=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Dependence structures in multidimensional arrays
by

Kwok-Ho Lau

Submitted in partial fulfillment of the requirements for the degree

Magister Scientiae

In the Department of Statistics
In the Faculty of Natural and Agricultural Sciences
University of Pretoria

July 2016

P

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

YUNIBESITHI YA PRETORIA
4

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

I, Kwok-Ho Lau, declare that this mini-dissertation, which I hereby submit for the degree Magister
Scientiae in Mathematical Statistics at the University of Pretoria, is my own work and has not previously

been submitted by me for a degree at this or any other tertiary institution.

Signature:

Date:

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Summary

In the process of data acquisition the information obtained are more than often contaminated by noise.
To purify the data smoothers are designed to remove the noise. The LU LU operators are such smoothers,
more specifically, they are designed to remove impulsive noise. Carl Rohwer and his collaborators devel-
oped the LULU operators in one dimension in the last four decades and, more recently, the operators
have been extended to higher dimensions by Roumen Anguelov and Inger Fabris-Rotelli [2]. The prop-
erties in shape preservation and total variation preservation are extended from one-dimensional LU LU
operators. This allows for smoothing with the operators in images. However, because their definition
uses a morphological concept of a connection, the question of how complex the connectivity should be
therefore arises. Using the results from correlation analysis, we explore the extent at which the pixels of
an image depend on its neighbours and establish the complexity of the connectivity for LU LU operators
in two-dimensions. In addition, as a measure of how effective the LULU smoothers remove noise, we

examine the noise extractions by the operators for images.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Contents

1 Introduction

2 Smoothers

2.1 Imtroduction L
2.2 Operators on SEQUENCES . . .+« v v v v vt e e e e e e e e e e e
2.3 LULU operators in one dimension vttt
2.4 Compositions of L, and U, operators
2.5 Variation reduction and shape preservation L.
2.6 The Discrete Pulse Transform e
2.6.1 The Roadmaker’s Algorithm
2.7 LULU operators and DPT for multidimensional arrays
2.7.1 Imtricasy of N () . .« o o o
2.7.2 LULU operators on Z2 v vt it et e
2.7.3 The Discrete Pulse Transform
2.8 Conclusion

3 An empirical study of dependence structures in images

3.1 Imtroduction
3.2 Testing dependence of neighbouring pixels L.
3.3 Applicationo e
3.4 Local dependence in the presence of noise

3.4.1 Correlation analysis of noisy videos Lo
3.5 Conclusion o

4 Noise removal in images

4.1 Introduction e e e
4.2 Analysis of noisy images e e e
4.3 Application L
4.3.1 Total variation plots L
4.3.2 Smoothed vs original imageso oL
4.3.3 Removed vs original noise oo

© University of Pretoria

o O o &

11
15
17
18
19
20
28
29
31

32
32
33
35
38
39
44

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CONTENTS 4
4.3.4 PP plots for extracted noise samples with minimum SSE 80

4.3.5 Final observations L e 93

4.4 Conclusion L e 94

5 Conclusion 107
Appendix i
Intricasy of MV, () [SAS| . . . o o o o i
An empirical study of image pixels [MATLAB] xvii
Noise removal in images [MATLAB] XXX

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Chapter 1

Introduction

In the process of data acquisition the information obtained are more than often contaminated by noise.
To purify the data smoothers are designed to remove the noise. The LU LU operators are such smoothers,
more specifically, they are designed to remove impulsive noise. Carl Rohwer and his collaborators devel-
oped the LULU operators in one dimension in the last four decades and, more recently, the operators
have been extended to higher dimensions by Roumen Anguelov and Inger Fabris-Rotelli [2]. The prop-
erties in shape preservation and total variation preservation are extended from one-dimensional LU LU
operators. This allows for smoothing with the operators in images. However, because their definition
uses a morphological concept of a connection, the question of how complex the connectivity should be
therefore arises. Using the results from correlation analysis, we explore the extent at which the pixels of
an image depend on its neighbours and establish the complexity of the connectivity for LU LU operators
in two-dimensions. In addition, as a measure of how effective the LULU smoothers remove noise, we
examine the noise extractions by the operators for images.

We first lay the foundation of LULU operators in Chapter 2. Therein we also discuss the properties
and the Discrete Pulse Transform of the operators in one- and two- dimensions. In Chapter 3 we study the
dependence of image pixels with respect to its neighbours by use of a dependence structure. In Chapter

4 we investigate the effectiveness of the LU LU operators in removing noise.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Chapter 2

Smoothers

2.1 Introduction

In data analysis smoothing is required to capture patterns inherent in the dataset or to purify the noisy
data so that inferences regarding the data are not polluted by unwanted variation. Linear filters are
traditionally used for such purposes, however, their efficiency is apparent only when the data contains
well-behaved noise - such as noise that have a Gaussian distribution.

Alternatively non-linear filters have shown to be more robust than linear filters. For example, Tukey
[20] proposed the median filter which selects the central order statistic in a running window of observations.
Rohwer [28] bases the LULU operators on the extreme order statistics.

In this chapter we cover the LU LU operators in one and two dimensions. More specifically, Section
2.2 covers the foundation of smoothers, Section 2.3 introduces the LULU operators in one dimension,
of which their compositions and properties are discussed in Sections 2.4 and 2.5 respectively, and the
one-dimensional Discrete Pulse Transform in Section 2.6. The rest of the chapter covers LU LU operators

in higher dimensions in Section 2.7.

2.2 Operators on sequences

To study sequences it is convenient to use the vector space framework. Let X be the set of bi-infinite

o0

sequences of real numbers x = (z;),_ _ .

Some criteria for the designing and comparing a smoother P functioning as a separator of "signal"

from a sequence where it’s contaminated by "noise" are [28]:

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 7

T

<Y NX

Pz (- Pz
i) e

SN SN

P2y P(I — P)z
(I — P)Pz (I—P)x

Figure 2.1: Two-stage separator cascade (graphic from [28]).

Effectiveness For each z, Pz should be signal and (I — P)x noise.
Consistency Signals should be preserved and noise mapped onto 0.
Stability The smoother should be robust to small input perturbations.

Efficiency The computations should not require excessive running time.

We thus have the following smoother axioms [28]:

Smoother Axioms An operator P on X is a smoother if:
1. PE = EP, where F is the shift operator.

2. P(z+c) = P(z)+c, for each x,c € X such that cis a constant sequence.
3. P(ax)=aP(z), for each x € X and scalar o > 0.

The consistency criterion then describes the following separator axioms [28]:

Separator Axioms A smoother P is a separator if it also satisfies the additional axioms:
4, P?2=P (Idempotence).

5. (I-P)>=1-P (Co-idempotence).

An argument for the axioms above can be presented with a simple analogy. Suppose the operator P
separates milk z into two components: Pz - the curd, and (I — P)z - the whey. The performance of the
separator P could be measured by passing Pz into P again or to pass (I — P)x through P and compare

them to Pz and (I — P)x. This is illustrated in Figure 2.1.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 8

Suppose the curd is the signal and the whey the noise. If P?2 = Pz, then P is considered to be
a consistent signal-extractor. On the other hand, if (I — P)?z = (I — P)x, the separator is considered

noise-consistent. In the above cases, P is called idempotent and co-idempotent [23] respectively.

2.3 LULU operators in one dimension

We introduce the LU LU operators in one dimension, developed by Rohwer [28, 33| and his collaborators
Wild and Laurie. The LULU operators are first presented in [31], their properties in [5, 6, 7, 23, 26, 25,
24, 27, 28, 33], and [38], the comparison with the median filter in [22, 32], the Discrete Pulse Transform in
[8, 16, 17] and [30], the LULU distributions and statistical properties in [4, 14|, and [29], and the LULU
operators on a continuous domain in [1, 3] and [18]. Unless stated otherwise, the definitions and results

provided in the rest of Section 2.3 are obtained from [28].

n n
Definition 2.1. Let the operators \/ and A, for n > 1, that map the sequence = onto y be defined by

n

n
\/ : Y= \/CU = (yi = max{Ti, ..., Titn—1, Titn}) »

n

n
/\ : y= /\x = (y; = min{@;_n, Timng1, -y Ti}) -
The LULU operators are then compositions of these min and max selectors; defined as
n n n n
L=\ U= AV

It can be seen that the LU LU operators are defined in such a way to temper the initial use of extreme
selectors \/ and A by the immediate application of its opposite. That is the L, operator selects the
maximum of the set of minimums within a sequence whereas the U,, operator selects the minimum of the
set of maximums.

Note further that the original sequence x is always contained within the interval [L,x, U,z]|, and, for

any n > 0, it is true that L, 11 < L,, and U,, < U,41. Thus the following relationship holds:
Ln+1 S Ln S 1 S Un S Un+1;

where T is the identity operator. In relation to the median operator M,, = median{a;_,, ..., Zs, ..., Titn |,

we have that the following inequality holds true:
UpnLn < My, < LyU,.

Definition 2.2. Let N be the negative operator on any sequence, then an operator B is the dual of A if

AN = NB.

The L, and U, operators are duals of each other. Furthermore, any composition of L,, and U, is also

dual to the operator by interchanging L,, and U, for each n.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 9

Definition 2.3.

1. A subsequence (T;, Zit1, .., Titn, Titn+1) 1S an upward n-pulse if
min{@; 11, Tit2, ooy Titn } > max{T;, Titnt1}-

2. A subsequence (;, Tit1, ...y Titn, Titnt+1) s a downward n-pulse if
MAX{Li41, Tit2y -es Titn)y < MIN{T, Tigni1}

The subsequence is a constant upward pulse (constant downward pulse) if ; = ¢ Vj = i+1,i+2, ..., i+n
for some constant c¢ in the above the definition. Note that L, removes all upwards pulses of size n or
smaller and U, removes all downward pulses of size n or smaller. Note that by ‘remove’ we imply the
sequence has been smoothed by L,U, or U,L, and the n-pulse sequence positions have been replaced
by either the value at position i or i +n + 1 - see the example that follows for the details as well as the
Roadmaker’s algorithm in Section 2.6. This then gives us the First Idempotence Theorem, since there

will be no n-pulses to remove after the application of L., and U,,:

L,L,, =L, and U,U,, = U,, for m > n.
Result 2.1. An n-pulse is removed from any constant sequence by L,,U,, and U,,L,,, if m > n.

From Result 2.1 we obtain the Second Idempotence Theorem, since reapplying the operators will have no
effect:
(L,U,)? = L,U, and (U,L,)* = U, L,.

Example 2.1. Consider the sequence x = {1,1,5,4,7,1,2}. We smooth x sequentially with U, L,, as
follows!.

Atn=1,

() =V (A«), =N\ (Vo)
—uax{(A2), (A2),,,} win{ (V) (Vo) }

= max{min{z;_1, z; }, min{z;, x;41}} = min{max{z;_1, z;}, max{z;, x;11}}

—

S

5
I

It follows that
(L1z); = max{min{0, 1}, min{1,1}} = max{0,1} =1
(L1z)y = max{min{1, 1}, min{1,5}} = max{1,1} =1
(L1); = max{min{1,5}, min{5,4}} = max{1,4} =4
(L1z), = max{min{5,4}, min{4, 7}} = max{4,4} =4

IRecall that x is a bi-infinite sequence of real numbers. Thus {1,1,5,4,7, 1,2} represents {...0,0,1,1,5,4,7,1,2,0,0, ...}

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 10

Lyiz), = max{min{4, 7}, min{7,1}} = max{4,1} =4

(L12)g = max{min{7, 1}, min{1,2}} = max{1,1} =1

L), = max{min{1, 2}, min{2,0}} = max{1,0} =1
At n =2,

i)

e (R) () ())

= max{min{x;_o, x;—1, z; }, min{x;_1, x;, Ti41 }, min{x;, Tip1, Tipa}

won-ifir)

() () ()]

= min{max{x;_2, x;—1,z; }, max{@;_1, z;, 11}, max{z;, 11, Tiyo}}

And so on. Applying L on z results in a new sequence Lz = {1,1,4,4,4,1,1}. Note that L; has removed
all upward pulses of size 1 (see Figure 2.2). Applying U; on Liz would result in Liz since there are no
downward pulses of size 1. Similarly, UsLoU; L1z = Lyx because there are no upward nor downward
pulses of size 2. A new sequence would be obtained when L3 is applied since Lz contains an upward
3-pulse: LyUsLoUyLiz = {1,1,1,1,1,1,1}.

This process is continued until the zero sequence (in this case) is obtained. Note that by the same
reasoning as above, UgLg...U1 L1z = UsL5..UyL1x = ... = UsLsUs LoUy Ly = {1,1,1,1,1,1,1}. Finally,

L~ removes the last upward 7-pulse and the zero sequence remains. This is depicted Figure 2.2.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 11
(=
5
84_ 444 444 a44
=
=
[=
=]
2 5]
14 1 B A CATREEE A ST ASAE AR SRR T 1
ooooooo
U_
0 1 2 3 4]]
n

Figure 2.2: Decomposition of a sequence x using LULU operators. Note that n = 0 is the original

sequence.

Note that in Figure 2.2, the transparent bars indicate the pulses that will be removed at the next
application of U, L, - that is, they are still part of the sequence at the n'! step. For instance, at n = 0,
we see three transparent bars at ¢ = 3,5, 7 this is because, at the next step n = 1, Uy L1 removes all pulses
of size 1. At n = 2, we see one transparent bar of width 3. This indicates that it will be removed by Us L3

at the next step.

2.4 Compositions of L, and U, operators

The successive application of L,U, and U,L, yields better smoothing results as opposed to just an
application for a single specified n. Here, we define the ‘ceiling’ and ‘flooring’ operators C, and F),
respectively. The definitions and results in this section are also obtained from [28] unless otherwise

stated.

Definition 2.4.
Cy = LUy and Cn+1 = Ln+1Un+ICna
F1 = U1L1 and Fn+1 = Un+1Ln+1Fn.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 12

Result 2.2. For each n, U, L, < F, < C, < L,U,.

Example 2.2. A sequence y = sin®(4723) with added noise from N(0,0.03%) is simulated. The original

graph line of y as well as noisy y is shown in Figure 2.3.

Figure 2.3: Series plot of y (original) in blue and noisy y in red.

The effects of L,,U,,,U,L,, F},, and C,, are shown in Figure 2.4 to 2.10 for different values of n. Notice
that, for each n, U, L, < F, < C, < L,U,, so [F,,C,] concentrates the signal interval [L,,, U,].

Furthermore, since the LU LU operators remove noise with respect to pulse length, it can be seen that
the performance of these operators deteriorates as the value of n increases. There are several reasons for
this. The simulated noise are iid Gaussian distributed, thus the only pulses believed to be noise within
the contaminated line are of length one. Already after the application of L;U; or U;Lq, the amount of
unwanted variation has been removed by these operators. The extent to which we remove noise will be

discussed in Chapter 4.

As the value of n increases, the operator removes all pulses that are of length n or less even when
these pulses are considered to be natural according to the definition of the line - this is most evident at
n = 50 in Figure 2.10 where the operators completely ignore the natural pulses occurring within the line.
We thus introduce a formal definition of variation in order to measure the amount of smoothing by the

LULU operators.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

A 4

CHAPTER 2. SMOOTHERS

727| T T T T T T T T T T
0.0 01 02 03 04 05 06 07 08 09 1.0
X
‘ ee ey BE8FM At Cn 4o LUn eee Un |

Figure 2.4: Fy, Cy, L1U;y, and Uy Ly applied to noisy signal y.
-

727\ T T T T T T T T T T
0.0 01 02 03 0.4 05 06 07 08 09 10
X
‘ +—— yori B8 Fn #—A—% Cn 4—e—¢ LUn = ULn |

Figure 2.5: Fy, Cy, LyUs, and Us Lo applied to noisy signal y.
21

0.0 01 02 03 0.4 05 0.6 07 0.8 09 1.0

‘ 8% yori 588 Fn << LUn *o¢ Uln |

Figure 2.6: F3, Cs, L3Us, and UsLs applied to noisy signal y.

© University of Pretoria

13

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 14

‘ 44— yori B=8 Fn #——s Cn s—e— LUn +—2—2 UlLn |

Figure 2.7: F5, C5, L5Us, and UsLs applied to noisy signal y.

0.0 0.1 0z 03 0.4 05 0.6 07 08 09 10

|0—0—0 yori B&8 Fn #—&—# Cn 4—<—<¢ LUn *—o@ ULn |

Figure 2.8: FIO; 010, L10U10, and UIOLIO applied to HOiSy signal Y.

0o 01 02 03 04 05 08 o7 08 o8 10

‘ 49— yori B8B83 Fn A4 Cn $——<% LUn *+o Uln |

Figure 2.9: FQ(), 020, LQ()UQ(), and UQ()LQO applied to HOiSy signal Y.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 15

I
i

0o 01 02 03 04 05 08 07 08 (k] 10

X

|o—0—0 yori BB Fn &4 Cn 4—o—¢ LUn +—e—= ULn |

Figure 2.10: F5q, Cs0, L5oUso, and UsgLsg applied to noisy signal y.

2.5 Variation reduction and shape preservation

To measure the degree of smoothing, Rohwer [28] makes use of total variation to measure the level of

continuity present within the original sequence and its LU LU derivatives.

N
Definition 2.5. The total variation of a sequence x is defined as T(z) = > |zit1 — x4
i=—N

It is clear that if = € [y, then T'(x) € I3, since

N

N
Sz — @il < Y0 (il + |wial) < 2|2

i=—N i=—N

N
where [[z]l1 = > |zil.

i=—N
The total variation has the following properties:
Result 2.3.

i. T(Ex) =T(x), where E is the shift operator.

2The |; norm [15] of a vector x = [z1, z2, ...,xn]T is defined by
%l = lw1] + |z2] + ... + |wnl,
and satisfies the following conditions:
1. |Ix|l1 = 0 only if x is the zero vector.
2. lexllx = lelllx]l1-

3. lx+yll < lixlls + iyl

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 16

i. T(z+y) <T(x)+T(y) (subadditivity).
ili. T(ax) = |o|T(z) and T'(x) = 0 only if x = 0.
From the above Result 2.3 we can see that the operator T is a semi-norm [15].
Result 2.4. T(AVz)=T(Vz)and T(\/ Ax) =T (A=) for each = € 5.

Result 2.5 below shows that the total variation for any sequence x can be separated into two parts,
namely, the total variation of the signal extracted by the operator (U, or L,) and its noise ((I — U,)
or (I — L,) respectively). Therefore, no variation is added or lost during the application of the LULU
operators or their compositions and 7'(-) thus provides a mechanism to track the information (variation)

in the sequence as it is smoothed by the LULU operators.
Result 2.5. Variation preservation

a) T(z) =T(Unx) +T((I —Uy)x).

b) T(z) =T(Lnz)+T((I — Ly)x).

c) T(x) =T(LyUpz) + T((I — L,Uy,)x).

d) T(x) =T(UpLpz) +T((I — UpLyp)x).

Example 2.3. Continuing from Example 2.1 the total variation for the sequence z = {1,1,5,4,7,1,2}
is calculated as T'(x) = 18. If we find the total variation for each new sequence obtained by F,, =

U,L,U,_1L,_1...Uy L, for different values of n in Table 2.1. We can see that total variation is preserved.

n 0| 1,2 [3,46 |7

T(F,x) 18| 8 2 0

T[(I — F,)x] 18 10 16 | 18
T(F,z)/T(x) 1 | 04444 | 0.1111 | 0
T[(I - F,)z]/T(z) | 1 | 0.5556 | 0.8889 | 1

Table 2.1: Preservation of total variation in sequence x

Example 2.4. From Example 2.2, we obtain the variation for each F,,, (I — F,),C,, (I — C,) on z for
n=1,2,...,20 and plot them together. Figure 2.11 depicts the results. It can be noted that beyond n = 3
the variation tends slower to 0. As noted before, the added noise are iid Gaussian, thus the expected pulse
length is 1 at all points of the line (see Figure 2.3). Even so, it is not unlikely that these noise should

appear consecutively to create pseudo -upward or -downward pulses of length longer than 1. Hence the

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 17

rate of total variation decreases fast for small n. However, because is it unlikely that long pulses exist on
the line in the presence of iid Gaussian noise, we have that the change in total variation is less obvious

for larger values of n.

1.0

e ——

0.8 f//

0.6

Variation

0.4+

0.2 4

0.0

T(F_n(x}} ——— T{{I-F_n(x}) —-— T(C_n(x}} — — T{{I-C_n(x)}}]

Figure 2.11: Graphical depiction of total variation in F,, and C,,.

2.6 The Discrete Pulse Transform

o t t
i—_oo ONtO a vector

The Discrete Pulse Transform (DPT) [8, 17, 30] is a mapping of a sequence x = (z;)

of sequences r(") = D, (z), at different ‘resolution levels’, such that
DPT(z) = [D1(x), D2(), ..., Dn(z), Do(z)],

where Dy(z) = Cyx or Fyx and D, (x) = (I — C,)x or D, (z) = (I — F,)x with N > 0.

There are two equivalent natural primary choices for such a decomposition procedure, based on the
smoothers C,,, or F,,. Considering the first choice, the decomposition proceeds recursively as follows: the
sequence x is initially divided by C; into a ‘smoother’ sequence Ciz and the highest resolution sequence
(I = C1)x = Dy1(x) = r(1). The smoother part Cyx is then separated by Cs to yield the second ‘resolution
component’ (2 = D, () = (I — C2)Chx and the smoother part CyCiz. This is continued until after the
N'*h separation only a constant sequence Dy(x) remains. A similar method exists for the decomposition

of a sequence = by the flooring operator Fi,.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 18

Let ¢, be the sequences each containing a removed pulse from z of size s at level n, then any sequence
x can be written as the sum of all its pulses removed by LU LU operators, providing a decomposition of

the sequence z,
N Yn

T = Zqum (2.1)

n=1s=1

where 7, is the number of pulses of size n. This decomposition obtained via the DPT provides a breakdown

of a sequence into scales n = 1,2, ..., N, thus a multiscale representation.

2.6.1 The Roadmaker’s Algorithm

The Roadmaker’s algorithm [16, 17] is an alternative algorithm to decompose a sequence x into constant
pulses as the direct method (i.e. using the theoretical definition as illustrated in Example 2.1) described
above is computationally intensive as n becomes large. Define the features n-bump as a constant upward
pulse of size n and an n-pit as a constant downward pulse of size n. Then the Roadmaker’s algorithm

sequentially removes all n-bumps and n-pits for increasing values of n:

1. Suppose z is a constant upward n-pulse, then we define B,, to level x by setting x equal to the

largest of its neighbours.

2. Suppose x is a constant downward n-pulse, then we define P,, to fill « by setting = equal to the

smallest of its neighbours.

Whenever we extract from x, we also store the pieces that were subtracted or added. If x is a sequence
of length N, then the following operations sequentially decompose x:

B Level all 1-bumps.

P, Fill all 1-pits.

By Level all 2-bumps.

P, Fill all 2-pits.

Bs Level all N-bumps.
P; Fill all N-pits.

The total sum of the pieces obtained from the extractions then results in the original sequence, namely
the DPT decomposition as in equation 2.1.

Note that the application of the Roadmaker’s algorithm is directly equivalent to applying DPT to any
sequence x. However, because application of the DPT directly is computionally taxing, the Roadmakers
algorithm is preferred. In particular, the Roadmaker’s algorithm has O(n) complexity. Note that B, is
equivalent to L,, and P, to U,.

Example 2.5. Consider the same sequence x = {1,1,5,4,7,1,2} in Example 2.1 and 2.3.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 19

For n = 1, the subsequences at i = 1,2 are {0,1,1} and {1,1,5} do not form bumps of size 1 - so
By ignores them. However, at ¢ = 3, {1,5,4} is a bumps since 5 exceeds both 1 and 4, thus B; brings 5
to the maximum of its neighbours by subtracting 1. The same arguments holds for ¢ = 4,5,6, and 7, in
particular, {4,7,1} and {1,2,0} are bumps and B; subtracts 3 and 1 respectively to level them out. The
resultant sequence after applying By is then {1,1,4,4,4,1,1} and, since it does not contain any pits, we
store the extractions in a new sequence as {0,0,1,0,3,0,1}.

The decompositions at different values for n are given in Table 2.2 below:

n Extractions
1 0|(0l1]0]3]0]1
2 0j0j0j0]O|O0]O
3 0]0[3[3]3[0]0
4 0j0j0j0]0OfO0]O
5 0j]0j0]0]O|O0]O
6 0j]0]0]0]O|0O]O
7 11117111
sum || 1 | 1|5 |4 | 7|12

Table 2.2: The DPT decomposition of x into constant pulses using the Roadmaker’s algorithm.

2.7 LULU operators and DPT for multidimensional arrays

The LULU operators have been extended from one dimension to multidimensions in [2]. Their extension
preserves all essential properties such as consistent separation, total variation and shape preservation (see
[28]). However, since Z? is only partially ordered®, the concept of connectivity is used to assist in the
definition of LU LU operators for multidimensional arrays. The morphological concept of a set connection

[35] is given below:

Definition 2.6. Let B be an arbitrary nonempty set. A family C of subsets of B is called a connected

class or a connection on B if:

3The definition of a partially ordered space [28] is as follows: Let A be a set and R a relation in A. R is a partial order

(partial order relation) if the following are satisfied:
1. R is reflexive: (a,a) € R, Va € A.
2. R is anti-symmetric: (a,b) € R and (b,a) € R implies a = b.

3. R is transitive: (a,b) € R and (b,c) € R imply (a,c) € R.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 20

i. pec,
ii. {z} €C forall x € B,
iii. {Cy:i€l} CC(e;Ci 0= U, Ci€C.
If C belongs to a connection C then C' is called connected.

In addition to the definition of a connected class C, we assume that the set Z¢ equipped with connection

also satisfies the following conditions [2]:

o 7% €.

e For any a € Z%, FE,(C) € C whenever C € C so that C is translation invariant, where E, is the shift

operator for a shift of a.

o If VW € C and V C W, then there exists x € W \ V such that V J{z} € C.

Definition 2.7. Given a point x € Z¢ and n € N we denote by N,, () the set of all connected sets of size

n + 1 that contain point z [2], that is

No(z)={V eC:xeV,card(V) =n+1}.

2.7.1 Intricasy of N, (z)

Some illustrations are given below for d = 2 dimensions using 4-connectivity*. Figure 2.12 shows all the
possible connected sets of size n + 1 = 1 4+ 1 containing x and Figure 2.13 shows all connections of size

n+1=2+1 containing x.

|
2] | (2] |

Figure 2.12: Ni(z) for Z2.

44-connectivity refers to the immediate adjacent elements of x € Z2.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 21
H | |
X €T T =1 1 | | |
7] 7] 7]]
| | | L1 1x] |]

Figure 2.13: Ny (z) for Z2.

As is deducible from above, if n in A, (z) increases, then so will the complexity in listing the unique
connected sets. We provide programs in SAS® that determine the number of elements in the set A, (x)

for any n > 1 (see the Appendix). Table 2.3 contains the computed numbers.

n | card (N,(x)) | card (N, (z)) /card (Np,—1(z))
1 4

2 18 4.5
3 72 4

4 213 2.9583
) 596 2.7981
6 1628 2.7315
7 4484 2.7543
8 12200 2.7208
9 33316 2.7308
10 90252 2.7090

Table 2.3: The number of elements in the set N, (z) for n =1,2,...,8 in Z2.

To get the general idea of how connected sets are structured, we display the sum of the connected
sets in matrices (since for n = 8 we have 12200 outputs to show). Figures 2.16 to 2.23 illustrate the
overlapping of connected sets. That is, each number in the respective matrices represents the number of
times connected sets overlap for a particular element when we sum all the possible sets aligned at . This
is illustrated in Figure 2.14. Note how all the sets are aligned at the centre element 2 (shown with bold

lines) and the elements which uniquely defines each set in NVs(z) protude from z at each level.

5SAS 9.4 (SAS Institute)

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef) YUNIBESITHI YA PRETORIA
CHAPTER 2. SMOOTHERS 22
.
Figure 2.14: Stacking of all possible connected sets in N (z) for Z2.
For each of the summed matrices below from Figures 2.15 to 2.23, let .S,, = [sl(.;l) (x)} denote the matrix

of the sum of all possible connected sets of AV,,(z) in Z2. For example, the sum of connected sets in N (z)

is given by

S

o0 =00

()
()
()

-2

ONOND

1 1
sty (@) 88y (x) 0 1 0
1 1
sii(2) sy [=1 41

—_

Figure 2.15:

Figure 2.16:

ssy () 853 (x)

0 1 0

—_

Sl in Z2.

ONOND
o0 =00

SQ in ZQ.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS

0] 0] o] 1 o]
o] 0] 3 6 3
0] 3 11 30 11
1 6 30 T2 30
0] 3 11 30 11
o] 0] 3 6 3
o] 0] o] 1 o]
Figure 2.17: S3 in Z2.
<] ¢] <] ¢] 1 ¢]
2] ¢] 2] 4 6 4
<] ¢] 6 17 27 17
¢] 4 17 36 95 36
1 6 27 a5 213 a5
2] 4 17 36 a5 36
<] ¢] 6 17 27 17
2] ¢] 2] 4 6 4
<] ¢] <] ¢] 1 ¢]
Figure 2.18: S; in Z2.
¢] ¢] ¢] ¢] ¢] 1 ¢]
¢] ¢] ¢] ¢] 5 6 5
¢] ¢] ¢] 10 23 33 23
¢] ¢] 10 34 64 86 64
¢] 5 23 64 106 275 106
1 6 33 86 275 596 275
¢] 5 23 64 106 275 106
¢] ¢] 10 34 64 86 64
¢] ¢] ¢] 10 23 33 23
¢] ¢] ¢] ¢] 5 6 5
¢] ¢] ¢] ¢] ¢] 1 ¢]
Figure 2.19: S5 in Z2.
0 0 0 0 0 0 1 0
0 0 0 0 0 6 6 6
0 0 0 0 15 29 # 29
0 0 0 20 57 160 120 160
0 0 15 57 131 198 260 198
0 6 29 100 198 309 o 309
1 6 4 120 260 HY 1628 HY
0 6 29 160 198 309 744 309
0 0 15 57 131 198 260 198
0 0 0 20 57 100 120 100
0 0 0 0 15 29 #1 29
0 0 0 0 0 6 6 6
0 0 0 0 0 0 1 0

Figure 2.20: Sg in Z2.

© University of Pretoria

QoW mHwWwo o

OO —=000

OO0 IFrm® o000

loloNoRoRUBG R NoRoN o R ol

[clofofoRolioRa RN ololloolol

OO0 —=0000

23

loloNoRoNoR NoNoRololol

[cloloololcRololcBolololco]

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 24
°] 0] o] o] °] 0] o] 1 °] 0] o] o] °] 0]
<] o] <] 2] <] o] 7 6 T o] <] 2] <] o]
<] o] <] 2] <] 21 35 51 35 21 <] 2] <] o]
2] 4] 2] 2] 35 86 147 166 147 86 35 2] 2] 4]
°] 0] o] 35 114 236 335 400 335 236 114 35 °] 0]
<] o] 21 86 236 409 601 42 601 409 236 86 21 o]
<] T 35 147 335 601 868 2084 868 601 335 147 35 T
1 6 51 166 4ee 42 2084 Lu8Yy 2084 42 400 166 51 6
°] T 35 147 335 601 868 2084 868 601 335 147 35 T
<] o] 21 86 236 409 601 42 601 409 236 86 21 o]
<] o] <] 35 114 236 335 4oo 335 236 114 35 <] o]
2] 4] 2] 2] 35 86 147 166 147 86 35 2] 2] 4]
°] 0] o] o] °] 21 35 51 33 21 o] o] °] 0]
<] o] <] 2] <] o] 7 6 T o] <] 2] <] o]
<] o] o] 2] <] o] o] 1 <] o] o] 2] <] o]

Figure 2.21: S7 in Z2.

[¢]] [:] 2] [¢]] [:] 2] 1 [¢] [:] 2] [¢]] [:] 2]
o] [¢] [¢] o] o] [¢] 0 8 6 8 0 o] o] [¢] [¢] o]
[¢] [¢] [¢] [¢] [¢] [¢] 28 Ll 63 41 28 [¢] [¢] [¢] [¢] [¢]
o] [¢] o] o] o] 58 121 208 224 208 121 56 o] [¢] o] o]
[¢]] [:] 2] 70 200 394 535 620 535 394 200 70] [:] 2]
o] [¢] 0 56 200 482 77s 1077 1209 1077 77s 482 200 56 0 o]
[¢] [¢] 28 121 394 775 1267 1696 2115 1696 1267 75 394 121 28 [¢]
a 8 Lal 208 535 1077 1696 2433 5632 2433 1696 1077 535 208 Lal 8
1 6 63 224 620 1209 2115 5632 12200 5632 2115 1209 620 224 63]
<] 8 Ll 208 535 1077 1696 2433 5632 2433 1696 1077 535 208 Ll 8
[¢] [¢] 28 121 394 775 1267 1696 2115 1696 1267 75 394 121 28 [¢]
o] [¢] o] 56 200 482 775 1077 1209 1077 775 482 200 58 o] o]
[¢]] [:] 2] 70 200 394 535 620 535 394 200 70] [:] 2]
o] [¢] [¢] o] <] 56 121 208 224 208 121 56 <] [¢] [¢] o]
[¢] [¢] [¢] [¢] [¢] [¢] 28 Ll 63 41 28 [¢] [¢] [¢] [¢] [¢]
o] [¢] o] o] o] [¢] o] 8 8 8 o] o] o] [¢] o] o]
[¢]] 4] 2] [¢]] 4] 2] 1] 4] 2] [¢]] 4] 2]
Figure 2.22: Sg in Z?
[}] [}] [}] [}] [} 1 [}] [}] [}] [}]
] [}] [}] [}] [} 9 6 9 [}] [}] [}] [}
[}] [}] [}] [} 36 47 7 47 36 [}] [}] [}]
] [}] [}] [} 84 162 286 294 286 162 84 [}] [}] [}
[}] [}] [} 126 321 623 816 44 816 623 321 126 [}] [}]
] [}] [} 126 400 897 1373 1846 1993 1846 1373 897 400 126 [}] [}
[}] [} 84 321 897 1608 2489 3154 3614 3154 2489 1608 897 321 84 [}]
] [} 36 162 623 1373 2489 3624 4874 5866 4874 3624 2489 1373 623 162 36 [}
[} - | 47 286 816 1846 3154 4874 6708 15540 6708 4874 3154 1846 816 286 47 - |
1 6 7 294 944 1993 3614 5866 15540 33316 15540 5866 3614 1993 944 294 7 6
[} - | 47 286 816 1846 3154 4874 6708 15540 6708 4874 3154 1846 816 286 47 - |
] [} 36 162 623 1373 2489 3624 4874 5866 4874 3624 2489 1373 623 162 36 [}
[}] [} 84 321 897 1608 2489 3154 3614 3154 2489 1608 897 321 84 [}]
] [}] [} 126 400 897 1373 1846 1993 1846 1373 897 400 126 [}] [}
[}] [}] [} 126 321 623 816 44 816 623 321 126 [}] [}]
] [}] [}] [} 84 162 286 294 286 162 84 [}] [}] [}
[}] [}] [}] [} 36 47 7 47 36 [}] [}] [}]
] [}] [}] [}] [} 9 6 9 [}] [}] [}] [}
[} [} [} [} [} [} [} [} [} 1 [} [} [} [} [} [} [} [}

Figure 2.23: Sy in Z2.

From plain view, these matrices show little mathematical insight since the only thing we are certain
of from these matrices is the fact that the number of overlaps decrease as we move away from the centre.

However, if we start summarising the matrices above, we arrive at some intriguing results.

Define the difference operator A on a ordered sequence x = {z1, 22,3, ...} as,

Ax; =2, — T3

© University of Pretoria

COPEEREE - O @

[-N-N-R-RoN-NoRoRr-No g o N- No Fol o]

COPNOONOOONO 0000000

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 25
for i = 2,3,4,.... Applying A twice to a sequence yields:
A217i = A(Al‘z)
= A(J?l - xi_l)
= A.’El — A.’Iﬁifl
= (¥ —xi—1) — (Ti-1 — Ti—2)
=X; — 2%1‘,1 + x;_9.

Note that for any sequence z, it is true that if A*z (for some k > 0) yields a nonzero constant sequence,

then the sequence z can be written as a polynomial of order k.

Example 2.6. Consider a quadratic sequence given by « = {z,,},-, = {27,33,41,51,63,77,...}. This is

a polynomial of order 2 since we can capture x, with a second order polynomial function
xn = an’® +bn + ¢,

where coefficients a,b and ¢ are real numbers. To solve the coefficients, we substitute the values of the

sequence in the polynomial with corresponding values of n:
n=1: 2T=a+b+c

n=2: 33=4a+2b+c¢

n=3: 41=9a+3b+c¢

This can be rewritten as an augmented matrix, in which the coefficients can be obtained by solving the

system of equations. Thus,

1 11 27 1 00 1
4 21 33 ~ 0 1 0 3)
9 3 1 41 0 01 23

which implies that the sequence may be predicted with the following equation:
Ty =n?+3n+ 23.

To establish that the order of the polynomial may be determined by the number of the difference needed

to be taken until a nonzero sequence occurs, we note that,
o Ax ={6,8,10,12,14,...}, and

o A2y = A(Az) ={2,2,2,2,...}.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 26

Therefore AFz is a constant sequence of two’s, and the order of the polynomial is k& = 2.

Consider the first row of each matrix S, for n = 1,2, 3, The sequence given by the nonzero element
in the first row of S, is

(> 1) (2 3
{5177)14-1}”:1 = {352)7 553)7 354)7 } ={1,1,1,..},
oo
which implies {s&"ﬁl +1} is a polynomial sequence of order 0 since the sequence itself is constant con-
’ n=1

taining only 1’s. That is, since Aks(lfﬁﬂ is constant for k = 0, the sequence is a polynomial of order 0.

The second row of each matrix 5,, yields three sequences from the three nonzero elements. These are

given by (from the left sequence to right):

. {sgni} = {sgll), s s5), } ={1,2,3,...} which is a polynomial of order 1 since Asgfr)l yields a

n=1

constant sequence of 1’s.

(o9}
. {sé":i%} L= {sg?, séi), sg?, } ={6,6,6,...} which is a polynomial of order 0 since the sequence

n—=
is a constant of 6’s.

° {5(27,)1+2}00 = {sgn}z}:;l by symmetry of S,.

n=

If we summarise the sequences so far, we have that the sequences in pyramid form:

{sgnr)b-i-l}
n n+1 n
L Ll L)

have polynomials of order,

0
1 0 1
and their constant sequences,
C1
1 G

where ¢; defines the constant sequence with the recurring number .

Consider now the third row of each S,, for n > 2. Starting on the left of the nonzero elements:

° {sé"rjl)} = {5&21), sg‘?, sgé), } ={1,3,6,10,...} which is a polynomial sequence of order 2 since
’ n=1

Azsgl;l) yields a constant sequence of 1’s.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 27

. {sé",jf%}nﬂ = {sg?, sgi), sg‘?, } = {11,17,23,...} which is a polynomial sequence of order 1 since
Asg";f% yields a constant sequence of 6’s.
(&9}
. {séﬁjﬁi}nil = {sé?,sé?,sg)7 } = {27,33,41,51, ...} which is a polynomial sequence of order 2

. nt3) _.
since Agséﬁj -‘,—Z)l yields a constant sequence of 2’s.

oo

2% 2
. {s&;i}n:l = {Sg’l’;‘%}n:l by symmetry of S,,.

* {Sgnvﬁi}nzl = {sgtl:l)}nﬂ by symmetry of S,,.

Continuing in this fashion, we obtain the following pyramids through the evidence from the sums of the

connected sets S, (x). The order of the polynomials inherent in the sequence of summed connected sets

is found as:

0

1 0 1
2 1 2 1 2
3 2 3 2 3 2 3
4 3 o 3 o 3 o 3 4

and their constant sequences:

C1

1 C6é C1
C1 Ce C2 Ce C1
Ci C €3 Ci2 €3 Cg (1

i1 C © C18 © C18 °© G

We can see a cascading effect exists in the structure of these sequences since each constant sequence is
exactly the sum of the two directly above it (excluding the middle). For example, c3 = ¢; + ¢ and
Cc12 = Cg + Cg.

For the order of the polynomials, we see a tendency for vertical pairs and row-alternating numbers in
the triangle and that a linear relationship exists along the diagonals. This means that the order complexity
of the polynomial sequences obtained from S,, increases linearly as n increases.

Since we can only obtain S, for n = 1,2,...,9 because of the intensive computing power required to
run any number n that is greater than 9, we lack the information required to complete the last row of
both the order and constant sequence pyramids (indicated by o). If we postulate the following pattern

for row 5 of constant sequences as,

C1 Cg C4 C18 Cg C18 C4 Cg C1,

6Much like Pascal’s triangle [21].

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 28

then it is possible to deduce that the order of the polynomial for sequences number 3, 5, and 7 of row 5

is 4. From this, the complete row for row 5 is,
434343434

It is interesting to see how intricately the connections are designed by a simple definition such as N, ().
How the rows, columns, diagonals, and elements satisfy strict mathematical rules (when we add up con-

nections of specific order and form sequences from them) and how they ultimately depend on each other.

2.7.2 LULU operators on Z?
The definitions for L,, and U, in general 2-dimensions are given below [2]:
Definition 2.8. Let f € A(Z) and n € N. Then for x € Z2,

L, (f)(z) = v gﬁz)gggf (Y),

Un(f)(z) = v emNifl(m)ryneagf (y).

For example, refering to Figure 2.13, Lo(x) first determines the minimum of each individual 12 con-
nections. From there, Ly(x) then returns the maximum of these 12 minimums in Z2.
Analogous to their case in 1-dimension, L,, and U,, operating in Z? also removes upward and downward

pulses. Here, we refer to them also as local maximum and minimum sets respectively [2]:
Definition 2.9. A connected subset V of Z¢ is a

1. Local maximum set of f € A(Z?)if sup f(y) < 1I€1€/f(:r)

y€adj(V)
2. Local minimum set of f € A(Z?) if inf f(y) < supf(z).
ycadj(V) zeV

In Figure 2.24 we graphically present an example of local maximum and minimums sets of size 7 in
Z2. We see that the adjacent elements of the local maximum set are strictly less than the set itself. A

similar observation holds for the local minimum set.

Figure 2.24: Local maximum (a) and minimum (b) sets of size 7 in Z2.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 29

The characterisations of L,, and U,, operators are preserved from their extension to multidimensions
[2]. The operator L,, only removes local maximum sets of size n or smaller in f. That is to say that it
will not create any new local minimum sets except the case when, as a consequence of the removal of the
local maximum set”, it enlarges an existing minimum or joins two or more of them to become one local
minimum set. Furthermore, L, (f) = f if and only if f does not possess any local maximum sets of size n
or less. A similar case holds for U,, [2]. We focus in this text on the case d = 2, that is Z2, for an image

domain.

2.7.3 The Discrete Pulse Transform

The Discrete Pulse Transform (DPT) of f € Z? [2] is obtained iteratively by applying the L, and U,

operators with n increasing from 1 to N:

DPT(f) = (D1(f), D2(f), ... Dn(f)).

where

Di(f) = (I = P)(f),
D,(f)=I—-Pn,)oQn-1(f) forn=2,..,N,

and P, =L,oU,or P,=U,oL, and Q, = P,o0..oP;,neN.
Let ¢,s be the zero matrices each containing a removed pulse from f of size s at position n, then any
multiscale sequence f can be written as the sum of all its pulses removed by LU LU operators, providing

a multiscale decomposition of the image f,

Example 2.7. Consider an image f of grey-scale values given by:

1 3 4 4

3 3 5 4
f=

6 2 8 4

9 5 5 1

The decomposition of f using the DPT (with 4-connectivity) with P,, = U, L,, is displayed below. Recall
that in the one-dimensional case, zeros are appended to the finite sequence so that it becomes a bi-infinite

sequence. The same methodology is applied here. The finite matrix f is appended with zeroes surrounding

"Recall that L, removes a local maximum set V by subtracting the appropriate amount such that V is a constant set

with values equal to the supremum of adj(V).

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 30

f itself. Thus, in actuality, the decomposition of f using the DPT is performed on f* given as

0 0 0 O
0 1 3 4 4 O
. 0 335 4 0
f =
0 6 2 8 4 0
0O 9 5 5 1 0
0 0 0 O
Since D1(f) = (I = P1)(f) = f — Pof = f — Ui L1(f), and
1 3 4 4 1 3 4 4
3 3 5 4 3 3 5 4
Ui(L1(f)) = Us = ;
6 2 5 4 6 3 5 4
6 5 5 1 6 5 5 1

where the changes of @,,_1f after an application of the @, operator are given in bold. Thus, we have

that,
1 3 4 4 1 3 4 4 0O 0 0 O
3 3 5 4 3 3 5 4 0O 0 0 O
Di(f) = f—UiLa(f) = - =
6 2 8 4 6 3 5 4 0 -1 3 0
9 5 5 1 6 5 5 1 3 0 0 0
Similarly,
1 3 4 4 0 0 0 O
3 3 5 4 0 0 0 O
Qa2(f) = and Dy (f) =
5 3 5 4 1 0 0 O
5 5 5 1 1 0 0 O

Since there are no pulses of size 3, 4 or 5, Q5(f) = Qa(f) = Q3(f) = Q2(f), and D5(f) = D4(f) =
Ds(f) =0, where 0: 4 x 4 is the zero matrix.

Qs(f) = and Dg(f) =

e S =SSN

= o O
- o o o
—_ = = O

0
0
0
0

BOOR W
_Ww W w
N
—_

Similarly, Q7(f) = Qs(f) = Qo(f) = Qs(f) since there are no pulses of size 7, 8, or 9, with corresponding

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 2. SMOOTHERS 31

zero matrices D7(f), Ds(f), and Do(f). To end this:

1 3 3 3 0 01 1

3 3 3 3 0 01 1
Quo(f) = and Dio(f) =

3 3 3 3 1 0 1 1

3 3 3 1 1 1 1 0

1 111 0 2 2 2

1 1 1 1 2 2 2 2
Qua(f) = and D14(f) =

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 0

and ~ _ ~ _

0O 0 0 O 1 1 1 1

0O 0 0 O 1 1 1 1
Que(f) = and Dig(f) =

0O 0 0 O 1 1 1 1

0O 0 0 O 1 1 1 1

2.8 Conclusion

In Section 2.7.1 4-connectivity was used to define the sets in A, (x). In Definition 2.8 N, (x) allows for any
connected set definition satisfying Definition 2.7, of which 8-connectivity is also valid. The question of
what connection to use therefore arises. We investigate this in the next chapter by empirically investigating

the dependence structure of local pixel neighbours.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Chapter 3

An empirical study of dependence

structures in 1mages

3.1 Introduction

From the definition of the LULU operators in two dimensions, the operators act on a pixel x using
information from the neighbours of z as illustrated in Figures 2.12 and 2.13. Thus, if independence
between pixels is not assumed (and should not be because not all images are white noise as they contain
structure) then we must incorporate the dependence between pixels with, say, some matrix-covariance
structure. Using the property of global independence and local dependence shown herein, we motivate
the connectivity choice for the LU LU operators.

We investigate the property of global independence and local dependence. The idea is that for any one
pixel, the dependence it exhibits in relation to neighbouring pixels decreases as the distance! between that
pixel and the neighbouring pixel increases. The assumption is not unsupported. For a group of pixels in an
image that dictate a particular object should be in close proximity to one another as well as have high cor-

relation with each other in that group. For a pixel « in an image, the following property is then postulated:

The correlations of x to its neighbours {y € N(z)} decreases as the distance between x and y in the
image increases, where N'(x) is the set of neighbouring pizels of x. That is, at some distance, the corre-

lations are statistically insignificant.

The rest of the chapter is presented as follows. Section 3.2 discusses the theory required to perform

tests of independence between any two pixels in a video stream, Section 3.3 performs the tests of indepen-

IDiscrete 4-connected distance on Z2, defined as D (xm,jl),z(iz,j?)) = |i1 — 42| + |j1 — j2| for image pixel locations

(41,71) and (i2, j2).

32

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 33

dence between pixels in the dependence structure with arbitrary videos, and we end in Section 3.5 with

concluding remarks.

3.2 Testing dependence of neighbouring pixels

For this study our data set will consist of a number of videos which provides a sample of images. Since a
video stream is an ordered sequence of image frames, each frame has dependence on previous realisations.
In other words, each successive pixel can be explained (to some degree) by its previous values. This allows
us to model each pixel with an autoregressive (AR) time series model. Furthermore, our video database
consists of recordings of stationary scenes (i.e. the camera does not pan or zoom in the process of record-
ing) since most surveillance systems are of this type, thus all our models are covariance-stationary. Note
that we discuss the case of non-stationary scenes in the conclusion. Therefore, we can implement the test
of independence between two univariate covariance stationary time series from Haugh [12]. We begin with

some definitions and notations:

For each pixel (i, j) = x for position (i,j) € Z2, in a video frame we fit an autoregressive time series
model of order p, with p chosen such that the residuals of the model are uncorrelated. This then allows

us to write a pixel z; at time ¢ as
Ty =cCc+ Q1741 + P2y + ... + Ppxi_p + Uy,

where c is the intercept of the model, {¢1, ¢2, ..., ¢} are the autoregressive parameters, and u; is white
noise innovations with variance equal to 2.

To begin the correlation (dependence) analysis we impose, again for each pixel x; at time ¢, a depen-
dence structure Mt(K) with a frame containing pixel x; and all neighbours with discrete distances less
than or equal to K - this is portrayed in Figure 3.1. The notation, xED’d), used for each neighbour of
x; reveals the discrete distance on Z? from the neighbour to x; as D, and the number (labeling) of the

neighbour (d = 1,2, ...,4D) with distance D from ;.

For example in a single frame:
. Mt(l) will have 5 elements,

. Mt(Q) will have 13 elements,

. Mt(K) will have K2 + (K + 1)? elements.

According to Haugh [12], if two covariance-stationary univariate time series are dependent, then their

white noise innovations will also be dependent. That is, suppose {z:},- __ and {y},o . are two time

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 34
CZEK,K+1)
ng,K{»Z) : xEK,K)
z§2,3)
ng,2K) - x§2’4) x§1,2) xgz,z) K ng,2)
IEK,2K+1) . z§2’5) z£1’3) - zgl,l) zgm) . zgx,l)
ZEK,2K+2) o Igz,e) 151,4) zgz,s} -, ngAK)
z£2’7)
ng,:iK) : ng,3K+z)
15K,3K+1)

Figure 3.1: An illustration of the dependence structure Mt(K).

and {v;},

and {y;},-__ are independent.

respectively. Then if u;_; and v; are independent

— 00

series with white innovations {u¢};-

— 00

at all lags j € Z, then {z},-

—0Q0

To measure the relationship between the two innovations at lag j, Haugh [12] uses the crosscorrelation

function,

. 711,1)(j) .
puv(j) = , JEZ,

OuOvy

where v,,(7) is the covariance between the innovations at lag j, with 02 and o2 the variances of u; and
vy respectively. For a sample size of n observations from each time series, we can obtain the white noise
residuals? 4, and 9, and estimate the cross correlations with,

—1/2

n n
Puv(J) = Tuv(j) = ZﬂfZﬁf Yuv (7),
t=1 t=1

with
n ~ A
A (s tz%ﬂtijvt if j=0,1,2,...
Vuv(]) = n
> Uyl ifj=-1,-2,-3,....
t=|j|+1

2From OLS, if the model is E[y] = Xb, where y contains the dependent variables, X the design matrix, and b the vector
of parameters to be estimated, then é = y — Xb is the vector of residuals from the model. Here, for our AR(p) model,

Y=%X,=[Zn Tn-1 - Tp+1]’, X=[1 Xn—1 Xp—2 ... Xn—pland b=[c ¢1 P2 ... ¢p|".

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 35

Under the null hypothesis that z; and y; are independent, we have from Haugh [12] that,

is asymptotically x? distributed with 20 + 1 degrees of freedom.
In light of the above, we perform the test of independence of time series (our pixel sample data) from
Haugh [12] with z; as our centre pixel and y; as each one of its neighbours in the considered neighbourhood

M5

3.3 Application

In this section, we perform the empirical analysis of the image pixels’ dependence structure. Denote an
image sequence (video) as f - with f; the ¢! frame of the video. Then for a video f, we use MATLAB?,

for the following:

1. For each pixel x; € fi, we fit an AR(p) model with 500 observations from f; to fso0 (i.e. 500 frames).
The AR parameters are found by ordinary least squares estimation and the degree p is such that

the residuals of the model are uncorrelated.

2. Impose for each pixel z; the dependence structure Mt(K) (see Figure 3.1). Then from each structure

at each pixel,

(a) Find the correlation between the centre pixel time series z; and its neighbours at lag 0 (i.e. in

the same frame), ry, ., (0), y: € Mt(K)

(b) Perform the test of independence from Haugh [12] for M = 6 with z; as the centre pixel and

y; as each one of its neighbours, y; € Mt(K), and find the p-value of each test.

3. Average the results from step 2 over the whole pixel domain.

In our application, we implemented the test for different values of K and only will output K = 3 results.
The reason for this is that information in terms of rejecting of the null hypothesis is already contained in
K = 3 structures and by having larger values of K we will only include redundant information.

Table 3.1 contains the correlation and p-values. The results obtained from MATLAB are doubly
symmetric (to 2 decimal places) about the horizontal and vertical axis. Therefore, we display one full
quadrant of the average correlation and p-value structures of f. Here, the lower triangular numeric val-

ues represent the average correlations and the upper triangle the average p-values of the independence test.

Figure 3.2 contains the single frames of each video. The first four videos are indoor videos taken inside

a mall?, all of which is security footage. The others are recorded by the author®, all of outdoor scenes.

3SMATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States.
4Videos can be obtained from http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
5Link to videos: https://github.com/AlexUP/MMD-Videos.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 36

For every video, 500 frames were considered.

(b) 288 x 384 (c) 288 x 384 (d) 288 x 384

(i) 270 x 480 (i) 270 x 480 (k) 270 x 480 (1) 270 x 480

Figure 3.2: A single frame of all videos with their dimensions.

From Table 3.1, we can see that the average correlation decreases and the p-value of the test increases

as we venture away from the centre. This relationship is consistent throughout all the videos.

Furthermore, all videos, except for (b),(c),(d), and (j) in Table 3.1, show the characteristics of global
independence and local dependence since we can reject the null hypothesis of independence between the
centre pixel and neighbours at @ = 10% for neighbours with discrete distances less than or equal to
1. The same may not be said for videos (b),(c),(d), and (j) in Table 3.1 where we can reject the null
hypothesis for the whole region of the dependence structure at o = 5% . Note that the ‘NaN’ values in Ta-

ble 3.1 indicate that the pixel considered in that position is outside the limits of the dependence structure.

Table 3.2 contains the average of the autoregressive parameters of each pixel from each video. Note
that zeros entries imply that the AR parameter is less than 0.001. We can see that the videos that are
consistent with the assumption have significant AR parameter only at lag 1. However for videos (b),(c),(d)
in Table 3.1, where the assumptions does not hold for K = 3, they have significant AR parameters at
lags 1 and 2. This could possibly describe the need of a bigger dependence structure to incorporate the
dependence in time series with AR(p) processes where p > 1. But in general the dependence does not

extend for larger values of K.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES

B v nen o167 Nen NaN NaN [nen nen 00147 NaN NaN Nan
NaN 01720 01250 01722 wan| wan naN I ooes0 00144 00249 man Nan
NaN oost I cor0 01422 0ass0 Nan NaN ozoo I ocove0 00130 00225 Nan

012905 00657 02767 1 00807 01251 01521 04745 05237 06457 1 00057 00136 00158
nan ooste 01502 o6 oisis wan NaN 03941 04697 osso o000 nan
NaN NaN ooess 01722 cosoof e naN. NaN 03862 05073 osssS nen
NaN NaN NaN 01557 naN nan[EE NaN.©® NaN NaN 04769 nNan nanj

(a) (b)

B v vy ooas nan Nan nNaN [new naN 00308 NN NaN Nan
NaN oosc0 0053l 00691 NaN Nan NN 000 o0oses 00735 man Nan
naNn o267l 00212 oosss 00s9E man naN o107l o022 00359 0040 man

03815 04467 05873 1 00148 00321 0.0369 03777 04263 05680 1 00064 00142 00158
Nan 02175 02687 oa2 [oos0 nen NaN. 01002 02557 oasos| o052 wen
nan nan o1sso 02565 oassof nen nan, Nan 01344 02159 ouso I nen
NaN NaN NaN 02724 nNan| nan[NaN© NaN nNaNl 02750 nNan nan

(c) (d)

B v nan oozess nen Nan NaN [nen neN 02609 NN NaN Nan
NaN o032 02108 02454 Nan| Nan naN oi0s2 01501 01935 Nan NaN
NaN oooas| M cosse o01so2 o0zees Nan NaN ots7of M o027 o0sse 02163 Nan

00512 01020 02475 1 01023 02524 02980 01402 02078 03452 1 00317 01885 03015
naNn ooses 01723 osoos| o254 wan nan. 01087 02887 oz o027 nen
NaN NeN 01103 01420 o2 nen NaN. NaN 02004 02445 oo nen
nan. nNan, nano oosos nan| nan[nan, Nanl nanl o0aso3 nan nan

(e)

B o nan o300 nNan Nan nNaN [new o nan 02008 NN MaN Nan
NN oz o2se1 02812 NaN| Nan NaN 02425 02289 02489 man man
NaN ols11 [o716 0167 02455 Nan naN 0207 oos6r 01452 02345 Nan

01755 02749 04708 1 0039 01647 02431 01877 02604 04322 1 00473 01870 02614
NaN 01474 01951 o2sSS ozzss nen naN 02014 02608 03303 o2 nen
NaN NaN 00793 01045 oossAf e naN. NaN 0186t 01990 oisc4[nen
NaN NaN NaN cos0s NaN nan[E NaN.© NaN NaNl o0ass4 NN nan[

(8) (h)

B - ron oozos) nan nan naN [new naN 0o3si NaN M Nan
NN 0207 01732 02004 NaN| Nan NN 00205 001z 0011 Nan NanN
NaN oS/ co220 ocosse 0asaz man NaN o1 [2s012e.. o007 00176 man

02203 02917 04509 1 00482 01605 02237 05012 05707 07069 171962, 00122 00283
NaN 02699 03345 oo 01902 nan naN. os4e0 06330 o070 oo wen
NaN NaN o02204 o273 oo nen naN. NaN o0ss01 05551 ossZj nen
NaN NaN NaN o01ses Nan| Nan[naN© Nan NaNl 04764 NaN nan[

(i)

B v nen o144 nNen NaN nNaN [nen nen 02754 NaN NaN Nan
NaN oicoe ocos3s oosrs wan| wan MaN I oo 0 02183 man Nan
NaN 03306 o135 00207 00529 Nan NaN 037 o065 00943 01840 Nan

02828 03777 05711 1 00028 00440 01102 02836 03533 04956 1 00390 01474 02124
nan 03536 04526 oSO ooss men nan. 0200 03582 osni I oo nen
NaN NaN 03300 03403 o3[nen NaN. NaN 02558 02085 o204 nen
NaN NaN NaN 02623 nNaN nan[E NN, NaN NaNl 02213 nen nan[E

(k) ()

Table 3.1: The correlation results from videos.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 38

(a) (b) () (d) (e)) () (h) O] 6)] () 0

¢1 0.6574 0.5691 0.5224 0.5577 0.8762 0.8337 0.9849 0.9203 0.8763 0.9800 0.8602 0.9564

¢2 0.0106 0.1039 0.1591 0.0981 0 0 0 0 0 0 0 0

¢3 0.0011 0.0048 0.0101 0 0 0.0020 0.0054 | 0.0064 0 0.0042 0.0021 0.0045

Table 3.2: Average of the AR parameters of videos from Figure 3.2.

3.4 Local dependence in the presence of noise

In order to study how added noise affects the dependence structure, we add Gaussian white noise to the
videos in section 3.3. Using the Box-Muller algorithm [11] with uniform variates simulated from the Linear
Congruential Generator (LCG) [10], we create three additional videos from each of the originals such that
a specified signal to noise (SNR) is obtained. The SNR, as used by Parrish et. al [19], is a measure of
the strength of a signal, defined as the ratio of the mean of the signal and the standard deviation of the
noise, that is,

SNR:M.

Onoise

For each video we define jiigna1 as the grand average of all the pixel values within the video sequence,
and opise as the variance of the noise content in the image. The algorithm for creating a new video with

additive noise for a specified SNR is given as follows:
1. Specify SNR.

2. For a video f = {f1, f2,..., fn}, where f; : m x n is the i*! frame of the video and n is the total
number of frames, populate a vector u : (mnN) x 1 with uniform variates using the LCG. This is

done as follows:
(a) Specify three positive integers:
e a - the multiplier,

e ¢ - the increment, and

e m - the modulus.

(b) With an initial value x (seed), obtain a sequence of integers x1, xa, ..., Ty With the recursive
formula given by
Ty = (axp—1 + ¢)(mod m).
Thus x,, is the remainder of ax,,_1 + ¢ after dividing by m.

(c) Multiply the sequence 1, 3, ..., Tymnn by 1/m to obtain mnN random numbers on the interval

[0,1).

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 39

3. Transform the uniform variates into normal variates using the Box-Muller algorithm. This is done

as follows:

(a) For each pair of uniform variates (u;,u;+1) in u, i =1,3,5,...,mnN — 1, compute,

z; = v/—2Inwu; cos(2muz), and
zit1 =V —2lnus sin(27us).

Note that z; and z;41 are independent standard normal variates. Next, store all random

standard normal variates in a vector z : mnN x 1.

4. Transform the standard normal random numbers to a normal distribution with variance for a spec-

ified SNR. This is done by multiplying the vector z by onoeise, Where ongise = SNR isignal

5. Add the noise to f. Note that because the simulated noise are from continuous distributions with
(bi) infinite support, f needs to be discretized and set such that the maximum of any element within

f is 255 and minimum 0.

3.4.1 Correlation analysis of noisy videos

Using the methods discussed in section 3.3, we analyse the dependence structure for videos with added
noise. The intensity of the noise is chosen such that three levels of SNR are achieved (according to the

Rose criterion [37]), namely,
e Strong signal: SNR = 9,
e Medium signal: SNR = 5, and
e Weak signal: SNR = 1.

The tables below contain the results from the correlation analysis. For ease of comparison we included
the original tables from Table 3.1 as a sub-table for videos without added noise (indicated by .1). The
labelling of sub-tables .2, .3, and .4 correspond to the results from videos with strong, medium and weak
signals respectively. Furthermore, the lettering of (a) through (1) is kept consistent with video description

in Figure 3.2.

It can be seen that the same patterns hold in both correlation and p-values in the dependence struc-
tures. That is, the correlations between the centre pixel and its neighbour decreases and the p-values of
the test of independence increases as we venture away from the centre even for noisy videos.

It can be seen also from the results that the addition of noise annihilates the dependence structure
in general. Most notably in videos (a) to (d) since the hypothesis that the centre pixel is independent of
its neighbours cannot be rejected at p-values higher than 0.40 for all dependence structures Mt(k) where

k> 1.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 40

This effect is less prominent for videos (e) to (1). Although the addition of noise does remove the

dependence between neighbouring pixels, there are some cases where exceptions are required, namely:

e Video (i) - The analysis on strong signal in (i2) contains a partial Mt(l).

e Video (k) - The analysis on strong (k2) and medium (k3) signal preserves the Mt(l) depdendence

structure.

e Video (j) - The analysis on all videos in (j) reveals dependence structures previously unseen from

the original video. Here, (j2) has Mt(Q), (33) has Mt(z) , and (j4) has Mt(l) at 5% signifiance level.

B v nan 01467 nNen NaN NaN [nen neN 04612 NaN NaN Nan

NaN 01720 01250 01722 wan| wan naN I o4s08 o04s78 04s38 man Nan

NaN oost I cor0 01422 0ass0 Nan NaN oo 0461 oasse 04624 Nan

012905 00657 02767 1 00807 01251 01521 00176 00136 00261 1 04501 04537 04630

nan 00816 01502 osso o wen nan 00145 00177 oo’ [o400 man

NaN NaN ooess 01722 cosoof N nen NN NaN 00142 0017 oo nen

NaN NaN NaN 01557 naN nan[EE NaN.© NaN NaN 00166 nNan nan
(al) (a2)

B v nay oo0as09 nNen NaN o NaN [nen neN 04083 NN NaN Nan

NN o475 0a79r 04s2 NaN NaN naN 04057 04991 05001 NaN NaN

NN o040+ 04763 04802 Nan NanN 91405 I 04922 04971 04088 Nan

00098 00030 00147 1 04743 04781 04812 <0001 <0001 00011 1 04959 04988 04990

nan oooss 00102 oo o4sd nen naN <0001 <0001 ooot1 [osce NaN

NaN NaN ooost o0ooss coo nen NN NaN <0001 <0001 <cooi N nen

naN NaN NaN oooss NaN nan[E NN nNaN nNan <0001 nan N
(a3) (ad)

Table 3.3: Correlation results from video (a)

Bl v ey ool onen o Nan o nNaN [new neN 042190 NaN NaN Nan

NaNJE oo 00144 00249 WaN Nan NN 04245 04201 04252 Nan NaN

NaN 0300 coos0 o030 00226 Nan NaN oosoo I 040 04223 04272 Nan

04745 05237 06457 1 00057 00136 00158 00469 00534 00612 104171 04251 04301

Nan 03941 04697 o669l o000 wan naN 00506 00570 oosss| o472 wan

NaN NaN 03862 05073 osssS e NaN. NaN oos4t 00se7 oosuj I nen

nan nNaN nan oares nan) nan[E nan. Nan nanl ooses nan nan
(b1) (b2)

B v nan oossi00 nNen NaN NaN [nen neN 04934 NN NaN Nan

NaN o455 04508 04526 MaN Nan NN o40t0 04942 04958 Nan Nan

NaNn oo o7 04s01 04529 Nan NaN oot [o493 04937 04952 man

00250 00288 00327 1 04487 04524 04559 00017 00021 00024 1 04935 04955 04966

NaN 00276 o0ozee oo o2 nan NaN 00021 00023 oooz o452 nen

NaN NaN oo2es 00316 oo2os| nen naN. NaN 00022 00023 ooco21 [nen

NN naN Nan 00308 Nen nan N nNaN nNan 00023 nan Nan
(b3) (b4)

Table 3.4: Correlation results from video (b)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES

NaN
0.0680

N
v [

nan 02167 |
03815 04467 05873
NaN 02175 02687

NaN NaN 01850

NaN NaN NaN
Bl v
NanN 0460

nan oozt
00205 00234 00269
NaN 00215 00237

NaN NaN 00223

NaN NaN NaN
Bl v
NaN o070

nan o976 [
03777 04262 05680
NaN 01992 02557

NaN NaN 01344

NaN NaN NaN
Bl -
NaN o500

nan <0001 |
<0001 00020 00029
NaN <0001 <0001

NaN NaN <0.001

NaN NaN NaN
- NaN NaN
= T

nan ocozs |
00512 01020 02475
NaN 00866 01723

NaN NaN 01103

NaN NaN NaN
B v e
NanN 0320

nan ooss2 [
00281 00594 0.1485
NaN 00503 01023
NaN NaN 00641
NaN NaN NaN

00448 NaN| NaN NaN
00531 00601 NaN NaN
00212 00464 00598 NaN
1 00148 00321 00369
o2 oos01 wan
02565 oissof | nen
o272« naN nan
(c1)
04587 NaN| NaN NaN
04605 04612 NaN NaN
04580 04504 04603 NaN
1 04563 04590 04618
oo o450 wan
00zs oo2i I nen
00230 naN nan[EE
(¢3)

NaN
04443

nan 00301 [
00396 00446 00520
NaN 00393 00434

NaN NaN 00405

NaN NaN NaN
Bl -
™

nan o00tc |
00012 00016 00019
NaN 00015 00016
NaN NaN 00015
NaN NaN NaN

Table 3.5: Correlation results from video (c)

00306 NaN NaN NaN
00566 00735 NaN NaN
00122 00359 00499 NaN
1 00064 00142 00158
ossos| I o052 wan
o219 ousof I ren
o270 nan nan[
(d1)
05017 NaN NaN NaN
05031 05031 NaN NaN
05019 05010 05022 NaN
1 05003 05014 05029
ooozi [o502 wan
<0001 <0ovi I nen
00013 nNan nan[
(d3)

TN
wan [

NaN
0.5000

nan 00022 |
00048 00057 00083
NaN 00022 00030

NaN NaN 00012

NaN NaN NaN
Bl v
™ R

nan <0001 [
<0001 <0001 <0001
NaN <0001 <0001
NaN NaN <0001
NaMN NaMN NaN

Table 3.6: Correlation results from video (d)

02628 NaN| NaN| NaN
02108 02454 NaN NaN
00556 01592 02666 NaN
1 01023 02524 02980
ozoosj I o252 e
o129 oz nen
00895 nNan Nan[
(e1)
03441 NaN| NaN NaN
03010 03208 NaN NaN
01310 02547 03509 NaN
101926 03397 03699
oS 0z nan
ooss0 coro[I ren
00522 nNan nan[
(e3)

Y
wan [

NaN
03113

nan 00744 |
00390 00805 0.1995
NaN 00683 0.1381

NaN NaN 00872

NaN NaN NaN
B v
NaN 04605

nan 00060 [
00029 00063 00157
NaN 00052 00108
NaN NaN 00065
NaN NaN NaN

04415 NaN NaN NaN
04431 04454 NaN NaN
04354 04430 04445 NaN

104307 04377 04421
ooso7 [044+ nan
00434 oo nen
00e7z NN nanj

(c2)

04945 NaN NaN NaN
04953 04963 NaN NaN
04952 04944 04957 NaN

1 04944 04962 04965
ooots I o450 nan
0006 oo nen
0006 nNaN nanj

(c4)

04991 NaN NaN NaN
05002 05015 NaN NaN
04956 04987 05004 NaN

1 04929 04970 0499
ooosS| I os00r wan
00024 oooz[I nen
ooozr nan nanj

(d2)

05014 NaN NaN NaN
05028 05034 NaN NaN
05028 05015 05025 NaN

1 05017 05023 05033
<o o504 nen
<0001 <0ooi I n~en
<0001 nan nan[

(d4)

03330, NaN NaN NaN
02860 03193 NaN NaN
07056 02365 03398 NaN

1 01692 03266 03599
o0 o320 nen
01137 oo nen
oor07 nNan nan|

(e2)

04669 NaN NaN NaN
04545 04638 NaN NaN
04098 04450 04681 NaN

1 04253 04665 04754
oo I o462 nan
oooss ooos1 I nen
00057 nNan nan|

(e4)

Table 3.7: Correlation results from video (e)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 42
B v nan 02609 nNen NaN NaN [nen neN 02048 NaN NaN Nan
NaN o102 01591 01935 wan| wan nan I o>t 02219 0244 man Nan
NaN o1s7o o237 oosoe 02163 Nan NaN ool ooss0 oies aaead NaN
01402 02078 03452 1 00317 01885 03015 00909 01374 02337 1 07002 02489 03242
NaNn 01987 02887 o3sOf I o027 nen naN. 01353 01962 o264 o257 nan
NaN NaN 02004 024a5 ocaedof I nen NaN. NaN 00421 oae4s oo nen
NaN NaN NaN. 01so3 naN nan[E NaN.© NaN NaN 01207 nen nan
(f1) (f2)
B v nay oozss Nen NaN o NaN [nen nNeN 04047 NN NaN NN
NaNJJBB o0z001 02670 02885 NaN Nan NaN o390 03750 0389 Nan Nan
NN ooo I 0467 02112 03036 Nan NaN oo2s [0340 03505 03048 Nan
00756 01153 0.1969 101513 02932 03539 00218 00341 00577 1 03198 03910 04204
NaNn 01140 01653 o2t o308 nan naN 00339 00403 ooes| I 04022 nan
NaN NaN 01202 01383 oo nen NaN. NaN 00364 00404 ooos nen
NaN NaN NaN 01015 naN nan[EE naN.© NaN nNaN 00205 naN nanjE
(3) (f4)
Table 3.8: Correlation results from video (f)
Bl v nen o300 neN o naN o naN [e nen o0sse NaN NaN NaN
NaN 02702 02591 02812 Wan| Nan NN 03355 03200 03467 Nan NaN
NaNn olsli I co7is oaser 0255 wan naN o2t oses 02440 03133 Nen
01755 02742 04708 1 00390 01647 02431 01356 02155 03704 1 00849 02229 02965
NaN 01474 01051 oSS 0255 wan naN 01127 o460 ot o200 nan
NaN NaN 00793 01045 ocoss4j e NaN. NaN 00538 00699 oossof | nen
nan. nNaN nano ooses nan| nan[E NaN| NaN| NaN 00291 nwan
(g1) (82)
Bl v ney oo NaN NaN NaN B neN nNaN 045100 NaN maN Nan
NaNJJ o0zes0 03593 03748 MaN Nan NN 0432 04402 04456 Nan NaN
NaN ooosSI 02052 02841 03422 nNan NaN oois7[I o037s0 03095 04228 wan
01095 01746 02997 1 01159 02525 03249 00171 00273 00460 1 03048 03794 04198
nan ooor3 onist oo o NaN nan oo141 o0o01es oo o420 NaN
NaN NaN oo420 00541 coscf nen NN, NaN 00053 00074 oooss nen
NaN NaN NaN 00213 Nan| Nan[E naN.© Nan nNaNl 00027 NaN nan
(g3) (g4)
Table 3.9: Correlation results from video (g)
B ¢ nenv o028 wen) nan wen) [~ew nen 03467 neN Nan e
NaNJ 02435 02280 02489 NaN| Nan NN 0360 03061 03180 Nan NaN
NaN 00’ cosst 01se2 02346 man NaN oussS I o4 02323 0307 e
01877 02604 04322 1 00473 01870 02614 01119 01695 03072 1 01120 02596 03152
NaN 02014 02608 o030 02128 nen NaN. 0117 oa7t1 o277 o220 wen
naN NaN o01sel o01e90 oisc+[nen naN. Nan 01031 o123 otossf nen
NaN NaN NaN 01454 nan| Nan[NaN© Nan NaNl oo7is Nan nan[
(h1) (h2)
B v nen 03753 nNen Nan NaN B new naN 04503 NaN NaN NaN
NaN o345 03380 03488 NaN Nan NN o440 04424 04473 Nan NaN
NN 011 cvev2 02ion 03360 man NaN o0t6O I oss7 04121 0435 men
00861 01325 02420 1 01458 02930 03448 00121 00189 00337 1 03444 04158 04413
NaN 00005 01316 oi67s| o032 nan NaN. 00121 00173 oo 045 nen
naNn NaN oores o0oss6 ooros[nen NN Nan 00095 00107 ooto I nen
NaN NaN NaN 00517 Nan| Nan[NaN© Nan NaNl 00062 Nan Nan[
(h3) (h4)

Table 3.10: Correlation results from video (h)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES

NaN
0.2027

____ EN
v [

nan 02157 |
02203 02917 04509
NaN 02699 0345

NaN NaN 02204

NaN NaN NaN
Bl v
NaN o0z

nan 01364 [
01433 01912 02972
NaN 01750 02190

NaN NaN 01402

NaN NaN NaN
Bl v
NaN o0o20s

nan os441
05012 05707 07069
NaN 05490 06330

NaN NaN 05401

NaN NaN NaN
Bl v
NaN o057

nan osist |
04773 05435 06731
NaN 05229 06030

NaN NaN 05147

NaN NaN NaN
- NaN NaN
NanN 01000

nan ozzos [
02828 03777 05711
NaN 03536 04526

NaN NaN 03390

NaN NaN NaN
B v
NN oo

NaN
0.1806
NaN
NaN
NaN

o133 |

0.2444 0.3766
0.2283 0.2962
NaN 02177
NaN NaN

Table 3.13: Correlation results from video (k)

© University of Pretoria

02605 NaN| nNaN NaN [N ren nen 028038 NaN NaN Nan
01732 02094 NaN NaN naN 02306 02053 02458 man Nan
00230 00889 01842 NaN NaN o7 o0oes4 01200 02158 Nan
1 00482 01605 02237 01799 02397 03723 1 00783 01963 02519
osso I 01008 nan naN. 02206 02748 o3[o247 nan
o27ss oo nen NaN. NaN 04777 02268 oisof I nen
oasss NN nan[NaN.© NaN NaN 01405 nNan nan[
(i1) (i2)
02889 nNaN nNaN NaN [ren nen 03078 NaN NaN Nan
02197 02616 NaN NaN NaN o385 03630 03874 Nan NaN
00630 01516 02282 NaN NaN oo2is[I o2s0 0331 032 Nan
100992 02127 02628 00237 00315 00487 1 02985 0352 03808
2 Y naN. 00285 00362 oo o388 nan
o179 o nen NaN. NaN 00220 00205 oo nen
o177 naN nan NaN.© NaN nNaN 00192 naN nanj
(i3) (i4)
Table 3.11: Correlation results from video (i)
00351 nNaN nNaN NaN [ren nan 00569 NaN NaN Nan
00123 00161 NaN NaN NaN oose6 00234 00279 Nan Nan
26013e-.. 00047 00176 NaN NaN o532 ecs7e. o00os 00200 man
1 719%2e-. 00122 00283 04930 05614 06952 100019 00216 00438
o7os| I o010 wan naN 05401 06227 0600 ooxr NaN
05551 oss7[I nen NaN. NaN 05315 05463 s nen
oares. nan nan[nan, Nanl naN o4ss9 nan nan[
(1) (72)
o084 nNaN nNan NaN [ven nan 0004 NaN NaN Nan
00401 00457 NaN NaN NN 0024 00484 00530 Nan NaN
00022 00168 00453 NaN NaN o2e2i [00104 00292 00624 Nan
1 00039 00354 00664 02607 02951 03618 1 00138 00507 00861
oceo [o0s2 nan NaN 02846 03264 03602 ooso+ nan
05200 ososs[I nen NN NaN 02809 o02se4 o/ nen
04542 nan naN[N NaN.© Nan NaNl 02403 NaN nan[
(i3) (i4)
Table 3.12: Correlation results from video (j)
01ss4 wen| nan wan [~ew nen 01945 neN mNan e
00835 00875 NaN NaN NN 00404 0272 01285 Nan NanN
00135 00207 00529 NaN NaN o702 o0201 o043 o0s0 man
1 00028 00440 01102 02297 03090 04721 1 00095 00797 01608
osico I oosee nan NaN. o02s05 03731 o4 o032 nen
03403 oo ren naN. NaN 02769 02860 o264 nen
02623 nan nan[NaN© NaN nNaNl 02132 Nan nan[
(k1) (k2)
02185 NaN Nan Nan BB ren nan 03844 NaN NaN NaN
01497 01509 NaN NaN NN o365 03464 03484 Nan NaN
00430 00580 01136 NaN NaN 00300 o2rs o2sss 03309 e
100213 01022 01861 00250 00344 00536 1 02455 03241 03689
07 o050 nen NaN 00316 00413 ooscof I o350 wen
02261 c2oss I nen naN. NaN 00301 00317 oo nen
01676 nNan Nan[NaN© Nan NaNl 00232 NaN nan[
(k3) (k4)

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 44

B v ney 0274 nNeN NaN o nNaN [N neN 02sm NaN NaN NaN
NN o101 01 02163 wan| wan naN I 020 0202 02322 man Nan

NaN 0317 co26s ooeas 0asa0 Nan NaN o720 0057 o1z 02013 Nan
02836 03533 04956 1 00390 01474 02124 01525 01974 02833 100713 01683 02157
naN 02000 03582 ol 0179 nen naN. 01600 01965 024 o000 nan

NaN NaN 02558 02085 oxoos[nen NaN© NaN 01203 01577 orssof I nen
NaN NaN NeN 02213 neN nan[EE NaN.© NaN NaN 01076 nen nan

(11) (12)
B v nay 02039 NN NaN o NeN [v nen 04 NaN NaN NaN

NaN 02440 02377 02655 NaN| Nan NaN 04505 04572 04654 Nan NaN
NN ot 0107 01751 02345 Nan NaN oot 0425 04408 04549 Nan
00973 01279 01895 101060 02013 02476 00101 00132 00197 1 04143 04421 04559
NaNn 01017 01264 o6 02255 nan nan. 00102 00129 ootcof I o440s nan
NaN NaN oose2 00096 cooss[nen NaN. NaN 00075 00006 oooo’[nen

naN NaN NaN 00652 NaN nan[E naN.© NaN nNaN 00059 nan nanjE
(13) (14)

Table 3.14: Correlation results from video (1)

3.5 Conclusion

We have motivated the use of a univariate AR process for a sample of stationary videos to model each
pixel in a video stream in Section 3.2, as well as discussed its covariance-stationarity. This allowed us to
make use of the test of independence between two univariate covariance-stationary times series [12], and
hence aids in the investigation of the extent to which the assumption of global independence and local
dependence holds in images.

In Section 3.3 we used the dependence structure Mt(K) (defined in Section 3.2) for K = 3 and found
the correlation and the p-value of the independence test of each pixel x; with its neighbour y; € Mt(g) for
12 different videos and averaged the results over the whole pixel domain. Furthermore, we also found the
average of the AR parameters of each time series x;.

From the results, we discovered a relationship between the assumption of global independence and
local dependence, and the average of the AR parameters of each video. Here, if the majority of the pixel
time series can be modeled with an AR(1), then the assumption holds (with exception to video (j) from
Table 3.1); and if the pixels in a video stream can be modeled with an AR(2), then the assumption will
not hold in that video.

In regards to video (j) from Table 3.1, we note that the contents of the image consisted only of the
silhouette of a tree and the sky background with clouds - these areas are also relatively large considering
the dimensions of the video as well as the size of the dependence structure (K = 3). Meaning video
(j) is comparatively less complicated than the rest of the videos, and Mt(?’) captures the full dependence
of silhouette to silhouette pixels and sky to sky pixels. This implies, on average, we rejected the null

hypothesis of independence for the whole region of Mt(s)

. Thus in an image with lower content/texture
level a larger local dependence structure could be motivated. The case of dependence in non-stationary

images will be discussed in the conclusion.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 3. AN EMPIRICAL STUDY OF DEPENDENCE STRUCTURES IN IMAGES 45

In Section 3.4 we added Gaussian noise to the sample video data and performed the correlation
analysis on the noisy videos in Section 3.4.1. The addition of noise decreased the size of the dependence
structures since the noise themselves are iid Gaussian white noise. This renders the relationship between
pixels ambiguous when the variation present within the video increases. However, the motivation of local
dependence and global independence is still clearly justified by these experiments.

In the chapter that follows, with the justification of using local dependence, we investigate the ability

of the LULU smoothers to remove various noise types in contaminated images.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Chapter 4

Noise removal in images

4.1 Introduction

In this chapter we demonstrate the efficiency of the LU LU operators in removing noise added to an image.
This research follows on from work done in [9] on one-dimensional noise removal by the LU LU smoothers.
The objectives of this study are to see the extent at which the LU LU operators restore an image that has
been contaminated by noise, as well as the level of retrieval of the noise particles added to the image. We
use the structural similarity index (SSIM) to measure the similarity of the original image to the purified
noisy image at level n of the LU LU operators as an indication of how well the image is restored [13], and

probability plots to see how the extracted noise fits its original distribution.

4.2 Analysis of noisy images

To investigate the efficiency of the LULU operators in removing noise, we first add noise distributions
with different shape properties (see Table 4.1) to the image. For each noise distribution, three noisy
images are created from f such that the signal to noise ratio (SNR) of each noisy image is either 1, 5, or
9 since these values represent the weak, medium and strong signals (according to the Rose criterion [19]).
Using the DPT with Q,, = L,U,! the noise is extracted, and both the purified image and noise at level
n of the DPT is analysed using measures SSIM (structural similarity index) and SSE (sum of squared
errors) respectively. The SSIM [13] measures the similarity between two images, « and y, where one is
the reference image and is considered to be distortion-free, is given as

(2/%#3/ + Cl)(QUﬂcy + ¢c2)

SSIM(z,y) = ,
S 7 Ry R [ey

where p, is the mean of image x, u, the mean of image y, o2 and crf, are the variances of images = and y re-

spectively, 0., the covariance between image x and y, ¢; = (0.01L)? and ¢y = (0.03L)? are used to stabilise

IThe results obtained using the DPT with Qn = L,U, and Q. = Uy Ly are similar. Thus we focus only on the former.

46

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 47

the division with a weak denominator, and L is the dynamic range (typically 2nwmber of bits per pixel _ 1)

For the noise analysis, denote the noise extracted at position (4,7) at level n of the DPT as el(;-l) =
[(I/—\LnUn)f]ij. Since its distribution is believed to be completely specified by its CDF F(x), we have that
F (eg?)) is uniformly distributed over the interval [0,1]. Thus a measure to see how well the extracted

noise fits its orginal distribution, we find the SSE defined as

N ok — (2

SSE™ = 3" (N —F (%))
k=1

where N is the total number of pixels, and 6% are the ordered noise observations.

The properties of distributions of the different noise used are displayed in Table 4.1. As we can see,

except for the Rayleigh and exponential distribution, we can set the mean of each distribution to zero.

2

The parameters for these distributions are then obtained by setting the variance equal to o7 ;..

and solving
them accordingly in the SNR formula:

SNR _ ,usignal)

Onoise

For the Rayleigh and exponential distribution, the parameter o (Rayleigh) and 6 (exponential) are also
obtained in the same way. However, because the support of these distributions are positive, we shift the
Rayleigh and exponential variates by subtracting their respective medians to simulated noise, in order
for positive and negative noise to be simulated. This is required since the LU LU operators smooth from

below and above.

PDF z Support E[X] var(X)
1. Uniform flz) = ﬁ . a<z<b aT_;,_b (bzg)2
2. Normal f(x) = 217”7 -2 = =E | —oco<z <00 7 o?
3. Logistic flz) = s(lj—%z)? b= x;/t 00 <z < 50 523712
4. Rayleigh flz) = %6—12/202) 2> 0 7\/Z 47 52
5- Gumbel f(q;) = %e_(z"’_e) z = xgy‘ —0o < x <00 /’L + B,y 2 %ﬂQ
6. Exponential | f(z) = se=*/? . x>0 0 62

Table 4.1: The distributions of the noise added to images.

A graph for the pdfs of the different noise types is given in Figure 4.1. We see that the uniform, normal,

and logistic distributions are symmetric about the mean, and the rest are skewed to the right.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 48
1 . y T
Uniform
0.9 Normal H
Logistic
0.8 Rayleigh H
Gumbel
0.7 Exponential H
06 A
051 1
0.4r \ 1
0.3f A
0.2¢ b
01¢F ' b
0 J | 1 1
-3 -2 -1 0 1 2 3

Figure 4.1: Probability density functions of noise distributions with standard deviations all equal to 1.

The algorithm for this study is given as follows:

1.

Specify SNR as 1, 5 or 9.

. For an image f : m x n, populate a vector u : mn x 1 with independent uniform variates using the

LCG (see step 2 of the algorithm in Section 3.4).

. For each noise distribution, transform the uniform variates into random numbers from the respective

noise distribution:

o If the distribution is Gaussian, use the Box-Muller algorithm (see step 3 of the algorithm in

Section 3.4).

e For other noise types in Tables 4.1, use the inverse transform method [34] to obtain variates

from the required distribution. This is done as follows:

(a)

Set E[X] equal to zero and solve for the unknown parameters by setting var(X) equal to the
required variance of the noise content in the image. That is, set var(X) = 02 ;.. = SNRuy
and solve for the unknown parameter. Note that because the F[X] and var(z) of the
Rayleigh and exponential distribution depends on the same parameters, their variates are
obtained by solving for the required parameter through var(X) (without setting E[X] = 0).
For each element u; in u, compute z; = F~'(u;). If the distribution is Rayleigh or

exponential, shift the variate z to the left by the median of the distribution such that 50%

of the variates lie above and below 0.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 49

4. Add the noise to the original image f. Note that because the simulated noise are from continuous
distributions with (bi) infinite support, the noise contaminated f needs to be discretized and set

such that the maximum of any element within f is 255 and minimum 0.

5. Smooth the noisy images of f with Q,, = L, U,,.

4.3 Application

The study is performed on the same video dataset as in Figure 3.2 of Chapter 3. However, instead of
using the whole video stream, only a single frame is selected for the analysis. Each image is resized to
contain 270 x 384 pixels for comparison of results. First we look at the total variation as each image is

smoothed by the LULU operators.

4.3.1 Total variation plots

The total variation of an image f is given by [2]:
TV(f) = Y (f@ijer) = Fl@)l+ 1 f(@ig1) — Fl@i)))-
(i,5)€2?

The properties of total variation stated in Results 2.3 - 2.5 in Chapter 2 are preserved in two dimensions.

In Figures 4.2 to 4.13 the proportion of total variation (y-axis) retained at level n (z-axis) of the DPT
is shown. Since the required number of levels to fully decompose the noisy images is n = 103680, the linear
z-axis has been changed to the natural logarithm of the original n values. Furthermore, reference lines
are included in each figure to indicate the proportion of the total variation of the original image to the
total variation of the noisy image for different SNR values. For each line the point where the horizontal
section meets the y-axis indicates the proportion of the total variation of the original image to the total
variation of the noisy image and, for that same line, the point where the vertical section meets the a-

axis indicates the required level In(n) of the DPT to reach the original total variation from the noisy image.

For all total variation plots we can see a disproportional relationship exists between the total variation
of a noisy image and the ny, level of the decomposition. This is expected since the LU LU operators do
not increase variation in the process of smoothing [2] and is consistent in the decomposition.

Furthermore, there is a tendency for the total variation of images with strong signals to be the largest,
and the total variation of the images with weak signals to be the smallest. Since these plots show the
proportion of total variation retained with their respective noisy images, it does not necessarily show that
strong signals have larger total variation than weak signals, however, it does imply that strong signals
behave the best and weak signal the worst in terms of smoothing possibility. The reason is that images with
strong signals retain most of the information in the original image and so contains much more information

than the rest. That is, it can withstand the decomposition and retain more variability because it is less

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 50

sparse. Images with high noisy content are subjected to pixel value limits (minimum 0 and maximum
255) and so appear to have less ‘true’ variation than that of the images with strong signals.

Lastly, the decaying rate of the total variation is fast for the first few n levels and then slows down for
the remainder of the process (recall the z-axis is the natural logarithm of the n*® level of the decompo-
sition). This implies that most of the variation is contained within small pulses. However, this may also

be due to image size and content.

The proportion of the original total variation to the total variation of their noisy counterparts may be

explained in two parts, their values may be found in Table 4.2:

e Consider the total variation plots of images (a) to (d). We can see that for these images the level
n required to achieve the original total variation is spread out amongst the signal strength. Most
notably, the noisy images with strong signal require less decomposition than the others to reach

original total variation, while the weak signals require the most.

e For images (e) to (1), we see that the total variation of the original image can be reached after one

application of LULU operators (L1U;) for medium and strong signals.

It should be noted that images (a) to (d) are obtained from an internet source, while images (e) to (1)
are otained by the author. Therefore, a difference in results with respect to image sources imply that the
way in which the images are obtained influence results. For example, images (a) to (d) are downloaded

from the internet, and so have most likely gone through processes of cleaning, compressing, and editing.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

SNR | (@) |) | @ | @ | |®|@| o066
g 1 140 | 3096 | 663 | 1657 | 12 7 11 11 | 11 5 13 | 27
;g 5 11 239 64 66 1 1 1 1 1 1 1 2
- 9 5 95 26 27 1 1 1 1 1 1 1 1
~ 1 81 | 2122 | 429 683 8 5 8 7 8 4 8 | 17
E 5 8 167 49 49 1 1 1 1 1 1 1 1

9 3 70 20 21 1 1 1 1 1 1 1 1
© 1 72 | 1852 | 408 549 7 4 7 6 6 3 7115
'%0 5 7 137 43 42 1 1 1 1 1 1 1 1
- 9 3 61 19 19 1 1 1 1 1 1 1 1
< 1 87 | 1751 | 424 832 8 5 8 7 8 4 9| 18
% 5 8 162 50 H4 1 1 1 1 1 1 1 1
= 9 3 69 20 21 1 1 1 1 1 1 1 1
= 1 72 | 1524 | 345 583 7 4 7 6 7 3 71 16
g 5 7 137 42 42 1 1 1 1 1 1 1 1
° 9 3 59 19 18 1 1 1 1 1 1 1 1
g 1 59 | 1392 | 287 464 5 4 5 5 6 4 6| 12
§ 5 6 102 34 34 1 1 1 1 1 1 1 1
LE 9 2 46 14 14 1 1 1 1 1 1 1 1

Table 4.2: The required level of DPT to reach original total variation from noisy image.

© University of Pretoria

51

Total Variation

Total Variation

08

0.6

04

0.2

0.8

0.6

0.2

T T T T T
!
\ Weak
i = = = Medium | |
t Strong
S W_ref
L% M_ref ||
S_ref
s PN I ==
0 2 4 6 8 10 12
log(n)
Uniform
T T T T T
E Weak
iy — = = Medium | |
i Strong
i W_ref
L % M_ref
S_ref
Qe
} P I e——
0 2 4 6 8 10 12
log(n)

Rayleigh

Total Variation

Total Variation

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

1 T T T T
tﬁ Weak
\ — = = Medium| |
0814 Strong
i\ W_ref
06k N\ M_ref ||
N S_ref
A
04t —
02f QS ~ e 1
o P S ——
0 4 6 8 10 12
log(n)
Normal
1 r - - -
i Weak
\ — = = Medium | |
08 -"g Strong
H W_ref
o060 M ref
W\ S_ref
A\
04f 4
02 o~ = - |
0 4 6 8 10 12
log(n)

Gumbel

Figure 4.2: Total variation removed at each level of DPT for

© University of Pretoria

Total Variation

Total Variation

E'E Weak
1 — = = Medium | |
0813 Strong
“K W_ref
06" M_ref | |
. A\ S_ref
N
04F b
02F L 1
0 e ——
0 4 6 8 10
log(n)
Logistic
1 T T T T
iy Weak
— = = Medium| |
08 Strong
W_ref
06k M_ref | |
R\ S_ref
—_—
\
04f A 1
02 A T R
0 I . —
0 4 6 8 10
log(n)
Exponential

video (a) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

44

Total Variation

Total Variation

Fag
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

1 T T T T 1 T T T
Weak ‘Weak
o8l — = = Medium | | 08 — = = Medium| |
,,,,,,, Strong - Strong
W._ref < W_ref
06 M_ref | | % 06 M_ref ||
. S_ref H . S_ref
s
04 B S04 —
5
]
02 1 02]
0 0 =
12 0 2 4 6 8 10 12
log(n)
Uniform Normal
T T T - - - - -
Weak Weak
— = — Medium| | — = = Medium | |
Strong Strong
W_ref c W_ref
M_ref % M_ref
S_ref 2 S_ref
s
s
] 3]
k]
=
0 T
0 2 12 12

Rayleigh

Figure 4.3:

log(n)

Gumbel

Total variation removed at each level of DPT for

© University of Pretoria

Total Variation

Total Variation

1 T
Weak
08 = = = Medium| |
— Strong
W_ref
06 M_ref | J
S_ref
0.4]
0.2 1
0 N
10 12
r T T T
Weak
— = = Medium| |
Strong
W_ref
M_ref
S_ref
0 n
0 2 12

Exponential

video (b) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

€¢

Total Variation

Total Variation

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

1 : v : : . : : v 1 " : : T :
Weak ‘Weak E‘i Weak
— = = Medium | | — = = Medium | | osh — = = Medium| |
—————— Strong - Strong \ - Strong
W_ref < W_ref c i W_ref
M_ref | | 2 M_ref || L el © Mref ||
5 5 0.6
S_ref £ S_ref < S -« S_ref
> > M\
. 1 T 1 Toar T 1
. g g -
S = = R T—
0.2 - R 1 0.2 q\]
0 L 0 L 0 -
0 2 12 0 2 12 0 2 12
log(n)
Uniform Normal Logistic
1 : : : : : : : 1 : : : : :
‘-E Weak Weak i Weak
osh — = = Medium| | ~ = = Medium| | osh ~ = = Medium| |
R Strong Strong : H Strong
W_ref < W_ref c t\ o Woref
M_ref 2 M_ref £ o6h o M_ref
5 5
S_ref £ S_ref -2 S_ref
5 5
> >
] S J S 04l i
3 5 o4
= [
g T, g 02F - T, 1
 Po——— . . ‘ P ——
12 6 8 10 12 0 2 4 6 8 10 12
log(n) log(n)
Rayleigh Gumbel Exponential

Figure 4.4:

Total variation removed at each level of DPT for

© University of Pretoria

video (c) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

24

Total Variation

Total Variation

08

0.6

04

0.2

08H

0.2

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

Figure 4.5:

Total variation removed at each level of DPT for

© University of Pretoria

T T T T 1 T T T T T 1 T T T T T
"ﬁ Weak ‘Weak Weak
14 — = = Medium| | 08 ~ = = Medium| | 08 ~ = = Medium| |
‘; —————— Strong e Strong e Strong
N W._ref < W_ref c W_ref
LW, M_ref | | % M_ref || -% M_ref | |
S_ref = S_ref H S_ref
> >
L e, J 5 J] j
N g g
;) i ==
0 2 4 6 8 10 12 12 12
log(n) log(n)
Uniform Logistic
T T T T 1 T T T T T T T T T T
i Weak Weak Weak
h — = — Medium| | — = = Medium | | — = = Medium | |
Strong Strong Strong
W_ref c W_ref c W_ref
L M_ref % M_ref -% M_ref
S_ref 2 S_ref 2 S_ref
5 5
> >
] T 1 bt 1
B B .
... [. [
S R Seme . g 0.2 S i S 1
" T PR — 0 " T~ P — o : | i m———
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
log(n) log(n) log(n)
Rayleigh Gumbel Exponential

video (d) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

Gg

Total Variation

Total Variation

o
»

o
)

o
=

o
N

0.8

0.6

0.2

Weak
Medium|
Strong
W_ref
M_ref |
S_ref

log(n)

Uniform

Weak
Medium| |
Strong
W_ref
M_ref
S_ref

Rayleigh

Figure 4.6:

Total Variation

Total Variation

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

1 T T T T T
‘Weak
08 — = = Medium| |
Strong
= W_ref
o6l Mref | |
: AN S_ref
R
R
04t —
02F 1
o | . n
0 2 4 6 8 10 12
log(n)
Normal
1 T - - - -
i Weak
08 — = = Medium | |
: Strong
H W_ref
06F M ref
R S_ref
N
N
04f 4
02f N]
o , e T
0 2 4 6 8 10 12
log(n)

Gumbel

© University of Pretoria

Total Variation

Total Variation

1 T T T T T

i Weak
08 = = = Medium| |
Strong
W_ref
06F M_ref | |
: \ S_ref
A
R
04F N X 4
02 N |
0 . T —
0 2 4 6 8 10 12
log(n)
Logistic
1 T T T T T
Weak
08 = = = Medium| |
: Strong
W_ref
06 M_ref 4
A S_ref
R
R
041) 1
02 1
. —
0 10 12

Exponential

Total variation removed at each level of DPT for video (e) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

9¢

Total Variation

Total Variation

o
»

o
)

o
=

o
N

0.8

0.6

0.2

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

Weak

Strong
W_ref
M_ref
S_ref

= = = Medium| |

Uniform

Weak

Strong
W_ref
M_ref
S_ref

— = = Medium | |

log(n)

Rayleigh

Figure 4.7:

1 | : | ! "
i ‘Weak
08 = = = Medium| |
Strong
g W_ref
< M ref
4 06 ref 14
g e S ref
s Q
- T o4f NG 1
2 N
S
S,
1 02} S, 1
0 ‘ . T
12 0 2 4 6 8 10 12
log(n)
Normal
1 : T - : :
Weak
08 ~ = = Medium| |
: Strong
s W_ref
= M_ref
5 06f L
2 NS S_ref
s %
1 Soaf N 1
g See
q 02 S, § q
0 1 L 1 ‘\"_‘.’_-k‘
12 0 2 4 6 8 10 12
log(n)

Gumbel

Total Variation

Total Variation

Weak
08 = = = Medium| |
Strong
W_ref
06F M_ref | |
: S_ref
04F 1
02 =Rz - 4
0 ‘ ‘ .
0 4 6 8 10 12
log(n)
Logistic
1 T T T T
Weak
08 = = = Medium| |
Strong
W_ref
06 M_ref 4
S_ref
041 1
02 1
0
0 12

Exponential

Total variation removed at each level of DPT for video (f) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

A

Total Variation

Total Variation

o
»

o
)

o
=

o
N

0.8

0.6

0.2

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

T T T T 1 T T r T T
i Weak Weak
g = = = Medium| | 08h = = = Medium | |
Strong Strong
- W_ref s = W_ref
L M_ref | 2 o06h M_ref ||
S_ref B S_ref
> >
F 1 T o4r N 1
5 S
S < = N ~
S~ S
r NS b 0.2 SN, 1
L 1 PR ——— —— 0 | I L T — e
0 2 4 6 8 10 12 0 2 4 6 8 10 12
log(n) log(n)
Uniform Normal
T T T T 1 T T T T T
Weak i Weak
n — = = Medium | | 08l = = = Medium | |
Strong : Strong
W_ref s W_ref
L M_ref =06 M_ref
S_ref £ S_ref
s N
> > N
+ g S04 ~ g
NS k] R
r ST 1 02 TS 1
I L i — 0 L L — =
0 2 4 6 8 10 12 0 2 4 6 8 10 12
log(n) log(n)

Rayleigh

Figure 4.8:

Gumbel

Total variation removed at each level of DPT for

© University of Pretoria

Total Variation

Total Variation

Weak
08F = = = Medium | |
Strong
W_ref
06F M_ref | |
: S_ref
04F b
02F SN 1
0 L PR —
0 4 6 10 12
log(n)
Logistic
1 T T T
Weak
08 M = = = Medium| |
Strong
W_ref
06 M_ref 4
S_ref
04 1
02 b
0
0 12

Exponential

video (g) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

8¢

Total Variation

Total Variation

o
»

o
)

o
=

o
N

0.8

0.6

0.2

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

Rayleigh

Figure 4.9:

Gumbel

Total variation removed at each level of DPT for

© University of Pretoria

| ' ! | 1 | : | ! "
i Weak l Weak
K ~ = = Medium| | L = = = Medium| |
Strong 081 Strong
- W._ref < (et W_ref
LR Mref | | o6k Mref | |
s 06 .
R S_ref E S_ref
N s
F ¥ 1 T o4r 1
D Z .
NG
r AN b 0.2 NS 1
‘ . ‘ —— 0 . ‘ ——
0 2 4 6 8 10 12 0 2 4 6 8 10 12
log(n) log(n)
Uniform Normal
: T : : 1 : T - - -
Weak i Weak
:‘T — = = Medium | | . — = = Medium | |
1 Strong A Strong
1 W_ref s H W_ref
L M_ref 2 06h M_ref
S_ref 2 S_ref
5
>
H 1 Soaf < 4
= <
NS J<
r NS b 02f N 1
. ’ —= o . . I F—
0 2 4 6 8 10 12 0 2 4 6 8 10 12
log(n) log(n)

Total Variation

Total Variation

T T
i Weak
08H = = = Medium| |
\ Strong
-i W_ref
061 Mref | |
S_ref
04f 1
02f 1
0
0 12
log(n)
Logistic
1 : . T
i Weak
08 j‘ — = = Medium| |
| Strong
= W_ref
06 M_ref 4
S_ref
04f 1
02f 1
0
0 12

Exponential

video (h) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

6S

Total Variation

Total Variation

o
»

o
)

o
=

o
N

0.8

0.6

0.2

Weak
= = = Medium| |
Strong
W_ref
M_ref |
S_ref

Uniform

Weak
— = = Medium| |
Strong
W_ref
M_ref
S_ref

Rayleigh

Total Variation

Total Variation

o
®

o
)

o
ES

o
o

0.8

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

Weak
Medium
Strong
W_ref
M_ref | |
S_ref

log(n)

Normal

Weak
Medium | |
Strong
W_ref
M_ref
S_ref

Gumbel

Total Variation

Total Variation

o
®

=4
>

1
=

I
N

0.8

0.6

0.4

0.2

= = = Medium

Weak

Strong
W_ref
M_ref
S_ref

— = = Medium| |

Weak

Strong
W_ref
M_ref
S_ref

Exponential

Figure 4.10: Total variation removed at each level of DPT for video (i) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

09

Total Variation

Total Variation

o
®

o
)

o
S

o
N

0.8

0.6

0.2

Weak
= = = Medium| |
Strong
W_ref
M_ref |
S_ref

log(n)

Uniform

Weak
— = = Medium| |
Strong
W_ref
M_ref
S_ref

log(n)

Rayleigh

Total Variation

Total Variation

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

1 B | . B
‘Weak
08l - = = Medium| |
Strong
W_ref
osk Mrer |]
: S_ref
04F . J
RS
02f e J
o . . i
0 4 6 8 10 12
log(n)
Normal
1 . : : -
Weak
08 — = = Medium | |
Strong
W_ref
06 M ref
S ref
04F - 4
£
S
02} T, 4
0 I 1 = n
0 4 6 8 10 12
log(n)

Gumbel

Total Variation

Total Variation

Weak
= = = Medium| |
08 Strong
W_ref
0.6 M_ref | |
S_ref
04 4
02 1
0
12
log(n)
Logistic
1 T T T T T
Weak
— = = Medium| |
08 Strong
W_ref
A M_ref
06 L 4
S S_ref
2
~ ~
04 4
02f T, 1
0 1 1 L = i—
0 2 4 6 8 10 12
log(n)
Exponential

Figure 4.11: Total variation removed at each level of DPT for video (j) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

19

Total Variation

Total Variation

o
®

o
)

o
=

o
N

0.8

0.6

0.2

Weak

Strong
W_ref
M_ref
S_ref

= = = Medium| |

Total Variation

Uniform

Weak

Strong
W_ref
M_ref
S_ref

— = = Medium | |

Total Variation

Rayleigh

Figure 4.12:

o
@

o
>

I
kS

8

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

= = = Medium

Weak

Strong
W_ref
M_ref
S_ref

Normal

— = = Medium | |

Weak

Strong
W_ref
M_ref
S_ref

log(n)

Gumbel

Total Variation

Total Variation

0.8

0.6

04

0.2

0.8

0.6

0.4

0.2

= = = Medium

Weak

Strong
W_ref
M_ref
S_ref

Logistic

— = = Medium| |

Weak

Strong
W_ref
M_ref
S_ref

Exponential

Total variation removed at each level of DPT for video (k) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

¢9

Total Variation

Total Variation

o
»

o
)

o
=

o
N

0.8

0.6

0.2

Weak

Strong
W_ref
M_ref
S_ref

= = = Medium| |

log(n)

Uniform

| —

Weak

Strong
W_ref
M_ref
S_ref

— = = Medium | |

log(n)

Rayleigh

Total Variation

Total Variation

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

1 T T T T T
1
\ ‘Weak
sl — = = Medium| |
Strong
W_ref
o6l Mref | |
: A\ S_ref
™
N
oaf| N —
X~
02L ~~ o]
0 L | I L —— =
0 2 4 6 8 10 12
log(n)
Normal
1 T - - - -
it Weak
osh — = = Medium | |
: -ié Strong
A W_ref
06F M ref
04f 4
02k 4
0

log(n)

Gumbel

Total Variation

Total Variation

0.8

= = = Medium

Weak

Strong
W_ref
M_ref
S_ref

— = = Medium| |

Weak

Strong
W_ref
M_ref
S_ref

Exponential

Figure 4.13: Total variation removed at each level of DPT for video (1) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

€9

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 64

The noise removed in each case is determined as the pulses of the DPT up until the n*" as indicated in

Table 4.2. We now look in detail at this removed noise and the smoothed images for each case.

4.3.2 Smoothed vs original images

In Figures 4.14 to 4.25 the SSIM index (y-axis) of the decomposed image at level n (z-axis) of the DPT
with the original image is shown. The SSIM is a similarity measure, thus it is preferable to have SSIM
close to 1. Note that, for all graphs, the maximum n for the SSIM calculated is such that the total
variation of decomposed image at level n is smaller than or equal to the total variation of the original
image. Thus the stop criterion is to decompose the noisy image until its total variation is as large as the
total variation of the original image. The level of DPT required to achieve maximum SSIM is displayed
in Table 4.3

For all SSIM plots, it can be seen that the set of noise distributions follows a certain order when
considering the SSIM at each level of the DPT. In descending order: exponential, logistic, Gumbel,
normal, Rayleigh, and uniform. That is, the SSIM of the purified image at level n of the DPT will always
be the largest for the exponential distribution regardless of the signal strength for any image, and similarly
for the other noise distributions.

Furthermore, there are two pairs of noise distributions that behave similarly. These pairs tend to stay
close to one another at each level of the DPT: logistic and Gumbel distribution, and normal and Rayleigh
distribution. This is most prominent in the medium and strong signaled SSIM plots of images (a) to (d)
and all the weak signaled SSIM plot of images (e) to (1).

For images (a) to (d), the SSIM for weak signals tend to increase quickly and then deteriorate slowly
in the process of decomposition. In medium and strong signals, the SSIM increases quickly and stabilises.
Furthermore, the SSIM plots of each noise distribution is well-separated from each other.

For image (e) to (1), the SSIM for weak signals increase during the initial phase of the DPT then
decreases slowly. However, the SSIM for the other signals only decreases as the decomposition furthers
on. Moreover, as the strength of the signal increases, the width of the band of distributions decreases.
This is because, as a result of high variance in noise distributions, the images with weak signals have a
lower similarity than those with medium and strong signals. That is, the variability of the noise causes

variability of image similarity.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

SNR | (a) | (b) | () | () | (&) [()| () | ()| ® |G| ® |

c| 1 | 48147 | 62|165 | 15| 1| 8| 6| 9| 1| 9|27
?‘2 5 | 18] 5020 23| 1| 1| 1| 1| 1| 1| 1|1
- 9 | 12] 27| 12| 21| 1| 1| 1| 1| 1| 1| 1|1
| 1| stjues | s 87| ol 2| 5| 5| 7| 1| 7|20
E 5 | 15 43| 18| 25| 1| 1| 1| 1| 1| 1| 1|1
9 | 10] 2|10 16| 1| 1| 1| 1] 1| 1| 1|1

o 1 | 59180 | 87| 91| 6| 2| 5| 6| 7| 1| 7|18
%o 5 | 14] 3518 20| 1| 1| 1| 1| 1| 1| 1] 2
- 9 9 21| of 15| 1| 1| 1| 1| 1| 1] 1] 1
2| 1 [80|18 |79 93] 9 2| 6| 5| 7| 2| 10|17
% 5 | 16] 38| 16| 28| 1| 1| 1| 1] 1| 1| 1| 1
= 9 | 10] 20 12| 18| 1| 1| 1| 1| 1| 1| 1|1
< | 1 60|00] 63| 98| T| 2| 5| 4] 6| 2| 7|20
% 5 | 15 43| 18| 21| 1| 1| 1| 1| 1| 1| 1| 2
N 9 9 28| 10| 16| 1| 1| 1| 1| 1| 1] 1] 1
Zi 1 | 57| 8 | 75| 66| 4| 3| 5| 4| 7| 3| 6|14
§ 5 |17] 33| 14| 26| 1| 1| 1| 1| 1| 1| 1| 2
A1 g 8 20| of 12| 1| 1| 1| 1| 1| 1] 1] 1

Table 4.3: The level of DPT required to achieve maximum SSIM.

© University of Pretoria

65

SSIM

T T

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

SSIM

60

Weak

80

100 120 140

Figure 4.14

T T

Uniform
Normal
Logistic
Rayleigh
Gumbel

SSIM

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

L n

Medium

T 1 T T
Uniform
Normal | | L
Logistic 08
Rayleigh
Gumbel | | 06k
Exponential s
7]
(2]
041
1 02F
. o . .
18 20 0 2 4

: SSIM of noisy image at each level of DPT for video (a) using LULU.

SSIM

Uniform
Normal
Logistic
Rayleigh
Gumbel

L L

1500

Weak

2000

2500 3000 3500

50 100 150

Medium

Uniform
Normal | | 081
Logistic
Rayleigh
Gumbel 4 06F
Exponential =
0
12}
4 04tf
4 02f
o . \
250 0 10 20

Figure 4.15: SSIM of noisy image at each level of DPT for video (b) using LULU.

© University of Pretoria

80 90

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

Exponential

99

SSIM

SSIM

0.8

0.6

0.4

0.2

0.8

06

0.4

0.2

T T

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

SSIM

100

200 300 400

Weak

500 600

700

Uniform
Normal
Logistic

Rayleigh
Gumbel
Exponential

L n L

L L

SSIM

600 800 1000
n

Weak

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

8

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

T T T T T T 1 T T T T T
Uniform Uniform
I togme |1 osf togme |1
Rayleigh Rayleigh
L Gumbel 4 L Gumbel 4
Exponential = 06 Exponential
S 7]
(2]
F 1 04f 1
F 1 02} 1
0 10 20 30 40 50 60 70 0 5 10 15 20 25 30
n n
Medium Strong
Figure 4.16: SSIM of noisy image at each level of DPT for video (c) using LULU.
T T T T T T 1 T T T T T
Uniform Uniform
i topme |1 o8| togme |
Rayleigh Rayleigh
Gumbel Gumbel
I] 05l]
Exponential = = Exponential
2]
(2]
7 4 04f 1
3 1 02f 1
0 10 20 30 40 50 60 70 0 5 10 15 20 25 30

L
1200 1400 1600

1800

Medium

Figure 4.17: SSIM of noisy image at each level of DPT for

© University of Pretoria

video (d) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

L9

SSIM

SSIM

06

04

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

SSIM

0.8

0.6

0.4

0.2

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

T

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

Medium

20

SSIM

0.8

0.6

04

0.2

T T

Uniform
Normal
Logistic
Rayleigh

Gumbel

Figure 4.18: SSIM of noisy image at each level of DPT for video (e) using LULU.

06

02

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

SSIM

0.8

0.6

0.4

0.2

Uniform
Normal
Logistic
Rayleigh

Medium

SSIM

0.8

0.6

0.4

0.2

20

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

Figure 4.19: SSIM of noisy image at each level of DPT for video (f) using LULU.

© University of Pretoria

20

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

89

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

SSIM

SSIM

04

T T T 1 T T T T T T T T T 1 T T T T T T T T T
Uniform Uniform Uniform
Normal] L Normal | L Normal |
Logistic 08 Logistic 08 \ Logistic
Rayleigh ————— Rayleigh Rayleigh
Gumbel | | 06l — Gumbel | | 061 Gumbel |
" - - ial [
Exponential = Exponential || = Exponential
@ — 7]
7] 2]
1 04r 1 04r 1
02 1 02 1
L . L o . . L . . L . . . o L . .
14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 10 12 14 16 18 20
n n

Medium

Figure 4.20: SSIM of noisy image at each level of DPT for video (g) using LULU.

06

0.4

02

T T T 1 T T T T T T T T T 1 T T T T T T T
Uniform Uniform Uniform
Normal | o8l Normal | o8l Normal |
Logistic Logistic Logistic
Rayleigh Rayleigh Rayleigh
Gumbel 4 o6F s Gumbel d 06k Gumbel 4
Exponential = Exponential = Exponential
7] @
7] 7]
1 04F 04f 1
02F 1 0.2F 1
L . L o . . L . . L . . . 0 L . .
14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 10 12 14 16 18

Medium

Figure 4.21: SSIM of noisy image at each level of DPT for video (h) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

69

SSIM

SSIM

0.8

06

04

T T T

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

Figure 4.22:

20

06

0.4

02

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

Figure 4.23: SSIM of noisy image at each level of DPT for

20

SSIM

SSIM of noisy image at each level of DPT for video (i) using LULU.

SSIM

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

T

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

T

Medium

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

Medium

© University of Pretoria

20

SSIM

SSIM

1 T T T T T T
Uniform
L Normal |
08 Logistic
Rayleigh
0.6 Gumbel e
Exponential
04 1
02 1
o L . . L . .
0 8 10 12 14 16 18 20
n

1 - - - - - :
Uniform
081 Normal =1 J
Logistic
Rayleigh
06 ‘Gumbel 4
Exponential
04l g
02f E
o
0 16 18

video (j) using LULU.

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

0.

SSIM

SSIM

Figure 4.24: SSIM of noisy image

1 T T T T T T
Uniform
L Normal | |
08 Logistic
Rayleigh
061 Gumbel | |
: Exponential
04 1
0.2 3
0 L . L L . L
0 8 10 12 14 16 18 20
n
Weak
1 T T T T
Uniform
oal Normal | |
Logistic
Rayleigh
06 Gumbel | |
Exponential
0.4 1
0.2 R
0 L L n L
0 10 15 20 25 30
n

Figure 4.25: SSIM of noisy image at each level of DPT for video (1) using LULU.

SSIM

SSIM

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

Uniform
Normal
Logistic

— Rayleigh
Gumbel
Exponential
2 4 6 8 10 12 14 16 18 20

Medium

Uniform
Normal
Logistic
Rayleigh
Gumbel

Medium

© University of Pretoria

SSIM

SSIM

0.8

0.6

04

0.2

0.8

0.6

0.4

0.2

T

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

at each level of DPT for video (k) using LULU.

20

Uniform
Normal
Logistic

Rayleigh
Gumbel

Exponential

20

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

12

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 72

4.3.3 Removed vs original noise

The PP plot evaluates the goodness-of-fit of a sample that is believed to follow a certain distribution
by comparing the empirical CDF of the sample to the theoretical CDF. Thus, if the sample is from
the specified distribution, then the graph with co-ordinates (F(xg.,), %), where xj., is the k™ ordered
observation from a sample size of n and F'(z) is the theoretical distribution function [39]. Here our sample
is the noise extracted at position (¢, j) at level n of the DPT as egl) = [(I — L, Uy,) flij- The level of DPT
required to achieve minimum SSE is displayed in Table 4.43.

In Figures 4.26 to 4.37 the plots of the SSE of the PP plot (y-axis) to the n'} level (z-axis) of the
DPT is shown. Note that the stop criterion is the same as that for the SSIM plots in Section 4.3.2. Since

SSE is a measure for the amount of error, it is preferable for SSE to be small.

For images (a) to (d), an ordering in SSE can be observed for five of the six noise distribution at
each level of the DPT (in ascending order): logistic, normal, Rayleigh, uniform, and Gumbel. For these
distributions, the SSE is strictly increasing and is concave. This implies that the larger the pulses LU LU
extracts from the image the less the noise resembles its anticipated distribution, however, this is true since
the noise added to the images were all independent pulses of size 1.

In contrast to its peers, the exponential distribution does not behave consistently in terms of signal
strength. For weak and medium signal strength, the shape of the SSE is concave, however, for strong
signals it is convex. Notice also that the starting SSE for each signal strength (with respect to an image)
is approximately the same. This is because the exponential pdf contains a sharp upward tail on the left
side and the noise sample is relatively symmetric (i.e. equally weighted above and below zero). This
renders the ability to mimic the cdf of the exponential distribution with only one noise sample from the

images difficult and so results in the recurring starting SSE.

For images (e) to (1), the same order exists in the weak signal SSE plots of images (a) to (d). In the
plots of medium and strong signals, it is clear that the exponential and Gumbel distributions perform

worst.

3The code used to determine the minimum SSE is written such that at least the first levels of the DPT will be run to
capture a range of values of the DPT and the maximum level is equal when the total variation of the noisy image is close
to the original image. That is, if the level of DPT required to reach minimum SSE is 20, it means the PP plot improves as

the decomposition furthers on. However, this speculation is spurious as the noise simulated is of size 1.

© University of Pretoria

=

5

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

SNR | (a) | (b) | (c) | (d) | (e) | () | (&) | () [() |) | (&) | (1)
= 1 1) 1| 1| 1| 1| 1] 1| 1| 1| 1| 1] 1
—
2| 5 1) 1| 1| v 1| 1| 1| 1| 1| 1| 1] 1
-

9 1| 1| 1| 1| 1| 1| 1| 1| 1| 1| 1] 1
1 £ S I T T T I O N S I S B O |
<
g
5| 5 1) 1| 1| 12| 1| 1| 1| 1| 1| 1] 1
Z.

9 1) 1| 1| 1| 1| 1| 1| 1| 1| 1| 1] 1
o | 1 /" S I T T T I O R A S B A |
B 5 1) 1| 1| t|l2| 1| 1| 1| 1| 1| 1] 1
—

9 1) 1| 1| 1| 1| 1| 1| 1| 1| 1| 1] 1
=] 1 1) 1| 1| 1| 1| 1] 1| 1| 1| 1| 1] 1
20
]

5 1) 1| 1| 1/20| 1] 2] 2020 1|2 1
/"

9 1) 1| 1| 1| 5| 2| 7| 5| 9| 2[10] 1
— | 1 1) 1| 1| v 1| 1] 1| 1| 1| 1| 1] 1
£
g1 5 1| 1| 1| 1/20| 1] 20| 20[20| 1|20 1
S

9 1| 1| 1| 1| 4| 7] 6| 3| 8| 1| 1020
21 1) 1| 1| 1| 1| 3] 1| 1| 1|18[1] 1
=)

)
g1 5 2| 2| 2| 2| 5[20| 20| 20|20 |20 1920
(o)
"
M9 |20 3|19 2| 1|13| 8| 14| 6]20| 7|20

Table 4.4: The level of DPT require to acquire minimum SSE of noise sample.

© University of Pretoria

7000 T T T T T T
Uniform | |
6000 Normal
Logistic
5000 Rayleigh
Gumbel
w 4000 Exponential | |
@
3000 1
2000 1
1000 ,
o
0 20 40 60 80 100 120 140

Weak

Figure 4.26:

Uniform
Normal
Logistic | 4

@
@ 4000

Rayleigh
Gumbel
Exponential

0 500 1000 1500 2000

Weak

2500 3000 3500

Figure 4.27:

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

3500 T T T T T T T T T
| Uniform ||
3000 Normal
Logistic
2500 - Rayleigh |
Gumbel
L 2000 Exponential [
@
1500 -
1000 1
500 - 1
o . . \ . , , . . .
0 2 4 6 8 10 12 14 16 18 20

Medium

SSE of noise at each level of DPT for video (a) using LULU.

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

0 50 100 150 200 250

Medium

SSE of noise at each level of DPT for video (b) using LULU.

© University of Pretoria

2500 T T T T T T T T T
Uniform
2000 - Normal | |
Logistic
Rayleigh
1500 [Gumbel 4
w Exponential |_|
2]
(2]
1000 [~
500 [
0 2 4 6 8 10 12 14 16 18 20
n
Strong
3500 T T T T T T T T T
Uniform | |
3000 Normal
Logistic
2500 Rayleigh | |
Gumbel
L 2000 Exponential | |
?
1500 1
1000 1
500 1
0 10 20 30 40 50 60 70 80 920 100
n

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

V.

Uniform
Normal
Logistic
eyl
Gumbel
Exponential | |
o ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700
n
Weak
Figure 4.28:
7000 T T T T T T
Uniform | |
6000 Normal
Logistic
5000 Rayleigh |
Gumbel
w4000 Exponential | |
@
3000 1
2000 1
1000 q
0 200 400 600 800 1000 1200 1400 1600 1800

Weak

Figure 4.29:

8

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

3500 T 2500 T T T T
niform | | Uniform
3000 Normal 2000 Normal |
Logistic Logistic
2500 Rayleigh | Rayleigh
Gumbel Gumbel
1500 [
Ly 2000 ")
@ ?
1500 1 1000 1
1000 1
500 [1
500 1
. . . . ‘ ‘ ‘ . ‘ ‘ , ‘
0 10 20 30 40 50 60 70 0 10 15 20 25 30
n
Medium Strong
SSE of noise at each level of DPT for video (c) using LULU.
4000 T T T T T T 2500 T T T
Uniform Uniform
Normal 2000 Normal |
3000 Logisic | Logistic
Rayleigh Rayleigh
Gumbel 1500 F Gumbel 4
W Exponential w Exponential
@ 2000 [- 4
%]
1000 [b]
. ‘ . . ‘ ‘ , ‘
0 10 20 30 40 50 60 70 0 10 20 25 30

Medium

SSE of noise at each level of DPT for video (d) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

G

SSE

SSE

4500
4000 [~
3500
3000
2500
2000
1500 [

1000 [~

500

T T T T T

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

4000

Figure 4.30:

3500

3000

2500

2000

1500 [~

1000 [~

Uniform
Normal
Logistic
Rayleigh
Gumbel 1
Exponential | 7|

500
0

Figure 4.31:

Fag
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

—_— - T - . - - . 2500 - - - - - v - r .
1800 Uniform | | Uniform
Normal L Normal ||
Logistic 2000 // Logistic
Rayleigh Rayleigh
1000 Gumbel | 1500 Gumbel | |
W Exponential w Exponential
a @

(2]
—\ 1000 - .

500 [

Medium Strong

SSE of noise at each level of DPT for video (e) using LULU.

g
SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

1400 T T T T r T T r T 1400 r T T T T T T T T
L Uniform | | L Uniform | |
1200 Normal 1200 Normal I
Logistic (| Logistic
1000 [~ Rayleigh | | 1000 - Rayleigh |]
Gumbel Gumbel
W 800 Exponential [w 8001 Exponential |]
@ 2
600 - 1 600 - 1
400 - B 400 1
200 - —— — 200 3
S = . Sm—
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
n

Medium Strong

SSE of noise at each level of DPT for video (f) using LULU.

9.

© University of Pretoria

4000 : ! ! : : ! ; : !
i Uniform | |
3500 Normal
Logistic
3000 [Rayleigh
Gumbel
w 2500 Exponential |-
i —
2000 - E
1500 1
1000 | 7 B
500 - I L 1 I L 1 I L 1
0 2 4 6 8 0 12 14 16 18 20
n
Weak
Figure 4.32:
4000 T : T r : : - - :
i Uniform | |
3500 Normal
Logistic | |
3000 |- Rayleigh | |
Gumbel
L 2500 F Exponential]
@ =
2000 -
1500
1000
500 - I L 1 I L 1 I L 1
0 2 4 6 8 0 12 14 1 18 20
n

Figure 4.33:

Fag
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

1500 T T T T T T T T T T T T r T T T T T
Uniform 1800 Uniform ||
Normal Normal
Logistic Logistic
L Rayleigh || Rayleigh
1000 Gumbel 1000 [Gumbel | |
w Exponential w Exponential
2] 2]
2] (2]
N ————
500 1 1 500 1
L= ‘ i : ‘ ; ‘ ‘ ‘ -——— : T ‘ ‘
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Medium Strong

SSE of noise at each level of DPT for video (g) using LULU.

1500 T T T T T T T r T 1500 T T T T T T T T T
Uniform Uniform
Normal Normal | |
Logistic | | Logistic
1000 F Rayleigh | | 1000 F Rayleigh |
Gumbel Gumbel
w f— H w Exponential
0 2] —!
» (2] /
500 - 1 500 - 1
0 — L L L L L L L L 0 T T L n L L
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
n

Medium Strong

SSE of noise at each level of DPT for video (h) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

L

SSE

SSE

4000 : ! ! : : ! ; : !
i Uniform ||
3500 Normal
Logistic
3000 - Rayleigh ||
Gumbel
2500 Exponential ||
2000 R
1500 1
1000 [g 1
500 - I L 1 I L 1 I L 1
0 2 4 6 8 0 12 14 16 18
n
Weak
Figure 4.34:
3000 . . : : . ! . : v
Uniform ||
2500 F Normal 1
Logistic
Rayleigh
2000 - Gumbel ||
Exponential
1500]
1000 “ 1
500
0 2 4 6 8 0 12 14 16 18
n

20

Figure 4.35:

Fag
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

1500 T T T T T T T T T
Uniform
Normal
Logistic ||
L Rayleigh | |
1000 Gumbel
w _—] Exponential
[}
17}
500 - 1
0 /\ L 1 L L I L L L .
0 2 4 6 8 10 12 14 16 18 20

Medium

SSE of noise at each level of DPT for

1500

1000

SSE

500

T T

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

video (i) using LULU.

1400 T T T T T T T r T
L Uniform [
1200 Normal
Logistic
1000 Rayleigh | |
Gumbel
W 800 Exponential | 7
@
600 - 1
400 - :
200 - — 9
o
0 2 4 6 8 10 12 14 16 18 20

Medium

1400

1200

1000

20

Uniform
Normal
Logistic
Rayleigh

Exponential

SSE of noise at each level of DPT for video (j) using LULU.

© University of Pretoria

20

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

8L

SSE

SSE

4500
4000
3500
3000
2500
2000
1500
1000

500

5000

4000

3000

2000

1000

T T T

Uniform
Normal
Logistic
Rayleigh
Gumbel

Exponential

Figure 4.36:

Uniform
Normal
Logistic
Rayleigh
Gumbel
Exponential

30

1000

SSE

2000

bt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quf YUNIBESITHI YA PRETORIA

T T T T T T T T T 1500 T T T T T T T
K Uniform Uniform
Normal | | Normal
Logistic Logistic
L Rayleigh 4 1 L Rayleigh 4
Gumbel 000 Gumbel
-_ | Exponential w Exponential
2]
(2]
F 1 500 - 1
— ’\ L L L L L L L L 0 — T
0 2 4 6 8 10 12 14 16 18 20 0 2 8 10 12 14 16 18 20
n n
Medium Strong
SSE of noise at each level of DPT for video (k) using LULU.
T T T T T T T T T 1400 T T T T T T T
Uniform L Uniform | |
Normal | | 1200 Normal
L Logistc | 4 Logistic |
Rayleigh 1000 - Rayleigh |]
Gumbel - Gumbel
Exponential w 800 - Exponential [
® 600 g
| 400 E
200 F B E
L L L L L L L L L 0 -1 1 L L 1 L L
0 2 4 6 8 10 12 14 16 18 20 0 2 12 14 16 18 20

Medium

Figure 4.37: SSE of noise at each level of DPT for video (1) using LULU.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

6.

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 80

4.3.4 PP plots for extracted noise samples with minimum SSE

In Figures 4.38 to 4.49 we plot the PP plots for nt" level of the DPT which yields the lowest SSE. That
is, the graphs show the best possible PP plots attainable throughout the decomposition of the noisy images.

In general it can be seen that the PP plots with weak signals struggles to match its original distribution
and that the performance of noise from images with medium and strong signals are the same. Furthermore,
the PP plots of the noise from weak signals are smooth, this is followed by the noise from medium signals,
and lastly the noise from strong signals possess a ‘block’ quality about its PP plots. This is because when
we consider the range of values the weak, medium, and strong signals can possess and the fact the noise is
discretized, the noise from weak signals have a larger range (because of a larger variance) than the noise

from strong signals, thus its ‘block’ feature is masked when the PP plot normalises percentile values to [0,1].

In terms of distributions, the PP plots of the noise from symmetric distributions are more linear
than those of asymmetric distributions. Which implies that the LULU operators extract noise more
effectively for distributions which have equal weights in values below and above zero. There are however
alternative compositions of L,, and U, available, see [14]. Their ability for smoothing in such cases should

be investigated.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES

0871

087

087

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Weak g
= = = Medium | /|

Strong

Uniform

Weak j
= = = Medium|" |
Strong

0.6 0.8 1

0.2 0.4 0.6 0.8 1

Logistic

= — — Medium

Strong
/

Weak J

Gumbel

0.6 0.8 1

0871

Weak j
= = = Medium" |

Strong

0.2

0.4 0.6 0.8 1

0
Normal
1
Weak
= = = Medium
08 Strong
3
o
06 g

0.4 0.6 0.8 1

Rayleigh
1
Weak
— = — Medium

08 Strong ‘J
06
047
0.2

0 ‘‘‘‘‘‘‘ ' i L L

0 0.2 0.4 0.6 0.8 1

Exponential

Figure 4.38: PP plot with minimum SSE for video (a) using LULU.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 82
1 T 1
Weak j Weak }
= = = Medium = = = Medium
08¢ Strong] 08¢ Strong]

/ 1 06}
y

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Uniform Normal
1 T 1 1
Weak) Weak ,«.
= = = Medium = = = Medium J,
08 Strong 08 Strong

i

0.6 0.8 1 0.6 0.8 1

Logistic Rayleigh
1 ! 1 !
Weak | Weak | |
08l — — — Medium|" | 08l — — — Medium| |
: Strong : Strong |
-
06} P 1
0.4 /
4
7
02 j'
A
1
Vi
. . R —4
0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Gumbel Exponential

Figure 4.39: PP plot with minimum SSE for video (b) using LULU.

© University of Pretoria

CHAPTER 4. NOISE REMOVAL IN IMAGES

0871

087

087

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Weak |*
= = = Medium |/ |

Strong

0.4 0.6 0.8 1

Uniform

Weak y
= = = Medium[|

Strong

0.4 0.6 0.8 1

Logistic

Weak y

= — — Medium

Strong

Gumbel

0.4 0.6 0.8 1

0871

06}

087

087

06}

Weak j
= = = Medium{" |
Strong

s

0.6 0.8 1

Normal

Weak
= = = Medium
Strong

A

0.2 0.4 0.6 0.8 1

Rayleigh

Weak

= — — Medium

Strong
>

0.6 0.8 1

Exponential

Figure 4.40: PP plot with minimum SSE for video (¢) using LULU.

© University of Pretoria

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

1] 1
J K
Weak) Weak)
= = = Medium = = = Medium
08 Strong 08 Strong

0
Uniform Normal

1 T 1 1
P |
Weak) Weak /
= = = Medium - Medium)

08 Strong 08 Strong

06 /

Logistic Rayleigh
1] 1
Weak) Weak
= — — Medium = — — Medium
08 St] 08 3
rong Strong
e g
06t /
g
04rf ;"(
0.2¢F
A
. . , . 0 L . . , .
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.6 0.8 1

0.2 0.4 0.6 0.8 1

Gumbel

0.4 0.6 0.8 1

0.6 0.8 1

Exponential

Figure 4.41: PP plot with minimum SSE for video (d) using LULU.

© University of Pretoria

84

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

1 7 1
Weak 7 Weak)
= = = Medium = = = Medium
08 Strong 08 Strong

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Uniform Normal
1 T T y 1 ;
Weak / Weak)
= = = Medium = = = Medium
08 Strong 08 Strong

06}

0 0.2 0.4 0.6 0.8 1

Logistic Rayleigh
1 T 1
1
Weak) Weak |7
— — — Medium | | | — — — Medium |/
Strong 08 Strong J

0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
Gumbel Exponential

Figure 4.42: PP plot with minimum SSE for video (e) using LULU.

© University of Pretoria

85

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

1 T i 1
Weak
= = = Medium
0.8 Strong 0.8
]

Weak
= = = Medium
Strong

0 0.2 0.4 0.6 0.8 1 0 0.2

0.4 0.6 0.8 1

Normal

Uniform
1 T T T T 7 1
Weak /
= = = Medium
0.8 Strong 0.8

Weak |/
- Medium/

Strong
L

0.6 0.8 1 0 0.2

0.4 0.6 0.8 1

Rayleigh

Logistic
1 T T - 1
I
Weak j
= — — Medium
0.8 Strong 0.8

0 0.2 0.4 0.6 0.8 1

Gumbel

Weak
= — — Medium
Strong

0.6 0.8 1

Exponential

Figure 4.43: PP plot with minimum SSE for video (f) using LULU.

© University of Pretoria

86

CHAPTER 4. NOISE REMOVAL IN IMAGES

0871

087

06}

087

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

Weak I
= = = Medium |/ |

Strong

0.2 0.4 0.6 0.8 1

Uniform

7
Weak
= = = Medium| |

Strong

Logistic
7|
Weak)
— — — Medium{ |
Strong

0.6 0.8 1

Gumbel

0.6 0.8 1

0871

087

06}

087

7

v

Weak /

= = = Medium{" |
Strong

0.2 0.4 0.6 0.8 1

Normal

~1

Weak
= = = Medium
Strong

0.6 0.8 1

Rayleigh
/|
Weak (
— = — Medium
Strong P
1

Exponential

Figure 4.44: PP plot with minimum SSE for video (g) using LULU.

© University of Pretoria

87

0871

087

087

=

8

CHAPTER 4. NOISE REMOVAL IN IMAGES

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Weak
= = = Medium
Strong

0.6 0.8

Uniform
Weak
= = = Medium
Strong

0.6 0.8

Logistic

Weak
= — — Medium
Strong

AN

0.6 0.8

Gumbel

© University of Pretoria

0871

087

06}

087

Weak
= = = Medium
Strong

0.6 0.8

Normal
-1
Weak
= = = Medium
Strong
>
-
0.6 0.8
Rayleigh
Weak
= — — Medium
Strong

0.8

Exponential

Figure 4.45: PP plot with minimum SSE for video (h) using LULU.

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

1 1
Weak
= = = Medium
0.8 Strong 0.8

Weak
= = = Medium
Strong

/

0 0.2 0.4 0.6 0.8 1 0 0.2

0.6 0.8

Uniform Normal
1 T T T T 1
I’
Weak) Weak)
= = = Medium = = = Medium
08 Strong 08 Strong

0.6 0.8 1 0 0.2

0.6 0.8

1
Logistic Rayleigh
1 7 1 7
Weak) Weak
— — — Medium — = — Medium
S 1 087
trong Strong P,
.l"
-

0 0.2 0.4 0.6 0.8 1 0.8 1

Gumbel

Exponential

Figure 4.46: PP plot with minimum SSE for video (i) using LULU.

© University of Pretoria

89

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

1 T T T T - 1
Weak
= = = Medium
0.8 Strong 0.8

. ! 7
Weak
= = = Medium|f |

Strong

0.6 0.8 1 0 0.2

0.4 0.6 0.8 1

Normal

Uniform
1 T T T T 7 1
Weak /
= = = Medium
0.8 Strong 0.8

Weak |/
= = = Medium | /|

Strong
)

0.6 0.8 1 0 0.2

0.4 0.6 0.8 1

Logistic Rayleigh
1 T T T y 2 1 A
Weak [Weak
— — — Medium — = — Medium
08 Strong 08 Strong

0 0.2 0.4 0.6 0.8 1

Gumbel

Exponential

Figure 4.47: PP plot with minimum SSE for video (j) using LULU.

© University of Pretoria

0.6 0.8 1

90

=

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
A 4

YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES

1 T T T T 7 1
4
Weak /
= = = Medium
0.8 Strong 0.8

Weak
= = = Medium

Strong

0.6 0.8 1 0 0.2

0.4 0.6 0.8

1
Uniform Normal
1 T y 7 1 7]
Weak / Weak
= = = Medium = = = Medium
08 Strong 08 Strong
7
o
06
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Logistic Rayleigh
1 T 7 1 7
Weak) Weak |/
= — — Medium = — — Medium
08 Strong 08 Strong | J
/ /
0.6 0.8 1 0.8 1

Gumbel

Exponential

Figure 4.48: PP plot with minimum SSE for video (k) using LULU.

© University of Pretoria

91

CHAPTER 4. NOISE REMOVAL IN IMAGES

0871

087

087

=

8

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Weak
= = = Medium
Strong

0.6 0.8

Uniform
7
Weak)
= = = Medium|" |
Strong

0.6 0.8

Logistic
Weak d
— — — Medium[” |
Strong
e

0.6 0.8

Gumbel

© University of Pretoria

0871

087

087

7
Weak
= = = Medium}/ |

Strong

0.6 0.8 1

Normal

Weak |/
= = = Medium| /|

Strong

0.6 0.8 1

Rayleigh

Weak |/
— — — Medium |/
Strong

0.6 0.8 1

Exponential

Figure 4.49: PP plot with minimum SSE for video (1) using LULU.

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 93

4.3.5 Final observations

In Tables 4.5 to 4.16 we provide a summary of the results for n which highlight the study. For each noise

distribution and at each SNR level, we consider three criteria:

1: The n'* level of the DPT which yields the total variation closest to the total variation of the original

image.
2: The n'? level of the DPT which yields the smallest SSE for the PP plots.
3: The n'® level of the DPT which yields the highest SSIM.

In addition we include the SSE and SSIM for the corresponding n level. Ideally, the preferable outcome

is that the n which satisfies all three criteria is the same since that indicates, for some n:
e The total variation at level n is approximately the same as that of the original image.
e For that same n, the noise that is extracted matches best to the simulated noise distribution.
e Finally, for the same n, the image retrieved is most similar to the original image.

Thus, having satisified all three criterias simultaneously with the same n implies that no extra or deficit

variation resulted from the decomposition, and the noise was neither over- or under- extracted.

In general, we see that the value of SSIM increases as the signal strength increases, as well as that the
SSE of the PP plots decreases as the signal strength decreases. This is expected since the images with
weak signals contain noise with high variance which greatly distorts the original image and the retrieval
is not performed on the full noise distribution since the pixel values are limited to 0 and 255. Similarly

for the other signal strengths.

For images (a) to (d) we make the following comments:

e For weak signals, a large n is usually required to reach the original variation. For strong signals it

is the opposite.
e The level of DPT required to achieve best PP plot is 1 (except for exponential).

The implication is that the noise distributions with high variance (weak signal) inflate the total variation
more prominently than the noise distributions with small variance (strong signal). Furthermore, the level
n = 1 of DPT required to obtain the best PP plot indicates that the LU LU operators can retrieve noise
effectively since all simulated noise are of size 1.

For images (e) to (1) we make the following comments:

e For weak signals, a small n is required to reach the original variation. For the other signal strengths,

a n = 1 is sufficient.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

CHAPTER 4. NOISE REMOVAL IN IMAGES 94

e Triplets of 1’s appear consistently for:

— Uniform, SNR = 5 and 9

— Normal, SNR =9

This implies that the LU LU operators are able to effectively retrieve images with noise distributed

as uniform or normal.

The difference in the level of DPT required to reach original total variation between images (a) to (d) and
(e) to (1) shows that the way in which the data is obtained affects results as the same noise (the LCG use

for each noisy image set uses the same parameters) is used for the study.

4.4 Conclusion

In this chapter we have studied the effectiveness at which LU LU removes noise. In Section 4.2 we described
the process of adding noise to images as well as introduced measures to analyse results. For Section 4.3,
we applied the LU LU operators on a set images obtained by taking a single frame out of the video dataset
used in Chapter 3. We found that results differ with respect to the source of the image in terms of total
variation plots, SSIM and PP plots.

For total variation, it was observed that the level of DPT required to reach the total variation of the
original image from the noisy image is less for images with strong and medium signals than images with
weak signals.

For SSIM plots, depending on the source of the image, the SSIM either stabilises or deteriorates, both
at a fast rate. The variability of SSIM indices decreases as the strength of signal increases.

For PP plots, the noise obtained from images with strong and medium signal strengths matches better
than those from weak signals. Furthermore, the LU LU operators are able to retrieve noise from symmetric
distributions better than those from asymmetric distributions. Most importantly, the LULU operators
are able to extract the noise from multiple distribution types with similar effectiveness, a strong property
for a smoother. For example, linear smoothers are not able to remove noise with long tailed distributions

[36].

© University of Pretoria

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 140 4894.06 0.09 1 81 425851 0.13 1 72 4054.92 0.14

1 2 1 82851 0.6 1 2 1 577.39 0.8 1 2 1 51031 0.09

3 48 4389.84 0.10 3 31 3665.17 0.13 3 50 3965.20 0.14

z 1 11 1651.64 034]| = 1 § 132077 039 | g 1 7 114423 0.41
= 5 2 1 25202 029 % 5 2 227.45 0.32 §o 5 2 1 20937 0.4
= 3 18 191717 034 | ~© 3 15 1611.09 0.39 | - 3 14 145218 0.42
1 5 85897 0.46 1 3 49458 0.50 1 3 441.00 0.52

9 2 205.07 0.43 9 2 160.39 0.46 9 2 1 14921 0.48

3 12 1201.94 047 3 10 884.11 0.52 3 9 760.00 0.54

1 87 4280.71 0.1 1 72 623897 0.13 1 50 3659.22 0.15

1 2 1 62028 0.08 1 2 1 154329 0.09 1 2 1 1260.19 0.1

3 50 3989.05 0.11 3 60 613415 0.13 | _ 3 57 364647 0.15

% 1 8 136087 038 g 1 7 2646.96 0.0 g 1 6 1341.69 0.43
% 5 2 327.62 032 | & 5 2 1289.93 033 | & 5 2 124897 0.39
e 3 16 169330 039 | © 3 15 313031 0.1 g 3 17 1553.67 0.44
1 3 56134 0.50 1 3 1596.60 0.52 1 2 1239.86 0.54

9 2 1 26323 046 9 2 1130.70 0.47 9 2 20 114389 0.56

3 10 95250 0.52 3 9 213374 0.54 3 8 116834 0.57

Table 4.5: Summary of video (a) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

g6

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria n \ SSE \ SSIM | Noise | SNR | Criteria n \ SSE \ SSIM | Noise | SNR | Criteria n \ SSE \ SSIM
1 3096 5685.10 0.06 1 2122 5137.02 0.09 1 1852 4872.42 0.10

1 2 1 112135 0.02 1 2 1 74544 0.03 1 2 1 654.67 0.04

3 147 5453.14 0.08 3 166 5079.86 0.11 3 180 4953.02 0.13

z 1 239 2777.60 029 | = 1 167 2427.20 035 | g 1 137 2198.52 0.36
= 5 2 1 20435 021 % 5 2 128262 024 | & 5 2 1 26971 025
= 3 50 293437 031 © 3 43 251389 0.36 | - 3 35 230628 0.38
1 95 1057.64 0.42 1 70 1579.94 0.47 1 61 1402.83 0.49

9 2 1 26499 0.34 9 2 1 22647 037 9 2 1 21230 0.39

3 27 1986.04 0.43 3 26 1634.10 0.49 3 21 143546 0.50

1 1751 5206.13 0.09 1 1524 7361.00 0.10 1 1302 4672.65 0.1

1 2 1 813.18 0.3 1 2 1 167326 0.04 1 2 1 121562 0.05

3 118 4990.02 0.11 3 100 6978.76 0.12 | _ 3 85 446877 0.14

% 1 162 2509.03 034 | 2 1 137 4338.17 0.37 f§ 1 102 2088.51 0.40
% 5 2 1 38674 023 E 5 2 1 125511 025 | £ 5 2 9 134751 0.31
e 3 38 255677 036 | © 3 43 431423 0.38 5 3 33 2149.56 0.41
1 69 163542 0.47 1 50 313208 0.49 1 46 150726 0.53

9 2 1 33696 037 9 2 1 111330 0.38 9 2 3 131808 0.47

3 29 1673.19 0.47 3 28 3108.69 0.50 3 29 1526.23 0.53

Table 4.6: Summary of video (b) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

96

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | = \ SSE \ SSIM | Noise | SNR | Criteria | = \ SSE \ SSIM
1 663 4851.88 0.1 1 429 435819 0.15 1 408 412668 0.17

1 2 1 102778 0.06 1 2 1 73521 0.8 1 2 1 647.68 0.08

3 62 4650.88 0.14 3 81 4319.30 0.17 3 87 4161.13 0.19

= 1 64 220550 042 | = 1 49 179872 048 | & 1 43 1623.08 0.49
= 5 2 1 279.35 0.35 § 5 2 1 25651 038 | & 5 2 1 23979 0.40
= 3 20 207774 043 | °© 3 18 172713 048 | = 3 18 1567.55 0.50
1 26 1319.25 0.56 1 20 996.82 0.61 1 19 863.62 0.63

9 2 1 22780 0.51 9 2 1 18520 0.54 9 2 1 168.05 0.56

3 12 124152 0.57 3 10 948.38 0.61 3 9 83427 0.63

1 424 441312 0.15 1 345 6478.80 0.16 1 287 3876.05 0.20

1 2 1 788.20 0.08 1 2 1 165808 0.08 1 2 1 123333 0.11

3 79 4384.89 0.17 3 63 623150 0.18 | _ 3 75 389313 0.22

4 1 50 1840.96 047 | g 1 42 3418.08 0.49 g 1 34 1642.70 0.52
% 5 2 1 36661 038 | B 5 2 1 121382 040 | £ 5 2 2 1346.63 0.46
e~ 3 16 173959 048 | © 3 18 323501 0.50 E 3 14 1577.54 053
1 20 1079.55 0.61 1 19 2216.85 0.63 1 14 1260.57 0.66

9 2 1 30343 0.54 9 2 1 104628 0.55 9 2 19 124848 0.65

3 12 1036.94 0.61 3 10 213531 0.63 3 9 127498 0.66

Table 4.7: Summary of video (c) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

L6

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria n \ SSE \ SSIM | Noise | SNR | Criteria | = \ SSE \ SSIM | Noise | SNR | Criteria | = \ SSE \ SSIM
1 1657 5156.60 0.09 1 683 4686.55 0.13 1 549 4538.10 0.14

1 2 1 987.76 0.04 1 2 1 68855 0.06 1 2 1 609.48 0.06

3 165 5178.19 0.11 3 87 4568.00 0.15 3 91 4370.73 0.16

z 1 66 2417.29 037 | = 1 49 1983.72 042 | & 1 42 1806.12 0.45
= 5 2 1 283.00 0.29 % 5 2 126060 032 & 5 2 1 24546 0.34
= 3 23 228591 038 | 3 25 1963.69 043 | - 3 20 174748 0.45
1 27 1506.74 0.52 1 21 1188.36 0.56 1 19 1010.01 0.58

9 2 1 239.05 044 9 2 1 19857 047 9 2 1 18255 0.49

3 21 1498.02 0.52 3 16 1173.53 0.56 3 15 1001.08 0.58

1 832 4654.60 0.13 1 583 6839.68 0.14 1 464 422348 0.16

1 2 1 74295 0.5 1 2 1 1595.15 0.06 1 2 1 125420 0.08

3 93 4497.33 0.14 3 98 6574.68 0.15 | _ 3 66 4001.12 0.18

% 1 54 202430 042 g 1 42 3591.75 0.45 § 1 34 1766.87 0.48
% 5 2 1 36830 032 E 5 2 1 121476 034 | £ 5 2 2 1346.81 0.40
e 3 28 2002.81 043 | © 3 21 3460.94 0.45 5 3 26 1758.00 0.48
1 21 1222.22 0.56 1 18 2440.32 0.58 1 14 1301.87 0.61

9 2 1 31451 047 9 2 1 105321 0.48 9 2 20 1287.68 0.60

3 18 1210.26 0.56 3 16 2425.73 0.58 3 12 130478 0.61

Table 4.8: Summary of video (d) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

36

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 12 28041 0.14 1 8 2074.99 0.18 1 7 18408 0.21

1 2 1 1007.66 0.12 1 2 1 66329 0.15 1 2 1 58221 0.17

3 15 3009.88 0.14 3 9 2176.69 0.18 3 6 170487 0.21

z 1 1 12088 065 | = 1 1 6139 067 | g 1 1 4674 0.69
= 5 2 1 12088 0.65 % 5 2 20 3877 04| D 5 2 20 1501 0.42
= 3 1 12088 065 3 1 6139 o067 | - 3 1 4674 0.69
1 1 204 0.79 1 1 9.59 0.8 1 1 1368 0.8l

9 2 1 204 0.79 9 2 1 959 0.8 9 2 1 1368 081

3 1 204 0.79 3 1 959 0.8 3 1 1368 0.8l

1 8 2094.88 0.18 1 7 3290.08 0.21 1 5 166355 0.24

1 2 1 73372 0.16 1 2 1 1559.19 0.18 1 2 1 1263.37 023

3 9 21959 0.18 3 7320008 021 | 3 4 157142 0.24

< 1 1 21489 068 | = 1 1 7567 0.69 Li 1 1 1584.33 0.71
i 5 2 20 141.38 0.41 g 5 2 20 546.13 042 | £ 5 2 5 1524.63 0.6
= 3 1 21489 068 | © 3 1 7567 0.69 E 3 1 1584.33 0.71
1 1 10975 0.8 1 1 587.57 0.8l 1 1 1666.48 0.82

9 2 5 6201 065 9 2 4 523.03 0.68 9 2 1 1666.48 0.82

3 1 10975 0.8 3 1 587.57 0.8l 3 1 1666.48 0.82

Table 4.9: Summary of video (e) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

66

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 7 2164.93 0.21 1 5 1612.39 0.25 1 1 137035 027

1 2 1 121734 023 1 2 1 95159 0.26 1 2 1 84264 027

3 1 121734 0.23 3 2 1179.67 0.26 3 2 1061.74 0.28

z 1 1 11726 057 | = 1 1 6805 059 | 1 1 5026 0.60
= 5 2 1 11726 0.57 % 5 2 1 6805 059 | & 5 2 1 5026 0.60
= 3 1 11726 057 © 3 1 68.05 059 = 3 1 5026 0.60
1 1 3436 0.66 1 1 2585 067 1 1 3201 068

9 2 1 3436 0.66 9 2 1 2585 067 9 2 1 3201 0.8

3 1 3436 0.66 3 1 2585 067 3 1 3201 068

1 5 1602.90 0.25 1 4 232373 0.27 1 4 1587.10 0.30

1 2 1 1046.97 0.25 1 2 1 1336.12 027 1 2 3 1580.19 0.30

3 2 122750 0.26 3 2 174170 027 | _ 3 3 1580.19 0.30

5 1 116822 059 | g 1 1 83734 0.60 g 1 1 120842 0.61
% 5 2 116822 059 | E 5 2 1 83734 060 | = 5 2 20 78570 0.40
e 3 1 16822 059 © 3 1 837.34 0.60 g 3 1 120842 0.61
1 1 69.83 0.67 1 1 71168 0.68 1 1 137176 0.69

9 2 2 5192 063 9 2 7 68527 0.52 9 2 13 1098.19 0.47

3 1 69.83 067 3 1 71168 0.68 3 1 137176 0.69

Table 4.10: Summary of video (f) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

00T

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 11 250955 0.20 1 8 187646 0.25 1 7 165634 0.28

1 2 1 98298 0.18 1 2 1 69L71 022 1 2 1 61211 025

3 8 227850 0.20 3 5 1561.86 0.25 3 5 1438.05 0.28

z 1 1 11035 068 | = 1 1 6519 069 | 1 1 4913 0.70
= 5 2 1 11035 0.68 % 5 2 1 6519 069 | & 5 2 1 4913 0.70
= 3 1 11035 068 3 1 6519 069 | - 3 1 4913 0.70
1 1 2896 0.79 1 1 9.39 0.80 1 1 1071 0.80

9 2 1 2896 0.79 9 2 1 9.39 0.80 9 2 1 1071 0.80

3 1 2896 0.79 3 1 9.39 0.80 3 1 1071 0.80

1 8 1888.38 0.25 1 7 3040.68 0.27 1 5 1587.22 0.32

1 2 1 76392 023 1 2 1 1554.07 025 1 2 1 1290.00 0.31

3 6 170441 0.25 3 5 274101 027 | _ 3 5 1587.22 0.32

£ 1 119613 070 | g 1 1 83874 0.71 g 1 1 144393 0.72
f'% 5 2 20 13185 051 | E 5 2 20 74988 052 | & 5 2 20 107293 0.54
&= 3 1 19613 070 | © 3 1 83874 0.71 E 3 1 144393 0.72
1 1 10828 0.80 1 1 646.63 0.80 1 1 1501.01 0.81

9 2 7 3246 067 9 2 6 549.12 0.69 9 2 8 137884 0.67

3 1 10828 0.80 3 1 646.63 0.80 3 1 1501.01 0.81

Table 4.11: Summary of video (g) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

10T

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 11 250889 0.17 1 7 1877.15 0.22 1 6 1623.33 0.24

1 2 1 96412 0.16 1 2 1 70853 0.20 1 2 1 62267 022

3 6 2112.66 0.18 3 5 163655 0.2 3 6 1623.33 0.24

z 1 1 9606 062 = 1 1 5310 063 g 1 1 3942 0.64
= 5 2 1 96.06 0.62 % 5 2 1 5310 063| & 5 2 1 3942 0.64
= 3 1 9606 062 “ 3 1 5310 063] - 3 1 3942 0.64
1 1 2362 0.71 1 1 1154 0.72 1 1 1424 0.72

9 2 1 2362 0.71 9 2 1 1154 0.72 9 2 1 1424 0.72

3 1 2362 0.71 3 1 1154 0.72 3 1 1424 0.72

1 7 187859 0.22 1 6 2925.74 0.24 1 5 162293 0.29

1 2 1 78771 0.20 1 2 1 142279 0.22 1 2 1 140110 0.27

3 5 164312 0.22 3 4 251650 0.24 | _ 3 4 1560.88 0.29

) 1 118289 064 | g 1 1 80424 0.64 g 1 1 144318 0.66
f'% 5 2 20 17723 042 | E 5 2 20 804.08 043 | £ 5 2 20 1078.47 0.44
&= 3 1 18289 064 | © 3 1 80424 0.64 E 3 1 1443.18 0.66
1 1 8056 0.72 1 1 64549 0.72 1 1 145492 0.73

9 2 5 3279 0.60 9 2 3 61637 0.65 9 2 14 1200.28 0.52

3 1 8056 0.72 3 1 64549 0.72 3 1 145492 0.73

Table 4.12: Summary of video (h) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

¢0T

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 11 2480.08 0.21 1 8 1808.07 0.27 1 6 1573.87 0.29

1 2 1 990.14 0.19 1 2 1 73035 024 1 2 1 63958 0.26

3 9 2357.80 0.21 3 7 1810.90 0.27 3 7 1662.36 0.29

z 1 1 12084 069 | = 1 1 7L00 071 & 1 1 5927 0.72
= 5 2 1 12084 0.69 % 5 2 1 7100 071 | & 5 2 1 5927 0.72
= 3 1 12084 069 3 1 7100 o071 | - 3 1 5927 0.72
1 1 3501 081 1 1 1420 082 1 1 1337 082

9 2 1 3501 081 9 2 1 1420 082 9 2 1 1337 0.82

3 1 3501 081 3 1 1420 082 3 1 1337 0.82

1 8 1901.74 0.27 1 7 2089.41 0.29 1 6 1641.69 0.33

1 2 1 80556 0.24 1 2 1 145230 0.26 1 2 1 1359.16 0.30

3 7 1814.55 027 3 6 2843.90 0.29 | _ 3 7 1684.53 0.33

£ 1 L 21169 071 g 1 1 82344 0.72 g 1 1 1469.06 0.74
f'% 5 2 20 162.04 055 | E 5 2 20 749.98 055 | & 5 2 20 1153.67 0.57
& 3 1 21169 o071 © 3 1 82344 0.72 E 3 1 1469.06 0.74
1 1 10592 0.82 1 1 63734 0.82 1 1 1534.02 0.83

9 2 9 2792 068 9 2 8 54571 0.69 9 2 6 1463.05 0.73

3 1 105.92 0.82 3 1 637.34 0.82 3 1 1534.02 0.83

Table 4.13: Summary of video (i) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

€01

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 5 169849 0.36 1 4 1309.15 0.40 1 3 109441 0.43

1 2 1 1255.07 0.39 1 2 1 97954 0.42 1 2 1 870.00 0.44

3 1 1255.07 0.39 3 1 97954 0.42 3 1 870.00 0.44

z 1 1 12489 067 | = 1 1 7392 068 | g 1 1 5981 0.69
= 5 2 1 12489 067 % 5 2 1 7392 068 | & 5 2 1 5981 0.69
= 3 1 12480 067 ~ 3 1 7392 068 | " 3 1 5981 0.69
1 1 4485 0.72 1 1 3925 0.73 1 1 4498 0.73

9 2 1 4485 072 9 2 1 3925 073 9 2 1 4498 073

3 1 4485 072 3 1 3925 073 3 1 4498 073

1 4 131048 0.40 1 3 1829.15 0.43 1 4 149070 0.45

1 2 1 1085.82 0.41 1 2 1 1263.30 0.43 1 2 18 1375.77 0.38

3 2 1169.77 0.41 3 2 158516 043 | _ 3 3 152651 0.45

5 1 I 15522 068 | g 1 1 92517 0.68 g 1 122575 0.69
% 5 2 1 15522 068 | E 5 2 1 92517 068 | = 5 2 20 668.69 0.47
e 3 1 15522 068 © 3 1 92517 0.68 E 3 1 122575 0.69
1 1 9307 0.73 1 1 77146 0.73 1 1 133840 0.74

9 2 2 8323 0.8 9 2 1 77146 0.73 9 2 20 93298 0.49

3 1 9307 0.73 3 1 77146 0.73 3 1 133840 0.74

Table 4.14: Summary of video (j) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

¥0T

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 13 2751.62 0.18 1 8 1984.86 0.23 1 7 174445 0.25

1 2 1 96743 0.15 1 2 1 68559 0.20 1 2 1 60256 0.22

3 9 245652 0.18 3 7188245 023 3 7 174445 025

z 1 1 12258 065 | = 1 1 7499 067 | g 1 1 5630 0.68
= 5 2 1 12258 065 % 5 2 1 7499 067 | B 5 2 1 5630 0.8
= 3 1 12258 065 3 1 7499 067 | - 3 1 56.30 0.68
1 1 3154 077 1 1 1220 0.78 1 1 1051 0.79

9 2 1 3154 077 9 2 1 1220 0.78 9 2 1 1051 0.79

3 1 3154 077 3 1 1220 078 3 1 1051 0.79

1 9 2076.77 0.2 1 7 315037 0.25 1 6 1673.67 0.29

1 2 1 753.14 020 1 2 1 152142 0.22 1 2 1 129059 027

3 10 2155.55 0.23 3 7 315037 025 | _ 3 6 1673.67 0.29

£ 1 L 20619 067 g 1 1 845.69 0.68 g 1 1 142345 0.70
f'% 5 2 20 19476 051 | E 5 2 20 77554 052 | & 5 2 19 119240 0.54
&= 3 1 20619 067 © 3 1 84569 0.68 E 3 1 142345 0.70
1 1 107.37 0.78 1 1 65559 0.79 1 1 1479.15 0.80

9 2 10 2985 0.64 9 2 10 574.96 0.65 9 2 7 1352.61 0.69

3 1 107.37 0.78 3 1 65559 0.79 3 1 147915 0.80

Table 4.15: Summary of video (k) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

G0t

Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef YUNIBESITHI YA PRETORIA

Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM | Noise | SNR | Criteria | n \ SSE \ SSIM
1 97 372240 0.11 1 17 204226 0.14 1 15 268253 0.16

1 2 1 878.69 0.08 1 2 1 63810 0.10 1 2 1 56881 0.12

3 27 372240 0.11 3 20 3073.70 0.14 3 18 2830.57 0.16

z 1 2 37390 047 | = 1 1 15034 051 | 8 1 1 12393 0.52
= 5 2 1 20053 048 % 5 2 1 15034 0.51 éo 5 2 1 123.93 0.52
= 3 1 20053 048 “ 3 1 15034 051 - 3 2 23194 0.52
1 1 90.01 064 1 1 4618 0.66 1 1 3533 067

9 2 1 90.01 064 9 2 1 4618 0.66 9 2 1 3533 067

3 1 9001 064 3 1 4618 0.6 3 1 3533 067

1 18 2081.86 0.14 1 16 4567.82 0.16 1 12 226390 0.19

1 2 1 697.91 0.10 1 2 1 160648 0.11 1 2 1 127620 0.15

3 17 292940 0.14 3 20 4808.56 0.16 | _ 3 14 237656 0.19

£ 1 1 25468 051| g 1 1 1076.89 0.53 g 1 1 1286.27 0.55
f'% 5 2 1 25468 051 E 5 2 1 107689 053 | = 5 2 20 1027.09 0.46
& 3 1 25468 051 © 3 2 121752 0.53 E 3 2 123927 0.55
1 1 14504 0.6 1 1 84379 0.67 1 1 1327.75 0.69

9 2 1 145.04 0.66 9 2 20 787.67 0.52 9 2 20 106226 0.53

3 1 145.04 0.66 3 1 84379 0.67 3 1 132775 0.69

Table 4.16: Summary of video (1) results.

© University of Pretoria

SHOVINI NI TVAOWHY ASION ¥ H4LdVHO

90T

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Chapter 5

Conclusion

We have provided the foundation of LULU operators in Chapter 2. The LULU operators in one- and
two- dimensions were discussed along with their shape and total variation properties, and their respective
Discrete Pulse Transforms. We have also included a small study on the intricasy of N,,(z) in Z2.

Using results from correlation analysis, we have explored the extent at which the pixels of an image
depend on its neighbours and establish the complexity of the connectivity for LULU operators in two-
dimensions in Chapter 3. In there, using videos obtained from an internet source and our own recorded
ones, we have shown that the property of local dependence and global independence holds for images,
as well as 4-connectivity is sufficient for the defined connection in two-dimensional LULU operators.
Furthermore, we have also demonstrated how the addition of noise renders the dependence between pixels
ambiguous as a result of inflated variance.

In Chapter 4 we investigated how effective the LU LU smoothers remove noise by examining the noise
extractions by the LULU operators from images and the purified images themselves. We saw that for
images with low noise content (well-behaved variation) are able to withstand the DPT in terms of variation
preserving than those with medium or high noise content, that is, the rate of deterioration of total variation
is faster for images with medium or high noise content. In addition, the optimal n-level DPT required
to extract the noise is 1 since the added noise are idd observations from the same distribution with pulse
size 1.

Future work includes exploring alternative compositions of the LU LU operators by [14] in noise removal
for images. Also we will improve the noise removal algorithm, that is, a second step to improve the blocky

effect of the purified image.

107

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Bibliography

[1] R. Anguelov. LULU operators and locally d-monotone approximations. In Constructive Theory of

Functions. Citeseer, 2005.

[2] R. Anguelov and I. Fabris-Rotelli. LULU operators and Discrete Pulse Transform for multidimen-
sional arrays. Image Processing, IEEE Transactions on, 19(11):3012-3023, 2010.

[3] R. Anguelov and C.H. Rohwer. LULU operators for functions of continuous argument. Quaestiones

Mathematicae, 32(2):187-202, 2009.

[4] WJ Conradie, T De Wet, and M Jankowitz. Exact and asymptotic distributions of LULU smoothers.
Journal of Computational and Applied Mathematics, 186(1):253-267, 2006.

[5] W.J. Conradie, T. De Wet, and M. D. Jankowitz. Performance of nonlinear smoothers in signal

recovery. Applied Stochastic Models in Business and Industry, 25(4):425-444, 2009.

[6] W.J. Conradie, T. De Wet, and M.D. Jankowitz. An overview of LULU smoothers with application
to financial data. Journal for Studies in Economics and Econometrics, 29(1):97-121, 2005.

[7] T. de Wet and W. Conradie. Smoothing sequences of data by extreme selectors. Proceedings of
ICOTS7, 2006.

[8] J.P. Du Toit. The Discrete Pulse Transform and applications. PhD thesis, Stellenbosch: University
of Stellenbosch, 2007.

[9] I. Fabris-Rotelli, K. Van Oldenmark, and P. Van Staden. Evaluation of noise removal in signals by

LULU operators. Proceedings of South African Statistical Association, 2010.

[10] C. Fontaine. Linear Congruential Generator. Encyclopedia of Cryptography and Security, pages
721-721, 2011.

[11] E.R. Golder and J.G. Settle. The Box-Muller method for generating pseudo-random normal deviates.
Applied Statistics, pages 12—-20, 1976.

[12] L.D. Haugh. Checking the independence of two covariance-stationary time series: a univariate residual

cross-correlation approach. Journal of the American Statistical Association, 71(354):378-385, 1976.

108

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY 109

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Hore and D. Ziou. Image quality metrics: PSNR vs. SSIM. In Pattern recognition (icpr), 2010
20th international conference on, pages 2366-2369. IEEE, 2010.

M.D. Jankowitz. Some statistical aspects of LULU smoothers. PhD thesis, Stellenbosch: University
of Stellenbosch, 2007.

E. Kreyszig. Introductory functional analysis with applications, volume 81. Wiley New York, 1989.

D.P. Laurie. The roadmaker’s algorithm for the Discrete Pulse Transform. I'mage Processing, IEEE

Transactions on, 20(2):361-371, 2011.

D.P. Laurie and C.H. Rohwer. Fast implementation of the Discrete Pulse Transform. In Proceedings
International Conference Numerical and Analytical Applied Mathematics, pages 15-19. Weinheim,
Germany, 2006.

E Malkowsky and CH Rohwer. The LULU-semigroup for envelopes of functions. Quaestiones Math-
ematicae, 27(1):89-97, 2004.

T.B. Parrish, D.R. Gitelman, K.S. LaBar, and M.M. Mesulam. Impact of signal-to-noise on functional
MRI. Magnetic Resonance in Medicine, 44:925-932, 2000.

I. Pitas and A.N. Venetsanopoulos. Median Filters. In Nonlinear Digital Filters, pages 63-116.
Springer, 1990.

D.G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. Discrete Mathematics, 22(3):301—

310, 1978.

C.H. Rohwer. Idempotent one-sided approximation of median smoothers. Journal of Approximation

Theory, 58(2):151-163, 1989.
C.H. Rohwer. Projections and separators. Quaestiones Mathematicae, 22(2):219-230, 1999.

C.H. Rohwer. Fast approximation with locally monotone sequences. In Proceedings 4th FAAT Confer-
ence, Maratea. In: Supplemento ai rendiconti del Circolo matimatico di Palermo, Serie II, volume 68,

2002.

C.H. Rohwer. Multiresolution analysis with pulses. In Advanced Problems in Constructive Approzi-

mation, pages 165—186. Springer, 2002.

C.H. Rohwer. Variation reduction and LULU-smoothing. Quaestiones Mathematicae, 25(2):163-176,
2002.

C.H. Rohwer. Fully trend preserving operators. Quaestiones Mathematicae, 27(3):217-229, 2004.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

BIBLIOGRAPHY 110

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

C.H. Rohwer. Nonlinear Smoothing and Multiresolution Analysis, volume 150. Springer Science &

Business Media, 2006.

C.H. Rohwer. The estimation of moments of an unknown error distribution in the Discrete Pulse

Transform. Numerical Algorithms, 45(1-4):239-251, 2007.

C.H. Rohwer and D.P. Laurie. The Discrete Pulse Transform. SIAM Journal on Mathematical
Analysis, 38(3):1012-1034, 2006.

C.H. Rohwer and L.M. Toerien. Locally monotone robust approximation of sequences. Journal of

Computational and Applied Mathematics, 36(3):399-408, 1991.

C.H. Rohwer and M. Wild. Natural alternatives for one dimensional median filtering. Quaestiones

Mathematicae, 25(2):135-162, 2002.

C.H. Rohwer and M. Wild. LULU theory, idempotent stack filters, and the mathematics of vision of
marr. Advances in Imaging and Electron Physics, 146:57-162, 2007.

R.Y. Rubinstein and B. Melamed. Modern Simulation and Modeling, volume 7. Wiley New York,
1998.

J. Serra. A lattice approach to image segmentation. Journal of Mathematical Imaging and Vision,

24(1):83-130, 2006.

P.F. Velleman. Robust nonlinear data smoothers: Definitions and recommendations. Proceedings of

the National Academy of Sciences, 74(2):434-436, 1977.

M. Watanabe, D.B. Williams, and Y. Tomokiyo. Comparison of detection limits for elemental map-

ping by EF-TEM and STEMXEDS. Microscopy and Microanalysis, 8:1588-1589, 2002.

M. Wild. Idempotent and co-idempotent stack filters and min—max operators. Theoretical Computer

Science, 299(1):603-631, 2003.

M.B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis of data. Biometrika,
55(1):1-17, 1968.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

Appendix

Intricasy of N, (z) [SAS]

Introduction

In the following pages, we describe the process of obtaining the actual numbers of A, (z) in SAS iml for
any n > 1 and 2 € Z2. This is the first step to acquiring a definitive formula for the total number of

elements in AV, (x). The definition of usability in NV, (z) are
1. Any one connected set in AV, (z) must have length exactly equal to n + 1.
2. Any two connections must differ from each other.
Some terminology before starting:
Branch A branch is any single connected set beginning from the centre.

Burst A burst is defined as mapping of 3 points in the direction of a branch as well as the immediate
adjacent elements in Z2. For example, suppose that a branch is moving in the upward direction,
then a burst is mapping of the right, top and left elements from the reference element. This is

depicted in Figure A.1.

Figure A.1: A depiction of a burst for a branch approaching from the bottom.

Subroutines

This section describes some pieces of code that are used extensively throughout the program. We stored

them as subroutines to make the coding more elegant. There are 5 in total which can be grouped into 2

© University of Pretoria

10

11

12

13

14

15

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX ii

parts:

e Three_Rotations, Maps and One_Branch
One_Branch finds branches of length N+1 , that is, it finds connections with the centre at the starting
element of any branch. Three_Rotations accepts a square matrix and outputs three matrices
containing the original matrix but rotated 90°, 180°, and 270°. Maps direction vector and outputs

the burst co-ordinates with respect to the direction vector.

e n_Comb and N_Connect
N_Connect is the final subroutine which finds all connected sets of length N + 1 using integral
subroutine One_Branch since the centre x may occur anywhere in the connection. This is done by
finding all possible 2, 3 or 4 combinations of connections of length 1 to N with auxiliary subroutine

n_Comb.

We now describe the subroutines in detail.

start Three_Rotations(In, Outl,0Out2,0ut3);

n = nrow(In);
Outl = J(n,n,0);
Out2 = Quti;
Out3 = 0Qut2;
do i =1 to n;

do j =1 to n;

k = n-i+1;

1 = n-j+1;

Outil[j,k] = In[i,j];

Out2[k,1] = In[i,j];

Out3[1,i] = In[i,j];
end;

end;
finish Three_Rotations;

Input variable

In: n X n Any square matrix.

Output variables
Outl: n x n The rotated form of input matrix In by 90° clockwise.
Out2: n x n The rotated form of input matrix In by 180° clockwise.

Out3: n x n The rotated form of input matrix In by 270° clockwise.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX iii

Method For any square matrix In, Three_Rotations rotates In by 90°k and stores the new matrices
in Outl, Out2, and Out3. This subroutine decreases the total number of computations for finding all
branches by a factor of 4 since we need only to find one branch and Three_Rotations will give the rest.

For example, the first matrix in Figure A.2 is a single branch of N5(x) connectivity.

In

[oB ool oNol
[oR ool ool
o000 =0
[oB ool oNol

OO0 == =0

Figure A.2: A single branch of N2(z) connectivity.

Calling Three_Rotations with input matrix equal to In we get our 3 outputs in Figure A.3.

Outl
0} o) 0} o) 0}
o} o) 0} o) o}
o) o) 1 1 o)
o} o) 0} 1 o}
B o) B o) B
Out2
o} o} o} o} o}
o) o) 0} o) o)
o} o) 1 o) o}
o) 1 1 o) o)
0} 0} 0} o} 0}
Out3
0} o) 0} o) 0}
o} 1 0} o) o}
o) 1 1 o) o)
o} o} 0} o) o}
B o) B o) B

Figure A.3: The 3 outputs of Three_Rotations for a given square matrix In.

start Maps(Dir);
Mu={0-1 0

-1 0 1}
Mr = {-1 0 1,
0 1 0};
Md=4{0 1 0,
1 0 -1},
ML={1 0 -1,
0 -1 0};

© University of Pretoria

11

12

13

14

15

16

17

10

11

12

13

14

15

16

17

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX iv
if (Dir = (-1 || 0))[+] = 2 then M = Mu;
if Dir = C 0 || 1))[+] = 2 then M = Mr;
if (Dir = (1 || 0))[+] = 2 then M = Md;
if (Dir = (0 |[-1))[+] = 2 then M = M1;

return (M);
finish;

Input variable

Dir: 1 x 2 A vector indicating the direction a branch is moving from. Here, the first element represents i
and the second element j for matrix element displacement [, j] from one matrix element to another.
For example, if a branch grows from matrix elements (3, 3) to (2, 3) the direction vector representing

this event is given by [—1 0]7.

Return variable

M: 2 x 3 The set of the directions the current branch will be moving to.

Method The subroutine Maps creates a burst by defining auxiliary matrices that depend on the direction
(Dir) a branch is moving to. Its usage shall become clear once we have explained One_N. For now, the
letters U, R, D and L represent directions up, right, down, and left respectively. And for any direction,
three ‘map points’ are created in the front and on the immediate adjacent elements with respect to the
direction the branch is facing.

For example, if the branch is going U, then maps are dictated at elements positioned at right, up, and

left from where the branch is sitting given by direction vectors [0 —1]7,[~1 0]7 and [0 1]7 respectively.

start One_Branch(N,size);
*Creating an empty matrix to store the connected sets;
fix = J(2xsize + 1,2%size + 1,0);
fix[(size || size+l),size + 1] = 1;
1 = (2xsize + 1)##2;

/*WS = Walking Stick - an auxiliary matrix that guides the program on how and where
to make connections*/

*1st column contains the number of iterations left before completing a single burst;
*2nd and 3rd column stores the position of the last burst;

*4th and 5th column contains the direction of moving from i-1 to i in WS;

initial = 0 || (size || (size+1)) Il (-1 || 0);

WS = initial // (J(N-1,1,3) || J(N-1,4,0));

C_temp = fix;

p = 2; *p (position) indexes WS;
do while ((WS[,11)[+] == 0);

© University of Pretoria

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX v

/*Adding 1 of N Burstsx/

M = Maps(WS[p-1,4:51);

ij = WS[p-1,2:3] + M[,wS[p,111¢;

C_templ[ij[1], ij[2]] = C_temp[ij[1], ij[2]1] + 1;
WS[p,2:3] = ij;

WS[p,4:5] = M[,WS[p,111°¢;

WS[p,1] = wWS[p,1] - 1;

/*Incrementing p or Updating Parameters*/
if p+1 “= N+1 then p = p+1;
else do;
call Three_Rotations(C_temp,C1,C2,C3);
C =C || shape(C_temp,1,1) || shape(C1,1,1)
|| shape(C2,1,1) || shape(C3,1,1);

if (WS[,11"=0)[+] ~= O then p = max(loc(WS[,1]1°=0));
if N-p ~= O then WS[p+1:N,1] = J(N-p,1,3);

if p "= 2 then do;

do i = p to N;
C_temp[WS[i,2],WwS[i,3]] = C_temp[WS[i,2],WS[i,3]] - 1;

end;

end;

else C_temp = fix;

end;
end;

return (C);
finish One_Branch;

Input variable
N: 1 x 1 The order (or length) of the connected set.

size: 1 x 1 A value specifying the matrix size in which to store the connections. Note that the final

connection will be contained within a (2 * size 4+ 1) X (2 % size + 1) matrix.

Return variable

C: (2*size+1)? x 4% (3""1) Each column of C contains a variation of connected set of length N + 1
reshaped from a (2 * size + 1) x (2 * size + 1) matrix to a (2 x size + 1)? x 1 vector. Since the
total number ways (including replications) we can have a connected set of length N + 1 with only

1 branch is 4 * (3"71), that number is also our total number of columns.

Method One_Branch finds all possible combinations of having a connected set of length N + 1 with

only 1 branch spawning from the centre. The subroutine uses an auxiliary matrix WS (for Walking Stick)

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX vi

that helps guide the program to know how and where to make a single burst by storing the number of
bursts left, the historical and direction of previous bursts. We shall explain the subroutine by example
for (N,size) = (3,3).

The subroutine begins by defining a template matrix called fix. The template is created so that when
the program has finished all bursts for a single branch we can refresh process by simply assigning the

temporary matrix to fix again. It is assumed that the process already has one single burst.

fix

o olocRoNoRolNol
ol olocRoNololol
o olocRoNoRolNol
OO0 = =00
o olocRoNoRolNol
ol olocRoNololol
o olocRoNoRolNol

Next we create the auxiliary matrix WS. Some facts regarding WS:

e The 15¢ column indicates the number of bursts left before the process ends, 24 and 3¢ stores the
position [matrix index (i,7)] of the last burst, and the last two columns contains the direction of
the latest burst. The initial position for this process is the index (3,4) and the direction is upwards

[-1 0] since we assume that we moved from the centre (4,4) to (3,4) - this is indicated in row 1.

e Each row of WS represents the level of the process in creating a branch. For connected sets of length
N + 1, we will require N levels (with centre as level-0). Note that since the first element of WS
is 0, it implies all possible combinations of level-1 bursts have been exhausted (because we will
call Three_Rotations for the other branches starting at East, South and West from the centre);
and since we have values of 3 for the first element of row 2 and row 3, we still have 32 = 9 more
combinations till completion. When the sum of the first column equals 0, it implies all possible

branches have been created.

e WS operates by iteratively running through consecutive rows until the last row. For each row be-
ing operated, the following updates occur: the position and direction of new bursts, as well as

decrementing the first element of each row to indicate a completed singular burst.

ws
0 3 4 -1 0
3 0 0 0 0
3 0 0 0 0

We let C_temp be the temporary matrix that stores the connected sets. Initially C_temp is set to fix.
Each paired output below is the result of one completed iteration of the do while loop. From the first

pair we can note the following;:

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX vii

e The length of the branch in C_temp has been increased by one unit (element (3, 5) has been changed

from 0 to 1). That is, the branch has grown from matrix elements (3, 4) to (3,5).

e The change in WS in the second row (for level-2 changes) are as follows: the position of the current
single burst from (0,0) to (3,5), and the direction in which it was created (3,4) — (3,5) = [0 1].
In addition, we have decremented the level-2 connections from 3 to 2 in the first element of the 27d
row. This indicates 1 of 3 bursts have been completed for level-2 - given the history of the previous

levels.

Since we want a N = 3 connected set, we require the next iteration for a complete branch.

C_temp

ws

[cloNoNoNoNoNol
[cloNoNoNoNoNol
[cloNoNoNoNoNol
OO0 —=—=00
OO0 —-00
[cloNoNoNoNoNol
[cloNoNoNoNoNol

w N o
[
o\ F

The output below for C_temp indicates the branch has grown from (3,5) to (4,5). This information
is recorded similarly as for the first iteration in WS. However, because we have one full branch of a N = 3
connected set, we also call subroutine Three_Rotations to replicate this branch for branches spawning
from the East, South, and West of the centre. All connected sets are then reshaped into vectors and the
results are stored in a matrix C.

C_temp

ws

coOooOooOoO0o
coOocoOoOoOoO0o
coOooOooOoO0o
cCo0 = =00
CoO0 = =00
coOocoOoOoOoO0o
coOooOooOoO0o

NN O
W
o E

We now display significant output for reader to grasp the methodology of creating connected sets.

C_temp

ws

[clclclNololN ool
[clolclololNolol
[clclclNololN ool
D00 —=—=00
D000 —-00
D000 —-00
[clclclNololN ool

- N O
W W
o U F

C_temp

us

[cloNoNoNoNoNol
[cRoNoNoNoNoNol
[cloNoNoNoNoNol
o0 = =00
o000 = =0
[cRoNoNoNoNoNol
[cloNoNoNoNoNol
oONO
N W W

o

(o]

It is important to note the changes of the first column of WS from the output above and below. The

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX viii

output above gives [0 2 0]7 which indicates level-3 bursts have been exhausted (given the history of
previous levels).

To renew the process, we assign 3 to level-3 again and subtract 1 from level-2. That is, for a second
single burst of level-2, we have 3 new bursts for level-3. This is given by the first column of WS below as

[0 1 3]7 as well as a change in the level-2 branch element in C_temp.

C_temp

us

[N oo olol ool
[N oo ool ool
[N oo olol ool
A A A ek ek ek A
[N oo olol ool
[N oo ool ool
[N ool ool ool

C_temp

us

[cloNoNoNoNoNol
[cloNoNoNoNoNol
[cloNoNoNoNoNol
OO0 —===0
[cloNoNoNoR ol
[cloNoNoNoNoNol
[cloNoNoNoNoNol

. This process will continue until all bursts have been exhausted (indicated by a column of zeros in

the first column of WS).

The program may be run for any N > 1. The relevance of the size parameter (which sets the size
of the matrix where we store connected sets) becomes apparent in the next subroutine.

Note that, by the definition of the code, repeats and overlaps may occur. For example, for n = 5, a
particular branch is created by turning right 4 times (since we exhaust bursts by consistently mapping
right, forward, and left of any direction) this implies that the final connection is only of order 4 and not
5 as needed. These problems will be alleviated in subroutine N_Connect where we finalised all possible

connections.

The need for the following subroutines arises when we concern ourselves with connected sets not
only with the centre occuring at the start of any connection, but also anywhere within the connecte set.
Therefore, we need to find all possible combinations (2, 3 or 4 since these are the possible ways of creating
branches from the centre with 4-connecttivity) of 1, 2, ..., n — 1 lengthed connections that creates a

n-connected set in addition to the one combination of n-connected sets.

start n_Comb (N,c);
free key_c keep list;
doi=1to N/2;
rem = mod(N,i);
mult = min((N-rem)/i,c-1);
key_c = key_c || J(1,mult,i);

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX ix
7 end;
8
9 if round(N/c) - N/c = 0 then do;
10 key_c = key_c || N/c;
11 key_c = key_c || (round(N/2):N);
12 end;
13 else key_c = key_c || (round(N/2):N);
14
15 comb_key = allcomb(ncol(key_c),c);
16 do i = 1 to nrow(comb_key);
17 check_N = key_c[,comb_key[i,]];
18 dup = (check_N # ({1 10 100 1000})[,1:c1)[+];
19
20 if check_N[+] = N & ncol(xsect(dup,list)) = O then do;
21 keep = keep // check_N;
22 list = list // dup;
23 end;
24 end;
25
26 return (keep);

27 finish n_Comb;

Input variables
N: 1 x 1 The order (or length) of any one connected set.

c: 1 x 1 The number of combinations to consider.

Return variable

keep: cy X ¢ The matrix with each row containing a particular ¢ permutation of 1,2,...,n — 1 items such

that its sum is equal to N.

Method n_Comb begins by determining a vector of c or less multiples of numbers 1,2, ..., N such that
the sum of all multiples of any one number is less than N and stores them in key_c. For example, for input
parameters (N,c) = (5,3) (possible 3 combinations of 1, 2, 3, 4, 5 lengthed connected sets that satisfies
a 5-lengthed connected set), we have that the vector key_c is equal to [1 1 2 2 3 4 5]. The reasoning

is as follows:

e Two values of 1’s occur since three 1’s do not make a 5, however, the sum of two 1’s and one 3 makes

a 5. Similarly for two values of 2’s.

e Any number greater than half of 5 only appears once since twice that number is greater 5. That is,

inclusion of any multiples of them is redundant.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX x

Thus the order of the multiple of any one number included in the vector key_c is such that no multiple
is redundant and that possible ¢ combinations of the numbers in key_c adds up to N.

Next we determine all possible ¢ combinations of the elements in key_c and select those combinations
where their sum is equal to N. We also eliminate repeats of these combinations in this process with a
vector 1ist which keeps track of the number of unique combinations. The final variable returned for this
subroutine are permutations of numbers 1, 2, ...,n — 1 such that its sum is equal to N. The output for input

parameters (5,c), ¢ = 2,3,4, is given in the Figures below.

keep
2 3
1 b

Figure A.4: All possible 2 permutations such that their sum is equal to 5.

keep

Figure A.5: All possible 3 permutations such that their sum is equal to 5.

keep

1 1 1 2

Figure A.6: All possible 4 permutations such that their sum is equal to 5.

Note that the maximum number of items to permute is 4 since we can only branch away from the
centre in 4 or less branches. Since N +1 > N, the only way to branch once from the centre is N-lengthed
connections since anymore would violate the definition.

From Figure A.4, we have two possible cases for 5-lengthed connected sets using single branches from 1
- 4 -lengthed connections. Namely we use one single branch from 2-lengthed and 3-lengthed connections,

and one single branch from 1-lengthed and 4-lengthed connections. The rest follows similarly.

start N_Connect (N);
size = N;
1 = (2%size + 1)##2;

/*N_1 Connections*/

N_1 = J(2%size + 1,2%size + 1,0);

N_1[(sizel |size+1),size+1] = 1;

call Three_Rotations(N_1,01,02,03);

C = shape(N_1,1,1) || shape(01,1,1) || shape(02,1,1) || shape(03,1,1);

© University of Pretoria

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

APPENDIX

key = J(4,1,1);

/*N_n Connections*/
do i =2 to N;

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

C = C || One_Branch(i,size);
key = key // J(4*(3**(i-1)),1,i);

end;

xi

/*Determining the 1 - 4 combinations of 1 - N that make n-lengthed connected set*/

*1 Combination;

idx_N = loc(key = N);

All1_C = C[,idx_N];

check = (A11_C > 0)[+,1;

keep = loc(check = N+1);

A11_C = A11_C[,keep];

*2 - 4 Combinations;

mix = 0;

do cmb = 2 to min(4,N);
N_sum = n_Comb (N,cmb);

*Applying the form of the c permutation to our complete one branch set C;

do i = 1 to nrow(N_sum);
u_j = unique(N_sum[i,

*Determining the number of the multiple of each number in c;

free idx_i idx_n;

D

u_j =u_j |l J(row(u_j),1,0);
do j = 1 to nrow(u_j[,11);
u_j[j,2] = ncol(loc(N_suml[i,] = u_j[j,11));

idx_n = idx_n ||
end;

ncol(loc(key = u_j[j,11));

*Finding all combinations of c;
contextl = ncol(loc(key < u_j[1,11))[+];
mix = allcomb(idx_n[1],u_j[1,2]) + contextl;
if nrow(u_j) > 1 then do;
do j = 2 to nrow(u_j);
next_mix = allcomb(idx_n[jl,u_j[j,21);

free mixmix;

do k = 1 to nrow(next_mix);

context2
mixmix =

|| repeat(next_mix[k,],nrow(mix),1) + context2);

end;
mix = mixmix;
end;
end;
end;

= ncol(loc(key < u_j[j,11))[+];
mixmix // (mix

*Adding the connected set to the full set Al1_C;
dup_vec = uniform(J(nrow(C),1,1);

Add_C = J(1,nrow(mix),0);
ii = 1;

© University of Pretoria

64

65

66

67

68

69

70

72

73

74

75

76

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xii

do i = 1 to nrow(mix);
C_temp = (C[,mix[i,11)[,+];
dup = (C_temp # dup_vec) [+];
if (C_temp > 0)[+] = N+1 & ncol(xsect(dup,list_dup)) = O then do;
Add_C[,ii] = (C_temp > 0);
list_dup = list_dup // dup;
ii = ii + 1;
end;
end;
A11 C = A11.C || Add_C[,1:ii-1];
end;

return (A11_C);
finish N_Connect;

Input variable

N: 1 x 1 The order (or length) of the connected sets.

Return variable

A11_C: (2N + 1)? x ey The matrix containing all the possible forms of N-lengthed connected sets in its

columns.

Method N_Connect begins by finding all branches of length 1 to N by calling One_Branch (and manually
for 1-lengthed connected sets, since One_Branch does not work for N = 1). We store all branches in matrix
C and keep track of their locations with vector key where ;' element in key represents the order of the
connecte set and references the ;' column in C. For example, if the 10" element in key is 4, then it
implies that the 10*" column in C contains a 4-lengthed connected sets.

Next we determine the 1 to 4 permutations of items {1,2,...,N} such that the sum of the permutation

is equal to N.
e For 1 permutation, only item N is possible.
e For 2 to 4 permutations, we require subroutine n_Comb (see above for details).

For each of the output from n_Comb we then determine the multiple of each item in the permutation.
This then indicates the number of distinct items to choose from each connected set. For example, from
Figure A.6, we require three items from set 1 and one item from set 2 for possible 5-lengthed connected
sets. However, because we cannot choose any two items twice within any set (since this would decrease
the order of the connection), we need to choose three distinct items from the set of 1-lengthed connected

sets and one item the set of 2-lengthed connections.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xiii

From here, we find all the possible ways of choosing n; items from set 1, ny items from set 2, ..., ny items
from set N, where ny, is the multiple of the number appearing from set k in n_Comb and card{ni,ns, ..., ny},

for k =1,2,...,N. For all these combinations, we:
1. Sum up the combination of the connected sets.
2. Check that the final connected set is of order N.
3. Check for uniqueness.

If the resulting connected set is of order N and is unique to the set A11_C (to prevent duplicates), we

append it to A11_C.

We now demonstrate the subroutine by calling N_Connect with N = 5. Since the beginning of the
code is straight forward, we start the demonstration at the cmb loop - where we find all possible 2, 3,4
permutations of the items in the set {1,2,...,N — 1} such that the permutation’s sum is equal to N.

For all 2 permutations of the numbers {1,2,3,4,5}, we find that two of them have their sum equal to

5. This is given in the matrix N_sum below.

cmb N_sum
2 2 3
1 4

For each row N_sum, we determine the multiple of all the numbers that occur in the permutation and
store it in u_j. The first row implies that we need to choose 1 item from the set that contains all 2-lengthed
connected sets and 1 item from the set containing all 3-lengthed connected sets. From output idx_N, we
see that there are totals of 12 and 36 items from sets of 2 and 3 -lengthed connected sets respectively.

Therefore, for this particular combination, we require 12 x 36 = 432 different combinations to consider.

u_j
2 1
3 1
idx_HN
12 36

The matrix mixmix contains at each row the column indices where we reference C - the matrix that

stores all 1,2,...,5 -lengthed connected sets.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX

mixmix

—
DWW -unWu

11
12
13
14
15
16

17
17
17
17
17
17
17
17
17
17
17
17
18
18
18

... More Output ...

15
16
5
6
[{
8
9
10
11
12
13
14
15
16

51
51
52
52
52
52
52
52
52
52
52
52
52
52

xiv

For the first row of mixmix, we can have a (possible) 5-lengthed connected set if we sum columns 5

and 17 of C since it contains a 2 and 3 -lengthed connected set there. Similarly for the other rows.

The connected set obtained from adding the the 5*® and 17*® column (first row of mixmix) is displayed

in the output below. The 1-lengthed connected set is displayed in Figure A.7 and the 4-lengthed! connected

set in Figure A.8. Since this results in a 4-lengthed connected set, we do not add this to our final connected

set A11_C.

1 As noted before, since one particular 4-lengthed connected set can be created by turning right 3 times, some connections

are invalid from the start. Hence any addition of connections to column 17 of C will not result in a 5-lengthed connected set.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

8

XV

APPENDIX

Figure A.7: Matrix form of column 5 from C.

Figure A.8: Matrix form of column 17 from C.

Figure A.9: Resultant connected set from adding columns 5 and 7 of C.

For an example of a successful addition of 2 permuted connected sets, we have that adding columns 3

and 57 of the full set C results in a 5-lengthed connected set. Note that column 3 contains a 1-lengthed

connected set in Figure A.10 and column 57 in Figure A.11 contains a 4-lengthed connected set.

Figure A.10: Matrix form of column 3 from C.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xvi
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Figure A.11: Matrix form of column 57 from C.

OO0O0O0O0O0O0O0OD0O0O
OCO0O0O0O0O0O0O0ODO0O
OO0O0O0O0O0O0O0OD0O0O
OCO0O0O0O0O0O0O0ODO0O
OO0O0O0O0O0O0O0OD0O0O
OO0 —-N—-O0O0OO
OO0 2= —-0000
OCO0O0O0O0O0O0O0ODO0O
OO0O0O0O0O0O0O0OD0O0O
OCO0O0O0O0O0O0O0ODO0O
OO0O0O0O0O0O0O0OD0O0O

Figure A.12: Resultant connected set from adding columns 3 and 57 of C.

We add the connected set in Figure A.12 if it is unique to the set A11_C by setting all nonzero
elements in the matrix to one (this is done for testing uniqueness), reshaping the matrix to vector form
and appending it to A11_C.

This process is repeated for the rest of the 2 permutations, then for all 3 and 4 permutations until

A11_C contains all possible 5-lengthed connected sets.

Note that N_Connect may be run for all N > 1, however, because the programs are computationally

intensive, it is not recommended for N > 9.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xvii

An empirical study of image pixels [MATLAB]

Introduction

In this section we describe the process of obtaining the tables in Table 3.1 from MATLAB. In addition to
variables like scalars and matrices, MATLAB also offers structure variables where we can store fields at
each of its elements. For example, if dog is a structure variable, then it have fields like gender, weight,
height, breed etc. Thus, structure variables are super-variables where we can store many facets of a

particular variable of interest.

Functions

Here we describe the purpose of each function and how they relate to each other:
e Auxiliary functions

1. Map_Maker
Map_Maker is used to created the dependence structure defined in section 3.2 of Chapter 3 for
different values of K. Its purpose is for convenience since we have generalised the MATLAB

code to not only accept the dependence structure in sectrion 3.2, but also others as well.

2. Diamond_Maker
Similar to Map_Maker, but with no filling. Thus, in using maps from Diamond_Maker as input
map_in, we only focus on the border pixels of the dependence structure - limiting the focus of

our study and decreasing the amount of computations required for a full run of a video.
e Main functions

1. TSA_Image
For a video stream as input, TSA_Image models, for each pixel (i,) within a frame, as a AR
process and estimates its p parameters with CLS using 500 observations - that is, the video
must contain at least 500 frames. The number p is such that the residuals are uncorrelated
(according to the Durbin-Watson test of uncorrelated residuals) and thus is a white noise

process. We also perform a test for normality with the Anderson-Darling test on the residuals.

2. TSA_Correl_Image
TSA_Correl_Image finds the covariance and correlation between the centre pixel and the other
pixels present in an input dependence structure. In addition, we also determine its mean (with
respect to the AR model estimated by TSA_Image). Its purpose is to understand the video
better with sample statistics, more importantly, the correlations between the centre pixel and

the rest in a dependence structure.

© University of Pretoria

10

11

12

13

14

15

16

APPENDIX

3. TSA_HypoTest

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

xviii

TSA_HypoTest uses the AR model estimated by TSA_Image to obtain residuals for each pixel

in the dependence structure. Then we perform Haugh’s test of independent univariate time

series [12] with the centre pixel and the rest defined in the dependence structure.

e Supplementary functions

1. Ave_ARpar

For the input image used in TSA_Image, Ave_ARpar finds the average of the AR regressive

parameters in the video stream.

2. TSA_FAverage

For the input image used in TSA_Correl_Image, TSA_FAverage finds the average of the corre-

lations in the dependence structures for each pixel in the video stream.

We now begin explaining the functions in detail.

function [map] = Map_Maker(lim)

n = 2xlimt+1;
map = zeros(n,n);
for i =1 :n
if i < 1im + 1
map (i, (1im+2-i:1lim+i))
elseif i > 1lim + 1
k=n-1+ 1;
map (i, (1im+2-k:1lim+k))
else
map(i,(1:n)) = 1;
end
end

end

Input variable

1im: 1 x 1 The number of connected elements to extend from the centre.

Return variable

map: (2x1lim+ 1) x (2+1im+ 1) A matrix representation of the dependence structure defined in section

3.2 of Chapter 3.

© University of Pretoria

10

11

12

13

14

15

16

17

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xix

Method Map_Maker creates the dependence structure defined in section 3.2 with 1im = K. It assigns a
value of one where the elements of the matrix corresponds to the form of the dependence structure. For

example, for M) we have that map = Map_Maker (3) produces the following matrix in MATLAB:

map =

o0 0o O oo
(=R = R = =]
= e =]
e e e e
= e =]
(=R = R = =]
o0 0o O oo

function [Diamond] = Diamond_Maker(lim)

out = Map_Maker(lim);
in = Map_Maker(lim-1);

s_out = size(out);
s_in = size(in);

in = [zeros(s_in(1)+1,1) , [zeros(1l,s_in(2)) ; in 1 1;
[I,J] = ind2sub(size(in),find(in == 1));
ind = sub2ind(s_out,I,J);

Diamond = out;
Diamond(ind) = 0;

Diamond(lim+1,lim+1) = 1;

end

Input variable

1lim: 1 x 1 The number of elements to extend from the centre.

Return variable

Diamond: (2% 1lim+ 1) x (2% 1im+ 1) A matrix representation of a diamond.

Method Diamond_Maker creates a ‘hollow’ dependence structure by calling Map_Maker twice - first to
define the full structure, second to subtract from the first to obtain to remove all the 1’s in the filling.

For example, calling Di = Diamond_Maker (3) produces the following output from MATLAB:

© University of Pretoria

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX

o O O = O O O
c O = O = O O
Cc = o O O = O
= o O = O O
Cc = o O O = O

c O = O = O O

o O O = O O O

function [TSA] = TSA_Image(Image)

%0btaining image dimensions
[m , n] = size(Image(1,1).frames);

%Initialising structure classes for speed
TSA(m,n) .normal = 0;
TSA(m,n) .rescorr = 0;
TSA(m,n) .ARlag = 0;
TSA(m,n) .ARpar = zeros(1,10);
for i=1:m

for j=1:n

f = ones(500,1);

for k =1 : 500
f(k) = Image(k,1).frames(i,j);

end

dw = 0;
lag = 0;
stop = 0;

#Estimating time series parameters with CLS
while dw < 0.05 && stop == 0

lag = lag + 1;

y = £(lag+1:500);

X = [1;

for 1 =1 : lag;

X = [£(1:500-(lag-(1-1))) , X 1;
end
X = [ones(n-lag,1) , X];
b = inv(X?*X)*X’*y;
r =y - X«b;

%Durbin-Watson test for uncorrelated residuals
dw = dwtest(r,X);
if lag > 10
stop = 1;
end
end
%Anderson-Darling test for normality of residuals

© University of Pretoria

XX

41

42

43

44

45

46

47

48

49

50

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxi

ad = adtest(r);

TSA(i,j) .normal = ad;
TSA(i,j) .rescorr = dw;
TSA(i,j) .ARlag = numel(b) - 1;
TSA(i,j) .ARpar(1:numel(b)) = b;
end
end

end

Input variable

Image: kx 1 A structure variable containing an image sequence (video) with each structure element holding

one frame in a field called frames: m X n.

Return variable
TSA: m X n A structure variable containing the following fields at each element for each pixel (i, j),
i=1,2,...,mand j=1,2,...,n:
normal: 1 x 1 The p-value from the Anderson-Darling test for normality of residuals.
rescorr: 1 x 1 The p-value from the Durbin-Watson test for uncorrelated residuals.
ARlag: 1 x 1 The number of AR parameters required for the time series model.

ARpar: 1x10 The vector containing the estimated AR parameters from conditional least squares. Note

that the maximum number of AR parameters allowed is 10.

Method TSA_Image begins by initialising fields normal, rescorr, ARlag and ARpar. This is done to
improve on computing speed. Then for each pixel (4, j) within the frame we extract 500 observations from
the video stream to estimate our AR parameters. The procedure of estimation is as follows [1ines 11 - 48]:
1. Start p, the number of AR parameters, at 1.
2. [1ines 25 - 31] Formulate the vector of dependent observations y and design matrix X as
Y =X, =[Tn Tn-1 ... Tpi1],

and

X=[1 Xp_1 Xp—2 ... Xpn_p),

with x; the ith observation in the sample of pixels. Estimate the AR parameters by CLS as
y = Xb,

with b = [C ¢1 ¢2 ¢p]l.

© University of Pretoria

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX

xxil

3. [1ines 33 & 35] Compute the residuals € = y — Xb then apply the Durbin-Watson test for uncorrelated

residuals (the function readily available in MATLAB).

4. If the p-value of the test is less than 0.05 then redo steps 2 and 3 with new p equal to old p plus 1,

else proceed to step 5.

5. [Lines 41 - 46] Apply the Anderson-Darling test for normality (the function readily available in MAT-

LAB) on the residuals, store the p-values from the Anderson-Darling and Durbin-Watson tests, and

the AR parameters in the appropriate fields. Move onto the next pixel.

function [TSACorr] = TSA_Correl_Image(V_range, H_range, map_in, Image , TSA)

%Determining image size
s_map = size(map_in);
cen = s_map(1) - (s_map(1) - 1)/2;

%Centering the dependence structure map_in
[I,J] = find(map_in == 1);
M_full = transpose([I-cen,J-cen]);

(H_range(1) : H_range(2));

D_H
D_V = (V_range(1) : V_range(2));

%Preallocating structure fields for speed
sam = 500;

TSACorr (V_range(2)-V_range(1)+1,H_range(2)-H_range(1)+1) .Corr = zeros(s_map(1l),s_map(1));
TSACorr (V_range(2)-V_range(1)+1,H_range(2)-H_range(1)+1).Cov = zeros(s_map(1),s_map(1));
TSACorr (V_range(2)-V_range(1)+1,H_range(2)-H_range(1)+1) .Map = zeros(s_map(1l),s_map(1));
TSACorr (V_range(2)-V_range(1)+1,H_range(2)-H_range(1)+1) .Mean = zeros(s_map(1),s_map(1));

for i = V_range(1) : V_range(2)

for j = H_range(1l) : H_range(2)
%Creating maps to suit current (i,j) location. Here, if the indices
%of TestM are contained in D_H and D_V, then we choose those
%indices as our current map.
TestM = M_full + repmat([i;j],1,size(M_full,2));
loc_i = unique(intersect(TestM(1,:),D_V)) - i;
loc_j = unique(intersect(TestM(2,:),D_H)) - j;

map = [];
for ii = 1 : size(loc_i,2)
for jj = 1 : size(loc_j,2)
if map_in(loc_i(ii)+cen, loc_j(jj)+cen) "= 0
map = [map , [loc_i(ii) ; loc_j(jj)]1 1;
end
end
end

X = zeros(sam,size(map,2));
X_bar = zeros(l,size(map,2));

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxiii

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68 end
69

70 end

Inp

V_range

H_range:

map_in:

Image

TSA:

for m = 1 : size(map,2)
for n =1 : sam
X(n,m) = Image(n,1).frames(i+map(1,m),j+map(2,m));
end

par = TSA(i+map(1l,m),j+map(2,m)).ARpar;
X_bar(m) = par(1)/(1 - sum(par(2:numel(par))));
end

%Sample statistics.

X0 = X - repmat(X_bar,size(X,1),1);

X_cov = transpose(X0)*X0/(sam-1);

D = real(sqrt(inv(eye(size(X_cov,1)).*(X_cov))));
X_cor = D*X_cov*D;

%Storing results in structures. With (0,0) as a reference point, we

%can recreate the map_in using our temporary map.

i0 = find(map(1,:) == 0);

jO = find(map(2,:) == 0);

locO = intersect(i0,j0);

for m = 1 : size(map,2)
TSACorr (i, j).Corr(map(1l,m)+cen,map(2,m)+cen) X_cor(locO,m);
TSACorr(i,j).Mean(map(1l,m)+cen,map(2,m)+cen) = X_bar(m);

end

TSACorr(i,j).Cov = X_cov;
TSACorr(i,j).Map = map;
end
ut variables

: 2x 1 A vector storing the range of vertical pixels to consider when running TSA_Correl_Image with
first and last element the minimum and maximum of the pixel location respectively. The intersection

of V_range and H_range then defines a rectangular region for the function to operate on.
2 x 1 Similar to V_range but for horizontal considerations.

Mmap X Muap AN 0dd matrix with 1 at the centre and zeros and ones elsewhere (user-defined). Note
that a value of 1 at element (4,j) corresponds to finding the correlation and covariance between

element (4,7) and the centre for each pixel in the frame.
: k x 1 See Input variables in function TSA_Image.

m x n See Return variable in function TSA_Image.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xXxiv

Return variable

TSACorr: VXxH A structure variable containing the correlation matrix, covariance matrix and the mean for the

10

11

12

13

14

15

16

17

18

set of pixels defined by the dependence structure? map in fields Corr, Cov and mean respectively.
Furthermore, we also store the location of these image pixels in a matrix called Map. Note that the
number of rows V of TSA_Corr is determined by V_Range as V = V_range(2) - V_range(1) + 1.

This goes similarly for the number of columns H.

Method [1ines 3 - 9] For input dependence structure map_in, we obtain the subscripts of where the value
of 1’s occur and centralise them. Thus we obtain, for each value of 1, the total vertical and horizontal
displacement required to travel from the centre to another point within map_in - these are stored in
M_full. This implies that, for each pixel (i, j), we can recreate the dependence structure centred at (i, 5)
simply by adding the displacements to (i, j).

[Lines 11 - 12] The variables D_H and D_V contain all possible (i, 7) pixel locations to consider (as dictated
by V_range and H_range). These are used to prevent the dependence structures from extending beyond
feasible limits of the frame or the user-defined limits. For example, for the dependence structure defined
in FILLMEIN, we have that centering the structure at the top-left hand corner pixel (1, 1) places parts
of the structure beyond the scope of the frame. Intersecting D_H and D_V with the dependence structure
at (1,1), we will get usable pixel information.

[1ines 39 - 66] For each pixel within the dependence structure centred at (i, 5), we extract 500 samples
from the video stream. Then we compute the sample covariance matrix and sample correlation matrix.
After which we store these results with respect to the input dependence structure. This is repeated for

all (¢,7) dictated by V_range and H_range.

function [Ave_pval , TSA_HypoTest] = TSA_HypoTest(V_range , H_range , map_in ,
alpha , TSA , Image)

%Determining image size
[m , n] = size(TSA);

%Centering the dependence structure map
s_map = size(map_in);

cen = s_map(1l) - (s_map(1l) - 1)/2;
[I,J] = find(map_in == 1);

M_full = transpose([I-cen,J-cen]);

%Determining all possible pixel values
D_H = (H_range(1) : H_range(2));
D_V = (V_range(1) : V_range(2));

1]

sam = 500;
M = round(log(sam));

2Not a MATLAB structure, but the dependence structure defined in FILLMEIN

© University of Pretoria

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX

%Preallocating structure fields for speed
TSA_HypoTest (m,n) .p_value = zeros(s_map(1),s_map(1));
TSA_HypoTest (m,n) .Haugh = zeros(s_map(1),s_map(1));
TSA_HypoTest (m,n) .RejHO = zeros(s_map(1),s_map(1));
Ave_pval = zeros(s_map(1),s_map(1));
Nval = Ave_pval;
for i = V_range(1) : V_range(2)
for j = H_range(1) : H_range(2)
%Creating maps to suit current (i,j) location. Here, if the indices
%of TestM are contained in D_H and D_V, then we choose those
%indices as our current map
TestM = M_full + repmat([i;j],1,size(M_full,2));
loc_i = unique(intersect(TestM(1,:),D_V)) - i;
loc_j = unique(intersect(TestM(2,:),D_H)) - j;

map = [];
for ii = 1 : size(loc_i,2)
for jj = 1 : size(loc_j,2)
if map_in(loc_i(ii)+cen, loc_j(jj)+cen) ~= 0
map = [map , [loc_i(ii) ; loc_j(3j)]1 1;
end
end
end

%Creating a temporary observation matrix X to find the residuals
%from the AR model defined in TSA
X = zeros(sam,size(map,2));
for nn = 1 : sam
for mm = 1 : size(map,2)
X(nn,mm) = Image(nn,1).frames(i+map(1,mm),j+map(2,mm));
end
end

i0 = find(map(1,:) == 0);
jO = find(map(2,:) == 0);
locO = intersect(i0,j0);

%Computing residuals for centre pixel
lag = TSA(i,j) .ARlag;
yO = X(lag+l:sam,loc0);
X0 = [1;
for 1 =1 : lag;
X0 = [X(1:sam-(lag-(1-1)),loc0) , X0 1;
end
X0 = [ones(sam-lag,1) , X0];
b = TSA(i,j).ARpar(l:lag+1)’;
u0 = y0O - XO0xb;

%Computing residuals for the other pixels defined in the dependence
%structure. In addition, apply Haugh’s test of independence.
for mm = 1 : size(map,2)

i1 i + map(1,mm);

jl = j + map(2,mm);

© University of Pretoria

XXV

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxvi

73

74

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

99

101
102
103

104

106
107
108
109

110 end

if mm "= locO && TSA(il1,jl1).ARlag < 10
lag = TSA(il,j1).ARlag;
y1 = X(lag+1l:sam,mm) ;
X1 = [1;
for 1 =1 : lag;
X1 = [X(1:sam-(lag-(1-1)),mm) , X1 J;
end
X1 = [ones(sam-lag,1) , X1];
b = TSA(i1,j1).ARpar(1:lag+l)’;
ul = y1 - X1xb;

s = 03
for k =-M: M
s = s + r_uv(k,u0,ul)"2;
end
s = s*min(numel (u0) ,numel (ul));

i_map = cen + map(1l,mm);
j_map = cen + map(2,mm);
TSA_HypoTest(i,j) .p_value(i_map,j_map) = 1 - chi2cdf(s,2xM+1);
TSA_HypoTest(i,j) .Haugh(i_map,j_map) = s;
end
end

%Extracting p-values from each test
p_val = TSA_HypoTest(i,j).p_value;
if sum(sum(isnan(p_val))) ==
s = TSA_HypoTest(i,j) .Haugh;
TSA_HypoTest(i,j) .RejHO = (p_val < alpha).*(s > 0);

mi size(p_val,1);

size(p_val,2);

Ave_pval(1l:ml,1:nl1) = Ave_pval(l:ml,1:nl) + p_val;
Nval(i:m1,1:n1) = Nval(i:mi1,1:n1) + (s > 0);

end

nl

end

111 Ave_pval = Ave_pval.*(Nval > 0)./Nval;

112

113 end

Input variables

V_range

H_range

map_in:

alpha

: 2 x 1 See Input variables in function TSA_Correl_Image.
: 2 x 1 See Input variables in function TSA_Correl_Image.
Mnap X Mpap See Input variables in function TSA_Correl_Image.

: 1 x 1 The significance level for Haugh’s [12] test of independence between two univariate time series.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxvii

TSA: m x n See Return variable in function TSA_Image.

Image: k x 1 See Input variables in function TSA_Image.

Return variables

Ave_pval: Mpap X Mpap A matrix containing the average of the p-values of the tests with its structure defined

by map_in.

TSA_HypoTest: m x n A structure variable with each element (i,j) containing the hypothesis tests results for
corresponding pixel at location (¢,7). The following fields are embedded within each structure

element:

p_value: Mpap X Mnep A matrix containing the p-values of the tests with its structure defined by map_in.

Haugh: Mgap X Mgap A matrix containing the test statistics of the tests with its structure defined by

map_in.

RejHO: Mgap X Mipap A matrix containing 0’s and 1’s of the tests with its structure defined by map_in.

Note that 1 implies we have rejected the null hypothesis of independence and 0 otherwise.

Method Same as TSA_Correl_Image, TSA_HypoTest begins by developing the displacements from the
centre to points in the input map_in and determining the range of ¢ and j values so that the dependence
structure centred at each pixel (7,) is in context.

[lines 44 - 511 At pixel (i, j), create a temporary observation matrix X to store 500 observations of the
pixel variables present within the input dependence structure.

[lines 53 - 661 To begin with Haugh’s test of independence between two univariate time series [12], we
begin by calculating the residuals for the centre pixel and fixing it constant for the particular i'" and j*0
iteration of the two vertical and horizontal pixel loops. This is because these residuals remain constant
throughout the test for each pixel within the dependence structure. To obtain the residuals, we use the
information from the structure variable TSA to recreate our design matrix X from CLS (since TSA contains
the estimated AR parameters) and vector of regressors y, and set the residuals as € = y — Xb, with b
the vector containing our AR parameters.

[lines 68 - 961 This process is repeated for all pixel present within the dependence structure. In addition,
we implement Haugh'’s test of independent univariate time series [12] with the centre pixel and the others.
We store the p-values and their test statistics in fields p_value and Haugh respectively.

[lines 98 - 1071 In these lines we keep a running total of the p-values in the dependence structure where,
at the end of the code, we divide by the total number of occurences to get the average p-value of the

whole dependence structure.

© University of Pretoria

10

11

12

13

14

15

16

17

18

19

20

21

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxviii

function [Ave_ARpar] = Ave_ARpar(TSA)

[m,n] = size(TSA);

N =

Ave_

for

end

Ave_

end

0;

ARpar = zeros(11,1);

i=1:m

for j=1:n
ARpar = TSA(i,j).ARpar(2:numel(TSA(i,j).ARpar));
ARpar = reshape(ARpar,numel (ARpar),1);

if sum(isnan(ARpar)) == 0 && sum(isinf (ARpar)) ==
Ave_ARpar (1:numel (ARpar)) = Ave_ARpar(1:numel(ARpar)) + ARpar;
N=N+1;

end

end

ARpar = Ave_ARpar/N;

Input variable

TSA: m x n See Return variable in function TSA_Image.

Return variable

Ave_ARpar: 11 x 1 A vector containing the average of the AR parameters within the video from TSA_Image.

10

11

12

13

14

15

Method For each pixel (4, 5), Ave_ARpar keeps a running sum of the AR parameters of the pixel in the

video stream. The final sum is then divided by the total number of occurences to obtain the average.

function [Corr_Ave] = TSA_FAverage(TSACorr)

Corr_Ave = zeros(size(TSACorr(1,1).Corr,1),size(TSACorr(1,1).Corr,1));

N =

for

Corr_Ave;

i =1 : size(TSACorr,1)
for j = 1 : size(TSACorr,2)

rho = TSACorr(i,j).Corr;
if sum(sum(isnan(rho))) == 0
size_rho = size(rho);
Corr_Ave(l:size_rho(1),1:size_rho(2)) = Corr_Ave(l:size_rho(1),1:size_rho(2))
+ rho;
N(1:size_rho(1),1:size_rho(2)) = N(1l:size_rho(1),1:size_rho(2)) + (rho = 0);
end

© University of Pretoria

16

17

18

19

20

APPENDIX

end
end

Corr_Ave = Corr_Ave ./ N;
end

Input variable

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

TSACorr: m x n See Return variable in function TSA_Correl_Image.

Corr_Ave: Mpmap X Mmap The average of the correlations within each dependence structure.

Return variable

xxix

Method We sum over all correlations within each dependence structure and divide the result by the

total number of occurences.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX XXX

Noise removal in images [MATLAB|

Introduction

In this section we provide the codes used to obtain results in Chapter 4. A summary of the functions is

given below:
LCG: Simulates uniform variates using the LCG algorithm.
Box_Muller: Simulates standard normal variates using the Box-Muller algorithm (uses LCG).

Noisy: Simulates random variates from distributions specified in Table 4.1 of Chapter 4 (uses LCG and

Box_Muller).
L_n: Applies the L, operator on an image f.
U_n: Applies the U, operator on an image f.

PP_plotv2: Finds the PP plot co-ordinates for input noise sample.

1 function [U] = LCG(a, ¢, m, x0, dim)

dim(1)*dim(2) ;

@
B
]

5 x = [x0 ; zeros(n,1)];
¢ for i =2 : (nt+l)

7 x(i) = mod(a*x(i-1) + c, m);
s end
o x = x(2:n+1,:)/m;

10
11 U
12

13 end

I

reshape(x,dim(1) ,dim(2));

Input variables
a: 1 x 1 The multiplier.
c: 1 x 1 The increment.
m: 1 x 1 The modulus.
x0: 1 x 1 The initial value (seed).

dim: s X t The dimension of the matrix in which we populate with random uniform variates.

© University of Pretoria

10

11

12

13

14

15

16

18

19

20

21

22

23

APPENDIX

Return variable

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Quef) YUNIBESITHI YA PRETORIA

U: s xt A matrix containing independent uniform variates.

XXX1

Method With an initial value z((seed), the function obtains a sequence of integers x1, o, ..., s with

the recursive formula given by

ZTpn = (axp—1 + ¢)(mod m).

Thus z,, is the remainder of ax,,_1 + ¢ after dividing by m. The integers x1, o, ..., x5 are then multiplied

by 1/m to obtain mn random numbers on the interval [0,1).

function [N , U] = Box_Muller(a, ¢, m, x0, dim)

n = dim(1)*dim(2) ;
if mod(n,2) "= 0
n=n+1;

end

U =1CG (a, c, m, x0, [n 1]);
U_v = reshape(U,n,1);

odd_idx = (1:2:n);
even_idx = (2:2:n);

zl = sqrt(-2*log(U_v(odd_idx,:))) .* cos(2*pi*U_v(even_idx,:));
sqrt (-2*xlog(U_v(odd_idx,:))) .* sin(2*pi*U_v(even_idx,:));

z2

N = zeros(dim);
N(odd_idx) = z1;

select = intersect(even_idx, (1:dim(1)*dim(2)));
N(select) = z2(1l:numel(select));

end

Input variables
a: 1 x 1 The multiplier.
c: 1 x 1 The increment.
m: 1 x 1 The modulus.

x0: 1 x 1 The initial value (seed).

dim: s X t The dimension of the matrix in which we populate with standard random normal variates.

© University of Pretoria

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxxii

Return variables
N: s x t A matrix containing independent standard normal variates.

U: s xt A matrix containing the independent uniform variates used to simulate the normal variates in

N.

Method Since the Box-Muller algorithm generates an even number of standard normal variates, [1lines
3 - 6] ensures that we simulate an even number of variates. For each pair of uniform variates (u;, u;41) in

u,7=1,3,5,...,st — 1 generated by the LCG ([1ine 81), compute,
z; = v/—2Inwus cos(2muz), and
ziv1 =V —2Inwug sin(2mus).

Note that z; and z;4; are independent standard normal variates and are stored in z1 and z2 respectively.
Next, store all random standard normal variates in a matrix N by selecting from the appropriate elements

of z1 and z2.

function [Noise , U] = Noisy (a , ¢, m, x0, dim, k, std_dev)

var = std_dev~2;
U = LCG(a, ¢, m, x0, dim);
if k ==
Noise = (U .* (2*sqrt(3)*std_dev)) - sqrt(3)*std_dev;
elseif == 2
[Noise , Ul] = Box_Muller(a, c, m, x0, dim);
Noise = Noisex*std_dev;
elseif k == 3
s = sqrt(3*var/pi~2);
Noise = -s*log(U .~ (-1) - 1);
elseif k ==
s = 2/(4 - pi)*var;
Noise = sqrt(-2*sxlog(1 - U)) - sqrt(-2*sxlog(0.5));
elseif k == 5
beta = sqrt(6/(pi~2)*var);
mu = -betax0.5772;
Noise = -betaxlog(-log(U)) + mu;
elseif k ==
Noise = -std_dev*log(l - U) + std_dev*log(0.5);
end

end

Input variables

a: 1 x 1 The multiplier.

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxxiii

c: 1 x 1 The increment.
m: 1 x 1 The modulus.
x0: 1 x 1 The initial value (seed).
dim: m X n The dimension of the matrix in which we populate with random variates.
k: 1 x 1 The type of noise to generate (see Method).

std_dev: 1 x 1 The standard deviation of the random numbers.

Return variables

Noise: m X n A matrix containing independent variates from the same distribution specified by k with

standard deviation std_dev.

U: m X n A matrix containing the independent uniform variates used to simulate the normal variates

in N.

Method Noisy simulates random variates from distributions given in Table 4.1 of Chapter 4. This is
done by setting the mean of the distribution equal to zero and solving for the distribution parameters by
setting its variance equal to the input parameter std_dev?. If the distribution is not normal, the inverse
transform method is used, else the Box-Muller is used. The type of distribution to simulate is determined

by the input parameter k, if:

k = 1 Noisy simulates random variates from the uniform distribution.

k = 2 Noisy simulates random variates from the normal distribution.

k = 3 Noisy simulates random variates from the logistic distribution.

k = 4 Noisy simulates random variates from the Rayleigh distribution.

k = 5 Noisy simulates random variates from the Gumbel distribution.

k = 6 Noisy simulates random variates from the exponential distribution.

In addition, for Rayleigh and exponential distributions, the whole sample is shifted to the left by its

median.

1 function [L_f] = L_n(f_in, n)
3 f = [zeros(1l,size(f_in,2)+2) ;

4 zeros(size(f_in,1),1) , f_in , zeros(size(f_in,1),1) ;
5 zeros(1l,size(f_in,2)+2) 1;

© University of Pretoria

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

APPENDIX

mn = size(f);
remove = f;

numele = sort(unique(f),’descend’);

for i = 1 : numel(numele)
isnumele = (f >= numele(i));

¢ = bwconncomp(isnumele, 4);

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

’

c_struct = cell2struct(c.PixelIdxList,’PixIdx’,1);

for j = 1 : size(c_struct,1)

if size(c_struct(j,1).PixIdx) <= n
[I,J] = ind2sub(mn,c_struct(j,1).PixIdx);

IJ,all = [T +1 ,3J

I , J +

I-1,17

I , J -
checkl = (IJ_all > 0);
check2 = (IJ_all(:,1)
check3 = (IJ_all(:,2)

;
1
;

11;

<= mn(1));
<= mn(2));

check = (checkl == [check2 , check3]);
IJ_all = IJ_all((sum(check,2) == 2) ,:);

ind_all
ind_set

ind_sur = setdiff(ind_

sub2ind(mn,IJ_all(:,1),IJ_all(:,2));
sub2ind(mn,I,J);

all, ind_set);

if max(f(ind_sur)) < numele(i)

remove (ind_set) =
end
end
end
end

L_f = remove(2:mn(1) - 1, 2:mn(2)

end

max (f (ind_sur));

- 1)

Input variables

f_in: h X w An image f.

n: 1 x 1 The level n at which to apply L.

Return variable

L_f: h x w The image L, f.

© University of Pretoria

XXX1V

10

11

12

13

14

15

16

17

18

19

20

21

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX XXXV

Method L_f removes all pulses of size n or less by using the Roadmaker’s algorithm. That is, it does
not incorporate the definition (this would computationally intense).

[lines 3 - 5] appends zeros around the image £. This is done so that 4-connectivity can be used. Next
we set an empty matrix remove equal to £ so that we can track all the removed pulses and store all the
unique elements within £ in numele.

[lines 11 - 40] For each element in numele, say u, we find the logical matrix isnumele where,

1 if the element in f,; is greater than u
isnumele;; =

0 otherwise.
Apply bwconncomp® on isnumele to extract all connected sets that have pixel values greater than or equal
to u and store all indices in c_struct (a structure variable).

For each element in c_struct determine its size. Since the size of the element indicates the size of
the pulse, we proceed if the size is less than n (since L,, removes all pulses of size n or smaller) else move
onto the next element in c_struct. Next we change the indices to subscripts and determine the indices
that are above, below, to the left, and right of them. After locating the indices, set the pulse equal to the
maximum of its surrounding elements by changing the appropriate values in remove.

Once all the unique elements of £ have been examined, all upward pulses of size n or less are removed

in removed. After which we return L_f as removed without the appended zeros.

function [U_f] = U_n(f_in, n)

f = [zeros(1,size(f_in,2)+2) ;
zeros(size(f_in,1),1) , f_in , zeros(size(f_in,1),1) ;
zeros(1,size(f_in,2)+2) 1;

mn = size(f);
remove = f;
numele = sort(unique(f),’ascend’);

for i = 1 : numel(numele)
isnumele = (f <= numele(i));

¢ = bwconncomp(isnumele, 4);
c_struct = cell2struct(c.PixelIdxList,’PixIdx’,1);

for j = 1 : size(c_struct,1)
if size(c_struct(j,1).PixIdx) <= n
[I,J] = ind2sub(mn,c_struct(j,1).PixIdx);
IJall=[T+1,J ;
I , J+ 1

3puconcomp (£f,c) is a MATLAB function which finds all nonzero connected sets in £ with c-connectivity and stores the
information in a structure variable. The most important field of which is .PixelIdxList which contains all the indices of

the connected sets in cell format.

© University of Pretoria

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX
I-1,13 ;
I , J - 1]
checkl = (IJ_all > 0);
check2 = (IJ_all(:,1) <= mn(1));
check3d = (IJ_all(:,2) <= mn(2));
check = (checkl == [check2 , check3]);
IJ_all = IJ_all((sum(check,2) == 2) ,:);
ind_all = sub2ind(mn,IJ_all(:,1),IJ_all(:,2));
ind_set = sub2ind(mn,I,J);
ind_sur = setdiff(ind_all, ind_set);
if min(f(ind_sur)) > numele(i)
remove (ind_set) = min(f(ind_sur));
end
end
end
end

U_f = remove(2:mn(1) - 1, 2:mn(2) - 1);

end

Input variables
f_in: h X w An image f.
n: 1 x 1 The level n at which to apply U,.

Return variable

U_f: h x w The image U, f.

Method Similar to L_f

function [TVE 1 = TV2(£)
mn = size(f);

v_diff
h_diff

f(2:mn(1),:) - f(1:mn(1)-1,:);
£f(:,22mn(2)) - £f(:,1:mn(2)-1);

TVf = sum(sum(abs(v_diff))) + sum(sum(abs(h_diff)));

end

© University of Pretoria

XXXV

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxxvil

Input variable
f: An image f.

Return variable

TVf: The total variation of image f

Method This function utilises the definition of total variation in section 3.3.1 in Chapter 3. It starts
by finding the vertical differences in v_diff, all the horizontal differences in h_diff and summing the

absolute value of the differences.

function [PP_cord] = PP_plotv2 (noise , k , std_dev)

sam_n = size(noise,l)*size(noise,2);
X = sort(real(reshape(noise,[sam_n,1])));
X =XX "= 0);

Emp_Dist = (1/size(X,1) : 1/size(X,1) : 1)7;

var = std_dev~2;
if k ==

sam_Dist = (X + sqrt(3)*std_dev)/(2xsqrt(3)*std_dev);
elseif k == 2

sam_Dist = 0.5 + 0.5*erf((X)/(sqrt(2)*std_dev));
elseif k ==

s = sqrt(3*var/pi~2);

sam_Dist = (1+exp(-(X/s))).~(-1);
elseif k == 4

s = 2/(4 - pi)*var;

sam_Dist = 1 - exp(-((X + sqrt(-2*sxlog(0.5)))."2)/(2%s));
elseif k ==

beta = sqrt(6/(pi~2)*var);

mu = -betax0.5772;

sam_Dist = exp(-exp(-(X-mu)/beta));
elseif k ==

lambda = 1/std_dev;

sam_Dist = 1 - exp(-lambda*(X - std_dev*log(0.5)));
end

sam_Dist(sam_Dist < 0) 0;
sam_Dist(sam_Dist > 1) = 1;

QQ_cord = [Emp_Dist , sort(real(sam_Dist))];

end

© University of Pretoria

=
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quef) YUNIBESITHI YA PRETORIA

APPENDIX xxxviii

Input variables
noise: m X n The matrix containing the noise sample.
k: 1 x 1 The parameter specifying the type of distribution.

std_dev: 1 x 1 The required standard deviation of the distribution.

Return variable

Noise: m x n The matrix containing a sample of the distribution specified by k.

Method The function starts by reshaping the matrix noise into a vector X and sorting the sample in
ascending order. This is done so that we can finds its sample cdf. The theoretical cdf is the uniform
vector [0, 1], with total number of elements equal to the sample size. For the sample cdf, we determine
the cdf values by using the appropriate distribution function dictated by k, which follows the exact same
call as function Noisy. Finally, because the noise is extracted from images it can contain values outside
the support of the specified distribution, we set all negative cdf values to 0 and all values greater than
one to 1.

Note that for the Rayleigh and exponential distributions we shift the sample to the right by the

appropriate distribution median so that the range of the sample is within the support of the distribution.

© University of Pretoria

