we are considering values on the bounded inter-
val [0, T ]. That

∫ T
0 |h(u)|du < ∞ follows from the strict positivity of σ(·),

and that the functions µ(·) and σ(·) are Lipschitz. The non-explosiveness
of (Dt, St) also guarantees that the conditions of corollary 2.18 are satisfied
and that our new measure is indeed a probability measure.

Since the discounted price process is a martingale under the new measure
Q we can use the Martingale Pricing Theorem to conclude that the time t
price of our T -claim is [27]

V (T − t, St, Dt) = e−r(T−t)EQ[Φ(St)|Ft]

assuming that Φ(·) is integrable enough. Then the Feynman-Kac formula
(see for example [29] p366) implies that the solution satisfies the determin-
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istic PDE

0 =
(
V1 − rSV2 + rV + λDV3

)
− σ2(D)

2

(
− V3 + S2V22 + V33 + SV23

)
(4.44)

V (0, S,D) = Φ(S). (4.45)

Clearly this equation is much more suitable for numerical methods than
(4.27). In fact, it is guaranteed a unique solution under certain condition
on Φ(·) [27]. In a later section we construct and analyse a numerical scheme
that approximates the solution of the above system, but for now we will
highlight some issues.

The main concern raised regarding the HR model in the integration over
an infinite time horizon. The definition of D(m) suggests that we have the
following initial condition for D(m),

D
(m)
0 =

∫ 0

−∞
λeλu(Z0 − Zu)mdu

Since there is no conceivable situation where we have price data over an
infinite time horizon, this raises obvious concerns. One possible suggestion
could be to assume that the share has grown at the risk free rate from its
inception up to a price Z0. So that at any time s < 0 we can assume that:

Zs = ln(e−rsS0) = −rs+ Z0

so that

D
(m)
0 =

∫ 0

−∞
λeλu(Z0 − Z0 + ru)mdu

= rλ

∫ 0

−∞
eλuumdu.

Alternatively if share data is available up to some finite point in time before
the valuation time, say −a for some a > 0, then one could calculate the
integral in the initial condition explicitly over the interval [−a, 0] and use
the above approximation over [−∞,−a] with −a as the reference price.

This solution seems unsatisfying, and for this reason the next model we
will discuss involves a clever side step of the problem.

4.4 Generalized averaging

In order to solve the issue of the integration over an infinite horizon, as well
as having more flexibility in the averaging process, a more general model
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was proposed by Paolo Foschi and Andrea Pascucci in [17]. They introduce
a weighting function, ϕ, that is strictly positive on [0, T ], integrable on
[−∞, T ] and non-negative on [−∞, T ]. In the language of measure theory,
the weight of the whole space is then

φ(t) =

∫ t

−∞
ϕ(u)du. (4.46)

Key in the above definition is that ϕ my have compact support on the inter-
val [−∞, 0) and so we may have a bounded interval of integration. Clearly
there is considerably more freedom in choosing our weighting function ϕ
here compared to the HR model in which we are restricted to exponential
weightings. For consistency in notation, the discounted log price process is
again denoted by Z. We then define the process

Mt =
1

φ(t)

∫ t

−∞
ϕ(u)Zudu, t ∈ [0, T ] (4.47)

which will be refereed to as the averaging process. Taking differentials we
have

dMt = d

(
1

φ(t)

∫ t

−∞
ϕ(u)Zudu

)
= d

(
1

φ(t)

)∫ t

−∞
ϕ(u)Zudu+

1

φ(t)
d

(∫ t

−∞
ϕ(u)Zudu

)
+ d

(
1

φ(t)

)
d

(∫ t

−∞
ϕ(u)Zudu

)
= − φ

′(t)

φ2(t)
dt

∫ t

−∞
ϕ(u)Zudu+

1

φ(t)
ϕ(t)Ztdt−

φ′(t)

φ2(t)
ϕ(t)Zt(dt)

2

= − ϕ(t)

φ2(t)
dt

∫ t

−∞
ϕ(u)Zudu+

ϕ(t)

φ(t)
Ztdt

=
ϕ(t)

φ(t)
(Zt −Mt)dt. (4.48)

In order to complete our new model some assumptions must be made
about the dynamics of the price process. As before, it is assumed that the
discounted log price process solves the SDE

dZt = µ(Zt −Mt)dt+ σ(Zt −Mt)dWt, (4.49)

and again, in order to guarantee a solution to the system (4.48)-(4.49) as
well as for simplification of some calculations we assume that µ(·), σ(·) are
Lipschitz continuous, bounded and that σ(·) is strictly positive [17]. This
will also ensure, as is desired, that the process (Zt,Mt) is Markovian.

An important questions to ask at this stage, and one that will be im-
portant in our quest to derive a pricing PDE, is whether or not the process
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(Zt,Mt) has a density function and, assuming that the density exists, where
is it positive? In order to answer this question it will be useful to rewrite
equations (4.48) and (4.49) as the following single vector equation:

d

[
Mt

Zt

]
=

[
ϕ(t)
φ(t) (Zt −Mt)

µ(Zt −Mt)

]
dt+

[
0 0
0 σ(Zt −Mt)

] [
dW 1

t

dW 2
t

]
(4.50)

where W 1 and W 2 are independent Wiener processes. This is clearly in the
form of equation (2.8), and it can be shown that this equation satisfies the
parabolic Hörmander’s condition. To see this, notice that in the notation of
(2.8) we have that

V0(x, y) =

[
ϕ(t)
φ(t) (y − x)

µ(y − x)

]
(4.51)

V1(x, y) =

[
0

σ(y − x)

]
(4.52)

We then have that

V0 = {V1}
V1 = V0 ∪ {[V1, V0], [V1, V1]}. (4.53)

It is obvious from the definition of the Lie bracket that [V1, V1] = 0, and we
can calculate [V1, V0],

[V1, V0] = DV0V1 −DV1V0

=

[
∂V 1

0
∂x

∂V 1
0

∂y
∂V 2

0
∂x

∂V 2
0

∂y

] [
0

σ(y − x)

]
−
[

0 0
∂
∂xσ(y − x) ∂

∂yσ(y − x)

][ ϕ(t)
phi(t)(y − x)

µ(y − x)

]

=

[
−ϕ(t)
φ(t)

ϕ(t)
φ(t)

−µx(y − x) µy(y − x)

] [
0

σ(y − x)

]
−
[

0 0
−σx(y − x) σy(y − x)

][ϕ(t)
φ(t) (y − x)

µ(y − x)

]

=

[
ϕ(t)
φ(t)σ(x− y)

µy(y − x)σ(y − x) + σx(y − x)ϕ(t)
φ(t) (y − x)− σy(y − x)µ(y − x)

]

now we can define the vector field

V1(x) = span{V (x) : V ∈ V1}

= span

{[
0

σ(y − x)

]
,

[
ϕ(t)
φ(t)σ(x− y)

µy(y − x)σ(y − x) + σx(y − x)ϕ(t)
φ(t) (y − x)− σy(y − x)µ(y − x)

]}

and since we have assumed that φ(t) is strictly positive for all t we can
conclude that ∪k≥1Vk(x) = V1(x) = R2. This means that our SDE satisfies
the parabolic Hörmander condition and therefore, by Hörmanders Theorem,

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



the joint process (Mt, Zt) has a smooth density on R2.

We have shown that the density exist and is smooth, next we want to
show that this density is strictly positive on R2.

This can be done by first considering the density of Z. If we define
a measure Q as in the Girsanov Theorem with h(t) = −µ(Zt)

σZt
, then the

dynamics of Z under Q are

dZt = σ(Zt −Mt)dW̄t.

This satisfies the conditions of proposition (2.11), and we can conclude
that Zt has a strictly positive density under Q. Clearly the boundedness of
µ(·) and strict positivity of σ(·) ensures that Q is well defined.

Regarding the density of Mt we notice, for any t > 0 and b > 0, that

Q
(
|Mt| > b

)
= Q

(∣∣∣ 1

φ(t)

∫ t

−∞
ϕ(u)Zudu

∣∣∣ > b

)
≥ Q

(∣∣∣ Zm
φ(t)

∫ t

−∞
ϕ(u)du

∣∣∣ > b

)
, where Zm = inf

0≤s≤t
Zs

= Q(|Zm| > b) > 0. (4.54)

The final step is a result of the previous argument holding for any t > 0,
and in particular it holds for times where the infimum is achieved.

By construction Q << P and so if an event has a non-zero probability
under Q it must have a non-zero probability under P, and we have shown
that (Zt,Mt) has a strictly positive density under both measures. This fact
shall be used later. For now, we consider some convenient notation.

Clearly an important quantity in the above model is the process describ-
ing the deviation from the mean, Dt := Zt −Mt. Using this definition for
D, the definition of Z, and the Itô formula, the system can be written in
the form

dDt =
(
µ(Dt)−

ϕ(t)

φ(t)
Dt

)
dt+ σ(Dt)dWt (4.55)

dSt = St

(
r + µ(Dt) +

1

2
σ2(Dt)

)
dt+ Stσ(Dt)dWt. (4.56)

At this point it is worth noting that choosing ϕ(t) = eλt will give us that
ϕ(t)
φ(t) = λ, and as a consequence this system of SDEs reduces to the system

described in (4.37)-(4.38). Another useful averaging function is ϕ(t) = 1

62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



for t ∈ [0, T ] and zero elsewhere, which will give a geometric average and is
useful for the pricing of Asian options.

As we have done before, after studying the underlying properties of our
model, we will consider the problem of pricing and hedging a T-claim.

4.4.1 A Classical approach to option pricing

In all the preceding cases in this chapter we have obtained a pricing formula
by finding a martingale measure and then making use of the martingale
pricing theory. In this instance we will consider a more classical approach
by considering a self financing replicating portfolio. This is not only for the
sake of variety, but it also highlights why the Markovian property of this
model is so appealing.

The approach deviates slightly from what is done in [17] in that we con-
sider the state variables (St, Dt), whereas in [17] they use the pair (Zt,Mt).
This approach is preferred since the variables representing the price process
and deviation from the mean are more intuitively clear and instructive than
those representing the discounted log price and the mean function.

As is the case in the derivation of the seminal Black-Scholes equation, we
start with a self financing portfolio Vt that, at time t, consists of αt shares
and βt of the risk free asset, meaning

Vt = αtSt + βtBt.

The self-financing condition then implies that

dVt = αtdSt + βtdBt.

Substituting the dynamics of both the risk-free asset and risky asset, as
described in (4.36) and (4.56) respectively, we get

dVt =

(
αtStr + αtStµ(Dt) + αtSt

1

2
σ2(Dt) + rβtBt

)
dt+ αtStσ(Dt)dWt.

Using the definition of Vt we have that rβtBt = r(Vt − αtSt) substituting
this into the above SDE gives

dVt =

(
αtStr + αtStµ(Dt) + αtSt

1

2
σ2(Dt) + r(Vt − αtSt)

)
dt

+ αtStσ(Dt)dWt. (4.57)

Now, let us consider the price of a T -claim at time t denoted by Ft. We as-
sume that the price is of the form Ft = F (t, St, Dt), this is a safe assumption
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precisely because of the Markov nature of our process (4.55)-(4.56). We can
then use the generalised Itô formula, along with (4.55)-(4.56), to show that

dFt = F1dt+ F2dSt + F3dDt +
1

2
(F22d〈S〉t + 2F23dStdDt + F(33)d〈Dt〉t)

=

{
V1 + V2(r + µ(Dt) +

1

2
σ2(Dt))St + V3(µ− ϕ(t)

φ(t)
Dt) +

1

2
V22S

2
t σ

2(Dt)

+ V23Stσ
2(Dt) +

1

2
V33σ

2(Dt)

}
dt

+ (V2Stσ(Dt) + V3σ(Dt))dWt. (4.58)

At this point we make the assumption that the self-financing portfolio Vt
replicates the option price process Ft. We also assume that it is of the form
Vt = α(t, St, Dt)St + β(t, St, Dt)dWt, again this is a safe assumption since
the process (St, Dt) is Markov. Since V replicates F we have that Vt = Ft,
and as a consequence dVt = dFt. By the uniqueness of the Itô expansion
we can equate the drift and diffusion coefficients in the right hand sides of
equations (4.57) and (4.58) to get the set off equations, that hold for each
t ∈ [0, T ]

V2Stσ(Dt) + V3σ(Dt) = α(t, St, Dt)Stσ(Dt) (4.59)

V1 + V2(r + µ(Dt) +
1

2
σ2(Dt))St + V3(µ− ϕ(t)

φ(t)
Dt) +

1

2
V22S

2
t σ

2(Dt)

+ V23Stσ
2(Dt) +

1

2
V33σ

2(Dt) = α(t, St, Dt)Str + α(t, St, Dt)Stµ(Dt)

+ α(t, St, Dt)St
1

2
σ2(Dt) + r(Vt − α(t, St, Dt)St). (4.60)

At this point we recall the assumption that σ(·) is strictly positive, this
allows us to divide through by σ(Dt) and solve for αt in (4.59) to get

α(t, St, Dt) =
V2(t, St, Dt)St + V3(t, St, Dt)

St
for each t ∈ [0, T ]. (4.61)

We can then substitute this expression into (4.60) to get the equation

V1(t, St, Dt) + V2(t, St, Dt)(r + µ(Dt) +
1

2
σ2(Dt))St + V3(t, St, Dt)(µ−

ϕ(t)

φ(t)
Dt)

+
1

2
V22(t, St, Dt)S

2
t σ

2(Dt) + V23(t, St, Dt)Stσ
2(Dt) +

1

2
V33(t, St, Dt)σ

2(Dt) =(
V2(t, St, Dt)St + V3(t, St, Dt)

)
r +

(
V2(t, St, Dt)St + V3(t, St, Dt)

)
µ(Dt)

+
(
V2(t, St, Dt)St + V3(t, St, Dt)

)1

2
σ2(Dt) + r(V − V2(t, St, Dt)St − V3(t, St, Dt)).
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Simplification gives,

V1(t, St, Dt) + rV2(t, St, Dt)St − rV (t, St, Dt)−
ϕ(t)

φ(t)
DtV3(t, St, Dt)

+
σ2(Dt)

2

(
V22(t, St, Dt)S

2
t + 2V23St + V33(t, St, Dt)− V3(t, St, Dt)

)
= 0.

We have shown that the pair (St, Dt) has a strictly positive transition
density over R2, and so the above equation must hold for all real pairs
(s, d) ∈ R2 and for all t ∈ [0, T ]. We therefore consider V to be of the form
V = V (t, s, d). Finally then, for a T-claim with payoff Ψ(ST , DT ), we arrive
at the following deterministic terminal value problem

V1 + rV2s− rV −
ϕ(t)

φ(t)
dV3 +

σ2(d)

2

(
V22s

2 + 2V23s+ V33 − V3

)
= 0

V (T, s, d) = Ψ(s, d).

If we instead solve this equation over the backward time τ := T − t, then it
is in the numerically convenient form of an initial value problem in R2,

V1 − rV2s+ rV +
ϕ(t)

φ(t)
V3d−

σ2(d)

2

(
V22s

2 + 2V23s+ V33 − V3

)
= 0

V (0, s, d) = Ψ(s, d). (4.62)

The existence and uniqueness of a solution to (4.62) equation is guaranteed
by results found in the study of Kolmogorov type degenerate parabolic par-
tial differential equations [17].

We recall that choosing φ(t) = eλt implies that ϕ(t)
φ(t) = λ, and in this case

the system (4.62) reduces exactly to the Hobson and Rogers PDE described
in (4.44). It is also worth noting that if we restrict V to only depend on s
and t, and set σ(·) to a positive constant constant σ then (4.62) reduces to

V1 − rV2s+ rV − σ2

2
V22s

2 = 0

V (0, s, d) = Ψ(s, d),

which is the familiar Black-Scholes PDE for the price of a T-claim, so we
have comfort that the new model agrees with the traditional theory. Upon
reflection, we have managed to show that classical theory and methods can
be preserved under the introduction of a dependency on the past if this is
done in a certain way. As a result, we only need to slightly adapt the well
understood numerical techniques used to solve pricing problems under clas-
sical theory. We have managed to introduce past price information without
sacrificing much, a clear strength of this model.

In the next chapter we seek to tie together what was done here and the
work presented in the chapter on local volatility.
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5 A fitted model

The preceding work has highlighted the numerous advantages of path-dependent
volatility models, they give rich volatility dynamics, completeness is not lost
and some models yield a pricing PDE for a contingent claim.

We now turn our attention to the problem of fitting these models to the
observed market data. We have seen that, given a continuum of European
call prices, we can find the unique local volatility function that produces
these prices when used in a diffusion model. This local volatility was also
shown to be the conditional expectation of some more complicated process.

Inspired by the work of Julien Guyon [20] and Foschi [17], we propose
the following stock price model

dMt =
ϕ(t)

φ(t)

(
Zt −Mt

)
dt (5.1)

dZt = µdt+ σ(Zt −Mt)`(t, Zt)dWt (5.2)

where Zt := ln(e−rtSt) is the discounted log price. The function ` : [0, T ]×
R→ R is called the leverage function, and we assume that it is such that the
model (5.1),(5.2) produces option prices that exactly fit the observed mar-
ket smile. Mt is defined as in the Foschi model [17], and µ is some constant
representing the drift.We also assume that the function σ : R→ R is strictly
positive, that it satisfies the Lipschitz and standard growth condition, and
that it is bounded as in [17].

We will return to the question of how to calculate, or at least esti-
mate, the leverage function, but for now we examine the pricing dynam-
ics that this model implies.The first important point to consider is whether
the joint process (Mt, Zt) has the Markov property, as in the case of [17].
This would be guaranteed if the coefficient functions f(t, St,Mt) := µ and
g(t, ST ,Mt) := σ(Zt −Mt)`(t, Zt) satisfied the usual Lipschitz and growth
conditions. That f satisfies this is obvious, proving this for the function
g : [0, T ]×R2 → R is more difficult. We start by assuming that the function
` : [0, T ] × R → R is itself strictly positive, Lipschitz and bounded. This
seems like a restrictive and arbitrary move at this point, however we will
motivate this assumption when we return to the problem of calculating the
leverage function.

With this assumption we have that our function g is a product of two
Lipschitz functions, we then use the following fact

Proposition 5.1 Assume that the functions ` : [0, T ]×R→ R and σ : R→
R, are both Lipschitz in the second argument, and that they are bounded. In
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addition, assume that the function σ, satisfies the standard growth condition.
This implies there is a C <∞ such that

|σ(x)− σ(y)| ≤ C|x− y|, ∀x, y ∈ R (5.3)

|`(t, x)− `(t, y)| ≤ C|x− y|, ∀x, y ∈ R and tε[0, T ] (5.4)

|σ(x)| ≤ C(1 + |x|), ∀x, y ∈ R (5.5)

|σ(x)| ≤ C, ∀x, y ∈ R (5.6)

|`(t, x)| ≤ C, ∀x, y ∈ R and t ∈ [0, T ]. (5.7)

Then the function g : [0, T ]× R→ R, defined by g(t, x) = σ(x)`(t, x), is
Lipschitz in the second argument and satisfies the standard growth condition.

Proof Let x, y ∈ R be arbitrary, then for any t ∈ [0, T ] we have,

|g(t, x)− g(t, y)| = |σ(x)`(t, x) + σ(y)`(t, y)| (5.8)

= |σ(x)`(t, x) + σ(y)`(t, x)

− σ(y)`(t, x) + σ(y)`(t, y)| (5.9)

= |`(t, x)(σ(x)− σ(y)) + σ(y)(`(t, y)− `(t, x))| (5.10)

≤ |`(t, x)||(σ(x)− σ(y))|+ |σ(y)||(`(t, y)− `(t, x))| (5.11)

≤ C2|x− y|+ C2|y − x| (5.12)

= 2C2|x− y|. (5.13)

Where, in line (5.12), we used the boundedness and the Lipschitz assump-
tions. So we have shown that the g is Lipschitz. That g satisfies the standard
growth condition is obvious since, from (5.5) and (5.6),

|g(t, x)| = |σ(x)`(t, x)| ≤ C2(1 + |x|) (5.14)

So, under certain assumptions, the model (5.1),(5.2) has a Markovian so-
lution. This will allow us to safely assume that the price process for a
contingent claim has a Markovian realisation. We can, therefore, safely
assume that the value of any contingent claim at time t has the form
Vt = V (t, Zt,Mt).

5.1 Option pricing theory: A classical approach

The goal of this subsection will be to derive a pricing PDE for a contingent
claim with a payoff Vt = Ψ(ST , DT ). Where we define the quantity Dt :=
Zt −Mt, and St is the price of the underlying at time t. Dt will be referred
to as the deviation from the mean. Clearly we will need the dynamics for
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St and Dt. Remembering that Zt = ln(e−rtSt)⇒ St = eZt+rt, we define the
function h(t, x) = ert+x. This gives

∂h

∂t
:= h1 = rh (5.15)

∂h

∂x
:= h2 = h (5.16)

∂2h

∂x2
:= h22 = h (5.17)

, (5.18)

and so by the Itô formula

dSt = dh(t, Zt) = h1(t, Zt)dt+ h2(t, Zt)dZt + h(t, Zt)22(dZt)
2 (5.19)

=
(
h1 + µh2 +

1

2
σ2(Dt)`

2(t, St)h22

)
dt+ σ(Dt)`(t, St)h2dWt (5.20)

=
(
rh+ µh+

1

2
σ2(Dt)`

2(t, St)h
)
dt+ σ(Dt)`(t, St)hdWt (5.21)

⇒ dSt =

(
r + µ+

1

2
σ2(Dt)`

2(t, St)

)
Stdt+ σ(Dt)`(t, St)StdWt. (5.22)

For Dt we have

dDt = dZt − dMt (5.23)

⇒ dDt =

(
µ− ϕ(t)

φ(t)
Dt

)
dt+ σ(Dt)`(t, St)dWt. (5.24)

Equations (5.22) and (5.24) give the dynamics of the Markov process (St, Dt),
we now assume that the time t price of a contingent claim has the form
Vt = V (t, St, Dt). By the Itô formula the dynamics of this process are

dV = V1dt+ V2dSt + V3dDt

+
1

2

(
V22(dSt)

2 + 2V23(dDt)(dSt) + V33(dDt)
2
)

(5.25)

=
(
V1 + V2(r + µ+

1

2
σ2`2)St + V3(µ− φ

Φ
Dt) +

1

2
V22S

2
t σ

2`2 + V23Stσ
2`2 +

1

2
V33σ

2`2
)
dt+

+
(
V2Stσ`+ V3σ`

)
dWt, (5.26)

where we have dropped the arguments of σ(Dt), `(t, St), φ(t), Φ(t) and
the derivatives of V, for example V1(t, St), for brevity. Now consider a
self-financing portfolio Πt = α(t, St, Dt)St + β(t, St, Dt)Bt with α(t, St, Dt)
shares and β(t, St, Dt) risk free bonds, i.e the asset with dynamics dBt =
rBtdt. The self financing condition implies that

dΠ = αtdSt + βtdBt (5.27)

= (αt
(
r + µ+

1

2
σ2(Dt)`

2(t, St)
)
St + rβtBt)dt

+ αtσ(Dt)`(t, St)StdWt, (5.28)
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where we have dropped the arguments of α(t, St, Dt) and β(t, St, Dt) for
brevity. We now assume that the above portfolio perfectly replicates the
contingent claim so that Πt = Vt and dΠt = dVt. By the uniqueness of the
representation of an Itô process and equations (5.26) and (5.28) we have

αt

(
r + µ+

1

2
σ2(Dt)`

2(t, St)

)
St + rβtBt = (5.29)

V1 + V2

(
r + µ+

1

2
σ2`2

)
St + V3(µ− φ

Φ
Dt) +

1

2
V22S

2
t σ

2`2 + V23Stσ
2`2 +

1

2
V33σ

2`2

α(t, St, Dt)σ(Dt)`(t, St)St = V2Stσ(Dt)`(t, St) + V3σ(Dt)`(t, St). (5.30)

Since, by assumption, we had that φ(t) > 0 for all t ∈ [0, T ], all the condi-
tions for the Hörmander’s Theorem are satisfied and the process (St, Dt) has
a strictly positive density on R2 for t > 0. Therefore equation (5.30) holds
for all real numbers, also remembering that σ(·) and `(t, ·) are nowhere 0,
we have that

α(t, s, d) =
V2(t, s, d)s+ V3(t, s, d)

s
, (5.31)

using this, as well as the fact that β(t, St, Dt)rBt = r(Vt − α(t, St, Dt)St),
equation (5.29) gives

(V2St + V3)
(
r + µ+

1

2
σ2(Dt)`

2(t, St)
)

+ r(V − V2St − V3) = (5.32)

V1 + V2(r + µ+
1

2
σ2`2)St + V3(µ− φ

Φ
Dt) +

1

2
V22S

2
t σ

2`2 + V23Stσ
2`2 +

1

2
V33σ

2`2

⇒V1 + rStV2 −
φ(t)

Φ(t)
DtV3 − rV

+
σ2(Dt)`

2(t, St)

2

(
S2
t V22 + 2StV23 + V33 − V3

)
= 0. (5.33)

Now, if we define the solution as a function of the backward time τ := T − t
then we have the following deterministic initial value problem

V1 − rsV2 +
φ(t)

Φ(t)
dV3 + rV

− σ2(d)`2(t, s)

2

(
s2V22 + 2sV23 + V33 − V3

)
= 0 (5.34)

V (0, s, d) = Ψ(s, d). (5.35)

This describes the evolution of the price of a contingent claim paying Ψ(ST , DT )
at maturity time T , through backward time. If we choose φ(t) = eλt in equa-
tion (5.1) our model reduces to the Hobson and Rogers model with order 1
offset [17]. To see that this is indeed the case, we notice that for this choice

of φ(t) we have that φ(t)
Φ(t) = λ and the initial value problem (5.34)-(5.35)
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reduces to

V1 − rsV2 + λdV3 + rV

− σ2(d)`2(t, s)

2

(
s2V22 + 2sV23 + V33 − V3

)
= 0. (5.36)

V (0, s, d) = Ψ(s, d), (5.37)

which agrees exactly with the PDE found in the original paper by Hobson
and Rogers [27], with the additional factor of the leverage function appear-
ing. In the non-leveraged case, i.e when `(t, St) = 1, the equations are
identical.

5.2 A martingale approach

The above result can also be obtained via martingale pricing theory. By
Girsanov’s Theorem, see for example Theorem 11.3 in [3], the process defined
by

dW̄t = htdt+ dWt (5.38)

where ht is any adapted process such that
∫ T

0 |h(u)|du <∞ a.s, is a Brow-
nian motion under the measure Q defined by

dQ = LtdP (5.39)

where
Lt = e

∫ t
0 hsdWs− 1

2

∫ t
0 h

2
sds. (5.40)

In order to get the dynamics of (St, Dt) under the new measure Q we sub-
stitute (5.38) into (5.22) and (5.24) to get

dDt =

(
µ− φ(t)

Φ(t)
Dt + htσ(Dt)`(t, St)

)
dt+ σ(Dt)`(t, St)dW̄t (5.41)

dSt =

(
r + µ+

1

2
σ2(Dt)`

2(t, St) + htσ(Dt)`(t, St)

)
Stdt

+ Stσ(Dt)`(t, St)dW̄t. (5.42)

We want the discounted stock price process to be a martingale under our
new measure Q, and so we set r+µ+ 1

2σ
2(Dt)`

2(t, St)+htσ(Dt)`(t, St) = r.
This gives that,

ht =
−µ− 1

2σ
2(Dt)`

2(t, St)

σ(Dt)`(t, St)
(5.43)

which defines our new measure Q and ensures that Q is the risk neutral
measure. The risk neutral dynamics of the model are then

dDt =

(
− φ(t)

Φ(t)
Dt −

1

2
σ2(Dt)`

2(t, St)

)
dt+ σ(Dt)`(t, St)dW̄t (5.44)

dSt = rStdt+ σ(Dt)`(t, St)dW̄t. (5.45)
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Then, since the discounted stock price is a martingale under this measure,
the Martingale Pricing Theorem ensures that the price of a contingent claim
with the payoff Ψ(ST ) at time t is the discounted expected value of the payoff
under the risk-neutral measure given the information up to t. In other words
we have that

Vt = e−r(T−t)EQ[Ψ(ST )|Ft
]
. (5.46)

If we again assume that the price is of the form Vt = V (t, St, Dt) then we
can use the Feynman-Kac formula to show that the solution must satisfy
the PDE (5.33).

5.3 Calculating the leverage function

Up to this point we have side stepped the issue of calculating the leverage
function by making assumptions about its form. A method for calculating
the leverage function, as done by Guyon in [20], will now be presented and
we will use this to motivate the assumptions made up to this point.

The key property of the leverage function is that it ensures that the
model (5.1)-(5.2), or equivalently (5.44)-(5.45), exactly fits the market smile.
We now recall Gyöngy’s Theorem, which describes the construction of a 1 di-
mensional Itô process, with non-random coefficients, with the same marginal
distribution (i.e option prices) as some, more complex and possibly random,
multidimensional model. In the case of a model for an underlying stock,
we call the resulting volatility term that appears in the new one dimen-
sional process the local volatility. If we consider the model (5.44)-(5.45) as
the complex multidimensional stock prices process in the theorem, we can
extract a simple process of the form

dS̄t = a(t, S̄t)dt+ σLV (t, S̄t)dW̄t (5.47)

with the same European call option prices. The coefficient σLV : [0, T ]×R→
R has the interpretation

σLV (t, x) =
√

E[σ2(Dt)`2(t, St)|St = x], (5.48)

now using the fact the `2(t, St) is an St measurable random variable we have,
by the properties of conditional expectation, that

σLV (t, x) = `(t, x)
√
E[σ2(Dt)|St = x]. (5.49)

We recall that since, by definition, E[σ2(Dt)|St = x] is a St = x measurable
random variable, it can be written as a function of x by the Doob-Dynkin
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Lemma. Now since σ(x) > 0 for all x ∈ R we know that
√
E[σ2(Dt)|St = x] >

0 for all xεR, and we therefore can safely divide to get

`(t, x) =
σLV (t, x)√

E[σ2(Dt)|St = x]
(5.50)

this gives us a method for calculating the leverage function. In the lo-
cal volatility section we were able to construct σLV (t, x) from the implied
volatility surface. The conditional expectation can be approximated to any
degree of accuracy using a Monte Carlo method. We can, therefore, use
(5.50) to construct the leverage function.

We now return our attention to the assumptions made earlier in the
subsection. The first of these assumption was that the leverage function is
nowhere 0. Considering (5.50), this would be true if the numerator stays
away from zero and the denominator is bounded. Since σ(·) was bounded by
construction the later is true, for the former we recall that the local volatil-
ity surface must be positive by no arbitrage arguments, therefore our first
assumption is valid.

The second assumption was that the leverage function was Lipschitz in
the second argument, this is more difficult to motivate. The following facts
will be important

1. If a function is continuously differentiable on a subset X ⊆ R then it
is Lipschitz on X

2. If the function g : R → R is strictly positive on R then the number
ε = infx∈R{g(x)} exists and ε > 0.

3. If the function g : R→ R is strictly positive and Lipschitz on X ⊆ R,
then the function defined by h(x) =

√
g(x) is Lipschitz on X.

We now consider the following proposition,

Proposition 5.2 Let g : R→ R be a strictly positive, bounded and Lipschitz
function, also let f : [0, T ]× R→ R be bounded and Lipschitz in the second

argument, then the function h : [0, T ]×R→ R defined by h(t, x) = f(t,x)√
g(x)

is

Lipschitz in the second argument. i.e there exists a C <∞ such that

|h(t, x)− h(t, y)| ≤ C|x− y|, ∀x, y ∈ R and t ∈ [0, T ] (5.51)
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Proof

|h(t, x)− h(t, y)| =
∣∣∣∣ f(t, x)√

g(x)
− f(t, y)√

g(y)

∣∣∣∣ (5.52)

=

∣∣∣∣f(x)
√
g(y)− f(y)

√
g(x)√

g(x)g(y)

∣∣∣∣ (5.53)

≤ 1

ε

∣∣f(x)
√
g(y)− f(y)

√
g(x)

∣∣, (5.54)

where ε = inf{g(x)}

=
1

ε

∣∣f(x)
√
g(y)− f(y)

√
g(y)

+ f(y)
√
g(y)− f(y)

√
g(x)

∣∣ (5.55)

=
1

ε

∣∣∣√g(y)[f(x)− f(y)] + f(y)
[√

g(y)−
√
g(x)

]∣∣∣ (5.56)

≤ 1

ε

{∣∣∣√g(y)[f(x)− f(y)]
∣∣∣

+
∣∣∣f(y)

[√
g(y)−

√
g(x)

]∣∣∣} (5.57)

≤ 1

ε

{∣∣∣√U1[x− y]
∣∣∣+
∣∣∣U2

[
y − x

]∣∣∣}, (5.58)

for some U1, U2 ∈ R

=

(√
U1 + U2

ε

)
|x− y| (5.59)

This proposition tells us that if σLV is a bounded and Lipschitz function,
and if E[σ2(Dt)|St = x] is strictly positive, bounded and Lipschitz, then the
leverage function will also be Lipschitz. In the local volatility section we con-
structed σLV using derivatives of the option price surface, it was therefore
require that the surface was continuously differentiable, which in turn means
that σLV is continuously differentiable and hence Lipschitz. It is also, there-
fore, bounded if considered on a bounded domain. That E[σ2(Dt)|St = x]
is strictly positive and bounded is obvious since it inherits these properties
directly from σ(·), that it is Lipschitz is less so.

The question becomes whether the conditional expectation of a Lipschitz
function is itself Lipschitz. Although we were not able to directly prove this,
it seems as if it must hold. Intuitively, the conditional expectation opera-
tor smooths out the function σ via integration, which should not effect the
differentiability of the function and hence its Lipschitz property. Obviously
this argument is purely “hand waving”, and this property requires further
investigation, but for now we accept that the assumptions made about the
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leverage function are indeed reasonable.

At this point we reflect on what has been achieved. Under certain as-
sumptions, we were able to derive a deterministic pricing PDE for a contin-
gent claim with a general payoff. This PDE involved a leverage function, a
deterministic function that ensures that the prices we eventually calculate
using our PDE are consistent with the market prices of European options.
A method for calculating this leverage function was presented, and the as-
sumptions that allowed the derivation of the PDE were motivated. In the
paper by Guyon [20] in which the leverage function methodology was origi-
nally proposed, a Monte Carlo style algorithm was suggested when pricing
options. In the above framework, once the leverage function has been calcu-
lated, it is possible to generate an entire surface of option prices by solving
the PDE. This has obvious advantages over a straight Monte Carlo, espe-
cially with application to hedging. However, our method requires that we
know the leverage function over the whole St domain and so, we will have
to run multiple Monte Carlo simulations to calculate the necessary condi-
tional expectation. This will be an obvious drag on any proposed numerical
scheme, but there may be a way to bypass this issue. Guyon suggests a
Monte Carlo method which calculates the leverage function while simulat-
ing the paths of the underlying process. We will put this method to the
test for a specific case and see what there is to learn about the form of the
leverage function.

5.4 The Particle method

In our fitted model, the system (Dt, Zt) has the following dynamics under
the martingale measure

dD(t) = dZ(t)− λDtdt (5.60)

dZ(t) = −1

2
σ2(Dt)

σ2
LV (t, Zt)

E
(
σ2(Dt)|Zt

)dt+ σ(Dt)
σLV (t, Zt)√
E
(
σ2(Dt)|Zt

)dWt (5.61)

in this section we consider the case where,

σ(x) =
√

1 + εx2 ∧ η.

and we use the following parametrically constructed local volatility surface.

74

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



We then consider the following N copies of the system of SDEs

dDi(t) = dZi(t)− λDi
tdt

dZit = −1

2
σ2(Di

t)
σ2
LV (t, Zit)

E
(
σ2(Di

t)|Zit
)dt+ σ(Di

t)
σLV (t, Zit)√
E
(
σ2(Di

t)|Zit
)dWt

with i = 1, 2, . . . , N . We then use the following discretisation of our N
copies:

Di
t+1 = Di

t + Zit+1 − Zit − λ(Di
t)(∆t) (5.62)

Zit+1 = Zit −
1

2
σ2(Di

t)
σ2
LV (t, Zit)(∑

j∈A
1

n(Aj)
σ2(Dj

t )

)∆t

+ σ(Di
t)

σLV (t, Zit)(∑
j∈A

1
n(Aj)

σ2(Dj
t )

) 1
2

z
√

∆t (5.63)

where Ai = {j : Zi − ε < Zj < Zi + ε}, and we have approximated the
martingale measure Q by the empirical measure. z is a standard normal
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random variable. Each Zi is know as a particle, and each particle interacts
with other particles through the approximation of the conditional expecta-
tion.

To prove that the system (5.62)-(5.63) converges to (5.60)-(5.61) requires
sophisticated arguments involving propagation chaos, a detailed discussion
of this can be found in [21]. We will assume that it does converge as N →∞.

The scheme was run for Z0 = ln(50), D0 = 0, η = 0.2, ε = 5, T = 2,
∆t = 0.002 (1000 time steps), N = 5000 and ε = 0.005. Below is a plot of
the paths for 5 of our Zi’s.
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We then considered some key statistical quantities. We remember that
since eZ is a martingale we would expect E(eZt) = E(eZ0), for our scheme it
was found that 1

N

∑N
i=1 e

ZiT = 50.0955 ≈ 50 supporting the consistency of
the discretisation

Understanding the behaviour of the random variable E
(
σ2(Dt)|Zt

)
is

important if we are going to estimate the leverage function. It was found
that this random variable does not deviate significantly from a long run
mean, and this suggests that modelling it as a constant is not unreasonable.
A rigorous proof of this is not presented, rather we will provide statistical
evidence.
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We recall that we essentially approximated the above conditional ex-
pectation using the empirical measure and by grouping paths in buckets of
width 2ε. For each time step t and particle j we can define the quantity

σ̄(t, j)2 =

(∑
j∈A

1

n(Aj)
σ2(Dj

t )

)2

of course this quantity was used and recorded in the scheme itself. For each
time set we can then calculate the mean and variance of σ̄ over the j’s.
This is plotted below:
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Figure 1: The empirical mean as a function of time

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

−6

t

va
ria

nc
e

Figure 2: The variance as a function of time
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Clearly both the variance and mean increase with time, but as in terms
of absolutes the mean does not deviate much from its original value and the
variance remains low throughout, maximising at a value of 2.4× 10−6.This
supports the hypothesis that the conditional expectation for this particular
case can be treated as a constant.

This treatment can then be applied to the calculation of the leverage
function

`(t, St) =
σLV (t, St)√
E(σ2(Dt)|Zt)

(5.64)

≈ σLV (t, St)

σ(D0)
(5.65)

Using this estimate we can avoid running a Monte Carlo to calculate the
leverage function for use in our partial differential equation. Of course this
type of evidence can only be considered relevant to this particular case, and
it will most likely need to be verified for any other special case before it is
used in the implementation of a PDE scheme.

However it gives further evidence that leverage functions seem to flatten
out over time as hypothesised by Guyon [20], and gives insight into a possible
method of approximation.

79

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



6 A numerical implementation of the HR model

In the preceding sections we have continuously mentioned the advantages
of having a Markovian model that admits a terminal value problem for
the price of a T -claim. In this section we revisit a scheme, constructed in
fulfilment of MSc course work requirements, which was designed for the non-
leveraged HR model. We then attempt to adapt this numerical scheme to
the leveraged case, and make observations about the results.

6.1 The non-leveraged model revisited

At this point we recall the theory set out in subsection 4.3. If we set n = 1
in equation (4.30) we have shown that our model is then governed by the
following system of SDEs,

dBt = rBtdt (6.1)

dDt = (µ(Dt)− λDt)dt+ σ(Dt)dWt (6.2)

dZt = µ(Dt)dt+ σ(Dt)dWt (6.3)

here we have written D
(1)
t := Dt since no ambiguity is possible. The pro-

cess (Zt, Dt) is Markov and so we can assume that the price of a contingent
claim u has the form u = u(T − t, St, Dt). The system yields the following
PDE for the price of a contingent claim u, paying ψ(ST ) at time T for some
measurable ψ(.),

0 =

(
rS

∂u

∂S
− ru− λD ∂u

∂D
− ∂u

∂t

)
+

(
− 1

2

∂u

∂D
+

1

2
S2 ∂

2u

∂S2
+

1

2

∂2u

∂D2
+ S

∂2u

∂S∂D

)
σ2(D). (6.4)

:= Lu.

We will attempt to price a European put option, with strike K and maturity
T , in the framework of the above model, i.e Φ(ST ) = max(0,K − ST ).

At this point it is common practice to employ a change of variables in
equation (6.4) as in [12], however, in this dissertation we will endeavour to
construct a scheme without a change of variables in order to investigate the
efficiency of such a scheme. When pricing an option the boundary conditions
are of crucial importance, by not changing variables we have the advantage
of a real world framework and so financially intuitive boundary conditions
can be easily constructed.
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6.1.1 European put boundary and initial conditions

As was discussed in the previous subsection, the boundary conditions used
are of vital importance in the construction of our scheme and the eventual
solution. For the final condition we simply have that the option is equal to
its payoff. We also remember at this point that our solution u is of the form
u = u(T − t, St, Dt) and so the condition at time t = T is interpreted as the
following initial condition:

u(0, ST , DT ) = max(0,K − ST ). (6.5)

Next we consider the situation where S is very large. In the case of a put
option this means that the probability of exercise is very low, and therefore
the value of the put option is very low. As a consequence, at the boundary
where S →∞, we will require that

u(t, S,D) = 0. (6.6)

At the boundary where S = 0 we assume that the exercise of the option
is guaranteed. For a put option this means the receipt of K in cash upon
expiry, and so we have

u(t, 0, D) = Ke−r(T−t). (6.7)

The situation is slightly more complex at boundaries where D → ±∞.
Here we remember that our volatility function σ(·) is assumed Lipschitz and
bounded. It is also common practice to use a function that has the property
σ(x) = σmax if x is such that |x| ≥ B for some predetermined B and σmax.
The function used in this dissertation will be σ(x) = min(η

√
1 + εx, σmax),

which clearly has the aforementioned property. In this context it is easy
to see that for large absolute value deviations from the mean, the volatility
behaves like a constant, and so a natural condition for these extreme points
is that the option price agrees with the Black-Scholes framework detailed
in [4]. A boundary condition of this form is used in [12], the authors insist
that for large D values the price of the option must equal the Black-Scholes
price. We modify this slightly by insisting that, at the boundaries where D
has large absolute value, the option price must obey the Black-Scholes PDE.
This gives

0 = rSus − ru− ut +
1

2
σ2
maxS

2uss. (6.8)

The advantage of using the Black-Scholes PDE instead of the Black-Scholes
formula is in the implementation. It is possible to incorporate this PDE into
the system of equations we will eventually solve at each time step.
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6.2 Finite difference approximations

We consider the problem in the following discrete space: we divide the
state space S into points (S1, S2, . . . , SM ), where S1 = 0 and SM is some
sufficiently large number. Similarly we use the points (D1, D2, . . . , DL), and
(t1, t2, . . . , tN ) as representations of the D and t space respectively. For
each time we then have a 2 dimensional grid, with S on the y-axis and
D on the x-axis, with M × L points. We then define the grid function
f = f(tn, Si, Dj) := fni,j that takes a value on each of the grid nodes. f is the
function that we will use to approximate u. We will use the following second
order finite difference approximations for the derivatives in our numerical
scheme,

∂u

∂t
≈
fn+1
i,j − fni,j

k
(6.9)

∂u

∂S
≈ 1

2

[
fni+1,j − fni−1,j

2h
+
fn+1
i+1,j − f

n+1
i−1,j

2h

]
(6.10)

∂u

∂D
≈ 1

2

[
fni,j+1 − fni,j−1

2d
+
fn+1
i,j+1 − f

n+1
i,j−1

2d

]
(6.11)

∂2u

∂S2
=≈ 1

2

[
fni+1,j − 2fni,j + fni−1,j

h2
+
fn+1
i+1,j − 2fn+1

i,j + fn+1
i−1,j

h2

]
(6.12)

∂2u

∂D2
≈ 1

2

[
fni,j+1 − 2fni,j + fni,j−1

d2
+
fn+1
i,j+1 − 2fn+1

i,j + fn+1
i,j−1

d2

]
(6.13)

∂2u

∂S∂D
≈ 1

2

[
fni+1,j+1 − fni+1,j−1 − fni−1,j+1 + fni−1,j−1

4hd

+
fn+1
i+1,j+1 − f

n+1
i+1,j−1 − f

n+1
i−1,j+1 + fn+1

i−1,j−1

4hd

]
. (6.14)
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6.3 Discretised PDE

If we substitute the approximations from equations (6.9)-(6.14) into our
PDE (6.38), we get the following discrete equation,

0 =

(
rSi
2

[
fni+1,j − fni−1,j

2h
+
fn+1
i+1,j − f

n+1
i−1,j

2h

]
− rfni,j −

λDj

2

[
fni,j+1 − fni,j−1

2d
+
fn+1
i,j+1 − f

n+1
i,j−1

2d

]
−

−
[
fn+1
i,j − fni,j

k

])
+

{
− 1

4

[
fni,j+1 − fni,j−1

2d
+
fn+1
i,j+1 − f

n+1
i,j−1

2d

]
+

+
S2
i

4

[
fni+1,j − 2fni,j + fni−1,j

h2
+
fn+1
i+1,j − 2fn+1

i,j + fn+1
i−1,j

h2

]
+ (6.15)

+
1

4

[
fni,j+1 − 2fni,j + fni,j−1

d2
+
fn+1
i,j+1 − 2fn+1

i,j + fn+1
i,j−1

d2

]
+

+ Si
1

2

[
fni+1,j+1 − fni+1,j−1 − fni−1,j+1 + fni−1,j−1

4hd
+
fn+1
i+1,j+1 − f

n+1
i+1,j−1 − f

n+1
i−1,j+1 + fn+1

i−1,j−1

4hd

]}
σ2
j

:= L[k,h,d]f.

Notice that we have also defined the linear operator L[k,h,d] here. The above
equation can be written in a more convenient way,

⇒ 0 =
rSi
4h

[fni+1,j − fni−1,j + fn+1
i+1,j − f

n+1
i−1,j ]− rf

n
i,j −

λDj

4d
[fni,j+1 − fni,j−1 + fn+1

i,j+1 − f
n+1
i,j−1]

− 1

k
[fn+1
i,j − f

n
i,j ]−

σ2
j

8d
[fni,j+1 − fni,j−1 + fn+1

i,j+1 − f
n+1
i,j−1]

+
S2
i σ

2
j

4h2
[fni+1,j − 2fni,j + fni−1,j + fn+1

i+1,j − 2fn+1
i,j + fn+1

i−1,j ]+ (6.16)

+
σ2
j

4d2
[fni,j+1 − 2fni,j + fni,j−1 + fn+1

i,j+1 − 2fn+1
i,j + fn+1

i,j−1]+

+
Siσ

2
j

8hd
[fni+1,j+1 − fni+1,j−1 − fni−1,j+1 + fni−1,j−1 + fn+1

i+1,j+1 − f
n+1
i+1,j−1 − f

n+1
i−1,j+1 + fn+1

i−1,j−1]
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⇒
[
−
Siσ

2
j

8hd

]
fn+1
i+1,j+1 +

[
− rSi

4h
−
S2
i σ

2
j

4h2

]
fn+1
i+1,j +

[
λDj

4d
+
σ2
j

8d
−

σ2
j

4d2

]
fn+1
i,j+1+

+

[
1

k
+
S2
i σ

2
j

2h2
+

σ2
j

2d2

]
fn+1
i,j +

[
rSi
4h
−
S2
i σ

2
j

4h2

]
fn+1
i−1,j +

[
− λDj

4d
−
σ2
j

8d
−

σ2
j

4d2

]
fn+1
i,j−1+

+

[
Siσ

2
j

8hd

]
fn+1
i+1,j−1 +

[
Siσ

2
j

8hd

]
fn+1
i−1,j+1 +

[
−
Siσ

2
j

8hd

]
fn+1
i−1,j−1 (6.17)

=

[
Siσ

2
j

8hd

]
fni+1,j+1 +

[
rSi
4h

+
S2
i σ

2
j

4h2

]
fni+1,j +

[
−λDj

4d
−
σ2
j

8d
+

σ2
j

4d2

]
fni,j+1+

+

[
1

k
−
S2
i σ

2
j

2h2
−

σ2
j

2d2
− r
]
fni,j +

[
− rSi

4h
+
S2
i σ

2
j

4h2

]
fni−1,j +

[
λDj

4d
+
σ2
j

8d
+

σ2
j

4d2

]
fni,j−1+

+

[
−
Siσ

2
j

8hd

]
fni+1,j−1 +

[
−
Siσ

2
j

8hd

]
fni−1,j+1 +

[
Siσ

2
j

8hd

]
fni−1,j−1

⇒[Ai,j ]fn+1
i+1,j+1 + [Bi,j ]fn+1

i+1,j + [Ci,j ]fn+1
i,j+1 + [Di,j ]fn+1

i,j + [Bi,j +
rSi
2h

]fn+1
i−1,j + [−Ci,j −

σ2
j

2d2
]fn+1
i,j−1+

+ [−Ai,j ]fn+1
i+1,j−1 + [−Ai,j ]fn+1

i−1,j+1 + [Ai,j ]fn+1
i−1,j−1 =

= −[Ai,j ]fni+1,j+1 − [Bi,j ]fni+1,j − [Ci,j ]fni,j+1+ (6.18)

+
(
[−Di,j ] +

2

k
− r
)
fni,j + [−Bi,j −

rSi
2h

]fni−1,j + [Ci,j +
σ2
j

2d2
]fni,j−1−

− [−Ai,j ]fni+1,j−1 − [−Ai,j ]fni−1,j+1 − [Ai,j ]fni−1,j−1

where,

Ai,j = −
Siσ

2
j

8hd
(6.19)

Bi,j = −rSi
4h
−
S2
i σ

2
j

4h2
(6.20)

Ci,j =
λDj

4d
+
σ2
j

8d
−

σ2
j

4d2
(6.21)

Di,j =
1

k
+
S2
i σ

2
j

2h2
+

σ2
j

2d2
. (6.22)

Equation (6.18) holds for i = 2, ...,M − 1 and j = 2, ..., L − 1 and so gives
us a set of (M − 2)(L− 2) equations. This equation describes the behaviour
of all of the interior points on our grid. We must now turn our attention to
the boundary points in order to get a complete set of equations.

6.4 Discretised boundary conditions

In order to complete the scheme and ensure we have a system with a sufficient
number of equations to generate a unique solution we have to discretise the
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boundary conditions described in equations (6.5)-(6.8). The discrete version
of equation (6.5) is

f1
i,j = max(0,K − Si), ∀i = 1, . . . , L and j = 1, . . . ,M. (6.23)

Equations (6.6) and (6.7) give,

fn+1
M,j = fnM,j = · · · = f1

M,j = 0,∀j = 1, 2, . . . , L (6.24)

fn+1
1,j = e−rkfn1,j , f

1
1,j = K,∀n = 2, . . . , N and j = 1, . . . , L. (6.25)

(6.24) and (6.25) describe 2L equations. Finally we approximate equa-
tion (6.8) using a Crank-Nicolson scheme similar to the one used to discreti-
sation our main PDE. This gives the following two sets of equations,

0 =
rSi
4h

[fn+1
i+1,L − f

n
i−1,L + fni+1,L − fni−1,L]− rfni,L −

fn+1
i,L − fni,L

k
+ (6.26)

+
σ2
maxS

2
i

4h2
[fn+1
i+1,L − 2fn+1

i,L + fn+1
i−1,L + fni+1,L − 2fni,L + fni−1,L]

0 =
rSi
4h

[fn+1
i+1,1 − f

n
i−1,1 + fni+1,1 − fni−1,1]− rfni,1 −

fn+1
i,1 − fni,1

k
+

+
σ2
maxS

2
i

4h2
[fn+1
i+1,1 − 2fn+1

i,1 + fn+1
i−1,1 + fni+1,1 − 2fni,1 + fni−1,1].

This true for all n, i. From (6.26) we have that[
− rSi

4h
− σ2

maxS
2
i

4h2

]
fn+1
i+1,L +

[
1

k
+
σ2
maxS

2
i

2h2

]
fn+1
i,L +

[
rSi
4h
− σ2

maxS
2
i

2h2

]
fn+1
i−1,L =

=

[
rSi
4h

+
σ2
maxS

2
i

4h2

]
fni+1,L +

[
− r +

1

k
− σ2

maxS
2
i

2h2

]
fni,L +

[
− rSi

4h
+
σ2
maxS

2
i

2h2

]
fni−1,L

(6.27)[
− rSi

4h
− σ2

maxS
2
i

4h2

]
fn+1
i+1,1 +

[
1

k
+
σ2
maxS

2
i

2h2

]
fn+1
i,1 +

[
rSi
4h
− σ2

maxS
2
i

2h2

]
fn+1
i−1,1 =

=

[
rSi
4h

+
σ2
maxS

2
i

4h2

]
fni+1,1 +

[
− r +

1

k
− σ2

maxS
2
i

2h2

]
fni,1 +

[
− rSi

4h
+
σ2
maxS

2
i

2h2

]
fni−1,1.

Defining the coefficient vectors

Ki = −rSi
4h
− σ2

maxS
2
i

4h2
(6.28)

Li =
1

k
+
σ2
maxS

2
i

2h2
(6.29)

Mi =
rSi
4h
− σ2

maxS
2
i

2h2
(6.30)
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we can rewrite (6.27) as

[Ki]fn+1
i+1,L + [Li]fn+1

i,L + [Mi]f
n+1
i−1,L =

= −[Ki]fni+1,1 + [−Li +
2

k
− r]fni,1 + [Mi]f

n
i−1,1 (6.31)

[Ki]fn+1
i+1,1 + [Li]fn+1

i,1 + [Mi]f
n+1
i−1,1 =

= −[Ki]fni+1,1 + [−Li +
2

k
− r]fni,1 + [Mi]f

n
i−1,1. (6.32)

This being true i = 2, . . . ,M − 1, so that (6.31) and (6.32) give us a set of
2M−4 equations. Now, in total, we have (M−2)(L−2)+2L+2M−4 = ML
equations, and ML unknowns, and so we have a system of linear equations
with a unique solution. The next step will be to construct an algorithm that
solves these equations at every time step.
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6.5 Matrix construction

We are now ready to represent our set of equations in matrix form. The
goal will be to represent our scheme in the form

L~fn+1 = R~fn (6.33)

where the vector ~fn is defined by ~fn := (fn1,1, f
n
1,2, ..., f

n
1,L, f

n
2,1, ..., f

n
2,L, ..., f

n
M,L−1, f

n
M,L)T .

The matrices L and R are both of size (ML×ML), and will be constructed
using equations (6.18), (6.23),(6.24),(6.25),(6.31) and (6.32). The most in-
formative way to describe the construction of the matrices is to consider a
specific calibration of the algorithm. Suppose we have that M = 4, and
L = 4. In this case the following matrix equation will be solved at each time
step,
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

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
M2,1 0 0 0 L2,1 0 0 0 K2,1 0 0 0 0 0 0 0

A2,2 (B2,2 + rS2
2h ) −A2,2 0 (−C2,2 −

σ2
2

2d2 ) D2,2 C2,2 0 −A2,2 B2,2 A2,2 0 0 0 0 0

0 A2,3 (B2,3 + rS2
2h ) −A2,3 0 (−C2,3 −

σ2
3

2d2 ) D2,3 C2,3 0 −A2,3 B2,3 A2,3 0 0 0 0
0 0 0 M2,4 0 0 0 L2,4 0 0 0 K2,4 0 0 0 0
0 0 0 0 M3,1 0 0 0 L3,1 0 0 0 K3,1 0 0 0

0 0 0 0 A3,2 (B3,2 + rS3
2h ) −A3,2 0 (−C3,2 −

σ2
2

2d2 ) D3,2 C3,2 0 −A3,2 B3,2 A3,2 0

0 0 0 0 0 A3,3 (B3,3 + rS3
2h ) −A3,3 0 (−C3,3 −

σ2
3

2d2 ) D3,3 C3,3 0 −A3,3 B3,3 A3,3

0 0 0 0 0 0 0 M3,4 0 0 0 L3,4 0 0 0 K3,4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


~fn+1 =



e−rk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 e−rk 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 e−rk 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 e−rk 0 0 0 0 0 0 0 0 0 0 0 0

−M2,1 0 0 0 −L2,1 + 2
k − r 0 0 0 −K2,1 0 0 0 0 0 0 0

−A2,2 −(B2,2 + rS2
2h ) A2,2 0 −(−C2,2 −

σ2
2

2d2 ) −D2,2 + 2
k − r −C2,2 0 A2,2 −B2,2 −A2,2 0 0 0 0 0

0 −A2,3 −(B2,3 + rS2
2h ) A2,3 0 −(−C2,3 −

σ2
3

2d2 ) −D2,3 + 2
k − r −C2,3 0 A2,3 −B2,3 −A2,3 0 0 0 0

0 0 0 −M2,4 0 0 0 −L2,4 + 2
k − r 0 0 0 −K2,4 0 0 0 0

0 0 0 0 −M3,1 0 0 0 −L3,1 + 2
k − r 0 0 0 −K3,1 0 0 0

0 0 0 0 −A3,2 −(B3,2 + rS3
2h ) A3,2 0 −(−C3,2 −

σ2
2

2d2 ) −D3,2 + 2
k − r −C3,2 0 A3,2 −B3,2 −A3,2 0

0 0 0 0 0 −A3,3 −(B3,3 + rS3
2h ) A3,3 0 −(−C3,3 −

σ2
3

2d2 ) −D3,3 + 2
k − r −C3,3 0 A3,3 −B3,3 −A3,3

0 0 0 0 0 0 0 −M3,4 0 0 0 −L3,4 + 2
k − r 0 0 0 −K3,4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


~fn

.
In the algorithm for the construction of the left matrix, we break con-

struction up into five parts. We construct four separate matrices correspond-
ing to the four boundary conditions, and one matrix for the interior points.
The left matrix is then obtain by adding these 5 matrices together. This
procedure is modified and repeated for the right matrix. The construction
algorithm is presented in detail in the form of a Matlab code, this is attached
as appendix 2.
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6.6 Numerical results

Now that we have designed the scheme and investigated its stability we can
proceed with some numerical tests. We use the volatility function

σ(D) = min(η
√

1 + εD2, σmax) (6.34)

in our numerical experiments, as in [27]. For our first experiment we use the
parameter values used in [27].
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Figure 3: This image is a outcome of our scheme with parameters chosen
to correspond with those in the original paper by Hobson and Rogers [27].
We use: ε = 5, η = 0.2, σmax = 2, T = 1, K = 90, λ = 1, r = 0.1, L = 80,
M = 150 and N = 100

The above figure is an approximation to the solution of (6.38) at time 0
with the appropriate boundary conditions for a European put option. We
see that, as expected, the option has higher value for lower share prices.
The interesting behaviour occurs when the deviation from the mean (D) is
close to zero, we see that when this is the case the value of the call option
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is lower than for high magnitude D. This is a result of the way we chose
our volatility function, which is lower for lower magnitudes of D. As in the
Black-Scholes framework, less volatility implies lower price, and so we see a
depression in the value of the solution around D = 0.

A Crank-Nicolson scheme of this form can be shown to be uncondition-
ally stable for equations of the form of (6.4). For a detailed stability analysis
see [12]. This is, of course, an extremely desirable property and one we hope
will be maintained under the introduction of our leverage function.

6.7 The leveraged model revisited

Introducing the leverage function into the model described above gives the
following market model,

dBt = rBtdt (6.35)

dDt = (µ(Dt)− λDt)dt+ σ(Dt)`(t, Zt)dWt (6.36)

dZt = µ(Dt)dt+ σ(Dt)dWt (6.37)

The system yields the following PDE for the price of a contingent claim
V , paying ψ(ST ) at time T for some measurable ψ(.),

0 =

(
rS
∂V

∂S
− ru− λD∂V

∂D
− ∂V

∂t

)
+

(
− 1

2

∂V

∂D
+

1

2
S2∂

2V

∂S2
+

1

2

∂2V

∂D2
+ S

∂2V

∂S∂D

)
σ2(D)`2(t, S). (6.38)

Using our approximation for the leverage function from the previous
sections we have that

0 =

(
rS
∂V

∂S
− ru− λD∂V

∂D
− ∂V

∂t

)
+

(
− 1

2

∂V

∂D
+

1

2
S2∂

2V

∂S2
+

1

2

∂2V

∂D2
+ S

∂2V

∂S∂D

)
σ2
LV (t, S). (6.39)

We will attempt to price a European put option, with strike K and ma-
turity T , in the framework of the above model, i.e Φ(ST ) = max(0,K−ST ).

We follow a similar procedure for our boundary conditions, derivative
approximations and discretisation and so we will not present this in detail.
We consider the same local volatility surface as in the previous section.

6.8 Matrix construction

To demonstrate the final matrix equation it is, again, most useful to consider
the case where M = 4 and L = 4. In this case we have the following
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

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
M2,1 0 0 0 L2,1 0 0 0 K2,1 0 0 0 0 0 0 0

An2,2 (Bn2,2 + rS2
2h ) −An2,2 0 (−Cn2,2 −

σ2
2

2d2 ) Dn2,2 Cn2,2 0 −An2,2 Bn2,2 An2,2 0 0 0 0 0

0 An2,3 (Bn2,3 + rS2
2h ) −An2,3 0 (−Cn2,3 −

σ2
3

2d2 ) Dn2,3 Cn2,3 0 −An2,3 Bn2,3 An2,3 0 0 0 0

0 0 0 M2,4 0 0 0 L2,4 0 0 0 K2,4 0 0 0 0
0 0 0 0 M3,1 0 0 0 L3,1 0 0 0 K3,1 0 0 0

0 0 0 0 An3,2 (Bn3,2 + rS3
2h ) −An3,2 0 (−Cn3,2 −

σ2
2

2d2 ) Dn3,2 Cn3,2 0 −An3,2 Bn3,2 An3,2 0

0 0 0 0 0 An3,3 (Bn3,3 + rS3
2h ) −An3,3 0 (−Cn3,3 −

σ2
3

2d2 ) Dn3,3 Cn3,3 0 −An3,3 Bn3,3 An3,3
0 0 0 0 0 0 0 M3,4 0 0 0 L3,4 0 0 0 K3,4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


~fn+1 =



e−rk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 e−rk 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 e−rk 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 e−rk 0 0 0 0 0 0 0 0 0 0 0 0

−M2,1 0 0 0 −L2,1 + 2
k − r 0 0 0 −K2,1 0 0 0 0 0 0 0

−An2,2 −(Bn2,2 + rS2
2h ) An2,2 0 −(−Cn2,2 −

σ2
2

2d2 ) −Dn2,2 + 2
k − r −Cn2,2 0 An2,2 −Bn2,2 −An2,2 0 0 0 0 0

0 −An2,3 −(Bn2,3 + rS2
2h ) An2,3 0 −(−Cn2,3 −

σ2
3

2d2 ) −Dn2,3 + 2
k − r −Cn2,3 0 An2,3 −Bn2,3 −An2,3 0 0 0 0

0 0 0 −M2,4 0 0 0 −L2,4 + 2
k − r 0 0 0 −K2,4 0 0 0 0

0 0 0 0 −M3,1 0 0 0 −L3,1 + 2
k − r 0 0 0 −K3,1 0 0 0

0 0 0 0 −An3,2 −(Bn3,2 + rS3
2h ) An3,2 0 −(−Cn3,2 −

σ2
2

2d2 ) −Dn3,2 + 2
k − r −Cn3,2 0 An3,2 −Bn3,2 −An3,2 0

0 0 0 0 0 −An3,3 −(Bn3,3 + rS3
2h ) An3,3 0 −(−Cn3,3 −

σ2
3

2d2 ) −Dn3,3 + 2
k − r −Cn3,3 0 An3,3 −Bn3,3 −An3,3

0 0 0 0 0 0 0 −M3,4 0 0 0 −L3,4 + 2
k − r 0 0 0 −K3,4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


~fn

.
Where,

Ani,j = −
Si
(
Σn
i,j

)2
8hd

(6.40)

Bni,j = −rSi
4h
−
S2
i

(
Σn
i,j

)2
4h2

(6.41)

Cni,j =
λDj

4d
+

(
Σn
i,j

)2
8d

−
(
Σn
i,j

)2
4d2

(6.42)

Dni,j =
1

k
+
S2
i

(
Σn
i,j

)2
2h2

+

(
Σn
i,j

)2
2d2

Ki = −rSi
4h
− σ2

maxS
2
i

4h2
(6.43)

Li =
1

k
+
σ2
maxS

2
i

2h2
(6.44)

Mi =
rSi
4h
− σ2

maxS
2
i

2h2
. (6.45)

We have used the notation Σn
i,j := σLV (tn, Si). The construction algo-

rithm is presented in detail in the form of a Matlab code, this is attached as
appendix 3. We note that the most important difference between the two
schemes is that the coefficient matrices now depend on time.
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6.9 Numerical results

The above scheme was solved on the same mesh as in the previous case. The
results of this numerical experiment are presented graphically below.
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Figure 4: Again, we use: ε = 5, η = 0.2, σmax = 2, T = 1, K = 90, λ = 1,
r = 0.2, L = 80, M = 150 and N = 100

Clearly we see an explosion of the approximate solution on this mesh.
This shows that our scheme is not unconditionally stable when used for the
leveraged case. Therefore, additional considerations need to be made when
considering a scheme for this case. The time dependence in our volatility
term that was introduced by the leverage function is the likely culprit in our
method losing stability.

6.10 Efficiency

It is important to make a brief comment on the efficiency of our algorithm.
The code in appendix 2 was run on a computer with 4GB of installed mem-
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ory (RAM). For the mesh and parameter values chosen in order to generate
figure 3, the MATLAB code takes approximately an hour to give an output.
This is extremely slow and, in addition, any attempt to refine the mesh was
unsuccessful due to a lack of memory.

Generating an entire implied volatility surface would involve running the
code over thousands of maturities and strikes, and because of the slowness of
the scheme, any such procedure remains impractical. This highly motivates
the use of a change of variables, as this makes it possible to generate a
solution for multiple strikes in one run by scaling. [12].

7 Conclusion

The goal of this dissertation was to find a fitted, complete and Markovian
market model, for which we can derive a pricing PDE. By synthesizing the
work of Hobson and Rogers, Foschi, Dupire, Gyöngy and Guyon we have
achieved this goal in the theoretical setting constructed in the preliminary
chapters.

Through this exercise we have demonstrated the appeal of path-dependent
volatility models. However, despite the steady progress of the theory, much
must still be done to develop the application of the models before they can
be considered practical.

By demonstrating the particle method and a finite difference scheme for
a particular case, we have demonstrated some of the challenges faced when
attempting to design an efficient numerical scheme in the path-dependent
volatility framework. We also suggested some possible considerations for
making such schemes more efficient.

Further areas of study in this regard may include a more rigorous method
for calculating leverage functions, and setting out clear methodology for cal-
ibrating such models to the market. A comprehensive study of the stability
of numerical methods for fitted models will aid in the quest of finding a more
appropriate scheme for these models.

The study of path-dependent volatility models is still in its infancy but
the potential of this class of models is essentially limitless.
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Appendix 1: Matlab Code -Particle Method

1 e p s i l o n =5;
2 eta =0.2 ;
3 sigmax =5;
4 T=2;
5 K=90;
6 lambda=1;
7 r =0.1 ;
8 n=input ( ’ number o f t imes teps=’ ) ;
9 N=input ( ’ number o f s imu la t i on s=’ ) ;

10 t=l i n s p a c e ( 0 . 0 1 ,T, n) ;
11 dt=t (2 )−t (1 ) ;
12 vareps =0.005;
13 D=ze ro s (N, n) ;
14 Z=ze ro s (N, n) ;
15 Z ( : , 1 )=log (50) ;
16 D( : , 1 ) =0;
17 nA=ze ro s (N, n) ;
18 DA=ze ro s (N, n) ;
19 c n t i t =0;
20 f o r i =1:n−1;
21

22 f o r j =1:N;
23 f o r k=1:N;
24 i f Z( j , i )−vareps<=Z(k , i ) && Z(k , i )<=Z( j , i )

+vareps
25 nA( j , i )=nA( j , i ) +1;
26 DA( j , i )=DA( j , i )+vo l ( eta , ep s i l on , sigmax

,D(k , i ) ) ˆ2 ;
27 e l s e nA( j , i )=nA( j , i ) ;
28 DA( j , i )=DA( j , i ) ;
29 end
30 end
31 Z( j , i +1)=Z( j , i )+vo l ( eta , ep s i l on , sigmax ,D( j , i ) )

∗(LV( t ( i ) ,Z( j , i ) ) ∗normrnd (0 , 1 ) ∗ s q r t ( dt ) ) /
s q r t ( ( ( 1 /nA( j , i ) ) ∗DA( j , i ) ) ) −(1/2) ∗( vo l ( eta ,
ep s i l on , sigmax ,D( j , i ) ) ∗LV( t ( i ) ,Z( j , i ) ) ) ˆ2∗
dt /((1/nA( j , i ) ) ∗DA( j , i ) ) ;

32 D( j , i +1)=D( j , i )+Z( j , i +1)−Z( j , i )−lambda∗D( j , i ) ∗
dt ;

33 end
34 c n t i t=c n t i t +1;
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35 di sp ( c n t i t )
36 end
37 S=ze ro s (N, n) ;
38 f o r p=1:N
39 S(p , : )=exp (Z(p , : )+r ∗ t ) ;
40 end
41 f o r c =1:30
42 p lo t ( t , S ( c , : ) )
43 hold on
44 end
45 p lo t ( t , Z ( 1 : 2 0 , : ) )
46 %%
47 Z1 = 0 : 0 . 1 : 1 5 0 ;
48 t1 = 0 . 0 1 : 0 . 0 0 1 : 2 ;
49 f o r k1=1: l ength (Z1)
50 f o r k2=1: l ength ( t1 ) ;
51 LV1( t1 ( k2 ) ,Z1 ( k1 ) )=LV( t1 ( k2 ) ,Z1 ( k1 ) ) ;
52 end
53 end

Appendix 2: Matlab Code - Non-leveraged finite
difference

1 L=80;%number o f po in t s D a x i s
2 M=150;%number o f po in t s S a x i s
3 N=100;%number o f time s t ep s
4 T=1; %maturity
5 t0 =0;%i n i t i a l time
6 d0=−10; %min D value
7 dm=10; %max D v a l i u e
8 s0 =0; % min S
9 sm=150;%max S

10 VM=2; %max v o l a t i l i t y
11 eta =0.2 ; %vo l parameter
12 eps =5;%vo l parameter
13 t=l i n s p a c e ( t0 ,T,N) ;
14 D=l i n s p a c e ( d0 ,dm, L) ; %D space
15 S=l i n s p a c e ( s0 , sm ,M) ; %S space
16 d=(dm−d0 ) /(L) ; %D step s i z e
17 h=(sm−s0 ) /(M) ; %dS
18 k=(T−t0 ) /(N) ;
19 r =0.1 ;%r i s k f r e e
20 lam=1;%model par
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21 X=120; %s t r i k e
22 s i g=min ( eta ∗ s q r t (1+eps ∗D. ˆ 2 ) ,VM) ;%vo l func t i on
23 f=ze ro s (L∗M, 2 ) ;
24 %%
25 %i n i t i a l c ond i t i on
26 f o r p=1:M
27 f ( ( p−1)∗L+1:p∗L , 1 )=max(0 ,X−S(p) ) ;
28 end
29

30 %c o e f f i c i e n t matr i ce s
31 f o r i =1:M;
32 f o r j =1:L ;
33 A11( i , j )=−(S( i ) ∗ s i g ( j ) ˆ2) /(8∗h∗d) ;
34 B11( i , j )=−(r ∗S( i ) ) /(4∗h)−(S( i ) ˆ2∗ s i g ( j ) ˆ2) /(4∗hˆ2) ;
35 C11( i , j )=(lam∗D( j ) ) /(4∗d)−s i g ( j ) ˆ2/(4∗dˆ2)+( s i g ( j ) ˆ2)

/8∗d ;
36 D11( i , j )=1/k+((S( i ) ˆ2) ∗ s i g ( j ) ˆ2) /(2∗hˆ2)+s i g ( j ) ˆ2/(2∗d

ˆ2) ;
37 K11( i , j )=−(r ∗S( i ) ) /(4∗h)−((VMˆ2) ∗S( i ) ˆ2) /(4∗hˆ2) ;
38 L11 ( i , j )=1/k+((VMˆ2) ∗S( i ) ˆ2) /(2∗hˆ2) ;
39 M11( i , j )=(r ∗S( i ) ) /(4∗h)−((VMˆ2) ∗S( i ) ˆ2) /(4∗hˆ2) ;
40 end
41 end
42

43

44 %matrix co n s t r uc t i o n
45 %LHS
46 LHS=ze ro s (M∗L ,M∗L) ;
47 %low S BC
48 LowS=eye (L ,M∗L) ;
49 LHS( 1 : L , 1 :M∗L)=LowS ;
50 c l e a r v a r s LowS
51 %low D BC
52 LowD=ze ro s (M∗L ,M∗L) ;
53 f o r c1 =1:M−2;
54 LowD( c1∗L+1 ,( c1−1)∗L+1)=M11( c1 +1 ,1) ;
55 LowD( c1∗L+1, c1∗L+1)=L11 ( c1 +1 ,1) ;
56 LowD( c1∗L+1 ,( c1+1)∗L+1)=K11( c1 +1 ,1) ;
57 end
58 LHS=LHS+LowD;
59 c l e a r v a r s LowD
60 %High D BC
61 HighD=ze ro s (M∗L ,M∗L) ;
62 f o r c2 =1:M−2;
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63 HighD ( ( c2+1)∗L , c2∗L)=M11( c2+1,L) ;
64 HighD ( ( c2+1)∗L , ( c2+1)∗L)=L11 ( c2+1,L) ;
65 HighD ( ( c2+1)∗L , ( c2+2)∗L)=K11( c2+1,L) ;
66 end
67 LHS=LHS+HighD ;
68 c l e a r v a r s HighD
69 %High S BC
70 highS=eye (L∗M, L∗M) ;
71 LHS(M∗L−(L−1) :M∗L ,M∗L−(L−1) :M∗L)=highS (M∗L−(L−1) :M∗L ,

M∗L−(L−1) :M∗L) ;
72 c l e a r v a r s highS
73

74 %i n t e r i o r matrix
75

76 Int=ze ro s (M∗L ,M∗L) ;
77 f o r c5 =1:M−2; %block
78 f o r c6 =1:L−2; %row
79 Int (L∗ c5+c6 +1 ,( c5−1)∗L+c6 : ( c5−1)∗L+c6+2)=[A11

( c5+1, c6+1) (B11( c5+1, c6+1)+(r ∗S( c5+1) )
/(2∗h) ) −A11( c5+1, c6+1) ] ;

80 Int (L∗ c5+c6+1, c5∗L+c6 : c5∗L+c6+2)=[(−C11( c5+1,
c6+1)−( s i g ( c6+1)ˆ2) /(2∗dˆ2) ) D11( c5+1, c6
+1) C11( c5+1, c6+1) ] ;

81 Int (L∗ c5+c6 +1 ,( c5+1)∗L+c6 : ( c5+1)∗L+c6+2)=[−
A11( c5+1, c6+1) B11( c5+1, c6+1) A11( c5+1, c6
+1) ] ;

82 end
83 end
84 %Fina l Le f t hand matrix
85 LHS=LHS+Int ;
86 c l e a r v a r s Int
87

88 %RHS
89 RHS=ze ro s (M∗L ,M∗L) ;
90 %low S BC
91 rlowS=eye (L ,M∗L) ∗exp(−r ∗k ) ;
92 RHS( 1 : L , 1 :M∗L)=rlowS ;
93 c l e a r v a r s rlowS
94 %low D BC
95 rLowD=ze ro s (M∗L ,M∗L) ;
96 f o r c1 =1:M−2;
97 rLowD( c1∗L+1 ,( c1−1)∗L+1)=−M11( c1 +1 ,1) ;
98 rLowD( c1∗L+1, c1∗L+1)=−L11 ( c1 +1 ,1)+2/k−r ;
99 rLowD( c1∗L+1 ,( c1+1)∗L+1)=−K11( c1 +1 ,1) ;
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100 end
101 RHS=RHS+rLowD ;
102 c l e a r v a r s rLowD
103 %High D BC
104 rHighD=ze ro s (M∗L ,M∗L) ;
105 f o r c2 =1:M−2;
106 rHighD ( ( c2+1)∗L , c2∗L)=−M11( c2+1,L) ;
107 rHighD ( ( c2+1)∗L , ( c2+1)∗L)=−L11 ( c2+1,L)+2/k−r ;
108 rHighD ( ( c2+1)∗L , ( c2+2)∗L)=−K11( c2+1,L) ;
109 end
110 RHS=RHS+rHighD ;
111 c l e a r v a r s rHighD
112 %High S BC
113 rhighS=eye (L∗M, L∗M) ;
114 RHS(M∗L−(L−1) :M∗L ,M∗L−(L−1) :M∗L)=rhighS (M∗L−(L−1) :M∗L

,M∗L−(L−1) :M∗L) ;
115 c l e a r v a r s rhighS
116

117 %i n t e r i o r matrix
118

119 r I n t=ze ro s (M∗L ,M∗L) ;
120 f o r c5 =1:M−2; %block
121 f o r c6 =1:L−2; %row
122 r I n t (L∗ c5+c6 +1 ,( c5−1)∗L+c6 : ( c5−1)∗L+c6+2)=[−

A11( c5+1, c6+1) −(B11( c5+1, c6+1)+(r ∗S( c5+1)
) /(2∗h) ) A11( c5+1, c6+1) ] ;

123 r I n t (L∗ c5+c6+1, c5∗L+c6 : c5∗L+c6+2)=[−(−C11( c5
+1, c6+1)−( s i g ( c6+1)ˆ2) /(2∗dˆ2) ) (−D11( c5
+1, c6+1)+2/k−r ) −C11( c5+1, c6+1) ] ;

124 r I n t (L∗ c5+c6 +1 ,( c5+1)∗L+c6 : ( c5+1)∗L+c6+2)=[
A11( c5+1, c6+1) −B11( c5+1, c6+1) −A11( c5+1,
c6+1) ] ;

125 end
126 end
127

128 %Fina l Right hand matrix
129 c l e a r v a r s A11 B11 C11 D11 E11 K11 L11 M11
130 RHS=RHS+r I n t ;
131 c l e a r v a r s r I n t
132 %%
133 %matrix equat ion
134 check =0;
135 f o r n=1:N−1
136 f ( : , 2 )=l i n s o l v e (LHS,RHS∗ f ( : , 1 ) ) ;
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137 f ( : , 1 )=f ( : , 2 ) ;
138 check=check +1;
139 di sp ( check )
140 end
141 %f i n a l va lue as matrix
142 f 1=ze ro s (M, L) ;
143

144 f o r p1=1:M
145 f 1 ( p1 , : )=f ( ( p1−1)∗L+1:p1∗L , 2 ) ;
146 end
147 %mesh (D, S , f 1 ) , a x i s ([−20 20 0 200 −50 1 5 0 ] ) , drawnow
148 %end
149 %f i g u r e (1 )
150 mesh (D, S , f 1 )

Appendix 3: Matlab Code - Leveraged finite differ-
ence

1 L=80;%number o f po in t s D a x i s
2 M=150;%number o f po in t s S a x i s
3 N=100;%number o f time s t ep s
4 T=1; %maturity
5 t0 =0.001;%i n i t i a l time
6 d0=−10; %min D value
7 dm=10; %max D v a l i u e
8 s0 =0; % min S
9 sm=150;%max S

10 eta =0.2 ; %vo l parameter
11 eps =5;%vo l parameter
12 t=l i n s p a c e ( t0 ,T,N) ;
13 D=l i n s p a c e ( d0 ,dm, L) ; %D space
14 S=l i n s p a c e ( s0 , sm ,M) ; %S space
15 d=(dm−d0 ) /(L) ; %D step s i z e
16 h=(sm−s0 ) /(M) ; %dS
17 k=(T−t0 ) /(N) ;
18 r =0.1 ;%r i s k f r e e
19 lam=1;%model par
20 X=90; %s t r i k e
21 VM=LV( t (N) , exp(−r ∗ t (N) ) ∗S(M) ) ; %max v o l a t i l i t y
22 s i g=min ( eta ∗ s q r t (1+eps ∗D. ˆ 2 ) ,VM) ;%vo l func t i on
23 f=ze ro s (L∗M,N) ;
24 %%
25 %i n i t i a l c ond i t i on
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26 f o r p=1:M
27 f ( ( p−1)∗L+1:p∗L , 1 )=max(0 ,X−S(p) ) ;
28 end
29

30 count =0;
31 f o r n=1:N−1
32 %c o e f f i c i e n t matr i ce s
33 f o r i =1:M;
34 f o r j =1:L ;
35 A11( i , j )=−(S( i ) ∗LV(T−t (n) , exp(−r ∗ t (n) ) ∗S( i ) ) ˆ2) /(8∗h∗d

) ;
36 B11( i , j )=−(r ∗S( i ) ) /(4∗h)−(S( i ) ˆ2∗LV(T−t (n) , exp(−r ∗ t (n)

) ∗S( i ) ) ˆ2) /(4∗hˆ2) ;
37 C11( i , j )=(lam∗D( j ) ) /(4∗d)−LV(T−t (n) , exp(−r ∗ t (n) ) ∗S( i ) )

ˆ2/(4∗dˆ2)+(LV(T−t (n) , exp(−r ∗ t (n) ) ∗S( i ) ) ˆ2) /8∗d ;
38 D11( i , j )=1/k+((S( i ) ˆ2) ∗LV(T−t (n) , exp(−r ∗ t (n) ) ∗S( i ) ) ˆ2)

/(2∗hˆ2)+LV(T−t (n) , exp(−r ∗ t (n) ) ∗S( i ) ) ˆ2/(2∗dˆ2) ;
39 K11( i , j )=−(r ∗S( i ) ) /(4∗h)−((VMˆ2) ∗S( i ) ˆ2) /(4∗hˆ2) ;
40 L11 ( i , j )=1/k+((VMˆ2) ∗S( i ) ˆ2) /(2∗hˆ2) ;
41 M11( i , j )=(r ∗S( i ) ) /(4∗h)−((VMˆ2) ∗S( i ) ˆ2) /(4∗hˆ2) ;
42 end
43 end
44

45

46 %matrix co n s t r uc t i o n
47 %LHS
48 LHS=ze ro s (M∗L ,M∗L) ;
49 %low S BC
50 LowS=eye (L ,M∗L) ;
51 LHS( 1 : L , 1 :M∗L)=LowS ;
52 c l e a r v a r s LowS
53 %low D BC
54 LowD=ze ro s (M∗L ,M∗L) ;
55 f o r c1 =1:M−2;
56 LowD( c1∗L+1 ,( c1−1)∗L+1)=M11( c1 +1 ,1) ;
57 LowD( c1∗L+1, c1∗L+1)=L11 ( c1 +1 ,1) ;
58 LowD( c1∗L+1 ,( c1+1)∗L+1)=K11( c1 +1 ,1) ;
59 end
60 LHS=LHS+LowD;
61 c l e a r v a r s LowD
62 %High D BC
63 HighD=ze ro s (M∗L ,M∗L) ;
64 f o r c2 =1:M−2;
65 HighD ( ( c2+1)∗L , c2∗L)=M11( c2+1,L) ;
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66 HighD ( ( c2+1)∗L , ( c2+1)∗L)=L11 ( c2+1,L) ;
67 HighD ( ( c2+1)∗L , ( c2+2)∗L)=K11( c2+1,L) ;
68 end
69 LHS=LHS+HighD ;
70 c l e a r v a r s HighD
71 %High S BC
72 highS=eye (L∗M, L∗M) ;
73 LHS(M∗L−(L−1) :M∗L ,M∗L−(L−1) :M∗L)=highS (M∗L−(L−1) :M∗L ,

M∗L−(L−1) :M∗L) ;
74 c l e a r v a r s highS
75

76 %i n t e r i o r matrix
77

78 Int=ze ro s (M∗L ,M∗L) ;
79 f o r c5 =1:M−2; %block
80 f o r c6 =1:L−2; %row
81 Int (L∗ c5+c6 +1 ,( c5−1)∗L+c6 : ( c5−1)∗L+c6+2)=[A11

( c5+1, c6+1) (B11( c5+1, c6+1)+(r ∗S( c5+1) )
/(2∗h) ) −A11( c5+1, c6+1) ] ;

82 Int (L∗ c5+c6+1, c5∗L+c6 : c5∗L+c6+2)=[(−C11( c5+1,
c6+1)−( s i g ( c6+1)ˆ2) /(2∗dˆ2) ) D11( c5+1, c6
+1) C11( c5+1, c6+1) ] ;

83 Int (L∗ c5+c6 +1 ,( c5+1)∗L+c6 : ( c5+1)∗L+c6+2)=[−
A11( c5+1, c6+1) B11( c5+1, c6+1) A11( c5+1, c6
+1) ] ;

84 end
85 end
86 %Fina l Le f t hand matrix
87 LHS=LHS+Int ;
88 c l e a r v a r s Int
89

90 %RHS
91 RHS=ze ro s (M∗L ,M∗L) ;
92 %low S BC
93 rlowS=eye (L ,M∗L) ∗exp(−r ∗k ) ;
94 RHS( 1 : L , 1 :M∗L)=rlowS ;
95 c l e a r v a r s rlowS
96 %low D BC
97 rLowD=ze ro s (M∗L ,M∗L) ;
98 f o r c1 =1:M−2;
99 rLowD( c1∗L+1 ,( c1−1)∗L+1)=−M11( c1 +1 ,1) ;

100 rLowD( c1∗L+1, c1∗L+1)=−L11 ( c1 +1 ,1)+2/k−r ;
101 rLowD( c1∗L+1 ,( c1+1)∗L+1)=−K11( c1 +1 ,1) ;
102 end
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103 RHS=RHS+rLowD ;
104 c l e a r v a r s rLowD
105 %High D BC
106 rHighD=ze ro s (M∗L ,M∗L) ;
107 f o r c2 =1:M−2;
108 rHighD ( ( c2+1)∗L , c2∗L)=−M11( c2+1,L) ;
109 rHighD ( ( c2+1)∗L , ( c2+1)∗L)=−L11 ( c2+1,L)+2/k−r ;
110 rHighD ( ( c2+1)∗L , ( c2+2)∗L)=−K11( c2+1,L) ;
111 end
112 RHS=RHS+rHighD ;
113 c l e a r v a r s rHighD
114 %High S BC
115 rhighS=eye (L∗M, L∗M) ;
116 RHS(M∗L−(L−1) :M∗L ,M∗L−(L−1) :M∗L)=rhighS (M∗L−(L−1) :M∗L

,M∗L−(L−1) :M∗L) ;
117 c l e a r v a r s rhighS
118

119 %i n t e r i o r matrix
120

121 r I n t=ze ro s (M∗L ,M∗L) ;
122 f o r c5 =1:M−2; %block
123 f o r c6 =1:L−2; %row
124 r I n t (L∗ c5+c6 +1 ,( c5−1)∗L+c6 : ( c5−1)∗L+c6+2)=[−

A11( c5+1, c6+1) −(B11( c5+1, c6+1)+(r ∗S( c5+1)
) /(2∗h) ) A11( c5+1, c6+1) ] ;

125 r I n t (L∗ c5+c6+1, c5∗L+c6 : c5∗L+c6+2)=[−(−C11( c5
+1, c6+1)−( s i g ( c6+1)ˆ2) /(2∗dˆ2) ) (−D11( c5
+1, c6+1)+2/k−r ) −C11( c5+1, c6+1) ] ;

126 r I n t (L∗ c5+c6 +1 ,( c5+1)∗L+c6 : ( c5+1)∗L+c6+2)=[
A11( c5+1, c6+1) −B11( c5+1, c6+1) −A11( c5+1,
c6+1) ] ;

127 end
128 end
129

130 %Fina l Right hand matrix
131 %c l e a r v a r s A11 B11 C11 D11 E11 K11 L11 M11
132 RHS=RHS+r I n t ;
133 c l e a r v a r s r I n t
134 %%
135 %matrix equat ion
136

137 f ( : , n+1)=l i n s o l v e (LHS,RHS∗ f ( : , n ) ) ;
138 count=count +1;
139 di sp ( count )
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140

141 end
142 %%
143 %f i n a l va lue as matrix
144 f 1=ze ro s (M, L) ;
145

146 f o r p1=1:M
147 f 1 ( p1 , : )=f ( ( p1−1)∗L+1:p1∗L , n+1) ;
148 end
149 mesh (D, S , f 1 ) , a x i s ([−10 10 0 150 −50 10000 ] )
150

151 %mesh (D, S , f 1 ) , a x i s ([−20 20 0 200 −50 1 5 0 ] ) , drawnow
152 %end
153 %f i g u r e (1 )
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