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Abstract

Hybrid functional study of point defects in germanium

by

Igumbor Emmanuel

Submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy

(PhD) in Physics in the Faculty of Natural and Agricultural Sciences, University of

Pretoria.

Promoter: Prof Walter E. Meyer

Co-promoter: Dr Richard C. Andrew

Germanium exhibits electron and hole mobilities that are higher than silicon. These

unique properties make Ge a promising material for the development of metal-oxide

semiconductor field effect transistors (MOSFETs). Point defects in semiconductors

influence the electronic structure as well as the thermodynamic and optical properties

of the material. Well-known defects in Ge have been intensively studied experimentally

and results reported.

In the past, defects in Ge were difficult to study theoretically, since the local density

approximation (LDA) and the generalized gradient approximation (GGA) functionals in

the framework of density functional theory (DFT) incorrectly predict Ge to be a metal.

However, the screened hybrid functional developed by Heyd, Scuseria, and Ernzerhof

(HSE) accurately predicts the band gap and gives better estimates of the charge state

transition levels of point defects in semiconductors. This thesis reports the results of

DFT calculations using the HSE06 functional to predict the structural, electronic and

charge state thermodynamic properties of Ge di-interstitials, rare earth (RE) substitu-

tional and interstitial impurities as well as vacancy-RE impurity complexes in Ge.
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Results obtained showed that the Ge di-interstitial could exist in three configura-

tions with formation energies between 6.53 and 7.63 eV. The lowest energy configura-

tion was the double tetrahedral configuration with a binding energy of 1.24 eV. This

configuration induced only a shallow donor level at an energy of 0.04 eV below the

conduction band minimum. Other configurations of the Ge di-interstitial exhibited

negative-U ordering.

RE interstitials in Ge formed with formation energies between −4.76 and 6.71 eV,

with the Pr interstitial in Ge having the lowest formation energy at −4.76 eV for the

neutral charge state in the tetrahedral configuration. The tetrahedral configuration

was the most stable configuration for the Ce, Pr, Eu and Tm, while the Er interstitial

showed charge state controlled metastability. While the Ce interstitial induced a shallow

donor level in the band gap, the Eu and Er interstitials induced deep levels within the

band gap of Ge. The Pr interstitial in Ge did not induce any charge state transition

levels, with the neutral charge state stable for all Fermi energies in the band gap.

Tm3+ defects in Ge formed with formation energies between 1.81 and 5.31 eV for

the neutral charge state. Of all the Tm3+ related defects in Ge studied, the Tm3+
i

in the tetrahedral configuration formed with the lowest formation energy of 1.81 eV.

Tm3+
i induced a shallow donor level, while Tm3+

Ge and Tm3+
i -VGe induced both acceptor

and donor levels that were deep and shallow. Tm3+ substitutional and vacancy com-

plex (Tm3+
Ge-VGe) in Ge exhibited charge state controlled metastability and negative-U

ordering.

The role of the di-interstitial, vacancy related defects, substitutional impurities and

vacancy-interstitial complexes in Ge were pointed out and it is expected that the data

and information presented will be useful in the process modelling of Ge-based devices

for industrial, laboratory applications and for comparison to experimental results.
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Chapter 1

Introduction

This chapter presents a concise introduction of the topic of interest–hybrid functional

study of point defects in germanium. The rationale and motivation behind the research

work presented in this thesis are summarized. In addition, objectives and overview of

the thesis are given.

1.1 Rationale and motivation

A concise summary of the past and the present technological applications of germa-

nium (Ge), a semiconductor with a band gap of 0.78 eV [1] at 0 Kelvin was written by

Haller 2006 [2] and Claeys and Simoen (2011) [3]. One of these important applications

is in the field of microelectronics. Ge as a semiconductor material has gained renewed

interest due to its electron and hole mobilities that are higher than silicon (Si) [3]. This

advantage makes Ge a promising material for the development of metal-oxide semicon-

ductor field effect transistors (MOSFETs). However, despite this important application

of Ge, there have been several challenges surrounding the successful implementation of

Ge as MOSFETs [3]. Claeys and Simoen (2011) [3] in a detailed report, highlighted

the possible future direction for the semiconductor industry and the probable role that

1
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Ge can play.

Point defects in semiconductors have been reported to influence the quality of device

performance either positively or negatively [3]. Control of defects in semiconductor

materials has played a major role in improving the quality of materials for industrial

and laboratory applications. The understanding of defects and their thermodynamic

charge state transitions is important for controlling and engineering their formation

in order to optimize the properties of the material. The successful implementation of

Ge based high mobility semiconductor devices lies in the proper understanding of the

formation of point defects and the charge state transition levels created within the band

gap of Ge.

For some time now, numerous challenges facing the successful production of Ge

based semiconductors can be attributed to the fact that the role defects play in Ge were

not fully understood. For instance, the electrically active defects induced by electron

irradiation in Ge need to be fully comprehended [3]. Recently, several experimental

methods have been used to study electron irradiation induced defects in Ge [4, 5, 6,

7]. Experimental studies of defects in Ge, using the deep level transient spectroscopy

(DLTS) [4, 6, 8] and perturbed angular correlation spectroscopy (PACs) [9] techniques

have led to successful detection of point defects in Ge. While the experimental study

of point defects in Ge is gaining interest, first principle modelling of point defects in

Ge is relatively scarce.

Density functional theory (DFT) [10, 11] is an ab initio method that is frequently

used to model the electronic structure of materials, and requires the use of a func-

tional to determine the energy of the electron charge density. These functionals can be

classified as: the local density approximation (LDA) [12], generalised gradient approx-

imations (GGA) e.g., the Perdew, Burke, and Ernzerhof (PBE) [13, 14] and hybrid

functionals, e.g the Heyd, Scuseria, and Ernzerhof (HSE) [15]. The LDA and GGA

have been used for more than two decades. However, despite the huge success achieved

2
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by using the LDA and GGA in predicting lattice constants and structural properties

of materials, they have major shortcoming. One of the major failures of the LDA and

GGA exchange correlation energy functionals, is their inability to accurately predict

the band gap of materials [16, 17, 18, 19, 20]. For example, LDA and GGA predict Ge

to be semi-metallic without a band gap! Consequently, the electronic and charge state

transition properties were difficult to predict and often predicted wrongly [16, 17, 18].

The HSE on the other hand, accurately predicts the band gap of most semiconduc-

tor materials [19, 20]. Since the advent of the hybrid functionals, the study of point

defects in Ge is beginning to gain momentum and better predictions for the band gap

and charge state transition levels of Ge have been obtained. However, there are still

more properties (structural, electrical and thermodynamic) of point defects in Ge to be

fully studied. For example, charge state controlled metastability, negative-U properties

and the formation of vacancy complexes have not been fully studied theoretically. In

addition, the properties of rare earth related point defects in Ge have not yet been

fully investigated theoretically. The successful implementation of Ge based semicon-

ductor devices requires the proper understanding of the formation of defects and their

electrical properties.

This thesis contributes to this body of knowledge by presenting a hybrid functional

study of point defects in Ge from first principle by means of DFT. The impact and

roles of di-interstitials, vacancy complexes, substitutional impurities and rare earth

(RE) related point defects in Ge have been investigated, with emphases on their struc-

tural properties, electronic structures, formation energies and charged state transition

properties.
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1.2 Research objective and goals

This thesis presents results of various investigations of the nature and electrical prop-

erties of point defects in Ge using the HSE06 hybrid functional. Since point defects

influence the electrical properties of Ge, it is paramount to know which point defects

are present and how they affect the performance of Ge based devices. In order to under-

stand how to control point defect activities in Ge, a comprehensive fundamental study

of their electronic properties and geometric structures needs to be made. In addition,

the energies required for point defects to form and the thermodynamic charge state

transition levels induced by defects in the band gap of Ge, need to be scientifically

investigated as well. The main objectives and goals of this study are as follows:

1. To investigate the stability and formation of the di -interstitial point defect in Ge

from first principles, using the HSE06 hybrid functional.

2. To predict the thermodynamic charge state transition levels of Ge di -interstitials

using the HSE06 hybrid functional.

3. To predict the electrical behaviour of rare earth (RE) point defects in Ge. These

results will help to understand the influence of the RE interstitial and substitu-

tional defects in Ge.

4. To investigate the presence of charge state controlled metastability and negative-

U properties in a number of RE related and di -interstitial defects in Ge.

5. To identify and predict the properties of dopant and RE dopant-vacancy com-

plexes in Ge using the HSE06 functional.

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



1.3 Overview of study

In this thesis, the electronic properties, formation energies and charge state transition

levels of point defects in Ge as calculated using the HSE06 functional, are presented.

Synopsis of the thesis is given below.

1.3.1 Synopsis

1. Chapter 2 presents the theoretical background and the underlying principle of

density functional theory. Also discussed in this chapter is the use of pseudopoten-

tials and a number of different exchange correlation functionals, which include the

local density approximation (LDA), generalised gradient approximation (GGA)

and the hybrid functionals.

2. Chapter 3 presents the general theory of defects in semiconductors, with em-

phasis on the structural and electronic properties of point defects in Ge. In

addition, the chapter also highlights point defects in Ge that have been reported

in literature.

3. In Chapter 4, the methods that are use to study the properties of point defects in

semiconductors are discussed. The effect on the approximations of the accuracy

of the results is also discussed. Finally, the validation of the techniques and

approximations used to obtain the results presented in this thesis is also given.

4. Chapter 5 contains the results obtained in this study, which are presented under

the headings discussed:

(a) Ab initio study of germanium di-interstitial using a hybrid functional.

(b) A hybrid functional calculation of Tm3+ defect in germanium.

(c) Rare earth interstitials in Ge: a hybrid density functional theory study

5
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(d) A first principle hybrid functional calculation of Tm3+
Ge-VGe defect complexes

in Ge.

Finally, the results of this thesis are summarized under the topics:

� The stability of vacancy complexes in Ge.

� Charged state controlled meta-stability

� The negative-U ordering of point defects in Ge.

5. In Chapter 6, the important conclusions from results presented in Chapter 5

are highlighted. In addition, recommendations for future work are listed.
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Chapter 2

Density functional theory: a

theoretical background

2.1 Introduction

Different theoretical methods and approximations are used by scientists to model many-

body problems. In this chapter, the basic problem and steps taken to construct a

number of methods adopted over the years to solve many-body problems, will be dis-

cussed. Many-body problems and the Born-Oppenheimer approximation (BOA) will

be discussed in Section 2.2, the Hartree-Fock theory (HF) in Section 2.3 and density

functional theory (DFT) in Section 2.4. Various exchange-correlation energy function-

als which include the local density approximation, the generalized gradient approxima-

tion and the hybrid functional are discussed in Section 2.5. In addition, the techniques

adopted to address the infinitely many electrons in a solid-state system are discussed in

Section 2.6, the formalism of the pseudopotential and Brillouin zone (BZ) integration

are discussed in Section 2.7 and Section 2.8, respectively.

All mathematical proofs that are associated with many-body problems and DFT

in this chapter, followed Richard Martin’s approach in the book entitled “Electronic

7
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structure, basic theory and practical methods” [21, 22]

2.2 The many-body wavefunction problem

Basically, the many-body problem Schrödinger equation for a specific set of atoms in a

specific configuration is given as [23, 24]

ĤΨi = EiΨi, (2.1)

where Ĥ is the Hamiltonian and the many-body wavefunction is represented by Ψi

which corresponds to the ith state with energy Ei . In general, the Ψi is a function of

the electron spin and co-ordinates as well as the nuclear positions. The Ψi is defined

as

Ψi = Ψi(~r1, ......., ~rN , σ1, ......., σN : ~R1, ......., ~RM , δ1, ......., δM ), (2.2)

where ~r and σ are the spatial and spin coordinates of the electrons, respectively. ~R and

δ represent the spatial and spin coordinates of the nuclei [21, 22], respectively.

The Hamiltonian operator for a set of N number of electrons in a field due to M

number of ions of charge ZK at sites RK is given as [23]:

Ĥ = − h̄2

2me

N∑
k=1

52
k −

1

2

M∑
K=1

h̄2

MK
52
K +

1

2

N∑
k 6=i

e2

|~rk − ~ri|

+
N∑
k=1

M∑
K=1

ZKe
2

|~rk − ~RK |
+

1

2

M∑
K 6=L

ZKZLe
2

|~RK − ~RL|

(2.3)

where MK is the atomic mass of each of the nuclei, e and me are the electron charge

and mass, respectively. The first and second terms of Equation (2.3) describe the

kinetic energy operator (T̂k) of the electrons and the kinetic energy operator (T̂K) of

the ions, respectively. The coulomb interaction between the electrons (third term in

Equation (2.3)) is the internal potential and the electron-nuclei coulomb interaction
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(fourth term in Equation (2.3)) is referred to as the external potential. Finally the last

term of Equation (2.3) is the coulomb interaction between the nuclei. When atomic

units are used with h̄ = me = e = 1 where 1 a.u. of length called a Bohr is equal

to 0.529 Å, and 1 a.u. of energy is equivalent to 27.21 eV (which is also known as a

Hartree). Equation (2.3) is then written in a simpler form as follows:

1. The kinetic energy operator of the electrons T̂e becomes:

T̂e = −1

2

N∑
k=1

52
k. (2.4)

2. The kinetic energy operator of the ions T̂K becomes:

T̂K = −1

2

M∑
K=1

52
K . (2.5)

3. The coulomb interaction between electrons becomes:

V̂ee =
1

2

N∑
k 6=i

e2

|~rk − ~ri|
. (2.6)

4. The electron-nuclei coulomb interaction becomes:

V̂ie =
M∑
k,K

ZKe
2

|~rk − ~RK |
. (2.7)

5. The coulomb interaction between the nuclei becomes:

V̂ii =
1

2

M,N∑
K 6=L

ZKZLe
2

|~RK − ~RL|
. (2.8)

The Hamiltonian defined in Equation (2.3) can now be expressed in terms of the oper-
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ators defined in Equation (2.4) to Equation (2.8) as

Ĥ = T̂e + T̂K + V̂ee + V̂ie + V̂ii. (2.9)

Solving Equation (2.1) with the Hamiltonian in Equation (2.3) in practice is difficult,

because of the many interactions due to the presence of the electrons and ions. With

the Hamiltonian, it is best done by decoupling the motion of the electrons from that of

the ions. The electron many-body problem is then solved by considering each electron

experiencing an effective potential due to its interaction with other electrons and ions.

Subsequently, the forces on the ions may be calculated by minimizing the energy with

respect to the position of the ions, which will then lead to an equilibrium geometric

structure. The big question is how can we separate the electrons from the ions of

the many-body wavefunction problem? To attempt to solve the complex many-body

problem, the adiabatic or the Born-Oppenheimer approximation is introduced.

2.2.1 Adiabatic (Born-Oppenheimer) approximation

This approximation decouples the Schrödinger equation of Equation (2.3) of the coupled

nucleus-electron system. In this approximation, it is assumed that due to the large mass

of an ion compared to that of an electron, the ions can be considered as being stationary

when the electron wave function is calculated [25]. This implies that the effect of the

momentum of the electrons on the nuclei is neglected [22, 24]. This leads to a separate

Schrödinger equation for the nuclei, which separates the problem into an electronic

part and an ionic part where electrons are moving in the array of fixed nuclei with a

time-independent potential. The Hamiltonian of the many-body electronic problem is

then approximated as [25]

Ĥ = T̂e + V̂ee + V̂ie, (2.10)
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and hence, for the electron wave function, Equation (2.1) becomes

ĤelecΨelec(~r1, ~r2, ....) = EelecΨelec(~r1, ~r2, ....). (2.11)

The Hamiltonian in Equation (2.11) can be written in the form

Ĥ = T̂e + V̂ee + V̂ie, (2.12)

with

T̂e = −1

2

N∑
k=1

52
k, (2.13)

V̂ee =
1

2

N∑
k 6=i

1

|~rk − ~ri|
, (2.14)

and finally

V̂ie =

M,N∑
k,K

ZK

|~rk − ~RK |
. (2.15)

Note that the parametric dependence of Ψelec on ~RL was explicitly omitted from Equa-

tion (2.3) by the Born-Oppenheimer approximation. The total energy can be written

as the sum of the Eelec and Enucleus, and thus is given as

Etot = Eelec + Enucleus (2.16)

One interesting part of the Born-Oppenheimer approximation is that the number

of variables in the Hamiltonian of Equation (2.3) has been reduced, but the resulting

Schrödinger equation is still difficult to solve. One of the earliest approximations that

help to solve Equation (2.11) is the Hartree approximation [26].
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2.3 The Hartree-Fock (HF) method

2.3.1 The Hartree equation

The Hartree approximation was derived in 1928 [27]. In this approximation, the many-

body wavefunction Ψtot is written as a product of single particle functions as

Ψtot(~r1, ~r2, ...., ~rN ) = Ψ(~r1),Ψ(~r2), ....,Ψ(~rN ), (2.17)

where each of the wave functions Ψk(~rk) satisfies the single electron Schrödinger equa-

tion. The Hamiltonian Ĥ as a result of the Hartree approximation is

ĤH = T̂e + V̂ H
ee + V̂ie, (2.18)

where T̂e = −1
25

2 is the one-electron kinetic energy operator term, V̂ H
ee is the Hartree

potential, defined as

V̂ H
ee =

∑
i 6=j

∫
d~r

|~ri − ~rj ′|
ni(~r). (2.19)

The ni(~r) of Equation (2.19), is the probability density of the ith particle, defined as

ni(~r) = |ψi(~r)|2. (2.20)

2.3.2 The Hartree-Fock approximation

The Hartree wave function in Equation (2.17) neglects the fact that electrons are in-

distinguishable Fermions. The wave functions of Fermions are antisymmetric with

respect to interchanging any pair of particles [26]. The deficiency in Equation (2.17)

can be corrected by forming a new wave function which is a linear combination of

Hartree products in the form of a determinant called a Slater determinant after John
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Slater [28, 29].

Ψ(~r1, ~r2, ...., ~rN ;σ1, σ2, ...., σN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(~r1, σ1) χ2(~r1, σ1) .... χα(~r1σ1)

χ1(~r2, σ2) χ2(~r2, σ2) .... χα(~r2, σ2)

. . .... .

. . .... .

. . .... .

. . .... .

χ1(~rN , σN ) χ2(~rN , σN ) .... χα(~rα, σα)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(2.21)

where the factor in front of the matrix ensures normalization, χi(~ri, σi) are single par-

ticle spin-orbitals, each of which is a product of a functions of position φ(~ri) and spin

variable α(σi). For an arbitrary number of electrons, the wavefunction form in Equa-

tion (2.21) can be shown to satisfy the desired antisymmetry condition. A single Slater

determinant is used as an approximation to the electronic wavefunction in Hartree-Fock

theory. Equation (2.21) satisfies the Pauli exclusion principle (no two electrons occupy

the same state).

2.3.3 The Hartree-Fock equations

The expectation of the Hamiltonian of an N−electron system can be approximated by

using the antisymmetric wave function that was derived in Equation (2.21), and the

variational principle as

〈Ψ|H|Ψ〉 =
∑
i,σ

∫
d3~rψσ∗i (~r)[Te + Vext]ψ

σ
i (~r) + V H

ee

−1

2

∑
i,j,σ

∫
d3~rd3~r′ψσ∗i (~r)ψσ∗j (~r′)

1

|~r − ~r′|
ψσj (~r)ψσi (~r′).

(2.22)
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The single-body expectation values (the first term in Equation (2.22)) represents that

of the Hartree approximation. The last term of Equation (2.22) is the exact exchange

energy which describes the Coulomb interaction between electrons of the same spin.

The exchange potential energy term in Equation (2.22), can be represented as the sum

over all orbitals of the same spin as

V i,σ
x (~r) = −[

∑
i,j

∫
d3(~r′)ψσ∗j (~r′)ψσi (~r′)

1

|~r − ~r′|
]
ψσj (~r)

ψσi (~r)
. (2.23)

By minimising Equation (2.22) with respect to the many-body Slater wavefunction of

Equation (2.21), the single-electron Hartree-Fock Hamiltonian is [26]

ĤH = [−1

2
52 −

∑
K=1

ZK

|~r − ~RK |
]Ψv(~r) +

N∑
µ=1

∫
|Ψµ(~r′)|2 1

|~r − ~r′|
Ψv(~r)d

3(~r
′
)

−
N∑
µ=1

∫
Ψ∗µ(~r′)

1

|~r − ~r′|
Ψv(~r

′)Ψµ(~r)d3(~r
′
).

(2.24)

Careful observation of Equation (2.24) shows that it has an extra term compared to

the Hartree equation, called the exchange potential. The exchange potential term,

which incorporates the Pauli exclusion principle for all electrons, cancels the non-

physical self-interaction of electrons in the Hartree equation and hence the derived

energy becomes a functional of the orthonormal single electron wavefunctions.

One major problem of the Hartree-Fock approximation is its inability to describe

the known properties of the homogeneous electron gas. In short, Hartree-Fock approx-

imation predicts that the electronic density of states vanishes at the Fermi level, which

is not true. This wrong prediction is a result of neglecting the Coulomb repulsion felt

by all electrons of opposite spin. This introduces a correlation energy for the electrons

in Equation (2.24), which is described as the energy difference between the exact and

Hartree-Fock energies [22]. To resolve this shortcoming, numerous approaches called
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post-Hartree-Fock methods [30, 31], were developed. One of these approaches is density

functional theory [10, 11] which takes into account both the effects of exchange and

correlation energy.

2.4 Density functional theory

The first theory developed to deal with the electron energy and its density distribution

was propounded by Thomas [32] in 1927 and Fermi [33] in 1928. Density functional

theory (DFT) was invented by Kohn and Hohenberg [10, 11] in 1964 and was later

made practical by Kohn and Sham [12] in 1965. DFT makes the electron density

n(~r) the central quantity. Due to this reformulation, many-body problems can be

simplified, because instead of dealing with the 3N spatial coordinates for the many-

body wavefunction, n(~r) now depends on 3 spatial coordinates only [34, 35].

2.4.1 Hohenberg-Kohn theorem

DFT is based on two Hohenberg-Kohn (HK) theorems [10, 11].

1. The uniqueness theorem: This theorem states that for any system of interact-

ing particles in an external potential, the external potential is determined uniquely

(except for a constant) by the ground state electron density [23]. Mathematically

the density is expressed as

n(~r) =

N∑
K=1

|ΨK |2 (2.25)

To prove the Hohenberg-Kohn theorem, the following assumptions will be made:

� Consider two different external potentials V
(1)
ext (~r) and V

(2)
ext (~r) with two dis-

tinct ground state wave functions Ψ
(1)
ext and Ψ

(2)
ext, respectively, and that the

ground states are non-degenerate.

� V
(1)
ext (~r) and V

(2)
ext (~r) differ by more than constant.
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� However, V
(1)
ext (~r) and V

(2)
ext (~r) produce the same ground state density n(~r)

having two distinct wave functions Ψ
(1)
ext and Ψ

(2)
ext belonging to two different

Hamiltonians Ĥ
(1)
ext(~r) and Ĥ

(2)
ext(~r) respectively.

� The ground state energies of the Ĥ
(1)
ext(~r) and Ĥ

(2)
ext(~r) Hamiltonians are E(1∗)

and E(2∗) respectively.

According to the variational principle, the ground state wavefunction minimises

the expectation value of the Hamiltonian,

E(1∗) = 〈Ψ(1)
ext|Ĥ(1)|Ψ(1)

ext〉 < 〈Ψ
(2)
ext|Ĥ(1)|Ψ(2)

ext〉. (2.26)

By simplification, the expectation values in Equation (2.26) can be rewritten as

〈Ψ(2)
ext|Ĥ(1)|Ψ(2)

ext〉 = 〈Ψ(2)
ext|Ĥ(2)|Ψ(2)

ext〉+

∫
d~r[V

(1)
ext (~r)− V

(2)
ext (~r)]n(~r), (2.27)

so that

E(1∗) < E(2∗) +

∫
d~r[V

(1)
ext (~r)− V

(2)
ext (~r)]n(~r). (2.28)

Similarly, for

E(2∗) = 〈Ψ(2)
ext|Ĥ(1)|Ψ(2)

ext〉 < 〈Ψ
(1)
ext|Ĥ(2)|Ψ(1)

ext〉, (2.29)

the expectation values can be rewritten as

〈Ψ(1)
ext|Ĥ(2)|Ψ(1)

ext〉 = 〈Ψ(1)
ext|Ĥ(1)|Ψ(1)

ext〉+

∫
d~r[V

(2)
ext (~r)− V

(1)
ext (~r)]n(~r), (2.30)

so that

E(2∗) < E(1∗) +

∫
d~r[V

(2)
ext (~r)− V

(1)
ext (~r)]n(~r). (2.31)

The addition of Equation (2.28) and Equation (2.31) results in a contradiction of
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the form

E(1∗) + E(2∗) < E(2∗) + E(1∗). (2.32)

Based on the above contradiction it follows that our assumptions are not valid, i.e.

V
(1)
ext (~r) and V

(2)
ext (~r) only differ by a constant. For more details of the uniqueness

theorem proof, see Ref. [22]

2. Hohenberg-Kohn theorem II: This theorem states that a universal functional

can be defined to determine the energy corresponding to a particular charge

density and external potential. In addition, the exact ground state energy of the

system is the absolute minimum of this functional and the density that minimizes

the functional is the exact ground state density [10].

The two Hohenberg-Kohn theorems reduce the problem of finding all physical prop-

erties associated with the ground state of a system to finding the electron density that

minimises the energy functional [34, 35]. According to the Hohenberg-Kohn theorem,

the energy functional can be written as the sum of these two functionals correspond-

ing to the kinetic energy and potential due to the interaction of the electrons with

themselves and the external potential as

EHK [n] = Te[n] + Eint[n] + Eext[n] = FHK [n] +

∫
n(~r)Vextd(~r) (2.33)

for

FHK [n] = Te[n] + Eint[n] (2.34)

where FHK [n] is explicitly independent of the system, and is called the Hohenberg-

Kohn functional for the kinetic energy and the electron-electron interaction energy.
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Applying the variational principle according to the constraint search method deriva-

tion by Levy and Lieb [36, 37, 38], Equation (2.33) becomes

E0 ≤ EHK [n] = FHK [n] +

∫
n(~r)Vextd(~r), (2.35)

where E0 is now the ground-state energy for N electrons in the external potential

Vext(~r). Equation (2.35) shows that the density which minimizes the Hohenberg-Kohn

functional is the exact ground state density.

2.4.2 Kohn-Sham approach

In order to transform the fully interacting system into a non-interacting system, the

Kohn-Sham (KS) approach [12] needs to be adopted. According to the Kohn-Sham

method, each electron is treated separately as being subject to an effective potential

due to all the other electrons [12].

In order to arrive at the final solution, an iterative method is used, whereby Equa-

tion (2.9) is used to solve the Schrödinger equation for individual electrons, and a new

effective potential is obtained. This new effective potential is then used to compute the

electron density which will in its turn also result in a new effective potential. This same

process of solving the Schrödinger equation repeatedly and generating a new effective

potential continues until the minimum energy of the system changes by less than a

set limit. The iterative procedure for solving the Schrödinger equation is referred to

as the Self Consistent Field (SCF) approach, this approach is iterated until the total

energy and charge density have converged to within a pre-set tolerance. Convergence is

guaranteed by the variational principle, that states that the solution that minimises the

total energy of the system is the correct solution. This whole process relies on the fact

that the ground state density of non-interacting particles in an effective potential can

equally represent the exact ground state density of a system of interacting particles.
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When the Kohn-Sham approach is adopted, the kinetic energy of the non-interacting

particles is obtained, which is very close to the true kinetic energy of the interacting

system. [12, 34].

To show the derivation of the Kohn-Sham approach, it is important to recall the

definition of the total energy functional used in the Hohenberg-Kohn theorem,

EHK [n] = THK [n] +

∫
Ω
d3rV̂extn(~r) + EII , (2.36)

where EII represents the ionic interaction and THK [n] represents all internal energies,

kinetic and potential, of the interacting electron system. THK [n] is expressed mathe-

matically as

THK = T̂ [n] + V̂ee[n], (2.37)

where V̂ee[n] is the electron-electron interaction potential and defined as

V̂ HK
ee [n] =

1

2

∫∫
d3rd3ri

n(~r)n(~r′)

|~r − ~r′|
+NC. (2.38)

In Equation (2.38), the first component of the equation is the Hartree term. The NC

is the non-classical term described by Parr and Yang [34] as the most relevant part of

the exchange-correlation energy based on the Hohenberg-Kohn theorem.

The Kohn-Sham approach introduces the concept of the auxiliary non-interacting

system, with Hamiltonian [34]

ĤKS =
N∑
K=1

[−1

2
52 +V̂ KSn(~r)]. (2.39)

Now considering a given system of N independent electrons, where the ground

state has an electron in each of the N orbitals Ψi with lowest eigenvalue εi of the
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Hamiltonian [22, 24, 34], the Hamiltonian for one electron system can be written as

[−1

2
52 +V̂ KSn(~r)]Ψk = Ψkεk. (2.40)

The above Equation (2.40) yields the density of the auxiliary Kohn-Sham system which

is defined as

n(~r) =

N∑
k=1

|Ψk(~r)|2. (2.41)

The Hohenberg-Kohn expression for the ground state energy function can now be

expressed in terms of the Kohn-Sham orbital as

EKS [n] = T̂s[n] + EXC [n] +

∫
Ω
d3rV̂extn(~r) + EII , (2.42)

where the T̂s[n] is the independent-particle kinetic energy and is given by

T̂s[n] = −1

2

N∑
k=1

〈Ψk|52|Ψk〉. (2.43)

The kinetic energy T̂s[n] by Hohenberg-Kohn theorem is extended by Kohn and Sham,

by proposing a universal functional T̂KS [n] which includes all internal energies as

T̂KS [n] = T̂s[n] +

∫∫
d3rd3ri

n(~r)n(~ri)

|~r − ~r|
+ EXC [n], (2.44)

where EXC [n] is the exchange-correlation energy that contains all unknown contribu-

tions to the energy of the system. The second term in Equation (2.44) is the Hartree

term. Equating T̂KS [n] to the Hohenberg-Kohn universal function T̂HK [n] described

in Equation (2.36), we have

T̂ [n] + V̂ee[n] = T̂s[n] +

∫∫
d3rd3r′

n(~r)n(~r′)

|~r − ~r′|
+ EXC [n], (2.45)
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which yields

EXC [n] = T̂ [n]− T̂s[n] + V̂ee[n]−
∫∫

d3rd3r′
n(~r)n(~r′)

|~r − ~r′|
, (2.46)

or

EXC [n] = T̂ [n]− T̂s[n] + EHartree[n]. (2.47)

The exchange-correlation functional represents the difference between the true ki-

netic energy and the independent particle kinetic energy. In conclusion, The Kohn-

Sham equation brought a major breakthrough in solving the many-body electron prob-

lem in as much as the exchange-correlation parameter is properly defined.

2.4.3 Kohn-Sham variational equations

Using the auxiliary Euler equation to solve the Kohn-Sham equation yields

V̂ KS
ext +

δTKS [n]

δn(~r)
= µ, (2.48)

where µ is the Lagrange multiplier associated with the constant, n =
∫
n(~r)d3r is the

electron density. When the Kohn-Sham wave function is varied and Equation (2.36) is

applied, a new set of equations is obtained:

δTs[n]

δφ∗(~r)
+
δn(~r, σ)

δφ∗(~r)
[

∫
Ω
d3rV̂extn(~r)]+

δ

δn(~r, σ)

1

2

∫∫
d3rd3r′

n(~r)n(~r′)

|~r − ~r′|
+
δEXC [n]

δn(~r, σ)
] =

δTKS [n]

δφ∗(~r)
.

(2.49)

where

δTs[n]

δφ∗(~r)
= −1

2
52 φ∗(~r);

δn(~r, σ)

δφ∗(~r)
= φ∗(~r) (2.50)

Equation (2.49) can be reduced to

V̂ KS
s = V̂ext +

∫
d3r

n(~r)

|~r − ~r′|
+ V̂XC , (2.51)
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where

V̂XC =
δEXC
δn(~r)

(2.52)

is the exchange-correlation potential. The Kohn-Sham approach has an advantage over

the Hartree-Fock approach due to the inclusion of the exchange-correlation energy,

but unfortunately an exact computation of the exchange-correlation potential remains

complex to handle [39]. In Section 2.5 the physical meaning and class of exchange-

correlation potentials are discussed.

2.5 The exchange-correlation energy

The exact formulation of the exchange-correlation energy is unknown and hence it needs

to be approximated. Several methods have been developed to deal with this problem.

The simplest and one of the most remarkable exchange-correlation approximations is

the local density approximation (LDA) [12]. The generalized gradient approximation

(GGA) [13, 14] is a class of widely used exchange-correlation energy functionals.

The main deficiency of the LDA is it failure to accurately predict some properties of

materials, especially the band gaps [40, 41, 42, 43] of most semiconductors. The GGA

functionals yield more accurate atomization energies [44, 45, 46], total energies [47, 48]

and barriers of chemical reactions than the LDA. Other notable exchange-correlation

functionals are the LDA+U [49, 50], GGA+U [51] and hybrid functionals.

2.5.1 The local density approximation (LDA)

As mentioned above, one of the earliest approximations is the local density approxima-

tion (LDA) [12]. By using the LDA, the energy of an electronic system is constructed to

assume that the exchange-correlation energy per electron in a particular region in the

electron gas is equal to the exchange-correlation energy per electron in a homogeneous

electron gas with the same electron density. With this assumption, we can write the
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exchange-correlation functional EXC [n] as

ELDAXC [n] =

∫
n(~r)εXC(n)dr, (2.53)

where εXC(n) is the exchange-correlation density for the homogeneous electron gas

and n(~r) is the electron density. The above approximation also applies to a spin zero

system, but for a spin polarised system, one simply applies the same assumptions using

the exchange-correlation energy density of the spin-polarised electron-gas εXC(n↑n↓).

When spin is included, the LDA is called the local spin density approximation (LSDA)

and is written as

ELSDAXC [n↑, n↓] =

∫
d3rn(~r)εXC(n↑, n↓). (2.54)

The LSDA can be implemented using DFT which is termed local spin density functional

theory (LSDFT). The LSDA can be described in terms of the up and down spin densi-

ties, but it is usually expressed in terms of the total charge density n(~r) = n↑(~r)+n↓(~r)

and the local spin polarization ζ(~r) as

ζ(~r) =
n↑(~r)− n↓(~r)
n↑(~r) + n↓(~r)

. (2.55)

One of the advantages of using the LDA and LSDA exchange-correlation is that

they are not computationally demanding. The LDA and LSDA have been used to

predict geometric structure and other properties of materials, but one major short fall

the inability to accurately predict the electronic properties of semiconductor materials,

most especially the band gap, which is severely underestimated, and defect charge state

transition levels [19, 41, 42, 52].

2.5.2 The generalised gradient approximation (GGA)

The GGA goes beyond LDA by using not only the information about the density

at a particular point n(~r), but also including the gradient 5n(~r). Within this ap-
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proximation, the non-homogeneity of the true electron density is considered and the

exchange-correlation functional is written as

EGGAXC [n] =

∫
n(~r)εXC(n(~r),5n(~r))dr. (2.56)

There are many forms of GGA functional that are used for different calculations. These

include: PBE functional proposed by Perdew, Burke and Ernzerhof (PBE) [13], PBEsol

which is a modification of the PBE for solids [53], Becke exchange [54], Lee-Yang-Parr

(LYP) correlation [52, 54, 55] and Meta-GGA [54].

The generalised gradient approximation (GGA) exchange-correlation energy has

been known generally to improve the prediction of the structural and electronic prop-

erties of some atoms, molecules, and solids compared to the LDA. The GGA functional

has recently become popular in DFT calculations since it yields more accurate esti-

mates for total energies [44, 45, 46, 47, 48] and barriers of chemical reactions [56] than

LDA and LSDA. The GGA has been used to correctly predict the bulk elastic proper-

ties of several materials. One of the most significant advantages of the GGA over the

LDA is the prediction of the correct ferromagnetism configurations of the ground state

BCC iron [57]. The lattice constants calculated using LDA are in general 2% smaller

than the experimental ones, while GGA improves this in most cases but often slightly

overestimates the experimental values [19, 52].

Even though the true ground state energy of a given system can be approximated

by DFT, DFT with GGA and LDA have some major shortfalls which include the

underestimation of the band gap of semiconductors and insulators, and inaccurate

weak Van der Waals attractions [58].
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2.5.3 Hybrid functionals

The failure of both the LDA and GGA in predicting the band gap of several materials

and the underestimation of the band gaps and other properties of charged defects in

semiconductors materials [19, 20] has been rectified by hybrid functionals. Hybrid

functionals have been very successful and accurate in the prediction of the band gap of

several materials [19, 20]. The hybrid exchange-correlation energy functional EhybXC [n]

is defined as

EhybXC [n] = αEHFX (ω) + EGGAC − (α− 1)EGGAX , (2.57)

where EHFX is the exact non-local Hartree-Fock exchange energy, EGGAC and EGGAX

are the semilocal GGA correlation and exchange functionals, respectively, α is a mix-

ing parameter and ω is an adjustable parameter. Several hybrid exchange-correlation

functionals recently developed include B3PW91, B3LYP [59, 60], PBE0, HSE03 and

HSE06. The B3PW91 [54] was the first to be introduced in 1993, subsequently in 1994

and 1999, the B3LYP [59, 60] and PBE0 [61, 62], respectively were developed. Later

in 2003, a new class of the hybrid exchange-correlation functional known as HSE was

introduced by Heyd, Scuseria and Ernzerhof. The HSE03 [15] and HSE06 [63] screened

hybrid functionals usually predict better results for the band gap[54] compared to other

exchange-correlation energy functionals.

2.5.3.1 Hybrid functionals based on a screened Coulomb potential

The hybrid density functional with the Hartree-Fock exchange, has improved many

GGA results. This improvement was as a result of the inclusion of the non-dynamical

correlation which normally delocalized the GGA exchange hole [54, 63]. In solid-

state physics and quantum chemistry, the screening of the Coulomb potential has been

adopted to eliminate the divergence of the short range (1
r ) potential [15]. The HSE

hybrid functional addresses the effect of the short and long range potential by applying
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the screened Coulomb potential to the exchange interaction in order to screen the long

range part of the HF exchange. To address the last statement, the Coulomb operator

was separated into two parts namely: the short range (SR) and the long range (LR)

potential which are expressed as [64]

1

r
=
erfc(ωr)

r
+
erf(ωr)

r
, (2.58)

where erfc(ωr) is an error function, erfc(ωr)
r and erf(ωr)

r represent the SR and the LR

parts of the potential, respectively. The erfc(ωr) = 1− erf(ωr) (is the complimentary

error function and ω an adjustable parameter). If ω is adjusted to zero, the SR term

becomes the full coulomb operator and the LR term becomes zero. The opposite is

true when ω −→∞.

Figure 2.1: A plot showing the experimental (red) and screened exchange (SX) theoretical
band gap as predicted by the HSE (dark blue) and GGA-PBE (green). Reproduced with
permission from Clark and Robertson [65].
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2.5.3.2 HSE06 hybrid functional

The mixing parameter for HSE06 is 25% which modifies the hybrid functional equation

in Equation (2.57) to

EHSE06
XC = 0.25EHF,SRX (ω) + 0.75EPBE,SRX + EPBE,LRX + EPBEC . (2.59)

The Perdew, Burke, and Ernzerhof (PBE) [13] is a unique version of the GGA. For the

HSE hybrid functional, the optimal value of ω lies between 0.2 and 0.3 Å−1 [63]. The

proposed 25% of the mixing parameter is to be adjusted to suite the type of system

being investigated. Succinctly speaking, the 25% mixing parameter is not a generic

feature for all systems. The 25% and 0.2 Å−1 mixing and adjustable parameters,

respectively, which yield better thermochemical results and provides good accuracy for

band gaps and lattice constants in solids [63] were used for all the results presented in

this thesis. Figure 2.1 shows a comparison of the experimental and the calculated band

gap of some materials. Table 2.1 shows the band gap values of materials as predicted

by the LDA, GGA and HSE hybrid functionals.

Table 2.1: The theoretical and experimental band gap results of some selected materials
in eV.

Material LDA GGA HSE Exp
Arc 8.16 8.74 10.34 14.20
Ca 4.11 4.21 5.42 5.48
Sib 0.61 0.61 1.17 1.17
Ge 0.00 0.00 0.80e 0.78a

AlN c 4.17 4.18 5.81 6.19
ZnO c 0.75 0.80 2.49 3.44
MgSeb - 1.70 2.60 3.6d

MgTeb 2.26 2.34 3.01 3.47d

MgOc 4.70 4.68 6.67 7.83
aRef [19], bRef [48],

cRef [66],dRef [67, 68].
eWith spin orbit interaction.

The HSE06 functional properly describes the electronic structure of all group-IV
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semiconductors and also predicts highly accurate defect charge state transition lev-

els [19]. In addition to the accurate prediction of semiconductor band gaps, the HSE

has been used to accurately predict the electronic properties of materials with elec-

trons that are highly localized. Examples are the rare earth elements that have highly

localised f and d states in their valence shells [69, 70, 71].

2.6 Periodic boundary conditions

In order to use DFT to model the properties of real crystals or to calculate the bulk

properties of solids, the problem of infinitely many electrons must be resolved. To

address this problem, the periodicity of the solid crystal structure must be taken into

account when solving the Kohn-Sham equation. In a real solid system, there are too

many electrons and ions to model computationally. To solve this problem, the effec-

tive potential VXC in the Kohn-Sham equation must be periodic and the one-particle

wavefunction must also be written in the form required by Bloch’s theorem.

2.6.1 Bloch’s theorem

Considering the Hamiltonian Ĥ for a single particle in a potential V (~r) as

H =
−52

2
+ V (~r), (2.60)

where 52 is the kinetic energy operator. Bloch’s theorem [72] considers electrons

subjected to a periodic potential V (~r) which is generated by the periodic structure of

the solid. Bloch’s theorem states that the one-particle wavefunction Ψ
(n,~k)

(~r) can be

written as

Ψ
(n,~k)

(~r) = ei(
~k·~r)u

(n,~k)
(~r), (2.61)
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where u
(n,~k)

is a function with the periodicity of the lattice, ~r is the position vector, the

exponential term is the phase, ~k is the wave vector that is chosen in the first Brillouin

zone due to the translational symmetry and n is the band index. The band index is

a quantum number that corresponds to the appearance of independent eigenstates of

different energies but with the same ~k. An alternative formulation of Bloch’s theorem,

expressly showing the translational symmetry, is

Ψ(n,k)(~r + ~R) = ei(
~k·~R)Ψ(n,k)(~r), (2.62)

where ~R is a real space lattice vector. According to Equation (2.62), the eigenstates of

Ĥ were chosen to associate with each Ψ a wave vector ~k. Bloch’s theorem has helped

to reduce the infinitely many electron problem to an infinitely many k-point problem

inside the Brillouin zone [73].

2.6.2 Energy cut-off

To deal with the problem of infinitely many k-points, plane waves are used to expand

the periodic function u
(n,~k)

in the form

u
(n,~k)

(~r) =
∑
G

C
(n,~k)

(~G)ei(
~G·~R), (2.63)

where ~G is the reciprocal lattice vector defined through ~G· ~R = 2πm (m is an integer),

~R is a real space lattice vector and the C
(n,~k)

are plane wave expansion coefficients.

The electron wavefunctions can be expressed as a combination of an infinite number of

discrete plane waves from a basis set and is given as [74]

u
(n,~k)

(~r) =
∑
G

C
(n,~k)

(~k + ~G)ei(
~k+ ~G)·~R. (2.64)

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



If En(~k) is an energy eigenvalue, then for all reciprocal vectors ~G, En(~k + ~G) is an

eigenvalue. The number of plane waves must be restricted since it is not possible to

consider an infinite basis set. To restrict the number of plane waves, there must be

an imposed upper boundary to the kinetic term of the plane waves. This imposed

boundary is called the energy cut off Ecut, which is given as

|~k + ~G|2

2
< Ecut. (2.65)

2.6.3 Hellmann-Feynman theorem

The Hellmann-Feynman theorem [75, 76] or the force theorem states that the force on

the atoms is given as in classical electrostatics

Fi =
∂Etot
∂Ri

= −[
∂〈ψi|H|ψi〉

∂Ri
+
∂Eion
∂Ri

], (2.66)

where Ri is the atomic position, ψi is the wavefunction of the Hamiltonian H. Equa-

tion (2.66) is the differential form of the Hellmann-Feynman theorem. The Hellmann-

Feynman theorem is a useful tool in solid state and atomic physics. In quantum me-

chanics, the Hellmann-Feynman theorem allows a single way of defining a generalized

force on eigenstates of the Hamiltonian, associated with the variation of some of its

parameters. In order to avoid incurring errors that arise from the use of unconverted

wavefunctions, this theorem should only be implemented once the wavefunctions are

close to self-consistency since the force is not a variational quantity.

2.6.4 Self-consistent iterative process

In order to find the (local) minimum energy atomic configuration, a self-consistent

total energy calculation is required and all the forces acting on the atoms must be min-

imized through geometric relaxation. The ionic forces are obtained using the Hellmann-
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Feynman theorem [75, 76].

An iterative self-consistent approach is also required to calculate the electronic

charge density. In this self consistent method, an initial trial electron density is used

to calculate the effective potential Veff and the exchange potential VXC . In this

process, the Kohn-Sham wavefunction equations are written in the form of a plane-wave

basis set. After the Kohn-Sham equations have been solved, the electron density and

total energy are computed and results displayed if converged to the required criteria.

Otherwise, the effective potential due to the calculated electron density is used to find

a new electron density therefore repeating the whole process until there is convergence.

See Figure 2.2 for a flow chart illustrating the self-consistent iterative process.

Figure 2.2: A schematic flow chart illustrating the self consistent field calculation of the
DFT.
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2.7 Pseudopotentials

Despite the simplification of the initial many-body problem, it is still computation-

ally expensive to solve for a large system. Pseudopotentials are used to simplify the

complexity surrounding the many-body problem of a large system [77]. The idea of

the pseudopotential is to freeze the core-state (electrons in the nucleus) since the core

electrons are not involved in chemical bonding [78]. Pseudopotentials are built to re-

produce the true potential of the nucleus outside a sphere of a given radius, while inside

the sphere, they are artificially smoothed as displayed in Figure 2.3.

Figure 2.3: A schematic illustration of the all electron potential V ∼ Z/r (dashed
line). the pseudopotential Vpseudo (solid line) and their corresponding valence wave function
(ΨV∼Z/r) and pseudo-wave function (Ψpseudo). Reproduced with permission from Makov
and Payne [79], and Schwerdtfeger [77].

By using pseudopotentials, the core electrons are removed, a smaller plane wave
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basis set is required and the potential does not go to ∞ as the centre of the nucleus is

approached. The general procedure for generating the pseudopotential is as follows:

1. Choose the generation parameter (exchange-correlation potential) cut-off radius

(rc) as well as the valence-core configuration.

2. Choose the pseudopotential form to be used.

3. Then carry out an all-electron density-functional calculation for a reference atom.

4. Calculate the wavefunctions and eigenvalues for an initial set of chosen param-

eters (exchange-correlation potential) and then compare their values with the

all-electron calculated values.

5. A self consistent pseudopotential is then generated only if the results of the eigen-

values and wavefunctions are all equal to those from all electron calculations. In

a situation where the results are different, a new set of parameters is chosen and

the wavefunction again is calculated for another set of chosen parameters.

By using the pseudopotentials, the core electrons are removed, a smaller plane wave

basis set is required and the potential does not go to ∞ as the centre of the nucleus is

approached.

2.7.1 The projector-augmented wave method

The projector-augmented wave (PAW) method was introduced by Blöchl in 1994 [80].

This method combines the advantages of the all-electron and pseudopotential method.

The PAW method is based on the transformation between the pseudo wavefunction Ψ̃n

and the exact all electron wavefunctions Ψn. The n appearing in Ψn, is the composite

quantum number for the band, spin and k-point. The true or exact wavefunctions Ψn
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are related to the pseudo wavefunctions Ψ̃n by a linear transformation [80]

|Ψn〉 = |Ψ̃n〉+
∑
i

(|Φi〉 − |Φ̃i〉)ci, (2.67)

where i is the atomic index and ci is the linear coefficient functional of the pseudo wave-

function which contains the set of projector functions. According to Equation (2.67),

the exact all-electron wave function is expressed in three terms: the pseudo wavefunc-

tion Ψ̃n, the Φi (a set of all electron partial waves), which is similar to the all-electron

core state Ψn, and lastly, the Φ̃i (a set of pseudo partial waves), which is similar to the

pseudo core states Ψ̃n. Advantages of the PAW are as follows:

1. There is no need to deal with the inert core electrons. Projector functions are

localized inside the augmentation spheres.

2. The valence pseudo wave functions are smooth and without nodes inside the

augmentation spheres, i.e Φi = Φ̃i.

3. The PAW method provides access to full all-electron wave functions and electron

density which is helpful for orbital-dependent exchange-correlation functionals.

2.8 Brillouin zone sampling

Under periodic boundary conditions, the Kohn-Sham orbitals are evaluated at a point

k within the Brillouin zone (BZ). A k-point is a reciprocal lattice vector used to label

an eigenstate (an electronic level), and it represents a position in the first BZ of a solid

system [81, 82]. Under periodic boundary conditions, it is mandatory to convert the

integral over the BZ into a summation over a set of discrete points of k-space. An

integral function F (r) over the BZ can be expressed as [82]

F (r) =
Vcell
(2π)3

∫
BZ

f(k)d~k =
∑
i

ωif(k)d~k, (2.68)
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where Vcell is the unit cell volume, f(k) is the Fourier transformation of F (r) and ωi

is the weighting factor. The generation of an optimal set of k-points for both periodic

and aperiodic systems has already been reported [83]. When dealing with defects in

semiconductors, especially those that involve charged states and charge transfer within

a defect system, a large supercell is needed to avoid defect-defect interaction. For such

a system, the volume of the BZ (VBZ) is related to the volume of the supercell (VScell)

by

VBZ =
(2π)3

VScell
. (2.69)

For large supercells, the BZ volume is small, and consequently, less k-points are needed

to sample it. In the results of this thesis, k = 0 (which is called Γ (gamma) point

sampling) was used to sample the BZ in addition to the Monkhorst-Pack (MP) [73]

k-points spacing. The MP k-mesh is a set of k-points generated in an evenly spaced

(kx, ky, kz) grid spread through the BZ. For more accurate results, the crystal lattice,

the space group symmetry and the supercell size play a major role in determining the

choice of the MP k-mesh to be used.
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Chapter 3

Theory of defects

3.1 Introduction

This chapter focuses on crystal structures and the theory of point defects and impuri-

ties in semiconductors. In Section 3.2 and Section 3.3, crystal structures and electronic

properties of solids are discussed. Interstitials, vacancy and impurities, which are ex-

amples of point defects, are discussed in Section 3.4. A brief discussion of defects in

semiconductors is presented in Section 3.5. Other properties of defects in semiconduc-

tors (such properties as metastability, negative-U and optical properties) are discussed

in Section 3.6. In Section 3.7, this thesis focuses on the history and recent development

of Ge as a semiconductor material. Finally, point defects observed in Ge and their

importance towards the development of Ge-based microelectronics material technology

are discussed in Section 3.8.

3.2 Crystal structure

Atoms in a perfect crystal are orderly arranged. Atoms are located at a unique spec-

ified sites known as the lattice points, which form a regular periodic structure. To

reproduce the whole perfect crystal structure a primitive unit cell is defined, which
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is the smallest volume that is periodically translated to reproduce the whole crystal

structure [72]. For Ge, there is one predominant crystal structure, a diamond like 3D

structure with tetrahedrally coordinated atoms, which can be characterized as sp3 hy-

bridized [84]. A schematic diagram of diamond structure of Ge is shown in Figure 3.1.

The physical dimensions of a unit cell in a three-dimensional lattice are called the lat-

tice constants referred to as a, b, and c. In the case of a cubic crystal structure, for

example zincblende, all the constants are equal, i.e a = b = c.

Figure 3.1: A schematic diagram of a unit cell showing the diamond structure of Ge.

3.3 Electronic properties of a solid

Band structure and total density of states (DOS) are plotted to study the electronic

properties of pure, doped and semiconductors with defects. Primarily, the electronic

properties of a solid such as the band gap and the DOS play an important role in the

selection of a good semiconductor material such as Ge [3]. For the electronic band

structure, the key properties are the effective mass of the charge carriers and the band

gap [21, 22]. In a band structure, the region between the valence band maximum

(VBM) and conduction band minimum (CBM) is called the band gap. There are no
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state in the band gap if the material is free from defects see Figure 3.2.
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Figure 3.2: A schematic diagram of electronic band structure.

The band gap is direct if the valence band maximum and the conduction band

minimum are located at the same electron wavevector (k), as shown in Figure 3.3. An

Figure 3.3: Diagram showing direct and indirect band gap of a semiconductor material.
Reproduced with permission from Singh [85].

indirect band gap means that a phonon is required to effect the change in the k-vector

required to transfer an electron from the VBM to the CBM (or vice versa). [86]
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3.3.1 Band gap of germanium

The band gap of Ge has been studied both experimentally and theoretically. The band

gap of Ge at 300 K and 0 K are 0.67 and 0.78 eV [87, 88], respectively. Before the

introduction of HSE hybrid functionals, DFT incorrectly predicted the band gap of Ge

when using the GGA or the LDA. By using the GGA or LDA, Ge was predicted to be

semi-metal (having no band gap) [19, 89]. However, HSE hybrid functionals correctly

predict the band gap of Ge [19] (see Figure 3.4). Several reports on the band gap

energy of Ge as predicted by HSE hybrid functionals which were in agreement with the

experimental band gap at 0 K have been published [90, 91, 92, 93, 94].
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Figure 3.4: A schematic diagram of band structure of Ge without spin-orbit coupling as
predicted by (a) HSE hybrid functional, (b) GGA and (c) LDA.
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3.4 Defects

The quality of a Ge based device depends on the amount of impurities and the number

of lattice defects of the crystal. However, in reality there is no crystal that is defect

free. Defects occur in many solid-state materials such as semiconductors, metals or

insulators [95, 96]. In this thesis, point defects in Ge, a semiconductor, is the main

subject of interest.

3.4.1 Classification of defects

In crystalline solids, the crystal accommodates a large number of different kinds of

defects. The nature and equilibrium concentration of a defect depends primarily on the

temperature, pressure and composition of the system, imposed during the annealing or

curing process. Imperfections are usually classified as extended defects or point defects.

Both defect types influence the properties of a semiconductor.

3.4.1.1 Extended defects

Extended defects are usually classified by the number of dimensions in which they are

extended. These include the atomic size, volume, surface and line defects [95].

1. Line defects: A dislocation is an example of a line defect. It occurs when atoms

of the crystal lattice are misaligned. Figure 3.5 shows an example of dislocation.

Dislocations are used to explain the unexpectedly low critical resolved shear stress

in which single crystals of metal undergo permanent or plastic deformation.

2. Volume defects: Any volume differing in structure, composition, orientation

from the rest of the crystal matrix is a volume defect.

3. Surface defects: Surface defects which are also called area defects are free

surfaces or interfaces between distinguishable volumes. The interfaces surround-
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ing all types of defects are also known as surface defects, e.g. twin and domain

boundaries. For more information on extended defects see Crawford (2013) [96]

Figure 3.5: Example of extended defects (dislocation).

3.4.1.2 Point defects

Point defects occur in most semiconductor materials, including Ge. Point defects in a

material changes the ordered crystal pattern at a specific isolated site, and they are

classified in two types namely: the extrinsic and intrinsic point defects [97].

1. Extrinsic point defects: The extrinsic point defects are atoms different from

the host, which are called solutes if they are purposely added to the material.

These different atoms are equally called impurities if they are not deliberately

added to a material. These different atoms may reside on a lattice site, in which

case it is called a substitutional solute (or impurity) or it may occupy an inter-

stitial site, in which case it is called an interstitial solute. A schematic diagram

showing the different extrinsic and intrinsic point defects is shown in Figure 3.6.

2. Intrinsic point defects: An intrinsic point defect is formed when an atom is
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Figure 3.6: A schematic diagram of point defects, showing interstitial atoms, substitu-
tional impurities and vacancies.

missing from a position that ought to be filled in the crystal, creating a vacancy,

or when an atom occupies an interstitial site where no atom would ordinarily

appear, causing an interstitial. In Ge, interstitial point defects are known to form

with higher formation energy than vacancies [90]. Vacancies, on the other hand,

are present in a significant concentration in Ge. For an atom to move easily

from one crystal lattice site to another, it is required that the target site must

be vacant. Concentrations of the Ge vacancy influences the rate of diffusion of

impurities [98, 99, 100]. A defect that involves paired vacancies on the cation and

anion sublattices is called a Schottky defect. When the defect consists of a pair

of interstitial and vacancy defects, it is called a Frenkel defect. Another kind

of intrinsic point defect is the anti-site defect. The anti-site defect, occurs in

a compound whose atoms are less strongly ionized and it becomes energetically

possible for species to exchange sites, so that an X-atom is placed on the Y-atom

sublattice or Y-atom placed on the X-atom sublattice. In addition, combinations

of these simple point defects are often possible, e.g., VGe-VGe (di -vacancies),

TmGe-VGe vacancy-substitutional pairs, NGe-VGe vacancy-impurity pairs, or even

more complex defects.
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A schematic diagram of a point defect is shown in Figure 3.7, which depicts di-

interstitial in Ge. In this Ge di -interstitial, two Ge atoms were added to the pure

crystal structure.

Figure 3.7: A schematic diagram of a Ge di-interstitial. This crystal structure contains
two Ge interstitial atoms at the tetrahedral and split[110] sites.

3.4.2 Bulk defects

Another type of defect is the bulk defect, these defects are regions which normally

consist of a combination of both the line and the point defects. This thesis will not

consider on bulk defects, for more information on these kind of defects see Ref [3].

3.5 Defects in semiconductors

Crystalline semiconductor solids accommodate a large number of defects as mentioned

earlier. The concentration and nature of defects depend primarily on the temperature,

pressure as well as the composition of the system [3, 97]. Defects, which under normal

conditions, are generally categorized into point defects, line defects, planar defects

and bulk defects have the tendency to influence the mechanical, transport, electrical,

electronic, thermodynamic and optical properties of semiconductors [3, 48, 69, 92].

Defects can influence a semiconductor material negatively, for example some defects act
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as recombination centres [95, 97]. Defects can also influence semiconductor material

positively which in turn enhances the material performance, for example the p- or the

n-type doping which are responsible for the change of the majority carrier type [95, 97].

Point defects in Ge have been intensively studied theoretically and experimentally [3].

However there are still major unexplored point defect interactions which influences the

electronic, thermal and optical properties of Ge. Specifically, little work has been done

on systems that involve charged states and charge transfer.

3.5.1 The Fermi energy

The Fermi energy (εF ) is defined with reference to the VBM [101], and usually lies

between the VBM and the CBM i.e, EV < εF < EC. Mathematically, the εF is

expressed as

εF = EV +4εF , (3.1)

where EV is the energy level of the VBM, EC is the energy level of the CBM and 4εF

is the position of the Fermi level above the valence band.

3.5.2 Chemical potential

The chemical potential (µ) describes the energy required when atoms are taken from

or returned to atomic reservoirs to build or change a crystal structure [101, 102]. The

chemical potential is the partial derivative of the Gibb’s free energy with respect to the

number of atoms. The µ of a specific element can be obtained from the energy of the

most stable structure of the pure element. For a supercell of N atoms of Ge and total

energy, Etot(Ge), the chemical potential of Ge is found as

µGe =
Etot(Ge)

N
. (3.2)
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3.5.3 Defect concentrations

In a “dilute regime” in which defects do not interact with each other, defects require

energy to form. According to the Boltzmann distribution, the concentration (C ) of

defects in a crystal is given by [102, 103]

C = N0 exp(−4G/kBT ), (3.3)

where kB and T are the Boltzmann constant in eV/K and the temperature in Kelvin,

respectively. The number of possible defect sites is N0 (per bulk quanta) and 4G is

the change in the Gibbs free energy of the system. 4G is expressed as

4G = 4E + P 4 V − T 4 S, (3.4)

where 4E, 4V , P, T and 4S are the change in total energy (energy of formation),

change in volume, pressure, temperature and change in entropy, respectively. Because

the 4V and 4S are negligible for most crystalline solids at moderate temperature and

pressure, the Gibbs free energy of the system may be approximated by the formation

energy Ef (4G≈4E=Ef ). Equation (3.3) can now be written as

C = N0 exp(−Ef/kBT ). (3.5)

According to Equation (3.5), an increase in formation energy leads to a decrease in the

concentration of the defects. Furthermore, this implies that high formation energy will

lead to low concentration of the defect.

3.5.4 The formation energy

The formation energy is defined as the energy which is required to form a defect from

its component atoms taken from chemical reservoirs of pure elements [102, 103]. The
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concentration (C) of defect in thermodynamic equilibrium is related to the formation

energy (Ef) through the Boltzmann constant, see Equation (3.5). For a charged defect,

Ef also depends on Fermi energy (εF ). Ef of defects are derived directly from total

energies, allowing the calculation of equilibrium defect concentration [103]. To calculate

the defects formation energy, the total energy E(d, q) for a supercell containing the

optimized defect d in its charge state q must be determined. The defect formation

energy Ef(d, q) is given as [103, 104]

Ef(d, q) = E(d, q)− Etot(pure) +
∑
i

4(n)iµi + qεF , (3.6)

where Etot(pure) is the energy of a supercell without a defect, 4(n)i is the difference in

the number of constituent atoms of type i in the defect and pristine supercell (4(n) < 0,

when an atom is added and 4(n) > 0 when an atom is removed) and µi is the chemical

potential of the atom.

3.5.5 The defect charge states

Charged defects may be investigated by either removing or adding of electrons to the

defect. Defects charge states can assume +1, +2, +3 when one, two, three electrons

are removed from the valence shell, respectively, or −1, −2, −3 when one, two, three

electrons are added to the valence shell of the defect, respectively. In this report, the

charge states of defects considered were limited from −2 to +2 as other states were not

found within the thermodynamically accessible region.

3.5.6 Thermodynamic transition energy (electrical levels)

Point defects are known to increase the internal energy and the entropy of crystals

because of the number of ways the defect atoms can be distributed on lattice posi-

tions. At any temperature above the 0 K, the free energy will be minimum for a defect
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concentration which is determined by the balance of the entropy and energy contribu-

tions [101, 102, 103]. This method requires a special calculation of the energy needed

to add electrons to (electron affinity) or take away electrons from (ionisation energy) a

defect [105]. Lany et al [101] evaluates a unique method of calculating the ionization

energy (IA) and the electron affinity (EA). The IA is mathematically expressed as

IA = EN
0 − EN

+1, (3.7)

while the EA is expressed as

EA = EN
−1 − EN

0 , (3.8)

where EN
q (for q=−1, 0, +1) is the total energy of a perfect cell with charge state q

containing N number of atoms. The electrical levels of a defect corresponds to the

positions of the Fermi energy at which a charge state change occurs is referred to as

charge state transition energy level ε(q/q′). The defect charge state transition level is

the Fermi energy for which the formation energy of charge state q and q′ are equal and

is given by [102, 104]

ε(q/q′) =
Ef(d, q; εF = 0)− Ef(d, q′; εF = 0)

q′ − q
. (3.9)

3.5.7 The binding energy

The binding energy Eb is defined as the energy required to split up a defect cluster into

well separated non-interacting defects [94, 106]. This can be expressed mathematically:

Eb = Ef
A + Ef

B − Ef
AB, (3.10)

where Ef
A, Ef

B and Ef
AB are the formation energies of defect A, B and AB. Equa-

tion (3.10) could be interpreted as the reduction in energy of the bonded structure
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with respect to the isolated components. Positive Eb implies that the defect is stable

and can not without formation energy input be separated. The binding energies of

some complexes as well as vacancy complex in Ge are shown in Table 3.1.

Table 3.1: Table showing calculated results of binding energies of impurity and vacancy
(V) complexes in Ge.

Defects Binding energy (eV)
BV −0.33
CV 0.07
PV 0.52

CBV 0.11
CVAs 0.66
CVP 0.60

These results where taken from Ref [107].

3.5.8 Defects energy levels

1. Acceptor and donor levels: Point defects are intentionally added to semicon-

ductors,in order to help control the type and concentration of charge carriers. An

acceptor level is formed by electron deficient solutes which cause holes in the va-

lence shell of the constituent atoms. Solutes with an excess of electron are called

donors. While transition levels of the type ε(+2/+1) and ε(+1/0) are donors,

the transition levels of the type ε(0/−1) and ε(−1/−2) are called acceptors.

2. Shallow and deep levels: Intrinsic point defects in semiconductors can be

grouped according to the localized band gap states that they form. States that

have energies close to either the CBM or the VBM are called shallow levels. If a

defect is likely to be thermally ionized at room temperature, it is conventionally

referred to as a shallow level. Transition states with energies far away from both

the CBM and VBM are referred to as deep levels. In addition, a deep level could

be expected when a wave function is localized on a length scale of an atomic

bond. A good example of shallow defects are impurities with (shallow) donor or

(shallow) acceptor states, due to the loosely bound electron or hole around them.
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Figure 3.8 and Figure 3.9, show schematic diagrams of both the shallow and

deep levels of a given defect charge state transition levels. Defects that can act

both as donors and acceptors are called amphoteric

Figure 3.8: A schematic diagram showing plot of formation energy and the Fermi energy
of a defect in charge state +1, 0 and −1. The solid lines represent the Ef as defined in
Equation (3.6). In this illustration, the defect induced two charged state transition levels;
a deep donor and acceptor at ε(+1/0) and ε(0/−1), respectively. The thick blue lines
indicate the thermodynamically stable charge state for a given Fermi energy. Reproduced
with permission from Freysoldt and co-workers [104].

Figure 3.9: A schematic diagram showing the positions of both shallow and deep electrical
levels within the band gap. Adapted from Ref [66].
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3.6 Other properties of defects in semiconductors

3.6.1 Metastability of defects

A defect or defect complex is said to be metastable when the defect or defect com-

plexes, has in at least one charge state, more than one different atomic configurations

(configuration A and B) that are stable at local minima. Where one configuration (say

configuration A) is the minimum energy in a particular charge state, and the other

configuration B is stable in a different charge state, the phenomenon is referred to as

charge state controlled metastability. Here the transformation between two or more

configurations is controlled by an energy barrier and the processes are fully reversible.

Figure 3.10: Schematic diagram of defect metastability in semiconductors. Source
Ref [108].

Charge state controlled metastability suggest that even though two different config-

urations of the same defect type had the same number and type of atoms, the stability

of one configuration over the other is charge-state dependent [109, 110, 111]. If a defect

can only change in two different configurations, the defect is regarded as a bistable

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



defect, but in a situation where the defect can change in more than two configurations,

it is regarded as a multistable defect [110, 111]. Figure 3.10 shows a schematic config-

uration coordinate diagram of a metastable defect, where in configuration A the defect

is stable in the neutral state and in configuration B the defect is stable in the ionised

state.

3.6.2 Negative U

In a three level system, it is expected that, due to Coulomb interaction between the

electrons, the first ionisation energy would be less than the second ionisation energy.

This difference is referred to by the quantity U. The effective-U (U eff ) parameter is

the energy difference between two consecutive transition levels [104]. Mathematically,

the U parameter is defined as

U eff = Ef
q+1 + Ef

q−1 − 2Ef
q, (3.11)

where Ef
q is the formation energy of a defect in its charge state q at εF = 0 . If the

U eff < 0, the U eff is called a negative-U.

This negative-U occurs as a result of large lattice distortion during atomic relaxation

of a particular system. This means that q = 0 state becomes thermodynamically

unstable against the formation of q = +1 and q = −1 charge states.

3.6.3 Optical transition energies of a defect

The calculation of different charge state transition levels can be related to the opti-

cal transition properties of a defect. Figure 3.11 illustrates schematically, the states

involved in the photoluminescence processes associated with a defect.
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3.6.3.1 Photoluminescence properties

An excited state can be produced by removing an electron from the VBM to the CBM,

in which a hole is left behind to relax into a defect state [112, 113, 114]. Consider

the lowest energy of a defect E(V xDyC0) in its equilibrium neutral state with fully

occupied x valence electrons in the outer shell with y defect electron levels and an

empty conduction band. With an energy cost Eabs, the defect is excited by removing

an electron from the defect state to the CBM [113, 114, 115, 116]. At this point the

defect is in its excited configuration E(V xDy−1C1) (upper curve of Figure 3.11).

Figure 3.11: Configuration coordinate diagram illustrating the optical transition proper-
ties of a defect.

After this process, the system relaxes via phonon emission and the energy shift

associated with this kind of relaxation is called the Franck-Condon shift (EFCS) [115,

116, 117]. The defect in its excited state can make a radiative transition to the ground

state resulting in a photoluminescence process with an emission energy (EPL). After

the transition, the defect relaxed via phonon emission to its true ground state. The true

ground state is reached after phonon emission [114]. The zero-phonon line (EZPL) is the
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transition energy associated with the luminescence process with no phonon emission.

The EZPL can be defined mathematically as

EZPL = E(V xDy−1C1)− E(V xDyC0), (3.12)

according to the definition of EPL, the exciton binding energy is defined mathemati-

cally [114] as

Eb = Egap − EZPL, (3.13)

where the Egap is the band gap energy. The Franck-Condon energy is usually calculated

as

EFCS = Eabs − EPL. (3.14)

3.7 Brief history of germanium

Germanium which was isolated from a rare mineral called argyrodite (Ag8GeS6) was

discovered in Germany in 1885 by Clemens A. Winkler. Ge is classified as a metalloid,

because it possesses both metal and non-metal properties. Ge has a unique charac-

teristic of transparency to near infrared electromagnetic radiation wavelength between

1600-1800 nm [3, 118, 119]. Ge has a high refractive index and low optical disper-

sion [119]. The first research on the electrical properties of Ge started in the 1920s.

During this period, Ge was used in rectifying diodes in microwaves radar receivers

during World War II. In 1947, Ge rose to new commercial and industrial application

importance. Ge was used by J. Bardeen [118] to produced an electronic transistor.

Subsequently, transistors made of Ge were used to manufacture telephones, computers,

hearing aids and radios. Things began to change in 1954 when it was discovered that

Ge based transistors have the tendency to fail at high temperature, and then Silicon

began to replace Ge. But silicon had a major deficiency because of its high impurity

53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



level (the technology at that time was able to produce Ge at a higher level of purity

compared to Si). Due to the high level of purity of Ge compared to Si, Ge was use in

the SiGe substrate in photovoltaic cells (PVCs) which were in high demand.

Germanium’s future looks bright due to its efficiency in solar technology because

cadmium-indium-gallium-selenium (CIGS) can be substituted by Ge. Ge also can be

substituted for Si in certain electronic applications because of its narrow band gap

and high electron-hole mobility [1, 118, 119]. The application of germanium (Ge) as

a promising material for complementary metal-oxide semiconductor (CMOS) technol-

ogy is attracting attention due to its narrow band gap, high carrier mobility and low

voltage operation [120, 121]. Table 3.2 shows the summarized electronic, physical and

mechanical properties of Ge. In the next Section 3.8, the properties of various well

known defects studied and their electrical levels in Ge are discussed.

Table 3.2: Table showing electronic, mechanical and physical properties of Ge. Unless
otherwise stated the properties of Ge were measured or calculated at 300 K.

Basic Parameters quantities
crystal structure diamond
period and group 4
Atomic number 32
group of symmetry O7

h-Fd3
number of atoms in 1 cm3 4.4×1022

Physical properties Auger recombination coefficient 10−30 cm6/s
Debye temperature 374K
density 5.3234 g/cm3

dielectric constant 16.2
electron affinity 4.0 eV
lattice constant (experiment∗) 5.658 Å

Mechanical properties bulk modulus 7.5×11011dyn cm−2

density 5.323 g cm−3

band gap experiment 0.66 eV (0.78 eV at 0 K)
Electronic properties band gap modelled 0.78 eV at 0 K

electron configuration [Ar]3d104s24p2

Other properties melting point 937◦C
infrared refractive index 4.00

∗(In agreement with modelled result). These data where taken from
Refs [122, 123, 124, 125, 126].

54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.8 Defects in germanium

The focus of this section will be the discussion of results of previous studies of point

defects in Ge. This section presents brief experimental highlights and concise DFT

theoretical modelling results of point defects in Ge.

As mentioned earlier, typical point defect are the self-interstitial (IGe), vacancy (V),

vacancy-complexes and substitutional impurities. All these point defect types in Ge

have previously been studied using well known experimental or theoretical techniques.

Recently, a number of papers have investigated the important point defects and metal

related point defects [3, 127, 128, 129, 130, 131] in Ge. Various theoretical investi-

gations [89, 100, 92, 132] have attempted to explain experimental results on process

induced defects[3, 4, 130, 133], radiation induced defects [8, 128, 129, 131] and grown-in

defects [132, 131] in Ge. The first experimental observation of IGe was by means of

perturbed angular correlation spectroscopy (PACs) [9] after electron irradiation of Ge.

Experimental studies revealed that Ge self-interstitial (IGe) occurs at a low formation

energy but with lower concentration than the Ge vacancy (VGe) [134, 105]. This implies

that VGe forms with a lower formation energy than the IGe. In addition to the lower

formation energy of the VGe, the VGe mediates the diffusion of both the p- and n-type

dopants in Ge [135, 136, 137].

By using various theoretical approaches such as DFT with LDA, GGA, LDA+U,

GGA+U and hybrid functional of HSE, modelling of important results of point defects

in Ge has been achieved. By using the GGA, Spiewak et al. [89] reported that the

IGe exist in three different configurations. The hexagonal (H), the tetrahedral (T) and

the split[110] dumbbell configurations. The split[110] configuration of the IGe, which

is the energetically most favourable configuration, forms an acceptor level located at

EV + 0.45 eV [89, 138]. On the other hand, the tetrahedral configuration of IGe acts

as a donor at EV + 0.11 and EV + 0.46 eV for the (+2/+1) and (0/+1) transition
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levels [89, 139], respectively. Self-interstitial reflection by Ge surfaces has also been

proposed [140] and recently, in a theoretical study, interstitials in Ge were found to be

bistable having a double donor when at a cage site, without any trace of an acceptor [98].

Several theoretical investigations of vacancies in Ge (VGe) have been reported in

literature. According to Spiewak et al. [134, 105] VGe in Ge induces a single acceptor

ε(0/−1) level at 0.02 eV above the EV and double acceptor ε(−/−2) level at 0.26 eV.

This result differs form the result of Fazzio et al. [134, 105, 141] who found the same

acceptor levels but at different energies, due to Fazzio et al. using a probably less

appropriate pseudopotential. Haesslein et al. [9] studied both point defects in electron-

irradiated Ge using PACs. They found two defect levels, one lying at EV+0.20 eV which

was attributed to the mono-vacancy acceptor state and the other, lying at EC − 0.04

eV, was assigned to a donor state of the IGe. The DLTS results of Zistl [142], which

revealed a level at 0.33 eV above the valence band, was also associated with the mono-

vacancy acceptor state. One can conclude that VGe lies somewhere between 0.20 and

0.33 eV above the top of the valence band. Haesslein et al. [9] concluded that the

defect lying at EV + 0.20 eV corresponds to the ε(0/−1) transition state of the VGe.

Recently, in order to improve the results of the VGe already reported by Spiewak et

al. [134, 105], the same authors carried out a HSE calculation of the VGe. In contrast

to previous results, HSE06 calculation suggests that the VGe displays multiple acceptor

levels located in the upper half of the band gap [90]. Recently, Weber et al. [91] used

HSE hybrid functional to investigate the role of dangling bonds (DB) and vacancies

in Ge. They found that the DB in Ge has no levels in the band gap since the only

acceptor (0/−1) level was present below the VBM. Furthermore, it was found that the

VGe has a much lower formation energy than the VSi, and is stable in a number of

charge states [138, 143].

Another type of point defect in Ge that has been reported in literature is the

di-vacancy and multi-vacancy. [19, 92, 144] The di-vacancy V2(Ge) has been studied
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previously using both an ab initio method and experimental techniques. But despite

the numerous theoretical and experimental breakthroughs made in the study of di−

and multi−vacancies, their properties and identification are still the subject of some

controversy. The results reported by Janke et al. [136] revealed a pair of electron

traps at EC−0.35 eV and EC− 0.32 eV, which anneal at 150◦C and are attributed to

V2(Ge). Results of multi−vacancies of Ge have been reported previously, according

to the report by Ishii et al. [145], the bonds in the Ge tri-vacancy are weak and the

tetra- and penta-vacancies have lower formation energies than the same defects in Si.

The report also revealed that the formation energy differences between the tetra and

penta-vacancies are 0.32 and 0.22 eV, respectively. Ishii et al. [145] also reported hexa-

vacancies with a formation energy of 8.49 eV. In addition, Ishii [145] argued that the

fourfold configurations of germanium tri-, tetra-, and penta-vacancies are not very stable

compared to silicon.

Recently, another kind of point defect in Ge was investigated theoretically. These

are the vacancy complexes, i.e. a complex with a dopant or other substitutional im-

purity in Ge. In a recent study by Chroneos et al. [107], the interaction between a

substitutional impurity and a carbon-dopant vacancy complex were studied and found

to bond in some cases and not in others. The report also suggests that dopant-carbon

pairs are not stable in Ge compared to their isolated components. However, if they

are formed during implantation, they will act as strong vacancy traps. By using GGA,

the indium vacancy complex in Ge (InGe-VGe) was studied and it was found that the

formation of large clusters tend to be energetically favourable–this result explains the

reasons why In ions are immobile [146]. Recently, Chroneos et al. revealed that it is

energetically favourable for the Ge vacancy to form clusters containing up to 4 arsenic

atoms that are tetrahedrally coordinated [146], and that the formation of clusters of

the phosphorous (P) vacancy complex in heavily doped Ge, is possible [147]. In an-

other development, by using GGA+U, Tahini et al. [144] reported that the E-centre
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arising from incorporated P and As vacancy complex in Ge can form in the 0, −1

or −2 charge states, whereas with Sb only the 0 or −2 charged states are predicted.

The electronic properties and thermal stability of centres which involved a vacancy

and an impurity atom (P, As, Sb, or Bi) in Ge crystals have been investigated ex-

perimentally by Markevich [130], where it was discovered that an E-centre is induced

by irradiation. According to Ref [130], the E-centre in Ge has three charge states:

−2, −1 and 0, and introduces two energy levels in the band gap. In addition, the

report revealed that shallow donor concentrations at equilibrium conditions for the −2

charged state of the vacancy and impurity atom pairs occur when the Fermi level is at

EC − (0.18) eV to EC − (0.22) eV. Markevich [130] in another development found that

the thermal stability of the E-centres in Ge increased with an increase in the size of

donor atoms. The A-centre is an oxygen interstitial atom near a lattice vacancy and is

an important impurity-defect pair in germanium. Chroneos et al. [148] reported that

the nearest neighbour carbon-oxygen (C-O) interstitial is significantly bound, whereas

the tin-oxygen (Sn-O) interstitial pairs are not [148]. Other point defects in Ge have

been studied and reported. DLTS results for the Mn impurity shows that it induces two

acceptor and one donor levels in the band gap of Ge [149]. Table 3.3 gives a summary

of some studies of point defects in Ge with their electrical levels.

Several extrinsic and intrinsic point defects in Ge have been studied using either

experimental or theoretical techniques. But on the other hand, rare earth (RE) defects

in Ge have not been previously reported either experimentally or theoretically. In

addition, the Ge di-interstitial has not been studied either. Part of this thesis will

address these issues and the important results of RE related defects in Ge.
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Table 3.3: Table showing studied defects in Ge and their electrical levels in eV.

Defect Techniques Electrical Levels Author
PACs ε(+1/0)=EC − 0.04 Haesslein et al. [9]

IGe LDA ε(+1/0)=EV − 0.11 Spiewak et al. [89]
� ε(+2/+1)=EV − 0.46 �

� ε(0/−1)=EV − 0.45 �

� ε(0/−1)=EV − 0.31 Moreira et al. [139]

PACs ε(0/−1)=EV + 0.20 Haesslein et al. [9]

LDA+U ε(0/−1)=EV + 0.02 Spiewak et al. [134, 105]
� ε(−1/−2)=EV + 0.26 �

VGe LDA ε(0/−1)=EV + 0.37 Fazzio et al. [141]
� ε(−1/−2)=EV + 0.39 �

HSE ε(−1/−2)=EV + 0.38 Weber et al. [91]
� ε(0/−1)=EV + 0.16 �

� ε(+1/0)=EV + 0.15 �

DLTS ε(0/−1)=EV + 0.33 Zistl [142]

V2(Ge) DLTS EC−0.35 Janke et al. [136]
DLTS EC−0.32 �

Multi−vacancies GGA - Ishii et al. [145]

Mn(Ge) DLTS EC−0.36 Lauwaert et al. [149]
� � EV+0.14 �

E-centre (AsV) GGA+U ε(−1/−2)=EV + 0.47 Tahini et al. [144]
� � ε(0/−1)=EV + 0.26 �

E-centre (SbV) GGA ε(−1/−2)=EC − 0.29 Coutinho et al. [17]
� � ε(0/−1)=EV + 0.31 Coutinho et al. [17]

� ε(0/−1)=EV + 0.30 Colder et al. [150]

� GGA ε(−1/−2)=EC − 0.37 Fage-Pedersen et al. [128]

DLTS EC − (0.18− 0.22) Markevich [130]

59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 4

Computational background

4.1 Introduction

In Chapter 2, the formalism and the method of handling many-body problems were dis-

cussed. In this chapter, details of the computational techniques used to obtain results

presented in this thesis are discussed. In Section 4.2, the computational code and tech-

niques such as VASP, SIESTA, AIMPRO etc. are mentioned with elaborate discussion

on VASP. Results reported in this thesis are obtained using the supercell approach.

The supercell techniques and the corrections adopted are discussed in Section 4.3 and

Section 4.4, respectively. In carrying out supercell calculations, several trade-offs be-

tween accuracy and computational time need to be made. These trade-offs include

supercell size, number of k-points and kinetic energy cut-off (Ecut). Section 4.5.1 fo-

cuses on the various tests of convergence performed. In each case, the optimum value

and an estimate of the error introduced was determined. Finally, in Section 4.6 and

Section 4.7, detailed calculations and validation of the computational techniques by

comparison with previous theoretical and experimental results are presented.
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4.2 Computational code and techniques

There are several density functional theory (DFT) based electronic structure codes for

both periodic and molecular structure calculations. These codes are Vienna Ab initio

Simulation Package (VASP) [54, 151, 152], Cambridge Serial Total Energy Package

(CASTEP) [79], QuantumEspresso (formerly called the PWscf) [153], Spanish Initiative

for Electronic Simulations with Thousands of Atoms (SIESTA) [154, 155] and Ab initio

Modelling PROgram (AIMPRO) [156]. Each of these codes has their unique advantages

over others. For calculations involving defects in semiconductors, the VASP [48, 54],

QuantumEspresso [157], AIMPRO [156, 158, 159] and SIESTA [154, 155] have been

used to predict the geometric and electronic structures, thermal and optical properties

of several semiconductor materials including Ge. The results presented in this thesis

were calculated using VASP.

4.2.1 The Vienna ab initio simulation package

VASP is a computer program for atomic scale material modelling by electronic structure

calculations and quantum-mechanical molecular dynamics (QMMD) from first princi-

ples [54, 160]. VASP computes the solution to the many-body problem Schrödinger

equation within the framework of DFT. The HSE hybrid functional is also implemented

in the VASP code. Other methods such as the Green’s function, many-body pertur-

bation theory, are also available in VASP. In VASP, the electronic density, orbital and

local potential are expressed in a plane wave basis set [161]. Interactions between the

electrons and ions are portrayed using one of the following approximations: the norm-

conserving pseudopotential (NCP) [162], the ultra-soft pseudopotential (UPP) [163]

or the projector augmented wave (PAW) technique [152, 164]. In order to deduce the

electronic ground state, VASP makes use of iterative matrix diagonalisation techniques,

such as the residual minimisation method with direct inversion of the iterative subspace
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(RMM-DIIS) or the blocked Davidson algorithms [54, 160]. VASP is used to calculate

the electronic structure of materials using different approaches, such as cluster and su-

percells. Except for the supercell method, other approaches will not be fully discussed.

For the results of this thesis, the PAW was used for various calculations. Further

comprehensive information on VASP can be found in literature [151, 152, 54].

4.3 Supercell and cluster method of defect modelling

The two most common methods to study defects theoretically are the cluster and the

supercell approach. The cluster approach attempts to model a defect that is surrounded

by a finite number of atoms (essentially representing a molecular entity), usually with

dangling bonds terminated by hydrogen atoms. This approach usually involves the use

of convergence tests. Convergence tests are carried out in order to be sure that the

size of the cluster is proper and applicable to the real physical system that is being

investigated [165]. The major deficiency of the cluster approach is that it is prone to

considerable quantum confinement effects that are strongly dependent on the size of

the cluster [102].

The supercell approach, on the other hand, is ideally suited to model periodic sys-

tems, e.g crystals [102]. In this approach, periodic boundary conditions are imposed

on the Kohn-Sham orbitals [80, 102] so that Bloch’s theorem discussed in Section 2.6.1

can be satisfied. This means that the supercell is modelled as surrounded by an infi-

nite number of identical copies of itself in a crystal lattice. One challenging problem

of the supercell approach is unwanted defect-defect interactions when using a small

supercell or when defects are charged [166]. This disadvantage, however can be over-

come with the use of a computationally expensive large supercell and the introduction

of correction terms [167, 168] which will be discussed in Section 4.4. In this thesis,

the supercell approach is adopted and used since it provides good description of the
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electronic structure of the host and defect systems.

4.3.1 The supercell approach and methodology

As mentioned above, in this approach periodic boundary conditions are used to model

the crystal structure [80, 102] as a periodically repeated unit cell containing a unique

basal plane [80]. An important merit of the supercell method is that the prediction of

the electronic band structure of the host crystal is correctly described [168]. To yield

a more accurate result in the modelling of a defect, the size of the supercell should be

large in order to minimize defect-defect interactions in periodic-image supercells [102,

104, 167].

The usual approach adopted within supercell formalisms is to choose a plane-wave

basis for the Kohn-Sham wavefunctions [80, 102]. This choice is natural because of the

inherent periodicity of the system. The optimised structure of the neutral Ge crystal

supercell structure is shown in Figure 4.1 (based on space group P1).

Figure 4.1: The relaxed geometric structure of a pristine 64-atom supercell of Ge.
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4.4 Supercell correction techniques

The modelling of a defect and the determination of its formation energies in different

charged states are subject to finite size errors [167, 169]. In addition, for a charged

system, the spurious electrostatic interactions between the charged defect and its pe-

riodic images [104, 169] have to be handled in order to avoid errors in the calculated

total energy. These errors are usually significant for any reasonably sized supercell and

are inherent to the method [101, 104, 170]. A schematic diagram of a cell showing

the periodic boundary conditions and the interactions between the defects and their

neighbouring images is shown in Figure 4.2.

Figure 4.2: A diagram of a supercell lattice showing the periodic boundary condition
and the interactions between the defects and their neighbouring images. The cell with solid
outlines in the middle represents the supercell, while the rest are periodic copies.
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4.4.1 Image charge effect

The effect of using a supercell and its image repetitions in 3D gives rise to spurious

interactions. This problem of spurious interaction is more complicated when charge

states are introduced into a defect system. The introduced charge state in a defect,

causes electrostatic interaction between a periodic cell containing the defect. In order

to solve this problem, different schemes such as the Makov and Payne correction [171],

the Freysoldt, Neugebauer, and Van de Walle [102, 104, 167] correction scheme and the

extended Freysoldt scheme [169] have been suggested.

Figure 4.3: Schematic plot displaying how the defects pull-out of shape the potential
relative to the bulk. This distortion is restored by potential alignment relative to that of a
pristine crystal. Adapted from Ref [66].

4.4.2 Potential alignment

Since the introduction of a defect distorts the electrostatic potential relative to the

perfect host [168] as shown in Figure 4.3, it is expected that the VBM which serves

as a reference energy for the electron reservoir will be shifted. Due to this shifting of

the VBM, there is a need for potential alignment between the electrostatic potential of

the defect and the perfect supercell [172]. The potential alignment correction can be

obtained from the difference in the average electrostatic potential of the host V H at
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a point in the supercell where an atom is located; say (a) far from the defect and the

defect supercell V D [166, 168, 169]. Mathematically, it may be expressed as

4 VPa = VD − VH . (4.1)

The potential alignment 4VPa restores the defect potential relative to that of the

pristine crystal.

4.4.3 Corrections schemes

There are different techniques for correcting the errors and the electrostatic potential

shift appearing in a relatively small supercell. Such techniques includes the Makov and

Payne correction scheme (MPS) [171], the Lany and Zunger scheme (LZS) [101], the

Freysoldt, Neugebauer, and Van de Walle scheme which is popularly called the FNV

correction scheme [166, 167] and the new extended FNV correction scheme [169].

4.4.3.1 Makov and Payne correction scheme

The Makov and Payne correction scheme is one of the first correction schemes that

attempts to correct the error due to charged defect-defect interactions [171]. Makov

and Payne correction scheme is based on an extension of the approach by Leslie et

al. [173], who considered the electrostatic potential due to periodically repeating lo-

calised charge q immersed in a dielectric with a dielectric constant (ε), calculated using

the appropriate Madelung constant (ηM ). The Makov and Payne correction scheme

extended the approach of Leslie et al [173], by including a new term which accounts for

the interaction of the delocalized part of the defect induced charge ρc with the screened

point charge potentials of the images [171]. The Makov and Payne correction scheme

can be describe mathematically as
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E(L) = E(L∞)− ηMq
2

2εL
− 2πqQ

3εL3
+O(L−5), (4.2)

where E(L) and E(L∞), are the energy calculated from the finite supercell and the

energy of the supercell as L goes to infinity, respectively. L is the linear dimension

of the supercell and Q is the quadrupole moment of the defect charge. Q is defined

as
∫
r2ρc(r)dr and is asymptotically independent of L. E(L) differs from E(L∞),

because of the spurious interactions of the aperiodic charge density with its images in

neighbouring cells.

4.4.3.2 Freysoldt correction scheme

Another method of practical approach to finite-size correction was introduced by Freysoldt

et al. [166, 167] and is called the FNV correction scheme. The correction energy of the

FNV is expressed as

EFNV = EPC − q4VPC. q
b
|far, (4.3)

where EPC is the point charge (q) correction energy. 4VPC. q
b

(discussed in Sec-

tion 4.4.2) is the potential alignment term, which is the potential difference between

the defect-induced and the point charge potentials. 4VPC. q
b
|far is 4VPC. q

b
far from the

defect in the supercell. This potential alignment corresponds to the third order term

in Equation (4.2) of the Makov and Payne correction scheme. The relation between

4VPC. q
b

of the FNV and 2πqQ
3εL3 of Makov and Payne correction scheme was discussed

by Komsa et al. [170]. According to Hine et al. [174], the FNV scheme is practical

and it involves knowing the electrostatic potentials for the pristine supercell and defect

supercell. The two potentials for the pristine supercell and defect supercell are easily

obtained from an ab initio calculation without the need of carrying out several supercell

calculations and no reliance on external parameters is needed.
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4.4.3.3 Extended Freysoldt correction scheme

Recently, Kumagai et al. [169] described a new method of correction which was an

extension of the FNV correction scheme [166, 167]. In the extended FNV correction

scheme, Kumagai et al. [169] used the principal axis transformation and the Edward

scheme to derive the screened potential which is at an arbitrary position r 6= 0 in an

anisotropic dielectric. According to the extended FNV scheme, the electrostatic energy

of a defect with its images and background charge for a periodic system is given as

Eperiodic =
1

2

∫
Ω

[Vdefect,q(r)− Vbulk(r)](ρd(r)− q

Ω
)dr (4.4)

where the potential of the bulk and defect in its charge state are Vbulk and Vdefect,q,

respectively, ρd(r) is the charge density of a single defect within the supercell and − q
Ω

is the neutralised background charge q distributed over Ω the volume of the supercell.

The electrostatic energy of an isolated defect without the periodic boundary condition

can be written as

Eisolated =
1

2

∫
[Visolated,q(r)− Vbulk(r)]ρd(r)dr (4.5)

The reason for the extended FNV correction is that the planar average electrostatic

potential, used by the FNV correction scheme, is not suitable when atoms far from

the defect are strongly shifted from their unrelaxed position after geometric optimiza-

tion [169].

4.5 Test of convergence

In order to accurately compute the properties of semiconductor materials, tests of

convergence for the supercell size, number of k-points and plane wave kinetic energy

cut-off are required.
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4.5.1 Test of supercell size

Before a supercell is used for defect calculations, it must be constructed. To construct

a supercell, a fully optimised unit cell is used as a starting point. In order to find the

appropriate supercell size, the formation energy of the defect is calculated as a function

of the supercell size. Figure 4.4 depicts the formation energy relative to that of a 216

atom supercell as a function of supercell size, for a 400 eV kinetic energy cut-off and

using the gamma point to sample the k-space. In practice, a supercell size that is large

enough is chosen to reduce or eliminate the effect of the defect-defect interactions, but

still computationally viable. In this thesis, a 64 atom supercell was adopted since the

energy difference between the 64 and 216 atom supercell was less than 0.01 eV.
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Figure 4.4: A plot showing the convergence of formation energies difference (eV) and
number of atoms of supercell, for the neutral charge state of Ge self interstitial.

4.5.2 Test of energy cut-off

To ascertain the most suitable energy cut-off (Ecut), the total energy of a 64 atom of

Ge supercell (relative to that calculated with Ecut of 600 eV) with respect to energy

cut-off was calculated using Monkhorst-Pack k-points of 2×2×2 (see Figure 4.5). The

difference in total energy converges adequately to within a 0.01 eV at 400 eV Ecut.
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Figure 4.5: Plot showing the total energy as a function of the Ecut as a test of convergence
for a 64 atom of Ge supercell. The total energy difference was derived from the difference
between the lowest energy and others. The energy cut-off was calculated using Monkhorst-
Pack k-points of 2× 2× 2.

4.5.3 Test of k-points spacing

In order to obtain the most suitable number of k-points to sample the Brillouin zone,

test of k-points are conducted. The variation of the formation energy as a function of

Monkhorst-Pack k-points (relative to that calculated with 4× 4× 4 k-point mesh) are

determined using an Ecut of 400 eV, as shown in Figure 4.6. According to Figure 4.6,

using a 2× 2× 2 Monkhorst-Pack k-point mesh is sufficient enough to carry out defect

calculations because the formation energy difference between a 2× 2× 2 and 4× 4× 4

k-point mesh is less than 0.02 eV. This choice corresponds well to that used in a number

of published studies [90, 107, 147, 148].

The overall error due to the combined effects is of the order of 0.05 eV. In calcu-

lations involving differences in formation energies (e.g. when determining transition

levels), it is expected that the errors partially cancel out, leading to more accurate

results than would otherwise be expected.
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Figure 4.6: Convergence of defect formation energy of the self interstitial of Ge as a
function of k-points sampling for a 64 atom supercell. (Kinetic energy cut-off of 400 eV
was used for the calculation and the values on the x-axis represent an n× n× n mesh).

4.6 Details of the calculation

As mentioned earlier, DFT electronic structure calculations as implemented by the

Vienna ab initio Simulation Package (VASP) [151, 152] was used for the modelling

of electronic and optical properties of defects in Ge. The projector-augmented wave

(PAW) method, as implemented in the VASP code was used to separate the inert core

electrons from the chemically active valence electrons [80, 151]. For Ge, the 4s2 and

4p2 electrons in the outer shell were treated as valence electrons. This work used the

potentials as supplied with the VASP software programme. Calculations were carried

out using the Heyd, Scuseria, and Ernzerhof (HSE06) [15, 175] hybrid functional. The

pristine 64 atom supercell was constructed from an 8 atom unit cell optimised using a

2× 2× 2 Monkhorst-Pack [73] k-point Brillouin zone sampling and 400 eV plane wave

cut-off of the wave function expansion. In all calculations, the structural optimization

continued until both the difference in total energy and forces were less than 10−5 eV

and 0.001 eV/Å, respectively. The electronic structure was optimised until the energy

difference was less than 10−5 eV. The energy of formation of a system is strongly de-

pendent on the spin-orbit coupling (SOC) due to the presence of relativistic effects
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in heavy atomic systems. To deal with the scalar relativistic effect, the mass-velocity

and Darwin correction terms have been incorporated into the PAW potential. In ad-

dition to the scalar relativistic effect that was taken into account, spin-orbit coupling

was also taken into account for all calculations. To calculate the defect formation and

charge state transition energies, Equation (3.6) and Equation (3.9), were used respec-

tively. The uncertainties surrounding the calculation of Ef (d, q) due to finite-size effects

and electrostatic defect-defect interactions were handled by including the electrostatic

alignment and the image charge correction according to Freysoldt et al [104, 166]. The

method proposed by Lany et al. [101] which was discussed in Section 3.5.6 was used

to calculate the ionization energy (IA) and the electron affinity (EA). The binding

energies Eb which are defined as the energy required to split up the defects cluster into

well separated non-interacting defects were calculated using Equation (3.10).

4.6.1 Summary of calculation parameters

For easy comprehension, the details of the calculation adopted in this thesis are sum-

marized in Table 4.1.

Table 4.1: Table showing summary of calculation details.

Parameters Value
number of atoms in supercell 64
kinetic energy cut off (Ecut) 400 eV
k-points 2× 2× 2
final change in the total energy < 10−5 eV
force <0.001 eV/Å
correction techniques FNV and extended FNV

4.7 Validation of computational techniques

The validity of the techniques used in this thesis was investigated by modelling the

antimony doped vacancy complex in Ge (SbGe-VGe) known as E-centre in three different
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configurations. The formation energy and charge state transition levels of SbGe-VGe

were predicted and compared to existing theoretical and experimental results. Table 4.2

Table 4.2: Calculated formation energies (Ef ) in eV at εf = 0 of SbGe-VGe.

Defect Configuration −2 −1 0 +1 +2
fn 0.51 0.11 -0.17 -0.45 2.76
sn 1.02 0.60 0.31 0.13 3.34
tn 1.20 0.76 0.45 0.25 3.46

shows the results of the formation energy in eV of the SbGe-VGe at εf = 0 for the first

nearest neighbour (fn), second nearest neighbour (sn) and third nearest neighbour (tn)

configurations. Table 4.3 shows the charge state transition levels ε(q/q′) in eV for this

calculation as well as results from literature.

Table 4.3: Calculated electrical levels of SbGe-VGe (E-centre) in Ge. These levels are
reported with respect to the VBM (EV ) and CBM (EC). All results are in eV.

Transition levels This thesis DLTS Cluster
(−1/−2) EC − 0.39 EC − 0.37a EC − 0.29b

EC − 0.41c

(0/−1) EV + 0.31∗ EV + 0.31d EV + 0.31b

EV + 0.30a,e
∗ As determined for the fn configuration, which is the most stable configuration

aRef [128], bRef [17], cRef [130] dRef [176] and eRef [150].

Based on the agreement between computational modelling and experimental results,

the validation of the computational techniques used for the results of this thesis is

established.
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Chapter 5

Results

5.1 Introduction

In this chapter, major theoretical results obtained using the HSE06 functional are

highlighted. The results in this chapter are solely the author’s findings. Some of the

results that are presented have been published as articles or they are under review in

peer-reviewed journals.

In Section 5.2, results of an ab initio study of the germanium di-interstitial are

reported. Section 5.3 presents the results of a hybrid functional study of Tm3+ defects

in Ge. In Section 5.4, results of rare earth interstitials in Ge are reported and Section 5.5

presents the result of the Tm3+
Ge-VGe defect complex in Ge.

A summary of all the results is presented in Section 5.6. The references appearing

in various articles are not listed in the main reference list unless cited elsewhere.
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5.2 Ab initio study of the germanium di-interstitial using

a hybrid functional (HSE)

A published article entitled “Ab initio study of germanium di-interstitial using a hybrid

functional (HSE)” is attached to this chapter in Section 5.7.1 as Article 1.

In this article, results of ab initio modelling of the Ge di-interstitial (I2(Ge)) are

reported. The energy of formation, charge state transition levels and the minimum

energy configurations of the I2(Ge) were obtained for charge states −2, −1, 0, +1 and

+2. The calculated formation energies show that for all charge states of I2(Ge), the dou-

ble tetrahedral (T) configuration formed the most stable defect, with 1.24 eV binding

energy in the neutral state. The other configurations considered, the double split[110]

(SP10) and the combined split[110]/tetrahedral (SPT) formed with binding energies

of 0.26 and 0.05 eV, respectively, for the neutral charge state. The difference in the

binding energies for the T, SP10 and SPT configurations were as a result of the amount

of strain in the bonds of the interstitial atoms and their nearest Ge atoms neighbours.

As reported in the paper, the bond angle of one of the interstitials and its two nearest

neighbour atoms for the T configuration is about 3◦ less than that of the SP10 config-

uration and 1.4◦ higher than the ideal 109.2◦ Ge bond angle, this should be the key to

understanding the difference in the formation energies of both configurations.

It was found that the (+2/+1), the only charge state thermodynamic transition

level for the T configuration is lying below the CBM at EC − 0.04 eV and (+2/+1)

for the split[110]-tetrahedral configuration is located at EV + 0.41 eV. According to

the result, the di -interstitial in Ge is found to, depending on the defect configuration,

cause either shallow or deep donor levels at charge state (+2/+1) within the band gap.

The I2(Ge) in the SPT and SP10 configurations, gave rise to levels with negative-U

ordering, with effective-U values of −0.61 (for the SPT configuration) or −1.6 eV (for

the SP10 configuration). The result of this article were compared with calculations of
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di -interstitials in silicon and other experimental data.

5.3 A hybrid functional calculation of Tm3+ defects in ger-

manium (Ge)

A published article entitled “A hybrid functional calculation of Tm3+ defects in ger-

manium (Ge)” is attached to this chapter in Section 5.7.2 as Article 2.

The result of DFT modelling of the Tm3+ interstitial (Tm3+
i ), vacancy-interstitial

complex (VGe-Tm3+
i ) and substitutional (Tm3+

Ge) defects in Ge are reported. The Tm3+

interstitial was found to exist in the tetrahedral and hexagonal configurations with

formation energy between 0.24 and 4.35 eV for all charge states. According to the

results, for all charge states of the Tm3+
i , the T configuration was energetically more

favourable than the H configuration. This is as a result of different amount of strain

experienced by the atoms when the interstitial atom was introduced into the pristine

supercell. The formation energies for VGe-Tm3+
i and Tm3+

Ge were as low as 0.84 eV.

According to the results of the article, the energetically most favourable configurations

of these defects were the VGe-Tm3+
i in the axial configuration and the Tm3+

Ge . The

Tm3+
Ge and VGe-Tm3+

i introduced both a double acceptor and a double donor levels.

The charge state thermodynamic transition levels of both the Tm3+
Ge and VGe-Tm3+

i

were positioned deep, near the middle of the band gap. The majority of the transition

levels induced by the defects under investigation are either shallow donors or acceptors

level lying close to the VBM or CBM.
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5.4 Rare earth interstitials in Ge: a hybrid density func-

tional theory study

A published article entitled “Rare earth interstitials in Ge: a hybrid density functional

theory study” is attached to this chapter in Section 5.7.3 as Article 3.

In this work, results for rare earth (Ce, Pr, Eu and Er) interstitials in Ge were

reported. The formation energies and the charge state transition levels for the tetra-

hedral (T) and hexagonal (H) configurations of Ce, Pr, Eu and Er interstitials in Ge

were calculated. We did not consider the split interstitial configuration at this stage.

While the charged states of the T configurations for the Ce and Pr interstitials in Ge

were not thermodynamically accessible, for both the T and H configuration, the Eu

and Er interstitials in Ge created deep levels in the band gap. The H configuration of

the Ce interstitial in Ge induced a shallow donor level. The Eu and Er interstitial ex-

hibit properties of negative-U ordering and the characteristics of charge state controlled

metastability, respectively.

5.5 A first principle hybrid functional calculation of Tm3+
Ge

-VGe defect complexes in germanium

A published article entitled “A first principle hybrid functional calculation of Tm3+
Ge

-VGe defect complexes in germanium” is attached to this chapter in Section 5.7.4 as

Article 4.

By means of the density functional theory (DFT), using the Heyd, Scuseria, and

Ernzerhof (HSE06) hybrid functional, results of the Tm3+
Ge-VGe defect complexes in Ge

were reported. The formation energies of the first (fnn), second (snn), third (tnn)

and fourth (ftnn) nearest neighbour configurations of Tm3+
Ge-VGe were examined. The

charge state transition levels for all these configurations were examined as well. The
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Tm3+
Ge-VGe complexes were found to have positive binding energies for the neutral

charge state in the fnn and ftnn configurations.

The thermodynamic transition levels revealed that the Tm3+
Ge-VGe creates shallow

levels in the band gap for the fnn, tnn and ftnn configurations and a deep level at EV

+ 0.41 eV for the tnn configuration. The snn configuration showed no charge state

transition levels in the band gap. The Tm3+
Ge-VGe in the tnn configuration, displayed

evidence of a single donor level (+1/0) and an acceptor level (0/−1) within the band

gap. The Tm3+
Ge-VGe defect exhibits charge state controlled metastability.

5.6 Results summary

All results obtained have already appeared in the various articles that are included in

Section 5.7. However, it will be very useful to repeat a few important results. Summary

of the various important results reported in this thesis are as follows:

1. Structural and electronic properties of Ge: Results of structural and elec-

tronic properties of Ge have been previously studied either using the LDA, GGA

or HSE [3, 98, 138]. Good agreement between experimental and theoretical re-

sults for both structural and electronic properties of Ge has been reported in

Article 1 and 2.

2. Point defect induced deep and shallow levels: A number of defects studied

and reported in this thesis induced deep or shallow levels. Point defect induced

deep or shallow levels were reported in all the attached articles. Table 5.2 and

Table 5.1 show the deep and shallow levels induced in Ge, respectively.

3. Metastability of point defects in Ge: The rare earth defects in Ge induced

charged state controlled metastability, an interesting property which might have

novel applications. The presence of charge state controlled metastability in Ge is
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Table 5.1: Table showing the deep level defects in Ge and their energies in eV.

Defect Configuration Transition levels Energies (eV) Nature Article

I2(Ge) SP10 (+1/+2) EV + 0.41 donor 1
I2(Ge) SP10 (+1/−1) EC − 0.20 negative-U �

I2(Ge) SPT (+1/−1) EC − 0.31 � �

VGe-Tm3+
i axial (0/−1) EC − 0.30 acceptor 2

VGe-Tm3+
i axial (+2/+1) EV + 0.19 donor �

VGe-Tm3+
i axial (+1/0) EV + 0.34 donor �

VGe-Tm3+
i basal (0/−1) EC − 0.23 acceptor 2

VGe-Tm3+
i basal (+1/0) EV + 0.44 donor �

VGe-Tm3+
i basal (+2/+1) EV + 0.27 donor �

Eri T (+2/+1) EC − 0.28 donor 3
Eri H (−1/−2) EC − 0.18 acceptor �

Eui H (+1/0) EC − 0.26 donor 3
Eui H (+2/+1) EV + 0.26 donor �

Eui T (+2/−2) EV + 0.18 negative-U �

Tm3+
Ge-VGe tnn (0/−2) EV + 0.41 negative-U 4

Tm3+
Ge-VGe ftnn (−1/−2) EV + 0.21 acceptor �

Tm3+
i H (+2/+1) EV + 0.22 donor 2

Tm3+
i H (+1/0) EC − 0.23 donor �

Tm3+
Ge - (0/−1) EC − 0.26 acceptor 2

Tm3+
Ge - (+1/0) EV + 0.19 donor �

reported in Article 3 which describes Eu interstitial in Ge. In addition, the Tm3+
Ge-

VGe complexes in Ge reported in Article 4 displays the properties of charge state

controlled metastability.

4. Negative-U properties of point defects in Ge: Negative-U properties were

seen in a number of point defects studied and reported in this thesis. Negative-U

behaviour was predicted for the Ge di -interstitial, which is reported in Article 1

and for the Eu interstitials in Ge which are reported in Article 3.

5. Stability of defect complex in Ge: The stability of defect complexes in Ge are

reported in Articles 1, 2 and 4. The Ge di-interstitial reported in Article 1 had
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Table 5.2: Table showing the shallow level defects in Ge and their energies in eV.

Defect Configuration Transition levels Energies (eV) Nature Article

I2(Ge) T (+2/+1) EC − 0.04 donor 1

Tm3+
i T (+2/+1) EC − 0.04 donor 2

Tm3+
i H (0/−1) EC − 0.13 acceptor �

Tm3+
Ge - (+2/+1) EV + 0.10 donor 2

Tm3+
Ge - (−1/−2) EC − 0.05 acceptor �

VGe-Tm3+
i axial (−1/−2) EC − 0.10 acceptor �

VGe-Tm3+
i basal (−1/−2) EC − 0.14 acceptor �

Tm3+
Ge-VGe fnn (−1/−2) EV + 0.06 acceptor 4

Tm3+
Ge-VGe tnn (+1/0) EV + 0.05 donor �

Cei H (+2/+1) EC − 0.03 donor 3

Eui H (0/−1) EC − 0.14 acceptor 3

positive binding energies, which suggest the stability of the defect. In addition, the

vacancy-interstitial complex (VGe-Tm3+
i ) and the Tm3+

Ge-VGe complex reported

in Articles 2 and 4, respectively have positive binding energies. Table 5.3 shows

a collection of binding energies of defect complexes reported in this thesis.

Table 5.3: Table showing the binding energies of vacancy and interstitial complexes in
Ge reported in this thesis.

Defect Configuration Binding energy (eV) Article

I2(Ge) SP10 0.26 1
I2(Ge) T 1.24 1
I2(Ge) SPT 0.04 1

VGe-Tm3+
i axial 4.24 2

Tm3+
Ge-VGe fnn 0.06 4

Tm3+
Ge-VGe ftnn 0.05 4
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5.7 Published articles

This section presents in Section 5.7.1, an attached article entitled “Ab initio study

of germanium di-interstitial using a hybrid functional (HSE)”. Section 5.7.2 and Sec-

tion 5.7.3 present attached articles entitled “A hybrid functional calculation of Tm3+

defects in germanium (Ge)” and “Rare earth interstitials in Ge: a hybrid density func-

tional theory study”, respectively. Section 5.7.4 presents an attached article entitled

“A first principle hybrid functional calculation of Tm3+
Ge -VGe defect complexes in ger-

manium”.
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5.7.1 Article 1

Ab initio study of germanium di-
interstitial using a hybrid functional
(HSE)

E. Igumbor, C.N.M. Ouma, G. Webb and W.E. Meyer

Physica B: Condensed Matter 480 (2016): 191-195.

http://dx.doi.org/10.1016/j.physb.2015.08.015
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a b s t r a c t

In this work, we present ab‐initio calculation results of Ge di-interstitials (I2(Ge)) in the framework of the
density functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional. The
formation energy, transition levels and minimum energy configurations were obtained for I2(Ge) �2, �1,
0, þ1 and þ2 charge states. The calculated formation energies show that for all charge states of I2(Ge), the
double tetrahedral (T) configuration formed the most stable defect with a binding energy of 1.24 eV in
the neutral state. We found the (þ2/þ1) charge state transition level for the T lying below the con-
duction band minimum and (þ2/þ1) for the split[110]-tetrahedral configuration lying deep at 0.41 eV
above the valence band maximum. The di-interstitials in Ge exhibited the properties of both shallow and
deep donor levels at (þ2/þ1) within the band gap and depending on the configurations. I2(Ge) gave rise
to negative-U, with effective-U values of �0.61 and �1.6 eV in different configurations. We have com-
pared our results with calculations of di-interstitials in silicon and available experimental data.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The application of germanium (Ge) as a promising material for
complementary metal-oxide semiconductors (CMOS) technology
is attracting attention due to its narrow band gap, high carrier
mobility and low voltage operations [1,2]. For successful technol-
ogy, industrial application and utilization of Ge based devices, it
should be single crystalline and free of detrimental defects. The
knowledge of formation and transition charge state energies are of
interest in defects, and the understanding of defects and their
transition charge state energies within the band gap are important
towards controlling and engineering their formation in order to
improve the material quality. Based on the charge states properties
of defects in Ge, it is possible to understand the characteristics of
electron irradiation damage and its dependency on the Fermi le-
vel. Progress in the identification of electron irradiation damage
defects was interrupted by investigations into radiation defects in
silicon (Si), but has now become topical again owing to the higher
carrier mobilities realized in Ge based devices [3]. Defect studies in
Ge are not too common, particularly those dealing with the atomic
and electronic details of elemental radiation induced defects. This

deficiency does not only apply to experimentation [4] but to
modeling as well [5]. Recently, deep level transient spectroscopy
(DLTS) [6,7] and infrared absorption spectroscopy [4] studies have
succeeded in identifying new radiation defects paired with im-
purities. Perturbed angular correlation spectroscopy (PACS) stu-
dies [8] have led to important findings on the mobility and elec-
trical activity of vacancies (V) and interstitials (I); these two de-
fects created following low temperature radiation, which have
been investigated by in situ DLTS [7,8].

Various theoretical investigations have attempted to explain
experimental data [9,7,10], where some progress has been
achieved in understanding the properties of vacancy, self- and
interstitial related defects in Ge. In a detailed study of interstitial
and vacancies in Ge using local density approximation (LDA) and
generalized gradient approximation (GGA) [11], the energetic,
stability and equilibrium of different configurations were in-
vestigated, and interstitials in Ge were found to be bistable having
a double donor when at cage site, without any trace of acceptor
[12]. The split[110] interstitial has been reported to be more en-
ergetically stable than the tetrahedral and hexagonal configura-
tions [9]. The split[110] interstitial configurations were reported to
have an acceptor level located at EV þ0.45 eV, while the tetra-
hedral acts as a donor at EV þ0.11 eV and EV þ0.46 eV for the (þ2/
þ1) and (0/þ1) occupancy levels [9,13] respectively. According to
Janke et al. [14] vacancy defects in Ge will anneal by diffusion
provided the trap density is high enough. Self-interstitial reflection
by Ge surfaces has been proposed [15] to explain the results of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physb

Physica B
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0921-4526/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author at: Department of Physics, University of Pretoria, Pretoria
0002, South Africa.

nn Corresponding author.
E-mail addresses: elgumuk@gmail.com (E. Igumbor),

wmeyer@up.ac.za (W.E. Meyer).

Physica B 480 (2016) 191–195

83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



diffusion experiments during irradiation. This analysis was ex-
tended to diluted SiGe alloys, which provides some explanation of
the theoretical donor level calculations for pure Si and alloys with
a different Ge content [16]. Cowern et al. [17] reported Ge to be a
complex, mutable with a structure similar to an amorphous
pocket. Analogous morph structures are expected to exist for both
the self-interstitial and the vacancy in Si. This paved the way for
the study of trivacancy, trivacancy-oxygen complexes and self-in-
terstitial clusters in Si and Ge. Defect studies of Si in particular, self-
, di-, tri- and small cluster interstitials [18,19] and vacancies [20,21]
have been reported. However contrary to Si no di- and small cluster
interstitials of intrinsic defects in Ge have been accomplished, thus
a detailed formation energy, transition charge states calculation
and interpretation of results of di-interstitial are still missing. In
this work we have carried out hybrid functional of Heyd, Scuseria,
and Ernzerhof (HSE) [22,23] calculations of I2(Ge) in the double split
[110] (SP10), split[110]-tetrahedral (SPT) and double tetrahedral
(T) configurations. We calculated the formation and transition
charge state energies within the band gap as was reported in the
case of Si [18,12] with a view to finding the most energetically
stable configuration, and finally compared our results with ex-
perimental and other available data.

2. Computational details

DFT electronic structure calculations were performed in the
Vienna ab‐initio Simulation Package (VASP) [24,25]. We used
projector-augmented wave (PAW), as implemented in the VASP
code to separate the inert core electrons from the chemically ac-
tive valence electrons [25–27]. Calculations were carried out using
the Heyd, Scuseria, and Ernzerhof (HSE) [22,23] hybrid functional.
In this approach, the short-range exchange potential is calculated
by mixing a fraction of nonlocal Hartree–Fock exchange with the
generalized gradient approximation (GGA) functional of Perdew,
Burke, and Ernzerhof (PBE) [11]. The hybrid functional introduces a
percentage of exact non-local Fock exchange (25%) to the PBE
functional [22,23]. For the bulk, geometric optimization of Ge was
performed in the primitive unit cell by means of the 83 Mon-
khorst–Pack [28] k-points Brillouin zone sampling scheme and a
cutoff energy of 400 eV. Relaxations converged when the forces on
all the atoms were less than 0.01 eV/Å. For the pure Ge, we em-
ployed 64 atom supercells, and for the defects, two Ge atoms were
introduced into the 64 supercell atoms. We then used the 23

Monkhorst–Pack [28] special k-points Brillouin zone sampling
scheme, achieving convergence of the total energy by setting the
energy cutoff of the wave function expansion for the charge states
to 600 eV. Spin orbit coupling was taken into account in all the
calculations. The concentrations (C) of defects in thermodynamic
equilibrium are related to the formation energy (Ef) through
Boltzmann constant

C N E k Texp / , 1f
B0= ( − ) ( )

where kBT is the temperature in eV and N0 the number of possible
defects sites. In Eq. (1) the increase in formation energies leads to
decrease in the concentration of the defects. For the defect charge
states, Ef depends on Fermi level Fε( ). Ef of defects are derived
directly from total energies, allowing the calculation of equili-
brium defect concentrations [29]. To calculate the defects Ef and
transition energy q q/(ϵ( ′)) levels, we calculated the total energy
E d q,( ) for a supercell containing the optimized defect d in its
charge state q. The defect formation energy E d q,f ( ) as a function of
electron Fermi energy Fε( ) is given as [29,30]

E d q E d q E pure n q E V, ,

, 2

f

i
i Ge V F

q

∑ Δ μ ε

Δ

( ) = ( ) − ( ) + ( ) + [ + + Δ ]

+ ( )

where E(pure) is a supercell without a defect, n iΔ( ) is the difference
in the number of constituent atoms of type i between the super-
cells, EV is the valence band maximum (VBM) and 5.18 eVGeμ = −
is the chemical potential of germanium. For us to pay special at-
tention to the uncertainties surrounding the calculation of E d q,f ( )
due to finite-size effects within the supercell and inaccuracy un-
derlying the approximation of energy functional, we have included
the electrostatic alignment VΔ and the image charge correction
(Δq) according to Freysoldt et al. [31,32]. The defect transition
energy level q q/ϵ( ′) is the Fermi energy for which the formation
energy of charge state q equals that of charge state q′ is given as
[30]

q q
E d q E d q

q q
/

, ; 0 , ; 0
3

f
F

f
Fε ε

ϵ( ′) =
( = ) − ( ′ = )

′ − ( )

The method proposed by Stephan et al. [33] was taken into
account for the calculation of the ionization energy (IA) with
reference to the conduction band (CBM) and the electron affinity
(EA) with reference to valence band maximum (VBM). The binding
energy Eb which is defined as the energy required to split up an
interstitial cluster into well separated non-interacting mono-inter-
stitials was calculated using the method proposed by Zollo et al.
[34].

3. Results and discussion

In contrast to the LDA and GGA that underestimate the band
gap of the semiconductor [13], the HSE functional gives an ex-
cellent description of the electronic band gap and charge state
transition properties for a wide range of the defects in group-IV
semiconductors [35]. The pristine Kohn–Sham band gap of Ge was
calculated to be 0.80 eV, which was higher than the experimental
band gap at 0 K. To address the band gap problem in order to
obtain the experimental band gap of Ge, we employed the quasi-
particle band gap [36,33] calculation, which from the calculated IA
and the EA energies of 4.00 and 3.22 eV respectively, resulted in an
improved Ge band gap of 0.78 eV, that is in agreement with the
experimental band gap reported by Morin et al. [37] at 0 K. For us
to calculate the formation energy of I2(Ge), we first calculated the
formation energies of Ge self-interstitial. For both the tetrahedral
and split[110] configurations in the neutral state for self-inter-
stitial, we have calculated 3.88 and 3.80 eV respective formation
energies, and our results were in close agreement with earlier
results [12,13,38] based on LDA and GGA functionals.

3.1. Structural properties and energetics of I2(Ge)

We calculated the relaxed configurations for a number of dif-
ferent geometric configurations and found three competing geo-
metric structures: split[110]-tetrahedral (SPT), split–split[110]
(SP10) and tetrahedral–tetrahedral (T). These structural equili-
brium configurations were obtained by adding a tetrahedral or
split[110] interstitial atom to a cell containing a fully relaxed split
[110] or tetrahedral single interstitial atom. The optimized struc-
tures as in the case of Si [39,21] demonstrated that each interstitial
atom of the pair forms bonds with neighboring atoms resulting in
full four-fold coordination as seen in Fig. 1. Fig. 1(a) shows the
relaxed structure of the T configuration and Fig. 1(b) represents the
optimized structure of the SP10 configuration. This structure is
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obtained by combining two interstitials in the split[110], which
many believe to be the most stable interstitial configuration of Ge
as well as Si and in the case of Si is responsible for extremely fast
migration. Fig. 1(c) represents the optimized structure of the SPT

configuration. The defect caused a reduction in bond length as
neighboring atoms and defect atoms repositioned to a position of
equilibrium, the reduction being approximately between 0.02 and
0.07 Å in all the configurations. The bond angle between one of the
defects and its two nearest neighbors after optimization was
110.62° and 113.5° for T and SP10 respectively. For the SPT con-
figurations, the angles were 101° and 110.62° for the two inter-
stitial atoms.

3.2. Electronic structure of the I2(Ge)

The most stable structures of the I2(Ge) configuration were re-
presented in Fig. 1; the formation and binding energies for the
charge states are shown in Table 1. In all the configurations, the T
configuration was the most stable in the neutral state. For the
neutral state of I Si2( ), the Ef of SP10 was found by Posselt et al. [40]
to be lower than that of the T configuration by 0.04 eV. Jones et al.
[21] found that the SPT configuration had an even lower formation
energy. The results listed in Table 1 show positive binding energies
for all configurations investigated. This agrees with results for Si
obtained by Posselt et al. [40] and Bongiorno et al. [41], who also
found positive binding energies in the SP10, T and SPT of I Si2( ). It
should be noted that, in contrast to Si, the most stable config-
uration for I2(Ge) was the T configuration. It is also interesting to
know that for Ge, the SP10 configuration has a formation energy of
0.82 eV more than the T configuration while in Si the SP10 for-
mation energy was 0.04 eV less than the T configuration formation
energy.

Fig. 2 shows the formation energy of the I2(Ge) as a function of
the Fermi-level for the different configurations. As shown in Fig. 2
(a) and (b), our calculation demonstrates that I2(Ge) was stable in
the T and SP10 configurations as a double ionized state. The energy
levels of (þ2/þ1) and (þ1/�1) transition charge states of Ge and
Si were tabulated in Table 2, we have decided to limit the charge
state transition levels of I Si2( ) to (þ1/�1) and (þ2/þ1) since other
levels were not present in our calculation. For the T configuration,
the (þ2/þ1) level lies above the valence band, with a value of
0.74 eV referencing the VBM. The SP10-configuration transition
state level for (þ2/þ1) was 0.41 eV which was lying deep, almost
in the middle of the band gap. The (þ2/þ1) donor level found in
both the T and SP10 configurations exhibit both shallow and deep
levels. Donor level property was not only found in di-interstitial
but also in self-interstitial for the T configuration at EC � 0.06 eV.
For the SPT configuration, as represented in Fig. 2(c) there was no
transition state level found within the band for (þ2/þ1). Instead
we found a deep lying level of (þ1/�1), which was not the case
for the Si in SP10 configuration where it was earlier found that the
(þ2/þ1) shallow level was 0.03 eV lying close to the valence band
[21]. The behavior of þ1 and þ2 charge state of I Si2( ) is tied to the
valence band where as in Ge it is close to the conduction band for

Fig. 1. (a) Optimized structure of T; double tetrahedral interstitial atoms, (b) opti-
mized structure of SP10; double split[110] interstitial atoms and (c) optimized
structure of SPT; split[110] and tetrahedral interstitial atoms. All interstitial atoms
in white for the various configurations.

Table 1
Calculated formation Ef and binding energies Eb in eV for the neutral state of the
various defect configurations. We have included other references for easy com-
parison. Our work in bold.

Defects SP10 T SPT

Gei (Ef) 3.80 3.88 not applicable
3.54 [9] 3.79 [13]
3.56 [13] 3.84 [9]

I2(Ge) (Ef) 7.34 6.52 7.63
I Si2( ) (E

f) 6.10 [40] 6.14 [40] 5.12 [21]

6.46 [44] 4.91 [41]

I2(Ge) (Eb) 0.26 1.24 0.05
I Si2( ) (Eb) 1.74 [40] 1.70 [40] 1.41 [41]
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the T and deep in the band gap for the SP10 configuration. Since I2
(Ge) defects transition state levels were positively charged (þ1 and
þ2), they should exhibit a Poole–Frenkel effect (field assisted

thermal ionization), which occurs as a result of the lowering of a
Coulombic potential barrier when it interacts with the field in the
presence of a positively charged trap which gives rise to interac-
tion between the positively charged trap and the electron [42].
Information on the relative stability of different charge states for a
specific defect are contained in the formation energy. The charge-
state transition levels q q/ϵ( ′) delineate the energy regions over
which particular charge states are stable. The normal arrangement
is 1/0 0/ 1ϵ( + ) < ϵ( − ) indicating a positive repulsive energy U
when electrons are added. However we sometimes witness or-
dering, of this type 0/ 1 1/0ϵ( − ) < ϵ( + ), a term that is referred to
negative-U. It is interesting to know that while Si shows traces of
acceptor on the contrary we discovered that Ge exhibits properties
of negative-U in the SPT and SP10 configurations. Fig. 2(b) and
(c) clearly shows the (þ1/�1) transition level at EV þ0.47 and EV
þ0.58 eV in SPT and SP10 configurations respectively. The effec-
tive-U arising from this large difference of lattice relaxation for SPT
and SP10 configurations was �0.61 and �1.6 eV respectively. Both
the di-interstitial and self-interstitial of Ge did not show any ac-
ceptor-like level in any configuration, and negative charge states
were never the most stable in our calculation; which is in contrast
to the (0/�1) transition state level found in I Si2( ) [19]. No metast-
ability was predicted in any configuration of I2(Ge), whereas Lee
et al. [43] predicted metastability for the I Si2( ). The electronic en-
ergy calculation has shown that the I2(Ge) is more stable than the
mono-interstitial, and that its existence can be examined by ex-
ploring shallow donors near the conduction band edge.

4. Conclusion

In summary we have carried out detailed calculations of I2(Ge)
defects in different configurations, using the Heyd, Scuseria, and
Ernzerhof (HSE) hybrid functional in the framework of DFT. The
electronic and structural properties of these configurations were
described in detail. We have shown that the formation of I2(Ge)
from two neutral isolated interstitials was energetically favour-
able. Our calculation shows that the tetrahedral (T) configuration,
where both interstitials were at a tetrahedral site, was more stable
than the split[110]-tetrahedral (SPT) and double split[110] (SP10)
configurations by more than 0.8 eV, therefore the T configuration
should dominate under equilibrium conditions. In this configura-
tion, di-interstitials exhibit the property of a shallow donor (þ2/
þ1) at EC �0.04. In the SP10, deep levels at EV þ0.41 eV for (þ2/
þ1) and EV þ0.47 for (þ1/�1) were predicted, while in SPT only a
deep level at EVþ0.58 eV for (þ1/�1) was predicted. We observed
the presence of negative-U having effective-U values of �0.61 and
�1.6 eV for the SPT and SP10 configurations respectively. We
pointed out the role of I2(Ge) in an electrically activating donor. We
expect the data presented to be useful in the process modeling of
Ge-based devices.
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Fig. 2. Plot of formation and Fermi energies of (a) T, (b) SP10 and (c) SPT config-
urations of I2(Ge) as a function of the Fermi energy ( Fε ), indicating the different
charge states and transition levels observed with the band gap. The SPT and SP10
configurations show negative-U property. We have used the quasiparticle like band
gap of 0.78 eV since it was in agreement with experimental band gap result at 0 K.

Table 2
Calculated transition states 2/ 1( + + ) and 1/ 1( + − ) levels (eV) of I2(Ge)and I Si2( ).

This work in bold.

Defects SP10 T SPT

I2(Ge) 2/ 1( + + ) EV þ0.41 EC �0.04 –

I2(Ge) 1/ 1( + − ) EV þ0.58 EV þ0.47

I 2/ 1Si2 ( + + )( ) EV þ0.03 [21] EV þ0.20 [19]
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a b s t r a c t

In this work, we present ab-initio calculation results for the Tm3þ interstitial ( +Tmi
3 ), vacancy–interstitial

complex (VGe-Tmi
3þ) and substitutional ( +TmGe

3 ) defects in germanium (Ge) as determined by the density
functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE06) hybrid functional. We calculated
the formation energies and the charge state transition levels of different configurations. Our results show
that the Tm3þ interstitial exists in the hexagonal configuration with low formation energy. The forma-
tion energies for − +V TmGe i

3 and +TmGe
3 were as low as 0.84 eV. The most energetically favourable defects

were the − +V TmGe i
3 in the axial configuration and the +TmGe

3 . The +TmGe
3 and − +V TmGe i

3 introduced a
single acceptor ϵ( − )0/ 1 charge state transition level that was positioned deep in the middle of the band
gap. The majority of the levels induced by the defects under investigation, were either shallow donor or
acceptor level lying close to the band gap edges.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The application of germanium (Ge) in semiconductor material
technology is attracting attention due to its high carrier mobilities
[1–3]. The use of Ge technology has been successful lately due to
the understanding of the role that defects play in it. The role of
defects in Ge is well understood from their formation energies and
transition charge state levels in the band gap. Studies of electronic
properties of elemental radiation induced defects in Ge are rela-
tively scarce and this deficiency recently led towards investigative
experimenting and theoretical modelling [4–6] of defects in Ge.
Deep level transient spectroscopy (DLTS) [7,8] and infrared ab-
sorption spectroscopy [9] studies have succeeded in identifying
new radiation induced defects paired with impurities. Perturbed
angular correlation spectroscopy (PACs) studies [10,11] have led to
important findings on the mobility and electrical activities of va-
cancies (V) and interstitials (I); and lately, these two defects have
been investigated after introduction at low temperature by in situ
DLTS [7,8]. Studies of self-, di- interstitials, vacancies and sub-
stitution related defects in Ge have attracted interest in the past
decades [12]. Despite the effort made so far in identifying different
defects in Ge, there is still more to be accomplished. The rare earth
(RE) elements are known to have a partially filled inner 4f shell
which gives rise to sharp transitions that are largely insensitive to

the crystal host and temperature variations [13–15]. RE element
related defects such as Tm doping of ZnO [16], and other materials
have been reported [17–21]. Thulium ions (Tm3þ) doped materials
have been used to generate blue laser emission through non-linear
up-conversion of radiation from the infrared to the visible range
[17,18,22]. Recently optical properties of Tm-doped materials were
studied and EL has been observed from these materials [16,23,19].
Light emission has been attributed to thulium and erbium defects
in material [13–15]. Previous studies of RE implanted Si showed
sharp emission peaks that were attributed to Tm3þ [24]. While the
Er was found in interstitial positions as well as in defect complexes
[25], the cerium was found to act as an acceptor in a substitutional
position in Si [26]. One would expect that Tm3þ interstitials or
other related defects in Ge will create deep donor levels, however
experimental studies of these defects are yet to be performed. In
this work, using the hybrid functional of Heyd, Scuseria, and
Ernzerhof (HSE06) [27], we have carried out a detailed density
functional theory (DFT) calculation of the electronic properties of
Tm3þ interstitial ( +Tmi

3 ) in the hexagonal (H) configuration, sub-
stitutional ( +TmGe

3 ) and vacancy–interstitial ( − +V TmGe i
3 ) defects in

Ge with a view to finding the most stable defect types from the
formation energies of the various charge states. The charge state
thermodynamic transition levels were also examined to determine
the type of level induced in the band gap by Tm3þ defects. The
rest of this paper has been organized as follows: in the next sec-
tion, we present a description of the computational methodology.
The results and discussion were presented in Section 3. Finally, we
present our concluding remarks in Section 4.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mssp
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2. Computational details

We performed a DFT electronic structure calculation using the
Vienna ab-initio Simulation Package (VASP) [28,29]. The Projector-
augmented wave (PAW) method, as implemented in the VASP
code was used to separate the inert core electrons from the che-
mically active valence electrons [28,30]. Calculations were carried
out using the Heyd, Scuseria, and Ernzerhof (HSE06) [27] hybrid
functional. In this approach, the short-range exchange potential is
calculated by mixing a fraction of nonlocal Hartree-Fock exchange
with the generalized gradient approximation (GGA) functional of
Perdew, Burke, and Ernzerhof (PBE) [31]. In contrast to the local
density approximation and the generalized gradient approximation
that underestimate the band gap of the semiconductor [32,33], the
HSE06 functional gives an excellent description of the electronic
band gap and charge state transition properties for a wide range of
the defects in group-IV semiconductors [32,34,6]. For the past
decades, the study and prediction of the electronic properties of
materials with f orbital valence electrons was difficult due to the
fact that the f orbital is highly localized. The highly localized f
orbitals were previously treated using LDAþU and other methods
[35–38]. Recently, density functional theory using hybrid func-
tionals has been successfully implemented, predicting the elec-
tronic and band gap properties of several materials with f orbital
in the valence shell [35,39]. Following the successful im-
plementation of the hybrid functional, it became feasible for us to
handle the f state in the valence shell of Tm3þ . For Ge, the 4 s and
4p electrons in the outer shell were treated as valence electrons,
while for Tm3þ , the 6 s, 5p and 4f orbitals were considered as
valence electrons. For the bulk, geometric optimization of Ge was
performed on an 8-atom unit cell with an 83 Monkhorst-Pack [40]
k-point Brillouin zone sampling scheme and cutoff energy of
600 eV. For the defects, we employed a 64 atom supercell using a
23 Monkhorst-Pack [40] k-point Brillouin zone sampling scheme,
and we set the plane wave cutoff of the wave function expansion
to 400 eV. We refined the geometry until the final change in the
total energy was less than 10�5 eV and the forces were relaxed to
below 0.001 eV/Å. In all the calculations, spin orbit coupling was
taken into account. The formation energy (Ef) of defect is derived
directly from total energies, allowing the calculation of equili-
brium defect concentrations [41]. To calculate the defect formation
and thermodynamic transition (ϵ( ′))q q/ levels, we calculated the
total energy E(d,q) for a supercell containing the optimized defect
d in its charge state q. The defect formation energy ( )E d q,f as a
function of electron Fermi energy ε( )F is given as [42,43]

∑ μ ε( ) = ( ) − ( ) + (▵ ) + [ + ] +
( )

E d q E d q E pure n q E E, , ,
1

f

i
i i V F cor

q

where E(pure) is a supercell without a defect, (▵ )n i is the difference
in the number of constituent atoms of type i between the

supercells, EV is the valence band maximum (VBM) and μi re-
presents the chemical potential of different constituent atoms.
Errors in ( )E d q,f due to finite-size effects within the supercell and
inaccuracy underlying the approximation of the energy functional,
were handled by including a correction term Ecor

q according to
Freysoldt et al. [42,43]. The defect transition energy level ϵ( ′)q q/ is
the Fermi energy for which the formation energy of charge state q
equals that of charge state ′q and is given as [42]

ε εϵ( ′) = ( = ) − ( ′ = )
′ − ( )

q q
E d q E d q

q q
/

, ; 0 , ; 0
2

f
F

f
F

The method proposed by Stephan et al. [44] was used for the
calculation of the ionization energy (IA) related to the conduction
band (CBM) and the electron affinity (EA) related to valence band
maximum (VBM). The pristine Kohn–Sham band gap of Ge was
calculated to be 0.80 eV, which was higher than the experimental
band gap at 0 K. For consistency, we employed the quasiparticle
band gap [45,44] calculation. From the calculated IA and the EA
energies of 4.00 and 3.22 eV respectively, we obtained a Ge band
gap of 0.78 eV, which is in agreement with the experimental band
gap at 0 K reported by Morin et al. [46]. The binding energies Eb
which are defined as the energy required to split up the defects
cluster into well separated non-interacting defects were calculated
using the method proposed by Zollo et al. [47]. For the VGe-Tmi

3þ

in the axial configuration, we obtained a binding energy of 4.21 for
the neutral state, showing the stability of the VGe-Tmi

3þ defect.

3. Results and discussion

3.1. Structural properties and energetics of Tm3þ defects in Ge

The relaxed geometric structures of Tm3þ defects in Ge are shown
in Fig. 1. Fig. 1(a) represent the structure of the Tmi

3þ in the H con-
figuration. In this configuration, the angle between the defect atom
and the nearest Ge atom before and after relaxation was 86° and 94°,
respectively. The interstitial atom caused a change in atomic position
after relaxation which led to a bond length reduction between the Tm
and Ge atoms by 0.05 Å. The geometric structures of the VGe-Tmi

3þ in
both the axial and basal configurations are displayed in Figs. 1(b) and
(c), respectively. In both configurations, after relaxation, the bond
lengths between the defect atom and its two nearest Ge neighbours
were reduced from 2.88 to 2.71 Å and from 3.02 to 2.92 Å. For the
VGe-Tmi

3þ , the bond angle between the Tm atom and two nearest Ge
neighbours was reduced from 52.70 to 51.30. It was interesting to note
that the same change of bond length and bond angle was observed in
both the axial and basal configurations except that the position of the
vacancy atom differed. The geometric structure of the +TmGe

3 is shown
in Fig. 1(d). The introduction of the substitutional defect led to struc-
tural rearrangement of the Ge crystal supercell. After the relaxation of

Fig. 1. The relaxed structures of Tm3þ defects in Ge, defect atom in blue and the wide space in the crystal structure indicating the position of the Ge vacancy; (a) H
configuration of +Tmi

3 , (b) VGe-Tmi
3þ (axial) (c) VGe-Tmi

3þ (basal) and (d) +TmGe
3 .
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the +TmGe
3 , the bond length and bond angle which it forms with the

nearest Ge atoms reduced by 0.01 Å and 0.9° respectively.

3.2. Properties and energetics of +Tmi
3

The energy of formation (Ef) for the positive, neutral and negative
charge states of +Tmi

3 , VGe-Tmi
3þ and TmGe

3þ are presented in Ta-
ble 1. For the +Tmi

3 in the hexagonal (H) configuration, the formation
energies varied from 4.35 to 1.96 eV. The Ef decreased from the double
negative to the double positive charge states. The formation energies
of the defects in their charged states were low, and the charge state
þ2 had the lowest formation energy at ε = 0F . The low formation
energies of +Tmi

3 in the H configuration for all the charge states
suggested that under equilibrium conditions, +Tmi

3 can form relatively
easily. It should be noted that, even though the formation energies for

+Tmi
3 in the H configuration were low, the +Tmi

3 was more en-
ergetically favourable (in all charge states) in the tetrahedral
(T) configuration [48] (see Table 1). The formation energies of +Tmi

3 in
its charge states as a function of εF are shown in Fig. 2(b). The +Tmi

3

defect introduced transition state levels in the band gap that were
either single acceptor or double donor. The energy level of the ac-
ceptor state related to the valence band maximum (VBM) was
ϵ( − ) =0/ 1 0.65 eV and the other transition levels were
ϵ( + ) =1/0 0.55 eV and ϵ( + + ) =1/ 2 0.22 eV above the VBM for
the single and double donors respectively. The �1, 0, þ1, and þ2
charge states were thermodynamically accessible. Charge state �2
was not thermodynamically stable for any Fermi-level in the band gap.
The difference in energy level between ϵ( + )1/0 and ϵ( − )0/ 1 was
0.10 eV. The H configuration, although not the most energetically
stable configuration of +Tmi

3 displayed some transition levels as re-
ported above that were not found in the T configuration. The T con-
figuration exhibited only the properties of shallow double donor level
at −E 0.04 eVC [48] (see Fig. 2(a)). The interaction energy between
two electrons in a two-level defect is referred to as Hubbard U. Fig. 2
(b) shows that the +Tmi

3 impurity has a positive-U property with small
effective-U value of 0.09 eV (Table 2).

3.3. Properties and energetics of VGe-Tmi
3þ

In this defect, we have two major configurations namely: the
axial and basal configurations derived from the position of the
vacancy atom, see Fig. 1(b) and (c). In Table 1, we show that the
formation energies of VGe-Tmi

3þ for charge states �2 to þ2 varied
from 0.84 to 2.55 eV and from 5.04 to 6.93 for the axial and basal
configurations, respectively. In both configurations, the Ef de-
creased from the double negative to the double positive charge
states. The formation energies of the charged states were relatively
low. In both configurations, the þ2 charge state had the lowest
formation energy at ε = 0F compared to other charge states. The
axial configuration has lower formation energies than the basal
configuration in all the charge states. The low formation energies

indicate that the VGe-Tmi
3þ defect can form easily in the two

different configurations. It is interesting to know that the forma-
tion energies of the VGe-Tmi

3þ in the axial configuration were
lower than that of the +Tmi

3 in the H configuration, while for the
+Tmi

3 in the H configuration, the formation energies for all the
charge states were lower than that of the basal configuration of
the VGe-Tmi

3þ . The plot of the formation energies of VGe-Tmi
3þ in

its charge states as a function of εF are shown in Fig. 2(c) and
(d) for both the axial and basal configurations, respectively. For
both configurations, the defect introduced both acceptor and do-
nor levels that were deep lying within the band gap. For the axial
configuration, double ϵ( − − )1/ 2 and single ϵ( − )0/ 1 acceptor
levels were found lying close to the CBM and close to the middle of
the band gap, respectively. This same trend was also observed for
the basal configuration. While the ϵ( − − )1/ 2 transition level for
the axial configuration was 0.10 eV away from the CBM, for the
basal configuration it was 0.14 eV away from the CBM. VGe-Tmi

3þ

also introduced other transition states, single ϵ( + )1/0 and double
ϵ( + + )1/ 2 donor levels in the band gap. As was observed for the
acceptor levels, the donor levels were close to the band edges. For
the ϵ( + )1/0 level, it was near the middle of the band gap for both
configurations. While the ϵ( + + )2/ 1 for the axial configuration
was 0.19 eV away from the VBM, for the basal configuration, it was
0.27 eV away from the VBM. In both configurations, all the charge
states (þ2 to �2) were thermodynamically accessible and stable
for some values of the Fermi-level, but this was not the case for
the +Tmi

3 where we found that the defect was never stable in the
negative 2 charge state. As was observed in the +Tmi

3 , both the
axial and basal configurations displayed positive-U behaviour with
small effective-U values of 0.23 and 0.10 eV, respectively.

3.4. Properties and energetics of +TmGe
3

The formation energies of the positive, neutral and negative
charge states of +TmGe

3 , as shown in Table 1, show a decrease from
the double negative to the double positive charge states. The for-
mation energies varied from 1.83 to 3.37 eV. The formation energy
of the +TmGe

3 is relatively low, although higher than that of the
VGe-Tmi

3þ for the axial configuration, and lower than the forma-
tion energies of both the +Tmi

3 in the H configuration and
VGe-Tmi

3þ in the (basal configuration) in all the charge states. In
this present work, the sequence of formation energy from high to
low was VGe-Tmi

3þ ( ) > > > −+ + +basal Tm Tm V Tmi Ge Ge i
3 3 3 (axial). In

our results, the +TmGe
3 substitutional defect was energetically more

favourable than the interstitial in the H configuration, but the T
configuration was energetically much more favourable than the

+TmGe
3 as was discussed in our earlier work [48]. The plot of the

formation energy of +TmGe
3 in its charge states as a function of εF is

shown in Fig. 2(e). The defect introduced a double acceptor level at
ϵ( − − )1/ 2 , lying close to the edge of the band gap (CBM) at

−E 0.05 eVC . The donor levels induced by +TmGe
3 in the band gap

were a double donor at +E 0.10V and a single donor at
+E 0.19 eVV . The +TmGe

3 defect in Ge also induced a ϵ( − )0/ 1
transition level lying at the middle of the band gap. The +TmGe

3

displayed positive-U behaviour with a small effective-U value of
0.32 eV. We show that not only +Tmi

3 interstitial defects in Ge
occur at a low formation energy in all the charge states but that
this also applies to the VGe-Tmi

3þ and +TmGe
3 defects.

4. Summary

We have carried out detailed calculations of Tm3þ (interstitial,
vacancy-complex and substitution) related defects in Ge, using a
hybrid functional (HSE06) in the framework of density functional

Table 1

Calculated formation energies (Ef) in eV at ϵf¼0 of Tm3þ interstitial ( +Tmi
3 ), sub-

stitutional ( +TmGe
3 ) and vacancy–interstitial complex (VGe-Tmi

3þ) in Ge. The result of

the +Tmi
3 tetrahedral configuration was from Ref. [48].

Defect Configuration �2 �1 0 þ1 þ2

+Tmi
3 tetrahedral 3.94 2.75 1.81 0.89 0.24

hexagonal 4.35 3.37 2.73 2.18 1.96

− +V TmGe i
3 axial 2.55 1.87 1.39 1.04 0.84

basal 6.93 6.29 5.75 5.31 5.04

+TmGe
3 3.37 2.64 2.12 1.92 1.83

E. Igumbor, W.E. Meyer / Materials Science in Semiconductor Processing 43 (2016) 129–133 131

91

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



theory (DFT). The formation energies and thermodynamic charge
transition levels were described in detail. We have shown that the
formation of +Tmi

3 in the hexagonal configuration, +TmGe
3 , and

VGe-Tmi
3þ for two configurations (axial and basal) defects in Ge

exist with low formation energies. Our calculation shows that
VGe-Tmi

3þ in the axial configuration had the lowest formation
energy for the neutral, negative and the positive charge states. We
have shown also that +TmGe

3 forms with a lower formation energy

than the +Tmi
3 for the H configurations. In addition to the low

formation energies, we have shown that +Tmi
3 , +TmGe

3 , and
VGe-Tmi

3þ defect introduced transition levels of (0/�1) and (þ1/
0) that were lying deep in the band gap. The VGe-Tmi

3þ and
TmGe

3þ introduced additional (þ1/þ2) and (�1/�2) levels that
were lying close to the band edges. Unlike the +TmGe

3 and VGe-Tmi
3þ

that acts as a double acceptor (�1/�2), the +Tmi
3 does not act as a

double acceptor instead, this level lies inside the CBM. We expect
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Fig. 2. Plot of formation energy as a function of the Fermi energy for the +Tmi
3 , VGe-Tmi

3þ (axial and basal) and substitution TmGe
3þ in Ge; (a) tetrahedral configuration of

+Tmi
3 , (b) hexagonal configuration of +Tmi

3 , (c) VGe-Tmi
3þ configuration (axial), (d) VGe-Tmi

3þ configuration (basal) and (e) +TmGe
3 .
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the data and information presented to be useful in the process
modelling of Ge-based devices.
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Table 2
The energy of the thermodynamic transition levels ϵ( ′)q q/ above EV (eV) for the
Tm3þ interstitial, substitution and vacancy-interstitial complex in Ge.

Charge
states

+Tmi
3 (T) +Tmi

3 (H) − +V TmGe i
3

(basal)

− +V TmGe i
3

(axial)

+TmGe
3

(�1/�2) – – 0.64 0.68 0.73
(0/�1) – 0.65 0.55 0.48 0.52
(þ1/0) – 0.55 0.44 0.34 0.19
(þ2/þ1) 0.74 [48] 0.22 0.27 0.19 0.10
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Rare Earth Interstitials in Ge: A Hybrid Density Functional
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In this work, the results of density functional theory calculations for rare
earth (Ce, Pr, Eu, and Er) interstitials in Ge are presented. We employed the
hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) for all the cal-
culations. We calculated the formation energies and charge state transition
levels for the tetrahedral (T) and hexagonal (H) configurations of the Ce, Pr,
Eu, and Er interstitials in Ge. While for the T configuration, the charge states
of the Ce and Pr did not induce any thermodynamic accessible transition state
level within the band gap of Ge, for both the T and H configurations the Eu
and Er interstitials in Ge induce deep levels in the band gap. The H config-
uration of the Ce interstitial in Ge induces a shallow donor level at 0.03 eV
below the conduction band. The Eu interstitial exhibits negative-U properties
for the (+2/�2) transition level and the Er interstitial displays characteristics
of charge state controlled metastability.

Key words: Defect, rare earth, formation energy, charge state

INTRODUCTION

In recent years, rare earth (RE) doping and
defects in materials have been extensively studied
because of their potential applications in full colour
emission devices.1,2 A study revealed that the intra-
4f shell electronic transitions of the RE ions give
rise to sharp emission lines with small energy
dispersion.3 It has been suggested that deep-level
defects participate in the energy transfer process

from the host to the RE3þ ions.4 Therefore, the

structure of the local environment of RE3þ ions
plays a crucial role in the determination of the
optical luminescence efficiency of RE doped semi-
conductors.1 The size of the RE ion, the number of
valence electrons, and its electronegativity may
differ from the host, and thus it is expected that
the RE could induce one or more gap levels occupied
by valence electrons.5 Studies of defects in semicon-
ductor materials have been carried out in the last
two decades, in particular defects in Si5 and only a

few in Ge2,6–8 (due to problems with the density
functional theory predicting a band gap). While the
former has a band gap of 1.17 eV,9 the latter has a
narrow band gap of 0.78 eV10 at 0 K. The narrow
band gap of Ge, its high carrier mobility, and low
voltage have made it a possible alternative to Si as
an active layer in advanced electronic devices.11,12

Impurities influence Ge-based semiconductor
devices either positively or negatively.6 Several
experimental and theoretical studies of point defects
such as vacancy13 and interstitial6,7 defects in Ge
have been reported in the literature. While RE ion
defects in Si and other materials have been studied
both theoretically and experimentally,14–16 except
for Tm,2,8 the structural and electronic properties of
RE interstitial defects in Ge have not been exper-
imentally or theoretically reported. In order to
provide an insight for the experimental study of
the electronic properties of defects resulting from
the implantation of RE, we have used the Heyd,
Scuseria, and Ernzerhof (HSE06) functional17 in the
framework of density functional theory (DFT) to
calculate the electronic properties of the Ce, Pr, Eu,
and Er interstitials in Ge in two different configu-
rations: the tetrahedral (T) and hexagonal (H). The(Received February 25, 2016; accepted October 13, 2016)
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energies of formation for the T and H configurations
of the Ce, Pr, Eu, and Er interstitials in Ge were
calculated for charge states (�2;�1; 0;þ1;þ2). The
charge state transition levels are examined and
presented as well. The role of shallow and deep
levels, charge state controlled metastability and
negative-U properties of charge state transition
levels are also discussed. This article is organised
as follows: in ‘‘Computational Details’’ section, we
present the computational details, the result and
discussion are presented in ‘‘Results and Discus-
sion’’ section, and finally, we present our concluding
remarks in ‘‘Summary’’ section.

COMPUTATIONAL DETAILS

DFT electronic structure calculations were per-
formed using the Vienna ab initio Simulation
Package (VASP).18,19 We used the projector-aug-
mented wave (PAW) method, as implemented in the
VASP code to separate the inert core electrons from
the chemically active valence electrons.18,20 All the
calculations were carried out using the Heyd,
Scuseria, and Ernzerhof (HSE06)17 hybrid func-
tional. In this approach, the short-range exchange
potential is calculated by mixing a fraction (25%) of
exact nonlocal Hartree-Fock exchange with the
generalized gradient approximation (GGA) func-
tional of Perdew, Burke, and Ernzerhof (PBE).21 In
contrast to the local density approximation (LDA)
and the GGA that tend to underestimate the band
gap of semiconductors,12,22,23 the HSE06 functional
gives an excellent description of the electronic band
gap and charge state transition properties for a wide
range of the defects in group-IV semiconduc-
tors.7,9,22 For the past decade, the study and pre-
diction of the electronic properties of materials with
the f orbital valence shell was difficult because the f
orbital is highly localized. The highly localized f
orbital was previously treated using LDA + U and
other methods.24–27 Recently, the hybrid functional
has been successfully used to predict the electronic
and band gap properties of several materials with
an f orbital in the valence shell.24,28 Following this
success of the hybrid functional, it became feasible
for us to handle the f orbital in the valence shell of
the RE. For Ge, the 4s and 4p electrons in the outer
shell were treated as valence electrons, while
depending on the electronic configurations, the 6s,
5d, 5p, and 4f orbitals in the outer shell were
treated as valence electrons for the Ce, Eu, Er, and
Pr. For the bulk, geometric optimization of Ge was
performed using an eight-atom unit cell with an 83

Monkhorst-Pack29 k-point Brillouin zone sampling
scheme and cutoff energy of 400 eV. For the defects,
we employed a 64-atom supercell using a 23

Monkhorst-Pack29 k-point Brillouin zone sampling
scheme, and we set the plane wave cutoff of the
wave function expansion to 400 eV. We refined the
geometry until the change in the total energy was

less than 10�5 eV and the forces were relaxed to
below 0.001 eV/Å. The energy of formation of a
system is strongly dependent on the spin-orbit
coupling (SOC) due to the presence of relativistic
effects in heavy atomic systems. To deal with the
scalar relativistic effect, the mass-velocity and
Darwin correction terms have been incorporated
into the PAW potential. In addition to the scalar
relativistic effect that was taken into account, spin-
orbit coupling was also taken into account for all
calculations. The concentrations (C) of defects in
thermodynamic equilibrium are related to the for-
mation energy (Ef ) through the Boltzmann constant
(kB)

C ¼ N0 exp �Ef=kBT
� �

; ð1Þ
where T is temperature in Kelvin and N0 is the
number of sites in the crystal where the defect can
occur per unit volume. For a charged system, the
energy of formation of the defect in its charged state
depends on the Fermi level ðeFÞ. The formation
energy (Ef ) of a defect is derived directly from total
energies calculated by DFT, allowing the calculation
of equilibrium defect concentrations.30 To calculate
the defect formation and thermodynamic transition
energy ð�ðq=q0ÞÞ levels, we calculated the total
energy E(d, q) for a supercell containing the opti-
mized defect d in its charge state q. The defect
formation energy Ef ðd; qÞ as a function of electron
Fermi energy ðeFÞ is given as31

Ef ðd; qÞ ¼ Eðd; qÞ � EðpureÞ þ
X

i

ðDnÞili

þ q½EV þ eF� þ Eq
cor;

ð2Þ

where E(pure) is the energy of a supercell without a
defect, ðDnÞi is the difference in the number of
constituent atoms of type i between the pristine
supercell and the supercell containing the defect, li
represents the chemical potential of different con-
stituent atoms, and EV is the valence band maxi-
mum (VBM). The correction term Eq

cor according to
Freysoldt et al.32 has been included to account for
the discrepancies surrounding the calculation of
Ef ðd; qÞ due to finite-size effects within the supercell
and inaccuracy underlying the approximation of the
energy due to electrostatic interactions. According
to Eq. 1, an increase in the formation energy of a
defect obtained from Eq. 2 leads to a decrease in the
concentration of a defect, and the defect becomes
less energetically favourable. The defect transition
energy level �ðq=q0Þ is the Fermi energy at which
two charge states (q and q0) of the defect have the
same energy of formation, and is given as32

�ðq=q0Þ ¼ Ef ðd; q; eF ¼ 0Þ � Ef ðd; q0; eF ¼ 0Þ
q0 � q

ð3Þ

As reported in Ref. 7, we took the modelled band gap
of the pristine Ge to be 0.78 eV.
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RESULTS AND DISCUSSION

Structural Properties of RE Interstitials in Ge

In order to find out the most energetically favour-
able structure for the neutral charge state of RE
interstitials in Ge, two different atomic arrangement
were considered: the hexagonal (H) and tetrahedral
(T) configurations. The relaxed geometric structures
of RE interstitials in Ge are shown in Figs. 1 and 2, for
the T and H configurations, respectively. Table I lists
the predicted shortest bond distance (Å) between RE
and Ge atoms, before geometric relaxation (ad), after
geometric relaxation (bd), and the difference (Dd)
between ad and bd for the T and H configurations of
RE interstitials in Ge. The shortest bond length
between RE and Ge atoms was calculated with
respect to the nearest neighbour Ge atom.

Figure 1a and b represent the relaxed geometric
structures of the Ce and Pr interstitials in Ge,
respectively, for the T configuration. For this con-
figuration, while Fig. 1c represents the relaxed
geometric structure of the Eu interstitial in Ge,
Fig. 1d represents the relaxed geometric structure
of the Er interstitial in Ge. For the H configuration,
Fig. 2a–c represent the relaxed geometric structures
of the Ce, Pr, and Eu interstitials in Ge, respec-
tively. The relaxed geometric structure of the Er
interstitial in Ge for the H configuration is dis-
played in Fig. 2d as well. After geometric relaxation,
the shortest bond distance between a RE and its
nearest-neighbour Ge atoms for both the T and H
configurations decreased. The bond length between
Ce and Ge atoms decreases by 0.03 Å and 0.06 Å
for the T and H configurations, respectively. The Pr

and Ge atoms’ bond length decreased by 0.02 Å in
the T configuration and by 0.03 Å in the H config-
uration. For the Eu and Er interstitials in Ge, after
structural relaxation, the shortest bond length
between Eu and Ge and Er and Ge atoms decreased
by 0.06 Å (for Eu–Ge) and 0.01 Å (for Er–Ge) for
the T configuration. For the H configuration, while
the Eu and Ge atoms’ bond length decreased by
0.08 Å after geometric relaxation, the Er and Ge
atoms’ shortest bond length decreased by 0.03 Å.
For all RE interstitials in Ge, we found that all the
shortest bond lengths between RE and Ge atoms
decreased within 0.8 Å. We have observed that for
all RE interstitials in Ge studied, the RE and Ge
shortest bond distance, as well as the reduction in
bond length after structural relaxation for the T
configuration are lower than that of the H config-
uration. This suggests that the RE interstitials in
Ge experience more bond length strain in the H
configuration than the T configuration and should
be the key to understanding the difference in the
formation energies for both configurations.

Projected Density of States of RE Interstitials
in Ge

The plot of electronic properties [spin polarised
projected density of states (PDOS)] of RE intersti-
tials in Ge for the T and H configurations are shown
in Fig. 3. The majority (spin-up) and minority (spin-
down) density of states are shown as right and left
halves of each plot, respectively. For the pristine Ge,
the majority and minority spins are symmetrical for
the entire plot [as shown in insert (o) of Fig. 3],

Fig. 1. Relaxed geometric structures for the T configuration of RE
interstitials in Ge. (a) Ce, (b) Pr, (c) Eu, and (d) Er.

Fig. 2. Relaxed geometric structures for the H configuration of RE
interstitials in Ge. (a) Ce, (b) Pr, (c) Eu, and (d) Er.
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suggesting non-spin polarization of the system. RE
interstitials in Ge for all defects considered show
strong evidence of hybridization between the s and p
orbitals of participating atoms. For the Er intersti-
tial in Ge, in the H configuration, orbital states are
densely populated both in the conduction band
minimum and valence band maximum [see insert
(a) of Fig. 3]. But for the T configuration, we
observed significant contribution of the orbital
states in the conduction band minimum, below the
Fermi level [see insert (b) of Fig. 3]. Nevertheless, in
contrast to the T configuration, which did not show
any full metallic behaviour, the PDOS of the H
configuration of the Er interstitial in Ge exhibits
metallic character. For the Eu interstitial [insert (c)
and (d) of Fig. 3], the defect induced orbital states in
the band gap for both the T and H configurations,
resulting in 0 band width. This suggests that as a
result of the defect introduced, the entire system
becomes metallic. For the Ce interstitial in Ge,
apart from the hybridization that occurred between
the s and p orbitals, the band width of the T
configuration is higher than that of the H configu-
ration. More orbital states are found below the
Fermi level at the conduction band minimum for the
T than that of the H configuration as shown in
insert (f) and (e), respectively, of Fig. 3. This same
trend is observed for the Pr interstitial in Ge. where
the difference between the band width of the T and
H configurations is 0.37 eV. Except for the Pr, all
other RE interstitial in Ge studied are spin
polarised. Figure 3 shows that some RE intersti-
tials in Ge introduced states within the band gap of
Ge. Depending on the RE, RE interstitials in Ge
induced orbital states appear to be either deep (in
the middle of the band gap of Ge) or shallow
(appearing within the band gap, but close to the
either conduction band minimum or valence band
maximum). It is noted that apart from Eu, RE
interstitials in Ge for the T configuration induces
fewer orbital states in the band gap of Ge than the
H configuration. This could play a major role in

predicting the sequence of the formation energy of
RE interstitials in Ge.

In order to understand the bonding characteristic
and charge transfer (relative to host atoms) for the
T configuration of RE interstitials in Ge, we per-
formed total charge density calculation. Table II
shows the charge transfer between a RE interstitial
atom relative to host atoms. Our results show that
there is charge transfer between participating RE
and Ge atoms. The Pr and Ce have the least charge
transfer of 1.04 e and 1.05 e with Ge. The Eu, on the
other hand, has the highest charge transfer of 1.42 e
with Ge atom compared to the other participating
RE.

Formation Energies of RE Interstitials in Ge

The results of the formation energies of the Ce,
Pr, Eu, and Er interstitials in Ge are tabulated in
Table III. The formation energies for the T and H
configurations of the Ce interstitial in Ge increase
from þ2 to the �2 charge state. The energies of
formation of the Ce interstitial in Ge for both the T
and H configurations are between �4.45 eV and
2.61 eV for all charge states. In addition, the T
configuration has lower formation energies for all
the charge states than the H configuration. This
suggests that under equilibrium conditions the T
configuration is more energetically favourable in all
charge states than the H configuration.

The Er interstitial in Ge forms with formation
energies between 0.28 eV and 7.64 eV for all charge
states in the T and H configurations. While the
formation energy of the H configuration tends to
increased from the �2 to the þ2 charge state, the
formation energies for the T configuration
decreased. Charged state controlled metastable de-
fects are important in the study of semiconductor.
Charged state controlled metastability suggests
that even though two different configurations of
the same defect type have the same number and
type of atoms, the stability of one configuration over

Table I. Predicted shortest bond distance (Å) between RE and Ge atoms, before geometric relaxation (ad),
after geometric relaxation (bd), and the difference (Dd) between ad and bd for the T and H configurations of RE
interstitials in Ge

RE–Ge

T H

ad bd Dd ad bd Dd

Ce–Ge 2.67 2.64 0.03 2.83 2.77 0.06
Pr–Ge 2.31 2.29 0.02 2.77 2.74 0.03
Eu–Ge 2.77 2.71 0.06 2.95 2.87 0.08
Er–Ge 2.67 2.66 0.01 2.70 2.67 0.03

The bond lengths are calculated with respect to the nearest neighbour Ge atoms around the RE.
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the other is charge state dependent.33,34 For the Er
interstitial in Ge, the minimum energy configura-
tion of the defect depends on its charge state,
suggesting that the defect may display charge state
controlled metastability.

The formation energies of both the T and H
configurations for the Eu interstitial in Ge show an
increasing tendency from the þ2 charge state to the
�2 charge state. While for both the T and H
configurations of the Eu interstitial in Ge the
formation energies are between 3.74 eV and
7.82 eV, the T configuration has a lower formation
energies than the H configuration. The difference
between the formation energy of the T and H
configuration for the 0, �1 þ1 �2 and þ2 charge
states is greater than 1.5 eV for all charge state. In
addition to the Ce, the Eu and Pr interstitials in Ge
are energetically more favourable in the T configu-
ration than the H configuration. For the Pr inter-
stitial in Ge, the T configuration has lower
formation energies than the H configuration. Except
for the formation energies of the Eu and Er inter-
stitials in Ge which are reasonably high (compared
to other RE in this study) for some charge states,
the Ce and Pr interstitials in Ge have the lowest
formation energies in all the configurations.

The Eu interstitial in Ge has the highest formation
energies in both the T and H configuration for charge
state �2, �1 , and 0. While the Er interstitial has the
highest formation energies for charge state þ1 and
þ2 for the H configuration, the Eu interstitial in Ge

forms with the highest formation energy for þ1 and
þ2 charges states for the T configuration. For the T
and H configurations of RE interstitials in Ge, in the
neutral charge state, the formation energy increases
in the sequence Pr< Ce< Er< Eu. One of the
possible reasons for such a sequence could be the
difference in charge transfer between a RE atom and
Ge. While Pr interstitial in Ge has the lowest
formation energy for the neutral and negative charge
states, the Ce interstitial in Ge has the lowest
formation energies for the positive charge states for
all configurations. Our calculated formation energies
indicate that except for the Er, RE interstitials in Ge
under equilibrium conditions are more energetically
favourable in the T than the H configuration. This
could be as a result of the less strain experience by
the RE–Ge atoms bond lengths in the T configura-
tion. Another probable reason why there are differ-
ences in formation energies is as a result of the effect
of orbital hybridization between a RE atom and its
nearest Ge neighbour as seen in the plot of the
PDOS.

Charge State Transition Levels of RE Inter-
stitials in Ge

Table IV shows the calculated energies of the
charge state thermodynamic transition levels in the
band gap of Ge. Plots of the formation energy as a
function of the Fermi energy are shown in Fig. 4.
For the Ce interstitial in Ge (see Fig. 5a), there is no
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Fig. 3. Plot showing the spin polarised projected density of states (PDOS) of RE interstitials in Ge; (a) H configuration of Er interstitial in Ge
(H-Er), (b) T configuration of Er interstitial in Ge (T-Er), (c) H configuration of Eu interstitial in Ge (H-Eu), (d) T configuration of Eu interstitial in Ge
(T-Eu), (e) H configuration of Pr interstitial in Ge (H-Pr), (f) T configuration of Pr interstitial in Ge (T-Pr), (g) H configuration of Ce interstitial in Ge
(H-Ce), (h) T configuration of Ce interstitial in Ge (T-Ce), and (o) pristine Ge. The Fermi level (at �f = 0 eV) is shown by the dashed horizontal line.
The majority (spin-up) and minority (spin-down) density of states are shown as right and left halves of each plot.
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evidence of charge state transition level within the
band gap for the T configuration. The þ2 charge
state is stable for all eF in the band gap. For the H
configuration of Ce interstitial in Ge, we found a
transition level at (þ2=þ 1), which is a shallow
donor lying close to the conduction band minimum
(CBM) at EC � 0:03 eV (EC is the energy of the
conduction band minimum). This suggests that the
energetic distance to the band edge is within a few
kBT at room temperature, resulting in efficient
ionization of electrons from the defect level into the
conduction band (leading to mobile electrons).

For the Pr interstitial in Ge, there is no evidence
of charge state transition level found within the
band gap for both the T and H configurations. For
the H configuration of Pr interstitial in Ge, the �1
charge state is stable for all eF in the band gap. For
the T configuration of the Pr interstitial in Ge, the
neutral charge state is stable for all eF in the band

gap as shown in Fig. 5b. According to Fig. 5c, for the
Eu interstitial in Ge, the H configuration is pre-
dicted to induce deep and shallow levels within the
band gap. These levels are deep at EV þ 0:26 and
EC � 0:26 eV for the double donor (þ2/þ1) and (þ1/
0), respectively, and reasonably shallow lying close
to the CBM at EC � 0:14 eV for the single acceptor
(0/�1). Other levels found in this configuration are
not thermodynamically accessible. For the T config-
uration of the Eu interstitial in Ge, while there is
neither a donor nor acceptor level found, we found
an interesting charge state transition level at (þ2/
�2), which lies deep in the band gap at
EV þ 0:18 eV. The interaction energy between two
electrons in a two-level defect is referred to as
Hubbard U.23,35 A defect often has a negative-U
(U < 0) if the atomic position of the defect depends
sensitively on its charge state. The Eu interstitial in
Ge displays negative-U ordering at (þ2/�2), i.e
charged states þ1, 0, and �1 are unstable with
respect to dissociating into q ¼ þ2 and q ¼ �2. We
calculated the effective negative-U of the Eu inter-
stitial in Ge for the T configuration to be �1.50 eV.

Figure 5d indicates the presence of a deep level
created by Er interstitial in Ge, for both the T and H
configurations. For the T configuration, the Er
interstitial induces a transition state at (+2/+1)
which is a deep donor level lying at EC � 0:28 eV.
For the H configuration, instead of observing a

Table II. Calculated total charge (Coulomb)
transfer between a RE and Ge atoms, for the T
configuration of RE interstitials in Ge

Defect Pr Ce Er Eu

Charge transfer 1.04 1.05 1.21 1.42

Table III. Calculated formation energies (Ef ) in eV at �f ¼ 0 of the Ce, Eu Er, and Pr, interstitials in Ge

Defect Configuration 22 21 0 +1 +2

Ce T �0.34 �1.62 �2.74 �3.69 �4.45
H 2.61 0.99 0.04 �0.87 �1.55

Er T 3.83 2.65 1.61 0.78 0.28
H 2.06 1.40 4.51 7.64 7.21

Eu T 4.49 5.30 4.61 4.03 3.74
H 7.82 6.80 6.17 5.64 5.39

Pr T �2.61 �3.81 �4.76 �1.60 �2.40
H 1.35 �0.43 �0.12 1.89 1.24

The configurations with the lowest formation energies for each charge state are written in bold.

Table IV. The energy of the charge state transition levels �ðq=q0Þ in the band gap for the Ce, Eu, Er, and Pr,
interstitials in Ge for both the T and H configurations

Charge state transition level

T H

Ce Er Eu Ce Er Eu

(þ2=þ 1) – 0.50 – 0.75 – 0.26
(þ1=0) – – – – – 0.52
(0=� 1) – – – – – 0.64
(�1=� 2) – – – – 0.60 –
(þ2=� 2) – – 0.18 – – –

These transition levels are taken with reference to the VBM.
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donor level, we found a ð�1=� 2Þ acceptor level
lying far away from the valence band maximum at
EC � 0:18 eV. According to Fig. 5, for the T config-
uration, only the Er and Eu interstitials induce
charge state transition levels within the band gap of
Ge. For the H configuration of RE interstitials in Ge,
all except Pr interstitial induce charge state tran-
sition levels within the band gap of Ge.

SUMMARY

In conclusion, results of the tetrahedral (T) and the
hexagonal (H) configurations of the Ce, Pr, Eu, and Er
interstitials in Ge are presented. For all calculations,
the Heyd, Scuseria, and Ernzerhof (HSE06) hybrid
functional was used in the framework of density
functional theory (DFT). The formation energies and
charge state transition levels for Re interstitials in Ge
are described in detail. We have shown that the
formation of Ce, Pr, Eu, and Er interstitials in Ge
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Fig. 4. Plot of formation energy as a function of the Fermi energy for the H (hexagonal) and T (tetrahedral) configurations of RE interstitials in Ge.
(a) The H and T configurations of Ce interstitial in Ge, showing donor level for the H configuration. (b) The H and T configurations of the Pr
interstitial in Ge, there is no charge state transition level induced by this defect. (c) The H and T configurations of Eu interstitial in Ge, showing
negative-U properties for the T configuration. (d) The H and T configurations of Er interstitial in Ge. The Er interstitial in Ge displays the properties
of charge state controlled metastability.

Fig. 5. Calculated negative-U, acceptor, and donor transition energy
levels for both the tetrahedral (T) and hexagonal (H) configurations of
RE interstitials in Ge. All energy levels (eV) are with respect to the
VBM.
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exist with formation energies between �4.76 eV and
7.82 eV for all charge states, with that of Eu and Er
interstitials in Ge slightly higher for some charge
states. Our calculations show that of all the four
elements, the Ce and Pr interstitials in Ge, have the
lowest formation energies in both the T and H
configurations. For the Ce, Pr, and Eu interstitials
in Ge, the formation energies for the T configuration
are lower than the H configurations in all charge
states. The Er interstitial in Ge exhibits properties of
charge state controlled metastability.

We have shown that unlike the Pr interstitial in
Ge, that has no induced accessible transition level
within the band gap, the Er and Eu interstitials in Ge
induce charge state transition levels in the band gap.
While the H configuration of Eu interstitial induces
double and single donor levels at EV þ 0:26 eV and
EC � 0:26 eV respectively, the T configuration of the
Eu interstitial in Ge displays negative-U ordering at
(+2/�2) transition level. The Er interstitial in Ge
induces a donor level in the T configuration and an
acceptor level in the H configuration at EC � 0:28 eV
and EC � 0:18 eV respectively.
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a b s t r a c t

By means of density functional theory (DFT), using the screened Heyd, Scuseria, and Ernzerhof (HSE06)
hybrid functional we present results of the Tm3þ

Ge -VGe defect complexes in germanium (Ge). The for-
mation energies of the first (fnn), second (snn), third (tnn) and fourth (ftnn) nearest neighbour config-
urations of VGe-VGe were examined. The charge state transition levels for all these configurations were
examined as well. The Tm3þ

Ge -VGe complexes were found to have a positive binding energies for the
neutral charge state in the fnn and ftnn configurations. The thermodynamic transition levels revealed that
the Tm3þ

Ge -VGe induced shallow levels in the band gap for the fnn, tnn and ftnn configurations and deep
level for the tnn configuration. The snn configuration showed no charge state transition level, the � 2
charge state was stable for all Fermi energies in the band gap. The Tm3þ

Ge -VGe displayed evidence of a
single donor level ðþ1=0Þ and an acceptor level ð�1=�2Þ within the band gap. Charge state controlled
metastability was exhibited by the Tm3þ

Ge -VGe.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Study of defects in semiconductor materials have been inten-
sively carried out in the last two decades, most especially for ma-
terials such as Si and Ge [1]. While the former has a band gap of
1.11 eV [2], the latter has a narrow band gap of 0.78 eV [3] at 0 K. The
high electron and hole mobilities of Ge has made it possible for
strained Si1�x Gex heterostructures to increase mobility in modern
transistors [4]. Impurities influence Ge-based semiconductor de-
vices either positively or negatively [1]. The formation energy and
the transition charge state levels created in the band gap are
important parameters that determine the effect of defect in a
semiconductor [5]. Several experimental and theoretical studies of
point defects such as vacancies and diffusion [6e9], interstitials
[1,10] and impurity substitution [11,12] in Ge had been investigated
using different techniques and approaches. The rare earth (RE) are
good examples of elements that have amongst other orbitals, the 4f
orbital at the valence shell, which are highly localized [13,14]. The

RE are mainly use to generate optical sources over extensive
wavelength range from the visible to the infrared regions [15,16].
The optical properties of RE give a proper description of the pho-
toluminescence experience in a RE related defect in Si [15]. Recently
fabrication and optical properties of Tm doped materials were
studied and electro-luminescence (EL) has been demonstrated
from this material [17e19]. Light emission devices have been
attributed to thulium and erbium defects in several materials
[20,21]. For Ge, Tm3þ defects were extensively studied using a
screened hybrid functional [11]. According to Ref [11], the Tm3þ

interstitial and substitutional defects in Ge exist with low forma-
tion energies and Tm3þ defect introduced transition levels of (0/
�1), (þ1/0) and (þ1/þ2) within the band gap [11]. Vacancy im-
purity complexes in Ge are important because many substitutional
centres including dopant migrate by thermally generated vacancies
[22]. The results of the RE defect related complexes in GaN [23e25],
AlN/Si [26] and GaAs [27] has been previously studied and reported.
It have been predicted that the RE defect complexes in GaN exhibit
charge state controlled metastability [23]. While for Si, the RE im-
purities are electrically inert and induced gap levels occupied by
the valence electrons [26], but for AlN, the RE impurities induced
deep levels within the band gap [28]. For the GaN, AlN, GaAs and Si,
the structural and electronic properties of the RE induced defects
has been successfully predicted. However, the structural and
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electronic properties of RE induced defect complexes in Ge have not
been reported both experimentally and theoretically. In this work,
we have used the screened hybrid functional of Heyd, Scuseria, and
Ernzerhof (HSE06) [29] bymeans of density functional theory (DFT)
to calculate the structural and electronic properties of the Tm3þ-VGe

defect complexes in Ge for the nearest neighbour (fnn), second
nearest neighbour (snn), third nearest neighbour (tnn) and fourth
nearest neighbour (ftnn) configurations. The energies of formation
for the various configurations were calculated for charge states
(�2;�1;0;þ1; andþ 2). The charge states transition levels for the
Tm3þ-VGe were examined and presented. The role of shallow levels
and charge state controlled metastability along side with negative-
U behaviour were also discussed. The remaining parts of this paper
have been organised as follows: in Section 2, we present a
description of the computational details, followed by the results
and discussion in Section 3 and finally, we present our concluding
remarks in Section 4.

2. Computational details

Using the Vienna ab-initio Simulation Package (VASP) [30,31],
we have carried out DFT calculation of the Tm3þ-VGe. The inert core
electrons were separated from the chemically active valence elec-
trons by using the Projector-augmented wave (PAW) method, as
implemented in the VASP code [30,32]. For Ge, the 4s and 4p
electrons in the outer shell were treated as valence electrons, while
for Tm3þ, the 6s, 5p and 4f orbitals were considered as valence
electrons. DFTcalculations were carried out using the HSE06 hybrid
functional [29,33]. In this approach, the short-range exchange po-
tential was calculated by mixing a fraction (25%) of nonlocal
Hartree-Fock exchange with the generalized gradient approxima-
tion (GGA) functional of Perdew, Burke, and Ernzerhof (PBE) [34]. In
contrast to the local density approximation and the generalized
gradient approximation that underestimate the band gap of the
semiconductor [35,36], the HSE06 functional gives an excellent
description of the electronic band gap for a wide range of defects in
group-IV semiconductors [37,10]. For the past decades, the study
and prediction of the electronic properties of materials with the 4f
orbital valence electronwas difficult due to the fact that the f orbital
is highly localised. The highly localised 4f orbital was previously
treated using LDA þU and other methods [13,38e40]. Recently, the
hybrid density functional has been successfully used to predict the
electronic properties of several materials with highly localized f
orbitals in the valence shell [13,14]. Following this success of the
hybrid density functional, it became feasible to handle the 4f orbital
in the valence shell of Tm3þ. For the bulk, geometric optimization of
Ge was performed in an 8-atom unit cell with an 83 Monkhorst-
Pack [41] k-point Brillouin zone sampling scheme and cutoff en-
ergy of 400 eV. For the defects, we employed a 64 atom supercell
using a 23 Monkhorst-Pack [41] k-point Brillouin zone sampling
scheme, and we set the plane wave cutoff of the wave function
expansion to 400 eV. We refined the structure until the change in
the total energy was less than 10�5 eV and the forces were relaxed
to below 0.001 eV/Å. In all the calculations, spin orbit coupling was
taken into account To calculate the defect formation and transition
energy ðεðq=q0ÞÞ levels, we calculated the total energy Eðd; qÞ for a
supercell containing the optimized defect d in its charge state q. The
defect formation energy Ef ðd; qÞ as a function of electron Fermi
energy ðεFÞ relative to the valence band edge is given as [42,43].

Ef ðd; qÞ ¼ Eðd; qÞ � EðpureÞ þ
X

i

ðDnÞimi þ q½EV þ εF � þ Eqcor;

(1)

where EðpureÞ is the energy of a supercell without a defect, ðDnÞi is

the difference in the number of constituent atoms of type i between
the pristine and the supercell containing the defect, mi represents
the chemical potential of different constituent atoms and EV is the
valence band maximum (VBM). Errors in Ef ðd; qÞ due to finite-size
effects within the supercell and inaccuracy underlying the
approximation of the energies, were handled by including the
correction Eqcor term according to FNV [43,44]. The defect transition
energy level εðq=q0Þ is the Fermi energy at which two charge states
(q and q0) of the defect have the same energy of formation is given
as [5].

εðq=q0Þ ¼ Ef ðd; q; εF ¼ 0Þ � Ef ðd; q0; εF ¼ 0Þ
q0 � q

(2)

As reported in Ref. [10], we took the modelled band gap of the
pristine Ge at 0 K to be 0.78 eV. The binding energies Eb which are
defined as the energy required to split up defect cluster into well
separated non-interacting defects is given as [45].

Eb ¼ EfVGe
þ Ef

Tm3þ
Ge

� Efdefect�complex; (3)

where EfVGe
, Ef

Tm3þ
Ge

and Efdefect�complex are the formation energies of

VGe, Tm
3þ
Ge and Tm3þ-VGe respectively. Eq. (3) could be interpreted

as the energy loss of the bonded structure with respect to the
isolated components.

3. Results and discussion

3.1. Structural properties of Tm3þ-VGe

The geometric structures of Tm3þ-VGe for four configurations are
shown in Fig. 1. Fig. 1a and b show the relaxed geometric structure
of the first nearest neighbour (fnn) and second nearest neighbour
(snn), respectively. While Fig. 1c shows the relaxed geometric
structure of the third nearest neighbour (tnn), Fig. 1d displays the
relaxed geometric structure of the fourth nearest neighbour (ftnn).
Fig. 1e is the extract of the Tm atomwith its four nearest neighbour
Ge atoms. For the fnn configuration, the Tm-Ge bond length
decreased by 0.01 Å. Whereas two bond angles formed decreased
by 1� and the other two bond angles were unchanged. For the snn
configuration, we observed that the Tm-Ge bond length decreased
by 0.5 and 0.10 Å except for in one direction, where the bond length
increased by 0.40 Å. For the bond angle in snn configuration, while
two bond angles decreased by 8� and 10�, the other 2 bond angles
increased by 7� and 10�. For the tnn configuration, all the optimised
bond length increased by an average of 0.40 Å and half of the bond
angles formed increased by 7� and 1�, while the other half
decreased by 8� and 2�. Finally for the ftnn configuration, all the
bond length increased by an average of 0.28 Å. The bond angles
formed increased by 2� and 9� except for in one, which decreased
by 8�.

3.2. Formation energies and thermodynamic properties of Tm3þ-
VGe

Results of the formation energies of Tm3þ-VGe in its various
configurations are tabulated in Table 1. In all the configurations, the
defect Tm3þ-VGe forms with formation energies between 4.00 and
7.50 eV. Under equilibrium conditions, the fnn configuration is
energetically more favourable in all charge states except for the e

charge state where the ftnn is energetically most favourable. The
Tm3þ-VGe had a lower formation energy in the tnn configuration
than the snn configuration. In the neutral state, the energy differ-
ence between the fnn and the snn is 2.01 eV. By using Eq. (3), we
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calculated the binding energies for the Tm3þ-VGe in the neutral
state to be 0.06, �0.05, � 1.95 and 0.05 eV for the fnn, snn, tnn and

the ftnn configurations, respectively. The binding energies suggest
that the fnn and ftnn configurations can form without dissociating.

The plot of the charge state transition levels for the fnn, snn, tnn
and ftnn configurations of Tm3þ-VGe are presented in Fig. 2. Fig. 2a
and d show the plot of the formation energies of Tm3þ-VGe in its
charge states as a function of εF for the fnn, snn, tnn and ftnn con-
figurations respectively. Fig. 2e represents the thermodynamically
most stable accessible region for the fnn, snn tnn and ftnn config-
urations. Table 2 lists the energy of the charge state transition
levels. For the fnn configuration, the Tm3þ-VGe induced a double
shallow acceptor level at EV þ 0.06 eV close to the valence band
maximum (VBM). There was no other thermodynamically acces-
sible induced level found for the fnn configurations. For the snn
configurations, there was no transition level induced by Tm3þ-VGe

within the band gap. The �2 charge state has the lowest energy
level across the band gap. This is in contrast to the tnn configuration
where we observed the presence of two levels within the band gap.
These levels are single donor, located at EV þ 0.05 eV and an
acceptor deep level at EV þ 0.41 eV. All other possible transition
levels are at almost 1 eV away from the stable region within the
band gap. For the ftnn configuration, we observed a single Tm3þ-VGe

induced level. Quite interestingly, the level is a shallow acceptor at
EV þ 0.16 eV close to the VBM. For all the observed induced levels
within the band gap, we discovered that the Tm3þ-VGe is most likely
to form acceptor levels than donor levels and most of these levels
are close to the VBM.

The Tm3þ-VGe induced defect in Ge reveals interesting proper-
ties, such as the charge state controlled metastability and the
negative-U properties. In Fig. 2e, for the fnn and ftnn configurations
we noticed the evidence of charged state controlled metastability.
The implication of the presence of charge state controlled meta-
stability is that the minimum energy configuration of the Tm3þ-VGe

can be controlled by changing the charged state of the defect from
�1 to �2. The difference in energy between the fnn and ftnn con-
figurations for charge state �1 and �2 is small (0.05 and 0.1 eV
respectively). This difference is in order of KB T at room tempera-
ture, so both states should be occupied at room temperature. Taking
the high energy of formation of the snn and tnn configurations, it
seems there is a large energy barrier between the two states. In
addition, the low binding energy of the defect makes it unlikely for
vacancies to be captured for long. It is therefore doubtful if there
will be enough opportunity for a significant number of vacancies in
the ftnn configuration to surmount the barrier in order for the
defect to transform to its fnn states. While there was no evidence of
negative-U behaviour for the fnn and ftnn configurations, in the tnn
configurations, the Tm3þ-VGe exhibited the properties of negative-U
with effective-U value of �0.42 eV. The Tm3þ-VGe complexes
enhance the efficient ionization of electrons from the valence band
which in turn create holes in the valence band. The Tm3þ defects in
Ge should be used to control conductivity since it exhibit the
properties of shallow levels.

4. Conclusion

In conclusion, the density function theory (DFT) with the
screened Heyd, Scuseria, and Ernzerhof (HSE06) hybrid function

Fig. 1. Geometric structure of the Tm3þ
Ge -VGe complex in Ge for the (a) first nearest

neighbour, (b) second nearest neighbour, (c) third nearest neighbour, (d) fourth
nearest neighbour and (e) extract of the Tm and its nearest neighbour Ge atoms.

Table 1
Calculated formation energies (Ef ) in eV at εf ¼ 0 of Tm3þ

Ge -VGe complexes in Ge for
the first nearest neighbour (fnn), second nearest neighbour (snn), third (tnn) nearest
neighbours and the fourth (ft nn) configurations. The lowest formation energy in
each charge state are written in bold.

Defect Configuration �2 �1 0 þ1 þ2

Tm3þ
Ge eVGe

fnn 4.78 4.72 5.06 4.88 5.17
snn 6.54 8.79 7.07 7.30 7.64
tnn 6.01 5.60 5.17 5.12 5.55
ft nn 4.88 4.67 5.07 5.69 5.90

Table 2
The energy of the charge state transition levels εðq=q0Þ above EV (eV) for the fnn, tnn
and ft nn configurations of Tm3þ

Ge -VGe complexes.

Charge states fnn tnn ft nn

(þ1=0) e 0.05 e

(0=�2) e 0.41 e

(�1=�2) 0.06 e 0.21
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were used to calculate the Tm3þ-VGe in its four different configu-
rations (first nearest neighbour (fnn) second nearest neighbour
(snn), third nearest neighbour (tnn) and the fourth nearest

neighbour (ftnn). The structural properties, electronic properties,
formation energies and charge state thermodynamic transition
levels were calculated and described. We have shown that the

Fig. 2. Plot of formation energy as a function of the Fermi energy of the Tm3þ
Ge -VGe complexes in Ge for the fnn, snn, tnn and ft nn configurations. Fig. 2e shows the most ther-

modynamically stable regionwithin the band gap for the various configurations being examined. The fnn and ftnn configurations displayed the properties of charged state controlled
metastability and the tnn displays negative-U properties.
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formation of the Tm3þ-VGe occurred in four different configuration
with low formation energy except for the snn configuration which
had a high formation energy. The fnn and ftnn configurations of the
Tm3þ-VGe defect under equilibrium condition were energetically
most favourable. For the neutral state the fnn and ftnn forms with
5.06 and 5.07 eV formation energies and with a positive binding
energy of 0.06 and 0.05 eV respectively. The charge state transition
levels shown that the Tm3þ-VGe induced shallow levels close to the
valence band maximum. These shallow levels are acceptor at
εð�1=�2Þ ¼ 0.06 eV and εð�1=�2Þ ¼ 0.21 eV for the fnn and ftnn
configurations respectively and donor at εðþ1=0Þ ¼ 0.05 eV for the
tnn configuration. In addition, Tm3þ-VGe displayed the properties of
charge state controlled metastability between the fnn and the ftnn
configurations. We have pointed out the role of vacancy complexes
in Ge and we expect the data and information presented to be
useful in the process modelling of Ge-based devices for industrial
applications.
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Chapter 6

Conclusion

6.1 Introduction

In this chapter, the conclusion of all reports and results obtained during the process

of the research is summarized. This chapter also includes suggested recommendations

and future work to be carried out which are related to the topics that are discussed in

this thesis.

In this study, ab initio density functional theory (DFT) with a hybrid functional has

been used to study the structural, electronic and charge state transition properties of

point defects in Ge. The hybrid functional of Heyd Scuseria Ernzerhof (HSE06) [15, 63],

which is known to overcome most of the shortcomings of standard DFT when using

the GGA and LDA exchange correlation functionals, has successfully been used to

accurately predict the structural, electronic and charge state transition properties of

selected point defects in Ge. The following points summarize the results presented in

this thesis.

1. Validation of the use of the HSE functional

The structural and electronic properties of Ge were modelled. The bond length

between two nearest neighbours Ge atoms was predicted to be 2.46 Å, which
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is in close agreement with experimental and other modelling results reported in

literature [107, 177]. The band gap of 0.78 eV at 0 K, as predicted by HSE hybrid

functional is in agreement with the experimental band gap as reported by Morin

et al. [1].

Ge self-interstitial was successfully modelled. The formation energy of the neutral

charge state of the Ge self-interstitial in the tetrahedral and split[110] configura-

tions were 3.88 and 3.80 eV, respectively. These results are in close agreement

with earlier theoretical reports [89, 98] based on LDA and GGA functional. The

Ge self interstitial in the tetrahedral configuration induced a shallow level at

EC −0.04 eV, which is in good agreement with experimental result reported by

Haesslein et al. [9]

2. Ge di-interstitial (I2(Ge))

The formation of I2(Ge) from two neutral isolated interstitials is feasible. The

I2(Ge) results show that the tetrahedral (T) configuration, where both interstitials

are at a tetrahedral site, is more stable than the split[110]-tetrahedral (SPT) and

double split[110] (SP10) configurations by more than 0.8 eV. In the tetrahedral

configuration, Ge di-interstitials induced a shallow donor (+2/+1) level at EC −

0.04 eV. In the SP10 configuration, deep levels at EV + 0.41 eV for (+2/+1) and

EV + 0.47 for (+1/−1) were predicted, while in the SPT configuration only a

deep level at EV + 0.58 eV for (+1/−1) was predicted. The presence of negative-

U ordering having effective-U values of −0.61 and −1.6 eV for the SPT and SP10

configurations respectively was observed.

3. Tm3+ related defects in Ge

The formation of Tm3+
i (in the hexagonal (H) configuration), Tm3+

Ge , and VGe-

Tm3+
i in both (axial and basal) configurations were investigated. Of the three

configurations investigated, VGe-Tm3+
i in the axial configuration had the lowest
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formation energy for all charge states. The Tm3+
i , Tm3+

Ge , and VGe-Tm3+
i defects

introduced transition levels of (0/−1) and (+1/0) that lay deep in the band gap

of Ge. In addition to these levels, the VGe-Tm3+
i and Tm3+

Ge introduced (+1/+2)

and (−1/−2) levels that lay close to the band edges. Unlike the Tm3+
Ge and VGe-

Tm3+
i that act as an acceptor (−1/−2), the Tm3+

i does not act as an acceptor,

instead, this level lies inside the CBM. These defects have not yet been observed

experimentally but the data and information presented should be useful in the

process modelling of Ge-based devices.

4. Rare earth (Ce, Pr, Eu and Er) interstitials in Ge

The Ce, Pr, Eu and Er interstitials in Ge were investigated for both the tetra-

hedral (T) and hexagonal (H) configurations. The formation energy of the Ce,

Pr, Eu and Er interstitials in Ge was between −4.76 and 6.17 eV for the neutral

charge state. In all charge states, the formation energies of the Ce, Pr, and Eu

interstitials in the T configuration were lower than that of the H configuration,

while the Er interstitial exhibited charge state controlled metastability. Unlike

the Pr interstitial in Ge, which did not have any thermodynamically accessible

charge state transition levels, the Er and Eu interstitials in Ge induced charge

state transition levels in the band gap. While the H configuration of Eu intersti-

tial in Ge induced donor levels at EV +0.26 and EC−0.26 eV, the T configuration

of the Eu interstitial in Ge displayed negative-U ordering at (+2/−2). In both

the T and H configurations, the Er interstitial in Ge introduced a donor and an

acceptor level at EC−0.28 and EC−0.18 eV, respectively. The properties of rare

earth interstitials in Ge were pointed out and the data and information presented

in this thesis should be useful in the process modelling of Ge-based devices for

industrial applications.
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5. Tm3+
Ge -VGe defect complexes in germanium

The Tm3+
Ge -VGe complex occurred in four configurations (first nearest neighbour

(fnn), second nearest neighbour (snn), third nearest neighbour (fnn) and fourth

nearest neighbour (ftnn)) with low formation energy except for the snn which had

a high formation energy. The fnn and ftnn of the Tm3+-VGe under equilibrium

condition were energetically the most favourable configurations. For the neutral

state, the fnn and ftnn formed with 5.06 and 5.07 eV formation energies and

with positive binding energies of 0.06 and 0.05 eV, respectively. The charge state

transition levels showed that the Tm3+-VGe induced shallow levels are close to

the valence band maximum. These shallow levels are acceptors at ε(−1/−2) =

0.06 eV and ε(−1/−2) = 0.21 eV for the fnn and ftnn configurations, respectively,

and donor at ε(+1/0) = 0.05 eV for the tnn configuration. In addition, the

Tm3+-VGe displays charge state controlled metastability between the fnn and ftnn

configurations. The difference in energy between the fnn and ftnn configuration

was small (0.05 and 0.1 eV for −1 and −2 charge states, respectively). This

difference is in the order of kBT at room temperature, so both states should be

occupied at room temperature. The result presented in this section will be useful

in the process modelling of Ge-based devices.

6.2 Future opportunities

The study of defects in Ge, although gaining more ground due to improved experi-

mental techniques, is still in its infancy when one considers how few defects have been

identified. Many fruitful attempts have been made comparing theoretical modelled re-

sults of properties of point defects in Ge to experimentally observed results. In order

to qualitatively compare more properties of points defects in Ge predicted by ab initio

results, various experimental results need to be fully investigated and studied using ab
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initio techniques. Before the advent of the HSE functional, ab initio predictions of

point defect properties in Ge were difficult due to the inadequacy of the various ex-

change correlation energies (GGA and LDA) applied within DFT to predict the band

gap of Ge. The hybrid HSE functional has opened the door to various fundamental

point defect studies in Ge, especially vacancy complexes, multiple interstitials and rare

earth defects. In addition to the point defects investigated successfully using the HSE

functional, there are still more point defects in Ge that need to be investigated. The

following future opportunities need to be explored.

1. Electrical and optical activities of the rare earth interstitial and substitutional

impurities in Ge need to be fully investigated using a hybrid functional.

2. More studies of vacancy complexes formed in Ge need to be investigated using

the hybrid functional.

3. Although di-vacancies and multi-vacancies have been studied using either LDA or

GGA, it is recommended that these defects should be studied using HSE hybrid

functional.

4. Optical properties of rare earth interstitial and vacancy-complexes in Ge should

be investigated using the HSE hybrid functional.

5. The electrical activities of group II substitutional impurities should be investi-

gated and compared with experimental results.
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[17] J. Coutinho, S. Öberg, V. J. B. Torres, M. Barroso, R. Jones, and P. R. Briddon.

Donor-vacancy complexes in Ge: Cluster and supercell calculations. Physical

Review B, 73(23):235213, 2006. [3, 59, 73]
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