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Abstract

We prove a partial non-commutative analogue of the Furstenberg-Zimmerman Struc-
ture Theorem, originally proved by Tim Austin, Tanya Eisner and Terence Tao.

In Chapter 1, we review the GNS construction for states on von Neumann algebras
and the related semicyclic representation for tracial weights. We look at Tomita-
Takasaki theory in the special case of traces. This will allow us to introduce the Jones
projection and conditional expectations of von Neumann algebras. We then define the
basic construction and its associated finite lifted trace. We also introduce the notion
of projections of finite lifted trace and how they relate to right submodules.

Chapter 2 introduces dynamics in the form of automorphisms on von Neumamnn
algebras. We will see how the dynamics is represented on the GNS Hilbert space using
a cyclic and separating vector. It is then shown how the dynamics is extended to the
basic construction and the semicyclic representation.

The last three chapters form the “core”. At the beginning of each aforementioned
chapter, we present a summary of the required theory, before providing detailed proofs.

In Chapter 3, we prove one of two “fundamental lemmas” where we introduce
some non-commutative integration theory. We use a version of the spectral theorem
expressed in terms of a spectral measure to produce a certain projection of finite lifted
trace. In Chapter 4, we prove our next fundamental lemma. We use direct integral
theory in order to obtain a representation of the dynamics, in terms of a module basis,
on the image of the projection of finite lifted trace. In Chapter 5, we apply our previous
results to asymptotically abelian W*-dynamical systems, culminating in the proof of
the titular theorem.
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Introduction

Ergodic theory has its origins in statistical mechanics, a subfield of physics (see, for
instance, [TKS92]). In part, it comprises the study of the long term behaviour of ab-
stract dynamical systems and abstracting, into various notions, the physically intuitive
idea of “mixing”.

Ergodic ideas have increasingly made their presence known within mathematics
itself, for instance, the work of Furstenberg in number theory ([Fur14]).

In this dissertation, we will prove a partial non-commutative analogue of the Furstenberg-
Zimmerman Structure Theorem ([Fur77], [Z+76]), originally proved in [AET11]:

Theorem 5.2.3 ([AET11] Theorem 1.14). If (M, τ, α) is an asymptotically abelian
W ∗-dynamical system, then α is weakly mixing relative to the centre Z(M) ofM.

The following list provides an overview of the mathematical topics used in this
dissertation:

• von Neumann algebras, their normal states and tracial weights

• The GNS- and semicyclic representations

• Tomita Takesaki theory for traces

• Conditional Expectation of von Neumann algebras

• The basic construction and finite lifted trace

• Unbounded linear operators and operators affiliated to a von Neumann algebra

• Measurable operators in the theory of non-commutative integration

• Spectral theory (for bounded and unbounded linear operators)

• Direct integrals (of Hilbert spaces and von Neumann algebras)

• A Gram-Schmidt process for modules

• Composition Operators on L∞.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



INTRODUCTION

At a bare minimum, the reader should be acquainted with the basics of von Neu-
mann algebras and unbounded linear operators. The content of [Zhu93] (up to and
including Chapter 18) and [Kre78] Chapter 10 (up to and including §10.3) should serve
as an example of prerequisites.

This dissertation consists of five chapters. The first two chapters provides back-
ground. To keep the length of this dissertation reasonable, we have limited the number
of proofs in Chapters 1 and 2, providing references instead.

In Chapter 1, we review the GNS construction for states on von Neumann algebras
and the related semicyclic representation for tracial weights. We shall look at Tomita-
Takasaki theory in the special case of traces. This will allow us to introduce the Jones
projection and conditional expectations of von Neumann algebras. We then define the
basic construction and its associated finite lifted trace. We also introduce the notion
of projections of finite lifted trace and how they relate to right submodules.

Chapter 2 introduces dynamics in the form of automorphisms on von Neumamnn
algebras. We will see how the dynamics is represented on the GNS Hilbert space using
a cyclic and separating vector. It is then shown how the dynamics is extended to the
basic construction and the semicyclic representation.

The reader should view the last three chapters as the “core” of this dissertation. At
the beginning of each aforementioned chapter, we present a summary of the required
theory, before providing detailed proofs to results presented in [AET11].

In Chapter 3, we prove one of two “fundamental lemmas” (Lemma 3.0.3), where we
introduce some non-commutative integration theory. We use a version of the spectral
theorem expressed in terms of a spectral measure to produce a certain projection of
finite lifted trace. In Chapter 4, we prove our next fundamental lemma (Lemma 4.0.2).
We use direct integral theory in order to obtain a representation of the dynamics,
in terms of a module basis, on the image of the projection of finite lifted trace. In
Chapter 5, we apply our previous results to asymptotically abelian W ∗-dynamical
systems, culminating in the proof of Theorem 5.2.3.
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Chapter 1

Background

1.1 The GNS construction

Though we assume that the reader is familiar with the GNS Construction, we will
present a summary of results and definitions that will be useful to us. For a more in
depth discussion, we refer the reader to a number of books, for instance [Zhu93] §14.1,
[Mur90] §§3.4 and 5.1, [Ave02] §4.7 and [KR97a] §4.1. We follow the presentation of
[JS97] §1.2 below.

For any subset S of a Hilbert space H (over C), denote by [S] the closed subspace
spanned by S. By a representation (π,H) of a von Neumann algebra A, we mean a
2-tuple consisting of a Hilbert space H and an algebra homomorphism π : A → B(H)
such that π is ∗-preserving i.e. for all a ∈ A, π(a)∗ = π(a∗). If the underlying Hilbert
space is understood, we usually refer to π as a representation of A, instead of (π,H).

Definition 1.1.1. Suppose A is a von Neumann algebra with representation π : A →
B(H). We call a vector x ∈ H, a cyclic vector for π if [π(A)x] = H. The representation
π is then referred to as a cyclic representation of A .

Definition 1.1.2. Let A be a von Neumann algebra. A state of A, is a linear func-
tional ψ : A → C with the following properties: For all x, y ∈ A and λ ∈ C

(a) ψ(1) = 1

(b) ψ(x∗) = ψ(x)

(c) ψ(x∗x) ≥ 0 (ψ is positive)

We call ψ faithful if ψ(x∗x) = 0 if and only if x = 0 and normal if for all increas-
ing nets (xα) of positive elements with supremum supα{xα}, we have supα{ψ(xα)} =
ψ(supα{xα}).
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CHAPTER 1. BACKGROUND 2

A state ψ with the tracial property (i.e. ψ(xy) = ψ(yx) for all x, y ∈ A) is called a
trace.

Let A be any von Neumann algebra with a normal state ψ. Consider the following
sesquilinear form on A : for all x, y ∈ A, (x, y) 7→ 〈x, y〉 := ψ(y∗x). We almost have an
inner product. However, we may not have positive-definiteness, i.e. there may exist an
x 6= 0 such that ψ(x∗x) = 0. We thus consider the set

(1.1.1) Kψ := {x ∈ A : ψ(x∗x) = 0}.

A consequence of a Cauchy-Schwarz type inequality implies that Kψ is a left ideal of
A. Thus, we have an inner product on the quotient space A/Kψ. Hence, the equation
π(x)(y+Kψ) = xy+Kψ defines a bounded linear operator π(x) on A/Kψ, with respect

to the norm ‖y +Kψ‖2 =
√
ψ(y∗y). Denoting the Hilbert space completion of A/Kψ

by Hψ, πψ(x), the extension of π(x) to Hψ, defines a normal (σ-weakly continuous)
representation of A on Hψ ([Tak03a] Proposition 3.12). Further, if Ωψ := 1A + Kψ,
where 1A denotes the multiplicative identity of A, then Ωψ is a cyclic vector for Hψ.
Given the triple (Hψ, πψ,Ωψ) we can recover ψ by setting

ψ(x) := 〈πψ(x)Ωψ,Ωψ〉.

This concludes the summary of the GNS representation with respect to ψ, after
Gelfand, Naimark and Segal:

Proposition 1.1.3. Let ψ be a normal state on a von Neumann algebra A. Then there
exists a triple (Hψ, πψ,Ωψ) consisting of a Hilbert space Hψ carrying a normal repre-
sentation πψ of A and a distinguished cyclic vector Ωψ of the representation satisfying
ψ(x) = 〈πψ(x)Ωψ,Ωψ〉.

Remark 1.1.4. If there is no confusion, we usually do not mention the underlying
state, dropping the subscripts and writing π and Ω, instead of πψ and Ωψ.

Definition 1.1.5. Suppose A is a von Neumann algebra with representation π : A →
B(H). We call a vector ξ ∈ H a separating vector for A if the map A 3 x 7→ π(x)ξ ∈
π(A)Ω is injective. In other words, for every x ∈ A, π(x)ξ = 0 =⇒ x = 0.

Proposition 1.1.6 ([JS97] Lemma 1.2.3, [BR02] Proposition 2.5.3). If A ⊆ B(H) is
a von Neumann algebra, a vector ξ ∈ H is cyclic for A if and only if it is separating
for A′.

Remark 1.1.7. For the remainder of this work, we reserve the symbolsM and τ. We
let M denote a von Neumann algebra admitting a faithful normal trace τ.

The GNS representation π is then faithful (i.e injective), since, if x ∈M, then

π(x) = 0 =⇒ 0 = ‖π(x)Ωτ‖2 = τ(x∗x) = 0 =⇒ x = 0.
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CHAPTER 1. BACKGROUND 3

And now Ωτ is separating:

π(a)Ωτ = 0 =⇒ τ(a∗a) = ‖π(a)Ωτ‖2 = 0 =⇒ a = 0.

Thus, without loss of generality, we always assume thatM is in its cyclic representation,
identifying x with π(x). In contrast, for other algebras (A, B, R, etc.) we only assume
this when we explicitly say so.

We emphasize that there are two ways of viewing M (which we will keep distinct
in this dissertation). One is as a subalgebra of B(Hτ ) (using the GNS representation).
The other is as a dense set in Hτ = [MΩ] via the map x 7→ xΩ. When referring to the
embedded copy of an element x ∈ M in Hτ , some authors use x̂ instead of xΩ. The
notation x1̂, with 1̂ := Ω is also used.

1.2 Modules

Though we do not use any deep results with regards to modules, we will find it a useful
way of thinking. We introduce some terminology which make precise what is meant
by “a right (or left) action of an algebra on a Hilbert space”.

Definition 1.2.1 ([JS97] p.19). Let A be an arbitrary von Neumann algebra. By a
left A-module, we mean a Hilbert space H equipped with an action (more precisely
a left action) i.e a unital σ-weakly continuous representation πl : A → B(H).

Definition 1.2.2 ([JS97] p.23). LetA be an arbitrary von Neumann algebra. A Hilbert
space H is called a right A-module if there is a σ-weakly continuous representation
πr : A → B(H), satisfying, for all x, y ∈ A

(1.2.1) πr(xy) = πr(y)πr(x).

We refer to πr as the right action of A on H.

Remark 1.2.3. The σ-weak topology is also referred to as the weak* topology (p.95
[Con00]). From [Con00] Corollary 46.5, a representation is σ-weakly continuous if and
only if it is normal.

Definition 1.2.4. Let A and B are two arbitrary von Neumann algebras. Then a
Hilbert space H is called an A-B-module if

(a) H is a left A-module;

(b) H is a right B-module;

(c) For all m ∈ A, n ∈ B and ξ ∈ H, πl(m)πr(n)ξ = πr(n)πl(m)ξ.
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CHAPTER 1. BACKGROUND 4

Remark 1.2.5. The definition of a right action is consistent with how right multipli-
cation is understood informally. Suppose H is a A-B-bimodule for some von Neumann
algebras A and B represented on H. Then, in terms of the notation ax ≡ πl(a)x and
xb ≡ πr(b)x, (c) in Definition 1.2.4 can be expressed as

(1.2.2) x(ξy) = (xξ)y for all x ∈ A , b ∈ B and ξ ∈ H.

Remark 1.2.6. Using Definition 1.2.1, Hψ is a left A-module. Later we will see how
we can view Hψ as a right-A-module (Proposition 1.4.3).

We also take note of what it means for a subspace to be a submodule.

Definition 1.2.7. Let A be a von Neumann algebra acting on a Hilbert space H. Let
H be an A-A-module with left action πl and right action πr. Let C be a von Neumann
subalgebra of A. We say that K ⊆ H is a closed right-C-submodule of H provided

(a) K is a closed subspace of H and

(b) K is invariant under the algebra πr(C), that is, πr(C)K ⊆ K.

Similarly, K is a closed left-C-submodule of H if K is a closed subspace of H and is
invariant under the algebra πl(C).

1.3 The Semicyclic Representation

We describe a generalisation of the GNS construction where a normal semifinite tracial
weight is used instead of a state. Details can be found in [KR97b] §7.5. We lay out
some useful notation that we will use in Chapters 2 and 3.

Let ρ be a normal semifinite tracial weight ([KR97b] Definition 7.5.1, [BR02] Def-
inition 2.7.12) on a von Neumann algebra R. We consider the quotient space Kρ/Kρ,
where

(1.3.1) Kρ := {x ∈ R | ρ(x∗x) <∞}

is a left R-ideal ([KR97a] Lemma 7.5.2) and Kρ := {x ∈ R | ρ(x∗x) = 0}. The quotient
map gρ : Kρ → Kρ/Kρ sends elements x ∈ Kρ to elements gρ(x) = x+Kρ.

Though the tracial weight ρ is only defined on the positive elements of R, it can be
extended uniquely to positive hermitian functional on Sρ := span{a ∈ R+ | ρ(a) <∞}.
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CHAPTER 1. BACKGROUND 5

Thus, because K∗ρKρ = Sρ ([KR97b] Lemma 7.5.2) the expression ρ(y∗x) makes sense
for every x, y ∈ Kρ. Hence, Kρ/Kρ has the inner product

(1.3.2) 〈x+Kρ, y +Kρ〉 := ρ(y∗x), for all x, y ∈ Kρ.

Completing Kρ/Kρ in the norm ‖x+Kρ‖ρ :=
√
〈x+Kρ, x+Kρ〉 yields a Hilbert

space which we denote by Hρ.
The elements of R are represented as operators on Hρ. We first define the action of

r ∈ R on Kρ\Kρ

(1.3.3) πρ(r)(x+Kρ) := rx+Kρ.

The arguments in the GNS construction -see for instance [KR97b] Theorem 4.5.2- give
us a unique bounded linear extension with domain Hρ, which we still denote by πρ(r).

1.4 The Modular Conjugation Operator

Here, we briefly discuss the basics of Tomita-Takasaki theory that we need. We continue
using the notation from Remark 1.1.7.

Consider the bijective conjugate linear map

(1.4.1) J :MΩ 3 xΩ 7→ x∗Ω ∈MΩ ⊆ Hτ .

Observe that because τ is tracial, J is an isometry onMΩ (Proposition 1.4.1 below,
or [BR02] p. 84) and is therefore continuous on MΩ. Similar to using the bounded
linear extension theorem ([Kre78], Theorem 2.7-11) J can be extended to a unique
conjugate linear operator with domain [MΩ] ≡ Hτ . The extension obtained is called
the modular conjugation operator forM denoted by JM. If there is no confusion
we usually drop the subscript, writing J, instead of JM.

Proposition 1.4.1 ([SS08] pp. 37-38). (Properties of J) We use the notation from
Remark 1.1.7 and the paragraph above.

(a) For all ξ, η ∈ Hτ we have, 〈Jξ, Jη〉 = 〈η, ξ〉; in particular, J is an isometry.

(b) J is continuous and bijective onto Hτ .

(c) J = J∗ = J−1, where J∗ is defined as follows: for every x, y ∈ Hτ ,

〈J∗x, y〉 = 〈x, Jy〉 = 〈Jy, x〉.
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CHAPTER 1. BACKGROUND 6

The following result relates M′ := {x′ ∈ B(Hτ ) | ∀m ∈ M x′m = mx′}, the
commutant of M, in terms of the J operator.

Theorem 1.4.2 (([JS97] Theorem 1.2.4)). JMJ =M′.

Proposition 1.4.3. Consider a von Neumann algebra M admitting a faithful normal
tracial state τ .

Then Hτ is an M-M-bimodule via πl := id and πr(a) := Ja∗J (from Definitions
1.2.1 and 1.2.2).

Proof. We have remarked (Remark 1.2.6) that Hτ is a left M-module. The map πr is
clearly linear and σ-weakly continuous because multiplication is separately continuous
([BR02] Proposition 2.4.2). If x, y ∈M, then the equality

Jx∗JJy∗J = J(yx)∗J,

shows that (1.2.1) holds. Using Theorem 1.4.2, πr(y) ∈M′ for every y ∈M and thus
for every x ∈M, πl(x) commutes with πr(y).

Remark 1.4.4. The notation Mleft is used for M acting on Hτ from the left and
Mright for M acting on Hτ from the right, as in Proposition 1.4.3. Note that this
essentially means that Mright is M′, since πr(M) =M′ (Theorem 1.4.2).

1.5 The Conditional Expectation of von Neumann

Algebras

We now further suppose that N is a von Neumann subalgebra ofM with trace τ |N . In
order to avoid “significantly different formulations”, we further assume that 1M = 1N
(see the remarks before [SS08] Definition 4.2.1).

Definition 1.5.1. Let eN be the projection from [MΩ] onto [NΩ]. We refer to eN as
the Jones projection.

Using [SS08] Lemma 3.6.2, the projection eN sends MΩ to NΩ. Thus, we can
consider:

Definition 1.5.2. Define the linear operator EN :M→N , via the equation:

(1.5.1) EN (a)Ω = eN (aΩ) a ∈M.

The operator EN is known as the conditional expectation of M onto N
associated with τ . When there is no ambiguity, we usually write E in place of
EN .
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CHAPTER 1. BACKGROUND 7

Lemma 1.5.3 ([SS08] Lemma 3.6.2). Let a ∈ M. The operator EN : M → N has
the following property: for all ξ ∈ Hτ ,

eNaeN ξ = EN (a)eN ξ = eNEN (a)ξ.

1.6 The Basic Construction 〈M, eN 〉
Definition 1.6.1. We continue to use the notation from the last section. In particular,
recall that M is a von Neumann algebra with its distinguished faithful normal trace
τ and eN is the Jones projection. We consider 〈M, eN 〉, the smallest von Neumann
algebra (in B(Hτ )) containing M and eN . We shall refer to 〈M, eN 〉 as the basic
construction.

The equality JM′J =M (Theorem 1.4.2) leads us naturally to consider if 〈M, eN 〉
can be expressed similarly. We set

MeN := span{xeNy : x, y ∈M}.

Proposition 1.6.2. ([SS08] Lemma 4.2.3 and part of [JS97] Proposition 3.1.2)
We continue from Definition 1.6.1.

(a) eN ∈ N ′.

(b) The vector space MeN is dense in 〈M, eN 〉 in both the weak- and strong operator
topologies

(c) 〈M, eN 〉 = JN ′J = (JNJ)′ and 〈M, eN 〉′ = JNJ .

(d) 〈M, eN 〉 is a semifinite von Neumann algebra.

Remark 1.6.3. Consider part (c) in Proposition 1.6.2, above. In a manner similar
to the notation Mleft and Mright (Remark 1.4.4) we can view N as Nleft and JNJ as
Nright. Thus, 〈M, eN 〉′ may be viewed as Nright and 〈M, eN 〉 = 〈M, eN 〉′′ as N ′right.

It is a non-trivial fact that there exists a faithful semifinite normal tracial weight
τ on 〈M, eN 〉 (see §4.2 in [SS08]) referred to as the lifted trace of 〈M, eN 〉. The
weight τ has the property that for all x, y ∈M,

(1.6.1) τ(xeNy) = τ(xy).
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CHAPTER 1. BACKGROUND 8

(Weights are normally only defined on positive elements, but in addition τ is defined
on MeN .)

Furthermore, MeN , when viewed as a set of vectors of the form t + Kτ , is dense
in the semicylic representation Hτ in the ‖·‖τ -norm. (Note that Kτ = {0} since τ is
faithful.)

1.7 Projections of Finite Lifted Trace

In this section we state and prove a result which we use in Lemma 3.0.3. Our identifi-
cation of 〈M, eN 〉 with N ′right (Remark 1.6.3) allows for the following proof.

Proposition 1.7.1. ([AET11] Lemma 3.4) We continue from Proposition 1.6.2. Let
V be a closed subspace of Hτ with orthogonal projection PV : Hτ → V. Then V is a
closed right-N -submodule, if and only if PV ∈ 〈M, eN 〉.

Proof. We use Definition 1.2.7. We note that V is a closed subspace of Hτ . The following
chain of bi-implications then hold:

V is a right-N -submodule

⇔VNright ⊆ V

⇔V nr ⊆ V ∀nr ∈ Nright

⇔nrPV = PV nr for all nr ∈ Nright [Zhu93] Corollary 18.3

⇔PV ∈ N ′right = 〈M, eN 〉.

Remark 1.7.2. We express the proof of Proposition 1.7.1 in terms of operators acting
on the left, in order to clarify the module language.

Using the notation of Proposition 1.7.1,

V is a closed right-N -submodule of Hτ ⇐⇒ JNJV ⊆ V,

from Remark 1.4.4. Note that a ∈ JNJ ⇐⇒ a∗ ∈ JNJ. Thus,

JNJV ⊆ V

⇔PV Jn∗J = Jn∗JPV for all n ∈ N [Zhu93] Corollary 18.3

⇔PV ∈ (JNJ)′ = 〈M, eN 〉 Proposition 1.6.2 (c).

Definition 1.7.3. Suppose V ⊆ Hτ is a closed right-N -submodule with orthogonal
projection PV : Hτ → V. Let τ be the lifted trace of 〈M, eN 〉. We shall say that PV
has finite lifted trace if τ(PV ) <∞.
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Chapter 2

W*-Dynamical Systems

Here we define the dynamical systems on von Neumann algebras that we are going to
study, and also consider their Hilbert space representation.

2.1 Basic Definitions

Our ultimate goal in this dissertation is to prove a structure theorem for the following
type of system.

Definition 2.1.1. SupposeM is a von Neumann algebra with a distinguished faithful
normal trace τ . Let α : M → M be a ∗-automorphism (an algebra automorphism
that preserves the adjoint (α(a∗) = α(a)∗) such that τ is α-preserving (τ(α(a)) = τ(a)
for all a ∈M). We call the triple (M, τ, α) a W ∗-dynamical system.

In studying the structure of W ∗-dynamical systems, the following type of system
naturally appears, as we shall see in §2.4.

Definition 2.1.2. SupposeR is a von Neumann algebra with normal semifinite faithful
tracial weight ρ. Let α : R → R be a ∗-automorphism such that ρ satisfies

(2.1.1) ρ ◦ α = ρ

(on the set of all positive elements a ∈ R). We shall refer to the triple (R, ρ, α) as a
semifinite W ∗-dynamical system.

2.2 Representation of W ∗-dynamics

Recall from Chapter 1 thatM is a von Neumann algebra with faithful normal trace τ
and N is a von Neumann subalgebra of M with trace τ |N which satisfies 1M = 1N .

9
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CHAPTER 2. W*-DYNAMICAL SYSTEMS 10

Let α :M→M be a ∗-automorphism, such that α|N is an ∗-automorphism on N and
such that (M, τ, α) is a W ∗-dynamical system. We shall examine the unitary operator,
denoted Uα, that arises from α acting on M. Afterwards, we shall see how Uα can be
used to extend the dynamics of α to 〈M, eN 〉.

As before, we assume thatM acts on its GNS Hilbert space Hτ . However, in cases
where we believe confusion may arise, we will not hesitate to explicitly use the notation
for the GNS- and semicyclic representation (§§1.1 and 1.3). The ∗-automorphism
α : M 7→ M induces a linear operator Uα : Hτ 7→ Hτ defined (first on the dense
subspace MΩ) by

(2.2.1) Uα(aΩ) = α(a)Ω for every a ∈M.

As Ω is separating, Uα is well-defined.
Note that we have the following chain of equalities:

(2.2.2)

‖Uα(xΩ)‖2 = ‖α(x)Ω‖2 = 〈α(x)Ω, α(x)Ω〉
= τ(α(x)∗α(x)) = τ(α(x∗)α(x))

= τ(α(x∗x)) = τ(x∗x) = 〈xΩ, xΩ〉
= ‖xΩ‖2 .

Thus, Uα is continuous onMΩ and therefore may be uniquely extended to a linear
operator ([Kre78] Theorem 2.7-11 or [KR97a] Corollary 1.2.3) with domain Hτ ≡ [MΩ]
into [MΩ], which we still denote by Uα.

Proposition 2.2.1. The map Uα : Hτ → Hτ is a unitary operator.

Proof. It is sufficient, from [Kre78] Theorem 3.10-6 (f), to show that Uα is isometric
and surjective onto Hτ . Let ξ ∈ Hτ be arbitrary and let (xnΩ) be a sequence in MΩ
approximating ξ in the norm of H. Using (2.2.2) and the continuity of Uα we have,

| ‖ξ‖ − ‖Uα(ξ)‖ | ≤ | ‖ξ‖ − ‖xnΩ‖ |+ | ‖xnΩ‖ − ‖Uα(ξ)‖ |
≤ ‖ξ − xnΩ‖+ | ‖xnΩ‖ − ‖Uα(ξ)‖ |
= ‖ξ − xnΩ‖+ | ‖Uα(xnΩ)‖ − ‖Uα(ξ)‖ |
≤ ‖ξ − xnΩ‖+ ‖Uα(xnΩ)− Uα(ξ)‖ → 0.

Hence ‖ξ‖ = ‖Uα(ξ)‖ , that is, Uα is isometric.
For surjectivity, let ξ ∈ Hτ be arbitrary and let (xnΩ) be a sequence approximating

ξ in the norm of Hτ . Then for every n ∈ N, using (2.2.1),

(2.2.3) Uα(α−1(xn)Ω) = xnΩ.
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CHAPTER 2. W*-DYNAMICAL SYSTEMS 11

As Uα is isometric, (α−1(xn)Ω) is a Cauchy sequence in Hτ and therefore has a
limit, say ζ ∈ Hτ . Let us show that Uα(ζ) = ξ. Indeed, we have,

‖Uα(ζ)− ξ‖ ≤
∥∥Uα(ζ)− Uα(α−1(xn)Ω)

∥∥+
∥∥Uα(α−1(xn)Ω)− ξ

∥∥
≤ ‖Uα‖

∥∥ζ − α−1(xn)Ω)
∥∥+ ‖xnΩ− ξ‖ from (2.2.3)

≤
∥∥ζ − α−1(xn)Ω)

∥∥+ ‖xnΩ− ξ‖ → 0.

Let us discuss some properties of Uα.
We note that U∗α = U−1

α behaves in the following manner:

(2.2.4) ∀y ∈M U−1
α (yΩ) = α−1(y)Ω.

Note that our assumption that α(N ) = N leads us to conclude that [NΩ] is a
reducing subspace for Uα i.e. Uα[NΩ] ⊆ [NΩ] and U∗α[NΩ] ⊆ [NΩ]. Hence, from
[Zhu93] Corollary 18.3, we have

(2.2.5) UαeN = eNUα.

We also have,

(2.2.6) JUα = UαJ.

(we use this in the Lemma 5.2.2). This is true, because,

JUα(xΩ) = Jα(x)Ω = α(x∗)Ω = Uα(x∗Ω) = UαJ(xΩ).

Remark 2.2.2. We can express α in terms of Uα. For every a, b ∈M,

UαaU
∗
α(bΩ) = Uαaα

−1(b)Ω = α(aα−1(b))Ω = α(a)bΩ.

Thus,

(2.2.7) α(a) = UαaU
∗
α for all a ∈M,

since MΩ is dense in Hτ . We note an obvious generalisation to (2.2.7):

(2.2.8) αn(a) = Un
α (a)U−nα for all n ∈ N.
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CHAPTER 2. W*-DYNAMICAL SYSTEMS 12

2.3 The Dynamics on 〈M, eN 〉
Here we consider an important semifinite W ∗-dynamical system that arises from a
W ∗-dynamical system.

We shall now extend α to the basic construction 〈M, eN 〉 ⊆ B(Hτ ), which we will
denote by α in the sequel. For every x ∈ 〈M, eN 〉, (cf. with (2.2.7))

(2.3.1) α(x) := UαxU
∗
α.

In the special case where x = eN , using (2.2.5), (2.3.1) becomes

(2.3.2) α(eN ) = eN .

We show that (〈M, eN 〉, τ , α) is a semifinite W ∗-dynamical system. We first show,

Proposition 2.3.1. The map α defined by (2.3.1) has codomain 〈M, eN 〉.

Proof. As a first step, for all a, b ∈M, note that

(2.3.3)
α(aeN b) = UαaeN bUα

−1 = UαaUα
−1UαeNUα

−1UαbUα
−1

= α(a)UαeNUα
−1α(b) = α(a)eNα(b),

using (2.3.2). Thus, α(aeN b) ∈ 〈M, eN 〉. Next, recall from Proposition 1.6.2 (b), that
MeN is strong operator dense in 〈M, eN 〉. So for any x ∈ 〈M, eN 〉, there is a net (xλ)
in MeN such that for every ξ ∈ Hτ ,

xλξ → xξ.

Thus, for every ξ ∈ Hτ ,

‖(α(xλ)− α(x))ξ‖ = ‖(UαxλU∗α − UαxU∗α)ξ‖
≤ ‖Uα‖ ‖(xλ − x)U∗αξ‖ → 0.(2.3.4)

In other words, α(x) is the strong operator limit of a net whose elements are from
MeN . Therefore, α(x) belongs to the strong operator closure of MeN , that is, α(x) ∈
〈M, eN 〉.

Remark 2.3.2. We explicitly take note of an obvious generalisation of (2.3.3), which
we use in Lemma 3.0.3. For every n ∈ N we have,

(2.3.5) Un
α (aeN b)U

−n
α = αn(a)eNα

n(b).

Proposition 2.3.3. The map α : 〈M, eN 〉 → 〈M, eN 〉 is a ∗-automorphism.
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CHAPTER 2. W*-DYNAMICAL SYSTEMS 13

Proof. With the use of Proposition 2.3.1 it is routine to check that α is linear. Consider
the map β(x) := U∗αxUα defined for each x ∈ 〈M, eN 〉. Clearly, using similar arguments
to those in Proposition 2.3.1, β is a map from 〈M, eN 〉 into 〈M, eN 〉. Moreover,

α ◦ β(x) = Uα(U∗αxUα)U∗α = x,

and similarly,
β ◦ α(x) = x.

Hence, α−1 = β, so α is bijective.
The following calculation shows that α is ∗-preserving:

α(x)∗ = (UαxU
∗
α)∗ = (xU∗α)∗(Uα)∗ = Uαx

∗U∗α = α(x∗).

Lastly, α is multiplicative, because for every x, y ∈ 〈M, eN 〉

α(xy) = UαxyU
∗
α = UαxU

∗
αUαyU

∗
α = α(x)α(y).

Unlike the previous steps, to prove τ ◦α = τ is not elementary. The main tool used
in proving that τ is α-preserving is the following.

Theorem 2.3.4 (Part of [SS08] Theorem 4.3.11). Let ϕ be a weight on 〈M, eN 〉 with
ϕ = τ on M+

eN
:= {x ∈MeN | ∃ y ∈MeN : x = y∗y}. If ϕ is normal, then ϕ = τ .

We will apply the above result to ϕ = τ ◦ α. We have already remarked that τ
is normal (see the paragraph before (1.6.1)). As α is a *-automorphism on a von
Neumann algebra it is normal ([Con00] Proposition 46.6), hence, so is τ ◦ α . So we
just need to check equality of τ ◦ α and α on M+

eN
.

Corollary 2.3.5. The ∗-automorphism α : 〈M, eN 〉 → 〈M, eN 〉 satisfies τ ◦ α = α
i.e. (〈M, eN 〉, τ , α) is a semifinite W ∗-dynamical system.

Proof. As remarked above, it is sufficient to show τ◦α = τ onM+
eN
.We show something

stronger by showing agreement on the dense subspace MeN . For all a, b ∈M,

τ ◦ α(aeN b)

= τ(α(a)eNα(b)) using (2.3.3)

= τ(α(ab))

= τ(ab) = τ(aeN b) using (1.6.1).

As τ and α are linear, τ ◦ α = τ on MeN .
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CHAPTER 2. W*-DYNAMICAL SYSTEMS 14

2.4 Representation of Semifinite W ∗-dynamics

Let (R, ρ, σ) be a semifinite W ∗-dynamical system. Just below, in a procedure similar
to the one in §2.2, we can express, at least partially, the action of σ on R as a unitary
Uσ acting on Hρ.

We use the notation in §1.3.
For every x ∈ Kρ ((1.3.1)) define

Uσ : Kρ/Kρ 3 x+Kρ 7→ σ(x) +Kρ ∈ Kρ/Kρ.

We note that Uσ is well-defined, because using the fact that σ is a ρ-preserving ∗-
automorphism on R, we have ρ(σ(x)∗σ(x)) = ρ(σ(x∗x)) = ρ(x∗x) < ∞. This shows
not only that σ(x) ∈ Kρ, but also that Uρ is isometric on Kρ/Kρ, that is, ‖x+Kρ‖ρ =
‖σ(x) +Kρ‖ρ for all x ∈ Kρ. It follows that σ is bijective from Kρ onto itself and hence
{σ(x) + Kρ : x ∈ Kρ} = Kρ/Kρ. Consequently, Uσ can be extended to a surjective
isometric linear mapping from Hρ onto itself, which we still denote by Uσ. Thus, Uσ is
a unitary operator on Hρ ([Kre78] Theorem 3.10-6 (h)).

Viewing R in its semicyclic representation πρ(R) on Hρ allows us to express the
action of σ on R in the following manner.

Proposition 2.4.1. Define σρ : πρ(R)→ πρ(R) by the prescription:

σρ(πρ(a)) := Uσπρ(a)U∗σ for all a ∈ R.
Then,

(2.4.1) σρ = πρ ◦ σ ◦ π−1
ρ .

Proof. Note that for any x ∈ R and y ∈ Kρ,

σρ(πρ(x))(y +Kρ) = Uσπρ(x)U∗ρ (y +Kρ)

= Uσπρ(x)(σ−1(y) +Kρ)

= Uσ(xσ−1(y) +Kρ)

= σ(xσ−1(y)) +Kρ

= σ(x)σ(σ−1(y)) +Kρ

= σ(x)y +Kρ

= πρ(σ(x))(y +Kρ) from (1.3.3)

Thus, σρ(πρ(a)) = πρ(σ(a)) = πρ ◦ σ ◦ π−1
ρ (πρ(a)), for all a ∈ R.

Remark 2.4.2. Of interest to us, of course, is the special case where we consider the
semifinite W ∗-dynamical system, (〈M, eN 〉, τ , α). However, the slightly more abstract
approach clarifies the analogous structures and procedures that arise in comparison
with finite W ∗-dynamical systems.
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Chapter 3

Relative Weak Mixing

In this chapter, we prove a major lemma (Lemma 3.0.3) required to prove the main the-
orem of this dissertation. We state this essential result momentarily after the following
definition:

Definition 3.0.1 (relative weak mixing).
Let (M, α, τ) be a W ∗-dynamical system and N ⊆ M a von Neumann subalgebra
such that α|N is a ∗-automorphism on N and 1N = 1M. DefineM∩N⊥ := {x ∈M :
EN (x) = 0}. We say that α is weakly mixing relative to N if for any a ∈M∩N⊥
we have

1

n

n∑
j=1

∥∥EN (a∗αj(a))Ω
∥∥2

τ
→ 0 as n→∞.

Remark 3.0.2. A remark concerning the use of the notation M∩N⊥. Recall, from
§1.5, that the requirements that α|N is a ∗-automorphism on N and 1N = 1M allow
us to identify [NΩ] with the Hilbert space obtained from the GNS construction on
(N , τ |N ). Thus, we observe that when ξ ∈ [NΩ]⊥ is of the form ξ = aΩ, where a ∈M,
then

0 = eN (aΩ) = EN (a)Ω ⇐⇒ EN (a) = 0 ⇐⇒ a ∈M∩N⊥,

as Ω is separating for M.

Lemma 3.0.3 (lack of weak mixing implies finite trace submodule ([AET11] Propo-
sition 3.8)). Let (M, τ, α) be a W ∗-dynamical system and let N be a von Neumann
subalgebra of M, such that α|N is a ∗-automorphism on N and 1N = 1M. If α
is not weakly mixing relative to N , then there is a Uα-invariant right-N -submodule
V ⊆ [NΩ]⊥ such that PV , the projection onto V, has finite lifted trace.

15
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CHAPTER 3. RELATIVE WEAK MIXING 16

Roughly speaking, the proof of Lemma 3.0.3 can be outlined as follows. Working
with the Hilbert space obtained from the semicylic representation and the extended
dynamics (§2.4), we use von Neumann’s ergodic theorem to obtain a vector v, say. This
v will be associated with an operator Xv, which belongs to a noncommutative analogue
of an L2-space. Using a particular version of the spectral theorem allows us to express
Xv as an “integral” of a collection of projections. It will be one of these projections,
when represented as an operator on Hτ , which will be selected to be our PV .

3.1 Spectral Measures

Definition 3.1.1. Let Σ be a σ-algebra on a non-empty set X . By a spectral
measure on a Hilbert space H we mean a mapping E from Σ to P(H), the set of all
projections in B(H) satisfying

(a) E(X ) = I and

(b) Countable additivity: If (Mi) is a sequence of mutually disjoint elements from Σ,
then E(∪∞i=1Mi) is the strong operator limit of the sequence (

∑k
i=1E(Mi)), that

is, for all x ∈ H,

lim
k→∞

k∑
i=1

E(Mi)x = E(∪∞i=1Mi)x.

Given a spectral measure E, as above, for every x, y ∈ H, let Ex,y(·) := 〈E(·)x, y〉.
This mapping from Σ into C is a measure (see [Sch12] Lemma 4.4 and the discussion
afterwards). In the special case of x = y, we shall write Ex instead of Ex,x. The measure
Ex is positive and finite ([Sch12] Lemma 4.4).

3.2 Spectral Integrals and a Spectral Theorem for

Unbounded Self-Adjoint Operators

We refer the reader to [Kre78] Chapter 10 for an introduction to unbounded linear
operators.

Definition 3.2.1. Let X be a non-empty set, Σ a σ-algebra on X , and E a spectral
measure on a Hilbert space H. Denote by S = S(X ,Σ, E) the set of all Σ-measurable
functions g : X → C ∪ {∞} which are E-a.e. finite, that is, E({t ∈ X | g(t) =∞}) =
0.
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CHAPTER 3. RELATIVE WEAK MIXING 17

Given a spectral measure E and a function f ∈ S, we shall describe what we mean
by a spectral integral I(f) (Theorem 3.2.5). A little later we will show how, in a special
case, the process can be reversed; to each unbounded self-adjoint operator A we can
obtain a unique spectral measure EA, defined on the Borel sets of R, such that A is
associated with the identity function on R.

In order to define the spectral integral I(f) for any f ∈ S, we first need to describe
I(f) in the case when f is bounded.

Definition 3.2.2. Let X be a non-empty set; Σ, a σ-algebra on X ; and E : Σ→ P(H)
a spectral measure on a Hilbert space H. Denote by B(X ,Σ), the space of all bounded
Σ-measurable C-valued functions equipped with the norm

‖f‖X = sup{|f(t)| | t ∈ X}.

When f ∈ B(X ,Σ), then I(f) may be described in terms of simple functions ([Sch12]
§4.3.1- also see the top of [Sch12] p.78). The approach is similar to the development of
the classical theory of Lebesgue integration. Recall that a simple function c : X → C
is a finite linear combination of indicator functions. More precisely, c = c(t) is defined
as

c(t) :=
n∑
i=1

riχKi(t),

where the ri are complex numbers and the Ki belong to Σ and are pairwise disjoint. The
integral of c in this case is I(c) =

∑n
i=1 riE(Ki). For more general bounded functions

f, we approximate I(f), in the operator norm with a sequence of integrals of simple
functions. We record this last result.

Proposition 3.2.3. ([Sch12] p.78) Let (X ,Σ) be a measurable space and E : Σ →
P(H) a spectral measure on a Hilbert space H. Let f ∈ B(X ,Σ). Then there is a
sequence of simple functions (fn), with each fn ∈ B(X ,Σ) satisfying

‖I(f)− I(fn)‖ → 0 as n→∞.

If f ∈ B(X ,Σ), we shall refer to I(f) as a bounded spectral integral, not only
due to the bounded function from which it arises, but also from the fact that I(f) is a
bounded linear operator ([Sch12] p.74).

The following concept will allow us to define the unbounded spectral integrals in
the sequel, using the bounded spectral integrals above.

Definition 3.2.4. Let F ⊆ S(X ,Σ, E). By a bounding sequence for F we mean a
sequence of sets (Mn) ⊆ Σ such that
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CHAPTER 3. RELATIVE WEAK MIXING 18

(i) For all f ∈ F , f is bounded on each Mn.

(ii) For each n ∈ N, Mn ⊆Mn+1.

(iii) E(∪∞i=1Mi) = I.

Theorem 3.2.5. (Part of [Sch12] Theorem 4.13)
Let E be a spectral measure on a Hilbert space H and f ∈ S(X ,Σ, E). Then there exists
an operator I(f), defined by (ii) below, with domain

D(I(f)) :=

{
x ∈ H

∣∣∣∣ ∫
X
|f(t)|2 dEx <∞

}
.

Let (Mn) be a bounding sequence for f . Then we have:

(i) A vector x ∈ H is in D(I(f)) if and only if the sequence (I(fχMn)x) converges in
H, or equivalently, if supn∈N{‖I(fχMn)x‖} <∞.

(ii) For x ∈ D(I(f)), the limit of the sequence (I(fχMn)x) does not depend on the
bounding sequence (Mn). There is a linear operator I(f) on D(I(f)) defined by
I(f)x = limn→∞ I(fχMn)x.

(iii) E(Mn)I(f) ⊆ I(f)E(Mn) = I(fχMn).

In accordance with p. 92 of [Sch12], we shall also use the notation
∫
X f dE for I(f).

We now consider another “sequential description” of the spectral integral.
Let B(R) denote the collection of all Borel sets of R and consider f ∈ B(R,B(R))

and [a, b] ⊆ R. Furthermore, assume f is continuous on J := [a, b]. We extend f so
that it is continuous on [a − 1, b]. By a partition P we mean a finite sequence of
numbers {λ0, λ1, . . . , λn} such that

a− 1 < λ0 < a < λ1 < · · · < λn = b.

Put |P| := maxk{|λk−λk−1|}. Now choose, for each k ∈ {1, 2, . . . , n}, a ζk ∈ [λk−1, λk].
We define the Riemann sum:

(3.2.1) SE(f, {λi}ni=1, {ζi}ni=1,P) :=
n∑
k=1

f(ζk)E((λk−1, λk]).

If there is no confusion, we shall use the symbols SE(f,P) and SE(P) instead of
SE(f, {λi}ni=1, {ζi}ni=1,P).
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CHAPTER 3. RELATIVE WEAK MIXING 19

Proposition 3.2.6 ([Sch12] Proposition 4.1 and [Sch12] p. 66 ). Consider R with the
Borel σ-algebra B(R), and let E : B(R) → P(H) be a spectral measure on a Hilbert
space H. Let f ∈ B(R,B(R))) be continuous on a closed interval J := [a, b] ⊆ R,
with a < b. Then, I(fχJ ) has the following property: for every ε > 0, there exists a
δ = δ(ε) > 0 such that for every partition P satisfying |P| < δ, we have

‖I(fχJ )− SE(fχJ ,P)‖ ≤ ε.

In order to work with unbounded self-adjoint linear operators, we will need to rely
on the following version of the spectral theorem:

Theorem 3.2.7 ([Sch12] Theorem 5.7). Let A be a self-adjoint operator on a Hilbert
space H. Then there exists a unique spectral measure EA : B(R)→ P(H) such that

(3.2.2) A =

∫
R
λ dEA(λ) :=

∫
R

id dEA,

where, id : R→ R, is the identity function x 7→ x.
We shall refer to the right-hand side of Equation 3.2.2 as the spectral integral

form of A. For all Borel sets B in R, we shall refer to the projections EA(B) as the
spectral projections of A.

Remark 3.2.8. As in the spectral theorem for bounded normal linear operators (de-
tailed, for instance, in [Mur90] §2.5), we will be able to restrict the domain of integra-
tion, R, to the spectrum of the self-adjoint operator A =

∫
R f dEA. This is accomplished

by examining all Borel measurable sets Y ⊆ R, such that EA(Y) = 0. The sets Y can
be thought of as the parts of R whose corresponding spectral projections EA(Y) do
not contribute to the integral

∫
R f dE. We now make this more precise using results

in [Sch12]. We let O denote all the open sets O of B(R) for which EA(O) = 0. The
support of EA, denoted supp(EA), is then defined as

supp(EA) := X\

(⋃
O∈O

O

)
.

Then, for any Borel subset B ⊆ supp(EA), EA(B) 6= 0. Furthermore, the support of EA
is equal to the spectrum of A ([Sch12] Proposition 5.10). In particular, if B =

∫
R f dEB

is a positive self-adjoint operator, the spectrum of B is contained in [0,∞) ([SZ79]
Corollary 9.26) and therefore EB(Y) = 0 for all measurable sets Y ⊆ (−∞, 0). To
remind us of this distinction, we use the notation B =

∫∞
0
f dEB for positive self-

adjoint operators.
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Given a self-adjoint operator A, Theorems 3.2.7 and 3.2.5 allow us to define a
functional calculus

(3.2.3) S(R,B(R), EA)) 3 g 7→ g(A) := I(g),

associating complex-valued functions in S(R,B(R), EA)) with operators defined through
the use of Theorem 3.2.5. We record some useful properties of the functional calculus.

Theorem 3.2.9 ([Sch12] Theorem 5.9). Let A be a self-adjoint operator defined in
a Hilbert space H, with spectral integral A =

∫
R λ dE, where E = EA, obtained from

Theorem 3.2.7. Let f, g ∈ S(R,B(R), EA); α, β ∈ C and x, y ∈ D(f(A)). Then we
have:

(a) 〈f(A)x, y〉 =
∫
f(λ) dEx,y.

(b) ‖f(A)x‖2 =
∫
|f(λ)|2 dEx. In particular, if f(t) = g(t) E -a.e. on R, then f(A) =

g(A).

(c) f(A) is bounded if and only if f ∈ L∞(R, E). In this case, ‖f(A)‖ = ‖f‖∞.

(d) f̄(A) = f(A)∗; in particular, f(A) is self-adjoint if f is real-valued E-a.e. on R.

(e) (αf + βg)(A) = αf(A) + βg(A).

(f) (fg)(A) = f(A)g(A).

(g) p(A) =
∑

n αnA
n for any polynomial p(t) =

∑
n αnt

n ∈ C[t].

(h) χM(A) = E(M) for every Borel set M on R.

(i) If f(t) 6= 0 E-a.e. on R, then f(A) is invertible, and f(A)−1 =
(

1
f

)
(A).

(j) If f(t) ≥ 0 E-a.e. on R, then f(A) ≥ 0.

We mention a connection between the spectral measures and von Neumann algebras
using Theorem 3.2.9 (h). First, however, we need to describe operators affiliated to a
von Neumann algebra.

Let S and T be linear operators on a Hilbert space H. Recall (for instance, from
[Kre78] p.526) that the notation S ⊂ T means that

D(S) ⊆ D(T ) and S = T |D(S).

Proposition 3.2.10 ([Wes90] Proposition 7.1). Let A be a von Neumann algebra
acting on a Hilbert space H. Let S be an unbounded linear operator on H. The following
are equivalent:
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(a) For all M ′ ∈ A′, M ′S ⊂ SM ′;

(b) For all unitaries U ′ ∈ A′, U ′S ⊂ SU ′;

(c) For all unitaries U ′ ∈ A′, U ′S = SU ′;

(d) For all unitaries U ′ ∈ A′, (U ′)∗SU ′.

Definition 3.2.11. Let A be a von Neumann algebra acting on a Hilbert space H. An
operator S on H satisfying the equivalent conditions in the Proposition 3.2.10 above is
said to be affiliated to A and is denoted by S ηA.

Proposition 3.2.12 (§9.9 in [SZ79]). Suppose we have a positive self-adjoint operator
A affiliated to a von Neumann algebra A and f is a Borel measurable complex-valued
function defined on [0,∞), bounded on compact sets. Then f(A) is affiliated to A. In
particular, because EA(G) = χG(A) for every Borel set G ⊆ [0,∞), we have that every
spectral projection EA(G) of A is contained in A.

3.3 Measurable Operators and Non-Commutative

L2-Spaces

There is an operator-theoretic version of the classical L2-space, obtained from any
semifinite von Neumann algebra R, acting on a Hilbert space H, with faithful normal
semifinite tracial weight ρ.

The following is presented in [Ter81]. Let R denote the set of all closed densely
defined operators affiliated with R and let P(R) denote the set of all projections in

R, that is, the set of all elements P ∈ R such that P 2 = P and P ∗ = P. Let R̃
denote the set of all ρ-measurable operators (or simply measurable operators, if ρ
is understood) in R, that is,

(3.3.1) R̃ := {T ∈ R | ∀δ > 0 ∃P ∈ P(R) : PH ⊆ D(T ) and ρ(1R − P ) ≤ δ}.

The set R̃ is a complete Hausdorff topological ∗-algebra with respect to the strong
sum and strong product ([Ter81] Chapter 1 Theorem 28, [Ter81] Chapter 1 Proposition

24 part 2) ). The topology on R̃ is given by a base of neighbourhoods of 0 ([Ter81]
Chapter 1 Proposition 27); each neighbourhood is given by,

N(ε, δ) := {A ∈ R̃ | ∃P ∈ P(R) : ‖AP‖ ≤ ε and ρ(1R − P ) ≤ δ)} for all ε, δ > 0.
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CHAPTER 3. RELATIVE WEAK MIXING 22

We shall refer to this topology as the measure topology on R̃. The term topol-
ogy of convergence in measure is also used. The space R̃ has a countable basis for
the neighbourhoods at 0, for instance, {N(1/n, 1/m) | n,m ∈ N}. Therefore, there is

a translation invariant metric d on R̃ which is compatible with the topology given by
the neighbourhoods N(ε, δ) ([Rud73] Theorem 1.24).

If (Rn) is a sequence of ρ-measurable operators converging in the measure topology

to some R ∈ R̃, we shall use the notation

Rn
measure−−−−→ R.

A completion procedure can be performed with H. For all ε, δ > 0, let

(3.3.2) O(ε, δ) := {x ∈ H | ∃P ∈ P(R) : ‖Px‖ ≤ ε and ρ(1R − P ) ≤ δ}.

The completion of H with respect to the above topology is denoted by H̃ ([Nel74] p.

107; see also [Wes90] 8.31). We refer to the topology on H̃ arising from (3.3.2) as

the measure topology on H̃, or alternatively as the topology of convergence in
measure on H̃.

Remark 3.3.1. In an alternative approach, [Nel74] uses [Ter81]’s base of neighbour-
hoods of 0, but restricted to R. The completion of R with respect to [Nel74]’s neigh-

bourhood base is topologically ∗-isomorphic to R̃ ([Wes90] Theorem 8.37).

For every positive self-adjoint operator A affiliated to R, put ([Ter81] p. 23)

(3.3.3) ρ(A) := sup
n∈N

ρ

(∫
(0,n]

λ dEA

)
,

where A =
∫∞

0
λ dEA is represented as a spectral integral.

Define the noncommutative L2-space,

(3.3.4) L2(ρ) := {A ∈ R̃ | ρ(A∗A) <∞},

with norm ‖A‖2,ρ =
√
ρ(A∗A).

Remark 3.3.2. For our purposes, we have focussed on the special case of defining
L2(ρ), however one can define noncommutative Lp-spaces for p ∈ [1,∞).

We have that L2(ρ) is a Banach space ([Tak03b] Chapter IX Theorem 2.13 (ii)).
By the arguments appearing just before Theorem 5 of [Nel74] (see also the comment
in [Ter81] p. 23 “Lp spaces with respect to a trace”), there is a natural continuous
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mapping from L2(ρ) into R̃. Thus, if any sequence (Rn) of elements of L2(ρ) converges
to some R ∈ L2(ρ) we have

(3.3.5) Rn
measure−−−−−→ R.

We record this for later.

Proposition 3.3.3. Suppose (Rn) ⊆ L2(ρ) converges to some element R ∈ L2(ρ) in

the norm of L2(ρ). Then (Rn) converges to R in the measure topology on R̃.

The space L2(ρ) can be identified with Hρ. More precisely,

Proposition 3.3.4. There exists a linear isometric surjection γ : L2(ρ) → Hρ, such
that γ|Kρ is the quotient map gρ : Kρ → Kρ/Kρ from §1.3. The Banach space L2(τ) is
a Hilbert space when endowed with an inner product given by

(3.3.6) 〈A,B〉 := 〈γ(A), γ(B)〉,

for all A,B ∈ L2(τ), (with γ then unitary). The inner product in (3.3.6) is compatible
with the norm on L2(ρ) in the sense that for all A ∈ L2(ρ),

(3.3.7) 〈A,A〉 = ‖A‖2
2,ρ .

Proof. Consider the map
g : Kρ → Hρ,

defined by g(R) = R+Kρ, for all R ∈ Kρ. This is just the quotient map Kρ → Kρ/Kρ,
from §1.3, instead now with codomain Hρ. From Equation (3.3.4),

(3.3.8) L2(ρ) ∩R = {R ∈ R | ρ(R∗R) <∞} def
= Kρ.

Now, L2(ρ) ∩R is dense in L2(ρ), by [Tak03b] Chapter IX Theorem 2.13 (ii), and g is
an isometry, because

‖A‖2
2,ρ = ρ(A∗A) = ‖A+Kρ‖2

ρ , for all A ∈ Kρ.

Therefore we may apply the bounded linear extension theorem ([Kre78] Theorem 2.7-
11) to extend g to a bounded linear operator γ : L2(ρ)→ Hρ. In particular,

(3.3.9) γ|Kρ = g.

We shall show that γ is an isometry and is surjective onto Hρ (this is sufficient to
show that γ is a unitary, by [Kre78] Theorem 3.10-6 (f), once we have established that
L2(τ) is a Hilbert space, below). The map γ is an isometry. Indeed, for any T ∈ L2(ρ),
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again using the density of L2(ρ)∩R in L2(ρ), there is a sequence (Tn) contained in Kρ
such that ‖T − Tn‖2,ρ → 0, as n→∞. Thus, using Equation (3.3.9),

| ‖γ(T )‖ρ − ‖T‖2,ρ | ≤ | ‖γ(T )‖ρ − ‖Tn‖2,ρ |+ | ‖Tn‖2,ρ − ‖T‖2,ρ |
= | ‖γ(T )‖ρ − ‖γ(Tn)‖ρ |+ | ‖Tn‖2,ρ − ‖T‖2,ρ |
≤ ‖γ(T )− γ(Tn)‖ρ + ‖Tn − T‖2,ρ

≤ ‖γ‖ ‖T − Tn‖2,ρ + ‖Tn − T‖2,ρ .

So, for every ε > 0 we can find n large enough, so that | ‖γ(T )‖ρ − ‖T‖2,ρ | ≤
‖γ(T )− γ(Tn)‖2 + ‖Tn − T‖2,ρ < ε, thus, ‖γ(T )‖ρ = ‖T‖2,ρ .

To show surjectivity of γ, it is sufficient to show that γ(L2(ρ)) is closed in Hρ. To
see why this is sufficient, note that we have the chain of inclusions,

(3.3.10) g(L2(ρ) ∩R)) ⊆ γ(L2(ρ)) ⊆ Hρ.

Therefore, because g(L2(ρ) ∩R)) ≡ Kρ/Kρ is dense in Hρ, so too is γ(L2(ρ)).
Let us therefore show that γ(L2(ρ)) is closed in Hρ. Suppose that (tn) is a sequence

of elements in γ(L2(ρ)) converging to some t ∈ Hρ in the norm of Hρ. Let (Tn) denote
the sequence of elements in Kρ such that γ(Tn) ≡ g(Tn) = tn. As γ is an isometry, (Tn)
is a Cauchy sequence and therefore has a limit, say T ∈ L2(ρ). Thus, in the norm on
Hρ,

‖γ(T )− t‖ ≤ ‖γ(T )− γ(Tn)‖+ ‖γ(Tn)− t‖
≤ ‖T − Tn‖2,ρ + ‖γ(Tn)− t‖ → 0 as n→∞,

the last inequality arise from the fact that γ is a linear isometry. Hence, t ∈ γ(L2(ρ))
and therefore, γ(L2(ρ))) is closed in Hρ. One can easily verify that (3.3.6) is an inner
product for L2(ρ). Now, using the fact that γ is an isometry, (3.3.7) follows:

〈A,A〉 = 〈γ(A), γ(A)〉 = ‖γ(A)‖2 = ‖A‖2
2,ρ .

Remark 3.3.5. An alternative approach to establishing the inner product in (3.3.6)
is via the trace on the non-commutative L1-space (see [Tak03b] Chapter IX Lemma
2.12).

We now show that the L2(ρ)-limit of positive operators in L2(ρ) ∩ R is a positive
operator. Note that we use R in its semicylic representation, discussed in §1.3.

Proposition 3.3.6. Let R be a semifinite von Neumann algebra with normal faithful
semifinite trace ρ. Represent R as operators on Hρ using the semicylic representation
from §1.3. Let (Rn) ⊆ L2(ρ) ∩R be a sequence of positive operators converging in the
L2-norm to some operator R ∈ L2(ρ). Furthermore, suppose that there is a c > 0 such
that for all n ∈ N, ‖Rn‖ ≤ c. Then, R is a positive self-adjoint linear operator.
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Proof. It will be sufficient to show that for all x ∈ D(R),

(3.3.11) 〈Rx, x〉 ≥ 0.

For if (3.3.11) is true, we have that R is symmetric and therefore, as R is a measur-
able operator, it will be self-adjoint ([Ter81] Chapter 1 Corollary 15 part 2)). As the

sequence (Rn) converges to R in L2(ρ), (Rn) converges to R in R̃ (Proposition 3.3.3).

The continuity of the map R̃× H̃ρ → H̃ρ ([Nel74] Theorem 1), ensures that Rnx→ Rx

with respect to the measure topology on H̃ρ for every x ∈ D(R). Hence, for every
ε, δ > 0 there exists an m ∈ N, such that for all natural numbers n > m there is a
projection P ∈ R such that

‖P (Rnx−Rx)‖ ≤ ε and ρ(1− P ) ≤ δ,

where 1 denotes the multiplicative unit in R.
Thus, for an arbitrary, but fixed x ∈ D(R), there is a subsequence (Rml) of (Rn)

and a projection Pl ∈ R such that

(3.3.12) ‖Pl(Rmlx−Rx)‖ ≤ 1

l
and ρ(1− Pl) ≤

1

l
.

In order to simplify the notation, denote the subsequence (Rml) by (Tn).
We will now establish the convergence of (〈Tnx, y〉) to 〈Rx, y〉 for every y ∈ Hρ

((3.3.16) below). This will require establishing the convergence results shown in (3.3.14)
and (3.3.15) below. We first prove why (3.3.14) is true. We first examine elements in the
dense subspace Kρ/Kρ of Hρ. Consider any C ∈ L2(ρ)∩R. Then, using γ : L2(ρ)→ Hρ

obtained from Proposition 3.3.4, and the tracial property of ρ we expand and rearrange
the expression ‖(1− Pn)γ(C))‖2 :

〈(1− Pn)γ(C)), (1− Pn)γ(C))〉
=〈γ((1− Pn)C), γ((1− Pn)C)〉 = ρ([(1− Pn)C]∗(1− Pn)C)

=ρ((1− Pn)C[(1− Pn)C]∗)

=ρ((1− Pn)CC∗(1− Pn)) ≤ ‖C‖2 ρ(1− Pn) from [KR97b] p. 487.

Taking into consideration the second inequality in (3.3.12), we have therefore shown
for every c ∈ Kρ/Kρ that

(3.3.13) ‖(1− Pn)c‖ n−→
∞

0.

To handle the more general case, let y ∈ Hρ be arbitrary and choose a z ∈ Kρ/Kρ such
that ‖z − y‖ < ε

3
. Then,

(3.3.14)

‖Pny − y‖ ≤ ‖Pny − Pnz‖+ ‖Pnz − z‖+ ‖z − y‖
≤ ‖y − z‖+ ‖Pnz − z‖+ ‖z − y‖

<
ε

3
+
ε

3
+
ε

3
,
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for any n large enough so that ‖Pny − y‖ < ε.
Also, using the first inequality in (3.3.12), note that

(3.3.15) |〈Pny, Tnx−Rx〉| ≤ ‖y‖ ‖Pn(Tnx−Rx)‖ n−→
∞

0.

Now,

(3.3.16)

|〈Tnx−Rx, y〉| = |〈Tnx−Rx, y − Pny + Pny〉|
≤ |〈Tnx−Rx, y − Pny〉|+ |〈Tnx−Rx, Pny〉|
≤ |〈Tnx, y − Pny〉|+ |〈Rx, y − Pny〉|+ |〈Tnx−Rx, Pny〉|
≤ ‖y − Pny‖ ‖Tn‖ ‖x‖+

‖y − Pny‖ ‖Rx‖+ |〈Pny, Tnx−Rx〉|
n−→
∞

0,

using our assumption that (‖Rn‖) is bounded and Formulas (3.3.14) and (3.3.15). So
we have shown that for every x ∈ D(R) and for every y ∈ Hρ, 〈Tnx, y〉 → 〈Rx, y〉, as
n→∞. However, for all x ∈ D(R), 〈Tnx, x〉 ≥ 0; so 〈Rx, x〉 ≥ 0.

3.4 Extracting a Projection with Finite Trace

from a Self-Adjoint Operator

The spectral theorem presented in §3.2 will be essential in the work that follows. The
proposition below relies on the following intuitive idea: If positive operators A,B,C
satisfy A ≤ B ≤ C, where ≤ is the usual ordering on positive operators, then the
tracial weight ρ ought to respect such an ordering: ρ(A) ≤ ρ(B) ≤ ρ(C).

Note that the proof of Proposition 3.4.1 does not rely on the representation of R.

Proposition 3.4.1. Let R be a semifinite von Neumann algebra with normal faithful
semifinite tracial weight ρ, acting on a Hilbert space H. Let R ∈ L2(ρ) be a non-zero
positive self-adjoint operator. Apply Theorem 3.2.7 to R to obtain a unique spectral
measure E = ER such that R = I(f) =

∫∞
0
λ dER, where f : R 3 λ 7→ λ ∈ R is the

identity on R. There is a non-zero spectral projection Ps of R, belonging to R, with
ρ(Ps) <∞.

Proof. For each n ∈ N, let Mn = [0, n]. Then (Mn) is a bounding sequence for f us-
ing Definition 3.2.4 and the end of Remark 3.2.8. We are able to see from Theorem
3.2.5 that I(f) is approximable pointwise by bounded linear operators I(fχMn). Such
operators I(fχMn) are, in turn, using Proposition 3.2.6, approximable in the opera-
tor norm by Riemann sums of the form S(fχMn) =

∑t
k=1 fχMn(ξk)E((λk−1, λk]). As

E((λk−1, λk]) ∈ R, from Proposition 3.2.12, every I(fχMn) is norm-approximable by
linear combinations of projections in R and therefore ([Zhu93] Theorem 20.3) belongs
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to R. Thus, I(fχMn)∗I(fχMn) = I(fχMnfχMn) = I(f 2χMn) ∈ R. Using parts (d) and
(f) of Theorem 3.2.9, we have

R∗R = I(f)∗I(f) = f(R)∗f(R) = f̄(R)f(R) = (f̄f)(R) = f 2(R) = I(f 2).

This, together with our assumption that R ∈ L2(ρ), implies that ρ(I(f 2)) < ∞. Ad-

ditionally, we also have that I(f 2) − I(f 2χMn) ≡ f 2(R) − (f 2χMn)(R) ∈ R̃ (as R̃ is a
∗-algebra) and therefore we may view this last expression as the closed linear operator
f 2(R)− (f 2χMn)(R). Thus, part (e) of Theorem 3.2.9 implies that

f 2(R)− (f 2χMn)(R) = (f 2 − f 2χMn)(R).

Due to Theorem 3.2.9 part (j), we have that both (f 2− f 2χMn)(R) and f 2χMn(R) are
positive operators, and therefore it follows that

0 ≤ f 2χMn(R) ≤ f 2(R).

Thus, we may express ρ(f 2(R)) as ρ(f 2(R)) = ρ(f 2(R)−(f 2χMn)(R))+ρ((f 2χMn)(R))
and therefore obtain,

ρ((f 2χMn)(R)) ≤ ρ(f 2(R)).

Hence, ρ(f 2χMn(R)) <∞.
The function f 2χMn may be approximated below by a sequence of simple functions,

(sk) say, by taking the interval Mn, dividing it up into a number of subintervals of
equal length n

k
and choosing the left most endpoint of each subinterval to form the

coefficients of the indicator functions:

sk = 0χ[0,n 1
k ]

+
k−1∑
j=1

(
n
j

k

)2

χNj .

Here, Nj :=
(
n j
k
, n (j+1)

k

]
. Note that the Nj depend not only on the indices j, but also

on the numbers k. As
(
n j
k

)2
χNj ≤ sk ≤ f 2χMn , we have, using Theorem 3.2.9 parts

(e) and (h),

I

((
n
j

k

)2

χNj

)
≤ I(sk) ≤ I(f 2χMn).

Now fix a natural number k ≥ 2 and then fix any j ∈ N so that 1 < j ≤ k. Using
the Archimedean property of the natural numbers, there exists an n ∈ N such that

1 <
(
n j
k

)2
, so that

I(χNj) ≤ I

((
n
j

k

)2

χNj

)
.

Hence, ρ(I(χNj)) ≤ ρ(I(sk)) ≤ ρ(I(f 2χMn)) < ∞. As j was chosen to be strictly

greater than 1, we have Nj ( (nj
k
,∞), with nj

k
> 0. We put Ps := E(Nj). Finally, by

Proposition 3.2.12, Ps belongs to R.
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3.5 Invariance of our Projection Ps

We extend the dynamics to the measurable operators obtaining a result similar to
Proposition 2.4.1. Notice in Proposition 3.5.1, below, we identify R with its semicyclic
representation πρ(R). As a consequence, σ = σρ, where σρ(T ) = UρTU

∗
ρ for all T ∈ R,

using Proposition 2.4.1. Hence, in this case, the W ∗-dynamical system (R, σ, ρ) is
identified with the system (πρ(R), σρ, ρ).

Proposition 3.5.1. Let (R, ρ, σ) be a semifinite W ∗-dynamical system with faithful
normal semifinite tracial weight ρ. Represent R, using its semicyclic representation, as
operators on Hρ. Let Uρ : Hρ → Hρ be the unitary satisfying Uρ(T +Kρ) = σ(T ) +Kρ,
for all T ∈ Kρ from §2.4. View (R, σ, ρ) as the W ∗-dynamical system (πρ(R), σρ, ρ).

Then the map σ̃ : R̃ → R̃ given by σ̃(X) = UρXU
∗
ρ is well-defined and continuous in

the topology of convergence in measure on R̃.

Proof. Denote the unit in R by 1. Let X ∈ R̃. Then, using Equation (3.3.1), for any
ε > 0, there is a Q ∈ P(R) such that

(3.5.1) QHρ ⊆ D(X) and ρ(1−Q) ≤ ε.

We show that UρXU
∗
ρ ∈ R̃. First, observe that UρQU

∗
ρ is a projection. Second,

QU∗ρHρ = QHρ ⊆ D(X), so for x ∈ UρQU
∗
ρHρ we have U∗ρx ∈ D(X), hence x ∈

D(XU∗ρ ) = D(UρXU
∗
ρ ), that is, UρQU

∗
ρHρ ⊆ D(UρXU

∗
ρ ). Lastly, using Proposition

2.4.1,
ρ(1− UρQU∗ρ ) = ρ(Uρ(1−Q)U∗ρ ) = ρ(σ(1−Q)) = ρ(1−Q) ≤ ε.

We continue proving the continuity result in the statement of the proposition. From
§3.3, R̃ is metrizable. So we are able to show continuity by using sequential arguments.
Thus, the density of R in R̃ ([Ter81] Chapter 1 Theorem 28) allows us to obtain a
sequence (Xn) in R such that

Xn → X in the measure topology on R̃.

Fix ε, δ > 0. There exists an N ∈ N such that

n > N =⇒ Xn −X ∈ N(ε, δ/2).

Thus, there exist V,W ∈ P(R) such that

V Hρ ⊆ D(Xn −X) and ρ(1− V ) <
δ

2
,

as Xn −X ∈ R̃, and

‖(Xn −X)W‖ ≤ ε and ρ(I −W ) ≤ δ

2
,

as Xn −X ∈ N(ε, δ/2). If we put P = V ∧W, then
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(a) PHρ ⊆ D(Xn −X),
because PHρ ⊆ V Hρ;

(b) ρ(1− P ) ≤ δ,
because

ρ(1− (V ∧W )) = ρ((1− V ) ∨ (1−W ))

≤ ρ(1− V ) + ρ(1−W ) p.7 [Ter81]

≤ δ/2 + δ/2; and

(c) ‖(Xn −X)P‖ ≤ ‖(Xn −X)W‖ ≤ ε,
because (Xn −X)(V ∧W )Hρ ⊆ (Xn −X)WHρ.

Given ε, δ, N , n and P as above, we wish to show, using (a), (b) and (c), that

(i) UρPU
∗
ρHρ ⊆ D(Uρ(Xn −X)U∗ρ ),

(ii)
∥∥Uρ(Xn −X)U∗ρUρPU

∗
ρ

∥∥ ≤ ε, and

(iii) ρ(1− UρPU∗ρ ) ≤ δ.

Parts (i) and (iii) use the same arguments appearing below (3.5.1), which we give for
the sake of completeness.
For (i), we just observe that if x ∈ D(Xn −X) then,

Uρx ∈ D((Xn −X)U∗ρ ) = D(Uρ(Xn −X)U∗ρ ),

and the inclusion PHρ ⊆ D(Xn −X), from (a) above, gives us (i).
For (ii), because (Xn −X)P is a bounded linear operator (from (b) above),∥∥Uρ(Xn −X)U∗ρUρPU

∗
ρ

∥∥ =
∥∥Uρ(Xn −X)PU∗ρ

∥∥
≤ ‖Uρ‖ ‖(Xn −X)P‖

∥∥U∗ρ∥∥ ≤ ε.

For (iii):

ρ(1− UρPU∗ρ ) = ρ(Uρ(1− P )U∗ρ )

= ρ(σρ(1− P )) using Proposition 2.4.1

= ρ(1− P ) ≤ δ because ρ is σρ-preserving.

Hence, for every ε, δ > 0, there exists an N ∈ N such that Xn −X ∈ N(ε, δ/2) for all
n > N, implies that Uρ(Xn − X)U∗ρ ∈ N(ε, δ) for all n > N. Hence, we have shown
that the map σ̃ is continuous.
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Corollary 3.5.2. Let (R, ρ, σ) be a semifinite W ∗-dynamical system with faithful nor-
mal semifinite tracial weight ρ. Let Uρ : Hρ → Hρ be the unitary satisfying Uρ(T+Kρ) =
σ(T ) +Kρ, for all T ∈ Kρ from §2.4. Represent R as operators on Hρ using the semi-

cyclic representation and view R̃ as operators on Hρ. Let γ : L2(ρ)→ Hρ be the Hilbert
space isomorphism obtained in Proposition 3.3.4. Suppose that X ∈ L2(ρ) satisfies
Uρx = x, where x := γ(X) ∈ Hρ. Then, using the map σ̃ in Proposition 3.5.1, we have
σ̃(X) = X.

Proof. In Hρ, approximate x with a sequence of elements (γ(Xn)) ⊆ Kρ/Kρ, where
Xn ∈ Kρ. Then the continuity of Uρ gives us, in Hρ,

Uρx = lim
n
Uργ(Xn) = lim

n
(σ(Xn) +Kρ) = lim

n
γ(σ(Xn)),

because γ is the quotient map Kρ → Kρ/Kρ when restricted to Kρ. Thus, from Propo-
sition 3.3.4, we have in L2(ρ),

σ(Xn) −→ γ−1(Uργ(X).

Hence,
σ(Xn)

measure−−−−−→ γ−1(Uργ(X)),

using Proposition 3.3.3. On the other hand,

γ(Xn)→ γ(X)⇒ Xn → X in L2(ρ) Proposition 3.3.4

⇒ Xn
measure−−−−−→ X Proposition 3.3.3

⇒ σ̃(Xn)→ σ̃(X) Proposition 3.5.1.

As remarked before the statement of Proposition 3.5.1, due to the identification of
R with πρ(R), we have σ = σρ, with σρ(T ) = UρTU

∗
ρ for all T ∈ R. In particular,

σ(Xn) = UρXnU
∗
ρ for all n ∈ N. Hence, (σ(Xn)) converges to both σ̃(X) and to

γ−1(Uργ(X)) = γ−1(Uρx) = γ−1(x) = γ−1(γ(X)) = X, using our assumption that

Uρx = x. As R̃ is a Hausdorff space under the topology of convergence in measure
([Ter81] Chapter 1 Theorem 28), we have the required equality.

We will use the Spectral Theorem to “pass” the relationship “UρXU
∗
ρ = X” to the

projection Ps obtained in Proposition 3.4.1. There R was not expressed in its semicylic
representation, but we do use the form in the following proposition.

Proposition 3.5.3. Let (R, ρ, σ) be a semifinite W ∗-dynamical system with faithful
normal semifinite tracial weight ρ. Let R be represented as operators on Hρ using the
semicyclic representation. Let R ∈ L2(ρ) be a non-zero positive self-adjoint operator.
Apply Theorem 3.2.7 to R to obtain a unique spectral measure E = ER such that
R = I(f) =

∫∞
0
λ dER, where f : R 3 λ 7→ λ ∈ R is the identity on R. Under the

additional assumption that the operator R satisfies UρRU
∗
ρ = R, the projection Ps,

obtained in Proposition 3.4.1, satisfies UρPsU
∗
ρ = Ps.
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Proof. Using Definition 3.1.1, it is clear that F, defined by F (B) = UρE(B)U∗ρ for
all Borel sets B, is a spectral measure. Thus, it makes sense to consider the integral
K(f) :=

∫∞
0
f(λ) dF. Similar to I(f) in Proposition 3.4.1, we first approximate K(f)

point-wise on D(K(f)) using Theorem 3.2.5:

K(f)x = lim
n

K(fχMn)x, for all x ∈ D(K(f)),

where Mn := [0, n], for all n ∈ N. Just as we approximated I(fχMn), for each n ∈ N ,
in Proposition 3.4.1, with Riemann sums of the form

SE(fχMn) =
t∑

k=1

fχMn(ξk)(E((λk−1, λk]),

we approximate each K(fχMn) with Riemann sums

SF ({ξk}tk=1, {λk}tk=1) = SF (fχMn) =
t∑

k=1

fχMn(ξk)F ((λk−1, λk]).

The overall goal is to show that F = E. We do this by showing that K(f) = I(f).
As a first step, we now show that the K(fχMn) can be replaced by the UρI(fχMn)U∗ρ ,
thereby approximating both K(f) and UρI(f)U∗ρ point-wise.

More precisely, we wish to show that for every n ∈ N, we can make the right most
side of the following inequality as small as we wish, by making the partitions Z as fine
as we wish:

(3.5.2)

∥∥K(fχMn)− UρI(fχMn)U∗ρ
∥∥ ≤∥∥K(fχMn)− Uρ[SE(fχMn ,Z)]U∗ρ
∥∥+

∥∥UρSE(fχMn ,Z)− I(fχMn)U∗ρ
∥∥ .

Observe that for any Riemann sum SE(fχMn) with partition Z = {λ1, λ2, . . . , λt},

UρSE(fχMn)U∗ρ = Uρ

(
t∑

k=1

fχMnE((λk−1, λk])

)
U∗ρ

=
t∑

k=1

fχMnUρE((λk−1, λk])U
∗
ρ = SF (fχMn).

Thus, continuing with (3.5.2),∥∥K(fχMn)− UρI(fχMn)U∗ρ
∥∥

≤‖K(fχMn)− SF (fχMn ,Z)‖+ ‖Uρ‖ ‖SE(fχMn ,Z)− I(fχMn)‖
∥∥U∗ρ∥∥ ,
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and applying Proposition 3.2.6 to both K(fχMn) and I(fχMn), we can make the
right hand side of (3.5.2) as small as we wish, as claimed. Therefore, K(fχMn) =
UρI(fχMn)U∗ρ , for all n ∈ N.

So, K(f)x = limn UρI(fχMn)U∗ρx, for all x ∈ D(K(f)).
We now show that D(K(f)) = D(I(f)). From Theorem 3.2.5, we have,

D(I(f)) =

{
x ∈ Hρ |

∫ ∞
0

f(t)2 dEx <∞
}

and

D(K(f)) =

{
x ∈ Hρ |

∫ ∞
0

f(t)2 dFx <∞
}
.

With the above in mind,

x ∈ D(K(f)) ⇐⇒
∫ ∞

0

f(t)2 dFx <∞ ⇐⇒
∫ ∞

0

f(t)2 dEU∗ρx <∞

⇐⇒ U∗ρx ∈ D(I(f)) ⇐⇒ x ∈ UρD(I(f)).

It follows that,

D(K(f)) = UρD(I(f)) = D(I(f)U∗ρ )

=D(UρI(f)U∗ρ ) = D(UρRU
∗
ρ )

=D(R) (from our assumption that UρRU
∗
ρ = R)

=D(I(f)).

Thus, for all x ∈ D(K(f)) ≡ D(I(f)),

K(f)x = lim
n
UρI(fχMn)U∗ρx = Uρ lim

n
I(fχMn)U∗ρx = UI(f)U∗ρx = I(f)x.

From the uniqueness of the spectral measure (Theorem 3.2.7) it follows that F = E.
In particular, because Ps is a spectral projection, UPsU

∗ = Ps.

3.6 Proof of Lemma 3.0.3

The following result will be used in the beginning of Proposition 3.6.2’s proof.

Theorem 3.6.1 (part of [Tak03b] Chapter IX Theorem 2.13 (ii))). Let R be a semifi-
nite von Neumann algebra with a normal faithful semifinite tracial weight ρ. Then
the space L2(ρ) is invariant under multiplication from R from both the left and right.
Furthermore, for all x ∈ L2(ρ) and for all a ∈ R,

(3.6.1) ‖xa‖2,ρ ≤ ‖a‖ ‖x‖2,ρ ‖ax‖2,ρ ≤ ‖a‖ ‖x‖2,ρ .
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Proposition 3.6.2. Let R be a semifinite von Neumann algebra with normal faithful
semifinite tracial weight ρ, represented on Hρ using the semicyclic representation. Let
R ∈ L2(ρ) be a non-zero positive self-adjoint operator. Let (Rn) ⊆ L2(ρ) converge to R
in the norm on L2(ρ). Apply Theorem 3.2.7 to R to obtain a unique spectral measure
E = ER such that R = I(f) =

∫∞
0
λ dER, where f : R 3 λ 7→ λ ∈ R is the identity on

R. Suppose further that we have a projection e ∈ R satisfying Rne = 0 for all n ∈ N.
Then the projection Ps obtained in Proposition 3.4.1 satisfies Pse = 0.

Proof. For each n ∈ N, let Mn := [0, n]. The overall plan is to show the following chain
of implications:

Rne = 0 =⇒ Re = 0 =⇒ I(fχMn)e = 0 =⇒ E((0,∞))e = 0 =⇒ Pse = 0.

Both Rne and Re belong L2(ρ), using Theorem 3.6.1. Thus, Rne−Re ∈ L2(ρ). Using
(3.6.1),

‖Rne−Re‖2,ρ = ‖(Rn −R)e‖2,ρ ≤ ‖e‖ ‖Rn −R‖2,ρ

n−→
∞

0.

Thus, Re = 0.
As, D(E(Mn)I(f)) = D(I(f)), for every n ∈ N, we have, using part (iii) of Theorem

3.2.5,

(3.6.2) E(Mn)I(f)z = I(fχMn)z for all z ∈ D(I(f)).

Notice now that,
x ∈ D(I(f)e) =⇒ ex ∈ D(I(f)).

So, as a special case of (3.6.2),

E(Mn)Rex = I(fχMn)ex for all x ∈ D(I(f)e).

From this, I(fχMn)e = 0, since Re = 0. Thus, employing property (a) of Theorem
3.2.9, for all n ∈ N and for all x ∈ Hρ,

0 = 〈I(fχMn)ex, ex〉 =

∫
R
fχMn(t) dEex.

Since, fχMn(t) > 0 on (0, n] for each n ∈ N, it follows thatEex((0, n]) := 〈E((0, n])ex, ex〉 =
0 for all x ∈ Hρ, and therefore Eex((0,∞)) = 0.

Indeed, if Eex((0, n]) > 0 for some n ∈ N, then, for every natural number k > 1

Eex

([
1

k
, n

])
> 0,

because limk Eex
([

1
k
, n
])

= Eex((0, n]) (using [Sch12] Lemma 4.5 with Nk = [1/k, n]).
However, ∫

R
fχMn(t) dEex ≥ f

(
1

k

)
Eex

([
1

k
, n

])
> 0,
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because, f(1/k) = 1/k > 0, contradicting the assumption that
∫
R fχMn dEex = 0.

Thus, for all x ∈ Hρ, we have, 0 = 〈E((0,∞))ex, ex〉 = 〈eE((0,∞))ex, x〉. Thus,
0 = eE((0,∞))e = (E((0,∞))e)∗E((0,∞))e. Therefore,

‖E((0,∞))e‖2 = ‖(E((0,∞))e)∗E((0,∞))e‖2 = 0,

and thus, we have E((0,∞))e = 0. Since, Ps ≤ E((0,∞)),

Pse = PsE((0,∞))e = 0.

To obtain the limit b1 in Lemma 3.0.3 below, we need to use von Neumann’s mean
ergodic theorem which we state for the reader’s convenience.

Theorem 3.6.3 (von Neumann’s mean ergodic theorem ([Pet89] Chapter 2 Theorem
1.2)). Suppose H is a Hilbert space and suppose that U : H→ H is a contractive linear
operator, that is, U is a bounded linear operator satisfying

∀x ∈ H ‖Ux‖ ≤ ‖x‖ .

Let F := {x ∈ H : Ux = x}, the fixed point space of U. Let Q be the orthogonal
projection from H onto F. Then, for every x ∈ H,

1

n

n∑
j=0

U jx→ Qx

in H, as n→∞.

As an aside, we note that if U is as above and belongs to a von Neumann algebra
A, then the projection Q, being a strong operator limit of elements in A, also belongs
to A.

We are ready to give a proof of Lemma 3.0.3.

Proof of Lemma 3.0.3. Suppose that there is an element a ∈M∩N⊥ such that

1

n

n∑
j=1

∥∥EN (a∗αj(a))Ω
∥∥2

τ
9 0 as n→∞.

Define b := aeNa
∗ ∈ 〈M, eN 〉. Note that b is self-adjoint; hence ᾱj(b) is self-adjoint.

As τ(b∗b) = τ(aeNa
∗aeNa

∗) = τ(aEN (a∗a)eNa
∗) = τ(aEN (a∗a)a∗) <∞ (using Lemma

1.5.3) and τ(ᾱj(b)∗ᾱj(b)) = τ(ᾱj(b∗b)) = τ(b∗b) (using Corollary 2.3.5), the operators
b and ᾱj(b), for each j ∈ N, belong to Kτ . Thus, according to the paragraph appearing
before (1.3.2) (with τ replacing ρ), τ(ᾱj(b)∗b) is well-defined.
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Let γ : L2(τ)→ Hτ be the Hilbert space isomorphism from Proposition 3.3.4.
Observe, using the tracial property of τ and the equalities eNmeN = EN (m)eN =

eNEN (m) (from Lemma 1.5.3), that for all m ∈M,

〈U j
ᾱ(γ(b)), γ(b)〉τ = 〈γ(ᾱj(b)), γ(b)〉τ̄ = τ(b(U j

αbU
−j
α ))

= τ(aeNa
∗U j

α(aeNa
∗)U−jα )

= τ(aeNa
∗αj(a)eNα

j(a)∗) from (2.3.5)

= τ(e2
NEN (a∗αj(a))αj(a)∗a)

= τ(eNEN (a∗αj(a))αj(a)∗aeN )

= τ(EN (a∗αj(a))eNα
j(a)∗aeN )

= τ(EN (a∗αj(a))eNEN (a∗αj(a))∗)

=
∥∥EN (a∗αj(a))Ω

∥∥2

τ
Equation (1.6.1).

Thus, for any n ∈ N,

1

n

n∑
j=1

∥∥EN (a∗αj(a))Ω
∥∥2

τ
= 〈n−1

n∑
j=1

U j
ᾱ(γ(b)), γ(b)〉τ

n−→
∞
〈b1, γ(b)〉τ 6= 0,

where b1 = Q(γ(b)) ∈ L2(τ) and Q is the orthogonal projection onto the fixed point
space of Uᾱ, obtained from von Neumann’s mean ergodic theorem.

As b = (eNa
∗)∗(eNa

∗) is positive, (1/n)
∑n

j=1 ᾱ
j(b) is positive for every n ∈ N. Re-

call from Proposition 3.3.4 that the Hilbert space isomorphism γ : L2(τ)→ Hτ when re-
stricted toKτ is the quotient map g : Kτ → Kτ/Kτ . Thus, because γ((1/n)

∑n
j=1 ᾱ

j(b)) =

n−1
∑n

j=1 U
j
ᾱ(g(b))→ b1, in Hτ , we have(

1

n

) n∑
j=1

ᾱj (b) = γ−1

(
γ((1/n)

n∑
j=1

ᾱj(b))

)
→ γ−1(b1),

in L2(τ). Furthermore, ∥∥∥∥∥ 1

n

n∑
j=1

ᾱj(b)

∥∥∥∥∥ ≤ 1

n

n∑
j=1

∥∥ᾱj∥∥ ‖b‖
≤ 1

n

n∑
j=1

‖b‖ = ‖b‖ <∞.

So B1 := γ−1(b1) is a possibly unbounded positive self-adjoint linear operator in Hτ

by Proposition 3.3.6. Applying Proposition 3.4.1, with R = B1, we obtain a non-zero
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projection Ps of finite lifted trace. Though Ps is an operator on Hτ̄ , we shall later
identify the operator with our required operator PV on Hτ .

We now wish to apply Proposition 3.6.2. We note that for all t ∈ N , 0 = 〈aΩ, tΩ〉τ =
τ(t∗a) = τ(a∗∗t∗) = 〈t∗Ω, a∗Ω〉τ , therefore a∗Ω ∈MΩ ∩ [NΩ]⊥. Thus,

(3.6.3) EN (a∗)Ω = 0.

Using Equations (2.2.5) and (3.6.3),

eNα
j(a∗)Ω = eNU

j
α(a∗Ω) = U j

αeN (a∗Ω) = U j
αEN (a∗)Ω = 0.

Thus, for all c ∈ N , using Proposition 1.6.2 (c)

ᾱj(b)Jc∗JΩ = Jc∗Jᾱj(b)Ω = Jc∗Jαj(a)eNα
j(a∗)Ω = 0.

By linearity, 1
n

∑n
j=1 ᾱ

j(b)Jc∗JΩ = 0. Hence, as [JNJΩ] = [NΩ] (because Jt∗JΩ =

Jt∗Ω = tΩ for every t ∈ N ), we have that
(

1
n

∑n
j=1 ᾱ

j(b)
)
eN = 0. Now let π̄ :

〈M, eN 〉 → B(Hτ ) denote the semicyclic representation of 〈M, eN 〉. Then we have
that

π̄

(
1

n

n∑
j=1

ᾱj(b)

)
π̄(eN ) = π̄

((
1

n

n∑
j=1

ᾱj(b)

)
eN

)
= 0.

Thus, we have verified the “Rne = 0” part in the statement of Proposition 3.6.2 with
the roles of Rn and e played by π̄( 1

n

∑n
j=1 ᾱ

j(b)) and π̄(eN ), respectively.
Hence,

(3.6.4) Psπ̄(eN ) = 0.

Next, due to the equality Uᾱb1 = b1, obtained using von Neumann’s ergodic theo-
rem, by Corollary 3.5.2, we have UᾱB1U

∗
ᾱ = B1. Thus,

(3.6.5) UᾱPsU
∗
ᾱ = Ps,

from Proposition 3.5.3. Additionally, Ps belongs to π̄(〈M, eN 〉) (Proposition 3.4.1).
We therefore put PV := π̄−1(Ps) ∈ 〈M, eN 〉, where V is the range of PV in Hτ . So
Equation (3.6.5) becomes,

π̄ ◦ ᾱ ◦ π̄−1(π̄(PV )) = π̄(PV ) from Proposition 2.4.1

=⇒ π̄ᾱ(PV ) = π̄(PV )

=⇒ ᾱ(PV ) = PV due to the faithfulness of π̄

=⇒ UαPVU
∗
α = PV from Equation (2.2.7).

Thus, PV is Uα-invariant.
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Using (3.6.4),

π̄−1(Psπ̄(eN )) = 0 =⇒ π̄−1(Ps)π̄
−1(π̄(eN )) = PV eN = 0.

Thus, V ⊥ [NΩ].
Lastly, Proposition 1.7.1 implies that V is a right-N -submodule.
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Chapter 4

Finite Rank Approximation

In this chapter we study a finite rank approximation to the Uα-invariant right-N -
submodule V obtained in Chapter 3. We first present the following definition before
stating the main result of this chapter, Lemma 4.0.2.

Definition 4.0.1 (finite-rank modules). (Definition 3.5 [AET11]) Suppose that A is
a von Neumann algebra and H is an A-A-module. A left- (respectively right-) A-
submodule W of H has finite rank if there are some ξ1, ξ2, . . . ξr ∈ W such that
W =

∑r
i=1Aξi (respectively, W =

∑r
i=1 ξiA). We say, in either case, that ξ1, ξ2, . . . ξr

spans W. The numerical value of its rank is the least r ≥ 1 for which this is possible.

Lemma 4.0.2. ([AET11] Lemma 4.1) Suppose that (M, τ, α) is a finite von Neumann
dynamical system, where the GNS space Hτ is separable, N ⊆M∩M′ is an α-invariant
von Neumann subalgebra and V ⊆ Hτ is a Uα-invariant right-N -submodule of finite
lifted trace. Then, for any ε > 0 there is a further Uα-invariant right-N -submodule
V1 ⊆ V such that

• τ(PV − PV1) < ε;

• V1 has finite rank, say at most r ≥ 1;

• there is a set of mutually orthogonal vectors {ξ1, ξ2, . . . , ξr} such that V1 =
∑r

i=1 ξiN ;
and

• there exists a unitary matrix of contractive operators U = (uji)1≤i,j≤r ∈ Ur×r(N )
such that

(4.0.1) Uα(ξi) =
r∑
j=1

ξjuji for all i = 1, 2, . . . , r.

38
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We call such a V1 a rank r approximation to V. Furthermore, for every x ∈ V, there
exists a sequence (xn) converging to x with xn belonging to a rank rn approximation to
V, where rn ≤ n for every n = 1, 2, 3, . . . .

We note that our assumptions about N , in the Lemma above, have been strength-
ened from the previous chapters. Namely, that we require that N lies in the centre of
M in order to ensure that PV can be identified as a decomposable operator (Definition
4.1.6).

We also note that we added to the statement and deviated slightly from the proof
of Lemma 4.0.2 as it appears in [AET11]. In particular, we have found it necessary
to add the final part discussing the approximation of vectors in V in order to prove
Proposition 5.2.2 and we have introduced simpler arguments to obtain the uji.

In §§4.1-4.4 we work under more general conditions than what is described in
Lemma 4.0.2 in that we deal with a state instead of a trace.

Sections 4.1-4.3 contain the background on direct integral theory, though we begin
proving a small part of Lemma 4.0.2 in §4.2. We focus on the proof from §4.4 onwards.

4.1 Direct Integrals of Hilbert Spaces,

Decomposable Operators and Decomposable

von Neumann Algebras

The concept of a direct integral of Hilbert spaces extends the idea of the direct sum of
Hilbert spaces. The definition we present here is from [KR97b] Chapter 14.

Definition 4.1.1. Let (X,Σ, µ) be a measure space. Suppose further that X is a
σ-compact locally compact Borel measure space (by σ-compact, we mean that X is a
countable union of compact sets from Σ) with µ the completion of a Borel measure on
X. Let {Hp} be a family of separable Hilbert spaces (referred to as fibres) indexed
by p ∈ X. A separable Hilbert space H⊕ is called the direct integral of {Hp} over

(X,µ) denoted H⊕ =
∫ ⊕
X
Hp dµ(p) if for every x ∈ H there is a map p 7→ x(p) such

that

1. x(p) ∈ Hp for each p.

2. p 7→ 〈x(p), y(p)〉 is µ-integrable, for every x, y ∈ H⊕ and

〈x, y〉 =

∫
X

〈x(p), y(p)〉 dµ(p).

3. For every p ∈ X, if up ∈ Hp and p 7→ 〈up, y(p)〉 is µ-integrable for every y ∈ H⊕,
then there is a u ∈ H⊕ such that u(p) = up for almost every p.
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The map p 7→ x(p) is referred to as a measurable cross section of Hilbert spaces.
We shall refer to (X,µ) as the domain of integration for H⊕.

Remark 4.1.2. When considering a subspace of H⊕ which is itself to be viewed as
a direct integral (see Proposition 4.6.1), we weaken condition 1 in Definition 4.1.1 to
almost all p, rather than all p.

Remark 4.1.3. Alternative terminology exists for some of the objects just introduced.
The map p 7→ x(p) can also be called a decomposition of x. When the set of Hilbert
space fibres {Hp} is understood, p 7→ x(p) is just referred to as a “measurable section”.

Remark 4.1.4. Let x, y ∈ H⊕ and c ∈ C. Then the measurable cross section p 7→ z(p)
corresponding to ax+ y will agree with p 7→ ax(p) + y(p) for almost all p. Conversely,
if two measurable cross sections p 7→ x(p) and p 7→ y(p) are equal almost everywhere,
then x = y. Thus, we will sometimes not distinguish between the vector x and the its
corresponding mapping p 7→ x(p). For details, see [KR97b] Remark 14.1.2.

Remark 4.1.5. For convenience, we shall identify Hilbert space fibres Hp of the same
Hilbert dimension dim(Hp) (with the convention that the infinite dimensional Hilbert
space has dimension “∞”). This identification can be done rigorously- see [Nie80].
Moreover, we remark that for all n = 1, 2, 3, . . . ,∞ the set Wn = {p ∈ X | dim(Hp) =
n} is measurable ([KR97b] Remark 14.1.5). The assumption of separability of each
Hilbert space fibre ensures that X is a partition of the Wn’s.

The broad initial idea of proving Lemma 4.0.2 is to represent all the mathematical
objects that we have been working with, such as the basic construction, on a direct
integral of Hilbert spaces.

Having described a Hilbert space divided into Hilbert space fibres, we would like to
know which linear operators on H⊕ can be represented “fibre-wise”.

Definition 4.1.6. Let H⊕ be a direct integral of Hilbert spaces {Hp} over a measure
space (X,Σ, µ). An operator T on H⊕ is called decomposable (with respect to this
direct integral decomposition) if

(a) there is a map p 7→ T (p) defined on X such that T (p) ∈ B(Hp) for every p ∈ X;

(b) for every x ∈ H⊕, T (p)x(p) = (Tx)(p) for almost all p.

We refer to the mapping p 7→ T (p) as a measurable section (of operators). Denote
the identity operator on Hp by Ip. We call T diagonalizable if T (p) = f(p)Ip for some
f ∈ L∞(µ).
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Remark 4.1.7. Suppose T is a diagonalisable operator. We use the symbol Mf to
denote such an operator T. If the diagonalisable operator T is a projection, then it
can be shown that T = MχR for some measurable set R ⊆ X ([KR97b] Remark
14.1.7, [Knu11] Corollary 2.19). For a measurable set X0, MχX0

is referred to as the
diagonalisable projection corresponding to X0.

Theorem 4.1.8 ([KR97b] Theorem 14.1.10). If H⊕ is the direct integral of {Hp}, then
the set of all decomposable operators is a von Neumann algebra and its commutant
coincides with the von Neumann algebra of all diagonalisable operators. So, by the
double commutant theorem ([KR97b] Theorem 5.3.1), the von Neumann algebra of
decomposable operators is the commutant of the von Neumann algebra of diagonalisable
operators.

Definition 4.1.9. Let H⊕ be a direct integral of {Hp} over (X,µ) and let A be a C∗-
algebra. A representation φ of A on H⊕ is called decomposable with decomposition
p 7→ φp if

(a) φ(A) consists of decomposable operators;

(b) there are representations φp : A → B(Hp) such that φ(a)(p) = φp(a) for almost all
p ∈ X.

The following definition is taken from [KR97b] Definition 14.1.14, but we have
added some notation and terminology for later use.

Definition 4.1.10. Let H⊕ be a direct integral of {Hp} over (X,µ). Let B be a von
Neumann algebra on H⊕, and suppose that A ⊆ B is a norm separable, strong operator
dense C∗-subalgebra. Then B is said to be decomposable with decomposition p 7→ Bp,
if

(a) the identity representation ι of A, p 7→ ιp, is decomposable;

(b) ιp(A) is strong operator dense in the von Neumann algebra Bp almost everywhere.

We write B =
∫ ⊕
X
Bp dµ and say that B is the direct integral of {Bp}. We refer to the

mapping p 7→ Bp as a measurable section of von Neumann algebras. The image
of ιp(A) is usually denoted by Ap.

A link between decomposable operators and decomposable von Neumann algebras
is as expected.
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Proposition 4.1.11 ([KR97b] Theorem 14.1.16). Let H⊕ be the direct integral of
Hilbert spaces {Hp} over (X,Σ, µ) and B a von Neumann subalgebra of the alge-
bra of decomposable operators. Then B is decomposable with unique decomposition
B =

∫ ⊕
X
Bp dµ.

Remark 4.1.12. We will need, in Proposition 4.5.4 a result from [Dix81] and in
Proposition 4.7.11 a result from [Nie80]. As a result, we will assume without proof that
the approaches used in those books are compatible to the one presented in [KR97a].

We are now in the position to start transferring our mathematical objects to a
direct integral framework.

4.2 The Cyclic Vector

Let R be a von Neumann algebra with faithful normal state ρ, and S be an abelian
von Neumann subalgebra of R with faithful normal state ρ|S . Assume that R is in its
cyclic representation acting on the separable GNS Hilbert space Hρ and that Ωρ is the
corresponding cyclic vector.

In this section we use S to obtain a direct integral HS⊕ over a measure space. To
do this, we use a result in [KR97b] (see Theorem 4.2.1 below), but we will have need
to modify the fibres given by that result in order to ensure that we have a probability
space as our domain of integration for HS⊕ (Proposition 4.2.6). In doing so, we will
modify our cyclic vector Ωρ so that fibre-wise its components are almost everywhere
unit vectors (Definition 4.2.10 and the remarks afterwards).

The following theorem ensures that given an abelian von Neumann algebra B, there
exists a direct integral H⊕ of Hilbert spaces making B unitarily equivalent to the von
Neumann algebra of all diagonalisable operators on H⊕.

Theorem 4.2.1 ([KR97b] Theorem 14.2.1). Suppose B is an abelian von Neumann
algebra on a separable Hilbert space H. There exists a locally compact complete separable
metric measure space (X,Σ, µ), and a direct integral H⊕ =

∫ ⊕
X
Hp dµ over a family of

Hilbert spaces {Hp} such that there is a unitary operator D : H→ H⊕ with DHD∗ = H⊕.
Furthermore, DBD∗ is the von Neumann algebra (Theorem 4.1.8) of all diagonalisable
operators relative to {Hp}.

Let us apply the above result to our S, which we place in a remark for ease of
reference.

Remark 4.2.2. Applying Theorem 4.2.1 to S above, denote by HS⊕ =
∫ ⊕
Y
HSp dµ the

direct integral decomposition over the measure space (Y,Ψ, µ) such that Φ is a unitary
Φ : Hρ → HS⊕ making ΦSΦ−1 the von Neumann algebra of all diagonalisable operators.
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We shall denote by ϕ the map ϕ : B(Hρ) 3 A 7→ ΦAΦ−1 ∈ B(HS⊕). In particular, ϕ(S)
is the von Neumann algebra of all diagonalisable operators acting on HS⊕.

Proposition 4.2.3. Suppose (R, ρ) is a von Neumann algebra with finite faithful state
ρ acting on its GNS Hilbert space Hρ. Let S be an abelian von Neumann subalgebra of
R and let Φ be the unitary in Remark 4.2.2 which turns ϕ(S) = ΦSΦ−1 into the set
of all diagonalisable operators on the direct integral HS⊕ =

∫ ⊕
Y
HSp dµ. Let Ωρ ∈ Hρ be

the distinguished cyclic and separating vector of R. Then Φ(Ωρ)(p) 6= 0 for almost all
p ∈ Y.

Proof. Note that for all T ∈ S,

(4.2.1) Φ(TΩρ) = ΦTΦ−1Φ(Ωρ) = ϕ(T )Φ(Ωρ).

So, if T ∈ S is positive and non-zero, as Φ is a unitary and ρ is faithful,

(4.2.2) 〈ϕ(T )Φ(Ωρ),Φ(Ωρ)〉 = 〈Φ(TΩρ),Φ(Ωρ)〉 = 〈TΩρ,Ωρ〉 = ρ(T ) > 0.

Write Γ for Φ(Ωρ). Suppose on the contrary that ‖Γ(p)‖ = 0 for some measurable set
K of non-zero µ-measure. Consider the diagonalisable projection MχK corresponding
to K :

MχK (p) =

{
Ip if p ∈ K
0 otherwise.

Then, as MχK is not the zero operator, using (4.2.2),

0 < ρ(ϕ−1(MχK )) = 〈MχKΓ,Γ〉 =

∫
Y

〈χK(p)Γ(p),Γ(p)〉 dµ

=

∫
Y

χK(p)〈Γ(p),Γ(p)〉 dµ =

∫
K

〈Γ(p),Γ(p)〉 dµ =

∫
K

‖Γ(p)‖2 dµ,

thus contradicting our assumption about K.

Due to Proposition 4.2.3, we will feel free to divide through by ‖Φ(Ωρ)(p)‖ almost
everywhere.

We would like to examine in §4.5 vector states of the form 〈T (p)ξ(p), ξ(p)〉, where
T is a decomposable operator in a decomposable von Neumann algebra and ξ(p) is a
unit vector almost everywhere. Unfortunately, attempting to define such a unit vector
Γ′ as

Γ′(p) =
1

‖Φ(Ωρ)(p)‖
Φ(Ωρ)(p) p -almost everywhere

creates a technical impasse. For instance, it is not clear that replacing ϕ(Ωρ) with Γ′

in (4.2.2) will yield the same state ρ. To overcome this, we will have to redefine the
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inner product on each HSp for almost each p. It is surprising that this does not affect
the inner product on HS⊕ (Proposition 4.2.6).

It is easily checked that the following definition does indeed give an inner product
on almost every Hilbert space fibre HSp .

Definition 4.2.4. We use the assumptions and notation of Remark 4.2.2 and Proposi-
tion 4.2.3. For every p ∈ Y such that ‖Φ(Ωρ)(p)‖ 6= 0 denote by H′p the Hilbert space
HSp endowed with the following inner product:

〈s, t〉′ := 1

‖Φ(Ωρ)(p)‖2 〈s, t〉 s, t ∈ HSp .

We explicitly note that for Φ(Ωρ)(p) 6= 0, that under the new inner product we have

(4.2.3) (‖Φ(Ωρ)(p)‖′)2 = 〈Φ(Ωρ)(p),Φ(Ωρ)(p)〉′ =
1

‖Ωρ(p)‖2 〈Φ(Ωρ)(p),Φ(Ωρ)(p)〉 = 1.

Definition 4.2.5. Consider the measure space (Y,Ψ, µ) from Remark 4.2.2. Define
the following set map ν : Ψ→ [0,∞]4.2.3

ν(K) =

∫
K

‖Φ(Ωρ)(p)‖2 dµ.

Proposition 4.2.6. The set map ν defined in Definition 4.2.5 is a probability measure
on the measurable space (Y,Ψ) and satisfies

〈x, y〉 =

∫
Y

〈x(p), y(p)〉′ dν.

Proof. Due to the fact that ‖Φ(Ωρ)(p)‖ ≥ 0, [Rud87] Theorem 1.29 not only ensures
that ν is indeed a measure, but also that for all x, y ∈ HS⊕,

〈x, y〉 =

∫
Y

〈x(p), y(p)〉 dµ

=

∫
Y

1

‖Ωρ(p)‖2 〈x(p), y(p)〉 ‖Ωρ(p)‖2 dµ

=

∫
Y

〈x(p), y(p)〉′ dν.

Moreover, ν(Y ) =
∫
Y
‖Φ(Ωρ)(p)‖2 dµ = ‖Φ(Ωρ)‖2 = ‖Ωρ‖2 = 1.
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Proposition 4.2.7. Consider the measure ν from Proposition 4.2.6 (and Definition
4.2.5). We have that the measure µ is equivalent to ν, i.e. for all K ∈ Ψ, µ(K) =
0 ⇐⇒ ν(K) = 0.

Proof. If K ∈ Ψ satisfies µ(K) = 0, then clearly ν(K) = 0. Conversely, suppose
µ(K) 6= 0. Then µ(K) > 0. As ‖Φ(Ωρ)(p)‖2 > 0 for almost all p ∈ Y (Proposition
4.2.3), ν(K) =

∫
K
‖Φ(Ωρ)(p)‖2 dµ 6= 0.

Remark 4.2.8. We mention two consequences of Proposition 4.2.7 which we use later:

(i) L∞(µ) = L∞(ν) (this is straight forward to prove; we use this in Proposition
4.4.2).

(ii) a statement P is true ν-a.e if and only if P is true µ-a.e (we use this in Corollary
4.2.9).

As a consequence of Propositions 4.2.6, we have

Corollary 4.2.9. Consider the collection of Hilbert spaces {H′p} defined in Definition
4.2.4 and the measure space (Y,Ψ, ν) in Proposition 4.2.6. The Hilbert space HS⊕ =∫ ⊕
Y
HSp dν from Remark 4.2.2, is also given by HS⊕ =

∫ ⊕
Y
H′p dν.

Proof. We verify Definition 4.1.1.
Let x ∈ HS⊕. Then we can form a corresponding map p 7→ x′(p) algebraically as

follows. For each p ∈ Y, treating Hp as a vector space, we have that Hp = H′p. So we
set x′(p) = x(p) for all p ∈ Y.

The map p 7→ 〈x′(p), y′(p)〉 is equal almost everywhere to

p 7→ 1

‖Φ(Ωρ)(p)‖2 〈x(p), y(p)〉.

The map p 7→ 1
‖Φ(Ωρ)(p)‖2 is µ-measurable and thus ν-measurable (as both measures

are defined on the same σ-algebra Ψ). Thus, p 7→ 1
‖Φ(Ωρ)(p)‖2 〈x(p), y(p)〉 is ν-measurable.

Proposition 4.2.6 shows that 〈x, y〉 =
∫
Y
〈x(p), y(p)〉′ dν.

Lastly, suppose that for each p ∈ Y there is a xp ∈ H′p such that for all y ∈ HS⊕,
p 7→ 〈xp, y(p)〉′ is ν-measurable. Then, because HS⊕ =

∫
Y
HSp dµ, there is exists a map

p 7→ x(p) with x(p) = xp almost everywhere, with x(p) ∈ Hp. In a similar manner to
the beginning of the proof, by viewing HSp and H′p as the same vector space, we have
that the map p 7→ x′(p) with x′(p) = x(p) satisfies x′(p) = xp almost everywhere.
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Definition 4.2.10. In HS⊕ =
∫ ⊕
Y
H′p dν, we define the vector Γ as

Γ = ΦΩρ.

Remark 4.2.11. From (4.2.3) we have ‖Γ(p)‖ = 1 almost everywhere and therefore,
‖Γ‖2 =

∫
Y
‖Γ(p)‖2 dν = 1.

4.3 Decomposing von Neumann Algebras and

their States

We require a few results (Propositions 4.3.1 and 4.3.2), in order to establish that
ϕ(R) := ΦRΦ−1 is a decomposable von Neumann algebra (Proposition 4.3.3). This is
followed by a sequence of propositions that build the theory for the corresponding de-
composition of the state on ϕ(R). Strictly speaking, all of this is presented in [KR97b],
but not in the form that we require.

Proposition 4.3.1. We use the notation and assumptions in Remark 4.2.2 and Propo-
sition 4.2.3. In particular, we consider the map ϕ : B(Hρ) → B(HS⊕), defined by
ϕ(a) = ΦaΦ−1 and recall that R is a von Neumann algebra with faithful normal trace ρ
acting on its GNS space Hρ. We have that ϕ(R) := ΦRΦ−1 is a von Neumann algebra.

Proof. We note that ϕ sends the identity operator 1R ∈ R to the identity operator in
B(HS⊕).

It is routine to verify that ϕ(R) is a ∗-algebra.
Let us show that ϕ(R) is closed in the strong operator topology. Let (rλ) be a net

in ϕ(R) converging in the strong operator topology to some operator r ∈ B(HS⊕). For
each λ, there is an aλ ∈ R such that rλ = ΦaλΦ

∗. Then (aλ) converges to Φ∗rΦ in the
strong operator topology. Indeed, for every x ∈ HS⊕, because (ΦaλΦ

∗) converges to r,

‖aλx− Φ∗rΦx‖ = ‖Φ∗(ΦaλΦ∗ − r)Φx‖ ≤ ‖Φ∗‖ ‖(ΦaλΦ∗ − r)Φx‖ → 0.

Thus, as R is a von Neumann algebra, we have that Φ∗rΦ ∈ R. Hence, there is an
a ∈ R such that a = Φ∗rΦ. So, r ∈ ϕ(R).

We note that ϕ on R is normal (ultra-weakly continuous) ([SZ79] Corollary 5.13).
The map ϕ on R also preserves the commutant of S.

Proposition 4.3.2. With the notation and assumptions of Proposition 4.2.3, we have
ϕ(S)′ = ϕ(S ′).
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Proof. Let f ∈ ϕ(S ′). Then, for some a′ ∈ S ′, f = Φa′Φ∗. We want to show that
f ∈ ϕ(S)′. So let g = ΦaΦ∗ ∈ ϕ(S) for some a ∈ S. Then,

fg = Φa′Φ∗ΦaΦ∗ = Φa′aΦ∗ = Φaa′Φ∗ = ΦaΦ∗Φa′Φ∗ = gf.

Conversely, if f ∈ ϕ(S)′, then fΦaΦ∗ = ΦaΦ∗f for every a ∈ S. Put a′ := Φ∗fΦ. Then,
a′ : Hρ → Hρ and for every a ∈ S,

a′a = Φ∗fΦa = Φ∗fΦaΦ∗Φ = Φ∗ΦaΦ∗fΦ = aΦ∗fΦ = aa′.

Thus, a′ ∈ S ′. Hence, f = Φa′Φ∗ ∈ ϕ(S ′).

The next result summarises many of the main points made so far in this chapter.

Proposition 4.3.3. With the notation and assumptions of Proposition 4.2.3, we fur-
ther assume that S is central in R i.e. S ⊆ R ∩ R′. Then ϕ(R) := ΦRΦ−1 is
a decomposable von Neumann algebra with respect to the direct integral Hilbert space
HS⊕ =

∫
Y
H′p dν, where ν is a probability measure, with decomposition denoted by (see

Definition 4.1.10)

ϕ(R) =

∫ ⊕
Y

ϕ(R)p dν.

The von Neumann algebra ϕ(R) consists solely of decomposable operators and ϕ(S) is
the von Neumann algebra of diagonalisable operators.

Proof. We can take ν to be a probability measure by Corollary 4.2.9. As S ⊆ R′, we
haveR ⊆ S ′. Therefore, as Φ is unitary, ϕ(R) ⊆ ϕ(S ′) = ϕ(S)′, from Proposition 4.3.2.
Recall that ϕ(S)′ is the von Neumann algebra of all decomposable operators (from Re-
mark 4.2.2 and Theorem 4.1.8). Thus, ϕ(R) is a von Neumann algebra consisting
solely of decomposable operators, and is therefore a decomposable von Neumann alge-
bra (Proposition 4.1.11). From, Proposition 4.2.3, ϕ(S) is the von Neumann algebra
of all diagonalisable operators.

We turn our attention to decomposing the associated state ρ of R.

Proposition 4.3.4. Consider a von Neumann algebra B acting on a Hilbert space H.
Let s : B → C be the linear functional

(4.3.1) s(a) = 〈aξ, ξ〉 a ∈ B,

where ξ ∈ H is a unit vector. We have the following properties:

(i) s(1B) = 1.

(ii) s is positive.
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(iii) s is normal.

(iv) Suppose that a ∈ B+ and ξ is separating for B. If s(a) = 0, then a = 0.

Proof.

(i)
s(1B) = ‖ξ‖2 = 1.

(ii)
If a ∈ B+, then there is a b ∈ B such that a = b∗b. Thus,

s(a) = ‖bξ‖2 ≥ 0.

(iii)
We use the definition of normality in Definition 1.1.2. Let (bλ) be an increas-
ing net in B+ with supremum b = sup{bλ}. Recall that b = sup{bλ} is the
strong operator limit of the net (bλ) ([Zhu93] Theorem 17.1). In particular,

bξ = lim
λ
bλξ.

Therefore, we have limλ s(bλ) = s(b) :

|s(bλ)− s(b)| = |〈(bλξ − bξ, ξ〉|
≤ ‖bλξ − bξ‖ ‖ξ‖ = ‖bλξ − bξ‖ → 0.

Now, as s is positive, we have that (s(bλ)) is a bounded monotone increasing
net with limit supλ{s(bλ)}. Thus, supλ{s(bλ)} = limλ s(bλ) = s(b).

(iv)
Suppose that a ∈ B+ and write a = b∗b for some b ∈ B. If s(a) = 0, then
using the separating property of ξ,

0 = s(a) = ‖bξ‖2 =⇒ bξ = 0 =⇒ b = 0.

So a = 0.

Proposition 4.3.5. Continuing from Proposition 4.3.3, we have that Γ (Definition
4.2.10) is a separating vector for ϕ(R), that is, if r ∈ R satisfies ϕ(r)Γ = 0, then
ϕ(r) = 0. Furthermore, Γ is cyclic for ϕ(R), that is, [ϕ(R)Γ] = HS⊕ =

∫ ⊕
Y
H′p dν.
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Proof. Let r ∈ R. Then,

ϕ(r)Γ = 0

ΦrΦ−1ΦΩρ = 0

Φ(rΩρ) = 0

rΩρ = 0 as Φ is an isometry

r = 0 Ωρ is separating.

To prove the cyclic property, we just need to show that

HS⊕ = Φ([RΩρ]) ⊆ [ϕ(R)Γ].

If x ∈ Φ([RΩρ]) = HS⊕, there is a sequence of elements (rnΩρ) such that limn rnΩρ =
Φ−1x. As Φ is continuous,

lim
n

Φ(rnΩρ) = Φ(lim
n
rnΩρ) = ΦΦ−1x = x.

Now

(4.3.2) Φ(RΩρ) = ΦRΦ−1Φ(Ωρ) = ϕ(R)Γ.

So, from (4.3.2), we have that Φ(rnΩρ) = ϕ(rn)Γ and therefore x ∈ [ϕ(R)Γ].

Proposition 4.3.6. We use the notation and assumptions of Proposition 4.3.3 and
Definition 4.2.10. Define on ϕ(R), ω := ρ ◦ ϕ−1. Then, ω is a normal faithful state
such that for all a ∈ ϕ(R)

(i) ω(a) = 〈aΓ,Γ〉.

(ii) There are linear functionals

(4.3.3) ωp(a(p)) := 〈a(p)Γ(p),Γ(p)〉

such that for almost all p, ωp is a normal faithful state on ϕ(R)p and ω(a) =∫
Y
ωp(a(p)) dν.

Proof. For all a ∈ ϕ(R)

ω(a) = ρ ◦ ϕ−1(a) = 〈ϕ−1(a)Ωρ,Ωρ〉
= 〈Φϕ−1(a)Ωρ,ΦΩρ〉 as Φ is preserves the inner product

= 〈aΓ,Γ〉.
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From Proposition 4.3.4, ω is a normal state. As Γ is separating (Proposition 4.3.5), we
have that ω is faithful (Proposition 4.3.4).

We now have

ω(a) = 〈aΓ,Γ〉 =

∫
Y

〈a(p)Γ(p),Γ(p)〉 dν.

Except on a set E1 of measure zero, ‖Γ(p)‖ = 1 (Remark 4.2.11). So, from Proposition
4.3.4, for all p ∈ E1 ωp is a normal state. As a special case of the proof in [KR97b]
Lemma 14.1.19, we have that ωp is faithful for almost p, except in a null set E2 . Thus,
for almost all p ∈ Y \(E1 ∪ E2), ωp is a faithful normal state on ϕ(R)p.

Remark 4.3.7. We refer to the notation ωp in Proposition 4.3.6. As ωp is faithful
for almost all p we have from (4.3.3) that Γ(p) is separating for ϕ(R)p for almost all
p ∈ Y.

In the next result, we use [KR97b] Lemma 14.1.3. We note in that Lemma that
when [KR97b] refers to a set {xa} of vectors “spanning” a Hilbert space H, they mean
that the set of all finite linear combinations of elements from {xa} is dense in H.

Proposition 4.3.8. Using the notation and assumptions of Proposition 4.3.3 and
Definition 4.2.10, we have that for almost all p, Γ(p) is cyclic for ϕ(R)p, that is,
[ϕ(R)pΓ(p)] = H′p, for almost all p ∈ Y.

Proof. We have ϕ(R)Γ dense in HS⊕ (Proposition 4.3.5). So AΓ is dense in HS⊕ in terms
of Definition 4.1.10 (with B replaced with ϕ(R)), since A is strongly dense in ϕ(R).
Thus, using [KR97b] Lemma 14.1.3, for almost all p,

(4.3.4) {(aΓ)(p) : a ∈ A} = H′p.

On the other hand, ιp(A) is strongly dense in ϕ(R)p (Definition 4.1.10), where
ι(a) = a(p) a.e. (Definition 4.1.9) since ι = idA, for all a ∈ A. As a result, {a(p) | a ∈
A} is strongly dense in ϕ(R)p a.e. In particular, for almost all p

{a(p)Γ(p) | a ∈ A = ϕ(R)pΓ(p).

However, since (aΓ)(p) = a(p)Γ(p) a.e (Definition 4.1.6), we have from (4.3.4), for
almost all p,

ϕ(R)pΓ(p) = H′p.
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4.4 Decomposing the Jones Projection

Recall that the Jones projection, eS is the projection from Hρ ≡ [RΩρ] onto [SΩρ]. We
do not directly decompose ΦeSΦ−1. Rather, we first define a map Q (Definition 4.4.1)
and show that it projects onto [ϕ(S)Γ].

Definition 4.4.1. We continue using the notation and assumptions from Proposition
4.3.3. Recall that HS⊕ =

∫ ⊕
Y
H′p dν is the Hilbert space obtained from Corollary 4.2.9

and that Γ is the vector defined in Definition 4.2.10. Define an operator Q on HS⊕ : for
all x ∈ HS⊕,

(Qx)(p) = 〈x(p),Γ(p)〉Γ(p) for almost all p ∈ Y.

We shall show shortly that Q is well-defined. We proceed in steps:

1. Show that Qx ∈ HS⊕ for every x ∈ HS⊕.

2. Show that Qx ∈ [ϕ(S)Γ] for every x ∈ HS⊕.

3. Show that Q is a projection.

4. Show that ΦeSΦ−1 projects onto Φ([SΩρ]) = [ϕ(S)Γ].

We take a moment to establish some technical results before we carry out the afore-
mentioned steps.

Proposition 4.4.2. We use the notation and assumptions in Proposition 4.3.3 and
Definition 4.2.10. Recall, from the beginning of §4.2, that Ωρ ∈ Hρ is the distinguished
cyclic vector of R. Then, we have the equality

Φ(SΩρ) = {p 7→ f(p)Γ(p) | f ∈ L∞(ν)}.

Proof. From Remark 4.2.2 and Corollary 4.2.9, ϕ(S) is the von Neumann algebra of
all diagonalisable operators on HS⊕ =

∫ ⊕
Y
H′p dν. However, as noted in Remark 4.2.8,

L∞(µ) = L∞(ν). Thus, n ∈ S if and only if there exists an f ∈ L∞(ν) such that
Mf = ϕ(n). In terms of this,

(4.4.1) Φ(nΩρ)(p) = (ΦnΦ−1ΦΩρ)(p) = (ϕ(n)Γ)(p) = f(p)Γ(p).

for almost all p, from which the results follows.

The next proposition uses standard results and convergence arguments in complete
spaces.
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Proposition 4.4.3. We use the notation and assumptions in Proposition 4.3.3, and
Definition 4.2.10. There exists a unitary θ : L2(ν) → [ϕ(S)Γ] such that for all f ∈
L∞(ν),

θ(f) = MfΓ.

Proof. The map
S 3 n 7→ ϕ(n) ∈ B(HS⊕),

is a ∗-isomophism onto ϕ(S). So we may define

θ′ : L∞(ν) 3 f 7→MfΓ ∈ [ϕ(S)Γ] ⊆ HS⊕.

Viewing L∞(ν) as a subset of L2(ν), the inner product is preserved: for every f, g ∈
L∞(ν),

〈f, g〉L2(ν) =

∫
Y

f(p)g(p) dν

=

∫
Y

f(p)g(p)〈Γ(p),Γ(p)〉 dν

=

∫
Y

〈f(p)Γ(p), g(p)Γ(p)〉 dν = 〈θ′(f), θ′(g)〉.

Thus, θ′ is continuous on L∞(ν), and therefore can be extended to a linear operator

θ : L2(ν)→ [ϕ(S)Γ].

In particular, θ is an isometry and therefore injective. Let x ∈ [ϕ(S)Γ]. Then there is
a sequence (ϕ(ni)Γ) converging to x. So there is a sequence (fi) ⊆ L∞(ν) such that
for each i ∈ N, ϕ(ni) = θ(fi). As θ is an isometry and (ϕ(ni)Γ) is a Cauchy sequence,
(fi) is a Cauchy sequence in L2(ν). Thus there is an f ∈ L2(ν) such that limi fi = f.
Hence, using the continuity of θ,

(4.4.2) x = lim
i
ϕ(ni)Γ = lim

i
θ(fi) = θ(lim fi) = θ(f).

This shows that θ is bijective mapping preserving the inner product and hence a
Hilbert space isomorphism.

Proposition 4.4.4. Continuing from Proposition 4.4.3, [ϕ(S)Γ] is equal to the space

L2(ν)Γ := {p 7→ g(p)Γ(p) | g ∈ L2(ν)}

and θ(g) = gΓ for all g ∈ L2(ν), where gΓ is the map p 7→ g(p)Γ(p).
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Proof. If f ∈ L2(ν), there is a sequence of elements (fi) in L∞(ν), such that limi fi = f
in L2(ν). Thus, using the continuity of θ,

(4.4.3) θ(f) = θ(lim
i
fi) = lim

i
θ(fi) = lim

i
fiΓ.

fΓ ∈ HS⊕ : for any x ∈ HS⊕,

p 7→ 〈f(p)Γ(p), x(p)〉 = f(p)〈Γ(p), x(p)〉

is integrable, since it is measurable (both f and p 7→ 〈Γ(p), x(p)〉 are measurable) and∫
Y

|f(p)〈Γ(p), x(p)〉| dν ≤
[∫

Y

|f(p)|2 dν

] 1
2
[∫

Y

‖x(p)‖2 dν

] 1
2

<∞.(4.4.4)

So there is a vector u ∈ HS⊕ such that u(p) = f(p)〈Γ(p), x(p)〉 for almost all p (Definition
4.1.1). Therefore, fΓ ∈ HS⊕.

We show that limi fiΓ = fΓ. Note that

‖fiΓ− fΓ‖2 =

∫
Y

‖fi(p)Γ(p)− f(y)Γ(p)‖2 dν

=

∫
Y

|fi(p)− f(p)|2 ‖Γ(p)‖2 dν

=

∫
Y

|fi(p)− f(p)|2 dν → 0,

(4.4.5)

because fi → f in L2(ν). Comparing (4.4.3) and (4.4.5), from the uniqueness of limits
in Hilbert spaces, we have that θ(f) = fΓ. Hence, θ(L2(ν)) = L2(ν)Γ.

However, from Theorem 4.4.3, θ is surjective onto [ϕ(S)Γ]. Hence, [ϕ(S)Γ] =
θ(L2(ν)) = L2(ν)Γ.

We begin with the steps outlined after Definition 4.4.1.

Proposition 4.4.5. Let Q be the operator defined in Definition 4.4.1. Then, Qx ∈ HS⊕
for every x ∈ HS⊕.

Proof. We use Definition 4.1.1. Let x ∈ HS⊕. Clearly, for almost all p ∈ Y, 〈x(p),Γ(p)〉Γ(p)
is a scalar multiple of Γ(p) and therefore belongs to H′p. Next, for all y ∈ HS⊕, the equal-
ity

〈〈x(p),Γ(p)〉Γ(p), y(p)〉 = 〈x(p),Γ(p)〉〈Γ(p), y(p)〉,
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shows that p 7→ 〈〈x(p),Γ(p)〉Γ(p), y(p)〉 is measurable being the pointwise product of
measurable functions. Hence, as ‖Γ(p)‖2 = 1 for almost all p ∈ Y (from (4.2.3)) we
have ∫

Y

|〈〈x(p),Γ(p)〉Γ(p), y(p)〉| dν

≤
∫
y

‖x(p)‖ ‖Γ(p)‖ ‖Γ(p)‖ ‖y(p)‖ dν =

∫
Y

‖x(p)‖ ‖y(p)‖ dν

≤
[∫

Y

‖x(p)‖2 dν

] 1
2
[∫

Y

‖y(p)‖2 dν

] 1
2

<∞.

(4.4.6)

So, Qx ∈ HS⊕ for all x ∈ HS⊕.

Proposition 4.4.6. We use the assumptions and notation of Proposition 4.3.3. Let
Q be defined as in Definition 4.4.1. Then, Qx ∈ [ϕ(S)Γ] for every x ∈ HS⊕.

Proof. As a special case of (4.4.6) (when x = y),∫
Y

|〈x(p),Γ(p)〉|2 dν =

∫
Y

〈x(p),Γ(p)〉〈Γ(p), x(p)〉 dν

≤
∫
Y

‖x(p)‖2 dν = ‖x‖2 <∞.
(4.4.7)

The calculation above thus shows that p 7→ 〈x(p),Γ(p)〉 belongs to L2(ν) and therefore,
as L2(ν)Γ = [ϕ(S)Γ] (Proposition 4.4.4), Qx ∈ [ϕ(S)Γ].

Proposition 4.4.7. We continue from Proposition 4.4.6. The operator Q is a projec-
tion.

Proof. We check the following:

(i) For all x ∈ [ϕ(S)Γ], Qx = x.

(ii) For all x ∈ HS⊕, Q
2x = x.

(iii) For all x ∈ HS⊕, Q
∗x = Qx.

Let x ∈ [ϕ(S)Γ]. There is an f ∈ L2(ν) such that x = fΓ using Proposition 4.4.4.
Then, for almost all p ∈ Y,

(Qx)(p) = 〈x(p),Γ(p)〉Γ(p) = 〈f(p)Γ(p),Γ(p)〉Γ(p) = f(p) ‖Γ(p)‖2 Γ(p) = f(p)Γ(p).

Thus Qx = x, because ‖Qx− x‖2 =
∫
Y
‖f(p)Γ(p)− f(p)Γ(p)‖2 dν = 0. Hence, com-

bining this with Proposition 4.4.6, the range of Q is [ϕ(S)Γ].
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If x ∈ HS⊕, then

(Q2x)(p) = (QQx)(p) = 〈(Qx)(p),Γ(p)〉Γ(p) = 〈〈x(p),Γ(p)〉Γ(p),Γ(p)〉Γ(p)

= 〈x(p),Γ(p)〉 ‖Γ(p)‖2 Γ(p)

= (Qx)(p).

Lastly, from [KR97b] Proposition 14.1.8, Q has its adjoint given by (Q∗x)(p) =
Q(p)∗x(p) a.e. So, for almost all p ∈ Y, for all s, t ∈ Hp,

〈(Q∗)(p)s, t〉 = 〈s,Q(p)t〉 = 〈s, 〈t,Γ(p)〉Γ(p)〉
= 〈t,Γ(p)〉〈s,Γ(p)〉
= 〈s,Γ(p)〉〈Γ(p), t〉 = 〈〈s,Γ(p)〉Γ(p), t〉
= 〈Q(p)s, t〉.

So, for all x, y ∈ HS⊕,

〈Qx, y〉 =

∫
Y

〈Q(p)x(p), y(p)〉 dν =

∫
Y

〈Q∗(p)x(p), y(p)〉 dν = 〈Q∗x, y〉.

Proposition 4.4.8. We assume the notation of Proposition 4.3.3 and recall that eS
is the Jones projection (see the paragraph before Definition 4.4.1). Then, the operator
ϕ(eS) := ΦeSΦ−1 is a projection onto [ϕ(S)Γ]. Hence, Q, defined in Definition 4.4.1,
satisfies Q = ϕ(eS), that is, for all x ∈ HS⊕,

(4.4.8) (ϕ(eS)x)(p) = 〈x(p),Γ(p)〉Γ(p) for almost all p ∈ Y.

Proof. From a similar calculation to (4.2.1), Φ(SΩ) = ϕ(S)Γ. In a similar manner to
the proof of Proposition 4.3.5, we have Φ([SΩ]) = [Φ(SΩ)] and therefore,

Φ([SΩ]) = [Φ(SΩ)] = [ϕ(S)Γ].

We now study the effect the decomposition of the Jones projection has on the
elements in ϕ(R). The subsequent results Corollary 4.4.9 and Proposition 4.4.10 will
be used in the decomposition of the basic construction in §4.5.

Corollary 4.4.9. We use the assumptions and notation in Proposition 4.3.3 and recall
that eS is the Jones projection (see the paragraph before Definition 4.4.1). Then, for
every a, b ∈ R, ϕ(aeSb) := ΦaeSbΦ

−1 is a decomposable operator. Furthermore, for
almost every p and every x ∈ H′p,

[ϕ(aeSb)(p)]x = 〈ϕ(b)(p)x,Γ(p)〉ϕ(a)(p)Γ(p).
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Proof. The operators ϕ(a) and ϕ(b) are decomposable using Proposition 4.3.3. We see
that ϕ(eS) is a decomposable operator by defining, for almost all p, ϕ(eS)(p) ∈ B(H′p)
using the right hand side of (4.4.8): for every x ∈ H′p,

ϕ(eS)(p)x := 〈x,Γ(p)〉Γ(p).

Thus, writing

ϕ(aeSb) = ΦaΦ−1ΦeSΦ−1ΦbΦ−1 = ϕ(a)ϕ(eS)ϕ(b),

we see that ϕ(aeSb) is decomposable ([KR97b] Proposition 14.1.8). For all b ∈ R, for
almost all p ∈ Y and for all x ∈ H′p, using the expression for ϕ(eS) in Proposition 4.4.8,
since [ϕ(eS)ϕ(b)](p) = ϕ(eS)ϕ(b)(p) a.e. ([KR97b] Proposition 14.1.8 (ii)), we have

[ϕ(eS)ϕ(b)](p)x = ϕ(eS)(p)ϕ(b)(p)x = 〈ϕ(b)(p)x,Γ(p)〉Γ(p).

Thus,

[ϕ(aeSb)(p)]x = ϕ(a)(p)〈ϕ(b)(p)x,Γ(p)〉Γ(p) = 〈ϕ(b)(p)x,Γ(p)〉ϕ(a)(p)Γ(p).

We make an observation that will be useful in the following result. Let {ei} be an
orthonormal basis for a finite k-dimensional Hilbert space H. Let v, w ∈ H.

k∑
i=1

〈v, ei〉〈ei, w〉 =
k∑
i=1

〈〈v, ei〉ei, w〉

=

〈
k∑
i=1

〈v, ei〉ei, w

〉
.

(4.4.9)

However, v =
∑k

i=1〈v, ei〉ei, so

(4.4.10)
k∑
i=1

〈v, ei〉〈ei, w〉 = 〈v, w〉.

Similarly, if H is separable and infinite dimensional, let (xi) be a total orthonormal
sequence for H. As before, let v and w belong to H. From the proof of Theorem 3.6-3
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[Kre78], write v =
∑∞

i=1〈v, ei〉ei. Hence,

∞∑
i=1

〈v, ei〉〈ei, w〉 = lim
k→∞

k∑
i=1

〈v, ei〉〈ei, w〉

= lim
k→∞

〈
k∑
i=1

〈v, ei〉ei, w

〉

=

〈
lim
k→∞

k∑
i=1

〈v, ei〉ei, w

〉

=

〈
∞∑
i=1

〈v, ei〉ei, w

〉
= 〈v, w〉.

(4.4.11)

Proposition 4.4.10. With the assumptions of Proposition 4.3.3, for any p ∈ Y, con-
sider H′p, a Hilbert space fibre in the direct integral HS⊕ =

∫ ⊕
Y
H′p dν. Let tr denote the

canonical trace on B(H′p) (see for instance [Mur90] §2.4). Then, for all a, b ∈ R and
for almost all p ∈ Y,

tr(ϕ(aeSb))(p)) = 〈ϕ(a)(p)Γ(p), ϕ(b∗)(p)Γ(p)〉.

Proof. Let (xn) be a total orthonormal set in H′p, if dim(H′p) = ∞, or a sequence
consisting of an orthonormal basis followed by 0’s if dim(H′p) <∞. From [Mur90] §2.4
and Corollary 4.4.9,

tr(ϕ(aeSb))(p)) =
∞∑
n=1

〈ϕ(aeSb))(p)xn, xn〉

=
∞∑
n=1

〈〈ϕ(b)(p)xn,Γ(p)〉ϕ(a)(p)Γ(p), xn〉

=
∞∑
n=1

〈ϕ(b)(p)xn,Γ(p)〉〈ϕ(a)(p)Γ(p), xn〉

=
∞∑
n=1

〈ϕ(a)(p)Γ(p), xn〉〈xn, ϕ(b)∗(p)Γ(p)〉

= 〈ϕ(a)(p)Γ(p), ϕ(b)∗(p)Γ(p)〉 = 〈ϕ(a)(p)Γ(p), ϕ(b∗)(p)Γ(p)〉

using (4.4.10) or (4.4.11), depending on whether H′p has finite or infinite dimension.
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4.5 Decomposing the Basic Construction and the

Finite Lifted Trace

We now strengthen our assumptions: we require a trace τ in place of a state ρ. This
is in order to ensure that the modular conjugation operator J from §1.4 is continuous.

The following result lays the foundation for us to show that the basic construction
〈M, eN 〉 (§1.6) is decomposable.

Proposition 4.5.1. Recall that M is a finite von Neumann algebra with a faithful
normal trace τ represented on its GNS space Hτ and that N is a von Neumann subal-
gebra of M with trace τ |N . Thus, the results of the previous three sections apply with
R replaced with M and S replaced with N , respectively. Suppose further that N is
central. Then, for all n ∈ N , Jn∗J = n, and N = JNJ.

Proof. Let n ∈ N and m ∈M. Then,

Jn∗JmΩ = Jn∗m∗Ω = J(mn)∗Ω = (mn)Ω = nmΩ,

as n ∈M′. Hence, Jn∗J = n. Thus, JNJ = N .

Proposition 4.5.2. We use the assumptions and notation in Proposition 4.5.1. From
Proposition 4.3.3, with N replacing S, let Φ be the unitary such that ϕ(N ) := ΦNΦ−1

is the von Neumann algebra of all diagonalisable operators on the direct integral HN⊕ =∫ ⊕
Y
H′p dν with domain of integration (Y,Σ, ν). Recall that 〈M, eN 〉 denotes the basic

construction (§1.6). Then ϕ(〈M, eN 〉) := Φ〈M, eN 〉Φ−1 is a decomposable von Neu-
mann algebra and ϕ(〈M, eN 〉) = ϕ(N )′ is the von Neumann algebra of all decomposable
operators.

Proof. As ϕ(N ) is the von Neumann algebra of all diagonalisable operators, from
Proposition 4.2.2 (with the role of S replaced here by N ), ϕ(N )′ is the von Neumann
algebra of all decomposable operators (Theorem 4.1.8). From Proposition 1.6.2 (c), we
have (JNJ)′ = 〈M, eN 〉. Using Proposition 4.5.1, we have N ′ = 〈M, eN 〉. Hence, from
Proposition 4.3.2:

(4.5.1) ϕ(N )′ = ϕ(N ′) = ϕ(〈M, eN 〉).

As ϕ(〈M, eN 〉) is a von Neumann algebra of decomposable operators, it is a decom-
posable von Neumann algebra (Proposition 4.1.11).

Proposition 4.5.3. We use the notation and assumptions from Proposition 4.5.2.
Recall that τ is the finite lifted trace of the basic construction 〈M, eN 〉 (after Remark
1.6.3). Then, using Proposition 4.4.10, we have for all a, b ∈M,

τ(aeN b) =

∫
Y

tr(ϕ(aeN b)(p)) dν.
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Proof. We have from (1.6.1) and the tracial property of τ , τ(aeN b) = τ(ab) = τ(ba) =
τ(b∗∗a). So,

τ(aeN b) = 〈aΩ, b∗Ω〉 = 〈ϕ(a)Γ, ϕ(b∗)Γ〉

=

∫
Y

〈ϕ(a)(p)Γ(p), ϕ(b∗)(p)Γ(p)〉 dν

=

∫
Y

tr(ϕ(aeSb))(p)) dν.

We used Proposition 4.4.10 for the last equality.

Proposition 4.5.4. We use the notation and assumptions in Propositions 4.5.1, 4.5.2
and 4.5.3. For all a ∈ 〈M, eN 〉+,

τ(a) =

∫
Y

tr(ϕ(a)(p)) dν.

Proof. Consider the following function Ξ : 〈M, eN 〉+ → [0,∞] :

(4.5.2) Ξ(a) :=

∫
Y

tr(ϕ(a)(p)) dν.

We shall see shortly, that Ξ is well-defined. Note that we can extend the domain of Ξ
to also include MeN , the set of all linear combinations of aeN b (see also Proposition
4.5.3). We show that Ξ is a weight on 〈M, eN 〉 such that Ξ = τ on MeN . To show
that Ξ is normal we show that it is the (possibly infinite) sum of positive normal linear
functionals on 〈M, eN 〉 ([SS08] pp. 56-57). It will then follow from Theorem 2.3.4 that
Ξ = τ on 〈M, eN 〉+.

From [Dix81] Proposition 1 Ch 1 Part II, there exists a countable set of vectors {xn}
contained in HN⊕ , such that for almost all p ∈ Y, the non-zero elements of {xn(p)} form
an orthonormal basis for H′p. This allows us to express the function p 7→ tr(ϕ(a)(p))
almost everywhere as

(4.5.3) p 7→
∞∑
n=1

〈ϕ(a)(p)xn(p), xn(p)〉.

As 〈ϕ(a)(p)xn, xn〉 ≥ 0, for each t ∈ N, p 7→
∑t

n=1〈ϕ(a)(p)xn(p), xn(p)〉 is an element
in a monotone increasing sequence (in t). Moreover p 7→ 〈ϕ(a)(p)xn(p), xn(p)〉 is mea-
surable for every a and xn and therefore (4.5.3) is a measurable function, being the
pointwise limit of a sequence of increasing measurable functions ([Rud87] Theorem
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1.14). In particular, Ξ is well-defined. Thus, the monotone convergence theorem yields

Ξ(a) =

∫
Y

∞∑
n=1

〈ϕ(a)(p)xn(p), xn(p)〉 dν =
∞∑
n=1

∫
Y

〈ϕ(a)(p)xn(p), xn(p)〉 dν

=
∞∑
n=1

〈ϕ(a)xn, xn〉.

Using Proposition 4.3.4, 〈ϕ(a)xn, xn〉 is normal for each n ∈ N. Thus Ξ is the sum of
positive normal linear functionals.

It is easy to check that Ξ is a weight. We use [KR97b] Theorem 14.1.8. For every
u,w ∈ ϕ(〈M, eN 〉), with the convention that ∞+∞ =∞ :

Ξ(u+ w) =

∫
Y

tr(u(p) + w(p)) dν =

∫
Y

tr(u(p)) + tr(w(p)) dν

=

∫
Y

tr(u(p)) dν +

∫
Y

tr(w(p)) dν = Ξ(u) + Ξ(w).

and for k > 0,

Ξ(ku) =

∫
Y

tr(ku(p)) dν =

∫
Y

ktr(u(p)) dν = k

∫
Y

tr(u(p)) dν = kΞ(u).

Lastly, we recall, from Proposition 4.5.3, that for all a, b ∈M,

Ξ(aeN b) = τ(aeN b),

so Ξ|MeN
= τ |MeN

. From our remarks after (4.5.2), we have shown that τ(a) =∫
Y

tr(a(p)) dν for all positive a ∈ 〈M, eN 〉.

4.6 Decomposing the Range of Finite Lifted

Projections

We first show sufficient conditions for a closed subspace of H⊕ to be a direct integral
of Hilbert spaces.

Proposition 4.6.1. Let G be a closed subspace of a direct integral H⊕ =
∫
X
Hp dµ

over (X,Σ, µ). Suppose there is a decomposable projection P on H⊕ with range G.
Then G =

∫ ⊕
Y
P (p)(Hp) dµ.

Proof. We use Definition 4.1.1 and Remark 4.1.2. The assumption of P being decom-
posable means that for almost all p ∈ Y, P (p) is a projection ([KR97b] Lemma 14.1.20).
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So, for almost all p, Gp := P (p)Hp is a closed subspace. For convenience, for those
values of p for which P (p) is not a projection, set Gp = {0}. We also note that for
every x ∈ G, there is an w ∈ H⊕ such that Pw = x and therefore x(p) ∈ P (p)Hp, a.e.

The measurability and integrability conditions on p 7→ 〈x(p), y(p)〉 for every y ∈ G
are trivially satisfied because G ⊆ H⊕.

For every p ∈ X, up ∈ Gp, suppose that

(4.6.1) p 7→ 〈up, y(p)〉

is µ-integrable for every y ∈ G. Consider, any x ∈ HS⊕. Then, for almost all p,

〈up, x(p)〉 = 〈P (p)up, x(p)〉 = 〈up, P (p)x(p)〉
= 〈up, (Px)(p)〉,

which is µ-integrable by (4.6.1). Hence, from Definition 4.1.1, there is a u ∈ HS⊕ such
that

u(p) = up,

for almost all p. So,

(Pu)(p) = P (p)u(p) = P (p)up = up = u(p) almost everywhere

=⇒ ‖Pu− u‖2 =

∫
Y

‖(Pu)(p)− u(p)‖2 dµ = 0

=⇒ u = Pu ∈ G.

Proposition 4.6.2. We use the notation and assumptions in Propositions 4.5.1, 4.5.2
and 4.5.3. Suppose that P ∈ 〈M, eN 〉, so that ϕ(P ) is a decomposable operator in
ϕ(〈M, eN 〉) (Proposition 4.5.2). Then

τ(P ) =

∫
Y

dim(ϕ(P )(p)H′p) dν,

where dim(G) is the Hilbert space dimension of the Hilbert space G.

Proof. Theorem 4.5.4 yields

τ(P ) =

∫
Y

tr(ϕ(P )(p)) dν.

As remarked in the proof of Proposition 4.6.1, we have that for almost every p, ϕ(P )(p)
is a projection. Hence, from [Dix81] Theorem 5 Chapter 6 Part I, tr(ϕ(P )(p)) =
dim(ϕ(P )(p)H′p) almost everywhere.
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Let us apply the two results above to the PV mentioned in the statement of Lemma
4.0.2. As PV ∈ 〈M, eN 〉, ϕ(PV ) is decomposable (Proposition 4.5.2). Applying Propo-
sition 4.6.1 to ΦV, we have

(4.6.2) L := ΦV =

∫ ⊕
Y

Lp dν,

where Lp = ϕ(PV )(p)(H′p). We have from Proposition 4.6.2,

(4.6.3) τ(PV ) =

∫
Y

dim(Lp) dν.

Corollary 4.6.3. Continuing with the notation and assumptions of Proposition 4.6.2,
PV is of finite lifted trace if and only if the map p 7→ dim(Lp) in (4.6.3) is ν-integrable.

Definition 4.6.4. Let k ∈ {0}∪N∪{∞}. Consider the map p 7→ dim(Lp) from (4.6.3).
Let

Xk := {p ∈ Y | dim(Lp) = k},
and

X≤k := {p ∈ Y | dim(Lp) ≤ k}.
Analogously, define X≤k, X≥k etc.

We remark that Xk (and therefore X≤k) are measurable sets, using similar argu-
ments to [KR97b] Remark 14.1.5.

Proposition 4.6.5. We use the notation from Corollary 4.6.3 and Definition 4.6.4.
For every ε > 0, there exists a sufficiently large r ∈ N such that∫

X>r

dim(Lp) dν < ε.

Proof. For convenience denote by f : Y 7→ N ∪ {∞} the map p 7→ dim(Lp). For each
n ∈ {0} ∪ N ∪ {∞}, let

fn := χXnf .

Now consider X := ∪∞n=0Xn (that is, the union of all the Xn’s except X∞) and the
function

g := χXf.

As τ(PV ) =
∫
Y
f dν <∞, we have that ν(Y \X) = 0. Thus,

∫
Y
g dν =

∫
Y
f dν.

Note that (fn) is an monotonically increasing sequence with limit function g. Thus,
the monotone convergence theorem implies that

lim
n

∫
fn dν =

∫
Y

g dν.
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In other words, for every ε > 0, there exists an N ∈ N such that if N < r <∞ then

ε >

∫
Y

f dν −
∫
Y

fr dν =

∫
Y \Xr

f dν =

∫
X>r

dim(Lp) dν.

4.7 Decomposing the Dynamics

We now wish to represent the dynamics Uα : Hτ → Hτ (see Chapter 2 §2.2) on the
Hilbert space HN⊕ .

Roughly speaking, given a vector (p 7→ x(p)) ∈ HN⊕ , the dynamics may permute
values p whose corresponding Hilbert space fibres are of the same dimension, before
modifying each value x(p). This is where Remark 4.1.5 is used in order to ensure that
ΦUαΦ−1(p) is well-defined on each fibre H′p.

We wish to set up a ∗-isomorphism between N and L∞(ν). Note that the map

(4.7.1) ϑ : L∞(ν) 3 f 7→Mf ∈ ϕ(N )

is a ∗-isomorphism. Recall that we have assumed that the ∗-automorphism α on M
when restricted to N is a ∗-automorphism of N . Define A : L∞(ν) → L∞(ν) by the
prescription

(4.7.2) A(f) = ϑ−1 ◦ ϕ ◦ α ◦ ϕ−1 ◦ ϑ(f) f ∈ L∞(ν).

In order to describe A as accurately as possible, we shall need the following defini-
tion. Note that we have specialised the definition to L∞(ν).

Definition 4.7.1 ([MS93] Example 2.1.10). Let (X,Σ, ν) be a measure space and
Z ⊆ X a measurable subset. Let T : Z → X be a measurable transformation. Define,
for each f ∈ L∞(µ),

(4.7.3) CT (f)(x) :=

{
f ◦ T (x) if x ∈ Z
0 otherwise.

If CT is continuous on L∞(µ), we say that CT is a generalised composition opera-
tor. When Z = X, then we just speak of CT being a composition operator.

The following proposition is the consequence of results from descriptive set theory
([MS93] Corollary 2.1.14).

Proposition 4.7.2. The linear operator A in (4.7.2) is a composition operator CS for
some ν-preserving measurable map S : Y → Y.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 4. FINITE RANK APPROXIMATION 64

Proof. Note that, because ϑ, φ, and α have inverses, that A is a ∗-isomorphism and
therefore, in particular, A(fg) = A(f)A(g) for f, g ∈ L∞(ν). As Y is a completely
separable metrizable space (i.e Y is a Polish space) (Theorem 4.2.1) we have that A
is a generalised composition operator CS for some measurable mapping S : D(S) ⊆
Y → Y ([MS93] Corollary 2.1.14). Furthermore, A is injective and A{χK | K ∈ Ψ} ⊆
{χK | K ∈ Ψ}. It follows from the remarks after [MS93] Corollary 2.1.14 that A is a
composition operator.

Moreover, S preserves the measure ν. Indeed, from Equation 4.7.2, we have for
every f ∈ L∞(ν),

A(f) = ϑ−1ϕαϕ−1ϑ(f)

f ◦ S = ϑ−1ϕαϕ−1ϑ(f)

ϕ−1ϑ(f ◦ S) = αϕ−1ϑ(f)(4.7.4)

Recall that τ ◦ α = τ, and so using ω from Proposition 4.3.6, as well as (4.7.4), we
compute,

(4.7.5) ω(ϑ(f ◦ S)) = τ ◦ ϕ−1ϑ(f ◦ S) = ταϕ−1ϑ(f) = τ ◦ ϕ−1ϑ(f) = ω(ϑ(f)).

Now, Proposition 4.3.6 gives ω(Mf ) = 〈MfΓ,Γ〉 for all f ∈ L∞(ν), and therefore,

ω(ϑ(f)) = ω(Mf ) = 〈MfΓ,Γ〉

=

∫
Y

〈f(p)Γ(p),Γ(p)〉 dν =

∫
Y

f(p) ‖Γ(p)‖2 dν

=

∫
Y

f(p) dν.

Therefore, for any K ∈ Ψ, using (4.7.5) (with f replaced by χK),∫
χK ◦ S dν =

∫
χK dν,

and so, it follows that ν(S−1(K)) = ν(K), i.e. S is ν-preserving.

The operator CS : L∞(ν)→ L∞(ν) is invertible, since A is. Define

(4.7.6) CS : L2(ν)→ L2(ν) : f 7→ f ◦ S

Note, using the “four step process”, that∥∥CSf
∥∥2

=

∫
Y

|f ◦ S|2 dν =

∫
Y

|f |2 d(ν ◦ S−1)

=

∫
Y

|f |2 dν = ‖f‖2 .

(4.7.7)
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Furthermore, CS is surjective. Indeed, for any g ∈ L2(ν), let (gn) be a sequence in
L∞(ν) such that g = limn gn. Thus, there is a sequence (fn) in L∞(ν) such that for all
n ∈ N,

CS(fn) = gn.

Since CS is isometric, and (gn) is Cauchy, it follows that (fn) is Cauchy in L2(ν). Let
f = limn fn. Therefore,

CS(f) = lim
n
CS(fn) = lim

n
gn = g.

So, CS is bijective. From [MS93] Theorem 2.2.14, S is invertible. We now ensure that
S preserves the sets Yn from Definition 4.7.5.

We single out a special case of Proposition 4.6.1.

Definition 4.7.3. We use the notation in Proposition 4.5.2. Recall that (Y,Ψ, ν) is the
probability measure space serving as the domain of integration for the direct integral
Hilbert space HN⊕ =

∫
Y
H′p dν. Let K ∈ Ψ and consider MK := MχK the diagonalisable

projection corresponding to K. Define, using Proposition 4.6.1 (with P = MK),∫ ⊕
K

H′p dν := MK(HN⊕ ) =

∫
Y

MK(p)H′p dν.

Remark 4.7.4. We use the notation of Definition 4.7.3 above.
Note that

∫ ⊕
K
H′p dν is a ϕ(N )-submodule. Indeed, for every element in ϕ(N ) there

is a corresponding diagonalisable operator Mf for some f ∈ L∞(ν). Proposition 14.1.8
[KR97b] ensures that MfMK is decomposable and hence,

(MfMKx)(p) =

{
f(p)x(p) if p ∈ K
0 otherwise.

Thus, MfMKx ∈
∫ ⊕
K
H′p dν.

Definition 4.7.5. Let k ∈ N. Consider the direct integral HN⊕ =
∫ ⊕
Y
H′p dν from

Proposition 4.5.2. Let
Yk := {p ∈ Y | dim(H′p) = k},

and
Y>k := {p ∈ Y | dim(H′p) > k}.

In the proof of Propositions 4.7.6 and 4.7.8, we deviate from the idea of a proof
outlined at the bottom of p. 33 [AET11].
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Proposition 4.7.6. We continue from Remark 4.7.4. Let S be the map obtained
in Proposition 4.7.2. Then, for n ∈ N ∪ {∞}, with Yn defined in Definition 4.7.5,
SYn = Yn, up to a set of measure zero.

Proof. Let n ∈ N ∪ {∞} be arbitrary. Let K ∈ Ψ satisfy K ⊆ Yn. Put MK = MχK ∈
ϕ(N ) ⊆ ϕ(〈M, eN 〉). Then MK satisfies the hypotheses of Proposition 4.6.2. Hence,

τ(ϕ−1(MK)) =

∫
Y

dim(MK(p)H′p) dν

=

∫
K

dim(MK(p)H′p) dν +

∫
Y \K

dim(MK(p)H′p) dν

=

∫
K

dim(H′p) dν + 0

=

∫
K

n dν = nν(K).

(4.7.8)

On the other hand, as τ is α-invariant,

(4.7.9)

τ(ϕ−1(MK)) = τ(α(ϕ−1(MK)))

= τ(α(ϕ−1(MK))) as α = α on N
= τ(ϕ−1(MχK◦S)) from (4.7.4)

=

∫
S−1(K)

dim(H′p) dν.

In particular, for K = Yn, the above equations (4.7.8) and (4.7.9) give us

nν(Yn) =

∫
S−1(Yn)

dim(Hp) dν.

Consider ν(Yn∆S−1(Yn)), where for sets A and B, A∆B is the symmetric differ-
ence A∆B := (A\B) ∪ (B\A). To prove Proposition 4.7.6 we will need to show that
ν(Yn∆S−1(Yn)) = 0.

If ν(Yn∆S−1(Yn)) > 0, then as the Yn’s partition Y, there is some j 6= n, such that
ν(Yj ∩ S−1(Yn)) > 0. Consider, in place of K in (4.7.8) and (4.7.9),

Kj = S(Yj ∩ S−1(Yn)) ⊆ Yn,

and note that ν(Kj) = ν(S−1(Kj)) = ν(Yj ∩ S−1(Yn)) > 0. We have

(4.7.10) τ(ϕ−1(MKj)) = nν(Kj),

and, since S−1(Kj) ⊆ Yj,

(4.7.11) τ(ϕ−1(MKj)) =

∫
S−1(Kj)

dim(Hp) dν = jν(S−1(Kj)) = jν(Kj),
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due to S being ν-preserving (Theorem 4.7.2). Thus n = j, a contradiction. So,
ν(Yn∆S−1(Yn)) = 0.

Remark 4.7.7. We make some remarks that will be used in Proposition 4.7.8 below.
We use the notation from Proposition 4.7.6 and its proof. Let K ∈ Ψ and put M =
MχK . Observe that

(4.7.12) ϕ(PV )M = Mϕ(PV ),

because ϕ(〈M, eN 〉) = ϕ(N )′ (see (4.5.1)).
Now, using (4.7.12), note that Mϕ(PV ) is a projection:

(Mϕ(PV ))2 = Mϕ(PV )Mϕ(PV ) = Mϕ(PV )ϕ(PV )M

= Mϕ(PV )M = M2ϕ(PV ) = Mϕ(PV ),

and,

(Mϕ(PV ))∗ = ϕ(PV )∗M∗ = ϕ(PV )M = Mϕ(PV ).

We define some notation, similar to Definition 4.7.5, that will be useful in the next
result (Proposition 4.7.8) and the rest of the chapter.

Proposition 4.7.8. We continue from Remark 4.7.7. The map g : Y 3 p 7→ dim(Lp) ∈
N ∪ {∞}, where the Lp are obtained in (4.6.2), is preserved by S i.e. g ◦ S = g a.e.

Proof. We wish to employ the same technique as in the last proposition’s proof, but
require some modification as it is not necessarily true that PV ∈ N .

Take any set K ∈ Ψ. Put MK := MχK ∈ ϕ(N ). We have that ϕ(PV )MK =
MKϕ(PV ) (Remark 4.7.7). On the other hand, in a similar manner to Definition 4.7.3,
MKϕ(PV ) =

∫
K
Lp dν. Hence, in a similar way to (4.6.3) (ϕ(PV ) = PL replaced by

MKPL = PLK , where LK =
∫ ⊕
Y
Lp dν as in Definition 4.7.3),

τ(ϕ−1(MK)PV ) =

∫
K

dim(Lp) dν.

The α-invariance of τ enables us to write,

τ(PV ϕ
−1(MK)) = τ(α(PV ϕ

−1(MK))) = τ(PV ϕ
−1(MS−1(K))) =

∫
S−1(K)

dim(Lp) dν,

since α(PV ) = PV (as seen at the end of Lemma 3.0.3’s proof at the end of §3.6).
Define, for each n ∈ {0} ∪ N ∪ {∞}, Xn := {p ∈ Y | dim(Lp) = n}. The Xn’s are

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 4. FINITE RANK APPROXIMATION 68

measurable, as mentioned in Definition 4.6.4. In a similar manner to what was done
before in Proposition 4.7.6, ν(Xn∆S−1(Xn)) = 0. So, S preserves the Xn (up to a set
of measure zero) and we have, for almost all p,

(4.7.13) g ◦ S|Xn = g|Xn ◦ S|Xn = g|Xn .

As the Xn’s form a partition of Y, we have g ◦ S = g a.e.

We now transfer Uα the action acting on Hτ onto HN⊕ .

Definition 4.7.9. We continue from Proposition 4.7.8. Recall that HN⊕ is the Hilbert
space, Φ is the unitary and ϕ the map all mentioned in Proposition 4.5.2. Consider Uα
and α from §2.4. Define the map Uβ : HN⊕ → HN⊕ by the prescription

Uβ := ΦUαΦ−1,

Define β : ϕ(〈M, eN 〉)→ ϕ(〈M, eN 〉), by the prescription

β := ϕ ◦ α ◦ ϕ−1.

It is clear that Uβ is a unitary operator and, comparing the definition of β with
that of α in (2.3.1) and the results thereafter, that β is a ∗-isomorphism.

Remark 4.7.10. The fact that Φ is a unitary allows us to transfer many properties of
the dynamics to the direct integral framework. For instance, a closed subspace W ⊆ Hτ

is Uα-invariant if and only if Φ(W ) is Uβ-invariant. Indeed, for all x ∈ W,

Uαx ∈ W ⇐⇒ ΦUαΦ−1Φx ∈ Φ(W ) ⇐⇒ UβΦ(x) ∈ Φ(W ).

We require in Proposition 4.7.11 that the Hilbert space fibres of the same dimension
are identified as the same Hilbert space (Remark 4.1.5).

Proposition 4.7.11. With the notation of Proposition 4.5.2, we continue from Def-
inition 4.7.9. Let S be the function obtained in Proposition 4.7.2. There exists a
measurable section of unitary operators p 7→ Υ(p) such that for all x ∈ HN⊕ ,

(Uβx)(p) = Υ(p)(x(Sp)).
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Proof. For every diagonalisable operator Mf ∈ ϕ(N ), recalling that α agrees with α
on N (compare (2.2.7) and (2.3.1)), we use (4.7.4) (with ϑ(f) = Mf ) to see that,

β(Mf ) = Φα(ϕ−1(Mf ))Φ
−1 = Φα(ϕ−1(Mf ))Φ

−1

= Φϕ−1(Mf◦S)Φ−1 = Mf◦S.

Hence, for every x ∈ HN⊕ ,

(β(Mf )x)(p) = (Mf◦Sx)(p) = (f ◦ S)(p)x(p).

Therefore, replacing p with S−1p above:

(4.7.14) (β(Mf )x)(S−1p) = f(p)x(S−1p) ∈ HS−1p.

Define F : HN⊕ → HN⊕ , by the prescription (Fx)(p) = x(Sp). For now assume that F
is a well-defined decomposable unitary operator on HN⊕ , with Hilbert adjoint F ∗ given
by (F ∗x)(p) = x(S−1p). Using (4.7.14),

(F ∗β(Mf )x)(p) = (β(Mf )x)(S−1p) = f(p)x(S−1p) = f(p)(F ∗x)(p) = (MfF
∗x)(p)

and we have β(Mf ) = FMfF
∗. In other words, Mf = F ∗UβMf (F

∗Uβ)∗. Let Υ := F ∗Uβ.
Then Υ is a decomposable operator (Theorem 4.1.8), since ΥMf = MfΥ. Thus,

(Uβx)(p) = (FΥx)(p) = Υ(p)x(Sp).

We return to the assertions made about F and show that it is a decomposable
unitary operator. We check that for every x ∈ HN⊕ there is a vector in HN⊕ corresponding
to p 7→ x(Sp). First,

(Fx)(p) = x(Sp) ∈ H′Sp = Hp,

by Proposition 4.7.6 and Remark 4.1.5. Next, we check that Fx has suitable measur-
ability properties. We use [Nie80]’s formulation of direct integrals to do this. From
[Nie80] p. 15, p 7→ x(p) is measurable in the usual sense as a Y → HN⊕ function. Thus,
by Proposition 4.7.2, and considering the composition of measurable maps,

p 7→ Sp 7→ x(Sp),

we see that the map p 7→ x(Sp) is a measurable map.
In a similar manner to (4.7.7),∫

Y

‖x(Sp)‖2 dν =

∫
Y

‖x(p)‖2 d(ν ◦ S−1)

=

∫
Y

‖x(p)‖2 dν <∞.
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Thus, p 7→ ‖x(Sp)‖ is square-integrable. So there is a vector v ∈ HN⊕ such that
v(p) = x(Sp) for almost all p ([Nie80] p.15) and hence, F is decomposable.

To see that F is unitary, we check that F is an isometry and surjective. For the
isometry part, note that because S is ν-preserving. the four step process yields,

‖x‖2 =

∫
Y

‖x(p)‖2 dν =

∫
Y

‖x(S(p))‖2 dν = ‖Fx‖2 .

For the surjectivity, note that as above one can show that there is an operator G on
H−1 such that (Gx)(p) = x(S−1p). Thus, for any x ∈ HN⊕ we have a vector Gx ∈ HN⊕
such that FGx(p) = x(p). Finally, we note that F ∗ = G as (GFx)(p) = x(p) for all
x ∈ HN⊕ .

Remark 4.7.12. If S is the identity on Y, then CS = idL∞(ν) and therefore, using
(4.7.2), we have that β is the identity on ϕ(N ). Thus, Uβϕ(n)U∗β = ϕ(n) for every
n ∈ N and so Uβ ∈ ϕ(N )′ = ϕ(〈M, eN 〉). Thus, Uβ is a decomposable operator
(Proposition 4.5.2). Reversing our argument, we have that S is the identity on Y if Uβ
is a decomposable operator.

4.8 Finite Rank Modules

We now define L≤r, which is the direct integral representation of our V1 (a fact which
we single out explicitly in Proposition 4.8.6 below). Note that Remark 4.7.7 applies
here.

Definition 4.8.1. Consider the direct integral L =
∫ ⊕
Y
Lp dν from (4.6.2). Let PV ∈

〈M, eN 〉 be a projection of finite lifted trace. Let M≤r be the diagonalisable projection
corresponding to X≤r (Definition 4.6.4) i.e. M≤r := MχX≤r

. Define

L≤r := M≤rL.

Remark 4.8.2. We now show that

(4.8.1) L≤r = I :=

∫ ⊕
X≤r

Lp dν ⊕
∫ ⊕
X>r

{0} dν,

where we have used the notation from Definition 4.6.4.
This direct integral, I, is well-defined by Proposition 4.6.1, with projection P :=

M≤rϕ(PV ). The projection P is indeed decomposable, since ϕ(PV ) is decomposable by
Proposition 1.7.1 and Proposition 4.5.2, and so P (p) = χX≤r(p)ϕ(PV )(p). Note that

(4.8.2) P (p)H′p =

{
Lp for p ∈ X≤r
{0} for p ∈ Y \X≤r = X>r,
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and this explains the notation on the most right-hand side of (4.8.1). Furthermore,
Proposition 4.6.1 gives

I = PHN⊕ = M≤rϕ(PV )HN⊕

= M≤rΦPV Φ−1HN⊕ = M≤rΦPVHτ = M≤rΦV = M≤rL,

using (4.6.2).

In order to construct the right-N -basis of Lemma 4.0.2, we will have to modify
the proof technique found in [Gla03] Lemmas 9.3 and 9.4. The aforementioned result
requires some terminology, which we present now.

Definition 4.8.3. Let (X,X , µ) be a probability measure space. We call a collection
H ⊆ X hereditary when for every A ∈ H and every subset B ∈ X of A we have that
B also belongs to H. We say that a hereditary collection H saturates X if for every
A ∈ X with µ(A) > 0, there exists B ∈ H with B ⊆ A and µ(B) > 0.

Lemma 4.8.4 ([Gla03] Lemma 3.17). If H is a hereditary collection which saturates
X , then there exists a countable measurable partition {Ai : i ∈ N}, of X, with Ai ∈ H
for every i.

Proposition 4.8.5. We continue to use the notation and assumptions from Defini-
tions 4.5.1 and 4.5.2. Consider L≤r from Definition 4.8.1. Then, there is a set of

r vectors {ζi} such that L≤r =
∑r

i=1 ζiϕ(N ) (so that L≤r is a right-ϕ(N )-submodule
of finite rank at most r). The ζi are mutually orthogonal. The non-zero elements of
{ζ1(p), ζ2(p), . . . , ζr(p)} form an orthonormal basis for Lp for almost every p ∈ X≤r.

Proof. Let X = {p ∈ X≤r | dim(Lp) > 0}. Let X := {X ∩ T | T ∈ Ψ}. For every
x ∈ L≤r, define hX(x) = {p ∈ X | ‖x(p)‖ > 0}. Set HL≤r := {hX(x) | x ∈ L≤r}. Then,
HL≤r ⊆ X . We note also that ν(hX(x)) > 0 if x 6= 0.

We check that HL≤r is hereditary. Let x ∈ L≤r. The set

hX(x) = X ∩ {p ∈ Y | ‖x(p)‖ > 0},

is measurable; X is just the union of measurable sets and the set {p ∈ Y | ‖x(p)‖2 > 0}
is measurable from Definition 4.1.1. Now suppose that we have an arbitrary x0 ∈ L≤r
and a B is a measurable set such that B ⊆ hX(x0). Let us show that there is some
x1 ∈ L≤r such that B = hX(x1). Indeed,

B = {p ∈ X | χB(p) ‖x0(p)‖ > 0} = {p ∈ X | ‖MχB(p)x0(p)‖ > 0}.

So, B = hX(MχBx0). Next, we show that HL≤r saturates X . Let A ∈ X with ν(A) > 0
and suppose on the contrary that there is no such set B ∈ HL≤r in Definition 4.8.3. In
other words, every x ∈ L≤r satisfies

(4.8.3) ‖x(p)‖ = 0 for almost all p ∈ A.
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So, for those almost all p ∈ A, we have that Lp = (L≤r)p = {0} using [KR97b] Lemma
14.1.3. (If x1, x2, . . . spans L≤r, then x1(p), x2(p), . . . spans Lp for almost all p ∈ X, so
Lp = {0} for almost all p by (4.8.3). Note that separability is used here since we take
a countable intersection of the subsets of A given by (4.8.3) for each x = x1, x2, . . . .)
This contradicts the definition of X and A ⊆ X with ν(A) > 0.

From Lemma 4.8.4, we have that there exists a countable partition of X, say {Ki},
such that Ki ∈ HL≤r for every i ∈ N. For each i ∈ N, let xi denote the element in L≤r
such that Ki = h(xi). Put,

x′i(p) =

{
1

‖xi(p)‖xi(p) if p ∈ Ki

0 otherwise.

Define

fk :=
k∑
j=1

x′j.

We will now show that there is a ζ1 ∈ L≤r such that ζ1 is the limit of the partial sums
(fk). (In terms of the statement of Lemma 4.0.2, we shall have ξ1 := Φ−1(ζ1); see the
proof of Proposition 4.8.6, below.) Obtaining this ζ1 is the first step in a Gram-Schmidt
process for modules that give ζ2, ζ3, . . . , ζr as well.

Let us show that (fk) is a Cauchy sequence in the Hilbert space L≤r.
Assume that n > m. Then we have,

‖fn − fm‖2 =

∥∥∥∥∥
n∑

j=m+1

x′j

∥∥∥∥∥
2

=

∫
Y

∥∥∥∥∥
n∑

j=m+1

x′j(p)

∥∥∥∥∥
2

dν

≤
∫
Y

(
n∑

j=m+1

∥∥x′j(p)∥∥
)2

dν

=
n∑

j=m+1

∫
Y

∥∥x′j(p)∥∥2
dν +

∑
j 6=k

∫
Y

∥∥x′j(p)∥∥ ‖x′k(p)‖ dν

=
n∑

j=m+1

∫
Ki

1 dν + 0

=
n∑

j=m+1

ν(Kj)(4.8.4)

(the cross terms yield zero, because the K ′is form a partition of X). Now (
∑t

j=1 ν(Kj))
is a Cauchy sequence, because, by the monotone convergence theorem,

∞ > ν(X) =

∫
X

1 dν = lim
t

∫
∪ti=1Ki

1 dν = lim
t

t∑
i=1

ν(Ki).
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So, from (4.8.4), (fn) is a Cauchy sequence and hence there is an ζ1 ∈ L≤r such that
ζ1 = limn fn.

Note that, for each i, when restricted to Ki, (fn|Ki) converges to ζ1|Ki . So

‖ζ1(p)‖ = ‖fn(p)‖ = 1,

for n large enough, for almost all p ∈ X.
Let us now construct ζ2, using a Gram-Schmidt process for modules. First define

L2 := {x ∈ L≤r | 〈x(p), ζ1(p)〉 = 0 a.e.}.

It is routine to show that L2 is closed.
So, L2 is a direct integral of Hilbert spaces {(L2)p} (Proposition 4.6.1). We note

that

(4.8.5) dim((L2)p) = Lp − 1

for p ∈ {l ∈ Y | 0 < dim(Ll) ≤ r}, while for p ∈ {l ∈ Y | dim(Ll) > r}, dim((L2)p) = 0.
Now put X2 := {p ∈ Y | dim((L2)p) > 0} and note that we have

L2 =

∫
X2

(L2)p dν ⊕
∫
Y \X2

{0} dν.

Performing the same procedure on L2 that gave us ζ1 (when performed on L≤r) we
obtain a vector ζ2 ∈ L2. From the definition of L2, 〈ζ2, ζ1〉 = 0.

From (4.8.5), we may repeat the process until we obtain vectors ζ1, ζ2, . . . , ζr. The
vectors ζi are mutually pointwise orthogonal due to the definition

Li+1 = {x ∈ Li | 〈x(p), ζi(p)〉 = 0 a.e.}.

With the vectors {ζi} constructed above we show that L≤r =
∑r

i=1 ζiϕ(N ). By
construction ζi ∈ L≤r for each i. As L≤r is a right-ϕ(N )-submodule,

∑r
i=1 ζϕ(N ) ⊆

L≤r and as L≤r is closed,
∑r

i=1 ζiϕ(N ) ⊆ L≤r. Conversely, let x ∈ L≤r. We must
approximate x with elements contained in

∑r
i=1 ζiϕ(N ). Note that for almost all p ∈ Y,

(4.8.6) x(p) =
r∑
j=1

〈x(p), ζj(p)〉ζ(p),

since pointwise, the process that gave ζ1, ζ2, . . . , ζr is the usual Gram-Schmidt process
which ends only once a basis for Lp (with dim(Lp) ≤ r) is obtained for almost every p.

Then, x =
∑r

j=1 fjζj, where fj denotes the map p 7→ 〈x(p), ζ(p)〉I(p). We employ

a similar approximation argument to the one seen in (4.4.5). Note that fj ∈ L2(ν),
using the same argument appearing in (4.4.7) (replacing Γ(p) with ζj(p)). Let (sjn) be a
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sequence of L∞(ν)-functions approximating fj in L2(ν). Then, using the orthonormality
of ζ1(p), ζ2(p), . . . , ζr(p),∥∥∥∥∥x−

r∑
j=1

s(j)
n ζj

∥∥∥∥∥
2

=

∫
Y

∥∥∥∥∥
[

r∑
j=1

(fj − s(j)
n )

]
ζj

∥∥∥∥∥
2

dν

≤
∫
Y

r∑
j=1

|fj − s(j)
n |2 dν

=
r∑
j=1

∫
Y

|fj − s(j)
n |

2
dν → 0 as n→ 0

We now turn our attention to approximating any x ∈ Φ(V ) in the statement of
Lemma 4.0.2. Let Pr := MχX≤r

, where X≤r is defined in Definition 4.6.4 For each

n ∈ N, let xn := Pnx. We note, by Definition 4.8.1, that xn belongs to the finite rank
approximate L≤n, where the rank rn of L≤n is at most n by Proposition 4.8.5. Let
P = MχX<∞

and set z = Px.
We wish to show two things:

1. z = x.

2. xn → z.

For the first item,

‖x− z‖2 =

∫
Y

‖x(p)− z(p)‖2 dν =

∫
X∞

‖x(p)− z(p)‖2 dν.

On the other hand,

τ(PV ) <∞ =⇒
∫
Y

dim(Lp) dν <∞

=⇒
∫
X∞

dim(Lp) dν = 0

=⇒ ν(X∞) = 0.

Thus, x = z.
For the second item, put fn(p) = ‖xn(p)‖2 and f(p) = ‖x(p)‖2 . Then (fn) is an

increasing sequence of functions converging pointwise to f, since fn(p) = χX≤nf(p).
Thus, we may apply the monotone convergence theorem to obtain,

lim
n
‖xn‖2 = lim

n

∫
Y

fn(p) dν =

∫
Y

lim
n
fn(p) dν =

∫
Y

f(p) dν = ‖x‖2 .
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Now as (x− xn) ⊥ xn we have

‖x‖2 − ‖xn‖2 = ‖x− xn‖2 .

Thus, ‖x− xn‖2 → 0.
We transfer our constructions from the direct integral framework, relying on the

fact that Φ is a unitary.

Proposition 4.8.6. Consider L≤r from Proposition 4.8.5. Define V1 := Φ−1L≤r. Then
V1 is a Uα-invariant right-N -submodule Hτ with finite rank at most r.

Proof. For each i ∈ {1, 2, . . . , r}, using the vectors ζi in Proposition 4.8.5,

(4.8.7) ξi = Φ−1(ζi).

Let us show the right-N -submodule property. Take a v ∈ V1. Then there is a sequence
in L, say (wn) consisting of element of the form

wj =
r∑
i=1

ζiϕ(n
(i)
j ),

where n
(i)
j ∈ N , such that limj wj = Φ(v) ∈ L≤r.

Then, limj Φ−1(wj) = Φ−1(limj wj) = Φ−1Φ(v) = v and

Φ−1(wj) =
r∑
i=1

Φ−1
(
ζiϕ(n

(i)
j )
)

=
r∑
i=1

Φ−1
(
ϕ(n

(i)
j )ζi

)
=

r∑
i=1

Φ−1ϕ(n
(i)
j )ΦΦ−1(ζi)

=
r∑
i=1

n
(i)
j ξi.

(4.8.8)

We show that V1 is Uα-invariant.
The space L≤r is Uβ-invariant: For all x ∈ L

(UβM≤rx)(p) = Υ(p)(M≤rx)(Sp) Proposition 4.7.11

= Υ(p)χX≤r(Sp)x(Sp)

= Υ(p)χX≤r(p)x(Sp) Proposition 4.7.8

= χX≤r(p)Υ(p)x(Sp) Proposition 4.1.8

= (M≤rUβx)(p) Definition 4.8.1.

So, UβM≤rx ∈M≤rL = L≤r since L is Uβ-invariant.
This shows that UβL≤r ⊆ L≤r. Similarly, U−1

β L≤r = Uβ−1L≤r ⊆ L≤r. Thus,
UβL≤r = L≤r. So, UαV1 = V1.
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Note that, for every ε > 0, using Proposition 4.6.5, with the r given in the statement
of Proposition 4.6.5, and V1 by Proposition 4.8.6

τ(PV − PV1) = τ(PV )− τ(PV1)

=

∫
Y

dim(Lp) dν −
∫
X≤r

dim(Lp) dν

=

∫
X>r

dim(Lp) dν < ε .

We now study how the uji’s in the statement of Lemma 4.0.2 are obtained.
Define, using Definition 4.7.9 and Corollary 4.7.11

(4.8.9) vji(p) := 〈(Uβζi)(p), ζj(p)〉 = 〈Υ(p)ζi(Sp), ζj(p)〉.

Recall that Υ(p) is unitary for almost all p and that for each p, {ζk(p)} forms an
orthonormal basis for H′p. So, for almost all p, vji(p) is a contraction:

(4.8.10) |vji(p)| ≤ ‖Υ(p)‖ ‖ζi(p)‖ ‖ζj(p)‖ ≤ 1.

We know that p 7→ 〈(Uβζi)(p), ζj(p)〉 is a measurable function. So, Mvji ∈ ϕ(N ).
We also have, for all k ∈ {1, 2, . . . , r} and for almost all p,

(4.8.11)
r∑
j=1

vjk(p)ζj(p) =
r∑
j=1

ζj(p)vjk(p) =
r∑
j=1

ζj(p)〈(Uβζk)(p), ζj(p)〉 = (Uβζk)(p),

by Proposition 4.8.5. Hence, for all k ∈ {1, 2, . . . , r},

(4.8.12) Uβζk =
r∑
j=1

ζjvjk =
r∑
j=1

vjkζj.

Now define

(4.8.13) uji := ϕ−1(Mvji).

Using our right-N -basis defined in (4.8.7), we have that for all k ∈ {1, 2, . . . , r}, Uαξk =
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∑r
j=1 ξjujk :

(4.8.14)

r∑
j=1

ξjujk =
r∑
j=1

ξjϕ
−1(Mvji)

=
r∑
j=1

ϕ−1(Mvji)ξj as N is central

=
r∑
j=1

Φ−1MvjiΦΦ−1(ζj)

=
r∑
j=1

Φ−1Mvjiζj

=
r∑
j=1

Φ−1(ζjvjk) by definition of Mvji

= Φ−1

r∑
j=1

(ζjvjk)

= Φ−1Uβζk = Φ−1ΦUαΦ−1ζk = Uαξk.

We now show that U = (uji) is a unitary operator in Ur×r(N ). As ϕ−1 is a ∗-
automorphism, we have that ϕ−1(M1) = 1N and ϕ−1(0) = 0. Thus, if U⊕ := (vji) is
a unitary matrix in Ur×r(N ), then, U = (uji) = (ϕ−1(Mvji)) is a unitary matrix in
Ur×r(N ).

Let U∗⊕ be the adjoint of U⊕, that is, U∗⊕ = (v∗ij) (the (j, i) entry in U∗⊕ is v∗ij, as
opposed to vji in U⊕), where v∗ij = vij, the bar denoting complex conjugation (the
involution of L∞(ν)). Let us verify that U⊕U

∗
⊕ = I and U∗⊕U⊕ = I, where I is the

matrix consisting of constant one function on its diagonal and zeros everywhere else.
We calculate the entries (U∗⊕U⊕)ji of the matrix U∗⊕U⊕ at an arbitrary p :

(U∗⊕U⊕)ji(p) =
r∑

k=1

v∗ik(p)vkj(p) =
r∑

k=1

〈(Uβζj)(p), ζk(p)〉〈(Uβζi)(p), ζk(p)〉

=
r∑

k=1

〈(Uβζi)(p), ζk(p)〉〈ζk(p), (Uβζj)(p)〉

= 〈Υ(p)ζi(Sp),Υ(p)ζj(Sp)〉 = 〈ζi(Sp), ζj(Sp)〉.

(4.8.15)

In the second last equality above we used (4.4.10) and Proposition 4.7.11. Similarly,

(4.8.16) (U⊕U
∗
⊕)ji(p) = 〈ζi(Sp), ζj(Sp)〉.
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Thus, from (4.8.15),

(U∗⊕U⊕)ji(p) =

{
1 if i = j

0 otherwise.

Likewise, from (4.8.16)

(U⊕U
∗
⊕)ji(p) =

{
1 if i = j

0 otherwise.
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Chapter 5

The Structure Theorem

In this chapter we use the two fundamental lemmas obtained in Chapters 3 and 4,
respectively, along with the concept of central vectors (Definition 5.1.1), to obtain our
goal, a structure theorem for asymptotically abelian systems (Theorem 5.2.3).

5.1 Central Vectors

In this section we treat Lemma 4.6 [AET11] (Proposition 5.1.4), but we adapt its proof
in order to apply the same techniques used in Chapter 3.

Definition 5.1.1. Recall thatM is a von Neumann algebra with faithful normal trace
τ represented on its GNS Hilbert space Hτ and M̃ is the ∗-algebra of τ -measurable
operators (see (3.3.1)). Consider L2(τ), the non-commutative L2-space arising from
the von Neumann algebra (M, τ) (see (3.3.4)). A vector ξ ∈ L2(τ) is called central

if, using the multiplication in M̃ (see the paragraph after (3.3.1)),

(5.1.1) mξ = ξm

for all m ∈M.

Remark 5.1.2. Note what Definition 5.1.1 says in the case where m in (5.1.1) is chosen

to be any unitary u ∈M : in the ∗-algebra M̃,

x = u∗xu = u∗xu = u∗xu,(5.1.2)

since u is unitary. In other words, using Definition 3.2.11,

(5.1.3) x ηM′.

However, x ∈ L2(τ) ⊆ M̃, thus, in particular,

(5.1.4) x ηM.

79
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So, x is affiliated to (M∩M′). Indeed, let P be a projection of Hτ ⊕ Hτ onto Gx :=
{(ξ, xξ) | ξ ∈ D(x)}, the graph of x. Then, applying [SZ79] Lemma 9.6 to (5.1.3) and
(5.1.4), yields

(5.1.5) P ∈M2(M) ∩M2(M′) = M2(M∩M′),

where M2(A) is the set of all 2× 2 matrices with entries in A. Another application of
[SZ79] Lemma 9.6, this time to (5.1.5), shows that

(5.1.6) x η (M∩M′).

We require a preliminary result in order to prove Proposition 5.1.4.
In the case of a positive self-adjoint operator R affiliated to a von Neumann A,

we know (Proposition 3.2.12) that T ’s spectral projections belong to A. From this we
derive the following:

Proposition 5.1.3. Let A be a von Neumann algebra acting on a Hilbert space H.
Suppose that T is a closed self-adjoint linear operator in H affiliated to A. There exists
a sequence Tn of operators contained in A such that for all x ∈ D(T ),

(5.1.7) Tnx→ Tx.

Proof. As T is closed, use the polar decomposition ([KR97b] Theorem 6.1.11 ) to write
T = U |T |, where U ∈ A is a partial isometry and |T | :=

√
T ∗T is affiliated to A.

Now |T | is self-adjoint and positive and therefore, from Theorem 3.2.7, there is a
spectral measure E = E|T | such that

(5.1.8) |T | =
∫ ∞

0

id dE.

Using Theorem 3.2.5, there is a sequence (Sn) of bounded linear operators with Sn =
(χMn id)(|T |) := I(χMn id), such that for all x ∈ D(|T |),

(5.1.9) Snx→ |T |x.

Every Sn is affiliated to A, using Proposition 3.2.12 and thus, because Sn is a bounded
operator (Theorem 3.2.9 part (c)) we have Sn ∈ A.

From the continuity of U, we have from (5.1.9), for every x ∈ D(|T |)

(5.1.10) Tnx→ Tx.

where Tn := USn for every n ∈ N.
To complete the proof, note that D(|T |) = D(T ) ([Sch12] Lemma 7.1).
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We describe a representation of L2(τ) acting on itself, which will be used in Propo-
sition 5.1.4. It is a non-commutative generalisation of viewing L2(τ) as multiplication
operators on L2(τ) itself.

Consider, for every a ∈ M̃, the operator π(a) with domain

(5.1.11) D(π(a)) := {x ∈ L2(τ) | ax ∈ L2(τ)}

and defined by

(5.1.12) π(a)x := ax for all x ∈ D(π(a)).

Then π(M̃) represents M̃ concretely on L2(τ) (in the terminology of [Tak03b]
Chapter IX Definition 2.11; see also Definition 2.4 and Theorem 2.5).

In particular, for a ∈ L2(τ) ⊆ M̃, and m ∈ M, we know from [Tak03b] Chapter
IX Theorem 2.13 (ii), that am ∈ L2(τ). So M ⊆ D(π(a)) for every a ∈ L2(τ). In
particular, for all a ∈ L2(τ),

(5.1.13) 1 ∈ D(π(a)).

Proposition 5.1.4 ([AET11] Lemma 4.6). With the notation in Definition 5.1.1, de-
fine the centre of the von Neumann algebra M

(5.1.14) Z(M) :=M∩M′.

Then the closure Z(M) in L2(τ) is equal to the set of all central vectors in L2(τ).

Proof. Let x ∈ L2(τ) be a central vector. Consider, the vectors y, z ∈ L2(τ),

(5.1.15) y :=
1

2
(x+ x∗)

and

(5.1.16) z :=
1

2i
(x− x∗),

where i =
√
−1 ∈ C. As we are working in the ∗-algebra M̃, both y and z are closed

and self-adjoint. Furthermore, both y and z are affiliated to Z(M), since x is (using
Remark 5.1.2).

From Proposition 5.1.3, with A = π(Z(M)) (see (5.1.11)) acting on the Hilbert
space L2(τ) (Proposition 3.3.4), there exist two sequences (yn) and (zn) in Z(M) such
that

(5.1.17) ynh = π(yn)h→ π(y)h = yh for all h ∈ D(π(y)) ⊂ L2(τ)
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and similarly,

(5.1.18) znh→ zh for all h ∈ D(π(z)) ⊂ L2(τ).

Now, from (5.1.13) 1 belongs to both D(π(y)) and to D(π(z)), and therefore using
h = 1 in (5.1.17) and (5.1.18), in the norm of L2(τ),

x = lim
n

(yn + izn),

since w1 = w for all w ∈ L2(τ). So, x ∈ Z(M).

5.2 Asymptotically Abelian Systems

We now specialise to the case of asymptotically abelian W ∗-dynamical system.

Definition 5.2.1 (Definition 1.10 [AET11] ). Let (M, τ, α) be a W ∗-dynamical sys-
tem. Assume that M acts on its GNS space Hτ ≡ [MΩ]. We say that (M, τ, α) is
asymptotically abelian if

lim
n→∞

1

n

n∑
k=1

∥∥(αk(a)b− bαk(a))Ω
∥∥
Hτ

= 0 for all a, b ∈M.

Recall that L2(τ) is a Hilbert space (Proposition 3.3.4) and, from [Tak03b] Chapter
IX Theorem 2.13 (ii), as τ is finite, M∩ L2(τ) =M is dense in L2(τ). Thus,

(5.2.1) (L2(τ), id,1)

is a GNS triple for (M, τ).
From (5.2.1) we can define a modular conjugation operator Jτ : L2(τ) → L2(τ)

given by

(5.2.2) Jτa = Jτ (a1) = a∗1 = a∗ for all a ∈ L2(τ) ⊆ M̃.

Right multiplication in L2(τ) behaves like the right multiplication ofM on Hτ (see
Remark 1.4.4, Proposition 1.4.3), because ∀x, a ∈ L2(τ)

(5.2.3) Jτa
∗Jτx = Jτa

∗x∗ = Jτ (xa)∗ = xa.

Thus, using the unitary γ in Proposition 3.3.4, ξ ∈ L2(τ) is a central vector if and
only if for all m ∈M,

(5.2.4) mζ = Jm∗Jζ,
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where ζ = γ(ξ). Let us also call vectors ζ ∈ Hτ central if they satisfy (5.2.4).
In the next proposition’s proof, we closely follow what was done in [AET11]. How-

ever, we apply the statement we added to Lemma 4.0.2, since it is not clear how
[AET11]’s version of this lemma is used in Proposition 5.2.2’s proof. Also, the uji in
Lemma 4.0.2 are claimed to be unitary in [AET11], but in general appears to only be
contractions. This, however, is good enough for Proposition 5.2.2’s proof.

Proposition 5.2.2 ([AET11] Proposition 4.7). Using the notation from Definition
5.2.1, with the additional assumption that Hτ is separable, suppose N is a α-invariant
central von Neumann subalgebra of M, and let V ⊆ Hτ be an α-invariant right-N -
submodule of M having finite lifted trace. Then all elements of V are central vectors.

Proof. It is sufficient to prove this proposition when V is of finite rank. Indeed, suppose
that every finite rank approximate to V consists solely of central vectors. Let x ∈ V
be arbitrary. Then, from Lemma 4.0.2, there is a sequence of vectors (xn) converging
to x with each xn belonging to some finite rank approximate of V. By assumption each
xn will be central. For every a ∈M,

ax = lim
n
axn = lim

n
Ja∗Jxn = Ja∗J lim

n
xn = Ja∗Jx = xa.

Thus, all vectors in V are central.
So we may assume that V actually has finite rank. Since, for any aΩ ∈ MΩ,

U j
α(aΩ) = αj(a)Ω and α is asymptotically abelian, we have for any b ∈M,

1

n

n∑
k=1

∥∥bUk
α(aΩ)− Uk

α(aΩ)b
∥∥
Hτ

=
1

n

n∑
k=1

∥∥(bαk(a)− αk(a)b)Ω
∥∥
Hτ
→ 0.

Approximating an arbitrary ξ ∈ Hτ ≡ [MΩ] by elements ofMΩ, it follows that for
each fixed b ∈M and ξ ∈ Hτ , we have

(5.2.5) lim
n→∞

1

n

n∑
k=1

∥∥bUk
α(ξ)− Uk

α(ξ)b
∥∥
Hτ

= 0.

On the other hand, with ξ1, . . . , ξr given by Lemma 4.0.2, we know that

U−kα (ξi) =
r∑
j=1

ξju
−k
ji for all i = 1, 2, . . . , r,

writing U−k := (u
(−k)
ji )1≤i,j≤r (with u

(−k)
ji , by definition being given by Lemma 4.0.2,

with U−kα instead of Uα). We have

(5.2.6) U−kα (ξi) =
r∑
j=1

ξju
(−k)
ji =⇒ ξi =

r∑
j=1

Uk
α(ξj)α

k(u
(−k)
ji ) for all i = 1, 2, . . . , r.
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The latter implication (5.2.6) is true, because

r∑
j=1

[Uk
α(ξj)]α

k(u
(−k)
ji )

=
r∑
j=1

Jαk(u
(−k)
ji )∗J [Uk

α(ξj)] as αk(u
(−k)
ji ) ∈ N

=
r∑
j=1

JUk
αu

(−k)
ji U−kα J [Uk

α(ξj)] from (2.2.8)

=
r∑
j=1

Uk
αJu

(−k)
ji JU−kα [Uk

α(ξj)] from (2.2.6)

=
r∑
j=1

Uk
α(ξju

(−k)
ji ) as u

(−k)
ji ξj = J(u

(−k)
ji )∗Jξj = ξju

(−k)
ji

=Uk
α

r∑
j=1

(ξju
(−k)
ji )

=Uk
α(U−kα (ξi)) hypothesis of (5.2.6)

=ξi.

Thus,

‖bξi − ξib‖Hτ

=

∥∥∥∥∥ 1

n

n∑
k=1

(
r∑
j=1

bUk
α(ξj)α

k(u
(−k)
ji )−

r∑
j=1

Uk
α(ξj)α

k(u
(−k)
ji )b

)∥∥∥∥∥
Hτ

=

∥∥∥∥∥ 1

n

n∑
k=1

(
r∑
j=1

bUk
α(ξj)α

k(u
(−k)
ji )−

r∑
j=1

Jb∗JUk
α(ξj)α

k(u
(−k)
ji )

)∥∥∥∥∥
Hτ

=

∥∥∥∥∥ 1

n

n∑
k=1

r∑
j=1

(
Jαk(u

(−k)
ji )∗J

[
bUk

α(ξj)− Jb∗JUk
α(ξj)

])∥∥∥∥∥
≤

r∑
j=1

1

n

n∑
k=1

∥∥∥Jαk(u(−k)
ji )J

∥∥∥∥∥bUk
α(ξj)− Uk

α(ξj)b
∥∥
Hτ

≤
r∑
j=1

1

n

n∑
k=1

∥∥bUk
α(ξj)− Uk

α(ξj)b
∥∥
Hτ
,

(5.2.7)

because Jαk(u
(−k)
ji )J is a contractive operator, by Lemma 4.0.2 (and ‖Jx‖ = ‖x‖ for all

x ∈ Hτ ). From (5.2.5), by making k large enough, we can make the right hand side of
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(5.2.7) as small as we like, so that bξi = ξib for every i ∈ {1, 2, . . . , r}. By taking linear
combinations with coefficients in N and then a completion, we have that all vectors in
V are central, as required.

Theorem 5.2.3 (structure theorem for asymptotically abelian systems;[AET11] The-
orem 1.14). If (M, τ, α) is an asymptotically abelian W ∗-dynamical system, then α is
weakly mixing relative to the centre Z(M) of M.

Proof. Suppose, for the sake of contradiction, that α were not weakly mixing relative
to Z(M) ⊆ M. Then, Lemma 3.0.3 gives a non-trivial right-Z(M)-submodule V ⊆
[Z(M)Ω]⊥ of finite lifted trace. Such a V must consist of central vectors by Proposition
5.2.2. However, Proposition 5.1.4 now gives V ⊆ [Z(M)Ω], a contradiction.
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Rn
measure−−−−→ R, 22

SηA, 21
[S], 1
1A, 2∫
R id dE, 19

R, 21
R̃, 21

α, 9
α, 12

B(X ,Σ), 17

CT (f), 63

EN , 6
eN , 6

Γ, 46
γ, 23
gρ, 4
gΓ, 52

HS⊕, 42
HSp , 42
H⊕, 39
Hψ, 2
Hρ, 5

H̃, 22

JM, 5

Kψ, 2
Kρ, 4

x+Kρ, 4

L2(ν)Γ, 52
L2(ρ), 22

(M, τ, α), 9
M, 2
M′, 6
Mleft, 6
Mright, 6
MeN , 7
〈M, eN 〉, 7

NR̃(ε, δ), 21
N , 6
N ′left, 7
Nright, 7

Ps, 26
P(R), 21
Φ, 42
P , 18
P(H), 16
πτ , 2
πl, 3
πr, 3

S, 63
SE(f,P), 18
S, 16
σ̃(X), 28

τ , 7
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τ , 2

Uα, 10
Uσ, 14
Ur×r(N ), 38

X≤k, 62
X , 16

Y≤k, 65

Ω, 2
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action
left, 3
right, 3

basic construction, 7
bounding sequence, 17

central
von Neumann algebra, 47

composition operator, 63
conditional expectation, 6

direct integral
Hilbert spaces, 39

domain of integration, 40

E-a.e finite, 16

fibres, 39
finite rank approximation, 39
functional

linear
normal, 1
positive, 1
tracial, 2

functional calculus, 20

hereditary, 71

measurable section
operators, 40
von Neumann algebras, 41

measure topology, 22
modular conjugation operator, 5

module
left, 3
right, 3
submodule

finite rank, 38

operator
decomposable, 40
affiliated, 21

operator
diagonalisable, 40

operators
measurable, 21

partition, 18
projection

diagonalisable, 41
Jones, 6

projections
spectral, 19

rank, 38
representation, 1

cyclic, 1
Riemann sum, 18

saturates, 71
space

Polish, 64
spans, 38
spectral integral

bounded, 17
unbounded, 19
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spectral measure, 16

state, 1

submodule, 4

topology of convergence in measure, 22

trace, 2

faithful, 1

finite lifted, 8

lifted, 7

vector
central, 79
cyclic, 1
separating, 2

von Neumann algebra
decomposable, 41

W ∗-dynamical system, 9
Weak Mixing

Relative, 15
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