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Chapter 1

Introduction

1.1 Background

A continuous variable observed in grouped format is an occurrence frequently encountered in highly

quantified fields. This is especially the case if offi cial statistics are considered where income or age may

be regarded in grouped format. If a continuous variable is considered as a grouped response variable, the

statistical analysis might be limited to cross-tabulation methods with multivariate regression techniques

being inapplicable and hence valuable information might be lost.

In Matthews & Crowther (1995) [10] a technique is developed which allows one to find the maximum

likelihood (ML) estimate of the expected value µ of a random vector x, the distribution of which belongs

to the exponential family, under a vector of constraints g(µ) = 0 in an iterative manner. Matthews

(1995) [9] also discusses this technique by considering a variety of different models. Crafford & Crowther

(2009) [6] expanded on this idea by assuming a grouped response variable being multinomial distributed

and estimating the expected cumulative relative frequencies such that it follows a certain distribution

at the upper class boundaries of the grouped response variable. If a set of explanatory variables are

cross-tabulated with the response variable to create T so-called cells, then the expected cumulative

relative frequencies of each cell can be estimated simultaneously such that

1. the expected cumulative relative frequencies of each cell follow a certain distribution at the upper

class boundaries of the response variable, and

2. the parameter(s) of the distribution will follow a specified model, where this model may be

designed using the set of given explanatory variables.

In this mini dissertation it will be endeavoured to study the technique discussed by [6] by making

use of the 10% sample of the South African Census 2011 [11]. The same data will be used to incorporate

the technique with the logit model as considered by [9].
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1.2 Objectives

The key objectives of this study can be summarised as follows:

• Consider the technique developed by [10] and [6] to fit distributions to a grouped response variable,

• Cross-tabulate explanatory variables to create T cells and fit distributions to each cell such that
the median level of the distributions follow a defined model,

• Outline the elegance and simplicity of this technique by considering a range of different models
for the median, and

• Consider how the iterative procedure can be used in conjunction with the logit model.

1.3 Dissertation outline

Section 1.4 revolves around setting up an appropriate subset of the 10% sample of the Census 2011 data

that acts as a focus group and doing an exploratory analysis of the data at hand. Here, the grouped

response variable INCOME is defined with a set of explanatory variables and the row frequencies are

used to indicate the possible effects of the explanatory variables.

Chapter 2 defines the theory needed to fit a log-logistic distribution to a grouped response variable.

Chapter 3 in turn considers how the technique is applied to fit a normal- and exponential distribution.

Chapter 4 focusses on the single factor model where log-logistic distributions are fitted to the

grouped response variable that is cross-tabulated with the categories of a single explanatory variable.

This is also done such that the medians of the log-logistic distributions will follow a defined model.

Following the same ideology as in Chapter 4, the multi-factor model is defined in Chapter 5 where

more than one explanatory variable is cross-tabulated.

In Chapter 6 the logit model is used in conjunction with the iterative procedure.

The dissertation ends with the conclusion in Chapter 7 and the relevant code can be found in the

Appendix.
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1.4 Census 2011 data

The purpose of a census is to collect data on a country’s population. Results of a vast assortment

of different variables are collected that aim to provide information on a demographic, economic and

social level. These variables may in turn be used by different entities such as government institutions

or industry to provide solutions to pressing issues that they may be facing.

The process of collecting all of the data to compile a census is repeated every 10 years. The census

data that will be used here to display the technique at hand was collected the night of 9/10 October

2011, the most recent census available. Note that only a 10% sample of the census data [11] is used

since the aim of this dissertation is not necessarily to analyse the results attained from the data but

more on the technique used to attain them.

The variables considered in the census were divided into three main groups, namely Person, House-

hold and Mortality variables. Person variables can be divided up further into groups like demographics,

parental survival and income, level of education and employment. The main group of variables that will

be focussed on are Person variables. Specifically, the technique presented by [10] and further expanded

by [5] and [9] will be used to provide insight into the grouped response variable, income. The frequency

distribution of income provided by [11] is given in Table 1.1.

Code Monthly Frequency Percent

1 No Income 1790847 40.53

2 R 1-R 400 785636 17.78

3 R 401 - R 800 141645 3.21

4 R801 - R 1 600 497321 11.26

5 R 1 601 - R 3 200 251223 5.69

6 R 3 201 - R 6 400 187879 4.25

7 R 6 401 - R 12 800 159575 3.61

8 R 12 801 - R 25 600 114689 2.60

9 R 25 601 - R 51 200 46532 1.05

10 R 51 201 - R 102 400 14061 0.32

11 R 102 401 - R 204 800 5191 0.12

12 R 204 801 or more 3567 0.08

99 Unspecified 339531 7.68

. Missing values 80897 1.83

Total 4 418 594 100

Table 1.1: Income distribution of the 10 percent census

One notes that 7.68% of individuals chose not to indicate their income level and 1.83% of values are

missing. Also note that 40.53% of the sample is registered as not having an income. To overcome these
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and other obstacles a focus group will be defined. Different demographic variables will also be used as

explanatory variables for income. Hence, they will also be considered in the process of designing the

focus group. These explanatory variables are population group, gender, level of education and age. The

specifications of the focus group are described next:

1. The person should have an income level that is greater than R1,

2. The person should have worked in the last 7 days,

3. The age of the person should be between 18 and 65,

4. The person should at least have finished secondary schooling, and

5. The population groups considered will be Black, White, Indian and Coloured.

These specifications define the focus group and reduces the sample to size n = 489697 with the

income categories presented in Table 1.2.

Code Monthly Frequency Percent

2 R 1-R 400 9231 1.89

3 R 401 - R 800 16717 3.41

4 R801 - R 1 600 47445 9.69

5 R 1 601 - R 3 200 84065 17.17

6 R 3 201 - R 6 400 90983 18.58

7 R 6 401 - R 12 800 104642 21.37

8 R 12 801 - R 25 600 83686 17.09

9 R 25 601 - R 51 200 35316 7.21

10 R 51 201 - R 102 400 11465 2.34

11 R 102 401 - R 204 800 3560 0.73

12 R 204 801 or more 2587 0.53

Total 489697 100

Table 1.2: Income distribution of focus group

Figure 1-1 gives a graphical representation in the form of a histogram of the designed focus group.
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Figure 1-1: Histogram of focus group

The effects of the explanatory variables can be considered if one divides income into two categories.

Individuals earning more than R12 800 will be classified as falling in a high income category and

individuals earning less than R12 800 will fall in a low income category. The frequencies in the high

and low income categories given a certain demographic variable can now be considered. The values in

brackets for all the Tables are the respective column percentages. The cross tabulated frequencies of

population group are presented in Table 1.3.

Population group
Income group Black Coloured Indian White Total

High 51417 11118 10027 64052 136614
(17.22) (25.19) (37.58) (53.28) (27.90)

Low 247239 33011 16657 56176 353083
(82.78) (74.81) (62.42) (46.72) (72.10)

Total 298656 44129 26684 120228 489697

Table 1.3: Frequencies of focus group for different population groups

Note that population group is recorded in the census on more levels as what is presented here.

Individuals also had the option to indicate ’Asian’ or ’other’ as a population group. The column

percentages already reveal what can be expected from the effect of population group on income. Only

17.22% of individuals from the Black population group earn more than R12 800 per month whereas

53.28% from the White population group earn more than R12 800 per month. Gender is considered

next in Table 1.4.
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Gender
Income group Female Male Total

High 55914 80700 136614
(24.38) (30.99) (27.90)

Low 173418 179665 353083
(75.62) (69.01) (72.10)

Total 229332 260365 489697

Table 1.4: Frequencies of focus group for different genders

Gender was recorded as only being male or female. From the column percentages, one should

note that more males earn more than R12 800 per month compared to females. The cross-tabulated

frequencies for level of education are given in Table 1.5.

Education

Income group Grade 12 Certificate Diploma B Degree Post Grad Total

High 39909 9358 37189 27938 22220 136614
(13.58) (27.49) (43.30) (61.29) (73.08) (27.90)

Low 253877 24685 48694 17643 8184 353083
(86.42) (72.51) (56.70) (38.71) (26.92) (72.10)

Total 293786 34043 85883 45581 30404 489697

Table 1.5: Frequencies of focus group for different levels of education

Education was recorded on a considerable amount of levels. Since the census concentrated on all

individuals in South Africa, individuals were given the option to indicate from a grade 0 level up and

to a masters/doctoral level. The option for no schooling or other levels of education was also presented.

Only individuals with a Grade 12 level of education and up are considered in the focus group. Note

that the certificate and diploma categories in Table 1.5 include higher certificates and higher diplomas

as well. The post graduate category includes an honours, masters or doctoral degree. The column

percentages indicate a clear ordinal trend on the categories of education. The final explanatory variable

that will be considered is age group and the cross-tabulated frequencies are given in Table 1.6.

Age group

Income group 18 - 25 26 - 30 31 - 40 41 - 45 46 - 50 51 - 55 56 - 65 Total

High 5599 17162 45103 22242 18833 14287 13388 136614
(8.12) (18.05) (27.50) (37.19) (42.62) (47.19) (48.93) (27.10)

Low 63384 77905 118920 37564 25352 15986 13972 353083
(91.88) (81.95) (72.50) (62.81) (57.38) (52.81) (51.07) (72.10)

Total 68983 95067 164023 59806 44185 30273 27360 489697

Table 1.6: Frequencies of focus group for different age groups
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Ages are recorded as the individual’s current age at the time of the census. It is given in integer

form but is presented in categories here. If one considers the column percentages, one should note that

one becomes more likely to earn more than R12 800 per month as age increases.

Before the explanatory variables are used to provide further insight on the grouped response variable,

income, one may first consider estimating the distribution of the grouped response variable. From Figure

1-1 one can see that income is skewed to the right. Hence, a log-logistic distribution is likely to provide

an adequate fit to the income distribution.
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Chapter 2

Fitting a log-logistic distribution

2.1 Introduction

The focus of Chapter 2 is to fit a log-logistic distribution to the frequency distribution of income

presented in Table 2.1. Note that the income intervals presented here are joined to form only 5 intervals

instead of 11. It will be shown that distribution fitting of only 5 intervals can be done in an as effective

manner as if one uses 11 intervals. The observed frequencies for the 5 intervals are given in Table 2.1.

Code Monthly Frequency Percent

2 + 3 + 4 R 1 - R 1600 73393 14.99

5 R 1 601 - R 3 200 84065 17.17

6 R 3 201 - R 6 400 90983 18.58

7 R6 400 - 12 800 104642 21.37

8 - 12 R 12 801 or more 136614 27.90

Total 489697 100

Table 2.1: Final income distribution of focus group

The corresponding graphical representation of the frequency distribution is given in Figure 2-1.
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Figure 2-1: Final histogram of focus group

Since the distribution seems to be positively skewed, a log-logistic distribution will be fitted to

income. The way in which the log-logistic distribution is defined is identical to the way in which the

log-normal distribution is defined. Say the variable Y = log(X) follows a logistic distribution. Then

the variable X follows a log-logistic distribution.

The reason why this distribution is considered is because it gives a better fit to the lower intervals

whilst not ignoring the heavy tail that the income distribution of the focus group possesses. The

probability density function (pdf) of the log-logistic distribution is given by

f(x;κ, θ) =
eθκxκ−1

(1 + eθxκ)2
, ...x > 0 (2.1)

where θ, κ > 0, with corresponding cumulative distribution function (cdf)

F (x;κ, θ) =
eθxκ

1 + eθxκ
, ...x > 0 (2.2)

2.2 Formulation

In order to fit the log-logistic distribution to the data in Table 2.1, let f denote the frequencies of the

first (5− 1) intervals

f =


73393

84065

90983

104642

 (2.3)

and let x be the upper class boundaries
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x =


1.6

3.2

6.4

12.8

 (2.4)

in (R1000) units. Since the frequencies add up to a total of n, only the first (k − 1) frequencies are

considered, where k is the number of intervals. This notation makes it convenient to define the vector

of upper class boundaries since the last interval is open-ended. Assuming f is multinomial distributed

with a vector of probabilities π0, the expected value and covariance matrix of f is

E(f) = nπ0 (2.5)

= F

and

Cov(f) = n(diag[π0]− π0π′0) (2.6)

= diag(F)− 1

n
FF′

= VF

respectively. The vector of relative frequencies

p0 =
1

n
f =


0.1499

0.1717

0.1858

0.2137

 (2.7)

will have an expected value and covariance matrix of

E(p0) = π0

and

Cov(p0) =
1

n
(diag[π0]− π0π′0) = V0

respectively. Finally, the vector p is defined as the vector of cumulative relative frequencies

p = Cp0 =


0.1499

0.3215

0.5073

0.7210

 (2.8)

where C :4× 4 is a lower triangular matrix of the form
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C =


1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 . (2.9)

The expected value of p is given by

E(p) = Cπ0 (2.10)

= π

with covariance matrix

Cov(p) = CV0C
′ (2.11)

= C{ 1

n
(diag[π0]− π0π′0)}C′

=
1

n
{Cdiag[C−1π]C′ − ππ′}

= V.

The ML procedure developed by [10] will be used to estimate the expected cumulative relative fre-

quencies π̂ such that it follows a cumulative log-logistic distribution curve at the upper class boundaries

x. The ML estimation procedure is outlined in Proposition 1.

Proposition 1 (ML estimation procedure)

Consider a random vector of cumulative relative frequencies p, which may be considered as a non-

singular transformation of the canonical vector of observations, having a distribution belonging to the

exponential family, with

E(p) = π and Cov(p) = V.

The observed p is the unrestricted ML estimate of π and the covariance matrix V may be a function

of π. Let g(π) be a continuous vector valued function of π, for which the first order partial derivatives,

Gπ =
∂g(π)

∂π

with respect to π exist. The ML estimate of π, subject to the vector of constraints g(π) = 0 is

obtained iteratively from

π̂ = p− (GπV)′(GpVG′π)∗g(p) (2.12)
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where Gp =
∂g(π)

∂π

∣∣∣∣
π=p

and (GpVG′π)∗ is a generalized inverse of (GpVG′π).

The asymptotic covariance matrix for the ML estimate for π under constraints is also provided by

[10] and is given in Proposition 2.

Proposition 2 The asymptotic covariance matrix of π̂, under g(π) = 0, is given by

Cov(π̂) = V − (GπV)′(GπVG′π)∗(GπV)

which is estimated by replacing π with π̂.

One should note that if the constraints are not linearly independent, the generalized inverse for the

matrix (GπVG′π) is used.

With E(p) = π and Cov(p) = V defined, the next step discussed in Proposition 1 is to define the

vector of constraints g(π). Since the aim is to find the ML estimate of π under the constraint that the

expected cumulative relative frequencies follow a cumulative log-logistic distribution curve at the upper

class boundaries x, a natural constraint would be that the difference between F(x;κ, θ) and π should

equal zero. Hence,

g(π) = F(x;κ, θ)− π = 0. (2.13)

In general, one aims to find a simple expression for the matrix of partial derivatives and the para-

meters of the fitted distribution. To achieve this, a vector of constraints in terms of a linear model is

developed by [5] which will still imply (2.13). Assuming (2.13) holds, it is clear to see that

π = F(x;κ, θ) (2.14)

=
eθxκ

1 + eθxκ

and therefore

1− π = 1− eθxκ

1 + eθxκ
(2.15)

=
1

1 + eθxκ

leading to

π

1− π =
eθxκ

1 + eθxκ
× 1 + eθxκ

1

= eθxκ.

The constraint can then be redefined in terms of a linear model

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



ln

(
π

1− π

)
= κ ln x+θ1 (2.16)

=
(

ln x 1
)( κ

θ

)
= Xα

where

X=
(

ln x 1
)

=


0.4700 1

1.1632 1

1.8563 1

2.5495 1

 (2.17)

and

α =

(
κ

θ

)
. (2.18)

To see how the linear model will be applied, one can define a projection matrix onto the vector space

of the design matrix X as

PX = X(X′X)−1X′

=


0.7 0.4 0.1 −0.2

0.4 0.3 0.2 0.1

0.1 0.2 0.3 0.4

−0.2 0.1 0.4 0.7


with the projection matrix onto the error space of X being

QX = I−X(X′X)−1X′

=


0.3 −0.4 −0.1 0.2

−0.4 0.7 −0.2 −0.1

−0.1 −0.2 0.7 −0.4

0.2 −0.1 −0.4 0.3

 .
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If one multiplies a vector with the matrix PX, it will project the vector onto the vector space of X.

If one multiplies a vector that is already in the vector space of X with the matrix QX, the result will

be a zero vector. If one assumes that ln
(

π
1−π
)
is in the vector space of X, i.e. the vector of constraints

in (2.13) holds, then the vector of constraints can be redefined using the linear model as

g(π) = QX ln

(
π

1− π

)
= 0. (2.19)

Note that (2.13) and (2.19) imply the same constraints. With the amount of linearly independent

functions of the vector of constraints being

r = rank(QX) (2.20)

= rank (I)− rank
(
X(X′X)−1X′

)
= (5− 1)− rank (x)

= 4− 2

= 2

one can see that the amount of intervals used for income may not be less than 4.

The matrix of partial derivatives of g(π) is given by

Gπ =
∂g(π)

∂π
(2.21)

=
∂

∂π

{
Qx ln

(
π

1− π

)}
= QxDπ

where

Dπ =
∂

∂π

{
ln

(
π

1− π

)}
(2.22)

=
∂

∂π
{ln (π)− ln (1− π)}

= {diag[π]}−1 + {diag[1− π]}−1 .

The ML estimation procedure can now be employed by making use of a double iterative procedure

described next.

The double iterative procedure
1. Set p equal to the unrestricted ML estimate for π, i.e. the observed cumulative relative frequen-

cies.

2. Do until convergence over π

a. Set π equal to p and calculate V and Gπ

b. Set p equal to the unrestricted ML estimate for π.
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c. Do until convergence over p

i. Calculate g(p) and Gp.

ii. Calculate p using (2.12).

This will result in the ML estimate

π̂ =


0.1548869

0.3068302

0.5166974

0.7208354


under the constraints set out in (2.19). Since π = Cπ0 where π0 = 1

n
f , the ML estimate for π can

be transformed back into expected frequencies by applying the transformation

f̂ = nC−1π̂. (2.23)

The expected frequencies are then given in Table 2.2.

Code Monthly Expected Frequency Percent

2 + 3 + 4 R 1 - R 1600 75847.642 15.49

5 R 1 601 - R 3 200 74406.19 15.19

6 R 3 201 - R 6 400 102771.34 20.99

7 R6 400 - 12 800 99965.781 20.41

8 - 12 R 12 801 or more 136706.05 27.92

Total 489697 100

Table 2.2: Expected frequencies

The ML estimates of the parameters of the log-logistic distribution α̂ can now be determined by

α̂ = (X′X)
−1

X′ ln

(
π̂

1− π̂

)
(2.24)

=

(
κ̂

θ̂

)

=

(
1.2722

−2.2947

)

with estimated log-logistic pdf given by

f̂(x; κ̂, θ̂) =
e−2.2947 (1.2722)x1.2722−1

(1 + e−2.2947x1.2722)2
. (2.25)

The distribution can now be presented with the observed and expected frequencies in Figure 2-2. The

blue solid histogram represents the observed frequencies whereas the red dashed histogram represents

the expected frequencies.
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Figure 2-2: Fitted log-logistic distribution

Using the multivariate delta theorem in conjunction with Proposition 2, one can also determine the

covariance matrix of α̂

Cov(α̂) =

(
∂α̂

∂π

)
Cov(π̂)

(
∂α̂

∂π

)′
=

{
(X′X)

−1
X′Dπ

}
Cov(π̂)

{
(X′X)

−1
X′Dπ

}′
=

(
4.22× 10−6 0

0 1.9× 10−6

)

and since the parameters are approximately normally distributed, one can set up confidence intervals

for the true population values or do hypothesis testing.

From Figure 2-2 one can see that the estimated frequencies are reasonably similar to the observed

frequencies. A convenient way to test if p deviates significantly from the ML estimate π̂, attained under

the vector of constraints g(π) = 0, is to formulate the null hypothesis

H0 : g(π) = 0 (2.26)

where this hypothesis can be tested by using some goodness-of-fit statistic like the Pearson χ2-

statistic

χ2 =

k∑
i=1

(fi − f̂i)2

f̂i
(2.27)

with fi and f̂i being the observed and expected frequency in interval i and k being the amount of

intervals for the response variable. The transformation from π̂ to f̂ is achieved by using (2.23).

The Pearson χ2-statistic will follow a χ2(r) distribution where r = 2, the number of linear indepen-
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dent functions of the vector of constraints g(π) that was calculated in (2.20).

By setting p and π equal to the unrestricted ML estimate of π, the Wald statistic can be calculated

using

W = g(p)′(GpVG′π)∗g(p) (2.28)

where W also follows a χ2(r) distribution under the null hypothesis.

Finally, one can consider the measure of discrepancy

D =
W

n
(2.29)

which will give a more conservative result for large sample sizes. A rule of thumb is that the null

hypothesis can not be rejected if the measure of discrepancy is less than 0.05.

The results attained for these goodness of fit statistics are given in Table 2.3.

Goodness-of-fit statistics Value p-value Discrepancy

Pearson 2904.2515 0 N/A

Wald 2941.99 0 0.0060078

Table 2.3: Goodness-of-fit statistics for log-logistic distribution

The measure of discrepancy in Table 2.3 is 0.006. Since it is less than 0.05 it indicates that the

estimates for π does not differ significantly from the observed cumulative relative frequencies.

An important aspect to note is that this process can easily be applied to cases where k is not equal

to 5. Also note that a different formulation of the vector of constraints can also be used as long as it is

still equivalent to (2.13).

2.3 The effect of the defined income categories

Different scenarios on the categorization of the response variable will be considered and are given in

Table 2.4. Although completely different groupings of the response variable are used, if the estimated

parameters and distribution curves in Figure 2-3 is considered, it is evident that the fitted log-logistic

distributions are very close to each other.
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Light red Navy Light green Purple Blue Light grey

x



0.4

0.8

1.6

3.2

6.4

12.8

25.6

51.2

102.4

204.8



 1.6

6.4

51.2




1.6

3.2

6.4

12.8




0.8

1.6

3.2

6.4

12.8





0.8

1.6

3.2

6.4

12.8

25.6





0.4

0.8

1.6

3.2

6.4

12.8

25.6


(
κ̂

θ̂

) (
1.3878

−2.4710

) (
1.3984

−2.5044

) (
1.2722

−2.2947

) (
1.3097

−2.3657

) (
1.3638

−2.4402

) (
1.3686

−2.4491

)

Table 2.4: Parameter estimates for different grouping scenarios

Applying the ML estimation procedure to each of the scenarios, one will find the ML estimates in

Table 2.4 and the respective log-logistic distributions plotted in Figure 2-3.
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Figure 2-3: Pdf of log-logistic distribution fits for different grouping scenarios

From Figure 2-3 one can see that the grouping does not have a significant effect on the estimated

distribution if the grouping is done in an intelligent way. For simplicity, the vector of upper class

boundaries used in Chapter 2 and corresponding with the light green log-logistic distribution will be

used throughout this mini-dissertation.
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2.4 Summary

In this chapter Proposition 1 developed by [10] was introduced. It was shown how this can be used to fit

a log-logistic distribution to the grouped response variable, income. Specifically, the ML estimate of the

cumulative relative frequencies π̂ are attained under the vector of constraints that imply that π should

equal the cdf of a log-logistic distribution F(x;κ, θ). This constraint is redefined in terms of a linear

model. From this, the ML estimates of the parameters for the log-logistic distribution are attained with

the corresponding goodness-of-fit statistics.
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Chapter 3

Fitting other distributions

Very often the grouped response variable may have a different underlying distribution. It will now be

illustrated how to fit a normal and exponential distribution to the data presented in Table 2.1.

Code Monthly Frequency Percent

2 + 3 + 4 R 1 - R 1600 73393 14.99

5 R 1 601 - R 3 200 84065 17.17

6 R 3 201 - R 6 400 90983 18.58

7 R6 400 - 12 800 104642 21.37

8 - 12 R 12 801 or more 136614 27.90

Total 489697 100

Table 3.1: Final income distribution of focus group

3.1 The Normal Distribution

Although the normal distribution is not known to fit income distributions well, it is used here to elucidate

the application of the iterative process. The pdf of the normal distribution is given by

f(x;µ, σ) =
1√
2πσ

exp

{
−1

2

(
x− µ
σ

)2}
, ...−∞ < x <∞ (3.1)

where −∞ < µ < ∞ and σ > 0. Defining a standardized variable z =
x− µ
σ

, the standard normal

distribution is attained with pdf

φ(z) =
1√
2π

exp

{
−1

2
z2
}
. (3.2)

The cdf will be denoted as Φ(z).

As stated before, to fit a distribution to the grouped response variable, it is required that the

expected cumulative relative frequencies π equal the cdf F (x), at the upper class boundaries x. Hence,

the vector of constraints will be
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g(π) = Φ(
x− µ1

σ
)− π = 0. (3.3)

The aim is to define g(π) in the simplest way as to still imply (3.3). This was done by [5] and the

results are shown here with the relevant output attained from the ML iterative procedure.

The standardized upper class boundaries can be expressed in terms of a linear model

z = (
x− µ1

σ
) (3.4)

= Xα

where

X =
(

x −1
)

(3.5)

and

α =

(
α1

α2

)
=

(
1
σ
µ
σ

)
. (3.6)

Under the constraint

g(π) = Φ(z)− π = 0

it is observed that

Φ−1(π) = z

= Xα.

Hence, if one defines QX = I−PX to be the projection matrix onto the error space of X, a new set

of constraints can be defined as

g(π) = QXΦ−1(π) = 0 (3.7)

with matrix of partial derivatives

Gπ =
∂g(π)

∂π
(3.8)

= QXDπ

where Dπ = (diag[φ(Φ−1(π))])−1.

Utilizing the ML estimation procedure, the ML estimate for π under the constraints in 3.7 can be
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attained. The natural parameter estimates are then given by

α̂ = (X
′
X)
−1

X′Φ−1(π̂)

=

(
0.1365

1.0580

)
.

One can then use (3.6) to attain the estimated mean and standard deviation for the fitted normal

distribution:

µ̂ = 7.7529

σ̂ = 7.3279

The variances for these estimates can be found using the multivariate delta theorem and Proposition

2. The fitted distribution is then given in Figure 3-1.

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure 3-1: Fitted normal distribution

It is clear that the normal distribution does not fit the data well. The measure of discrepancy of

0.1283 is significantly larger than 0.05. This further confirms that the normal distribution does not give

an adequate fit.

3.2 The Exponential Distribution

The normal distribution fails to take into account that the distribution is positively skewed. A study

was done by [7] where they attempted to fit an exponential distribution to individual income for the

USA using census data from 1996. Although not using the same method used here, they found that the

exponential distribution indicated an adequate fit. Hence, in this section the exponential distribution
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is fitted to the grouped response variable presented earlier using the method described in Proposition

1. The theory discussed here is fully derived by [5]. The reader is referred there for further detail.

The pdf and cdf of the exponential distribution with mean parameter µ is given by

f(x;µ) =
1

µ
e
−
x

µ , ...x > 0 (3.9)

where µ > 0, and

F (x;µ) = 1− e
−
x

µ . (3.10)

The vector of constraints that will be used is

g(π) = F(x;µ)− π (3.11)

= {1− exp(−θx)} − π = 0

from which the linear model

{1− exp(−θx)} − π= 0 (3.12)

exp(−θx) = 1− π
ln(1− π) = −θx

is developed. This implies that, under the constraint, ln(1− π) is a scalar multiple of the vector of

upper class boundaries x. Hence, ln(1− π) must be in the vector space generated by x. If one defines

the projection matrix onto the error space of x as Qx = I−Px then the vector of constraints can be

expressed by

g(π) = Qxln(1− π) (3.13)

with matrix of partial derivatives

Gπ =
∂g(π)

∂π
(3.14)

=
∂

∂π
{Qx ln(1− π)}

= QxDπ

where Dπ = −(diag[1− π])−1. By applying the iterative procedure, the ML estimate for π under

the constraints is obtained, implying the ML estimator for θ is given by

θ̂ = −x′ ln(1− π̂)

x′x
(3.15)

= 0.1038
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with the corresponding ML estimator for µ being

µ̂ =
1

θ̂
(3.16)

= 9.6354.

The variance of the parameter is attained using the multivariate delta theorem with Proposition 2.

Note the multivariate delta theorem should first be applied to attain the variance of θ̂. After doing so,

the theorem is applied again to attain the variance of µ̂.

Var(µ̂) u0.0003 (3.17)

The fitted distribution is given in Figure 3-2.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Figure 3-2: Fitted exponential distribution

The measure of discrepancy found was 0.01765. This indicates that the exponential distribution does

fit the income distribution adequately. Upon further inspection one should note though that since the

exponential distribution is a strictly decreasing function of income, it will not take into account the

spike in frequencies observed in the second income category. This spike is in fact taken into account

when the log-logistic distribution is considered in Chapter 2.

3.3 Summary

It should be noted with what ease the method used can be expanded to accommodate different types of

distributions. In Chapter 3 the aim was to show how to apply the technique to estimate the expected

cumulative relative frequencies such that they follow different distributions at the upper class boundaries

x of the grouped response variable.
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Chapter 4

Single factor design

4.1 Introduction

To study the effect of an explanatory variable on the grouped response variable income, the intervals of

income will be cross-tabulated with the categories of the explanatory variable being considered. From

this, different log-logistic distributions will be fitted simultaneously to each of the categories, i.e. cells,

of the explanatory variable. Since the log-logistic distribution is positively skewed, the medians of the

different log-logistic distributions will be studied to see what the effect of the explanatory variable is

on the median income level. The explanatory variables that will be considered are

• population group,

• gender,

• level of education, and

• age.

4.2 Population group

The histograms attained from cross-tabulating population group with the frequency distribution of

income are given in Table 4.1.

Black Coloured Indian White

0 10 20 30
0.00

0.15

0 10 20 30
0.00

0.15

0 10 20 30
0.00

0.15

0 10 20 30
0.00

0.15

n = 298656 n = 44129 n = 26684 n = 120228

Table 4.1: Histograms of income under different population groups
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4.2.1 Distribution fitting

The ML estimates of the expected cumulative relative frequencies π1,π2,π3 and π4 of each of the T = 4

cells need to be found simultaneously under the constraint that π1,π2,π3 and π4 follow log-logistic

distributions at the upper class boundaries x. For simplicity, only a constant vector of upper class

boundaries x will be considered but this methodology can be extended so that the vector of upper class

boundaries is different for each cell.

Table 4.2 presents the cross-tabulated frequencies of the intervals of income and the categories of

population group that will be used in the estimation procedure.

Income

Population group Cell 1− 1600 1601− 3200 3201− 6400 6400− 12800 12801−∞
Black 1 62620 67767 59686 57136 51417

Coloured 2 4847 7403 9738 11023 11118

Indian 3 1668 3009 5365 6615 10027

White 4 4258 5856 16194 29868 64052

Table 4.2: Frequencies of population group

Defining

FM =


62620 67767 59686 57136

4847 7403 9738 11023

1668 3009 5365 6615

4258 5856 16194 29868


as a T × (k − 1) matrix containing the first (k − 1) = 4 frequencies of each of the T = 4 cells, the

vector of frequencies

f=vec(FM) =



62620

67797

59686

57136

4847

7403

9738

11023
...

4258

5856

16194

29868



(4.1)

26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



can be defined by concatenating FM row wise and is assumed to follow a product multinomial

distribution with a block diagonal covariance matrix. This will ensure that the sub-sample sizes for

each population group will be kept fixed during the estimation procedure. With the vector of row totals

being defined as

n=
(

298656 44129 26684 120228
)′

(4.2)

the relative and cumulative relative frequencies

p0 =


p01

p02

p03

p04

 =


1
n1

f1
1
n2

f2
1
n3

f3
1
n4

f4

 = ((diag(n))−1 ⊗ I4)f

and

p =


p1

p2

p3

p4

 =


Cp01

Cp02

Cp03

Cp04

 = (I4 ⊗C) p0 (4.3)

can be defined, where the matrix C is as defined in (2.9) .

The expected values of p0 and p are defined as

E(p0) =


π01

π02

π03

π04

 = π0

and

E(p) =


π1

π2

π3

π4

 = π (4.4)

respectively. The covariance of p0 is

Cov(p0) =


V01 0 0 0

0 V02 0 0

0 0 V03 0

0 0 0 V04

 = V0

where
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Cov(p0t) =
1

nt
(diag(π0t)− π0tπ′0t) = V0t

is on its diagonals. This is also expressed in terms of Kronecker products in [5] with

V0 =
{
diag [n]−1 ⊗ Ik−1

}{
diag [π0]− diag [π0]

(
IT ⊗

(
1k−11

′
k−1
))
diag [π0]

}
.

If k = 5 and T = 4, the covariance matrix of p follows where

V = (IT⊗C) V0 (IT ⊗C)′ . (4.5)

The block structure of the covariance matrix assumes independence between the different cells. If

this assumption is not made, the vector of row totals n will not stay constant and one may find expected

cumulative relative frequencies being greater than 1. Log-logistic distributions is now fitted to each of

the T = 4 cells simultaneously such that
F1 (x,α1)

F2 (x,α2)

F3 (x,α3)

F4 (x,α4)

 =


π1

π2

π3

π4


where αt =

(
κt

θt

)
for t = 1, 2, 3, 4, and

α =


α1

α2

α3

α4


with vector of constraints

g(π) =


F1 (x,α1)

F2 (x,α2)

F3 (x,α3)

F4 (x,α4)

−

π1

π2

π3

π4

 = 0. (4.6)

Using

ln

(
πt

1− πt

)
= κt ln x+θt1 = Xαt

from (2.16) with X =
(

ln x 1
)
, a linear model
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ln

(
π

1− π

)
=


Xα1

Xα2

Xα3

Xα4

 = (I4 ⊗X)α

can be defined. The vector of constraints g(π) = 0 in terms of the linear model follows in a similar

manner as before where

glog (π) =


QX ln

(
π1
1−π1

)
QX ln

(
π2
1−π2

)
QX ln

(
π3
1−π3

)
QX ln

(
π4
1−π4

)

 = (IT ⊗QX) ln

(
π

1− π

)
(4.7)

and QX is the projection matrix onto the error space of X. The matrix of partial derivatives is then

given by

Glog (π) = (IT ⊗QX) Dπ (4.8)

where Dπ = {diag[π]}−1 + {diag[1− π]}−1 . The ML estimate for π under the constraints can now be
determined using the iterative procedure which will produce the estimated frequencies given in Table

4.3.

Income

Population group 1− 1600 1601− 3200 3201− 6400 6400− 12800 12801−∞
Black 64692.736 59958.617 69431.103 53154.83 51418.714

Coloured 4989.2283 6757.3987 10668.246 10506.867 11207.26

Indian 1811.689 2775.4955 5331.8327 6831.3258 9933.6569

White 3662.3323 6770.5372 16405.348 29067.027 64322.756

Table 4.3: Estimated frequencies of population group

The fitted log-logistic distributions for each cell with the associated parameters are given in Table

4.4. Equations (4.9) and (4.10) provide simple expressions to find κ̂t and θ̂t in separate vectors.

κ̂ =


κ̂1

κ̂2

κ̂3

κ̂4

 =
[(

IT ⊗
[
(X′X)

−1
X′
]
1

)]
ln

(
π̂

1− π̂

)
(4.9)

=


1.3734

1.5088

1.5110

1.5966


29
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and

θ̂ =


θ̂1

θ̂2

θ̂3

θ̂4

 =
(
IT ⊗

[
(X′X)

−1
X′
]
2

)
ln

(
π̂

1− π̂

)
(4.10)

=


−1.9310

−2.7690

−3.3210

−4.2108


where

[
(X′X)−1 X′

]
1
and

[
(X′X)−1 X′

]
2
refer to the 1st and 2nd row of

[
(X′X)−1 X′

]
, respectively.

The covariance matrix of α is given by

Cov(α̂) =

(
∂α

∂π

)
Cov(π̂)

(
∂α

∂π

)′
=

[
(X′X)

−1
X′
]

DπCov(π̂)D′π

[
X′ (X′X)

−1
]′
.

4.2.2 Saturated model

The effect of population group on the median income of a fitted log-logistic distribution is investigated

using the median income

ν = exp

(
−θ
κ

)
(4.11)

of each cell as a representative measure due to the log-logistic distribution being positively skew.

The covariance matrix of ν̂ is derived in [5] and is given by

Cov(ν̂)=

(
∂ν

∂α

)
Cov(α̂)

(
∂ν

∂α

)′
where the matrix A =

(
∂ν
∂α

)
can be expressed as

A =
(
diag [aκ]⊗

(
1 0

))
+
(
diag [aθ]⊗

(
0 1

))
(4.12)

with

aκ =
θ

κ2
exp

(
−θ
κ

)
(4.13)

and
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aθ = −1

κ
exp

(
−θ
κ

)
. (4.14)

To investigate the effect of population group, the medians are reparameterised as

νj = τ 0 + τPj

for j = 1, 2, 3, 4 for the different population groups Black, Coloured, Indian and White respectively.

The saturated model can be written in matrix notation

ν =


1 1 0 0

1 0 1 0

1 0 0 1

1 −1 −1 −1




τ 0

τP1

τP2

τP3


= Zτ

where τP4 = −
∑3

j=1 τ
P
j . To accommodate the last category, the formulation

τ ∗ = Sτ (4.15)

is used where

τ ∗ =


τ 0

τP1

τP2

τP3

τP4

 and S =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 −1

 .

The covariance matrix of τ̂ ∗ is then

Cov(τ̂ ∗) =

(
∂τ ∗

∂τ

)
Cov(τ̂ ).

(
∂τ ∗

∂τ

)′
=

(
∂τ ∗

∂τ

)(
∂τ

∂ν

)
Cov(ν̂)

(
∂τ

∂ν

)′(
∂τ ∗

∂τ

)′
= S (Z′Z)

−1
Z′Cov(ν̂)Z (Z′Z)

−1
S′.

The distributions of the different population groups with their respective estimated parameters are

given in Table 4.4.
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Pop grp Income
ν̂

(σ̂ν̂)

(
κ̂

θ̂

)
τ̂ j

(σ̂τ̂ j)

Black

0 10 20 30
0.0

0.1

0.2

4.080

(0.010)

(
1.373

−1.93

)
−4.27

(0.024)

Coloured

0 10 20 30
0.0

0.1

0.2

6.267

(0.035)

(
1.509

−2.77

)
−2.08

(0.034)

Indian

0 10 20 30
0.0

0.1

0.2

9.058

(0.067)

(
1.511

−3.33

)
0.713

(0.053)

White

0 10 20 30
0.0

0.1

0.2

13.98

(0.052)

(
1.597

−4.21

)
5.630

(0.043)

τ̂ 0

(σ̂τ̂0)

8.345

(0.023)

Table 4.4: Single factor for population group

From Table 4.4 it can be seen that the log-logistic distributions fit the data extremely well. This

is confirmed with a measure of discrepancy of 0.0068. Although the last income interval for the White

population group does not seem to be presented effi ciently by the distribution, one should note that it

is in fact an open-ended interval and is cut off at an upper bound of 30. What is also apparent are the

differences in the distributions for the different population groups. The Black population group seems

to have the most skew distribution whereas the distribution for the White population group seems to

have a heavier right tail. The deviations from the overall median, τ̂Pj , for each population group should

also be studied. With the overall median income being τ̂ 0 = R8345 over the 4 population groups, it

is interesting to note that the median income for the Black population group is R4270 lower than the

average median whereas the median income for the White population group is R5630 higher than the

average median.

4.3 Gender
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The effect of gender on income will be investigated by fitting a single factor model with T = 2 cells.

The cross-tabulated frequencies can be given in the same manner as in Table 4.2 from which the vector

of cumulative relative frequencies p can be attained. The cumulative relative frequencies are given in

Table 4.5.

Income

Gender Cell 1− 1600 1601− 3200 3201− 6400 6400− 12800

Female 1 0.1696 0.3411 0.5231 0.7562

Male 2 0.1325 0.3043 0.4934 0.6901

Table 4.5: Cumulative relative frequencies of gender

The vector p has an expected value and variance as given in equations (4.4) and (4.5) respectively.

The objective is the same as in the previous section: attain the ML estimate for π such that π1 and

π2 equal cumulative log-logistic distributions at the upper class boundaries x. The resultant π̂ under

the vector of constraints glog(π) as given in (4.7) is given in Table 4.6.

Income

Gender Cell 1− 1600 1601− 3200 3201− 6400 6400− 12800

Female 1 0.1667 0.3292 0.5462 0.7470

Male 2 0.1445 0.2874 0.4906 0.6970

Table 4.6: Estimated cumulative relative frequencies of gender

The ML estimate for π̂ is used to calculate the ML estimates of the parameters of the T = 2

log-logistic distributions using equations (4.9) and (4.10). The parameter estimates are in turn used

to construct the pdfs and calculate the medians for the distributions for each cell. These results are

summarized in Table 4.7.
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Gender Income
ν̂

(σ̂ν̂)

(
κ̂

θ̂

)
τ̂ i

(σ̂τ̂ i)

Female

0 10 20 30
0.0

0.1

0.2

5.546

(0.016)

(
1.294

−2.22

)
−.524

(0.012)

Male

0 10 20 30
0.0

0.1

0.2

6.594

(0.018)

(
1.256

−2.37

)
0.524

(0.012)

τ̂ 0

(σ̂τ̂0)

6.070

(0.012)

Table 4.7: Single factor for gender

The estimated distributions seem to fit the data well. This is supported with a measure of discrep-

ancy of 0.0096. If the income distributions of the two different genders are inspected visually, they do

not seem that different. The deviations from the average median do however indicate a considerable

difference. With the average median income being R6070, the median income of females is R524 lower

than the average median income, i.e. R1048 lower than the median income for males.

4.4 Level of education

Level of education was observed to have an ordinal relationship with income in Chapter 1. After the

distributions of income for the different categories of level of education are fitted, this ordinal relationship

will be studied further in a model for the medians.

The process to estimate the income distributions under different levels of education is the same as

in the previous two sections. Once again one starts off with the frequencies of the different income

intervals cross-tabulated with the 5 different categories of level of education. The frequencies of the

5 different cells are transformed to form the vector of cumulative relative frequencies p with expected

value and covariance matrix represented in equation (4.4) and (4.5), respectively. The ML estimate of

the expected value π under the constraint glog(π) as given in (4.7) is attained and is used to find the 5

different sets of log-logistic parameters using equations (4.9) and (4.10). The parameter estimates are

in turn used to construct the pdfs and medians for each cell. The result of this is given in Table 4.8.
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Ed grp Income
ν̂

(σ̂ν̂)

(
κ̂

θ̂

)
τ̂ k

(σ̂τ̂k)

Gr 12

0 10 20 30
0.0

0.1

0.2

3.717

(0.008)

(
1.494

−1.96

)
−9.19

(0.069)

Certificate

0 10 20 30
0.0

0.1

0.2

6.858

(0.045)

(
1.490

−2.87

)
−6.05

(0.077)

Diploma
0 10 20 30

0.0

0.1

0.2

11.17

(0.043)

(
1.672

−4.03

)
−1.74

(0.076)

B Degree
0 10 20 30

0.0

0.1

0.2

17.30

(0.118)

(
1.597

−4.55

)
4.386

(0.114)

Post Grad
0 10 20 30

0.0

0.1

0.2

25.50

(0.317)

(
1.471

−4.76

)
12.60

(0.255)

τ̂ 0

(σ̂τ̂0)

12.91

(0.069)

Table 4.8: Single factor for level of education

The attained measure of discrepancy is 0.0072, indicating the estimated distributions fit the data

well. The effect of having a higher level of education can clearly be seen in the estimated distributions

and in the estimates for τ̂ k. The distributions seem to be less skewed to the right as the level of

education increases and the deviations from the average median indicate a clear ordinal trend between

the median income levels and level of education.

4.4.1 Model for the medians
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To further inspect the effect of level of education on income, the medians can be plotted to see if a trend

is observed. Education level is coded as {−2,−1, 0, 1, 2} for Grade 12, Diploma, Certificate, Bachelors
degree an Post graduate degree, respectively.
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Education level

Median

Figure 4-1: Median vs level of education

If Figure 4-1 is considered, it seems like a linear or quadratic model can be estimated to fit this trend

in median income. This monotone trend in income over the categories of education can be modelled by

ν = Yγ (4.16)

=


1 −2

1 −1

1 0

1 1

1 2


(
γ0

γ1

)

where a linear increase in income over the categories of education is assumed. The vector of con-

straints to be incorporated in the ML estimation procedure is

glin(π) = QY ν = 0 (4.17)

with the matrix of partial derivatives
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Glin(π) =
∂QYν

∂π
(4.18)

= QY
∂ν

∂α

∂α

∂π

= QY ·A·
(
IT ⊗ (X′X)

−1
X′
)

Dπ

where A is as defined before in (4.12) . The two sets of constraints glog (π) and glin (π) will be

imposed simultaneously leading to

g (π) =

(
glog (π)

glin (π)

)
= 0 (4.19)

with matrix of partial derivatives

G (π) =

(
Glog (π)

Glin (π)

)
(4.20)

and if the iterative procedure is applied using the vector of constraints (4.19) , the ML estimate for

π is attained such that:

1. the frequencies of the five cells follow separate log-logistic distributions at the upper class bound-

aries x, and

2. the median income levels of the five log-logistic distributions are in the vector space of Y.

Once the ML estimation procedure is applied, the ML estimates for the parameters of (4.16) is given

by

γ̂ = (Y′Y)
−1

Y′ν̂

=

(
11.7780

4.0429

)
.

To see if the estimated parameters of the model defined by (4.16) are significant, the variances for

γ̂ can be attained using the multivariate delta theorem
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Cov(γ̂) =

(
∂γ

∂ν

)
Cov(ν̂)

(
∂γ

∂ν

)′
=

(
0.0011 0.0006

0.00006 0.00003

)

which can be used to calculate t-statistics and the associated p-values given in Table 4.9.

Parameter Value t-value p-value

γ̂0 11.7780 355.4144 < 0.000001

γ̂1 4.0429 237.7978 < 0.000001

Table 4.9: Significance tests for the estimated parameters

The test statistics indicate that the parameters are all significant. The extension to the quadratic

model is done by redefining the design matrix to include the quadratic effect in the design matrix Y.

ν= Yγ (4.21)

=


1 −2 4

1 −1 1

1 0 0

1 1 1

1 2 4


 γ0

γ1

γ2

 .

Following the same procedure as with the linear model, the ML estimate of γ is given by

γ̂ = (Y′Y)
−1

Y′ν̂

=

 11.2610

5.2735

0.7511

 .

The linear and quadratic models are drawn in Figure 4-2 with the observed medians.
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Figure 4-2: Medians of different levels of education with fitted models

The level of discrepancy for the linear and quadratic model are found to be 0.0085 and 0.0072,

respectively. When the linear and quadratic models are compared, the quadratic model is preferred.

4.5 Age

The final explanatory variable that is considered is age. The vector of constraints glog(π) as in (4.7)

is first used to fit log-logistic distributions to the expected cumulative relative frequencies of the seven

cells simultaneously. The results of doing so is given in Table 4.10.
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agegrp Income
ν̂

(σ̂ν̂)

(
κ̂

θ̂

)
τ̂ 1

(σ̂τ̂1)

18 - 25
0 10 20 30

0.0

0.1

0.2

2.970

(0.012)

(
1.628

−1.77

)
−5.20

(0.027)

26 - 30
0 10 20 30

0.0

0.1

0.2

4.453

(0.018)

(
1.425

−2.13

)
−3.72

(0.029)

31 - 40
0 10 20 30

0.0

0.1

0.2

6.021

(0.020)

(
1.290

−2.32

)
−2.15

(0.030)

41 - 45
0 10 20 30

0.0

0.1

0.2

8.628

(0.050)

(
1.283

−2.76

)
0.455

(0.049)

46 - 50
0 10 20 30

0.0

0.1

0.2

10.44

(0.070)

(
1.338

−3.14

)
2.272

(0.064)

51 - 55
0 10 20 30

0.0

0.1

0.2

12.04

(0.097)

(
1.381

−3.44

)
3.872

(0.086)

56 - 65
0 10 20 30

0.0

0.1

0.2

12.65

(0.109)

(
1.381

−3.50

)
4.476

(0.095)

τ̂ 0

(σ̂τ̂0)

8.173

(0.025)

Table 4.10: Single factor for age groups
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The measure of discrepancy attained is 0.0063. As age increases, one will note that the distribution

seems to be less skewed to the right, i.e. income increases. The same trend can be seen if the deviations

from the average median are considered an linear model can be used to capture this ordinal relationship

between age and the median income level. The linear model that will be used is

ν = Yγ (4.22)

=



1 21.5

1 28

1 35.5

1 43

1 48

1 53

1 60.5



(
γ0

γ1

)

with the vector of constraints and matrix of partial derivatives being identical in form to equations

(4.19) and (4.20) respectively, with the design matrix for the linear model now being given by (4.22) .

Applying the iterative procedure, the ML estimate for π is attained with the ML estimate for γ being

γ̂ = (Y′Y)
−1

Y′ν̂

=

(
−2.5452

0.2526

)
.

These estimates are finally used to plot the linear model given in Figure 4-3.
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Figure 4-3: Medians of different age groups with linear model

The measure of discrepancy is 0.0078. One can see that the linear model does well in predicting the

median income levels.

4.6 Summary

This chapter concentrated on using different explanatory variables to better understand how the income

acts under different conditions. Specifically, the aim was to estimate different log-logistic distributions

for each cell, i.e. category, of an explanatory variable. The medians were used as representative measures

for each cell and it was shown how relevant constraints can be placed on the median levels as well.
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Chapter 5

Multifactor design

The aim of this chapter is to expand on the technique explained in Chapter 4 by cross tabulating more

than one explanatory variable with the frequency distribution of income. Log-logistic distributions

will be estimated simultaneously for each cross-tabulated cell of the multifactor design such that the

medians of the cells also follow a specified model.

5.1 Gender and population group

To present the expansion to a two-factor model with the technique at hand, the two variables gender

and population group will be cross-tabulated and used as explanatory variables for the grouped response

variable, income. The resultant histograms are given in Table 5.1.

Population group
Gender Black Coloured Indian White

Female

n = 138851 n = 22411 n = 10944 n = 57126

Male

n = 159805 n = 21718 n = 15740 n = 63102

Table 5.1: Histograms for gender and population group

5.1.1 Distribution fitting

Distributions will first be fitted to each of the T = 8 cells of the two-factor design before models

for the medians are considered by estimating the expected cumulative relative frequencies of each
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cell simultaneously such that they will follow log-logistic distributions at the upper class boundaries

x =
(

1.6 3.2 6.4 12.8
)′
. Table 5.2 presents the frequency distribution of income for each cell when

gender and population group is cross-tabulated.

Income (Upper Class Limits) Total
Cell Gender Popgrp R1600 R3200 R6400 R12800 R12800+ nt

1 F Black 33064 30420 24498 27878 22991 138851

2 F Coloured 2678 4075 5007 5739 4912 22411

3 F Indian 669 1325 2322 2878 3750 10944

4 F White 2485 3514 9911 16955 24261 57126

5 M Black 29556 37377 35188 29258 28426 159805

6 M Coloured 2169 3328 4731 5284 6206 21718

7 M Indian 999 1684 3043 3737 6277 15740

8 M White 1774 2342 6283 12913 39791 63102

Table 5.2: Frequencies for gender and population group

The matrix

FM=


33064 30420 24498 27878

2678 4075 5007 5739
...

...
...

...

1774 2342 6283 12913

 =


f ′1

f ′2
...

f ′8

 : 8× 4

contains the first (k− 1) frequencies of each cell and is transformed into the concatenated vector of

frequencies

vec (FM) = f =


f1

f2
...

f8

 : 32× 1

which is distributed as product multinomial with fixed subtotals

n =


n1

n2
...

n8

 =


138851

22411
...

63102


with a block diagonal covariance matrix. The observed frequencies are transformed into cumulative

relative frequencies using p = (I8 ⊗C) p0 and are presented in Table 5.3.
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(Upper Class Limits) (x)

Cell Gender Popgrp 1.6 3.2 6.4 12.8

1 F Black 0.238 0.457 0.634 0.834

2 F Coloured 0.119 0.301 0.525 0.781

3 F Indian 0.061 0.182 0.394 0.657

4 F White 0.044 0.105 0.279 0.575

5 M Black 0.185 0.419 0.639 0.822

6 M Coloured 0.10 0.253 0.471 0.714

7 M Indian 0.063 0.170 0.364 0.601

8 M White 0.028 0.065 0.165 0.369

Table 5.3: Cumulative relative frequencies for gender and population group

The cumulative relative frequencies has an expected value and covariance matrix given by

E(p) =


π1

π2
...

π8

 = π

and

Cov(p) = V

as in (4.4) and (4.5) , respectively. The vector of constraints that is to be used should imply that

the expected cumulative relative frequencies of each cell follow a log-logistic distribution at the upper

class boundaries x. By following the same rationale as in Chapter 4, the vector of constraints
F1 (x, θ1, κ1)

F2 (x, θ2, κ2)
...

F8 (x, θ8, κ8)

−

π1

π2
...

π8

 = 0

can be expressed in terms of a linear model by using the transformation

ln

(
πt

1− πt

)
= κt ln x + θt1 (5.1)

=
(

ln x 1
)(κt

θt

)
= Xαt

for t = 1, 2, ..., 8. The vector of constraints glog (π) = 0 with corresponding matrix of partial deriv-

atives Glog (π) which will be used in the iterative procedure are given by
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glog (π) = (I8 ⊗QX) ln
(

π
1−π
)
and Glog (π) = (I8 ⊗QX) Dπ

where QX is the projection matrix onto the error space of X. The attained ML estimate π̂ under

glog (π) = 0 is given in Table 5.4.

(Upper Class Limits) (x)

Cell Gender Popgrp 1.6 3.2 6.4 12.8

1 F Black 0.240 0.438 0.659 0.827

2 F Coloured 0.121 0.287 0.541 0.775

3 F Indian 0.067 0.177 0.392 0.660

4 F White 0.035 0.108 0.286 0.570

5 M Black 0.197 0.399 0.642 0.829

6 M Coloured 0.104 0.245 0.474 0.715

7 M Indian 0.069 0.168 0.358 0.605

8 M White 0.024 0.067 0.169 0.368

Table 5.4: Expected cumulative relative frequencies for gender and population group

Using these estimates, the parameters κ and θ of the separate log-logistic distributions can be

estimated using (4.9) and (4.10) , respectively, whereafter the vector of estimated medians ν̂ can be

estimated using (4.11). The results of doing so are given in Table 5.5.

Population group
Gender Black Coloured Indian White

F
ν̂ = 3.869 ν̂ = 5.754 ν̂ = 8.427 ν̂ = 10.863

M
ν̂ = 4.256 ν̂ = 6.863 ν̂ = 9.559 ν̂ = 18.296

Table 5.5: Fitted distributions for gender and population group

A measure of discrepancy of 0.0091 is observed. The distributions over different genders for identical

population groups seem to differ but is most evident in the White population group. The distributions

are also vastly different across population groups if gender is kept constant. To further inspect the

effects of the explanatory variables, a saturated model for the medians will be considered next.

5.1.2 Saturated model

The medians can be reparameterized by
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νij = τ 0 + τGi + τPj + τGPij

for i = 1, 2 for the genders Female and Male, respectively, and j = 1, 2, 3, 4 for the population groups

Black, Coloured, Indian and White, respectively. The reparameterization is given in matrix notation

by

ν = Zτ

where

Z = (18: ZG : ZP : ZGP )

=



1 1 1 0 0 1 0 0

1 1 0 1 0 0 1 0

1 1 0 0 1 0 0 1

1 1 −1 −1 −1 −1 −1 −1

1 −1 1 0 0 −1 0 0

1 −1 0 1 0 0 −1 0

1 −1 0 0 1 0 0 −1

1 −1 −1 −1 −1 1 1 1



and τ =


τ 0

τ P

τG

τGP

 . The submatrices of Z are defined by making use of design matrices DP and

DG, where

DP =


1 0 0

0 1 0

0 0 1

−1 −1 −1

 and DG =

(
1

−1

)

from which

ZP = DP ⊗ 12

ZG = 14 ⊗DG

ZPG = ZP � ZG

are constucted, where ⊗ and � are Kronecker and direct products, respectively.
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The submatrices can be defined by using the following expressions in SAS:
ZP = DESIGNF(CUSUM(J(4, 1, 1)))@J(2, 1, 1);

ZG = J(4, 1, 1)@DESIGNF(CUSUM(J(2, 1, 1)));

ZPG = HDIR(ZP,ZG);1

Table 5.6 presents the results for the reparameterization of the median.

Population group τ̂G

Gender Black Coloured Indian White

Female
ν̂ = 3.869

τ̂GP = 1.064

ν̂ = 5.754

τ̂GP = 0.703

ν̂ = 8.427

τ̂GP = 0.692

ν̂ = 10.863

τ̂GP = −2.459
−1.258

Male
ν̂ = 4.256

τ̂GP = −1.064

ν̂ = 6.863

τ̂GP = −0.703

ν̂ = 9.559

τ̂GP = −0.692

ν̂ = 18.296

τ̂GP = 2.459
1.258

τ̂P −4.423 −2.177 0.507 6.093 τ̂ 0 = 8.486

Table 5.6: Fitted distributions with saturated model for gender and population group

Instead of studying the distributions, one can now consider the deviations from the overall median

τ 0 caused by the explanatory variables. Since the model is simply a reparameterization, the original

values for the medians can be attained by using the overall median, the corresponding marginal and

interaction effects. As an example, one can consider calculating the median income for a White Male

with

ν24 = τ 0 + τG2 + τP4 + τGP24

= 8.486 + 1.258 + 6.093 + 2.459

= 18.296.

The marginal deviations for gender and population group indicate that both explanatory variables play

a substantial role. The marginal deviations caused by the different genders indicate that a Male is

expected to earn R1258 more than the overall median, hence R2516 more than a Female. The effect of

population group is also evident with the White population group earning R6093 more than the overall

median and the Black population group earning R4423 less than the overall median. The marginal

1The CUSUM(< A >) function calculates the cumulative sum vector/matrix of a vector/matrix. The
J(< n row>,< n col>,< element >) operator creates a vector/matrix of dimension < n row> × < n col> with each ele-
ment equaling < element >. The @ operator calculates a Kronecker product of two matrices. The HDIR(< A >,< B >)
calculates the direct product of the two matrices < A > and < B >.
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deviation caused by the interaction of the explanatory variables seem to only be prominent in the Black

and White population groups, with White Males doing relatively better than White Females. From the

interaction effect it is clear that apart from the marginal effects of gender and population group, an

additional R2459 is caused by the interaction effect of a White Male. The reverse situation is true for

the Black population group where Black Females are doing relatively better. If one wished to estimate

π under the added constraint that the explanatory variables are independent, it could be incorporated

in the vector of constraints g(π) = 0 that is used in the iterative procedure.

5.1.3 Independence model

If one forces gender and population group to be independent, the model for the medians would be

νij = τ 0 + τGi + τPj

for i = 1, 2 and j = 1, 2, 3, 4 with the model given in matrix notation by

ν = Zτ

where

Z = (18 : ZG : ZP )

=



1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 1 −1 −1 −1

1 −1 1 0 0

1 −1 0 1 0

1 −1 0 0 1

1 −1 −1 −1 −1


Defining QZ as the projection matrix onto the error space of Z, the vector of constraints gmod(π) =

QZν = 0 and corresponding matrix of partial derivatives Gmod(π) will be used in conjunction with

glog (π) = 0 to form the vector of constraints g (π) = 0 and matrix of partial derivatives G (π) given

by

g (π) =

(
glog (π)

gmod (π)

)
and G (π) =

(
Glog (π)

Gmod (π)

)
.

Note that the desired effect could also be achieved by setting gmod(π) = ZGPν = 0 since this vector

of constraints explicitly sets the interaction effects equal to zero. Using g (π) = 0 as the vector of

constraints in the iterative procedure will lead to the ML estimate of π such that:
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1. the elements of π̂1, π̂2, · · · π̂8 follow cumulative log-logistic curves at the upper class boundaries
x, and

2. the ML estimate ν̂ is a linear combination of columns of Z.

The resultant distributions and corresponding estimates are then given in Table 5.7.

Population group τ̂G

Gender Black Coloured Indian White

F
ν̂ = 3.728

τ̂GP = 0.000

ν̂ = 5.935

τ̂GP = 0.000

ν̂ = 8.662

τ̂GP = 0.000

ν̂ = 13.605

τ̂GP = 0.000
−0.332

M
ν̂ = 4.392

τ̂GP = 0.000

ν̂ = 6.599

τ̂GP = 0.000

ν̂ = 9.326

τ̂GP = 0.000

ν̂ = 14.269

τ̂GP = 0.000
0.332

τ̂P −4.255 −2.047 0.679 5.622 τ̂ 0 = 8.314

Table 5.7: Independence model of gender and population group

The attained measure of discrepancy is 0.0144, indicating that the independence model for the

medians is suffi cient to explain the effects of the explanatory variables. The medians will now propor-

tionately reflect the marginal effects under the independence model. The same inferences regarding the

explanatory variables that was made earlier are seen here if the marginal deviations from the overall

median are considered. Since the medians are all linear combinations of the columns of the design

matrix Z, the deviations caused by the interactions between the explanatory variables are all equal to

0.

5.2 Gender and level of education

Replicating the ideology of the previous section, the two-factor model will now be used to study the

effects of gender and level of education on the grouped response variable, income. The resultant his-

tograms are given in Table 5.8 when the two explanatory variables are cross-tabulated with the frequency

distribution of income.
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Level of education
Gender Grade 12 Certif Diploma B Degree Post Grad

Female

n = 130013 n = 15147 n = 46347 n = 23261 n = 14564

Male

n = 163773 n = 18896 n = 39536 n = 22320 n = 15840

Table 5.8: Gender and level of education

One should note that the last income interval is defined as open-ended but is restricted to 30 for

display purposes.

5.2.1 Distribution fitting with the saturated model

To fit log-logistic distributions to each of the T = 10 cells, one needs to transform the vector of

observed frequencies f into the vector of cumulative relative frequencies p, as was done in Section

5.1.1, and estimate the vector of expected cumulative relative frequencies π such that each cell follows

a log-logistic distribution at the upper class boundaries x. When this is done, π̂ is used to estimate

κ and θ using (4.9) and (4.10) , respectively, whereafter the vector of estimated medians ν̂ can be

estimated using (4.11). Note that the estimated medians can be reparameterized to find the effects of

the explanatory variables with

νik = τ 0 + τGi + τEk + τGEik

where i = 1, 2 for Female and Male respectively, and k = 1, 2, 3, 4, 5 for the different levels of

education Grade 12, Diploma, Certificate, Bachelor’s degree and Postgraduate degree, respectively.

The reparameterization is given in matrix notation by

ν = Zτ
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where

Z = (110: ZG : ZE : ZGE)

=



1 1 1 0 0 0 1 0 0 0

1 1 0 1 0 0 0 1 0 0

1 1 0 0 1 0 0 0 1 0

1 1 0 0 0 1 0 0 0 1

1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 −1 1 0 0 0 −1 0 0 0

1 −1 0 1 0 0 0 −1 0 0

1 −1 0 0 1 0 0 0 −1 0

1 −1 0 0 0 1 0 0 0 −1

1 −1 −1 −1 −1 −1 1 1 1 1



and τ =


τ 0

τG

τE

τGE

 . The submatrices of Z are defined by making use of design matrices DG and DE,

where DG is as defined in Section 5.1.2 and

DE =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 −1 −1


from which

ZG = DG ⊗ 15

ZE = 12 ⊗DE

ZGE = ZG � ZE

are constructed. The distributions and relevant parameters are given in Table 5.9.

52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Level of education τ̂G

G Grade 12 Certif Diploma B Degree Post Grad

F
ν̂ = 3.287

τ̂GE = 2.729

ν̂ = 5.379

τ̂GE = 1.558

ν̂ = 9.723

τ̂GE = 1.258

ν̂ = 14.385

τ̂GE = −0.869

ν̂ = 19.710

τ̂GE = −4.677
−3.132

M
ν̂ = 4.092

τ̂GE = −2.729

ν̂ = 8.526

τ̂GE = −1.558

ν̂ = 13.470

τ̂GE = −1.258

ν̂ = 22.388

τ̂GE = 0.869

ν̂ = 35.328

τ̂GE = 4.677
3.132

τ̂E −9.939 −6.676 −2.032 4.758 13.890 τ̂ 0 = 13.629

Table 5.9: Fitted distributions for gender and level of education

With the measure of discrepancy being calculated as 0.0093, one can conclude that the estimated

frequencies do not differ significantly from the observed frequencies. The marginal deviations from the

overall median caused by gender seem to indicate that gender still has a considerable effect in the median

income level, even if level of education is taken into account. The marginal deviations from the overall

median caused by level of education shows that it has a prominent effect on income. An individual with

a Post graduate level of education earns R13890 more than the overall median whereas a person with

only a Grade 12 level of education earns R9939 less than the overall median. The marginal deviations

also indicate that an ordinal trend exists between income and level of education. This ordinal trend

is also observed in the interaction effects where the interaction between education and gender follows

a decreasing trend for Females but increasing for Males. How level of education impacts the median

income under different genders can be studied further by fitting different linear models to the median

income levels for different genders.

5.2.2 Linear model

Figure 5-1 presents the median income levels against level of education for different genders where the

pink and blue dots represent the median levels for Female and Male, respectively. Note that level of

education is coded as in Section 4.4.1.

53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



­2.0 ­1.5 ­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

Education level

Median

Figure 5-1: Medians under different population groups with level of education as ordinal
variable

The ordinal relationship between level of education and income can be captured by the model

ν = Yγ

where the design matrix

Y = (110: ZG : YE : YGE)

=



1 1 −2 −2

1 1 −1 −1

1 1 0 0

1 1 1 1

1 1 2 2

1 −1 −2 2

1 −1 −1 1

1 −1 0 0

1 −1 1 −1

1 −1 2 −2


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with corresponding vector of parameters γ =


µ

τG

βE

ηGE

 is used. The vectors 110 andYE = 12⊗


−2

−1

0

1

2


coincide with the overall intercept and overall gradient caused by level of education, respectively. The

matrices ZG = DG ⊗ 15 and YGE = ZG �YE coincide with the deviations caused by different genders

from the overall intercept and the overall gradient, respectively. If QY is defined as the projection

matrix onto the error space of Y, the vector of constraints g (π) = 0 with matrix of partial derivatives

G (π) follow as before as

g (π) =

(
glog (π)

glin (π)

)
and G (π) =

(
Glog (π)

Glin (π)

)

as in (4.19) and (4.20) , respectively where glin(π) = QYν = 0. The ML estimate for π under

g (π) = 0 is estimated using the iterative procedure and finally the ML estimates of the parameters γ

can be attained using

γ̂ = (Y′Y)
−1

Y′ν̂

=


12.2165

−2.2435

4.2770

−0.9150

 .

One should note how these parameters can be interpreted. The value µ̂ = 12.2165 corresponds to

the estimated overall median τ̂ 0, the marginal effect of gender on the overall median for Females is

given by τ̂G = −2.2435, the overall gradient of the lines β̂E = 4.2770 corresponds with what increment

the effect of education τ̂E will change by and the deviation from the overall gradient caused by gender

η̂GE = −0.9150 corresponds with what increment the interaction effects τ̂GE will change by for Females.

The estimated distributions are given in Table 5.10.
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Level of education τ̂G

G Grade 12 Certif Diploma B Degree Post Grad

F
ν̂ = 3.249

τ̂GE = 1.830

ν̂ = 6.611

τ̂GE = 0.915

ν̂ = 9.973

τ̂GE = 0.000

ν̂ = 13.335

τ̂GE = −0.915

ν̂ = 16.697

τ̂GE = −1.830
−2.243

M
ν̂ = 4.076

τ̂GE = −1.830

ν̂ = 9.268

τ̂GE = −0.915

ν̂ = 14.460

τ̂GE = 0.000

ν̂ = 19.652

τ̂GE = 0.915

ν̂ = 24.844

τ̂GE = 1.830
2.243

τ̂E −8.554 −4.277 0.000 4.277 8.554 τ̂ 0 = 12.217

Table 5.10: Fitted distributions for gender and level of education where level of education
is ordinal

With the measure of discrepancy being 0.0112, one can conclude that the model fits suffi ciently. Note

that the respective medians under different genders now increase with a linear trend. The marginal

effects of level of education and the interaction effects between gender and level of education can be

observed as being symmetrical about Diploma. The linear functions

ν̂F = 9.973 + 3.362xE

ν̂M = 14.46 + 5.192xE

can also be drawn and are given in Figure 5-2 where the pink and blue lines represent Females and

Males, respectively.
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Figure 5-2: Linear functions for income under different genders with level of education as
ordinal variable

From these linear models one can see that Males attain the highest income whereas Females attain

the lowest income over all levels of education. The effect of having a higher level of education is also

more prominent with Males. Although the linear model does give an adequate measure of discrepancy,

the highest value for income that is observed at a post graduate level of education for Males is not

properly described. To rectify this observation, a quadratic model will be fitted to the medians.

5.2.3 Quadratic model

The quadratic model

ν = Yγ
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can be estimated where the design matrix is given by

Y =
(
1 : YG : YE : Y2

E : YGE : Y2
GE

)

=



1 1 −2 4 −2 4

1 1 −1 1 −1 1

1 1 0 0 0 0

1 1 1 1 1 1

1 1 2 4 2 4

1 −1 −2 4 2 −4

1 −1 −1 1 1 −1

1 −1 0 0 0 0

1 −1 1 1 −1 −1

1 −1 2 4 −2 −4


with a corresponding vector of parameters γ. This will represent a quadratic model where the intercepts,

linear coeffi cients and quadratic coeffi cients vary for different genders. Using the same process as before,

the ML estimate of π can be determined under the vector of constraints g (π) = 0 to find the ML

estimate of γ from which the functions

υ̂F = 9.4837 + 4.4xE + 0.6492x2E

υ̂M = 13.9957 + 6.8742xE + 0.9622x2E

are determined. These functions are illustrated graphically in Figure 5-3.
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Figure 5-3: Quadratic functions for income under different genders with level of education
as ordinal variable

A measure of discrepancy of 0.0096 was attained indicating the quadratic model does give a good

fit. This can also be seen in Figure 5-3 where the income level for a Male with a post graduate level of

education is more accurately described.

5.3 Population group and level of education

The two-factor model will now be used to study the effects of population group and level of education

on the grouped response variable, income. The resultant histograms are given in Table 5.11 when the

two explanatory variables are cross-tabulated with the frequency distribution of income.
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Population group
Education Black Coloured Indian White

Grade 12

n = 195887 n = 31335 n = 15150 n = 51414

Certif

n = 20495 n = 2708 n = 1452 n = 9388

Diploma

n = 48176 n = 6174 n = 4144 n = 27389

B Degree

n = 21444 n = 2468 n = 3650 n = 18019

Post Grad

n = 12654 n = 1444 n = 2288 n = 14018

Table 5.11: Population group and level of education

5.3.1 Distribution fitting with the saturated model

The iterative procedure is used such that the expected relative frequencies π̂1, π̂2, ..., π̂20 for each of the

T = 20 cells follow log-logistic distributions at the upper class boundaries x. The estimated medians

are reparameterized to find the effects of the explanatory variables with

νjk = τ 0 + τPj + τEk + τPEjk

where j = 1, 2, 3, 4 for the different population groups Black, Coloured, Indian and White, respectively,

and k = 1, 2, 3, 4, 5 for the different levels of education Grade 12, Diploma, Certificate, Bachelor’s degree

and Postgraduate degree, respectively. The reparameterization is given in matrix notation by

ν = Zτ
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where Z = (120: ZP : ZE : ZPE) and τ =


τ 0

τ P

τE

τ PE

 . The submatrices of Z are defined by making use

of design matrices DP and DE as defined in Section 5.1.2 and Section 5.2.1, respectively from which

ZP = DP ⊗ 15

ZE = 14 ⊗DE

ZPE = ZP � ZE

are constructed. The fitted distributions and corresponding parameters are given in Table 5.12.
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Population group τ̂E

Education Black Coloured Indian White

Grade 12
ν̂ = 2.732

τ̂PE = 1.095

ν̂ = 4.665

τ̂PE = −1.498

ν̂ = 6.061

τ̂PE = −0.310

ν̂ = 9.830

τ̂PE = 0.713
−8.805

Certif
ν̂ = 4.837

τ̂PE = 0.122

ν̂ = 7.815

τ̂PE = −1.427

ν̂ = 9.168

τ̂PE = −0.282

ν̂ = 13.784

τ̂PE = 1.588
−5.726

Diploma
ν̂ = 8.881

τ̂PE = 0.144

ν̂ = 13.274

τ̂PE = 0.010

ν̂ = 13.589

τ̂PE = 0.117

ν̂ = 15.947

τ̂PE = −0.271
−1.705

B Degree
ν̂ = 14.661

τ̂PE = 0.640

ν̂ = 18.841

τ̂PE = 0.294

ν̂ = 18.627

τ̂PE = −0.129

ν̂ = 20.697

τ̂PE = −0.805
3.579

Post Grad
ν̂ = 21.098

τ̂PE = −2.000

ν̂ = 30.246

τ̂PE = 2.621

ν̂ = 28.437

τ̂PE = 0.604

ν̂ = 29.355

τ̂PE = −1.225
12.657

τ̂P −4.185 0.341 0.549 3.295 τ̂ 0 = 14.627

Table 5.12: Fitted distributions for population group and level of education

With the measure of discrepancy being calculated as 0.0083, one can conclude that the estimated

frequencies gives an adequate estimation of the observed frequencies. The marginal deviations from

the overall median caused by population group also still seem to indicate that population group has

an effect even if level of education is taken into account. The marginal effects for level of education

indicate that an ordinal trend exists between income and level of education. This can be studied further

by fitting linear models to the different median income levels.
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5.3.2 Linear model

Figure 5-4 presents the median income levels against level of education for different population groups

where the red, blue, green and grey dots represent the Black, Coloured, Indian and White population

groups, respectively. Note that level of education is coded as in Section 4.4.1.
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Figure 5-4: Medians under different population groups with level of education as ordinal
variable

The ordinal relationship between level of education and income can be captured by the model

ν = Yγ

where the design matrix isY = (120: Zp : YE : YPE) with corresponding vector of parameters γ =



µ

τ P

βE

ηPE1

ηPE2

ηPE3


.

The vectors 120 and YE = 14⊗


−2

−1

0

1

2

 coincide with the overall intercept and overall gradient caused
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by level of education respectively. The matrices Zp = DP ⊗ 15 and YPE = Zp �YE coincide with the

deviations caused by different population groups from the overall intercept and the overall gradient re-

spectively. If QY is defined as the projection matrix onto the error space of Y, the vector of constraints

g (π) = 0 with matrix of partial derivatives G (π) follow as before as

g (π) =

(
glog (π)

glin (π)

)
and G (π) =

(
Glog (π)

Glin (π)

)
as in (4.19) and (4.20) , respectively where glin(π) = QYν = 0. The ML estimate for π under

g (π) = 0 is estimated using the iterative procedure and finally the ML estimates of the parameters γ

can be attained. The linear functions can now be drawn and are given in Figure 5-5 where the red, blue,

green and grey lines represent the Black, Coloured, Indian and White population groups, respectively.
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Figure 5-5: Income for different population groups with level of education as ordinal
variable

The measure of discrepancy attained for this model is 0.0109. The equations for the linear models

are given in Table 5.13.

Income

Population group Black 9.2836 + 3.2862xk

Coloured 13.2708 + 4.3128xk

Indian 14.1786 + 4.0758xk

White 17.0402 + 3.6243xk

Table 5.13: Equations for linear models for different population groups
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From the linear models one can see that the White population group attains the highest income

whereas the Black population group attains the lowest income over all levels of education. The gradients

over different population groups do seem to be comparable but the intercepts are clearly different. This

can be incorporated in the estimation procedure by forcing the gradients to be equal.

5.3.3 Linear model with equal gradients

The interaction effect between population group and level of education can be discarded by changing

the design matrix Y to Y = (120: Zp : YE). The resultant linear functions are given in Figure 5-6.
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Figure 5-6: Income for different population groups with level of education as ordinal
variable with equal gradients

The measure of discrepancy attained for this model is 0.01139 which indicates that the trends for

each population group can be taken as equal. The linear models are given in Table 5.14.

Income

Popgrp Black 9.5351 + 3.4111xk

Coloured 11.5597 + 3.4111xk

Indian 12.9723 + 3.4111xk

White 17.0402 + 3.4111xk

Table 5.14: Equations for linear models for different population groups with equal gradi-
ents
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As observed previously, the income values are not properly described with linear models. To this

end, a higher order model will also be considered.

5.3.4 Quadratic model

The extension to a higher order model is simple. To illustrate this, a model of the form

ν = Yγ

can be estimated where the design matrix Y = (1 : ZP : YE : Y2
E : YPE : Y2

PE) is used with a

corresponding vector of parameters γ. This will represent a quadratic model where the intercepts, linear

coeffi cients and quadratic coeffi cients vary for different population groups. Using the same process as

before, the ML estimate of π can be determined under the vector of constraints g (π) = 0 to finally find

the ML estimate of γ. A measure of discrepancy of 0.0084 is attained. Note that this is the smallest

measure of discrepancy attained between the three models. The result of this model is given in Figure

5-7.
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Figure 5-7: Income for different population groups with level of education as ordinal
variable with a quadratic model

The quadratic functions are given in Table 5.15.
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Income

Population group Black 8.8361 + 5.8082xk + 1.1330x2k
Coloured 13.0582 + 4.8347xk + 1.0211x2k
Indian 13.5242 + 5.2053xk + 0.9114x2k
White 16.4462 + 4.3965xk + 0.7958x2k

Table 5.15: Equations for quadratic models for different population groups with equal
gradients

If a quadratic model is fitted to the median income levels, one will note that the White population

group still earns the highest income whereas the Black population group earns the lowest income over

all levels of education. The quadratic model does provide more information regarding the Coloured

and Indian population groups. If the level of education is higher than a certificate level, the Indian

population group earns a higher income when compared to the Coloured population group.

5.4 Gender, population group and level of education

The same technique described in Chapter 4 and in Sections 5.1, 5.2 and 5.3 can be used to fit a three

factor model to income. If gender, population group and level of education are considered as explanatory

variables, a table with T = 2× 4× 5 cells can be created where the different explanatory variables are

cross-tabulated.

5.4.1 Distribution fitting

The aim is to estimate different log-logistic distributions at the upper class boundaries x for each of

the T = 40 cells simultaneously from which the medians of the fitted log-logistic distributions can be

analyzed to see the effects of the explanatory variables. The results of doing so are summarized in

Tables 5.16 and 5.17.
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Female Population group
Education Black Coloured Indian White

Grade 12

ν̂ = 2.328 ν̂ = 4.287 ν̂ = 5.467 ν̂ = 8.055

Certificate

ν̂ = 4.217 ν̂ = 6.367 ν̂ = 7.983 ν̂ = 9.489

Diploma

ν̂ = 8.271 ν̂ = 12.11 ν̂ = 11.97 ν̂ = 12.36

B Degree

ν̂ = 13.45 ν̂ = 15.95 ν̂ = 15.67 ν̂ = 15.25

Post Grad

ν̂ = 18.02 ν̂ = 22.85 ν̂ = 23.83 ν̂ = 20.76

Table 5.16: Fitted distributions for Females: Population group vs level of education
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Male Population group
Education Black Coloured Indian White

Grade 12

ν̂ = 3.064 ν̂ = 5.090 ν̂ = 6.485 ν̂ = 12.11

Certificate

ν̂ = 5.537 ν̂ = 9.625 ν̂ = 10.02 ν̂ = 17.81

Diploma

ν̂ = 9.822 ν̂ = 14.89 ν̂ = 15.50 ν̂ = 21.90

B Degree

ν̂ = 16.60 ν̂ = 24.49 ν̂ = 22.73 ν̂ = 31.01

Post Grad

ν̂ = 26.42 ν̂ = 47.17 ν̂ = 33.81 ν̂ = 42.63

Table 5.17: Fitted distributions for Males: Population group vs level of education

A measure of discrepancy of 0.0097 was attained. It follows that the estimated frequencies of each

cell do not differ significantly from the observed frequencies. Although Table 5.16 and 5.17 present

the estimated pdfs and medians, it may be diffi cult to make inferences regarding the effects of the

explanatory variables on income. The medians can be reparameterized in a similar manner as before

to find the deviations from the overall median income caused by the explanatory variables but instead

of doing so, one can consider fitting different models to the medians.

5.4.2 Linear model

The medians of each fitted distribution will be plotted against the ordinal variable, level of education,

with the red, blue, green and grey dots representing the Black, Coloured, Indian and White population

groups respectively, whereafter a model can be suggested.
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Figure 5-8: Median income for Females: Ordinal trend in level of education for each
population group
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Figure 5-9: Median income for Males: Ordinal trend in level of education for each popu-
lation group

By simply considering the medians in Figure 5-8 and 5-9 one should note that level of education
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still plays an ordinal role with regards to the median income but the effect of level of education between

the different genders is considerably different. To delve further into this observation, one can fit linear

models to the median income levels for the different combinations of gender and population group using

level of education as the ordinal variable. The linear model will be of the form

ν = Yγ

where the design matrix Y = (140: ZG : ZP : YE : ZGP : YGE : YPE : YGPE) with the submatrices

of Y in given Table 5.18.

Main Effects First-order interactions Second-order interactions

ZG = DG ⊗ 14 ⊗ 15 ZGP = ZG � ZP YGPE = ZGP �YE

ZP = 12 ⊗DP ⊗ 15 YPE = ZP �YE

YE = 12 ⊗ 14 ⊗


−2

−1

0

1

2

 YGE = ZG �YE

Table 5.18: Sub-matrices of the design matrix Y

In the design matrix, the vectors 140 and YE correspond with the overall intercept and gradient

caused by level of education respectively. The matrices ZG, ZP and ZGP correspond with the devia-

tions from the overall intercept caused by gender, population group and the interaction of gender and

population group respectively. The matrices YGE, YPE and YPGE correspond with the deviations from

the overall gradient caused by gender, population group and the interaction of gender and population

group, respectively. The ML estimate for π is then found such that for each of the T = 40 cells, the

expected cumulative relative frequencies will equal a cumulative log-logistic distribution at the upper

class boundaries x and that each of the T = 40 medians of the log-logistic distributions are in the vector

space of Y. The resultant linear functions are given in Figures 5-10 and 5-11.
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Figure 5-10: Linear models for Females: Ordinal trend in level of education for each
population group
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Figure 5-11: Linear models for Males: Ordinal trend in level of education for each popu-
lation group

A measure of discrepancy of 0.0127 was attained for this model. The equations are summarised in
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Table 5.19.

Gender
Female Male

Popgrp Black 8.5276 + 3.1116x 10.3472 + 3.6498x

Coloured 11.6444 + 3.6923x 15.5754 + 5.2498x

Indian 12.3183 + 3.4430x 16.2363 + 4.8938x

White 12.8450 + 2.4428x 23.5782 + 5.7535x

Table 5.19: Equations for linear models

The effect of level of education is clearly more prominent for Males, regardless of population group.

For Males and Females, one can note that the gradients over the different population groups seem to

be comparable. The gradients over different genders for the same population group, however, do seem

to be different. This is mainly seen in the White population group.

5.4.3 Linear model with population group and level of education indepen-

dent

The iterative procedure will be used to estimate linear models where the gradients for different popu-

lation groups are constant under the same gender. The model of the form

ν = Yγ

is used with design matrix Y = (140: ZG : ZP : YE : ZGP : YGE). Since this design matrix does not

have an interaction effect between population group and level of education, parallel lines are implied

if the genders are the same. The ML estimate for π is then found such that for each of the T = 40

cells, the expected cumulative relative frequencies will equal a cumulative log-logistic distribution at

the upper class boundaries x and that each of the T = 40 medians of the log-logistic distributions are

in the vector space of Y. The resultant linear functions are given in Figures 5-12 and 5-13.
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Figure 5-12: Linear models for Females: Ordinal trend in level of education for each
population group with level of education and population group independent
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Figure 5-13: Linear models for Males: Ordinal trend in level of education for each popu-
lation group with level of education and population group independent

From the latter figures and Table 5.20, the gradients of the linear functions for different population
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groups with identical genders are forced to be equal.

Gender
Female Male

Popgrp Black 8.4554 + 3.0735x 12.0942 + 3.9488x

Coloured 10.3805 + 3.0735x 14.1183 + 3.9488x

Indian 11.67122 + 3.0735x 15.31 + 3.9488x

White 13.8575 + 3.0735x 17.4963 + 3.9488x

Table 5.20: Equations for linear models: Equal gradients under identical genders

Under this model, a measure of discrepancy of 0.0135 was attained indicating that the model gives

a adequate fit.

5.5 Summary

Chapter 5 focussed on the extension of the single-factor model to the multifactor model. Specifically,

two-factor models were used where gender and population group, gender and level of education and

population group and level of education were used as explanatory variables for the grouped response

variable, income. After this was done, a three-factor model was used where gender, population group

and level of education acted as the explanatory variables. Different linear models were applied to the

medians of the defined cells of the two- and three-factor models to further analyze the effect of the

explanatory variables on income.
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Chapter 6

The Logit model

6.1 Introduction

The logit model is a simple technique that can also be used to model a grouped response variable. In

this chapter, the grouped response variable is coded as a binary response variable and the logit model

will be used in conjunction with the iterative procedure if one wishes to find the ML estimates of the

frequencies under a certain vector of constraints.

6.2 Level of education

To see how level of education effects income, the saturated model will first be used with level of education

being an explanatory variable whereafter the iterative procedure will be used to capture the ordinal

relationship between level of education and income. Using the same ideology as in Chapter 1, the

grouped response variable can be divided up into low- and high income categories from where the table

of frequencies for level of education as an explanatory variable can be set up as in Table 6.1. An

individual is coded as being in the low income group if income is less than R12800 and in the high

income group if income is greater than or equal to R12800.

Level of education

Income group Grade 12 Certificate Diploma B Degree Post Grad Total

High (H) 39909 9358 37189 27938 22220 136614

Low (L) 253877 24685 48694 17643 8184 353083

Total 293786 34043 85883 45581 30404 n = 489697

Table 6.1: Frequencies for different levels of education

6.2.1 Saturated model

The frequencies in Table 6.1 can be used to estimate simple probabilities. For example, one can

estimate the probability of an individual falling in a high income category, given the individual has a

Bachelors degree, with p4 = 27938
45581

= 0.6129. The odds of the event occurring can also be calculated as
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odds4 = p4
1−p4 = 1.5835. If one defines fH,k and fL,k as the frequencies in the (H, k)th and (L, k)th cells,

respectively, then the observed frequencies can be used to find odds4 using using

odds4 =

fH,4
n4
fL,4
n4

=
fH,4
fL,4

.

By taking the log of the odds, the logit model takes form with

ln(
fH,k
fL,k

) = µ+ λEk

for k = 1, 2, 3, 4, 5 for level of education and λE5 = −
∑4

k=1 λ
E
k . By simply removing the log component,

the indices can also be inspected with

fH,k
fL,k

= eµeλ
E
k

= IµIEk .

Iµ is the geometric average of the odds over all the categories of level of education whereas IEk is the

index indicating the effect of a certain level of education on the respective odds. If 0 < IEk < 1, it

reduces the odds of falling in the high income category whereas if IEk > 1, the odds increases. Note that

since λE5 = −
∑4

k=1 λ
E
k , one has that I

E
5 =

∏4
k=1

(
IEk
)−1

.

If one were to define f ′H and f ′L as the row vectors containing the frequencies corresponding with the

high- and low income categories, respectively, then the vector of frequencies f =

(
fH
fL

)
can be used to

write the logit model in matrix notation. Since

ln(
fH
fL

) = ln(fH)− ln(fL)

=


1 0 0 0 0 −1 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 −1

 ln(f)

= A ln(f)
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it follows that

A ln(f) =


1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 −1 −1 −1 −1




µ

λE1

λE2

λE3

λE4


= Zλ.

Note that the vector f is multinomial distributed with E(f) = F and Cov(f) = DF− 1
n
FF′ = VF as

in (2.5) and (2.6) with DF =diag(F). The vector of parameters λ for the saturated model can be

determined by

λ = (Z′Z)−1Z′A ln (f)

=


−0.3263

−1.5240

−0.6437

0.0567

0.7859


from which the indices can be found as given in Table 6.2.

Indices Level of education
Grade 12 Certificate Diploma B Degree Post Grad Overall

Income group High:Low index 0.2178 0.5253 1.0584 2.1944 3.7625 0.7216

Table 6.2: Indices for levels of education

Note that the logit model is simply a reparameterization of the log-odds. Hence, using either

the indices or the estimated parameters, one is able to find the exact odds or log-odds. The indices

do however indicate that an exponential trend might exist in the odds of falling in the high income

category and hence a linear trend might exist in the log-odds. Figure 6-1 shows a plot of the log-odds

against level of education with education being coded as in Section 4.4.1.
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Figure 6-1: Log-odds with level of education as ordinal variable

Since f is multinomial distributed and thus belongs to the exponential family, Proposition 1 can

be redefined in terms of frequencies to find the expected value E(f) = F under a vector of constraints

g(F) = 0. It follows that the linear relationship between the log-odds and level of education can be

captured using an appropriate vector of constraints. Proposition 3 outlines the iterative procedure

needed in this scenario.

Proposition 3 (ML estimation procedure)

Consider a random vector of frequencies f with distribution belonging to the exponential family, with

E(f) = F and Cov(f) = VF.

The observed f is the unrestricted ML estimate of F and the covariance matrix VF may be a

function of F. Let g(F) be a continuous vector valued function of F, for which the first order partial

derivatives,

GF =
∂g(F)

∂F

with respect to F exist. The ML estimate of F, subject to the vector of constraints g(F) = 0 is

obtained iteratively from

F̂ = f − (GFVF)′(GfVFG′F)∗g(f) (6.1)

where Gf =
∂g(F)

∂F

∣∣∣∣
F=f

and (GfVFG′F)∗ is a generalized inverse of (GfVFG′F).

79

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



6.2.2 Linear model

Using the iterative procedure outlined in Proposition 3, the linear trend in the log-odds can be captured

with an appropriate vector of constraints. By attaining the ML estimate F̂ under the relevant vector of

constraints, the ML estimates for the linear model can be estimated. If the linear model is of the form

A ln(F) =


1 −2

1 −1

1 0

1 1

1 2


(
µ

β

)

= Yγ

then F needs to be estimated such that A ln(F) is in the vector space of Y. Defining QY as the

projection matrix onto the error space of Y, the vector of constraints

g(F) = QYA ln(F) = 0

with matrix of partial derivatives

GF =
∂g(F)

∂F
= QYAD−1F

can be used in the iterative procedure. Before the procedure is applied, (6.1) will first be simplified to

see if a double iterative procedure is necessary. Hence,

GFVF = QYAD−1F (DF−
1

n
FF′)

= QYA(I− 1F
1

n
)

= QYA−QY A1︸︷︷︸
0

F
1

n

= QYA− 0

= QYA

with the result holding in general if A = (I : −I). Also,

GfVFG′F = Gf (GFVF)′

= QYAD−1f A′QY.
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If these expressions are substituted into (6.1) , the equation simplifies to

F̂ = f − (QYA)′(QYAD−1f A′QY)∗QYA ln(f) (6.2)

which is only a function of f . It follows that only convergence over f is required. The procedure is

outlined in the following steps:

The iterative procedure
1. Set f equal to the unrestricted ML estimate for F

2. Set the matrices A and QY

3. Do until convergence over f

i. Calculate g(f) and Df

ii. Calculate f using (6.2).

An appropriate stopping criteria would be to test if g(f) is less then an appropriate error. When this

is completed, the ML estimate F̂ under g(F) = 0 is attained and the ML estimates for the parameters

of the linear function are estimated with

γ̂ = (Y′Y)−1Y′C ln(F̂)

=

(
−0.3223

0.7476

)
.

Using the parameters, a linear function can be drawn which estimates the value of the log-odds at a

certain level of education.
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Figure 6-2: Log-odds with level of education as ordinal variable with linear model
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A measure of discrepancy of 0.0007297 was attained. This indicates that the linear model fits the

log-odds significantly. The odds can then be attained with the linear model

ln(
FH,k
FL,k

) = −0.3223 + 0.7476xk

(
FH,k
FL,k

) = exp(−0.3223 + 0.7476xk)

= 0.7245(2.1119)xk

where xk = −2,−1, 0, 1, 2. This shows that as level of education increases, there is an exponential

increase in the odds of landing in the high income category. In fact, the odds will more than double as

one’s level of education increases from one level to the next.

6.3 Population group and level of education

Using the logit model, one can also consider using more than one explanatory variable. The first

combination of explanatory variables that will be considered is population group and level of education.

An extract of the frequencies is given in Table 6.3.

Pop Group Education High income Low income

Black Grade 12 12349 183538

Certificate 3128 17367

Diploma 15756 32420

B Degree 11719 9725

Post Grad 8465 4189
...

...
...

...

White Grade 12 19798 31616

Certificate 4939 4449

Diploma 16119 11270

B Degree 12291 5728

Post Grad 10905 3113

Table 6.3: Frequencies for population group and level of education

6.3.1 Saturated model

With the logit model being defined as

ln(
fH,j,k
fL,j,k

) = µ+ λPj + λEk + λPEjk (6.3)
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with j = 1, 2, 3, 4 for population group and k = 1, 2, 3, 4, 5 for level of education, one can concatenate

the high- and low income frequencies to form f=

(
fH

fL

)
to express the logit model in matrix notation

A ln (f) = Zλ (6.4)

with A = (I20 : −I20) and Z = (1 : ZP : ZE : ZPE). Note that the submatrices of Z are identical to

the submatrices defined in Section 5.3.1 for the saturated model for the medians.

The corresponding vector of parameters is given by λ =


µ

λP

λE

λPE

. From this, λ and finally the

indices can be determined.

Indices Level of Education
Grade 12 Certificate Diploma B Degree Post Grad Marginal

Population Black 0.6401 0.7856 1.0297 1.4141 1.3657 0.5003

Group Coloured 0.7915 0.8789 1.1038 1.0910 1.1937 0.9991

Indian 1.1577 1.0452 1.0146 0.8994 0.9056 1.1441

White 1.7049 1.3857 0.8672 0.7207 0.6774 1.7486

Marginal 0.2457 0.5358 1.1031 1.9915 3.4578 Iµ = 0.8552

Table 6.4: Indices for population group and levels of education

Using these indices, one can calculate the odds of an individual of a certain population group and a

certain level of education to be in the high income category. To show the simplicity of the calculation,

consider the odds of an individual from the Black population group with a post graduate level of

education to land in the high income category:

fH,1,5
fL,1,5

= Iµ × IP1 × IE5 × IPE1,5
= 0.8552× 0.5003× 3.4578× 1.3657

= 2.0205.

One can also consider the odds of an individual from the White population group with a post graduate

level of education to land in the high income category:

fH,4,5
fL,4,5

= Iµ × IP4 × IE5 × IPE4,5
= 0.8552× 1.7486× 3.4578× 0.6774

= 3.5027.

From these two odds, one can see that even at a post graduate level, population group still has a

substantial effect on income. The marginal indices also indicate that population group has a significant
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effect on the odds of falling in the high income category. The marginal indices for level of education

indicate an exponential trend in the odds which may indicate a linear trend in the log-odds.

6.3.2 The linear model

The iterative procedure can now be used to further study the effect of level of education on the log-odds

of falling in a high income category for the different population groups. The linear model that will be

used is

A ln(F) = Yγ (6.5)

with Y = (120: Zp : YE : YPE). The submatrices of Y are identical to the submatrices defined in

Section 5.3.2 where a linear model was estimated for the median income levels. Defining QY as the

projection matrix onto the error space of Y, the ML estimate of F can then be attained such that

A ln(F) is in the vector space of Y. The vector of constraints is then

g(F) = QYA ln(F) = 0

with matrix of partial derivatives

GF =
∂g(F)

∂F
= QYAD−1F .

Applying the iterative procedure, the ML estimate of F under g(F) = 0 with a measure of discrepancy

of 0.0012 is attained. From F̂, the parameter estimates can be attained and the linear functions in

Figure 6-3 can be drawn. The red, blue, green and grey line represents the Black, Coloured, Indian and

White population groups respectively.

84

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



­2.0 ­1.5 ­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

­2.5

­2.0

­1.5

­1.0

­0.5

0.0

0.5

1.0

1.5

Level of Education

Log­odds

Figure 6-3: Log-odds of different population groups with level of education as ordinal
variable with linear model

By taking the anti-logarithm as before, the functions can be converted to find the estimated odds

and are given in Table 6.5.

Odds

Population group Black 0.4431(2.1993)xk

Coloured 0.9016(2.2981)xk

Indian 0.9790(1.8543)xk

White 1.4623(1.5192)xk

Table 6.5: Equations to find the estimated odds under different population groups

One will note that the White population group starts off with a higher log-odds but is overtaken

by the Coloured population group as soon as level of education is higher than a bachelors degree. The

Indian population group is also overtaken by the Coloured population group when level of education is

higher than certificate level. The same phenomenon is observed in Table 6.5 where the effect of level

of education is the greatest for the Coloured population group. The Black population group seems to

have the lowest log-odds for all levels of education. Although the effect of level of education is relatively

high in Table 6.5 for the Black population group, the initial value of the estimated odds is just

odds1 = 0.4431(2.1993)−2

= 0.0916.
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6.4 Gender, population group and level of education

Finally, three of the explanatory variables can be combined to fit the logit model. The logit model can

be written as

A ln (f) = Zλ (6.6)

withA = (I40 : −I40) and Z = (1 : ZG : ZP : ZE : ZGP : ZPE : ZGE : ZGPE). The design submatrices

are set up in a similar manner as in the previous sections using Kronecker and direct products as given

in Table 6.6.

Direct Effects First order interactions Second order interactions

ZG = DG ⊗ 12 ⊗ 15 ZGP = ZG � ZP ZGPE = ZGP � ZE

ZP = 12 ⊗DP ⊗ 15 ZPE = ZP � ZE

ZE = 12 ⊗ 14 ⊗DE ZGE = ZG � ZE

Table 6.6: Submatrices for saturated model

The indices can be attained using the saturated model and interpreted to see the effect of the

explanatory variables. Instead of doing so, a linear model will be fitted to the log-odds.

6.4.1 Linear model

A model of the form

A ln(F) = Yγ (6.7)

can be estimated to fit a linear model to the log-odds for different genders and population groups

with level of education acting as an ordinal variable. In this case, one will have the design matrix

Y = (140: ZG : ZP : YE : ZGP : YGE : YPE : YGPE) with the submatrices of Y being identical to the

submatrices defined in Section 5.4.2.

Using the vector of constraints g(F) = QYA ln(F) = 0 with matrix of partial derivatives GF =

QYAD−1f , the ML estimate for F can be found from which the ML for γ is attained. The resultant

linear functions are given in Figures 6-4 and 6-5 where the red, blue, green and grey line represents the

Black, Coloured, Indian and White population groups respectively.
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Figure 6-4: Log-odds for Females: Linear models for different population groups with level
of education as ordinal variable
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Figure 6-5: Log-odds for Males: Linear models for different population groups with level
of education as ordinal variable

For all levels of education, males seem to have a higher log-odds of falling in the high income category.
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One should note that the gradients between the genders with population group being constant do seem

similar but the intercepts are vastly different. This indicates that even with the same level of education,

males are expected to have a higher log-odds of falling in the high income category and the effect of

education on the log-odds is relatively constant over different genders.

6.5 Summary

Chapter 6 focussed on using the logit model to extrapolate more information from the given data. This

was done by transforming the log-odds of falling in the high income category into indices to see what

the effects of the explanatory variables are. Level of education was then used as an ordinal variable to

fit linear models to the log-odds. Different explanatory variables were also used to gain further insights

by fitting separate linear models for different categories of the explanatory variables.

One should note that the results attained in Chapter 6 are vastly different to the results attained

in Chapter 5. A clear example of this is when one compares Figure 6-3 to Figure 5-5. Both analyse the

effect of education on income for different population groups but the inferences that can be made from

the two figures differ. This is caused by the fact that in Chapter 5 the continuous nature of the grouped

response variable is taken into account by first estimating the distributions whereas in Chapter 6 the

grouped response variable is simply coded as a binary response variable an essential information may

be lost.
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Chapter 7

Conclusion

Data with a continuous underlying nature that is recorded in grouped format is often encountered

in data analysis. Although it is a simple and popular method used for data collection, it may limit

the researcher from using techniques such as multivariate regression to analyse the effect of a set of

explanatory variables on a grouped response variable. One may be tempted to ignore the underlying

continuous nature of a grouped response variable but in doing so important information is lost.

This mini-dissertation concentrates on a technique developed by Matthews & Crowther (1995) [10]

and Crafford & Crowther (2009) [6] that allows one to find the Maximum Likelihood (ML) estimate of

the expected value π of a vector p belonging to the exponential family, under a vector of constraints

g(π) = 0. This technique is used in conjunction with the 10% sample of the Census 2011 to analyse

the effect of a set of explanatory variables on the grouped response variable, income.

Chapter 1 initiates the study with an exploratory analysis of the data with Chapter 2 following

by fitting a log-logistic distribution to the frequency distribution of income. If p is the vector of

cumulative relative frequencies of income, then the latter is achieved by defining the vector of constraints

g(π) = glog(π) = 0 in such a way that the expected value π of p under the vector of constraints g(π) = 0

will follow a cumulative log-logistic curve at the grouped response variable’s upper class boundaries x.

When the ML estimate of π is attained, the parameters of the log-logistic distribution can be found.

Chapter 3 repeats the procedure by fitting Normal and Exponential distributions to the frequency

distribution of income.

Chapter 4 and Chapter 5 introduces explanatory variables by firstly cross-tabulating the explanatory

variables with the frequency distribution of the grouped response variable, leading to T so-called cells in

a multifactor design. By defining p as the concatenated vector of cumulative relative frequencies of the

T cells, the vector of constraints defined by g(π) =

(
glog(π)

gmod(π)

)
=

(
0

0

)
is used where glog(π) = 0

forces the estimates of π1,π2, ...,πT to follow cumulative log-logistic curves at the grouped response

variable’s upper class boundaries x, and gmod(π) = 0 acts as a model for the medians to examine the

effect of the explanatory variables. This will lead to the ML estimate of π under the vector of constraints

g(π) = 0 such that

• π̂1, π̂2, ..., π̂T follow cumulative log-logistic curves at the upper class boundaries x, and

• The T medians of the fitted distributions will adhere to a specified model.
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In Chapter 6 the logit model is combined with the iterative procedure where the grouped response

variable is transformed into a binary response variable and the expected odds of falling in the high

income category is modeled under a defined set of constraints.

Future considerations might include developing an algorithm where the vector of upper class bound-

aries is allowed to vary for each cell. Different types of models for the parameters of the fitted distrib-

utions should also be studied and confidence bands to the estimated linear models will also add to the

visual representation of the models.

In conclusion, the technique developed by Matthews & Crowther (1995) [10] and Crafford (2009)

[6] offers a different methodology to the analysis of grouped data where a grouped response variable is

considered and provides the fundamentals from which new research areas can stem off of.
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Chapter 8

Appendix

8.1 Appendix A: Fitting a log-logistic distribution
libname census11 "C:\Users\Jurgens\Desktop\1. Dissertation New\Dr Crafford 19 July 2016\

DATA";

options dquote;

proc freq data=Census11.data_analyse;

tables income / out=f_edit;

*where 12<=p17<=20;

run;

proc iml worksize= 60;

*************************;

* Exponential =’E’ *;

* Normal =’N’ *;

* Log-logistic=’L’ *;

*************************;

filename sw "C:\Jurgens\tex\pgm1.tex";

file sw;

put ’%TCIDATA{LaTeXparent=0,0,master.tex}’;

%macro mac(distr,d);

print "The &distr distribution";

distr="&d";

use f_edit; read all var{count} into f;

use f_edit; read all var{income} into xu;

n=f[+];

k=nrow(f); k1=k-1;

x=xu[1:k1]; print f xu x;

C=J(k1,1,1)@cusum(J(1,k1,1))<=J(1,k1,1)@cusum(J(k1,1,1));

CI=inv(C);

v1=J(k1,1,1);

p=C*f[1:k1]/n;

start X;

if distr=’E’ then XD=-x;

if distr=’N’ then XD=x||(-v1);

if distr=’L’ then XD=log(x)||v1;

finish;

start h;

if distr=’E’ then h=log(v1-p);

if distr=’N’ then h=probit(p);
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if distr=’L’ then h=log(p/(v1-p));

finish;

start D(Dp,p) global(distr,v1);

if distr=’E’ then Dp=inv(diag(p-v1));

if distr=’N’ then Dp=inv(diag(pdf(’normal’,probit(p))));

if distr=’L’ then Dp=inv(diag(p))+inv(diag(v1-p));

finish;

start beta;

if distr=’E’ then beta=1/alpha;

if distr=’N’ then do;

beta[1]=alpha[2]/alpha[1];

beta[2]=1/alpha[1];

end;

if distr=’L’ then beta=alpha;

finish;

start B;

if distr=’E’ then B=-1/(alpha**2);

if distr=’N’ then do;

B[1,1]=-alpha[2]/((alpha[1])**2);

B[1,2]=1/(alpha[1]);

B[2,1]=-1/((alpha[1])**2);

end;

if distr=’L’ then B=I(nrow(alpha));

finish;

start wald;

Wald=g‘*ginv(Gp*V*Gp‘)*g;

GpV=Gp*V;

df=trace(GpV*ginv(GpV‘*GpV)*GpV‘);

finish;

start mu;

if distr=’E’ then mu=beta;

if distr=’N’ then mu=beta[1];

if distr=’L’ then mu=exp(-beta[2]/beta[1])*gamma(1+1/beta[1])*gamma(1-1/beta[1]);

finish;

start sigma;

if distr=’E’ then sigma=beta;

if distr=’N’ then sigma=beta[2];

*if distr=’L’ then sigma=sqrt(exp(-2*beta[2]/beta[1])*

(gamma(1+2/beta[1])*gamma(1-2/beta[1]) - (gamma(1+1/beta[1])*gamma(1-1/beta[1]))**2));

if distr=’L’ then sigma=.;

finish;

run X;

Q=I(k1)-XD*inv(XD‘*XD)*XD‘;

i=0; p0=p; diff1=1;

do while (diff1 > 1e-9);

i=i+1; pi=p; p=p0;

run D(Dpi,pi);

Gpi=Q*Dpi;

V=(C*diag(CI*pi)*C‘-pi*pi‘)/n;

j=0; diff=1;

do while (diff > 1e-9);

j=j+1; pv=p;

run D(Dp,p);

run h;

Gp=Q*Dp;

g=Q*h;

print i j pi p g;

93

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



p=p-(Gpi*V)‘*ginv(Gp*V*Gpi‘)*g;

diff=sqrt((p-pv)‘*(p-pv));

if i=1 & j=1 then run wald;

end;

diff1=sqrt((p-pi)‘*(p-pi));

end;

Cov_pi=V-(Gpi*V)‘*ginv(Gpi*V*Gpi‘)*(Gpi*V);

alpha=inv(XD‘*XD)*XD‘*h;

Cov_alpha=(inv(XD‘*XD)*XD‘*Dpi)*Cov_pi*(inv(XD‘*XD)*XD‘*Dpi)‘;

SE_alpha=sqrt(diag(Cov_alpha)*J(nrow(alpha),1,1));

print alpha Cov_alpha SE_alpha;

beta=J(nrow(alpha),1,0); run beta;

B=J(nrow(alpha),nrow(alpha),0); run B;

Cov_beta=B*Cov_alpha*B‘;

SE_beta=sqrt(diag(Cov_beta)*J(nrow(beta),1,1));

print beta Cov_beta SE_beta;

run mu; run sigma;

print mu sigma;

e=(CI*pi*n)//(n-(CI*pi*n)[+]);

Pearson=(((f-e)##2)/e)[+];

P_pvalue=1-probchi(Pearson,df);

W_pvalue=1-probchi(Wald,df);

discr=wald/n;

print Pearson P_pvalue Wald W_pvalue df discr;

print f e;

p_0_hat = e*(1/n);

print p_0_hat pi;

toets=Q*h; print toets;

class=0//x//30;

width=class[2:k+1]-class[1:k];

fx=e/n/width;

put "The &distr distribution";

put ’ ’;

put ’Pearson: ’ Pearson ’ p-value: ’ P_pvalue ’ Wald: ’ Wald ’ p-value: ’ W_pvalue

’ df: ’ df ’ Discr ’ discr;

put ’\FRAME{dtbpF}{10cm}{6cm}{0pt}{}{}{Plot}’;

put ’{\special{language "Scientific Word";type "MAPLEPLOT";’;

put ’width 15cm;height 8cm;depth 0pt;’;

put ’display "USEDEF";plot_snapshots TRUE;mustRecompute FALSE;lastEngine "MuPAD";’;

put ’xviewmin "0";xviewmax "’(max(class))’";yviewmin "0";yviewmax "’(max(fx))’";viewset

"XY";’;

put ’plotticks 1;num-x-ticks 7;num-y-ticks 6;’;

put ’plottype 4;labeloverrides 3;numpoints 100;plotstyle "patch";’;

put ’axesstyle "normal";xis \TEXUX{x};yis \TEXUX{y};var1name \TEXUX{$x$};var2name

\TEXUX{$y$};’;

put ’function \TEXUX{$\left(’;

put ’\MATRIX{2,’(k*4)’}{c}\VR{,,c,,,}{,,c,,,}{,,,,,}\HR{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}’;

* \MATRIX 20=k*4 en \HR 20 kommas;

do i=1 to k;

put ’\CELL{’(class[i])’}\CELL{0}’;

put ’\CELL{’(class[i])’}\CELL{’(fx[i])’}’;

put ’\CELL{’(class[i+1])’}\CELL{’(fx[i])’}’;

put ’\CELL{’(class[i+1])’}\CELL{0}’;

end;

put ’\right) $};’;

put ’linecolor "blue";linestyle 1;pointstyle "point";linethickness 1;lineAttributes

"Solid";’;

put ’curveColor "[flat::RGB:0x00800000]";curveStyle "Line";discont FALSE;’;
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if distr=’E’ then put "function\TEXUX{$E(x,"(mu)")$};";

else put "function\TEXUX{$&d.(x,"(beta[2])","(beta[1])")$};";

/*put ’function\TEXUX{$l(x,’(beta[1])’,’(beta[2])’)$};’; */

/*put ’function\TEXUX{$p(x,’(beta[1])’,’(beta[2])’)$};’; */

put ’linecolor "red";linestyle 1;pointstyle "point";linethickness 1;lineAttributes

"Solid";’;

put ’var1range "0,50";rangeset"X";num-x-gridlines 700;’;

put ’curveColor "[flat::RGB:0x000000ff]";curveStyle "Line";discont False;’;

put ’}}’;

%mend mac;

%mac (Exponential,E);

*%mac (Normal,N);

*%mac (Log-logistic,L);

closefile sw;

quit;

8.2 Appendix B: Single factor model
libname census11 "C:\Users\Jurgens\Desktop\1. Dissertation New\Dr Crafford 19 July 2016

\DATA";

options pageno=1 nocenter pagesize=500 linesize=200;

%macro mac(response,factor1);

proc freq data=Census11.Data_analyse;

tables &factor1/out=factor1;

tables &response/out=response;

tables &factor1*&response/out=f list;

run;

proc transpose data=f out=freq prefix=c;

by &factor1;

var count;

run;

proc iml worksize=200 symsize=2000;

use freq; read all var _num_ into freq;

use response; read all var{income} into response;

use factor1; read all var _char_ into factor1;

use f;read all var _char_ into names;names=rowcat(names);

effects="Intercept"//factor1;

class="R1600"//"R3200"//"R6400"//"R12800"//"R30000";

n=freq[+];

nfac1=nrow(factor1);

nt=nrow(freq);

print response;

k=nrow(response); k1=k-1; response = response[1:k1]//30;

x=response[1:k1];

nn=freq[,+];

print nn;

f=colvec(freq[,1:k1]); f=f<>0.0001;

C=J(k1,1,1)@cusum(J(1,k1,1))<=J(1,k1,1)@cusum(J(k1,1,1));

CI=inv(C);

v1=J(k1,1,1);

po=inv(diag(nn)@I(k1))*f;

p=(I(nt)@C)*po;

*** Start: Design matrix for log-logistic distributions ***;

XD=log(x)||v1;

XXX=inv(XD‘*XD)*XD‘; XXX1=XXX[1,]; XXX2=XXX[2,];

Px=XD*inv(XD‘*XD)*XD‘;
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Qx=I(k1)-Px;

*** Finish: Design matrix for log-logistic distributions ***;

*** Start: Single-factor model ***;

Y1=designf(cusum(J(nfac1,1,1))); *<=== Factor1: dummy;

*Y1={-2,-1,0,1,2};*<=== Factor1: ordinal;

*Y1={21.5, 28, 35.5, 43, 48, 53, 60.5};*<=== Factor1: linear;

*Y1=Y1||Y1##2;

YD=J(nt,1,1)||Y1; *<=== Only main effects;

Py=YD*inv(YD‘*YD)*YD‘;

Qy=I(nt)-Py;

*** Finish: Single-factor model ***;

start GGG(p,g,GG) global(nt,v1,Qx,XXX,XXX1,XXX2,Qy,h,D,kappa,theta,nu,A,Y12);

h=log(p/((J(nt,1,1)@v1)-p));

D=inv(diag(p))+inv(diag((J(nt,1,1)@v1)-p));

glog=(I(nt)@Qx)*h;

GGlog=(I(nt)@Qx)*D;

kappa=(I(nt)@XXX1)*h;

theta=(I(nt)@XXX2)*h;

nu=exp(-theta/kappa);

A1=nu#(theta/(kappa#kappa));

A2=nu#(-1/kappa);

A=diag(A1)@{1 0} + diag(A2)@{0 1};

greg=Qy*nu;

GGreg=Qy*A*(I(nt)@XXX)*D;

g=glog; *<=== Model 1;

GG=GGlog; *<=== Model 1;

g=glog//greg; *<=== Model 2-4;

GG=GGlog//GGreg; *<=== Model 2-4;

finish;

print p;

i=0; p0=p; diff1=1;

do while (diff1 > 1e-9);

i=i+1; pi=p; p=p0;

pio=(I(nt)@CI)*pi;

Vo=inv(diag(nn)@I(k1))*(diag(pio)- (diag(pio))*(I(nt)@(v1*v1‘))*(diag(pio))‘);

V=(I(nt)@C)*Vo*(I(nt)@C)‘;

run GGG(pi,gpi,GGpi);

j=0; diff=1;

do while (diff > 1e-9);

j=j+1; pv=p;

run GGG(p,gp,GGp);

*print i j p pi gp;

p=p-(GGpi*V)‘*ginv(GGp*V*GGpi‘)*gp;

diff=sqrt((p-pv)‘*(p-pv));

if i=1 & j=1 then do;

Wald=gp‘*ginv(GGp*V*GGp‘)*gp;

GpV=GGp*V;

df=trace(GpV*ginv(GpV‘*GpV)*GpV‘);

end;

end;

diff1=sqrt((p-pi)‘*(p-pi));

end;

print pi;

print XXX XXX1 XXX2;

Cov_pi=V-(GGpi*V)‘*ginv(GGpi*V*GGpi‘)*(GGpi*V);
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Cov_alpha=((I(nt)@XXX)*D)*Cov_pi*((I(nt)@XXX)*D)‘;

*mu=exp(-theta/kappa)#gamma(J(nt,1,1)+1/kappa)#gamma(J(nt,1,1)-1/kappa);

*sigma=sqrt(exp(-2*theta/kappa)

#(gamma(J(nt,1,1)+2/kappa)#gamma(J(nt,1,1)-2/kappa)

-(gamma(J(nt,1,1)+1/kappa)#gamma(J(nt,1,1)-1/kappa))##2));

*mum=shape(mu,nfac1);

*sigmam=shape(sigma,nfac1);

Cov_nu=A*Cov_alpha*A‘;

SE_nu=sqrt(diag(Cov_nu)*J(nrow(nu),1,1));

YYY=inv(YD‘*YD)*YD‘;

gamma=YYY*nu;

Cov_gamma=YYY*Cov_nu*YYY‘;

SE_gamma=sqrt(diag(Cov_gamma)*J(nrow(gamma),1,1));

t_gamma = gamma / SE_gamma;

/*

D1=designf(cusum(J(nfac2,1,1)));

DDD=block(1,1,D1,D1);

delta=DDD*gamma;

Cov_delta=DDD*Cov_gamma*DDD‘;

SE_delta=sqrt(diag(Cov_delta)*J(nrow(delta),1,1));

*print delta SE_delta;

*/

Z1=designf(cusum(J(nfac1,1,1)));

LD=J(nt,1,1)||Z1;

LLL=inv(LD‘*LD)*LD‘;

lambda=LLL*nu;

lambda=choose(abs(lambda)<1e-9,0,lambda);

Cov_lambda=LLL*Cov_nu*LLL‘;

Cov_lambda=choose(abs(Cov_lambda)<1e-9,0,Cov_lambda);

S1=designf(cusum(J(nfac1,1,1)));

S=block(1,S1);

print S;

tau=S*lambda;

Cov_tau=S*Cov_lambda*S‘;

SE_tau=sqrt(diag(Cov_tau)*J(nrow(tau),1,1));

*print tau[rowname=effects] SE_tau;

count=cusum(1//nfac1);

tau0=tau[1:1]; SE_tau0=SE_tau[1:1];

tau1=tau[count[1]+1:count[2]]; SE_tau1=SE_tau[count[1]+1:count[2]];

piom=(shape(pio,nt));

exp1=piom#(repeat(nn,1,k1));

exp2=nn-exp1[,+];

exp=exp1||exp2;

Pearson=(((freq-exp)##2)/exp)[+];

P_pvalue=1-probchi(Pearson,df);

W_pvalue=1-probchi(Wald,df);

discr=wald/n;

print "Grouped response variable: &Response";

print "Single factor model: &Factor1";

print "Number of observations: " n ;

print "Number of cells: " nt;

print "Goodness of fit:" Pearson P_pvalue Wald W_pvalue df discr ;

print ’ ’;

print "Observed frequencies:", freq[rowname=factor1 colname=class] nn;

print "Expected frequencies:", exp[rowname=factor1 colname=class] nn;

print ’ ’;

print "Fitted log-logistic distributions and medians:";
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print nn[rowname=factor1] nu kappa theta ;

print ’ ’;

print "The single-factor model:";

print YD gamma cov_gamma SE_gamma t_gamma;

print ’ ’;

print "Effects for the single-factor model: Intercept";

print tau0;

print ’ ’;

print "Effects for the single-factor model: Main effects";

print "&Factor1", tau1[rowname=factor1];

*** Start: Graph ***;

*response[k]=20;

xl=0//response[1:k1];

xu=response;

width=xu-xl;

start graph;

put ’\FRAME{dtbpF}{4cm}{2cm}{0.5pt}{}{}{Plot}’;

put ’{\special{language "Scientific Word";type "MAPLEPLOT";’;

put ’width 6cm;height 3cm;depth 0.5pt;’;

put ’display "USEDEF";plot_snapshots True;mustRecompute FALSE;lastEngine "MuPAD";’;

put ’xmin "0";xmax "30";xviewmin "0";xviewmax "30";yviewmin "0";yviewmax ".15";’;

put ’viewset"XY";rangeset"X";plottype 4;labeloverrides 3;numpoints 100;plotstyle

"patch";’;

put ’plotticks 1;num-x-ticks 7;num-y-ticks 6;’;

put ’axesstyle "normal";xis \TEXUX{x};yis \TEXUX{y};var1name \TEXUX{$x$};var2name

\TEXUX{$y$};’;

put ’function \TEXUX{$\left(’;

put ’\MATRIX{2,20}{c}\VR{,,c,,,}{,,c,,,}{,,,,,}\HR{,,,,,,,,,,,,,,,,,,,,}’;

do ii=1 to k;

put ’\CELL{’(xl[ii])’}\CELL{0}’;

put ’\CELL{’(xl[ii])’}\CELL{’(pt[ii])’}’;

put ’\CELL{’(xu[ii])’}\CELL{’(pt[ii])’}’;

put ’\CELL{’(xu[ii])’}\CELL{0}’;

end;

put ’\right) $};’;

put ’linecolor "blue";linestyle 1;pointstyle "point";linethickness 1;lineAttributes

"Solid";’;

put ’curveColor "[flat::RGB:0x00800000]";curveStyle "Line";’;

put ’discont FALSE;’;

/*

put ’function\TEXUX{$l(x,’(kappa[i,])’,’(theta[i,])’)$};’;

*/

put ’function\TEXUX{$(x,\frac{e^{’(theta[i,])’}\times ’(kappa[i,])’\times x^

{’(kappa[i,])’-1}}{\left( 1+e^{’(theta[i,])’}x^{’(kappa[i,])’}\right) ^{2}})$};’;

put ’linecolor "blue";linestyle 1;pointstyle "point";linethickness 1;lineAttributes

"Solid";’;

put ’discont FALSE;’;

put ’var1range "0,30";num-x-gridlines 100;’;

put ’curveColor "[flat::RGB:0x000000ff]";curveStyle "Line";’;

put ’}}’;

finish;

filename table "C:\Jurgens\tex\factor1.tex";

file table;

put ’%TCIDATA{LaTeXparent=0,0,master.tex}’;

put ’\renewcommand{\arraystretch}{0.8}’;

put ’\begin{center}’;

put ’\begin{tabular}{||c||c|c|cc|c||}’;

put ’\hline\hline’;

put "\textbf{&Factor1} & \textbf{&Response} & $n$";

put ’ & $ \begin{array}{c} \widehat{\nu} \\ (\widehat{\sigma}_{\widehat{\nu}})
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\end{array} $’ ;

put ’ & $ \left( \begin{array}{c} \widehat{\kappa} \\ \widehat{\theta} \end{array}

\right) $’ ;

put ’ & $ \begin{array}{c} \widehat{\tau}_1 \\ (\widehat{\sigma}_{\widehat{\tau}_1})

\end{array} $ \\’ ;

put ’\hline\hline’;

do i=1 to nfac1;

pt=(freq[i,]‘/width)/nn[i];

pt=choose(pt<1e-6,0,pt);

put ’\textbf{’(factor1[i]) ’} &’;

run graph;

put ’& ’ (nn[i]);

put ’ & $ \begin{array}{c}’ (nu[i])5.3 ’\\ (’ (SE_nu[i])5.3 ’) \end{array} $’ ;

*put ’ & $ \begin{array}{c}’ (kappa[i,])5.3 ’\\ ’ (theta[i,])5.3 ’ \end{array} $’ ;

put ’ & $ \left( \begin{array}{c}’ (kappa[i,])5.3 ’\\ ’ (theta[i,])5.3 ’ \end{array}

\right) $’ ;

put ’ & $ \begin{array}{c}’ (tau1[i])5.3 ’\\ (’ (SE_tau1[i])5.3 ’) \end{array} $ \\’ ;

put ’\hline’;

end;

put ’ $ \begin{array}{c} \widehat{\tau}_0 \\ (\widehat{\sigma}_{\widehat{\tau}_0})

\end{array} $’;

put ’&&’ n ’&&& $ \begin{array}{c}’ (tau0)5.3 ’\\ (’ (SE_tau0)5.3 ’) \end{array}$

\\ ’ ;

put ’\hline\hline’;

put ’\end{tabular}’;

put ’\end{center}’;

closefile table;

*** Finish: Graph ***;

%mend mac;

%mac(Income,Race);

*%mac(Income,Gender);

*%mac(Income,educationgrp);

*%mac(Income,agegrp);

8.3 Appendix C: Two factor model
libname census11 "C:\Users\Jurgens\Desktop\1. Dissertation New\Dr Crafford 19 July 2016

\DATA";

%macro mac(response,factor1,factor2);

proc freq data=Census11.Data_analyse;

tables &factor1/out=factor1;

tables &factor2/out=factor2;

tables &response/out=response;

tables &factor1*&factor2*&response/out=f list;

run;

proc transpose data=f out=freq prefix=c;

by &factor1 &factor2;

var count;

run;

proc iml worksize=200 symsize=2000;

use freq; read all var _num_ into freq;

use response; read all var{income} into response;

use factor1; read all var _char_ into factor1;

use factor2;read all var _char_ into factor2;

print factor1;

print factor2;

use f;read all var _char_ into names;names=rowcat(names);

effects="Intercept"//factor1//factor2;

class="R1600"//"R3200"//"R6400"//"R12800"//"R30000";
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n=freq[+];

nfac1=nrow(factor1);

nfac2=nrow(factor2);

nt=nrow(freq);

print response;

k=nrow(response); k1=k-1; response = response[1:k1]//30;

x=response[1:k1];

nn=freq[,+];

nnm=shape(nn,nfac1);

print nnm;

f=colvec(freq[,1:k1]); f=f<>0.0001;

C=J(k1,1,1)@cusum(J(1,k1,1))<=J(1,k1,1)@cusum(J(k1,1,1));

CI=inv(C);

v1=J(k1,1,1);

po=inv(diag(nn)@I(k1))*f;

p=(I(nt)@C)*po;

*** Start: Design matrix for log-logistic distributions ***;

XD=log(x)||v1;

XXX=inv(XD‘*XD)*XD‘; XXX1=XXX[1,]; XXX2=XXX[2,];

Px=XD*inv(XD‘*XD)*XD‘;

Qx=I(k1)-Px;

*** Finish: Design matrix for log-logistic distributions ***;

*** Start: Single-factor model ***;

/*

Dep1=designf(J(nfac1,1,1)@cusum(J(nfac2,1,1)))[1:nfac2,];

Dep2=Dep1;

if nfac1>2 then do;

do jj=1 to nfac1-2;

Dep2=block(Dep2,Dep1);

end;

end;

Dep=Dep2//(-repeat(Dep1,1,nfac1-1));

*/

Y1=designf(cusum(J(nfac1,1,1))@J(nfac2,1,1));*<=== dummy1;

*Y2=designf(J(nfac1,1,1)@cusum(J(nfac2,1,1))); *<=== dummy2;

*Y1={24.5,34.5,44.5,54.5}@J(nfac2,1,1); *<=== Factor1: linear;

*Y2=J(nfac1,1,1)@{24.5,34.5,44.5,54.5}; *<=== Factor2: linear;

*Y1={-2,-1,0,1,2}@J(nfac2,1,1);*<=== Factor1: ordinal;

Y2=J(nfac1,1,1)@{-2,-1,0,1,2};*<=== Factor2: ordinal;

*Y2=Y2||Y2##2;

Y12 = hdir(Y1,Y2);

*Y1 = Y1||Y2;*<=== independent;

Y1 = Y1||Y2||Y12; *<=== dependent;

YD=J(nt,1,1)||Y1;

Py=YD*inv(YD‘*YD)*YD‘;

Qy=I(nt)-Py;

*** Finish: two-factor model ***;

print YD;

start GGG(p,g,GG) global(nt,v1,Qx,XXX,XXX1,XXX2,Qy,h,D,kappa,theta,nu,A,Y12);

h=log(p/((J(nt,1,1)@v1)-p));

D=inv(diag(p))+inv(diag((J(nt,1,1)@v1)-p));

glog=(I(nt)@Qx)*h;

GGlog=(I(nt)@Qx)*D;

kappa=(I(nt)@XXX1)*h;

theta=(I(nt)@XXX2)*h;
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nu=exp(-theta/kappa);

A1=nu#(theta/(kappa#kappa));

A2=nu#(-1/kappa);

A=diag(A1)@{1 0} + diag(A2)@{0 1};

greg=Qy*nu;

GGreg=Qy*A*(I(nt)@XXX)*D;

g=glog; *<=== Model 1;

GG=GGlog; *<=== Model 1;

g=glog//greg; *<=== Model 2-4;

GG=GGlog//GGreg; *<=== Model 2-4;

finish;

i=0; p0=p; diff1=1;

p0m=shape(p0,nfac1*nfac2);

print p0m[format=5.3];

do while (diff1 > 1e-9);

i=i+1; pi=p; p=p0;

pio=(I(nt)@CI)*pi;

Vo=inv(diag(nn)@I(k1))*(diag(pio)- (diag(pio))*(I(nt)@(v1*v1‘))*(diag(pio))‘);

V=(I(nt)@C)*Vo*(I(nt)@C)‘;

run GGG(pi,gpi,GGpi);

j=0; diff=1;

do while (diff > 1e-9);

j=j+1; pv=p;

run GGG(p,gp,GGp);

*print i j p pi gp;

p=p-(GGpi*V)‘*ginv(GGp*V*GGpi‘)*gp;

diff=sqrt((p-pv)‘*(p-pv));

if i=1 & j=1 then do;

Wald=gp‘*ginv(GGp*V*GGp‘)*gp;

GpV=GGp*V;

df=trace(GpV*ginv(GpV‘*GpV)*GpV‘);

end;

end;

diff1=sqrt((p-pi)‘*(p-pi));

end;

thetam=shape(theta,nfac1);

kappam=shape(kappa,nfac1);

pm=shape(p,nfac1*nfac2);

print pm[format=5.3];

Cov_pi=V-(GGpi*V)‘*ginv(GGpi*V*GGpi‘)*(GGpi*V);

Cov_alpha=((I(nt)@XXX)*D)*Cov_pi*((I(nt)@XXX)*D)‘;

*mu=exp(-theta/kappa)#gamma(J(nt,1,1)+1/kappa)#gamma(J(nt,1,1)-1/kappa);

*sigma=sqrt(exp(-2*theta/kappa)

#(gamma(J(nt,1,1)+2/kappa)#gamma(J(nt,1,1)-2/kappa)

-(gamma(J(nt,1,1)+1/kappa)#gamma(J(nt,1,1)-1/kappa))##2));

*mum=shape(mu,nfac1);

*sigmam=shape(sigma,nfac1);

Cov_nu=A*Cov_alpha*A‘;

SE_nu=sqrt(diag(Cov_nu)*J(nrow(nu),1,1));

num=shape(nu,nfac1); SE_num=shape(SE_nu,nfac1);

YYY=inv(YD‘*YD)*YD‘;

gamma=YYY*nu;

Cov_gamma=YYY*Cov_nu*YYY‘;

SE_gamma=sqrt(diag(Cov_gamma)*J(nrow(gamma),1,1));

t_gamma = gamma / SE_gamma;

/*
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D1=designf(cusum(J(nfac2,1,1)));

DDD=block(1,1,D1,D1);

delta=DDD*gamma;

Cov_delta=DDD*Cov_gamma*DDD‘;

SE_delta=sqrt(diag(Cov_delta)*J(nrow(delta),1,1));

*print delta SE_delta;

*/

Z1=designf(cusum(J(nfac1,1,1))@J(nfac2,1,1))||designf(J(nfac1,1,1)@cusum(J(nfac2,1,1)))

; *<=== independent;

Dep = hdir(designf(cusum(J(nfac1,1,1))@J(nfac2,1,1)),designf(J(nfac1,1,1)

@cusum(J(nfac2,1,1))));

Z1=Z1||Dep;*<=== dependent;

LD=J(nt,1,1)||Z1;

LLL=inv(LD‘*LD)*LD‘;

lambda=LLL*nu;

lambda=choose(abs(lambda)<1e-9,0,lambda);

Cov_lambda=LLL*Cov_nu*LLL‘;

Cov_lambda=choose(abs(Cov_lambda)<1e-9,0,Cov_lambda);

*independent;

S=(1//J(nfac1+nfac2,1,0))||(J(1,nfac1-1,0)//designf(cusum(J(nfac1,1,1)))

//J(nfac2,nfac1-1,0))||(J(nfac1+1,nfac2-1,0)//designf(cusum(J(nfac2,1,1))));

*dependent;

S=block(S,Dep);

tau=S*lambda; *<=== dependent;

*tau=tau//J(nfac1*nfac2,1,0);*<=== independent;

print tau;

Cov_tau=S*Cov_lambda*S‘;

SE_tau=sqrt(vecdiag(Cov_tau));

*print tau[rowname=effects] SE_tau;

count=cusum(1//nfac1//nfac2//(nfac1*nfac2));

tau0=tau[1:1]; SE_tau0=SE_tau[1:1];

tau1=tau[count[1]+1:count[2]]; SE_tau1=SE_tau[count[1]+1:count[2]];

tau2=tau[count[2]+1:count[3]]; SE_tau2=SE_tau[count[2]+1:count[3]];

tau12=tau[count[3]+1:count[4]]; SE_tau12=SE_tau[count[3]+1:count[4]];

tau12m=shape(tau12,nfac1); SE_tau12m=shape(SE_tau12,nfac1);

piom=(shape(pio,nt));

exp1=piom#(repeat(nn,1,k1));

exp2=nn-exp1[,+];

exp=exp1||exp2;

Pearson=(((freq-exp)##2)/exp)[+];

P_pvalue=1-probchi(Pearson,df);

W_pvalue=1-probchi(Wald,df);

discr=wald/n;

name1 = colvec(repeat(factor1,1,nfac2));

name2 = repeat(factor2,nfac1,1);

print "Grouped response variable: &Response";

print "Two factor model: &Factor1 &Factor2";

print "Number of observations: " n ;

print "Number of cells: " nt;

print "Goodness of fit:" Pearson P_pvalue Wald W_pvalue df discr ;

print ’ ’;

print "Observed frequencies:", name1 name2 freq[colname=class] nn;

print "Expected frequencies:", name1 name2 exp nn;

print ’ ’;

print "Fitted log-logistic distributions and medians:";

print name1 name2 nn nu kappa theta ;

print ’ ’;

print "The two factor model:";

print YD gamma SE_gamma t_gamma;

print ’ ’;
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print "Effects for the two factor model: Intercept";

print tau0;

print ’ ’;

print "Effects for the two factor model: Main effects";

print tau1[rowname=(factor1)];

print tau2[rowname=(factor2)];

print "Effects for the two factor model: Interaction effects";

print name1 name2 tau12;

*** Start: Graph ***;

*response[k]=20;

xl=0//response[1:k1];

xu=response;

width=xu-xl;

start graph;

put ’\FRAME{dtbpF}{2.1cm}{2.1cm}{0pt}{}{}{Plot}’;

put ’{\special{language "Scientific Word";type "MAPLEPLOT";’;

if fig=1 then put ’width 2cm;height 2cm;depth 0pt;’;

if fig=2 then put ’width 2cm;height 2cm;depth 0pt;’;

if fig=2 then put ’width 2cm;height 2cm;depth 0pt;’;

if fig=1 then put ’width 2cm;height 2cm;depth 0pt;’;

put ’display "USEDEF";plot_snapshots TRUE;mustRecompute FALSE;lastEngine "MuPAD";’;

put ’xmin "0";xmax "30";xviewmin "0";xviewmax "30";yviewmin "0";yviewmax "0.25";’;

put ’viewset"XY";rangeset"X";plottype 4;labeloverrides 3;numpoints 100;plotstyle

"patch";’;

put ’plotticks 1;plottickdisable TRUE;num-x-ticks 7;num-y-ticks 4;’;

put ’axesstyle "normal";xis \TEXUX{x};yis \TEXUX{y};var1name \TEXUX{$x$};var2name

\TEXUX{$y$};’;

put ’function \TEXUX{$\left(’;

put ’\MATRIX{2,20}{c}\VR{,,c,,,}{,,c,,,}{,,,,,}\HR{,,,,,,,,,,,,,,,,,,,,}’;

do ii=1 to k;

put ’\CELL{’(xl[ii])’}\CELL{0}’;

put ’\CELL{’(xl[ii])’}\CELL{’(pt[ii])’}’;

put ’\CELL{’(xu[ii])’}\CELL{’(pt[ii])’}’;

put ’\CELL{’(xu[ii])’}\CELL{0}’;

end;

put ’\right) $};’;

put ’linecolor "maroon";linestyle 1;pointstyle "point";linethickness 1;lineAttributes

"Solid";’;

put ’curveColor "[flat::RGB:0x00800000]";curveStyle "Line";’;

put ’discont FALSE;’;

/*

put ’function\TEXUX{$l(x,’(kappam[i,j])’,’(thetam[i,j])’)$};’;

*/

put ’function \TEXUX{$(x,\frac{e^{’(thetam[i,j])’}\times ’(kappam[i,j])’\times x^

{’(kappam[i,j])’-1}}{\left( 1+e^{’(thetam[i,j])’}x^{’(kappam[i,j])’}\right) ^{2}})$};’;

put ’linecolor "blue";linestyle 1;pointstyle "point";linethickness 1;lineAttributes

"Solid";’;

put ’discont FALSE;’;

put ’var1range "0,30";num-x-gridlines 100;’;

put ’curveColor "[flat::RGB:0x000000ff]";curveStyle "Line";’;

put ’}}’;

finish;

filename table "C:\Jurgens\tex\factor2.tex";

file table;

put ’%TCIDATA{LaTeXparent=0,0,master.tex}’;
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put ’\renewcommand{\arraystretch}{0.8}’;

put ’ ’;

/*

fig=1;

put "\begin{tabular}{||c||"(rowcat(J(1,nfac2,’c’)))"||}"; print (rowcat(J(1,nfac2,’c’)));

put "\hline \hline";

put "& \multicolumn{"(nfac2)"}{|c||}{\textbf{&factor2}} \\ ";

put "\textbf{&factor1}";

do j=1 to nfac2;

put "& \textbf{" (factor2[j,1]) " } ";

end;

put " \\";

put "\hline \hline ";

do i=1 to nfac1;

put "\textbf{" (factor1[i,1]) "}";

do j=1 to nfac2;

pt=(freq[((i-1)*nfac2 + j),]‘/nnm[i,j])/width;

put "&"; run graph;

end;

put " \\";

do j=1 to nfac2;

put "&";

put ’\begin{tabular}{cc}’;

put ’$\kappa=’ (kappam[i,j])5.3 ’$ & $\widehat{\nu}=’ (num[i,j])5.3 ’$ \\’;

*put ’$\theta=’ (thetam[i,j])5.3 ’$ & $\widehat{s}_{\widehat{\nu}}=’ (SE_num[i,j])5.3 ’ $’;

put ’$\theta=’ (thetam[i,j])5.3 ’$ & $\widehat{s}_{\widehat{\nu}}=’ (nnm[i,j])5.3 ’ $’;

put ’\end{tabular}’;

end;

put " \\";

put "\hline";

end;

put "\hline";

put " \end{tabular}";

put ’ ’;

put ’\renewcommand{\arraystretch}{1}’;

put ’\renewcommand{\arraystretch}{0.8}’;

put ’ ’;

*/

fig=2;

put "\begin{tabular}{||c||"(rowcat(J(1,nfac2,’c’)))"|c||}";

put "\hline \hline";

put "& \multicolumn{"(nfac2)"}{|c|}{\textbf{&factor2}} & $\widehat{\tau}^G$ \\ ";

put "\textbf{&factor1}";

do j=1 to nfac2;

put "& \textbf{" (factor2[j,1]) " } ";

end;

put " & $\widehat{\sigma}_{\widehat{\tau}^G}$ ";

put " \\ \hline \hline ";

do i=1 to nfac1;

put "\textbf{" (factor1[i,1]) "}";

do j=1 to nfac2;

pt=(freq[((i-1)*nfac2 + j),]‘/nnm[i,j])/width;

put "&"; run graph;

end;

put "& \\";

do j=1 to nfac2;

put "&";

put ’\begin{tabular}{c}’;

*put ’$\widehat{\kappa}=’ (kappam[i,j])6.3 ’$ & $\widehat{\theta}=’ (thetam[i,j])

6.3 ’$ \\’;

put ’$\widehat{\nu}=’ (num[i,j])6.3 ’$ \\ $\widehat{\tau }^{GE}=’ (tau12m[i,j])

6.3 ’$’;
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*put ’ $\widehat{\tau }^{AB}=’ (tau12m[i,j])6.3 ’$’;

*put ’$\widehat{\tau }^{AB}=’ (tau12m[i,j])6.3 ’$’;

*put ’$n=’ (nnm[i,j])6.3 ’$’;

*put ’$\nu=’ (num[i,j])6.3 ’$’;

*put ’\\ $\widehat{\sigma}_{\widehat{\tau }^{AB}}=’ (SE_tau12m[i,j])6.3 ’ $’;

put ’\end{tabular}’;

end;

put "& ";

put ’$\begin{array}{c}’;

put (tau1[i])6.3 ;

*put ’\\’ (SE_tau1[i])6.3 ;

put ’\end{array}$ \\’;

put "\hline";

end;

put ’$\begin{array}{c}’;

put ’\widehat{\tau}^E ’;

put ’\\ \widehat{\sigma}_{\widehat{\tau}^E} ’;

put ’\end{array}$ ’;

do j=1 to nfac2;

put "& ";

put ’$\begin{array}{c}’;

put (tau2[j])6.3 ;

*put ’\\’ (SE_tau2[j])6.3 ;

put ’\end{array}$ ’;

end;

put "& " ;

put ’$\begin{array}{c}’;

put (tau0)6.3 ;

put ’\\’ (SE_tau0)6.3 ;

put ’\end{array}$ ’;

put " \\";

put "\hline\hline";

put " \end{tabular}";

put ’ ’;

put ’\renewcommand{\arraystretch}{1}’;

closefile table;

*** Finish: Graph ***;

%mend mac;

*%mac(Income,Gender,Race);

*%mac(Income,educationgrp,Race);

%mac(Income,Gender,educationgrp);

8.4 Appendix D: Three factor model
libname census11 "C:\Users\Jurgens\Desktop\1. Dissertation New\Dr Crafford 19 July 2016

\DATA";

%macro mac(response,factor1,factor2,factor3);

proc freq data=Census11.Data_analyse;

tables &factor1/out=factor1;

tables &factor2/out=factor2;

tables &factor3/out=factor3;

tables &response/out=response;

tables &factor1*&factor2*&factor3*&response/out=f list;

run;

proc transpose data=f out=freq prefix=c;

by &factor1 &factor2 &factor3;

var count;
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run;

proc iml worksize=200 symsize=2000;

use freq; read all var _num_ into freq;

use response; read all var{income} into response;

use factor1; read all var _char_ into factor1;

use factor2;read all var _char_ into factor2;

use factor3;read all var _char_ into factor3;

print factor1;

print factor2;

print factor3;

print freq;

use f;read all var _char_ into names;names=rowcat(names);

effects="Intercept"//factor1//factor2//factor3;

class="R1600"//"R3200"//"R6400"//"R12800"//"R30000";

n=freq[+];

nfac1=nrow(factor1);

nfac2=nrow(factor2);

nfac3=nrow(factor3);

nt=nrow(freq);

k=nrow(response); response[k]=30; print response; k1=k-1;

x=response[1:k1];

nn=freq[,+];

nnm=shape(nn,nfac1);

f=colvec(freq[,1:k1]); f=f<>0.0001;

C=J(k1,1,1)@cusum(J(1,k1,1))<=J(1,k1,1)@cusum(J(k1,1,1));

CI=inv(C);

v1=J(k1,1,1);

po=inv(diag(nn)@I(k1))*f;

p=(I(nt)@C)*po;

*** Start: Design matrix for log-logistic distributions ***;

XD=log(x)||v1;

XXX=inv(XD‘*XD)*XD‘; XXX1=XXX[1,]; XXX2=XXX[2,];

Px=XD*inv(XD‘*XD)*XD‘;

Qx=I(k1)-Px;

*** Finish: Design matrix for log-logistic distributions ***;

*** Start: Single-factor model ***;

/*

Dep1=designf(J(nfac1,1,1)@cusum(J(nfac2,1,1)))[1:nfac2,];

Dep2=Dep1;

if nfac1>2 then do;

do jj=1 to nfac1-2;

Dep2=block(Dep2,Dep1);

end;

end;

Dep=Dep2//(-repeat(Dep1,1,nfac1-1));

*/

Y1=designf(cusum(J(nfac1,1,1))@J(nfac2,1,1)@J(nfac3,1,1));*<=== dummy1;

Y2=designf(J(nfac1,1,1)@cusum(J(nfac2,1,1))@J(nfac3,1,1)); *<=== dummy2;

*Y3=designf(J(nfac1,1,1)@J(nfac2,1,1)@cusum(J(nfac3,1,1))); *<=== dummy3;

Y3=J(nfac1,1,1)@J(nfac2,1,1)@{-2,-1,0,1,2};*<=== Factor3: ordinal;

*Y3=Y3||Y3##2;

Y12=hdir(Y1,Y2);

Y13=hdir(Y1,Y3);

Y23=hdir(Y2,Y3)*0;

Y123=hdir(hdir(Y1,Y2),Y3)*0;

*YD=J(nt,1,1)||Y1||Y2||Y3; *<=== Only main effects;

*YD=J(nt,1,1)||Y1||Y2||Y3||Y12||Y13||Y23; *<=== Main effects with first order

interactions;

*YD=J(nt,1,1)||Y1||Y2||Y12||Y3; *<=== Main effects with first order interactions for
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factor 1,2 and ordinal factor 3;

*YD=J(nt,1,1)||Y1||Y2||Y12||Y3||Y13||Y23||Y123;

YD=J(nt,1,1)||Y1||Y2||Y3||Y12||Y13||Y23||Y123;*<=== Main effects with first and second

order interactions;

YD=J(nt,1,1)||Y1||Y2||Y12||Y3||Y13||Y23||Y123;*<=== Main effects with first and second

order interactions for linear model;

Py=YD*inv(YD‘*YD)*YD‘;

Qy=I(nt)-Py;

*** Finish: Three-factor model ***;

print YD;

start GGG(p,g,GG) global(nt,v1,Qx,XXX,XXX1,XXX2,Qy,h,D,kappa,theta,nu,A,Y12);

h=log(p/((J(nt,1,1)@v1)-p));

D=inv(diag(p))+inv(diag((J(nt,1,1)@v1)-p));

glog=(I(nt)@Qx)*h;

GGlog=(I(nt)@Qx)*D;

kappa=(I(nt)@XXX1)*h;

theta=(I(nt)@XXX2)*h;

nu=exp(-theta/kappa);

A1=nu#(theta/(kappa#kappa));

A2=nu#(-1/kappa);

A=diag(A1)@{1 0} + diag(A2)@{0 1};

greg=Qy*nu;

GGreg=Qy*A*(I(nt)@XXX)*D;

g=glog; *<=== Model 1;

GG=GGlog; *<=== Model 1;

g=glog//greg; *<=== Model 2-4;

GG=GGlog//GGreg; *<=== Model 2-4;

finish;

i=0; p0=p; diff1=1;

do while (diff1 > 1e-9);

i=i+1; pi=p; p=p0;

pio=(I(nt)@CI)*pi;

Vo=inv(diag(nn)@I(k1))*(diag(pio)- (diag(pio))*(I(nt)@(v1*v1‘))*(diag(pio))‘);

V=(I(nt)@C)*Vo*(I(nt)@C)‘;

run GGG(pi,gpi,GGpi);

j=0; diff=1;

do while (diff > 1e-9);

j=j+1; pv=p;

run GGG(p,gp,GGp);

print i j p pi gp;

p=p-(GGpi*V)‘*ginv(GGp*V*GGpi‘)*gp;

diff=sqrt((p-pv)‘*(p-pv));

if i=1 & j=1 then do;

Wald=gp‘*ginv(GGp*V*GGp‘)*gp;

GpV=GGp*V;

df=trace(GpV*ginv(GpV‘*GpV)*GpV‘);

end;

end;

diff1=sqrt((p-pi)‘*(p-pi));

end;

Cov_pi=V-(GGpi*V)‘*ginv(GGpi*V*GGpi‘)*(GGpi*V);

Cov_alpha=((I(nt)@XXX)*D)*Cov_pi*((I(nt)@XXX)*D)‘;

*mu=exp(-theta/kappa)#gamma(J(nt,1,1)+1/kappa)#gamma(J(nt,1,1)-1/kappa);

*sigma=sqrt(exp(-2*theta/kappa)

#(gamma(J(nt,1,1)+2/kappa)#gamma(J(nt,1,1)-2/kappa)

-(gamma(J(nt,1,1)+1/kappa)#gamma(J(nt,1,1)-1/kappa))##2));
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*mum=shape(mu,nfac1);

*sigmam=shape(sigma,nfac1);

Cov_nu=A*Cov_alpha*A‘;

SE_nu=sqrt(diag(Cov_nu)*J(nrow(nu),1,1));

num=shape(nu,nfac1); SE_num=shape(SE_nu,nfac1);

YYY=inv(YD‘*YD)*YD‘;

gamma=YYY*nu;

Cov_gamma=YYY*Cov_nu*YYY‘;

SE_gamma=sqrt(diag(Cov_gamma)*J(nrow(gamma),1,1));

t_gamma = gamma / SE_gamma;

Z1=designf(cusum(J(nfac1,1,1))@J(nfac2,1,1)@J(nfac3,1,1));

Z2=designf(J(nfac1,1,1)@cusum(J(nfac2,1,1))@J(nfac3,1,1));

Z3=designf(J(nfac1,1,1)@J(nfac2,1,1)@cusum(J(nfac3,1,1)));

Z12=hdir(Z1,Z2);

Z13=hdir(Z1,Z3);

Z23=hdir(Z2,Z3);

Z123=hdir(hdir(Z1,Z2),Z3);

LD=J(nt,1,1)||Z1||Z2||Z3||Z12||Z13||Z23||Z123;;

LLL=inv(LD‘*LD)*LD‘;

lambda=LLL*nu;

lambda=choose(abs(lambda)<1e-9,0,lambda);

Cov_lambda=LLL*Cov_nu*LLL‘;

Cov_lambda=choose(abs(Cov_lambda)<1e-9,0,Cov_lambda);

S1=designf(cusum(J(nfac1,1,1)));

S2=designf(cusum(J(nfac2,1,1)));

S3=designf(cusum(J(nfac3,1,1)));

S12=S1@S2;

S13=S1@S3;

S23=S2@S3;

S123=S1@S2@S3;

S=block(1,S1,S2,S3,S12,S13,S23,S123);

tau=S*lambda;

Cov_tau=S*Cov_lambda*S‘;

SE_tau=sqrt(diag(Cov_tau)*J(nrow(tau),1,1));

*print tau[rowname=effects] SE_tau;

count=cusum(1//nfac1//nfac2//nfac3//(nfac1*nfac2)//(nfac1*nfac3)//(nfac2*nfac3)

//(nfac1*nfac2*nfac3));

tau0=tau[1:1]; SE_tau0=SE_tau[1:1];

tau1=tau[count[1]+1:count[2]]; SE_tau1=SE_tau[count[1]+1:count[2]];

tau2=tau[count[2]+1:count[3]]; SE_tau2=SE_tau[count[2]+1:count[3]];

tau3=tau[count[3]+1:count[4]]; SE_tau3=SE_tau[count[3]+1:count[4]];

tau12=tau[count[4]+1:count[5]]; SE_tau12=SE_tau[count[4]+1:count[5]];

tau13=tau[count[5]+1:count[6]]; SE_tau13=SE_tau[count[5]+1:count[6]];

tau23=tau[count[6]+1:count[7]]; SE_tau23=SE_tau[count[6]+1:count[7]];

tau123=tau[count[7]+1:count[8]]; SE_tau123=SE_tau[count[7]+1:count[8]];

tau12m=shape(tau12,nfac1); SE_tau12m=shape(SE_tau12,nfac1);

tau13m=shape(tau13,nfac1); SE_tau13m=shape(SE_tau13,nfac1);

tau23m=shape(tau23,nfac2); SE_tau23m=shape(SE_tau23,nfac2);

tau123t=shape(tau123,nfac1)‘;

nut=shape(nu,nfac1)‘;

kappat=shape(kappa,nfac1)‘;

thetat=shape(theta,nfac1)‘;

piom=(shape(pio,nt));

exp1=piom#(repeat(nn,1,k1));

exp2=nn-exp1[,+];

exp=exp1||exp2;

Pearson=(((freq-exp)##2)/exp)[+];
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P_pvalue=1-probchi(Pearson,df);

W_pvalue=1-probchi(Wald,df);

discr=wald/n;

name1 = colvec(repeat(factor1,1,nfac2*nfac3));

name2 = repeat(colvec(repeat(factor2,1,nfac3)),nfac1,1);

name3 = repeat(factor3,nfac1*nfac2,1);

print name1 name2 name3;

print "Grouped response variable: &Response";

print "Three factor model: &Factor1 &Factor2 &Factor3";

print "Number of observations: " n ;

print "Number of cells: " nt;

print "Goodness of fit:" Pearson P_pvalue Wald W_pvalue df discr ;

print ’ ’;

print "Observed frequencies:", name1 name2 name3 freq[colname=class] nn;

print "Expected frequencies:", name1 name2 name3 exp nn;

print ’ ’;

print "Fitted log-logistic distributions and medians:";

print name1 name2 name3 nn nu kappa theta ;

print ’ ’;

print "The three factor model:";

print YD gamma SE_gamma t_gamma;

print ’ ’;

print "Effects for the three factor model: Intercept";

print tau0;

print ’ ’;

print "Effects for the three factor model: Main effects";

print tau1[rowname=(factor1)];

print tau2[rowname=(factor2)];

print tau3[rowname=(factor3)];

print "Effects for the three factor model: First order interaction effects";

print name1 name2 tau12;

print name1 name3 tau13;

print name2 name3 tau23;

print "Effects for the three factor model: Second order interaction effects";

print name1 name2 name3 tau123;

*** Start: Graph ***;

*response[k]=20;

xl=0//response[1:k1];

xu=response;

width=xu-xl;

start graph;

put ’\FRAME{dtbpF}{3cm}{2cm}{1pt}{}{}{Plot}’;

put ’{\special{language "Scientific Word";type "MAPLEPLOT";’;

put ’width 3.0cm;height 2.0cm;depth 1pt;’;

put ’display "USEDEF";plot_snapshots TRUE;mustRecompute FALSE;lastEngine "MuPAD";’;

put ’xmin "0";xmax "30";xviewmin "0";xviewmax "30";yviewmin "0";yviewmax "0.3";’;

put ’viewset"XY";rangeset"X";plottype 4;labeloverrides 3;numpoints 100;plotstyle

"patch";’;

put ’plotticks 1;plottickdisable TRUE;num-x-ticks 7;num-y-ticks 6;’;

put ’axesstyle "normal";xis \TEXUX{x};yis \TEXUX{y};var1name \TEXUX{$x$};var2name

\TEXUX{$y$};’;

put ’function \TEXUX{$\left(’;

put ’\MATRIX{2,20}{c}\VR{,,c,,,}{,,c,,,}{,,,,,}\HR{,,,,,,,,,,,,,,,,,,,,}’;

do ii=1 to k;

put ’\CELL{’(xl[ii])’}\CELL{0}’;

put ’\CELL{’(xl[ii])’}\CELL{’(pt[ii])’}’;

put ’\CELL{’(xu[ii])’}\CELL{’(pt[ii])’}’;

put ’\CELL{’(xu[ii])’}\CELL{0}’;

end;

put ’\right) $};’;

put ’linecolor "maroon";linestyle 1;pointstyle "point";linethickness 1;lineAttributes
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"Solid";’;

put ’curveColor "[flat::RGB:0x00800000]";curveStyle "Line";’;

put ’discont FALSE;’;

put ’function \TEXUX{$(x,\frac{e^{’(theta[tel,])’}\times ’(kappa[tel,])’\times x^

{’(kappa[tel,])’-1}}{\left( 1+e^{’(theta[tel,])’}x^{’(kappa[tel,])’}\right) ^{2}})$};’;

put ’linecolor "black";linestyle 1;pointstyle "point";linethickness 1;lineAttributes

"Solid";’;

put ’discont FALSE;’;

put ’var1range "0,30.00";num-x-gridlines 100;’;

put ’curveColor "[flat::RGB:0x000000ff]";curveStyle "Line";’;

put ’}}’;

finish;

filename table "C:\Jurgens\tex\factor3.tex";

file table;

put ’%TCIDATA{LaTeXparent=0,0,master.tex}’;

*put ’\renewcommand{\arraystretch}{0.8}’;

tel=0;

do l=1 to nfac1;

put "\newpage";

*put "{\textbf{\large &Factor1: " (Factor1[l]) " (&Factor2*&Factor3)}";

put "\begin{tabular}{||c||"(rowcat(J(1,nfac3,’c’)))"||}";

put "\hline \hline";

put "& \multicolumn{" nfac3 "}{|c||}{\textbf{&factor3}} \\ ";

put "\textbf{&factor2}";

do j=1 to nfac3;

put "& \textbf{" (factor3[j,1]) " } ";

end;

put " \\";

put "\hline \hline ";

do i=1 to nfac2;

put "\textbf{" (factor2[i,1]) "}";

do j=1 to nfac3;

tel=tel+1;

pt=(freq[tel,]‘/nn[tel,])/width;

put "&"; run graph;

end;

put " \\";

tel=tel-nfac3;

do j=1 to nfac3;

tel=tel+1;

put "&";

put ’\begin{tabular}{cc}’;

put ’$\widehat{\nu}=’ (nu[tel,])5.3 ’$’;

/*

put ’$\kappa=’ (kappa[tel,])5.3 ’$ & $\widehat{\nu}=’ (nu[tel,])5.3 ’$ \\’;

put ’$\theta=’ (theta[tel,])5.3 ’$ & $\widehat{s}_{\widehat{\nu}}=’ (SE_nu[tel,])

5.3 ’ $’;

*/

put ’\end{tabular}’;

end;

put " \\";

put "\hline";

end;

put "\hline";

put " \end{tabular}";

put ’ ’;

end;

closefile table;

*** Finish: Graph ***;

create data_gamma from gamma;

append from gamma;
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D1=designf(cusum(J(nfac1,1,1))@J(nfac2,1,1));*<=== dummy1;

D2=designf(J(nfac1,1,1)@cusum(J(nfac2,1,1))); *<=== dummy2;

D3=hdir(D1,D2); *<=== dummy3;

D=J(nfac1*nfac2,1,1)||D1||D2||D3;

D = block(D,D);

print D;

gamma_test = D*gamma;

print gamma_test;

%mend mac;

*%mac(Income,Gender);

*%mac(Income,Race);

*%mac(Income,educationgrp);

%mac(Income,Gender,race,educationgrp);

quit;

8.5 Appendix E: Logit model with one explanatory variable
libname census11 "C:\Users\Jurgens\Desktop\1. Dissertation New\Dr Crafford 19 July 2016

\DATA";

proc freq data=census11.data_focus;

tables incomegrp*educationgrp/out=f list;;

run;

proc iml;

age = 0;

education = 1;

linear = 1;

quadratic = 0;

use f;

read all into f1;

f = f1[,1];

n = f[+];

k = nrow(f)/2;

print k;

C = I(k) || -I(k);

print C;

logitf = C*log(f);

print logitf;

A1 = designf(do(1,k,1)‘);

A = J(k,1,1) || (A1);

print A;

lambda=inv(A‘*A)*A‘*logitf;

lambda_l = -lambda[2:nrow(lambda)][+];

lambda = lambda//lambda_l;

print lambda;

indices = exp(lambda);

print indices;

log_odds = log(J(k,1,indices[1])#indices[2:k+1]);

print log_odds;

D_f = diag(f);

D_1_f = inv(D_f);

print D_f D_1_f;

cov_lambda = inv(A‘*A)*A‘*C*D_1_f*(D_f-1/n*f*f‘)*D_1_f*C‘*A*inv(A‘*A);

print cov_lambda;

AH = A1;

if education = 1 then do;

if linear = 1 then do;

XD = J(k,1,1) || do(-2,2,1)‘;
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end;

if quadratic = 1 then do;

XD = J(k,1,1) || do(-2,2,1)‘||do(-2,2,1)‘##2;

end;

AH = I(k) - XD*inv(XD‘*XD)*XD‘;

end;

if age = 1 then do;

midpoints = {21.5, 28, 35.5, 43, 48, 53, 60.5};

if linear = 1 then do;

XD = J(k,1,1) || midpoints;

end;

if quadratic = 1 then do;

XD = J(k,1,1) || midpoints || midpoints##2;

end;

AH = I(k) - XD*inv(XD‘*XD)*XD‘;

end;

print AH;

gf=AH‘*logitf;

print gf;

Wald=gf‘*ginv(AH‘*C*diag(1/f)*C‘*AH)*gf;

Prob=1-probchi(wald,ncol(AH));

MoD = Wald/n;

print Wald prob MoD;

do i=1 to 10;

f=f-C‘*AH*ginv(AH‘*C*diag(1/f)*C‘*AH)*AH‘*C*log(f);

ft=f‘;

print i ft[format=8.4];

end;

logitfh = C*log(f);

lambdah = inv(A‘*A)*A‘*logitfh;

indh = exp(lambdah);

print lambdah indh;

if linear = 1 | quadratic = 1 then do;

betah = inv(XD‘*XD)*XD‘*logitfh;

print betah;

end;

quit;

8.6 Appendix F: Logit model with two explanatory variables
libname census11 "C:\Users\Jurgens\Desktop\1. Dissertation New\Dr Crafford 19 July 2016

\DATA";

run;

proc freq data=census11.data_focus;

tables incomegrp*race*educationgrp/out=f list;

tables race/out=factor1;

tables educationgrp/out=factor2;

run;

proc iml;

age = 0;

education = 1;

linear = 1;

quadratic = 0;

independent = 1;
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use f;

read all into f1;

f = f1[,1];

n = f[+];

use factor1; read all var _char_ into factor1;

use factor2; read all var _char_ into factor2;

print factor1 factor2;

nfac1 = nrow(factor1);

nfac2 = nrow(factor2);

k = nrow(f)/2;

print k;

C = I(k) || -I(k);

logitf = C*log(f);

A1 = designf(cusum(J(nfac1,1,1))@J(nfac2,1,1));

A2 = designf(J(nfac1,1,1)@cusum(J(nfac2,1,1)));

A12 = hdir(A1,A2);

A = J(k,1,1) || A1||A2||A12;

print A;

lambda=inv(A‘*A)*A‘*logitf;

indices = exp(lambda);

print lambda indices;

AH = A12;

if education = 1 then do;

steps = {-2,-1,0,1,2};

if linear = 1 then do;

A2 = J(nfac1,1,1)@steps;

end;

if quadratic = 1 then do;

A2 = J(nfac1,1,1)@steps||J(nfac1,1,1)@steps##2;

end;

A12 = hdir(A1,A2);

if independent = 1 then do;

XD = J(k,1,1)||A1||A2;

end;

if independent = 0 then do;

XD = J(k,1,1)||A1||A2||A12;

end;

PX = XD*inv(XD‘*XD)*XD‘;

QX = I(k) - PX;

AH = QX;

end;

if age = 1 then do;

steps = {21.5, 28, 35.5, 43, 48, 53, 60.5};

if linear = 1 then do;

A2 = J(nfac1,1,1)@steps;

end;

if quadratic = 1 then do;

A2 = J(nfac1,1,1)@steps||J(nfac1,1,1)@steps##2;

end;

A12 = hdir(A1,A2);

if independent = 1 then do;

XD = J(k,1,1)||A1||A2;

end;

if independent = 0 then do;

XD = J(k,1,1)||A1||A2||A12;

end;

PX = XD*inv(XD‘*XD)*XD‘;
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QX = I(k) - PX;

AH = QX;

end;

print XD;

print AH;

gf=AH‘*logitf;

print gf;

Wald=gf‘*ginv(AH‘*C*diag(1/f)*C‘*AH)*gf;

Prob=1-probchi(wald,ncol(AH));

MoD = Wald/n;

print Wald prob MoD;

do i=1 to 10;

f=f-C‘*AH*ginv(AH‘*C*diag(1/f)*C‘*AH)*AH‘*C*log(f);

ft=f‘;

print i ft[format=8.4];

end;

logitfh = C*log(f);

lambdah = inv(A‘*A)*A‘*logitfh;

indh = exp(lambdah);

print lambdah indh;

if linear = 1 | quadratic = 1 then do;

betah = inv(XD‘*XD)*XD‘*logitfh;

print betah;

end;

quit;

8.7 Appendix G: Logit model with three explanatory vari-

ables
libname census11 "C:\Users\Jurgens\Desktop\1. Dissertation New\Dr Crafford 19 July 2016

\DATA";

run;

proc freq data=census11.data_focus;

tables incomegrp*gender*race*educationgrp/out=f list;

tables gender/out=factor1;

tables race/out=factor2;

tables educationgrp/out=factor3;

run;

proc iml;

error = 10##(-6);

print error;

education = 1;

independent = 0;

use f;

read all into f1;

f = f1[,1];

n = f[+];

use factor1; read all var _char_ into factor1;

use factor2; read all var _char_ into factor2;

use factor3; read all var _char_ into factor3;

print factor1 factor2 factor3;
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nfac1 = nrow(factor1);

nfac2 = nrow(factor2);

nfac3 = nrow(factor3);

k = nrow(f)/2;

print k;

C = I(k) || -I(k);

logitf = C*log(f);

steps = {-2,-1,0,1,2};

A1 = designf(cusum(J(nfac1,1,1)))@J(nfac2,1,1)@J(nfac3,1,1);

A2 = J(nfac1,1,1)@designf(cusum(J(nfac2,1,1)))@J(nfac3,1,1);

A3 = J(nfac1,1,1)@J(nfac2,1,1)@designf(cusum(J(nfac3,1,1)));

A12 = hdir(A1,A2);

A13 = hdir(A1,A3);

A23 = hdir(A2,A3);

A123 = hdir(hdir(A1,A2),A3);

A = J(k,1,1) || A1 || A2 || A3 || A12 || A13 || A23 || A123;

print A;

lambda=inv(A‘*A)*A‘*logitf;

indices = exp(lambda);

print lambda indices;

AH = A12 || A13 || A23 || A123;

if education = 1 then do;

A3 = J(nfac1,1,1)@J(nfac2,1,1)@steps;

A13 = hdir(A1,A3);

A23 = hdir(A2,A3);

A123 = hdir(hdir(A1,A2),A3);

if independent = 1 then do;

XD = J(k,1,1) || A1 || A2 || A3;

end;

if independent = 0 then do;

XD = J(k,1,1) || A1 || A2 || A12 || A3 || A13 || A23 || A123;

end;

PX = XD*inv(XD‘*XD)*XD‘;

QX = I(k) - PX;

AH = QX;

end;

print AH;

gf=AH‘*logitf;

print gf;

Wald=gf‘*ginv(AH‘*C*diag(1/f)*C‘*AH)*gf;

Prob=1-probchi(wald,ncol(AH));

MoD = Wald/n;

print Wald prob MoD;

do i=1 to 10;

f=f-C‘*AH*ginv(AH‘*C*diag(1/f)*C‘*AH)*AH‘*C*log(f);

if i > 1 then do;

test = abs(ft - f‘)[+];

print i test;

if test < error then i = 999;

end;

ft=f‘;

end;

print test;
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logitfh = C*log(f);

lambdah = inv(A‘*A)*A‘*logitfh;

indh = exp(lambdah);

print lambdah indh;

beta = inv(XD‘*XD)*XD‘*logitfh;

print beta;

D1=designf(cusum(J(nfac1,1,1))@J(nfac2,1,1));*<=== dummy1;

D2=designf(J(nfac1,1,1)@cusum(J(nfac2,1,1))); *<=== dummy2;

D3=hdir(D1,D2); *<=== dummy3;

D=J(nfac1*nfac2,1,1)||D1||D2||D3;

D = block(D,D);

print D;

beta_test = D*beta;

print beta_test;

quit;
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