
May 3, 2017 Inverse Problems in Science and Engineering Article˙Eksteen˙ILC˙LatexSource

An alternative Update Formula for Nonlinear Model-Based Iterative

Learning Control

J.J.A. Eksteena∗ and P.S. Heynsa

aDepartment of Mechanical and Aeronautical Engineering, University of Pretoria

(Received 00 Month 20XX; final version received 00 Month 20XX)

The conventional Iterative Learning Control (ILC) algorithm for model-based ILC of nonlinear sys-
tems is presented with use of a nonlinear inverse model as ILC compensator. The nonlinear inverse
model is solved with stable inversion. In addition an alternative ILC algorithm for model-based ILC
of nonlinear systems is developed, also with using a nonlinear inverse model as ILC compensator.
Some connections between the conventional and alternative ILC algorithms and Picard, Mann and
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1. Introduction

Consider a closed-loop control system represented by an operator T , which we would
like to track the desired plant output signal yd as closely as possible. Iterative learning
control (ILC) is a repetitive control scheme that uses a learning capability to improve
the tracking accuracy over repeated test trials of the closed-loop control system [1]. The
learning mechanism involves calculating the tracking error of the previous iteration, and
then calculating a corrective action from the tracking error and an inverse model of T ,
which is added to the previous input signal to obtain an “updated” input signal. The
updated input signal is intended to improve the tracking accuracy of the next test trial,
following which the tracking error may be calculated again and the process repeated.
Under sufficient conditions for convergence of the algorithm the desired output can be
exactly tracked, possibly over a reduced test bandwidth as may be required to ensure
convergence.
ILC is often presented in the context of systems that have to repeatedly track the same

desired output signal, for example industrial robots working on serial production lines
that repeatedly do the same welding or spray painting job. In this case the real-time
control system is typically some type of asymptotic tracking control system, and ILC
then uses the results of the repeated tracking exercises to further improve the tracking
accuracy (for early references see, e.g., [2] and [3]). This is done on an ongoing basis, and
therefore ILC not only optimizes tracking accuracy for a given desired output and one
specific set of system dynamics, but can also be used to maintain tracking accuracy by
responding to gradual changes in the system dynamics through its “learning” capability.
When ILC is implemented purely to obtain the system input resulting in the exact
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tracking of the desired output for a given set of system dynamics and then terminated
once this has been achieved, it implies ILC is being used merely to once-off reconstruct

a desired system response (i.e. output) rather than to maintain tracking accuracy over
repeated test trials. When used in this way the ILC procedure is referred to here as
response reconstruction.
We can also replace the physical test system with a system model and perform the test

trials “mathematically”, in which case ILC is being used as an inversion procedure for
the system model. The fact that ILC is capable of exact tracking (subject to sufficient
conditions) implies that the inversion of the model will be exact. It is noteworthy that
when we use ILC in this way to invert a model, we do not calculate the inverse model,
but only use the model in the normal sense as if it is a physical test system. Using ILC in
this way is an indirect way of inverting a model because the exact inverse system model
is never calculated, as opposed to the direct approach followed in stable inversion. The
use of ILC to accomplish inversion of nonlinear models was first proposed in [4] to the
authors’ knowledge.
While ILC is capable of achieving convergence with even very simple forms of the ILC

compensator L, such as a constant gains matrix (the so-called P-type ILC), the rate
of convergence achieved with these compensators is not necessarily monotone. On the
contrary, the convergence error (and achieved test outputs) may grow very large before
finally decaying to zero. Achieving monotone convergence over relatively wide frequency
bands generally requires the use of an approximate system inverse model in L. This is
referred to here as inverse model-based ILC. The rate of convergence may, additionally,
be slowed down by scaling down L using a scalar scale factor. These aspects have already
been explored in ILC; see, for example, [5].
While ILC is capable of achieving convergence with even very simple forms of the ILC

compensator L, such as a constant gains matrix (the so-called P-type ILC), the rate
of convergence achieved with these compensators is not necessarily monotone. On the
contrary, the convergence error (and achieved test outputs) may grow very large before
finally decaying to zero. Achieving monotone convergence over relatively wide frequency
bands generally requires the use of an approximate system inverse model in L. This is
referred to as inverse model-based ILC. The rate of convergence may, additionally, be
slowed down by scaling down L using a scalar scale factor. These aspects have already
been explored in ILC; see, for example, [5].
When using ILC to invert a nonlinear system model, an approximate linear inverse

model may be calculated for use in the ILC compensator. Such a model may be obtained
by linear system identification, and as such represents a linearized version of the nonlinear
test system around the average operating point represented by the identification data.
The linear inverse model may be improved as an approximation of the actual nonlinear
inverse model by generating it as the inverse of a linearization of the nonlinear model
around the average operating point represented by the input signal of the previous ILC
iteration. The linearization and inverse may furthermore be recalculated at every time
point for the state of the input at that time (rendering it time varying). Modifying the
ILC-based inversion of a nonlinear model in this way results in the Newton method of
inverting a system (with appropriate reformulation of the system), which has recently
been presented by [7] for continuous-time systems. For a brief introduction to the Newton
method of solving nonlinear equations, see [8]. This shows the ILC-based inversion of a
nonlinear model using an approximate linear time-invariant (LTI) model to be a special
case of the novel Newton inversion method. As a purely ILC approach to be executed
on physical test systems this approach is referred to as Newton method based ILC, and
was first presented for nonlinear discrete time systems by [9]. Promising to realize the
advantages of rapid convergence of the Newton method in ILC, it is worthy of future
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investigation as an alternative to more complex methods utilizing a nonlinear inverse
model in the ILC compensator (discussed next). [9] also examine convenient ways of
numerically implementing the algorithm, as does [7].
In this study as a novel approach we implement nonlinear, inverse model-based ILC

compensators, that are solved directly by stable inversion [10], [11], in ILC of nonlinear
test systems, as opposed to using linear inverse-based compensators. The hope is that
in case of divergence of ILC with a linear L the use of a nonlinear (and potentially
more accurate) L may result in convergence, may widen the frequency range over which
convergence occurs, or may increase the accuracy of the best results achieved prior to
divergence. We will also show how an accurate (nonlinear) inverse model in L simplifies
the ILC dynamics (also shown in [4]), resulting in monotone convergence and allowing
better control of the rate of convergence.
We also develop an altogether new ILC algorithm, and show that the alternative al-

gorithm demonstrates the same properties as the conventional algorithm with regard to
convergence and control of the rate of convergence. The alternative algorithm is relevant
only when using a nonlinear L since, when using a linear L the alternative algorithm is
equivalent to the conventional ILC algorithm.
Finally, we also note that the use of Mann [12] and Ishikawa iteration in stable inversion

[13] has an analogy in ILC in that the conventional and alternative ILC algorithms
developed here both have parallels in the Picard and Mann iteration schemes. It is
furthermore shown that the application of Ishikawa iteration to ILC result in novel ILC
iteration schemes for both the conventional and alternative ILC algorithms.
In Section 3, the conventional ILC algorithm is presented for model-based or inverse

model-based ILC on nonlinear systems for the deterministic, square, MIMO case. A gen-

eral inverse based (GIB) ILC compensator, which explicitly uses the approximate system
inverse model, is proposed, and represents a slight modification of existing approaches for
ILC in robotics literature in that it includes a scalar scale factor for controlling the rate
of convergence. It is demonstrated in Section 3.5 how ILC with the GIB compensator
employing the scale factor represents a Mann iteration version of ILC without the scale
factor (that corresponds to Picard iteration).
The alternative ILC algorithm is presented in Section 4, as well as a modified ver-

sion that enables it to fully match the various properties of the conventional algorithm.
Theorems 3.4 to 3.9 are modifications for the alternative and modified alternative ILC
algorithms of theorems in the literature of the conventional ILC algorithm.
In Example 1 we demonstrate the convergence of the conventional and alternative ILC

algorithms for a short-duration deterministic signal, and in Example 2 we present an
example where the alternative ILC algorithm converges while the conventional algorithm
diverges for a random signal. In Example 3 we perform ILC using the inverse of a linear
approximate model. In Example 4 we perform ILC using the inverse of a nonlinear
approximate model, and compare the results with those of Example 3. Both the linear
and nonlinear models of Examples 3 and 4 are obtained from system identification. In
each case we will also compare the results of ILC using the conventional and alternative
ILC algorithms.

2. Model-Based ILC Compensators

Achieving monotone convergence generally requires the use of model-based ILC compen-
sators, with a number of types in existence that are aimed at this need, including the
following designs:

• Contraction Mapping ILC Compensator [14], [15]
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• Phase-Cancellation ILC Compensator [16]
• The Modified Phase-Cancellation ILC Compensator [17]
• The α Pseudoinverse-Based ILC Compensator [18].
• Inverse ILC Compensators, (see e.g. [19] and [20]).

The inverse ILC Compensator is also the form of the ILC compensator in the earliest
implementations of automotive service load simulation for fatigue testing [21]. Early
implementations employed frequency domain inverses. In case of non-minimum phase
systems, when the time-domain inverses have unstable dynamics, the approach was to
approximate the true inverse with an approximate causal inverse. This limitation can
be removed by using the non-causal stable inversion method for non-minimum phase
systems. This allows the most accurate inverse that can be identified for the test system
to be used in ILC. The advantages of using an accurate inverse as ILC compensator are
the following:

• Widest possible frequency band of convergence;
• Monotonic decay of the error of the input signal with respect to the limit input
signal;

• Potentially rapid convergence (if desired); and
• Good control over the rate of the convergence of the input signal (this may be
achieved using a scale factor in the inverse compensator).

In practice the model uncertainty usually increases with frequency due to noise and/or
nonlinear effects manifesting at high frequencies in conjunction with the natural atten-
uation of typical systems at high frequencies, all of which reduces accuracy of identified
models at high frequencies. The model uncertainty at high frequencies in combination
with the high gain of the inverse compensator at high frequencies can limit the bandwidth
over which convergence can be achieved. A second disadvantage of the inverse compen-
sator is that it is limited to square systems, unlike the pseudo-inverse compensator. The
α pseudoinverse compensator is in fact a generalization of the inverse compensator for
non-square systems. In practice, however, square systems are common.
The problem of limited convergence bandwidth of the inverse-based compensator may

be alleviated by opting for one of the compensators with reduced gain at high frequencies
(phase cancellation or α-pseudoinverse compensators), or by incorporating a general zero-
phase filter in the compensator to attenuate the high frequency response. Opting for this
approach leads to a general, inverse-based compensator, given in operator form as

L = CL̃ ,

with C a zero-phase filter and L̃ the approximate inverse of T . A similar approach may
be found in [22] and [23]. For specific choices of C the compensator includes all the
different choices of model-based compensators described above. By the proper design of
C the compensator allows the usually high magnitude of L̃ at the high frequencies to
be attenuated for the sake of robustness of convergence against model error. To illus-
trate, with this compensator the frequency domain version of the condition for monotone
convergence of ILC of linear systems yields

|||Q0(e
jω)|2(1− |C0(e

jω)|2L̃(ejω)T (ejω))||∞ < 1 .

At frequencies where the product of L̃(ejω)T (ejω)) would normally violate the condition
(due to model error in L̃), C may be used to attenuate the product at the relevant fre-
quencies in order to satisfy the inequality and thus retain convergence at that frequency.
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3. Inverse Model Based ILC of Nonlinear Systems

3.1. Test Formulation

Consider a m × m discrete time, nonlinear, stable, injective test system, represented
by a nonlinear operator T with T ([0]) = [0]. The input signal for the i-th test trial is
designated u(i) and the output signal y(i), so that (with slight abuse of notation)

y(i) = T (u(i)) . (1)

The system is relaxed at the beginning of every test trial. We assume there exists a
desired plant output yd(k), k = 0, . . . , N − 1, yd(0) = yd(N) = [0], which we designate
yd, and which we desire to track as closely as possible. By the injectiveness of the plant
there exists a unique ud(k), k = 0, . . . , N − 1, designated ud, such that [11]

yd = T (ud) . (2)

3.2. Algorithm

The update formula in the conventional algorithm for ILC on both linear and nonlinear
systems is frequently given as ([23] and [4])

u(i+1) = Q(u(i) + L(e(i))) , (3)

with

e(i) = yd − y(i) , (4)

y(0) = 0, and Q a zero-phase, discrete-time linear filter. While usually linear, in this
study the ILC compensator L is a generally nonlinear, discrete-time transfer operator.
When T is nonlinear, convergence to the desired ud can potentially be achieved with

Eq. 3 even when L is the inverse of an approximate model of the system. However, the
convergence generally can not be achieved in one step, irrespective of how accurate a
representation of the true inverse of T the compensator L is. This can be rectified by
slightly modifying Eq. 3 as follows ([4] and [7]):

u(i+1) = Q(u(i) + L(yd)− L(y(i))) . (5)

This algorithm is shown in Fig. 1. In case of a nonlinear T this update formula is theo-
retically capable of achieving convergence in one step, but that requires that L = T−1.
Note that for linear L Eq. 5 reduces to the more conventional form (Eq. 3). In the sequel
we will use the modified update formula, Eq. 5, as the standard representation of the
conventional approach to ILC with nonlinear test systems, together with Eq. 1 and Eq.
2. In view of the alternative algorithm proposed in the next section we will refer to it as
the conventional algorithm.
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3.3. Convergence

Next we focus on the convergence of the conventional algorithm. By inserting Eq. 1 into
Eq. 5 the system formulation of Eq. 5 in the iteration domain is obtained as

u(i+1) = Q(u(i) + L(yd)− L(T (u(i)))) (6)

:= T (u(i), yd) . (7)

Eq. 6 is a fixed point problem in the variable u and we may follow the standard route of
using the contraction mapping theorem in terms of the nonlinear operator T to obtain
a strong condition for both the existence and uniqueness of a solution. [4] provides a
more relaxed condition for convergence, at the expense of having to prove the iteration
is bounded and the existence of a well-defined limit signal separately. Here we follow the
approach of [4], starting with the boundedness of the ILC algorithm.
Theorem 3.1: If T is bounded input-bounded output (BIBO) stable in the 2-norm

and αβ < 1 with α = ||Q||∞ and

β = sup
u 6=0

||u− L(T (u))||2
||u||2

, (8)

then Eq. 5 is bounded input-bounded output (BIBO) stable in the 2-norm. For the proof,
see [4]. ♦
Noting that

u(∞) = lim
i→∞

u(i) = lim
i→∞

u(i+1) , (9)

the limit signals for Eq. 5 and Eq. 6 are defined by

u(∞) = Q(u(∞) + L(yd)− L(y(∞))) (10)

= Q(u(∞) + L(yd)− L(T (u(∞)))) (11)

If the limit signals exist, then for Q = 1 clearly L(yd) = L(y(∞)), implying y(∞) = yd
since L is injective, and in turn u(∞) = T−1(y(∞)) = T (yd) = ud by the injectiveness of
T . If Q 6= 1, then (from Eq. 10)

u(∞) = Q(1−Q)−1(L(yd)− L(y(∞))) (12)

and y(∞) = T (u(∞)). We have the following theorem for existence of the fixed points:
Theorem 3.2: If the conditions of Theorem 3.1 hold and L is BIBO stable, then for

Q 6= 1 Eq. 12 is BIBO stable in the 2-norm and u(∞) and y(∞) are well defined. If Q = 1
then u(∞) and y(∞) are well defined, with y(∞) = yd and u(∞) = ud. The proof for the
case Q = 1 follows from the preceding discussion. For the proof of the case Q 6= 1, see
[4]. ♦
The iteration domain formulation for the convergence error of the input signal w.r.t.
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the limit signal is then (using Eq. 6 and Eq. 11)

∆(i+1) = u(∞) − u(i+1) (13)

= Q(u(∞) + L(yd)− L(T (u(∞)))) −Q(u(i) + L(yd)− L(T (u(i))))

= Q(u(∞) − u(i) − (L(T (u(∞)))− L(T (u(i))))

= Q∆(i) −Q(L(T (u(∞)))− L(T (u(∞) −∆(i)))) (14)

= Q∆(i) −QΦ(u(∞),∆(i)) , (15)

with

Φ(u(∞),∆(i)) := L(T (u(∞)))− L(T (u(∞) −∆(i))) . (16)

We have the following sufficient condition for convergence:
Theorem 3.3: If the ILC update formula Eq. 5 is BIBO stable, the limit signal of Eq.

12 is well defined, and αγ < 1 with α = ||Q||∞ and

γ = sup
∆ 6=0

||∆ − Φ(u(∞),∆)||2
||∆||2

, (17)

then ||∆(i+1)|| < αγ||∆(i)||, that is, the input convergence error is monotonically de-
creasing and the input u(i) converges to the input limit signal. For the proof, see [4].
♦

3.4. Choice of ILC Compensator

With regard to model-based designs of L, in case of square test systems L may be the
(linear) inverse of the linear model that approximates the nonlinear system [5], or in case
of non-square systems it may be the α pseudo-inverse [6] of the linear approximation.
The inverse compensator we employ here is given in operator form as

L = cCL̃ , (18)

with c a real scalar, C a linear, zero-phase filter, and L̃ the linear or nonlinear approximate
inverse of the generally nonlinear system T . This compensator is referred to here as the
general inverse-based (GIB) compensator. In this study the focus is on using both linear
and nonlinear inverse models in L̃. Such models may be obtained by system identification
on behavioral data of the nonlinear system T , and inverting the resulting model. The
resulting inverse is often solved in the frequency domain in case of linear models, but
may also be solved in the time domain using stable inversion in case of both linear and
nonlinear models to circumvent the instability of the inverse associated with nonminimum
phase zeros of the normal model.
Eq. 3 used in conjunction with the GIB compensator (Eq. 18) is also the form of the

ILC algorithm in response reconstruction for purposes of automotive fatigue testing. For
implementations with a linear inverse in L̃ see [21], [24], [25], [26], [27], and [28]. For
an implementation with a nonlinear inverse in L̃ see [7]. For an aeronautical fatigue
testing application using a linear inverse in L̃, see [29] (ignore comments therein about
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the relative accuracy of the time domain vs. the frequency domain system identification
approaches).
Substitution of the GIB compensator (Eq. 18) and Eq. 16 into Eq. 17 gives

γ = sup
∆ 6=0

||∆− Φ(u(∞),∆)||2
||∆||2

= sup
∆ 6=0

||∆− (L(T (u(∞)))− L(T (∆ + u(∞))))||2
||∆||2

(19)

= sup
∆ 6=0

||∆− cC(L̃(T (u(∞)))− L̃(T (∆ + u(∞))))||2
||∆||2

(20)

When the convergence condition of Theorem 3.3, namely αγ < 1 is violated, the role of
a small c in recovering convergence (at the expense of a slower rate of convergence) is
clear.
For the ideal GIB compensator with L̃ = T−1 and C = 1, i.e. L = cT−1, Eq. 14

becomes

∆(i+1) = Q∆(i) −Q(cT−1(T (u(∞)))− cT−1(T (u(∞) −∆(i))))

= (1− c)Q∆(i) . (21)

Clearly, if c = 1, ∆(i+1) = [0], i.e. convergence is achieved in one iteration, with the limit
signals as given in Theorem 3.2. This results confirms the advantages of using an accurate
inverse model in the ILC compensator: rapid convergence, widest possible frequency band
of convergence (up to Nyquist frequency), precise control over the rate of convergence of
u(i), and monotonic convergence of u(i).

3.5. Connections with Fixed Point Iteration Methods

The system formulation in the iteration domain for the GIB compensator (Eq. 18) with
c = 1 and Q = 1 becomes (from Eq. 6)

u(i+1) = u(i) + cCL̃(yd)− cCL̃(T (u(i))) , (22)

= u(i) + CL̃(yd)− CL̃(T (u(i))) (23)

:= T11(u
(i), yd) . (24)

Here we view T11(u
(i), yd) as a type of baseline approach for ILC with the GIB compen-

sator (with c = 1) and that corresponds to the Picard fixed point iteration approach. If
we now formulate a standard Mann iteration scheme with the operator T11(u

(i), yd), the
result is

u(i+1) = (1− αi)u
(i) + αiT11(u

(i), yd) (25)

= u(i) + αiCL̃(yd)− αiCL̃(T (u(i))) (26)

with αi ∈ (0, 1]. Comparing Eq. 26 with Eq. 22 shows that it resembles the system
formulation for ILC with Q = 1 and with the GIB compensator with c = αi. Thus,
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performing ILC with the conventional algorithm with Q = 1 and the GIB compensator
with c ∈ (0, 1) essentially represents a special case of Mann iteration (using a constant
α) with the operator T11(u

(i), yd). This will be true for any ILC compensator featuring
a constant scale factor. The use of the gain c ∈ (0, 1) in such compensators thus has the
same advantages for achieving convergence compared to the c = 1 case as Mann iteration
(with a constant α) has compared to Picard iteration.
Note that it is possible to form an Ishikawa iteration scheme with T11(u

(i), yd) as
follows:

u(i+1) = (1− αi)u
(i) + αiT11(µ

(i), yd)

µ(i) = (1− βi)u
(i) + βiT11(u

(i), yd) , (27)

with αi ∈ (0, 1] and βi ∈ [0, 1]. It can be shown that a fixed point of Picard iteration
is also a fixed point of Mann and Ishikawa iteration. Investigating the connections (if
any) between Ishikawa iteration and existing ILC iteration schemes is a subject of future
research.

4. Alternative ILC Algorithm Using a Nonlinear Inverse Model

4.1. Development

We consider the same nonlinear system and associated assumptions as in Section 3.
Towards deriving a fundamentally different form of the ILC algorithm, we retain the Q
filter in an optional capacity, but for the moment consider the Q = 1. When the plant
output converges to yd, the plant input at the same time converges to ud. If the plant
input, instead of being the parameter that is updated, is instead directly obtained as
output of the ILC compensator L, then as the plant input converges to ud, the input to
the compensator, say ỹ, will converge to a limit value ỹd so that

ud = L(ỹd) . (28)

If we can formulate an update formula in the ỹ parameter, then the goal will be for ỹ
to converge to ỹd, because that will imply desired convergence of u and y to ud and yd
respectively. This suggests the possibility of an update formula on the output side of the
plant instead of on the input side as with conventional ILC (keep in mind L is essentially
an inverse model of the plant). The following algorithm follows this approach. As before

y(i) = T (u(i)) . (29)

We define a new parameter as input to the ILC compensator which, being an input to
the ILC compensator, is related in type to the system output and thus we use the symbol
ỹ, and have

u(i) = L(ỹ(i)) . (30)

The new update formula is in the ỹ parameter, and is as follows:

ỹ(i+1) = Q(ỹ(i) + yd − y(i)) , (31)

with initial value ỹ(0) = 0. If Q = 1 in Eq 31 then clearly, when y(i) converges to yd, ỹ
(i)

converges to a limit value that, working back through Eq. 29 and Eq. 30 for y(i) = yd

9
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must be ỹd as defined in Eq. 28. In other words, when ỹ(i) converges, by definition u and
y converges to ud and yd respectively, which is the goal of ILC. Eq. 29, Eq. 30 and Eq. 31
represent an alternative algorithm for ILC on nonlinear systems when using a nonlinear
ILC compensator. The essential difference is that the algorithm updates (a version of)
the plant output instead of the plant input. The algorithm is shown in Fig. 2. Note that
in the next section we will modify this algorithm and in the process ostensibly improve
it, thus rendering the version presented here essentially a stepping stone or preliminary
version. However, the research presented here focuses on implementing and evaluating
the algorithm as presented in this section, with the evaluation of the modified version
that is presented in the next section being the subject of future research.

4.2. Relationship with Conventional Algorithm

The system formulation in the iteration domain of the system input for the alternative
algorithm is given as (combining Eq. 29, Eq. 30 and Eq. 31):

u(i+1) = L(ỹ(i+1))

= L(Q(ỹ(i) + yd − y(i))) (32)

= L(Q(L−1(u(i)) + yd − T (u(i)))) . (33)

Clearly, when L is linear then Eq. 33 reduces to Eq. 6. In other words, if L is linear then
the alternative algorithm is equivalent to the conventional algorithm, even if the system
T is nonlinear. The alternative algorithm is therefore only an option when we employ
a nonlinear inverse, and thus for ILC on nonlinear plants only. Note further that by a
simple modification the input system formulation for the conventional algorithm (Eq. 6)
may be restated as (using Eq. 30)

u(i+1) = Q(u(i) + L(yd)− L(y(i))) (34)

= Q(L(ỹ(i)) + L(yd)− L(y(i))) (35)

Comparison of Eq. 32 for Q = 1, i.e.

u(i+1) = L(ỹ(i) + yd − y(i)) ,

and Eq. 35 for Q = 1, i.e.

u(i+1) = L(ỹ(i)) + L(yd)− L(y(i)) ,

shows that the essential difference between the two ILC algorithms is that in the alter-
native algorithm L operates on all three entities together, instead of separately as in the
conventional algorithm. This comes at no apparent cost as the alternative algorithm is
still capable of achieving convergence in one iteration when L = T−1 (as will be shortly
shown).
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4.3. Convergence

By inserting Eq. 29 and Eq. 30 into Eq. 31 the system formulation in the iteration domain
for ỹ is derived as

ỹ(i+1) = Q(ỹ(i) + yd − T (L(ỹ(i)))) . (36)

To analyze convergence we follow exactly the same approach as for the conventional
algorithm, starting with the boundedness of the ILC algorithm.
Theorem 4.1: If T is BIBO stable in the 2-norm and αβ̄0 < 1 with α = ||Q||∞ and

β̄0 = sup
ỹ 6=0

||ỹ − T (L(ỹ))||2
||ỹ||2

, (37)

then Eq. 31 is BIBO stable in the 2-norm. The proof is similar to that of Theorem 3.1.
♦
Next we focus on the existence of convergence points for the fixed point iteration of

Eq. 36, i.e. the of limit signals. Noting Eq. 9 the limit signals for Eq. 31 and Eq. 36 are
respectively

ỹ(∞) = Q(ỹ(∞) + yd − y(∞)) (38)

= Q(ỹ(∞) + yd − T (L(ỹ(∞)))) (39)

If the limit signals exist, then for Q = 1 clearly from Eq. 39 yd = T (L(ỹ(∞))), implying
ỹ(∞) = L−1(T−1(yd)) = L−1(ud) = ỹd (cf. Eq. 28), in turn u(∞) = L(ỹ(∞)) = L(ỹd) = ud,
and from Eq. 29 y(∞) = T (u(∞)) = T (ud) = yd. If Q 6= 1, then from Eq. 38

ỹ(∞) = Q(1−Q)−1(yd − y(∞)) , (40)

u(∞) = L(ỹ(∞)), and y(∞) = T (u(∞)). We have the following theorem:
Theorem 4.2: If the conditions of Theorem 3.4 hold and L is BIBO stable, then for

Q 6= 1 Eq. 40 is BIBO stable in the 2-norm and ỹ(∞), u(∞) and y(∞) are well defined. If
Q = 1 then ỹ(∞), u(∞) and y(∞) are well defined, with ỹ(∞) = ỹd, u

(∞) = ud and with
y(∞) = yd. The proof for the case Q = 1 follows from the preceding discussion. The proof
for case Q 6= 1 is similar to Theorem 3.2. ♦
The iteration domain formulation for the convergence error of ỹ w.r.t. the limit signal

ỹ(∞) is then (using Eq. 36 and Eq. 39)

∆̃
(i+1)
0 = ỹ(∞) − ỹ(i+1) (41)

= Q(ỹ(∞) + yd − T (L(ỹ(∞)))) −Q(ỹ(i) + yd − T (L(ỹ(i))))

= Q(ỹ(∞) − ỹ(i) − (T (L(ỹ(∞)))− T (L(ỹ(i))))

= Q∆̃
(i)
0 −Q(T (L(ỹ(∞)))− T (L(ỹ(∞) − ∆̃

(i)
0 ))) (42)

= Q∆̃
(i)
0 −QΦ̃0(ỹ

(∞), ∆̃
(i)
0 ) , (43)

with

Φ̃0(ỹ
(∞), ∆̃

(i)
0 ) := T (L(ỹ(∞)))− T (L(ỹ(∞) − ∆̃

(i)
0 )) . (44)

11
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We have the following sufficient condition for convergence:
Theorem 4.3: If the ILC update formula Eq. 31 is BIBO stable, the limit signal of

Eq. 39 is well defined, and αγ̃0 < 1 with α = ||Q||∞ and

γ̃0 = sup
∆̃0 6=0

||∆̃0 − Φ̃0(ỹ
(∞), ∆̃0)||2

||∆̃0||2
, (45)

then ||∆̃
(i+1)
0 || < αγ̃0||∆̃

(i)
0 ||, that is, the convergence error of ỹ(i) w.r.t. ỹ(∞) is mono-

tonically decreasing and ỹ(i) converges to ỹ(∞). The proof is similar to Theorem 3.3.
♦
Substitution of the GIB compensator (Eq. 18) and Eq. 44 into Eq. 45, gives

γ̃0 = sup
∆̃0 6=0

||∆̃0 − (T (L(ỹ(∞)))− T (L(ỹ(∞) − ∆̃0))||2

||∆̃0||2
(46)

= sup
∆̃0 6=0

||∆̃0 − (T (cCL̃(ỹ(∞)))− T (cCL̃(ỹ(∞) − ∆̃0)))||2

||∆̃0||2
(47)

When the convergence condition of Theorem 4.3, namely αγ̃0 < 1 is violated, the role
of a small c in recovering convergence (at the expense of a slower rate of convergence) is
clear, however its effect is not as obvious as in the case of the conventional algorithm.
For the ideal GIB compensator with L̃ = T−1 and C = 1, i.e. L = cT−1, Eq. 42

becomes

∆̃
(i+1)
0 = Q∆̃

(i)
0 −Q(T (cT−1(ỹ(∞)))− T (cT−1(ỹ(∞) − ∆̃

(i)
0 ))) . (48)

Clearly we do not have the same kind of simplification resulting from use of the ideal
GIB compensator as we have for the conventional ILC algorithm (cf. Eq. 21). However,

if c = 1 we again find ∆̃
(i+1)
0 = 0, i.e. convergence is still achieved in one iteration, with

the limit signals as given in Theorem 4.2. While c will be effective in setting the rate of
general convergence, the rate of convergence can not be as precisely controlled as for the
conventional case due to the nonlinearity of T in Eq. 48.

4.4. Connection with Fixed Point Iteration Methods

The system formulation in the iteration domain for the GIB compensator (Eq. 18) with
c = 1, and Q = 1 becomes (from Eq. 36)

ỹ(i+1) = ỹ(i) + yd − T (cCL̃(ỹ(i))) , (49)

= ỹ(i) + yd − T (CL̃(ỹ(i))) (50)

:= T̄ 0
11(ỹ

(i), yd) . (51)

12
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If we now formulate a standard Mann iteration scheme with the operator T̄ 0
11(ỹ

(i), yd),
we get

ỹ(i+1) = (1− αi)ỹ
(i) + αiT̄

0
11(ỹ

(i), yd) (52)

= (1− αi)ỹ
(i) + αi(ỹ

(i) + yd − T (CL̃(ỹ(i)))) (53)

= ỹ(i) + αiyd − αiT (CL̃(ỹ(i))) (54)

with αi ∈ (0, 1]. Comparing Eq. 54 with Eq. 49 shows that performing ILC with Q = 1,
with the alternative algorithm, and with the GIB compensator with c ∈ (0, 1) is not

equivalent to Mann iteration with the operator T̄ 0
11(ỹ

(i), yd) for the special case of using a
constant αi = c. This will be true for the preliminary algorithm for any ILC compensator
featuring a constant scale factor.

5. Modified Alternative ILC Algorithm Using a Nonlinear Inverse

5.1. Algorithm

In this section we modify the alternative algorithm presented in Section 3 in order to
obtain it in a way that again allows precise control over the rate of convergence, straight-
forward adjustment of the convergence condition (γ) to ensure convergence, and equiv-
alence between use of the GIB compensator for c ∈ (0, 1) and Mann iteration with the
operator obtained when using c = 1 in the GIB compensator. We consider the same
nonlinear system and associated assumptions as in Section 3, and again retain the Q
filter in an optional capacity. Define ỹd such that

ud = L̃(ỹd) , (55)

with L̃ as defined in the GIB compensator (Eq. 18), i.e. as representing the inverse model
per se. Furthermore,

y(i) = T (u(i)) , (56)

and

u(i) = L̃(ỹ(i)) . (57)

We modify the update formula of the preliminary alternative algorithm (Eq. 31) as
follows:

ỹ(i+1) = Q(ỹ(i) + cC(yd − y(i))) , (58)

with initial value ỹ(0) = [0], and c and C as in the GIB compensator. When Q = 1 clearly,
when y(i) converges to yd in Eq. 58, ỹ(i) and u(i) converges to ỹd and ud respectively. Eq.
56, Eq. 57 and Eq. 58 represent a modified form of the alternative algorithm for ILC on
nonlinear systems when using a nonlinear ILC compensator.

13
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5.2. Relationship with Conventional Algorithm

The system formulation in the iteration domain of the system input for the modified
alternative algorithm is given as (combining Eq. 56, Eq. 57 and Eq. 58):

u(i+1) = L̃(ỹ(i+1))

= L̃(Q(ỹ(i) + cC(yd − y(i)))) (59)

= L̃(Q(L̃−1(u(i)) + cC(yd − T (u(i))))) . (60)

When L̃ is linear Eq. 60 reduces to Eq. 6 and the modified alternative algorithm becomes
equivalent to the conventional algorithm (even for nonlinear T ), and is therefore only an
option when we employ a nonlinear inverse.
Note further that by a simple modification the input system formulation for the con-

ventional algorithm (Eq. 6) may be restated as (using Eq. 57)

u(i+1) = Q(u(i) + L(yd)− L(y(i))) (61)

= Q(L̃(ỹ(i)) + cC(L̃(yd)− L̃(y(i)))) (62)

Comparison of Eq. 59 for Q = 1, i.e.

u(i+1) = L̃(ỹ(i) + cC(yd − y(i))) ,

and Eq. 62 for Q = 1, i.e.

u(i+1) = L̃(ỹ(i)) + cC(L̃(yd)− L̃(y(i)))

shows that the essential difference between the two ILC algorithms is not just that in
the modified alternative algorithm L̃ operates on all three entities together, instead of
separately as in the conventional algorithm, but is also the location of the cC factor w.r.t.
L̃ (i.e. “inside” L̃ vs. “outside” L̃). This comes at no apparent cost as the alternative
algorithm is still capable of achieving convergence in one iteration when L = T−1 (as
will be shortly shown).

5.3. Convergence

By inserting Eq. 56 and Eq. 57 into Eq. 58 the system formulation in the iteration domain
for ỹ is derived as

ỹ(i+1) = Q(ỹ(i) + cC(yd − T (L̃(ỹ(i))))) . (63)

To analyze convergence we again follow the same approach as for the conventional algo-
rithm.
Theorem 5.1: If T is BIBO stable in the 2-norm and αβ̄ < 1 with α = ||Q||∞ and

β̄ = sup
ỹ 6=0

||ỹ − cCT (L̃(ỹ))||2
||ỹ||2

, (64)

then Eq. 58 is BIBO stable in the 2-norm. The proof is similar to that of Theorem 3.1.
♦

14
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Noting Eq. 9 the limit signals for Eq. 58 and Eq. 63 are defined by respectively

ỹ(∞) = Q(ỹ(∞) + cC(yd − y(∞))) (65)

= Q(ỹ(∞) + cC(yd − T (L̃(ỹ(∞))))) . (66)

If the limit signals exist, then for Q = 1 clearly from Eq. 66 yd = T (L̃(ỹ(∞))), implying
ỹ(∞) = L̃−1(T−1(yd)) = L̃−1(ud) = ỹd (cf. Eq. 55), in turn u(∞) = L̃(ỹ(∞)) = L̃(ỹd) = ud,
and y(∞) = T (u(∞)) = T (ud) = yd. If Q 6= 1, then from Eq. 65

ỹ(∞) = cCQ(1−Q)−1(yd − y(∞)) , (67)

u(∞) = L(ỹ(∞)), and y(∞) = T (u(∞)). We have the following theorem:
Theorem 5.2: If the conditions of Theorem 3.7 hold and L is BIBO stable, then for

Q 6= 1 Eq. 67 is BIBO stable in the 2-norm and ỹ(∞), u(∞) and y(∞) well defined. If
Q = 1 then ỹ(∞), u(∞) and y(∞) are well defined, with ỹ(∞) = ỹd, u

(∞) = ud and with
y(∞) = yd. The proof for the case Q = 1 follows from the preceding discussion. The proof
for case Q 6= 1 is similar to Theorem 3.2. ♦
The iteration domain formulation for the convergence error of the input signal w.r.t.

the limit signal is then (using Eq. 63 and Eq. 66)

∆̃(i+1) = ỹ(∞) − ỹ(i+1) (68)

= Q(ỹ(∞) + cC(yd − T (L̃(ỹ(∞))))) −Q(ỹ(i) + cC(yd − T (L̃(ỹ(i)))))

= Q(ỹ(∞) − ỹ(i) − cC(T (L̃(ỹ(∞)))− T (L̃(ỹ(i))))

= Q∆̃(i) −QcC(T (L̃(ỹ(∞)))− T (L̃(ỹ(∞) − ∆̃(i)))) (69)

= Q∆̃(i) −QΦ̃(ỹ(∞), ∆̃(i)) , (70)

with

Φ̃(ỹ(∞), ∆̃(i)) := cC(T (L̃(ỹ(∞)))− T (L̃(ỹ(∞) − ∆̃(i)))) . (71)

We have the following sufficient condition for convergence:
Theorem 5.3: If the ILC update formula Eq. 58 is BIBO stable, the limit signal of

Eq. 66 is well defined, and αγ̃ < 1 with α = ||Q||∞ and

γ̃ = sup
∆̃ 6=0

||∆̃− Φ̃(ỹ(∞), ∆̃)||2

||∆̃||2
, (72)

then ||∆̃(i+1)|| < αγ̃||∆̃(i)||, that is, the convergence error of ỹ(i) w.r.t. ỹ(∞) is mono-
tonically decreasing and ỹ(i) converges to ỹ(∞). The proof is similar to Theorem 3.3.
♦
Substituting Eq. 71 into Eq. 72, giving

γ̃ = sup
∆̃ 6=0

||∆̃ − cC(T (L̃(ỹ(∞)))− T (L̃(ỹ(∞) − ∆̃)))||2

||∆̃||2
. (73)
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When the convergence condition of Theorem 5.3, namely αγ < 1 is violated, the role of
a small c in recovering convergence (at the expense of a slower rate of convergence) is
again clear.
For the ideal inverse compensator L̃ = T−1 and C = 1 Eq. 69 becomes

∆̃(i+1) = Q∆̃(i) −Qc(T (T−1(ỹ(∞)))− T (T−1(ỹ(∞) − ∆̃(i))))

= Q(1− c)∆̃(i) . (74)

Clearly we again have the same kind of simplification resulting from use of the ideal GIB
compensator as we have for the conventional ILC algorithm (cf. Eq. 21). Furthermore, if
c = 1 we again find ∆̃(i+1) = [0], i.e. convergence is still achieved in one iteration, with
the limit signals as given in Theorem 5.2. In addition the rate of convergence can be
precisely controlled as in the conventional case.

5.4. Connection with Fixed Point Iteration Methods

The system formulation in the iteration domain for Q = 1 becomes (from Eq. 63)

ỹ(i+1) = ỹ(i) + cC(yd − T (L̃(ỹ(i)))) , (75)

and for c = 1 the system formulation then becomes

ỹ(i+1) = ỹ(i) + C(yd − T (L̃(ỹ(i)))) (76)

:= T̄11(ỹ
(i), yd) . (77)

If we now formulate a standard Mann iteration scheme with the operator T̄11(ỹ
(i), yd),

we get

ỹ(i+1) = (1− αi)ỹ
(i) + αiT̄11(ỹ

(i), yd)

= (1− αi)ỹ
(i) + αi(ỹ

(i) + C(yd − T (L̃(ỹ(i)))))

= ỹ(i) + αiC(yd − T (L̃(ỹ(i)))) (78)

with αi ∈ (0, 1]. Comparing Eq. 78 with Eq. 75 shows that performing ILC with the
modified alternative algorithm with Q = 1 and c ∈ (0, 1) is equivalent to Mann iteration
with the operator T̄11(ỹ

(i), yd) (for the special case of a constant α).

6. Example 1: ILC for a Deterministic Desired Signal

This example demonstrates the ability of the alternative and conventional ILC algorithms
to converge for a short-duration deterministic signal. The test system is represented by

y(k) = θ1u(k − 4) + θ2u(k − 5) + θ3u(k − 6) + θ4y(k − 4)
θ5u(k − 5)y(k − 4) + θ6u(k − 5)u(k − 6)y(k − 2)
+θ7u(k − 5)2u(k − 6)y(k − 1) ,

(79)
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with

(θ1, . . . , θ7) = (0.150, 0.50, 0.50, 1/6, −2.0, 6.0, 11.0) .

The desired response in question is obtained as the response of Eq. 79 to the following
relatively short deterministic signal, ud(k):

ūd(k) =







0, 1 ≤ k ≤ 25
cu(sin(2π(k − 31)/20) + 1), 25 < k ≤ 46
0, 46 < k ≤ 146

(80)

ũd = F̄0.16ūd (81)

ud = CT ũd (82)

F0.16(z) =
0.02287z4 + 0.09148z3 + 0.13722z2 + 0.09148z + 0.02287

1.00z4 − 1.412z3 + 1.123z2 − 0.40807z + 0.06321
(83)

CT =























0, 1 ≤ k ≤ 12
0.5 sin(2π(k − 13)/24 − π/2) + 0.5, 12 < k ≤ 24
1, 24 < k ≤ 122
0.5 sin(2π(k − 123)/24 + π/2) + 0.5, 122 < k ≤ 134
0, 134 < k ≤ 146

(84)

with cu = 0.165, the second equation in operator format, and F̄ a non-causal linear
operator representing the zero phase version of the low pass filter F (z) with cut frequency
40 Hz (0.16 times the sample frequency). CT as given by Eq. 84 is essentially a sinusoidal
taper function. The desired input signal and desired response signal is shown in Fig. 4.
For purposes of obtaining the inverse-model based ILC compensator we obtained the
following approximate (nonlinear) NARX system model by system identification:

y(k) = −0.076129u(t − 2) + 0.21444u(t − 3)− 0.0040361u(t − 10)
+2.6585y(t − 1)− 3.6336y(t − 2) + 3.2178y(t − 3)
−1.8455y(t − 4) + 0.56977y(t − 5)− 0.039669y(t − 7)
+0.12012u(k − 3)u(k − 4)− 0.12388u(k − 3)u(k − 10)
−0.12629u(k − 3)y(k − 2) .

(85)

Due to the nonlinearity of the model, stable inversion of the model is iterative. A gain
of 0.1 was used in stable inversion. For ILC a zero-phase low pass ILC filter Q with cut
frequency of 40 Hz was used and a ILC gain of c = 0.3 was used. The results for both the
conventional and alternative ILC algorithms are presented in Fig. 5 and Fig. 6. The error
between ud(k) and the input calculated during iteration m of stable inversion, namely
u(m)(k), is defined as:

err1(u
(m)) := 100

∑N
k=1 |u

(m)(k)− ud(k)|
∑N

k=1 |ud(k)|

= 100
||u(m)(k)− ud(k)||1

||ud(k)||1
. (86)
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Similarly

err1(y
(m)) := 100 ||y(m)(k)− yd(k)||1/||yd(k)||1 . (87)

Clearly both the conventional and alternative ILC algorithms converge with the alter-
native algorithm converging more rapidly and to lower convergence errors values. The
minimum convergence error values in these figures correspond to virtually impercepti-
ble differences between the desired and achieved input and response signals. Note that
sinusoidal tapering (of duration 0.03 sec) was applied during stable inversion during the
alternative ILC algorithm to suppress build-up of spurious high frequency oscillations at
the start of the signal.

7. Example 2: ILC for a Random Desired Signal

In this example ILC is performed on Eq. 79 using the low-level random input and corre-
sponding output signal of Example 2 in [13], shown in Fig. 7, to demonstrate the ability
of the alternative ILC algorithm to converge when the conventional algorithm diverges
in this particular case. For the ILC compensator the stable inverse of Eq. 85 was again
used, this time with a stable inversion gain of 0.2. An ILC gain of c = 0.4 was used and
a zero-phase low pass ILC filter Q was used with a cut frequency 50 Hz.
The results for both the conventional and alternative ILC algorithms are presented

in Fig. 8 and Fig. 9, which shows that the conventional ILC algorithm diverges and
alternative ILC algorithm converges. The approach here (as in Example 1) of using the
Q filter and not the C filter to achieve the low pass frequency cut off for ILC follows from
the fact that that is the intention of the Q filter in normal practise, whereas the C filter
is rather intended to be a shaping filter used to increase the bandwidth of convergence.

8. Example 3: ILC Using an Approximate Linear Inverse Model

In this example ILC is performed on Eq. 79 using the higher-level random input and
corresponding output signal of Example 3 in [13], shown in Fig. 10. The purpose is to
demonstrate the success of ILC using a linear inverse model-based ILC compensator.
This doesn’t imply that ILC converges, in fact it diverges in this case, and from a purely
ILC point of view that will be a drawback, with the approach to remedy this to tailor
the Q and C filters and the c gain to obtain the largest bandwidth possible that still
gives convergence of ILC. However, in response reconstruction for structural integrity
testing we do not have a purely ILC point of view that requires convergence at all costs,
but rather we use ILC for a limited number of iterations to obtain the most accurate
results possible over the largest bandwidth possible (or over a fixed, given bandwidth),
with ILC terminated as soon as the most accurate results have been obtained. Thus, in
response reconstruction it is tolerable if ILC diverges, as long as the results obtained
before divergence is sufficiently accurate accurate for the purposes of the test.
A zero-phase, low pass ILC filter Q is employed, with the cut frequency of Q respec-

tively 50, 70, 90 Hz, including the option of using no filter. While there is very little signal
strength in the desired response above 50 Hz, it is very much the higher frequencies (50
Hz and above) that are responsible for divergence of ILC in this case. It is therefore
sensible to investigate the use of low pass ILC Q filters with cut frequencies of 50 Hz
and higher to investigate the reduction in the severity of divergence while not severely
reducing the signal frequency range.
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In order to systematically evaluate ILC for the various values of Q a range of ILC gains
will be used for every value of Q, including both iteration independent and iteration
dependent gains, from which the best results may subsequently be selected. The formula
for the iteration dependent gain c(i) is given as

c(i) = 2
c0 − clim
i+ 1

+ clim , (88)

noting that c(0) = c0.
For purposes of the inverse-model based ILC compensator a linear inverse model was

obtained by performing system identification, and inverting the resulting model via stable
inversion. Stable inversion of a linear model is accomplished in a single pass, and is exact
(in the sense that the calculated input signal, when passed back through the model,
recovers the given output signal used in the inversion). The following (linear) ARX
model of the system was obtained (prior to inversion):

y(k) = −0.0020592u(k − 4) + 0.53042u(k − 5)− 0.33295u(k − 6) + 2.9341y(k − 1)
−4.5461y(k − 2) + 4.6988y(k − 3)− 3.3494y(k − 4) + 1.542y(k − 5)
−0.34179y(k − 6) .

(89)
The best results of ILC on Eq. 79 using the stable inverse of this model is presented in
Table 1. Note that when the ILC compensator L is linear, the conventional and alternative
ILC algorithms are equivalent, for which reason we do not distinguish between the two
approaches here. The best input signal that was obtained had an error of 18.0%, and
the corresponding output, that is obtained by passing the input back through Eq. 79
(i.e. the system), had an error of 9.9%. These results do not represent an improvement
on the results of stable inversion Eq. 79 for the same desired input and output signal in
Example 3 of [13], for which we get lower input and output errors of 13.3% and 8.1%
respectively. It is found that in all cases except when using no Q filter the best ILC
results were obtained using iteration-dependent ILC gains.

Table 1. Example 3: Best results of ILC. M is the iteration resulting in minmerr1(u(m)), i.e. M =
argminmerr1(u(m)).

Q-filter cut minmerr1(u
(m)) err1(y

(M)) M = Iter. Comment
freq. [Hz] [%] [%] no.

50 18.0 9.9 432 c0 = 0.1; clim = 0.01 (it. var.)
70 21.4 11.4 86 c0 = 0.3; clim = 0.025 (it. var.)
90 41.1 29.4 78 c0 = 0.1; clim = 0.01 (it. var.)

None 52.3 75.0 1 c = 1 for u; c = 0.4 for y

9. Example 4: ILC Using an Approximate Nonlinear Inverse Model

In this example, as in Example 3, ILC is performed on Eq. 79 using the higher level
random input and corresponding output signal of Example 3, shown in Fig. 10. However,
for the inverse model-based ILC compensator we use here a nonlinear inverse model for
purposes of comparison of the results with those of Example 3. For the nonlinear inverse
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model the following approximate NARX model was obtained by system identification:

y(k) = 0.23043u(t − 4) + 0.10461u(t − 6)− 0.037279u(t − 10)
+1.7955y(t − 1)− 2.0957y(t − 2) + 1.7392y(t − 3)
−0.88389y(t − 4) + 0.24564y(t − 5)
−0.29621u(k − 5)y(k − 5)− 1.2585u(k − 5)3

+7.2289u(k − 5)2y(k − 1)− 9.2816u(k − 5)u(k − 6)y(k − 2)
+4.4206u(k − 5)u(k − 7)y(k − 3)− 0.30189u(k − 10)y(k − 2)y(k − 9)
+0.041543y(k − 1)2y(k − 10) .

(90)

The model is not particularly optimized, but is representative of the type of nonlinear
models obtained in response reconstruction using automated methods for searching for
best models over a range of model structures.
Since the model is nonlinear, stable inversion of the model is iterative. Since the itera-

tion of stable inversion in this case is not convergent, regardless of the choice of gain in
stable inversion, a rough optimization was done to determine the choice of gain in stable
inversion that gives stable inversion results comparable to the best possible results. This
was deemed sufficient as the desired input is usually not available in practise to deter-
mine inversion accuracy, systematic optimization can be an intensive exercise and often
does not result in significant gains over the results obtained with rough optimization, and
ILC does not critically depend on the accuracy of the inverse but is capable of iterative
correction in the calculation of the input, i.e. is somewhat robust against inaccuracies in
the accuracy of the inverse model (within limits of course). The number of iterations in
stable inversion was limited to about 1000 iterations (and more where more was needed
before divergence occurred).
ILC is evaluated in this case for various combinations of ILC low pass filters Q and

ILC gains c, and for both the conventional and alternative ILC algorithms. The best
results obtained using the conventional ILC algorithm is shown in Table 2, and for the
alternative ILC algorithm in Table 3. Negative ILC gains c in Table 2 and Table 3 implies
that an iteration dependent ILC gain was used with c0 = |c| and clim = 0.005 (cf. Eq.
88). Only time-independent ILC gains were used.
Results are presented for both iteration-independent and iteration dependent stable

inversion gains, indicated as stable inversion cases A and B respectively, and for time-
independent and time dependent stable inversion gains, indicated as stable inversion
cases 1 and 2 respectively. Refer to Table 4. The formula for iteration dependent stable
inversion gains used here is the same as for iteration dependent ILC gains, namely Eq.
88, with c0 = cSI and clim = clim,SI. The time-dependent stable inversion gain for stable

inversion iteration j and input channel i, designated C
(j)
v,i (k), was calculated here by the

following formula

C̄
(j)
v,i (k) = 1/(800|u(j−1)(k)− u(j)(k)|+ 1)

C̃
(j)
v,i = F̄0.083C̄

(j)
v,i − 1

C
(j)
v,i (k) =

C̃
(j)
v,i (k)

maxk |C̃
(j)
v,i(k)|

+ 1

(91)

with the second formula in operator format, and F̄0.083 a zero-phase low pass filter (with

cut frequency 0.083 of the sample frequency). The C
(j)
v,i (k) values were suitably delayed

for application to the columns of η(j)(k). C
(j)
v,i (k) is multiplied with the time-independent

stable inversion gain for iteration j, which for the iteration dependent case is designated

c
(j)
SI (and is governed by the cSI and clim,SI values - cf. Table 4).

20



May 3, 2017 Inverse Problems in Science and Engineering Article˙Eksteen˙ILC˙LatexSource

It is found that both the conventional and alternative ILC algorithms are consistently
divergent. The best results were achieved with the alternative ILC algorithm using a 50
Hz low pass filter in Q for stable inversion case B2 (cf. Table 3), and was much more
accurate than the results achieved with the conventional ILC algorithm.
None of the results in Table 2 and Table 3 represent an improvement over the results

achieved in Example 3 with the linear inverse model for the same mathematical system
and desired input and output signals. However, when we repeat the conventional and
alternative ILC algorithm tests for the case of a 50 Hz low pass filter in Q and a 50 Hz
low pass filter in stable inversion (see the results presented in Table 5), we do observe an
improvement over the results in Example 3. The best results are consistently obtained
with the time-dependent gain approach in stable inversion, with the conventional ILC
algorithm giving slightly better results than the alternative algorithm.

Table 2. Example 4: Best ILC results with the conventional ILC algorithm. A negative ILC gain c implies an
iteration-dependent ILC gain with c0 = |c| and clim = 0.005 (cf. Eq. 88). A positive c implies an iteration-
independent ILC gain. “SI” refers to stable inversion. “It.” for u and y are the iteration numbers m corresponding
to minmerr1(u(m)) and minmerr1(y(m)) respectively.

Q-filter Input - u Output - y SI

cut freq c It. minmerr1(u
(m)) c It. minmerr1(y

(m)) Case
..[Hz] [%] [%]

50 -0.3 48 52.06 -0.3 48 58.31 A1
70 -0.1 156 62.07 -0.1 156 68.77 A1
90 1.0 1 73.68 0.1 12 80.86 A1

None -0.1 101 72.87 -0.1 101 73.88 A1

50 -0.1 199 50.22 -0.1 199 58.18 A2
70 1.0 1 65.01 -0.1 69 78.64 A2
90 0.05 25 65.08 0.05 25 72.70 A2

None 1.0 1 71.97 -0.1 41 78.68 A2

50 -0.1 411 48.81 -0.1 411 50.31 B1
70 -0.1 129 68.68 -0.1 129 75.03 B1
90 1.0 1 74.31 0.1 11 82.42 B1

None 1.0 1 75.86 -0.1 60 80.42 B1

50 1.0 1 46.26 -0.1 100 57.51 B2
70 1.0 1 47.22 -0.1 70 59.88 B2
90 1.0 1 48.83 -0.1 56 63.79 B2

None 1.0 1 50.52 -0.7 1 67.45 B2
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Table 3. Example 4: Best ILC results with the alternative ILC algorithm. A negative ILC gain c implies an
iteration-dependent ILC gain with c0 = |c| and clim = 0.005 (cf. Eq. 88). A positive c implies an iteration-
independent ILC gain. “SI” refers to stable inversion. “It.” for u and y are the iteration numbers m corresponding
to minmerr1(u(m)) and minmerr1(y(m)) respectively.

Q-filter Input - u Output - y SI

cut freq c It. minmerr1(u
(m)) c It. minmerr1(y

(m)) Case
..[Hz] [%] [%]

50 -0.1 360 63.45 -0.3 118 69.44 A1
70 1.0 1 75.36 1.0 1 81.06 A1
90 -0.1 154 72.16 -0.1 154 78.28 A1

None -0.7 1 74.86 -0.7 1 81.07 A1

50 -0.1 238 38.69 -0.1 238 48.87 A2
70 -0.1 238 59.72 -0.1 238 66.94 A2
90 -0.1 129 59.66 -0.1 129 68.85 A2

None 0.4 1 66.50 0.4 1 74.69 A2

50 -0.1 383 59.11 -0.1 383 66.13 B1
70 -0.1 246 73.70 -0.7 2 78.98 B1
90 -0.7 2 76.23 -0.1 27 81.07 B1

None 0.1 8 75.17 0.1 8 80.63 B1

50 -0.3 100 21.70 -0.3 100 15.94 B2
70 -0.1 171 34.05 -0.1 171 32.68 B2
90 0.4 1 71.75 0.4 1 78.83 B2

None 1.0 1 50.52 0.05 10 74.63 B2

Table 4. Example 4: Stable inversion case details. “SI” refers to stable inversion.

Case Iteration cSI clim,SI Time
dependent? dependent?

A1 No 0.01 – No
A2 No 0.03 – Yes
B1 Yes 0.10 0.005 No
B2 Yes 0.30 0.100 Yes
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Table 5. Example 4: Best ILC results with the conventional and alternative ILC algorithms when employing a
50 Hz low pass filter in stable inversion. A negative ILC gain c implies an iteration-dependent ILC gain with
c0 = |c| and clim = 0.005 (cf. Eq. 88). A positive c implies an iteration-independent ILC gain. “SI” refers to stable
inversion. “It.” for u and y are the iteration numbers m corresponding to minmerr1(u(m)) and minmerr1(y(m))
respectively.

Q-filter Input - u Output - y SI ILC

cut freq c It. minmerr1(u
(m)) c It. minmerr1(y

(m)) Case algorithm
...[Hz] [%] [%]

50 1.0 1 15.82 1.0 1 16.78 A1 Conv.
50 1.0 1 13.47 -0.3 753 7.40 A2 Conv.
50 1.0 1 15.64 1.0 1 20.22 B1 Conv.
50 1.0 1 14.47 -0.3 240 9.95 B2 Conv.

50 1.0 1 14.88 -1.0 9 10.37 A1 Alt.
50 1.0 2 14.42 -1.0 9 8.46 A2 Alt.
50 1.0 1 14.78 0.4 4 17.29 B1 Alt.
50 1.0 2 15.50 -1.0 8 8.65 B2 Alt.
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10. Some Recommendations for Future Research

• The performance of the modified alternative ILC algorithm needs to be compared
to that of the alternative and conventional algorithms in a similar way to examples
1 to 4 and in physical application of ILC in response reconstruction.

• This research showed that the use of Mann and Ishikawa iteration in stable in-
version has an analogy in ILC in that the conventional and alternative ILC algo-
rithms developed here both have parallels in the Picard and Mann iteration schemes
(when using the GIB compensator). It is furthermore shown that the application of
Ishikawa iteration to ILC results in potentially novel ILC iteration schemes for both
the conventional and alternative ILC algorithms. The resulting ILC schemes need
to be further researched for connections with existing ILC schemes in literature,
and need to be performance tested.

• ILC in this research was evaluated with either constant or iteration dependent
gains. The possible contribution of time-dependent ILC gains still need to be eval-
uated in theoretical examples and practical implementation in response reconstruc-
tion, particularly for the algorithms that have been developed in this research.

• The models in the stable inversion in this research are all analytical (i.e. smooth).
ILC need to be investigated for purposes of inverting non-smooth models. (Such
model may be obtained by system identification but are difficult to invert.) This
may be done by approximating such models with smooth models (e.g. NARX mod-
els) and then using the smooth approximate models in stable inversion in ILC that
is done on the non-smooth model as if on a physical system. If successful this may
improve the accuracy of ILC on non-smooth physical systems by virtue of the bet-
ter accuracy of the ILC-based inversion of identified non-smooth models of such
systems than of stable inversion of smooth approximate models of such systems.
This implies the use of ILC for purposes of inversion in the ILC compensator of
ILC on a system, i.e. a nested ILC.

11. Conclusions

Nonlinear, inverse model-based ILC compensators that are solved directly by stable in-
version were presented. We also showed how an accurate (nonlinear) inverse model in
the ILC compensator simplifies the ILC dynamics, resulting in monotone convergence of
ILC and allowing better control of the rate of convergence.
An alternative ILC algorithm was developed, and was demonstrated to have the same

desireable properties as the conventional algorithm with regard to convergence and con-
trol of the rate of convergence.
We also noted that the use of Mann and Ishikawa iteration in stable inversion has an

analogy in ILC in that the conventional and alternative ILC algorithms developed here
both have parallels in the Picard and Mann iteration schemes.
In Example 2 we presented an example where the alternative ILC algorithm converges

while the conventional algorithm diverges for a random signal. In Example 3 we perform
ILC using the inverse of a linear approximate model. In Example 4 we perform ILC
using the inverse of a nonlinear approximate model, leading to moderate but significant
improvements compared to the results obtained in Example 3. When not using a filter
in stable inversion the alternative ILC algorithm was much more accurate than the
conventional algorithm. The NARX models used in these examples, particularly Example
4, are typical of the type of models obtained in nonlinear system identification as used
in response reconstruction.
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Figure 3. Modified version of the alternative algorithm for ILC on a nonlinear system T with a nonlinear L.
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Figure 4. Example 1: Desired input ud(t) and output yd(t) data.
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Figure 5. Example 1: Convergence error of the input with respect to the desired input for the conventional and
alternative ILC algorithms.
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Figure 6. Example 1: Convergence error of the output with respect to the desired response for the conventional
and alternative ILC algorithms.
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Figure 7. Example 2: Desired input ud(t) and response yd(t) data.
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Figure 8. Example 2: Convergence error of the input with respect to the conventional and alternative ILC algo-
rithms.
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Figure 9. Example 2: Convergence error of the output with respect to the conventional and alternative ILC
algorithms.
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Figure 10. Example 3: Desired input ud(t) and output yd(t) data.
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