
Towards a generic DSL for automated marking
systems

Fritz Solms and Vreda Pieterse

Department of Computer Science, University of Pretoria, South Africa

Abstract. The automated static and dynamic assessment of programs
makes it practical to increase the learning opportunities of large student
classes through the regular assessment of programming assignments. Au-
tomatic assessments are traditionally specified in tool-specific languages
which are closely linked to the functionality and implementation of a
particular tool. This paper considers existing specification languages for
assessments and proposes a generic and extensible domain-specific lan-
guage for the specification of programming assignment assessments.

1 Introduction

In undergraduate programming courses it is particularly important to request
students to regularly complete programming assignments so that they can be
graded and be given meaningful feedback. At institutions such as the Univer-
sity of Pretoria, many of these undergraduate courses have many hundreds of
students and manual assessment by teaching assistants is resource intensive,
time-consuming, tedious and bound to be inconsistent. Consequently there has
been a quest to develop automated grading systems and to evolve them so as to
provide more meaningful assessments and improved feedback to students [1, 16,
14, 15].

The computer science department at the University of Pretoria uses an in-
house developed automatic marking system, Fitchfork, to mark C and C++
programming assignments for first-year computer science students [14]. The in-
structor specifies a set of test cases beforehand. Students then upload their source
code and any supporting artefacts onto a Linux server where the source is un-
packed into a sandbox where it is compiled and executed. The output of a stu-
dents’ program is matched against the expected output for each given test case.

One critical aspect of such systems is the assessment specification which
the instructors must develop. The specification includes information on how the
programming assignment will be processed (e.g. compiled and executed), how it
will be assessed, how marks are aggregated and the feedback that will be given
to the students. It is vital that the specification of such assessment should be
intuitive, efficient and not prone to errors.

It has been found that informally specified languages tend to become exces-
sively complex and error prone as systems evolve so as to perform more complex
assessments [17]. For this reason, researchers have been exploring the possibility



of developing more robust specification languages for assessments, which can be
formally verified and for which one can easily develop supporting tools.

Domain-specific languages (DSLs) are commonly introduced to provide sim-
ple, consistent domain-centric languages which are easy to use and easy to pro-
cess [8]. The availability of DSL work-benches [9] simplifies the task of developing
and verifying a domain-specific language and of enriching the language with tools
such as language-aware editors, and transformation tools.

We are currently developing an assessment-specification language (ASL) for
the specification of a generic and extensible assessment process. What differen-
tiates our language from the languages developed for other tools is (a) a semi-
formal specification of the semantics using a metamodel. This model can be
transformed into an ontology for verifying language qualities. Other features are
(b) the ability to support different textual and diagrammatic concrete syntaxes;
(c) extensive tool support for generating syntax-aware textual and diagrammatic
editors, model validation, model transformation and code generation, and (d) the
language is tool-independent so that its scope is constrained to the specification
of what is required to be done, not how a particular tool would perform the
assessment. The final feature is (e) one can write an adapter layer which ag-
gregates the assessment across different assessment tools, i.e. by transforming
aspects of an assessment specification which can be handled by a particular tool
to the specification that can be processed by that tool.

In principle, the use of such an ASL will enable memoranda which were
specified for one tool to transported to another tool, contributing to simplifying
the sharing of assessments across platforms and tools.

Section 2 discusses a few existing automatic assessment systems in terms of
their contribution to the types of assessments that should be specifiable using the
ASL we propose in this paper. We also refer to other authors who have proposed
DSLs similar to the ASL we propose. Section 3 lists the objects that may be
used by an automatic assessment tool — these constitute the semantic scope
for the proposed ASL. We also discuss its quality requirements. In Section 4
we describe how we developed our ASL. We justify the tools we used, show the
abstract syntax we developed using a UML class diagram and discuss our design
decisions. Methods to transform this abstract syntax to concrete syntaxes are
briefly mentioned. In the final two sections, we summarise what we have achieved,
highlight the benefits of having our ASL and discuss future work to improve this
ASL and promote its use.

2 Related work

Wilcox provides a survey of the testing strategies used to grade programming
assignments [19]. He discusses (a) textual output comparison, (b) output analysis
which performs further processing of the output to, for example, assess whether
the output is internally consistent, (c) stream control which is used to interleave
input and output in order to drive a particular program flow, (d) testing against
an API in a way similar to unit testing, (e) source code analysis, (f) issue detec-



tion used to observe the issues encountered during the assessment process and
the occurrence of compilation or execution issues (e.g. no-termination).

A tool for automatically analysing and assessing the programming style of
C++ programs was implemented by Ala-Mutka et al. [3]. They claim that its
use improved the quality of their coursework and that students learned to pay
better attention to their coding practices. Ponẑenel et al. [15] acknowledge that
the addition of white-box testing (i.e. structural evaluation) to the predominant
black-box testing (i.e. functional testing) applied by most systems is essential for
the pedagogically sound and fair evaluation of student programs. For example,
the AutoLEP system [18] combines static analysis with dynamic testing when
evaluating student programs. Static analysis includes syntactic and structural
checking. Similarly, eGrader [2] uses JUnit for dynamic analysis and a static
evaluation based on a graph representation of the program.

Fonte et al. [7] illustrate the need to allow the identification of partially
correct programs with semantic errors. Fitchfork [14] achieves this by comparing
the output of a program with the known output that a program would produce
if it contained an anticipated semantic error. The detection of such expected
wrong output enables us to give the student feedback about the semantic error
in the program.

Lately there has been a move toward developing DSLs to describe assessments
[17, 7]. Fonte et al. [7] propose a DSL they call OSSL which supports the semantic
specification of expected program output. They use extension modules to specify
the integration between the Oto grading system and external tools such as a
compiler, and JUnit. Insa and Silva [12] developed an assessment Java library
with abstraction methods for verifying the properties of code and a DSL built
on top of it for assessment templates.

The manual specification of assessments for automatic assessment tools is
likely to be tedious. The specification can be simplified when using an ASL.
The reduced complexity will probably contribute to improving the quality of the
assignments that are specified in this manner.

3 Requirements for the proposed DSL

This section discusses the requirements of the generic ASL we intend to specify.
Firstly, we identify the semantic scope of the ASL in terms of the essential
elements one should be able to specify when using the proposed ASL. We then
discuss the critical quality requirements for the ASL.

3.1 Semantic scope

The ASL needs to be an open language whose scope can be extended with add-
on modules. The language core should contain the essential elements needed by
all assessment tools. We have identified that such core should include: (a) the
specification of process steps and the dependencies between process steps, (b) the
concept of an assessment which can be extended with specific assessment types,



(c) the basic infrastructure for specifying mark allocation and aggregation and
(d) the infrastructure to identify error scenarios in the assessed code in order to
give the students insightful feedback on ways of improving their programs.

Many existing assessment tools assess the output of program execution. To
accommodate these, we decided that this type of assessment should be included
in the core language specification. Therefore the ASL should have means to
specify simple text output assessments which can be used to assess the output
of a program’s execution. This type of assessment can be employed to assess the
output of other kinds of processing steps, for example the compilation process. It
can even be utilised to perform a static assessment of the code by assessing the
output of a file search evaluating the presence of some constructs in the code.

3.2 Quality requirements for the ASL

The ASL can only be expected to be widely adopted if it meets standard usability
requirements such as learnability, efficiency, effectiveness, reliability and satis-
faction. Dumas and Reddish [6] emphasise that the people who use a product
should be able to accomplish their tasks quickly and easily. These must accom-
modate users who may have different levels of technical skills varying language
backgrounds. It is important for users to be able to extend the language in
order to specify more specialised processing, assessment and mark aggregation
requirements. Assessment specifications must be verifiable against the semantic
rules of the language. The ASL should be portable across platforms (e.g. oper-
ating systems) as well as across assessment systems. It is expected that one can
transform the subset of an assessment to a tool-specific assessment specification
for a tool which can be used for that aspect of the assessment. The language
must be published as an open public standard so that it is accessible and usable
by different assessment tool developers and the users of these tools.

4 The domain-specific language

Domain-specific languages can be developed in a variety of technologies. One of
the options is that of using the technology support specified by OMG’s Model-
Driven Architecture standard. The advantages of using these standards are that
(a) the standard is reasonably mature and it evolves in a controlled way, (b) there
are multiple concrete tool implementations for the standard and (c) there are
extensive auxiliary tools such as transformation tools and tools for generating
language editors [9].

In particular, we separated the abstract syntax (introducing the semantics)
from the concrete syntax (used by instructors to specify assessments). This sep-
aration facilitates (a) concrete syntax-independent verification of a specification
against the semantics of the language, (b) the development of different concrete
syntaxes for users with different levels of technical skills and different home lan-
guages and (c) the transformation of an assessment specified in any of the con-
crete syntaxes to an abstract representation which is independent of the concrete



syntax used, hence allowing the uniform processing of assessment specifications
across different concrete syntaxes.

4.1 Abstract syntax

Here we introduce the ASL. It is specified using Ecore which is an implementa-
tion of EMOF provided by the Eclipse foundation [9].

Fig. 1. The abstract syntax of the DSL for programming assessments.

Figure 1 shows a diagram of the abstract syntax of the core language. The
language allows for the specification of a process of multiple processing steps.
The order in which the steps are to be executed is specified only indirectly
through the dependencies between steps. This simplifies the specification of as-
sessment processes, makes them more maintainable and allows for the concurrent
execution of steps which do not have dependencies on one another.

Each processing step optionally specifies a command which is executed as
well as zero or more assessments. The commands for example may be to extract
an archive, compile the source code, execute the program with specified test data
sets, or to execute a unit test. The resources (memory, time/CPU, networking,
...) which a command can consume may be constrained via one or more resource
constraints.



The central concept of the language is the abstract concept of an assessment.
Assessments can be recursively aggregated into aggregate assessments using dif-
ferent ways to aggregate the marks of the assessment components by selecting
appropriate mark aggregators. The language is extensible, allowing additional
assessors to be specified in extension modules. Figure 1 illustrates how a JUnit
extension module is added to the language.

The core language includes the specification of TextOutputAssessors. It is
crucial for students to receive insightful feedback on the errors they make. For
this reason, TextOutputAssessors allow for the assessment of different output
scenarios resembling several variations of correct, partially correct and incorrect
solutions, each with their own mark and their own feedback message. Scenar-
ios are identified by matching the output text selection to a particular output
pattern. The feedback message associated with a scenario is meant to give the
students insights into solution deficiencies and improvement options. To further
enrich the assessment, the language allows for multiple scenarios to contribute
toward the mark for the assessment. Though one can simply use a “BestOfAg-
gregator” to select the scenario with the highest mark, one can also specify more
complex aggregators which reward or penalise certain aspects of a solution, i.e.
the same mark aggregators used to aggregate marks across assessments can be
used to aggregate the marks accumulated across scenario assessments. The de-
fault for aggregating across aggregate assessments is simple-sum aggregation.
The default for scenario aggregation is to select the best scenario mark.

4.2 Concrete syntaxes

A domain-specific language allows for the specification of multiple concrete syn-
taxes. It is largely the specification of different concrete syntaxes of the language
that determines the language usability characteristics discussed in Section 3.2.
A significant amount of work has been done to design DSLs guided by usability
metrics [5, 4]. The rigorous development of a concrete syntax guided by usability
metrics is work which is currently in progress. This will enable us to illustrate the
abstract language we have developed so far with a simple English-based syntax.

An example text syntax can be developed in EMFText [11] which is a tool
which gets as input the syntax specification as a mapping between concrete syn-
tax and abstract syntax elements in a BNF-like notation. EMFText can be used
to generate a syntax-aware editor and to do the mapping between an assess-
ment specification specified in the concrete syntax and its representation in the
abstract syntax.

5 Summary

The ASL was designed while keeping in mind the quality requirements for the
language. In particular, the language supports the specification of extension
modules within which it is possible to provide the semantics required to spec-
ify different types of processing commands, assessments and marks aggregation
algorithms.



When new elements are being developed, our generic ASL assessment spec-
ification must be mapped onto tool-specific assessment specifications for such
element to ensure the portability of the language across assessment tools.

Since this is an ecore-based DSL, a wide variety of declarative and imperative
model-to-model [13, 10] and model-to-text [9] transformation tools are available.
Furthermore, transformation can also be specified implicitly by specifying the
tool language as a concrete syntax for our ASL. In cases where the assessment
specification requires concepts not covered by our ASL, the ASL needs to be
extended. Such an extension should only be required to increase the scope of the
language, not for technical reasons such as to allow mapping to a tool-specific
assessment specification. Any technical enrichment should be made during the
mapping transformation.

We have generated a language-aware editor which verifies a concrete assess-
ment specification against the language rules. Further qualities of the language
can be specified as static constraints against the language metamodel. This can
be done using the Object Constraint Language and the Eclipse OCL libraries [9].

The usability of the language will be determined by the development of con-
crete syntaxes for the language and will therefore be the subject of future work.

6 Conclusions and future work

We have introduced an extensible domain-specific language for the specification
of program assessments. The specification of such a language as a domain-specific
language has the advantages of being able to specify a variety of concrete syn-
taxes for different user groups and of having a rich tool set available for gen-
erating language-aware editors, assessment validators and transformations for
transporting onto tool-specific assessment formats. The focus of our work will
now shift to specifying a concrete syntax based on usability guidelines and on
assessing such languages by measuring their usability metrics and by perform-
ing in-field user testing. We will then specify transformations onto tool-specific
assessment specification formats, which will include that of our in-house devel-
oped system. Different aspects of assessment (e.g. assessment of source code and
dynamic metrics) are expected to be covered and specified in extension modules.

References

1. Ahoniemi, T., Reinikainen, T.: Aloha - a grading tool for semi-automatic assess-
ment of mass programming courses. In: Proceedings of the 6th Baltic Sea Con-
ference on Computing Education Research: Koli Calling 2006. pp. 139–140. Baltic
Sea ’06, ACM, New York, NY, USA (2006)

2. Al Shamsi, F., Elnagar, A.: An intelligent assessment tool for students’ Java sub-
missions in introductory programming courses. Journal of Intelligent Learning Sys-
tems and Applications 4(1), 59 – 69 (Feb 2012)

3. Ala-Mutka, K., Uimonen, T., Järvinen, H.M., Knight, L.: Supporting students in
C++ programming courses with automatic program style assessment. Journal of
Information Technology Education 3 (2004)



4. Albuquerque, D., Cafeo, B., Garcia, A., Barbosa, S., Abrahão, S., Ribeiro, A.:
Quantifying usability of domain-specific languages: An empirical study on software
maintenance. Journal of Systems and Software 101, 245 – 259 (2015)

5. Bariic, A., Amaral, V., Goulão, M.: Usability evaluation of domain-specific lan-
guages. In: Quality of Information and Communications Technology (QUATIC),
2012 Eighth International Conference on the. pp. 342–347 (Sept 2012)

6. Dumas, J.S., Redish, J.C.: A Practical Guide to Usability Testing. Intellect Bks.,
Portland (1999)

7. Fonte, D., da Cruz, D.C., Gançarski, A.L., Henriques, P.R.: A flexible dynamic
system for automatic grading of programming exercises. In: 2nd Symposium on
Languages, Applications and Technologies, SLATE 2013, June 20-21, 2013 - Porto,
Portugal. pp. 129–144 (2013)

8. Fowler, M.: Domain Specific Languages. Addison-Wesley Professional, 1st edn.
(2010)

9. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional, 1st edn. (2009)

10. Guduric, P., Puder, A., Todtenhoefer, R.: A comparison between relational and
operational qvt mappings. In: Information Technology: New Generations, 2009.
ITNG ’09. Sixth International Conference on. pp. 266–271 (April 2009)

11. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Model-based lan-
guage engineering with EMFText. In: Lämmel, R., Saraiva, J., Visser, J. (eds.)
GTTSE. Lecture Notes in Computer Science, vol. 7680, pp. 322–345. Springer
(2011)

12. Insa, D., Silva, J.: Semi-automatic assessment of unrestrained Java code: A library,
a DSL, and a workbench to assess exams and exercises. In: Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education.
pp. 39–44. ITiCSE ’15, ACM, New York, NY, USA (2015)

13. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model trans-
formation tool. Sci. Comput. Program. 72(1-2), 31–39 (Jun 2008),
http://dx.doi.org/10.1016/j.scico.2007.08.002

14. Pieterse, V.: Automated assessment of programming assignments. In: Proceed-
ings of the 3rd Computer Science Education Research Conference on Com-
puter Science Education Research. pp. 4:45–4:56. CSERC ’13, Open Uni-
versiteit, Heerlen, Open Univ., Heerlen, The Netherlands (2013), http://0-
dl.acm.org.innopac.up.ac.za/citation.cfm?id=2541917.2541921

15. Poženel, M., Fürst, L., Mahnič, V.: Introduction of the automated assessment of
homework assignments in a university-level programming course. In: Information
and Communication Technology, Electronics and Microelectronics (MIPRO), 2015
38th International Convention on. pp. 761–766 (May 2015)

16. Tremblay, G., Guérin, F., Pons, A., Salah, A.: Oto, a generic and extensible tool for
marking programming assignments. Softw., Pract. Exper. 38(3), 307–333 (2008)

17. Tremblay, G., Lessard, P.: A marking language for the oto assignment marking tool.
In: Proceedings of the 16th Annual Joint Conference on Innovation and Technology
in Computer Science Education. pp. 148–152. ITiCSE ’11, ACM, New York, NY,
USA (2011), http://0-doi.acm.org.innopac.up.ac.za/10.1145/1999747.1999791

18. Wang, T., Su, X., Ma, P., Wang, Y., Wang, K.: Ability-training-oriented automated
assessment in introductory programming course. Computers & Education 56(1),
220 – 226 (2011)

19. Wilcox, C.: Testing strategies for the automated grading of student programs.
In: Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. pp. 437–442. SIGCSE ’16, ACM, New York, NY, USA (2016)


