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SUMMARY 

We used a systems genetics approach to elucidate molecular mechanisms of maize 

responses to gray leaf spot (GLS) disease, caused by Cercospora zeina, a threat to maize 

production globally. Expression analysis of earleaf samples in a sub-tropical maize RIL 

population (CML444 X SC Malawi) subjected in field to C. zeina infection allowed 

detection of 20,206 expression QTLs (eQTL). Four trans-eQTL hotspots coincided with 

GLS disease QTLs mapped in the same field experiment. Co-expression network analysis 

identified three expression modules correlated with GLS disease scores. The module 

(GY-s) most highly correlated with susceptibility (r = 0.71; 179 genes) was enriched for 
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the glyoxylate pathway, lipid metabolism, diterpenoid biosynthesis and responses to 

pathogen molecules such as chitin. The GY-s module was enriched for genes with trans-

eQTLs in hotspots on chromosomes 9 and 10, which also coincided with phenotypic 

QTLs for GLS susceptibility. This transcriptional network has significant overlap with 

the GLS susceptibility response of maize line B73, and may reflect pathogen 

manipulation for nutrient acquisition and/or unsuccessful defense responses, such as 

kauralexin production by the diterpenoid biosynthesis pathway.  The co-expression 

module that correlated best with resistance (TQ-r; 1498 genes) was enriched for genes 

with trans-eQTLs in hotspots coinciding with GLS resistance QTLs on chromosome 9. 

Jasmonate responses were implicated in resistance to GLS through co-expression of 

COI-1 and enrichment of genes with the GO term “cullin-RING ubiquitin ligase complex” 

in the TQ-r module.  Consistent with this, JAZ repressor expression was highly 

correlated with GLS disease severity in the GY-s susceptibility network. 

INTRODUCTION 

Disease resistance in crop plants such as maize is often associated with one or more 

quantitative trait loci (QTLs), a phenomenon referred to as quantitative disease 

resistance (QDR) (Poland et al., 2009; St.Clair, 2010).  QDR is characterized by disease 

severity scores that exhibit a continuous distribution in a segregating population and is 

often strongly influenced by the environment (St.Clair, 2010; Vanderplank, 1984).  This 

is in contrast to qualitative disease resistance conferred by allelic differences in “major 

genes” that have a large effect on the phenotype, and individuals that can be clearly 

categorized as resistant or susceptible with limited environmental influence (St.Clair, 
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2010; Vanderplank, 1984).  Examples of qualitative resistance in maize are the major 

loci linked to rust disease resistance (Jines et al., 2007). 

A review of the genetic architecture of disease resistance in maize listed 50 

publications on the mapping of maize disease resistance loci (Wisser et al., 2006). 

However, identifying the genes, and ultimately the genetic polymorphisms, underlying 

QTLs that confer QDR in maize is currently a major challenge (Jamann et al., 2013). 

Therefore, as an initial strategy towards cloning a QTL, transcriptomics can be 

employed to explore the molecular processes leading to resistance or susceptibility 

conferred by a QTL (Liu et al., 2016).  Furthermore, transcriptome analysis of a 

susceptible interaction can yield insights into both targets of pathogen manipulation as 

well as host defence responses as shown in a study of Colletotrichum graminicola and a 

highly susceptible maize host (Vargas et al., 2012).  

Gray leaf spot (GLS) is a damaging foliar disease of maize that has been documented 

in many sub-tropical and tropical regions of the world (Ward et al., 1999). Symptoms 

are matchstick-shaped necrotic lesions with a gray tint on the leaf surface (Meisel et al., 

2009).  The fungus Cercospora zeae-maydis is the predominant causal agent in the USA 

and other maize growing regions (Wang et al., 1998).  The related fungal species 

Cercospora zeina also causes GLS, and has been recently documented in South Africa, 

China and Brazil (Liu and Xu, 2013; Meisel et al., 2009; Neves et al., 2015). 

Responses of maize to GLS pathogens have been characterized as quantitative, since 

there is no evidence to date of Cercospora spp. pathovars with cognate maize resistance 

genes, in contrast to other pathosystems such as maize-northern corn leaf blight 

(Poland et al., 2009; Hurni et al., 2015).  More than a dozen GLS resistance QTL mapping 

studies have been conducted with bi-parental maize mapping populations (Berger et al., 
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2014; Wisser et al., 2006). QTL mapping of a maize RIL population derived from sub-

tropical maize inbreds CML444 X SC Malawi in South Africa, where only C. zeina is 

present, identified seven GLS QTLs from five field sites (Berger et al., 2014).  Meta-

analysis of studies to date located hotspots of GLS QTLs on chromosomes one, two, four, 

five and seven (Berger et al., 2014). 

Genome wide association mapping (GWAS) in a panel of 253 diverse inbred maize 

lines led to the identification of single-nucleotide polymorphisms (SNPs) in a 

glutathione S-transferase gene in chromosome bin 7.03 that were associated with 

resistance to GLS (Wisser et al., 2011). GWAS of 161 inbred lines was carried out in 

China, and SNPs in bin 3.07 and bin 9.07 were proposed as markers for molecular 

breeding for GLS resistance (Shi et al., 2014).  The maize nested association mapping 

(NAM) population was recently used to identify three QTLs that reduced GLS disease by 

more than 10% (located in bins 1.04, 2.09 and 4.05), and experiments with near 

isogenic lines were conducted to develop hypotheses about resistance mechanisms 

(Benson et al., 2015).  Bi-parental QTL mapping was combined with GWAS to refine the 

map positions of GLS QTLs on chromosomes one, six, seven and eight (Mammadov et al., 

2015). A GLS QTL in bin 5.03/5.04 was fine-mapped to a region with 15 candidate genes 

(Xu et al., 2014). Despite this, no GLS resistance genes have been cloned to date, and 

thus there is a need for alternative research strategies. Systems genetics is an approach 

to explore the molecular basis of quantitative traits such as QDR through integration of 

genetic data with other component molecular data gathered using -omics technologies 

(Civelek and Lusis, 2014). 

Natural variation in transcript abundance can be used in several ways in a systems 

genetics approach (Feltus, 2014).  The first is co-expression analysis to search for 

groups of genes with coordinated gene expression patterns across individuals of a 

5



population or progeny from a cross (Zhang and Horvath, 2005).  The outcome is the 

identification of groups of genes (modules) with similar expression behavior suggesting 

that they are under common transcriptional control.  Modules (represented by module 

eigengenes) can be correlated with phenotypic variation to identify modules that may 

influence the trait (Li et al., 2015). 

A second systems genetics approach that can be implemented with transcriptome 

data is genetical genomics (Jansen and Nap, 2001), based on expression QTL (eQTL) 

analysis (Schadt et al., 2003).  This approach is essentially a massively parallel QTL 

mapping analysis in which the traits being mapped are the transcript abundance values 

for every gene that can be assayed using methods such as microarray or RNAseq 

analysis (Hansen et al., 2008).  eQTL analysis identifies genomic regions that are likely 

to contain causal polymorphisms with regulatory effects on the genes being assayed. 

Large-scale, global eQTL mapping studies on a variety of plants have been published 

over the past decade, including maize (Schadt et al., 2003; Shi et al., 2007; Swanson-

Wagner et al., 2009; Holloway et al., 2011; Li et al., 2013), Eucalyptus (Kirst et al., 2005), 

Arabidopsis (Wentzell et al., 2007; West et al., 2007; Keurentjes et al., 2007), wheat 

(Jordan et al., 2007), barley (Potokina et al., 2008; Druka et al., 2008; Chen et al., 2010; 

Moscou et al., 2011), rice (Wang et al., 2010; Wang et al., 2014), cotton (Claverie et al., 

2012), potato (Kloosterman et al., 2012) and Populus (Drost et al., 2015).   Several of 

these studies combined eQTL with QTL analysis to explore the genetic basis underlying 

phenotypic QTL, for example, Wentzell et al., (2007) identified a candidate gene for 

glucosinolate accumulation in Arabidopsis. 

A third systems genetics approach is to combine gene co-expression analysis with 

eQTL analysis to explore the genetic architecture of gene expression correlation in a 

population (Feltus, 2014).  This was demonstrated using microarray data from embryos 
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of wheat plants grown in two different environments, which revealed conserved and 

environment-specific biological processes (Munkvold et al., 2013). A fourth integrated 

systems genetics approach involves combining gene co-expression analysis, eQTL 

analysis and phenotypic analysis to prioritize candidate genes affecting trait variation in 

populations (Keurentjes et al., 2007; Jiménez-Gómez et al., 2010) 

The aim of this study was to gain an understanding of the molecular basis of 

quantitative resistance and susceptibility to GLS in a RIL population of maize derived 

from a cross of sub-tropical inbred lines CML444 and SC Malawi (Berger et al., 2014). 

We implemented an integrated systems genetics approach (Figure S1, Appendix S1) 

that combined transcript abundance variation, gene co-expression, eQTL and 

phenotypic QTL data to address the hypothesis that allelic variation gives rise to 

coordinated changes in gene expression, which in turn affect GLS disease severity. 

RESULTS 

Gray leaf spot disease severity and global gene expression profiling 

We aimed to determine whether gene expression was correlated with GLS disease 

severity in a maize population segregating for quantitative resistance to GLS in the field.  

The CML444 X SC Malawi maize RIL population was planted at Baynesfield, South 

Africa, where Cercospora zeina is the causal agent of GLS disease (Meisel et al., 2009). 

Typical GLS disease symptoms were observed, with some RILs exhibiting more extreme 

(transgressive) phenotypes than the resistant (CML444) and susceptible (SC Malawi) 

parental lines (Figure 1). GLS disease scores increased over time as the disease 

progressed in the field (Figure 1B).  The distribution of disease scores per rating was 

characteristic of quantitative resistance (Figure 1B). 
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Figure 1. Grey leaf spot (GLS) disease responses in the CML444 × SC Malawi maize recombinant inbred line (RIL) population. 

(a) Representative maize leaf samples collected for RNA extraction of a resistant RIL (GLS score = 1.5), parental line CML444 (GLS score = 3.7), SC Malawi (GLS 
score = 6.5) and susceptible RIL (GLS score = 8.5). GLS scores correspond to a scale from 1 to 9 shown on the y-axis of (b), and are based on whole-row plant scores 
as described in Berger et al. ([1]). (b) Boxplots of GLS disease severity data (y-axis), collected at 92, 99, 109 and 116 days after planting (DAP) at Baynesfield Estate 
in KwaZulu-Natal, South Africa. The right-hand boxplot represents a weighted average (WA) of the GLS severity scores across the four ratings, with weights based 
on the absolute value of the difference between the DAP at the rating and 103 DAP (when samples were collected for RNA analysis), with proportionally more 
weight given to ratings closest to 103 DAP. The GLS scores (WA) for CML444 and SC Malawi are indicated with a closed square and closed triangle, respectively. 
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Global gene expression profiling using Agilent 44K maize microarrays were carried 

out on earleaf samples collected from 100 RILs at 103 DAP. Expression profiles were 

obtained for 19,281 microarray reporters after filtering, normalization and back-

conversion.  As a first insight into the relationship between gene expression and 

disease, the least square means of a weighted average of the GLS severity scores across 

the four ratings (WA in Figure 1B) was compared with expression profiles of individual 

reporters across the RILs. We observed that 19% of reporters showed significant 

absolute correlations (False discovery rate (FDR)<0.05) with GLS disease scores (Table 

S1), indicating that co-expression may be relevant to GLS disease responses. 

Identification of co-expression modules in the maize RIL population 

To determine whether coordinated transcriptional responses to C. zeina infection 

were correlated with susceptibility and/or resistance in the maize RIL population, we 

conducted weighted gene co-expression network analysis (WGCNA) of the 100 RIL 

microarray data (Figure S1A). Approximately 50% of the reporters (8,665/19,281) 

were assigned to 42 co-expression modules, named after arbitrarily assigned colours 

(Table S2). Table 1 lists three of the modules (GY-s, PT-s and TQ-r) that were relevant to 

the GLS disease response, since the module eigengenes significantly correlated 

(FDR<0.05) to the GLS severity profile. 

Gene Ontology enrichment and functional annotations of co-expression module GY-s 

The GY-s module (185 reporters representing 179 genes; Table S3) had an 

exceptionally high positive correlation (0.71; FDR=4E-15, Table 1) with the GLS severity 

profile across the 100 RILs, i.e. higher expression was associated with increased 

susceptibility (Figure S2).  This led us to hypothesize that the genes in this co-
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Table 1.  Co-expression modules from CML444 X SC Malawi maize RIL population with correlation to GLS disease scores, and 

comparison with genes expressed in susceptible maize inbred B73 during GLS disease 

Co-
expression 

module 
a

Module 
eigengen

e 
correlatio

n with 
GLS 

severity 

p-value 
(based 

on 
resampli

ng)b 

p-value 
(FDR)c

Number of 
reporters 
in module 

Directional 
expression 
correlation 

with GLS 
severityd 

% genes 
in 

module 
that are 

also 
induced 
in B73 - 

GLS e 

Enrichment 
of module 
genes in 

induced gene 
list from B73 
– GLS (FDR) f

% genes in 
module 
that are 

also 
repressed 

in B73 - 
GLSg 

Enrichment 
of module 
genes in 

repressed 
gene list 

from B73 – 
GLS (FDR)h 

GY-s 0.71 1E-16 4E-15 185 S 55% 4E-57 2% ns 

PT-s 0.31 0.003 0.03 41 S 15% ns 10% ns 

TQ-r -0.31 0.003 0.03 1564 R 9% ns 10% 0.049 

a Co-expression modules from WGCNA of microarray data of 100 RILs in the CML444 X SC Malawi RIL population exposed to GLS 
disease in the field. 

b Null hypothesis: no correlation between the module eigengene expression values and GLS disease scores across RILs. P-values were 
calculated based on a resampling method (Methods S1). 

c Calculated p-values were adjusted for multiple testing by controlling the false discovery rate (Benjamini and Hochberg, 1995). 
d “S” indicates that co-expression module eigengene had a positive correlation with GLS severity scores, i.e higher expression values 

correlated with higher disease severity scores (susceptibility), and vice versa for “R” (resistance) 
e Percentage of genes in each co-expression module of the CML444 X SC Malawi RIL population that were significantly induced 

(RNAseq; FDR<0.05) in susceptible maize inbred B73 plants infected with C.  zeina compared to control material. 
f Result of Fisher’s Exact Test (adjusted p-value; FDR) for enrichment of module genes in list of genes induced in B73 infected with 

C.  zeina. ns = not significant (i.e. p (FDR) >= 0.05) 
g Percentage of genes in each co-expression module of the CML444 X SC Malawi RIL population that were significantly repressed 

(RNAseq; FDR<0.05) in susceptible maize inbred B73 plants infected with C.  zeina compared to control material. 
h Result of Fisher’s Exact Test (adjusted p-value; FDR<0.05) for enrichment of module genes in list of genes repressed in B73 infected 

with C.  zeina. 
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Table 2.  Enriched GO-terms for the GY-s module * 

GO description FDR Cluster freq Total freq GO-ID 

diterpenoid/gibberellin metabolic process 1E-04 4/132 3.0% 5/8758 0.0% 16101/9685 

catalytic activity 5E-04 73/132 55.3% 3091/8758 35.2% 3824 

diterpenoid/gibberellin  biosynthetic process 2E-03 3/132 2.2% 4/8758 0.0% 16102/9686 

secondary metabolic process 3E-03 9/132 6.8% 101/8758 1.1% 19748 

carboxylic acid / organic acid transmembrane 
transporter activity 

5E-03 5/132 3.7% 27/8758 0.3% 46943/5342 

cellular catabolic process 6E-03 13/132 9.8% 240/8758 2.7% 44248 

small molecule metabolic process 6E-03 23/132 17.4% 641/8758 7.3% 44281 

response to stimulus 6E-03 37/132 28.0% 1316/8758 15.0% 50896 

carboxylic acid /organic acid transport 6E-03 5/132 3.7% 31/8758 0.3% 46942/15849 

cellular nitrogen compound catabolic process 8E-03 4/132 3.0% 18/8758 0.2% 44270 

lipid metabolic process 1E-02 13/132 9.8% 264/8758 3.0% 6629 

heterocycle catabolic process 1E-02 4/132 3.0% 20/8758 0.2% 46700 

monocarboxylic acid metabolic process 1E-02 9/132 6.8% 139/8758 1.5% 32787 

gibberellic acid mediated signaling pathway 2E-02 3/132 2.2% 11/8758 0.1% 
9740/71370/ 

10476 

malate/C4-dicarboxylate transmembrane 
transporter activity 

3E-02 2/132 1.5% 3/8758 0.0% 
15140/15556/

5310 

catabolic process 3E-02 13/132 9.8% 312/8758 3.5% 9056 

small molecule biosynthetic process 3E-02 13/132 9.8% 313/8758 3.5% 44283 

lipase activity 4E-02 4/132 3.0% 31/8758 0.3% 16298 

carboxylic acid/oxoacid/organic acid 
metabolic process 

4E-02 13/132 9.8% 324/8758 3.6% 
19752/43436/

6082 

malate/C4-dicarboxylate transport/amino 
acid import 

4E-02 2/132 1.5% 4/8758 0.0% 
15743/15740/

43090 

cellular ketone metabolic process 4E-02 13/132 9.8% 331/8758 3.7% 42180 

terpenoid metabolic process 4E-02 4/132 3.0% 35/8758 0.3% 6721 

response to chitin 4E-02 4/132 3.0% 35/8758 0.3% 10200 

aspartic-type endo/peptidase activity 5E-02 3/132 2.2% 17/8758 0.1% 4190/70001 

response to organic substance 5E-02 14/132 10.6% 388/8758 4.4% 10033 

* BiNGO was used to identify enriched GO-terms using ontology files downloaded from

www.geneontology.org 
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expression module may represent targets of pathogen manipulation and/or represent 

orthologues of defence genes involved in other host-pathogen interactions.  To this end 

we scrutinized protein, functional and GO term annotations of the reporters in the GY-s 

module. 

The GY-s module was enriched for biological process in GO-terms 

diterpenoid/gibberellin biosynthesis, small molecule, lipid and secondary metabolism, 

and stress responses, such as peptidase activity and response to chitin (Table 2). The 

module included six reporters linked to calcium signaling including three calmodulin-

like proteins with EF-hand calcium-binding motifs, three protein kinases, and several 

NAC and WRKY transcription factors (Table S3).  Three components of jasmonate 

signalling (JAZ1, two different JAZ2 genes) were represented, as well as ethylene 

signaling (ACC synthase and an EIN3 binding protein). 

Small molecule metabolism was reflected by reporters of two key enzymes of the 

glyoxylate pathway (isocitrate lyase and malate synthase) and fourteen reporters of 

lipid metabolism, including two acetyl-CoA synthases (Table S3).  Five reporters had the 

GO term “carboxylic acid transport”, and there were two SWEET sugar transporters.  

The module also included high proportions of reporters in the carbohydrate or energy 

metabolism, and protein or nucleotide catabolism categories. 

Stress and defence responses were also represented in the GY-s module.  These 

include a heat shock transcription factor, six ABC transporters, and two glutathione-S-

transferases. Four reporters have the GO term “response to chitin” [WRKY and MYB 

transcription factors, a zinc finger (AN1-like) protein, and a fungal elicitor response 

protein].  Pathogenesis related (PR) and other defence proteins were also enriched in 

the GY-s module – four chitinases, two beta-glucanases, two osmotins, a viral response 

protein, and two protease inhibitors.  Three key enzymes of diterpenoid/gibberellin 
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biosynthesis, ent-copalyl diphosphate synthase (An2), ent-kaurene synthase (KS2) and 

a P450 ent-kaurene oxidase were highly correlated with susceptibility in the GY-s 

module. Thirteen additional reporters involved in secondary metabolism were co-

expressed.  Taken together these results indicate that the GY-s module is made up of 

both genes involved in plant defence as well as genes with a role in nutrient acquisition 

which may represent the result of pathogen manipulation. 

GO enrichment and functional annotations of GLS co-expression modules PT-s

Although the PT-s module (41 reporters; Table S4) had a lower and less significant 

correlation with GLS susceptibility (0.31, FDR=0.03), we wished to determine if there 

were any shared processes with the GY-s module.  The PT-s module was enriched for the 

GO-term “ATP citrate synthase activity” (Table S4).  Thus, the functional category 

primary metabolism appears to be the only common process between the GY-s and PT-s 

co-expression modules. 

GO enrichment and functional annotations of GLS co-expression module TQ-r 

In contrast to the previous two modules, the TQ-r module was made up of reporters 

with the opposite behavior across the RIL population, i.e higher expression in the more 

resistant RILs (Figure S2).  This was reflected as a negative correlation with GLS disease 

scores (-0.31; FDR = 0.03)(Table 1).  We therefore asked the question as to whether the 

TQ-r module (1564 reporters representing 1498 genes; Table S5) was characterized by 

genes and processes related to fungal disease resistance.  The most relevant over-

represented GO term was “cullin-RING ubiquitin ligase complex” (24 reporters)(Table 

S6), which is consistent with reports of the role of ubiquitination and proteolysis in 

plant defence responses (Furniss and Spoel, 2015).  Interestingly, the reporter with the 

13



highest TQ-r module membership score was annotated as coronatine-insensitive 

protein 1 (COI-1) (A_92_P001413, MM score = 0.94; Table S5).  In addition, a COI-1 

paralogue was co-expressed in the TQ-r module (A_92_P001595, Table S5).  COI-1 is an 

F-box protein with roles in jasmonate signalling and regulation of NBS-LRR resistance 

protein accumulation and function, that has been well characterized in Arabidopsis (He 

et al., 2012).  Co-expression analysis also revealed the potential role of callose in 

resistance to GLS, since a callose synthase reporter (A_92_P010785) in the TQ-r module 

had the highest (negative) correlation to GLS disease severity (Table S5).  

Genetic architecture of global gene expression and GLS disease phenotypic 

variation 

Co-expression analysis had revealed groups of genes with intriguing annotations 

relevant to plant-pathogen interactions in the maize RIL population. However, the next 

aim was to explore the underlying genetics to determine whether there were genomic 

regions where allelic variation influenced gene expression and/or GLS disease 

phenotypes (Figure S1). To do this, we conducted expression QTL (eQTL) and GLS 

phenotypic QTL analyses of the CML444 X SC Malawi RIL population data from the 

Baynesfield trial. 

Global eQTL analysis identified 20,206 eQTLs from the 19,281 input e-traits (Table 

S7). Trans-eQTLs accounted for 62% of the eQTLs, 22% were cis-eQTLs, and 16% had 

unknown classification (Figure S3, Table S8). Cis-eQTLs explained a significantly greater 

proportion of expression variation (average=30%) than trans-eQTLs 

(average=15%)(p=2E-16; Wilcoxon rank sum test)(Table S8). 

Previous eQTL studies have identified genomic regions enriched for trans-eQTL 

(termed “hotspots”) that may represent genes subject to co-ordinated regulation (Li et 
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al., 2013).  We aimed to find trans-eQTL hotspots that may be relevant to the co-

expression modules and GLS disease responses.  Twenty-one trans-eQTL hotspots were 

identified from the expression data of the maize RIL population exposed to GLS disease 

at 103 DAP (Figure S4; Table S9; see Methods S1 for permutation tests and calculations 

to discount effects of local gene density). A significant directional parental allelic bias 

was evident for 17 of the 21 trans-eQTL hotspots (Table S9), such that one of the 

parental alleles was associated with higher expression for most of the transcripts in a 

hotspot. The directional bias for the hotspots was in contrast to the global average for 

the 20,206 eQTLs, where 49% of had a positive CML444 allelic association and 51% had 

a positive SC Malawi allelic association. 

QTL mapping of the maize RIL population was conducted using GLS disease scores 

from the same field trial from which RNA was sampled for global expression profiling 

(Figure S1C). Eight QTLs for GLS severity were identified (Table 3). Alleles from 

CML444 (the more resistant line) were associated with resistance (low disease 

severity) at six QTLs (QTL3a, QTL3b, QTL4, QTL5, QTL9a, QTL10), whereas alleles from 

SC Malawi were associated with increased resistance at only two loci, QTL6 and QTL9b 

(Table 3). 

Having identified eight GLS QTLs and 21 trans-eQTL hotspots, the next step was to 

determine whether any of the trans-eQTL hotspots co-localized with GLS QTLs on the 

genetic map (Figure S1D).  This would implicate the genes with trans-eQTL in the 

hotspot in processes leading to susceptibility or resistance to GLS conferred by the QTL.  

Four trans-eQTL hotspots were found to coincide with GLS severity QTLs (Table 4; 

Table S9). Permutation tests determined that obtaining four overlaps between 8 QTLs 

and 21 hotspots was significant (p=0.0045; See Methods S1 for calculations). The four 

hotspots coincided with GLS severity QTL4, QTL9a, QTL9b, and QTL10, and were 
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Table 3. GLS severity QTLs identified for the CML444 x SC Malawi maize RIL population 

QTL 

name 

Chromo

some 
Bina 

Peak 

markerb 

1-LOD 

intervalc 

2-LOD 

intervald 

LOD 

scoree 
R2 f 

Additive 

effectg 

Allele 

source 

associated 

with 

Resistance
h

Ratingsi 

QTL3a 3 3.03 bnlg1325 30.62 - 46.28 25.16 - 49.93 2.96 8.53 -0.48 CML 1,3* 

QTL3b 3 3.08 umc16a 169.91 - 186.09 165.21 - 187.74 4.24 12.52 -0.47 CML 1,2* 

QTL4 4 4.08 umc133a 115.16 - 127.68 93.53 - 131.68 3.06 7.01 -0.33 CML 1* 

QTL5 5 5.02 umc90 26.96 - 43.53 25.61 - 47.81 2.94 7.87 -0.36 CML 1,2* 

QTL6 6 6.06 umc1424_P 145.54 - 160.42 142.31 - 163.43 4.32 22.50 0.81 SC 3,4* 

QTL9a 9 9.04 umc81 75.71 - 96.62 67.9 - 97.27 2.97 8.82 -0.37 CML 1* 

QTL9b 9 9.06 umc1733 120.24 - 122.5 119.96 - 123.38 6.89 16.26 0.56 SC 1*,2,3 

QTL10 10 10.07 bnl7.49a 113.93 - 127.28 110.84 - 129.74 4.56 17.22 -0.69 CML 3,4* 

a Maize core bin that includes the start interval 

b Peak marker refers to marker on QMap 2.0 that is closest to the QTL peak 

c Range in cM that defines 1-LOD interval of QTL 

d Range in cM that defines 2-LOD interval of QTL 

e Log of odds (LOD) value at position of QTL peak 

f Phenotypic variance explained by the QTL (expressed as percentage) 

g Additive effect of QTL. Positive values indicate that the allele for resistance was derived from SC Malawi 

h Parental allele associated with increased GLS resistance; CML = CML444; SC = SC Malawi 

i GLS rating at Baynesfield Estate, KwaZulu-Natal (2008/2009 season) for which QTL was observed; 1, 2, 3, 4 refer to 92, 99, 109 and 

116 days after planting; Stars indicate the rating with the highest LOD score (to which the statistics correspond) 

* Rating that gave QTL with the highest LOD score that was selected for further analysis
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Table 4. Trans-eQTL hotspots that overlap with GLS severity QTL in the maize RIL population, and co-expression modules enriched for 
reporters in these trans-eQTL hotspots 

GLS
QTL

GLS QTL 
1-LOD 

interval 
(cM)b 

Trans-
eQTL 

hotspot 
namec 

Chr Hotspot 
interval 

(cM)d 

eQTLe eQTLs 
in 

subsetf 

alleleg Trans-eQTL 
hotspot 

subset name 
h

Bias
i

GY-s 
(S)j 

TQ-r 
(R)k 

Mg 
(S)j 

Br 
(R)k 

Mb 
(S)j 

Pr 
(S)j 

Yw 
(R)k 

QTL4 115.16 - 127.68 eQTL_HS4b 4 
124.25 - 

129.9 
141 

49 (35%) CML eQTL_HS4b(R) 
yes 

*** 

92 (65%) SC eQTL_HS4b(S) *** 

QTL9a 75.71 - 96.62 eQTL_HS9a 9 
92.13 - 
101.81 

407 

135 
(33%) 

CML eQTL_HS9a(R) 
yes 

*** *** *** 

272 
(67%) 

SC eQTL_HS9a(S) *** 

QTL9b 120.24 - 122.5 eQTL_HS9b 9 
117.81 - 
124.51 

142 
88 (62%) CML eQTL_HS9b(S) 

yes 
*** 

54 (38%) SC eQTL_HS9b(R) *** 

QTL10 113.93 - 127.28 eQTL_HS10c 10 
114.61 - 
121.64 

214 
67 (31%) CML eQTL_HS10c(R) 

yes 
*** 

147 
(69%) 

SC eQTL_HS10c(S) *** *** 

a QTL for GLS severity that overlaps with trans-eQTL hotspot (from Table 3) 
b QTL interval on QMap 2.0 (Table 3) 
c Name of trans-eQTL hotspot that overlaps with GLS severity QTL 
d Trans-eQTL hotspot interval on QMap 2.0 
e Total number of trans-eQTLs in each hotspot 
f Number of trans-eQTLs in each hotspot divided into two subsets based on the allele that corresponds to higher expression 
g Parental allele associated with higher expression 
h Trans-eQTL hotspot subset name, based on the parental allele of the QTL associated with higher expression.  For example for QTL4a, resistance is conferred by 
the CML444 allele (Table 3), and therefore 49 reporters have trans eQTL in the eQTL_HS4a hotspot where the CML444 allele (R ) is associated with higher 
expression, whereas 92 reporters have the SC Malawi allele (S) associated with higher expression. 
i Result of Pearson’s chi-squared test to determine whether there was significant bias in the parental allele conferring higher expression for reporters within a trans 
eQTL hotspot (P<0.05). 
j Module names: GY-s, Mg (Magenta), Mb (Midnightblue), Pr (Purple): “S” indicates that co-expression module had a positive correlation with GLS severity scores, i.e 
higher expression values correlated with higher disease severity scores (susceptibility) 
k Module names: TQ-r, Br (Brown), Yw (Yellow): “R” indicates that co-expression module had a negative correlation with GLS severity scores, i.e higher expression 
values correlated with lower disease severity scores (resistance) 
jk Enrichment of co-expression module reporter lists for reporters in trans eQTL hotspots was determined by Fishers Exact Test (*** FDR < 0.001) 
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termed eQTL_HS4b, eQTL_HS9a, eQTL_HS9b, and eQTL_HS10c, respectively. These four 

trans-eQTL hotspot regions spanned 4.4 cM to 9.7 cM and affected the expression of 141 

to 407 reporters positioned throughout the genome (Table 4). 

Since cis-eQTL have been shown in some cases to be causal of a phenotypic QTL 

(Drost et al., 2015), we identified 129 cis-eQTL that overlapped the GLS phenotypic 

QTLs and correlated with GLS disease scores (FDR<0.05)(Table S10). 

Genetic architecture of co-expression modules GY-s, PT-s and TQ-r 

The final aim of the systems genetics strategy was to identify genomic regions that 

may contain polymorphisms leading to the downstream transcriptional responses 

reflected by the three GLS-significant co-expression modules (Figure S1E).  First, we 

tested for significant enrichment of reporters from each co-expression module in the 

lists of reporters in each trans-eQTL hotspot, split by allele.  Out of the three co-

expression modules with a significant correlation to GLS severity (Table 1), two 

modules (GY-s, TQ-r) were significantly enriched for reporters with eQTLs in trans-eQTL 

hotspots that overlapped with GLS severity QTLs (Table 4; Table S9). 

The GY-s module (highly correlated with GLS susceptibility) was enriched for 

reporters (see Table S11) with eQTLs in two hotspots (eQTL_HS9a(S) and 

eQTL_HS10c(S), Fisher’s exact test, FDR<0.05; Table 4) that co-localized with GLS 

severity QTLs, namely QTL9a and QTL10, respectively.  At both hotspot’s, the parental 

allele associated with higher expression (SC Malawi) was also associated with higher 

susceptibility (Table 4). 

Second, to identify genomic regions where genetic variation influences entire co-

expression modules, we performed “a posteriori network eQTL analysis” (Hansen et al., 

2008), further referred to as “module eigengene eQTL analysis”. The module eigengene 
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Table 5. Module eigengene eQTLs mapped for co-expression modules 

Module 

name 

Module 

eigengene 

correlation 
a

Chr Peak 

position 

(cM)b 

1-LOD intervalc 2-LOD 

intervald 

LOD 

scoree 

R2 f Additive 

effect g 

Allele h Overlapping 

GLS QTL 

 GY-s S 9 96.14 80.75 - 103.8 71.95 - 109.46 2.74 9.18 -0.03 SC QTL9a 

 GY-s S 10 117.64 111.89 - 126.13 107.48 - 129.65 2.83 9.03 -0.03 SC QTL10 

PT-s S 1 38.72 33.39 - 42.83 28.13 - 45.88 3.38 11.91 0.04 CML 

PT-s S 2 132.63 131.97 - 136.07 131.3 - 138.88 3.71 13.20 0.05 CML 

TQ-r R 7 55.45 51.05 - 59.09 47.6 - 62.45 3.04 11.51 -0.04 SC 

a “S” indicates that co-expression module had a positive correlation with GLS severity scores and “R” indicates that co-expression 

module had a negative correlation with GLS severity scores 

b Position of the module eigengene eQTL peak in cM 

c Range in cM that defines 1-LOD interval of eQTL 

d Range in cM that defines 2-LOD interval of eQTL 

e Log of odds (LOD) value at position of eQTL peak. The GY-s module eigengene on chromosome 9 was retained since it was close to the 

threshold of LOD=2.8. 

f Phenotypic variance explained by the eQTL (expressed as percentage) 

g Additive effect of eQTL. Positive values indicate that the allele associated with higher expression was derived from CML444 

h Parental allele associated with higher expression; CML = CML444; SC = SC Malawi 
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profiles of the gene co-expression modules were used as the traits in a QTL analysis 

(Table 5). For the GY-s module, two module eigengene eQTLs co-localized with the GLS 

phenotypic QTL9a (and eQTL_HS9a(S)) and QTL10 (and eQTL_HS10c(S)), respectively 

(Table 5). In both cases, the SC Malawi parental allele had higher expression and was 

associated with increased susceptibility. This corroborated the first meta-analysis that 

the reporters in the GY-s module had a significant number of eQTLs in trans-eQTL 

hotspots eQTL_HS9a(S) and eQTL_HS10c(S) (Table 4). 

Figure 2 is graphical representation of the GY-s module illustrating the overlap 

between phenotypic QTL9a or QTL10, trans-eQTL hotspots, and trans-eQTLs of 

reporters in the module.  Enrichment of GY-s reporters with trans-eQTL in hotspot 

eQTL_HS9a can be seen by the many blue links (track f) emanating from the dark blue 

line (hotspot eQTL_HS9a, track e; corresponding to 92-102 cM on chromosome 9, track 

a) that coincides with QTL9a (dark orange block, track c).  Likewise, enrichment of GY-s

reporters with trans-eQTL in the hotspot eQTL_HS10c can be seen by the many blue 

links (track f) emanating from the dark blue line (hotspot eQTL_HS10c, track e; 

corresponding to 114-121 cM on chromosome 10, track a) that coincides with QTL10 

(dark orange block, track c).  Two GY-s module eigengene eQTLs are shown as 

greenyellow bars in track (d) of the circos plot, and their positions correspond to GLS 

severity QTL9a and QTL10, respectively (dark orange blocks in track (c) of Figure 2). 

The PT-s module (correlated with susceptibility) was not enriched for reporters with 

trans-eQTLs in any of the trans-eQTL hotspots (Table S9). Two module eigengene eQTL 

were mapped for this module (on chromosome 1 and 2), however these did not coincide 

with GLS QTLs (Table 5), and therefore module PT-s was not investigated further in 

detail. 
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Figure 2. Genome view of transcriptional regulation underlying the grey leaf spot (GLS) susceptibility-
associated GY-s co-expression module in relation to GLS quantitative trait loci (QTLs) and expression 
QTLs (QTLs). 

(i) Detail of chromosomes 9 and 10 corresponding to the stippled box from (ii). 

(ii) The whole genome. (a) Chromosomes: the white lines represent 10-cM bins with the cM position for 
every second bin shown on the outside. (b) Reporters: the dots (black and green) represent the 185 
reporters in the GY-s co-expression module (Table S3). Green dots represent reporters with cis-eQTLs. (c) 
QTL: the dark orange blocks represent the eight GLS severity QTLs (Table 3). (d) Module eigengene eQTL: 
each colour bar represents module eigengene eQTLs for the co-expression modules that had significant 
absolute correlation with GLS severity scores, i.e. GY-s on chromosomes 9 and 10, PT-s on chromosomes 1 
and 2, and TQ-r on chromosome 7 (Table 5). (e) Global trans-eQTL density heatmap. Dark blue indicates 
trans-eQTL hotspots (Tables S7 and S9). (f) Links: trans-eQTLs of reporters in the GY-s co-expression 
module. A dot at the end of a link represents the position of a reporter and nothing at the end of a link 
represents the position of an eQTL. Red or blue links connect reporters with trans-eQTLs for which the 
parental allele associated with higher expression was CML444 or SC Malawi, respectively.  
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The TQ-r module was enriched for reporters with eQTLs in eight hotspots (Table S9), 

of which two overlapped GLS severity QTLs (eQTL_HS9a(R) and eQTL_HS9b(R); 

Table 4; see Table S12 for list of reporters). In both cases the parental allele with 

increased expression was positively associated with resistance (Table 4). For the TQ-r 

module, only one module eigengene eQTL was identified (on chromosome 7), but this 

did not overlap with a GLS severity QTL (Table 5; Figure 2, track d). However, it 

overlapped one of the trans-eQTL hotspots for which the TQ-r module was strongly 

enriched (trans-eQTL hotspot eQTL_HS7, adj. p-value = 8.E-26; Table S8).  These 

analyses provided some evidence for allelic variation at GLS QTLs underlying co-

expression of genes in the TQ-r module. 

Co-expression patterns in maize B73 challenged with C. zeina 

Co-expression analysis of the sub-tropical maize RIL population had revealed the GY-

s module as the only one with a highly significant correlation with GLS disease scores 

(r=0.71, FDR=4E-15; Table 1).  We therefore focused our attention on the susceptible 

response and asked the question whether any of the co-expression modules were 

enriched in the GLS susceptible response of maize inbred line B73. 

An independent field experiment at Hildesheim, KwaZulu-Natal was conducted with 

B73 challenged with C. zeina.  B73 is susceptible to GLS caused by C. zeina, therefore 

typical GLS disease lesions formed on lower leaves of B73 maize plants prior to 

sampling of leaves at 77 DAP for RNA extraction and RNAseq analysis (Methods S1).  

RNAseq gene expression data from B73 was obtained for 14,342 maize genes, 

and 2368 and 2079 genes were up- and down- regulated in response to C. zeina, 

respectively (FDR<0.05)(Table S13, Methods S1). Most notably, 55% of the reporters in 
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the GY-s module were also significantly up-regulated in B73 in response to C. zeina 

(Fisher’s exact test, FDR=6E-59)(Table 1).  Enriched GO terms in the 99 shared genes 

(corresponding to 103 microarray reporters) were lipid metabolite process and small 

molecule metabolite process (including key enzymes in the glyoxylate pathway – 

isocitrate lyase and malate synthase; Table S14.1), which were also enriched in the GY-s 

module (Table 2).  This “common susceptible response” also included genes encoding 

enzymes in diterpenoid/gibberellin biosynthesis, PR proteins, stress/detoxification, 

protein catabolism, hormone responses, secondary metabolism, signaling and 

transcription (Table S14.2, Table S3).  Interestingly, 59% of the (58) reporters in the GY-

s module with eQTLs that coincided with QTL9a or QTL10 correspond to genes that 

were also found to be induced in the B73-C. zeina dataset (Table S11).  

The TQ-r and four other co-expression modules not correlated with GLS disease 

in the RIL population (blue, royalblue, brown, tan; Table S15) showed enrichment of 

genes in the B73 susceptible response to C. zeina (FDR<0.05; Table 1), however they did 

not exhibit the high percentage of enrichment shown for the GY-s module (Table 1). 

From these results, we conclude that the overlap of 99 genes in the GY-s module 

and the B73-C. zeina data (i) represents a common susceptible transcriptional response; 

and (ii)   served to technically validate the microarray data in the RIL population using 

an independent technique (RNAseq). 

Kauralexins are induced in response to C. zeina in maize line B73. 

GO terms related to diterpenoid/gibberellin biosynthesis were enriched in the 

GY-s module, since reporters encoding three enzymes of the biosynthesis pathway (ent-

copalyl diphosphate synthase (An2), kaurine synthase (KS2) and a p450 kaurine 
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Figure 3. Kauralexins are induced by Cercospora zeina infection in susceptible maize line B73. 

(a) Analysis of total kauralexin accumulation and (b) relative expression of putative kauralexin biosynthetic genes ent-copalyl diphosphate synthase (An2), ent-
kaurene synthase (KS2) and a P450 ent-kaurene oxidase (KO), at 0 and 18 days post-inoculation (dpi) following inoculation of B73 plants with C. zeina GC-MS was 
used to determine the accumulation of total kauralexins. 

(b) RT-qPCR was used to determine relative expression of An2, KS and KO, normalised to reference genes Lugein and RNA polymerase II. In all cases the means of 
three samples are shown and bars on the graph indicate standard deviation. Asterisks above the graph indicate significantly different accumulation or expression in 
18-dpi samples compared with 0 dpi (unpaired t-test; P < 0.05). 
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oxidase) were co-expressed in the sub-tropical maize population (Table S3).  

Furthermore, these genes were induced 9-10 fold in C. zeina infected maize line B73 

(Table S13).  This raised the question as to whether co-expression of the pathway was 

the result of fungal manipulation of gibberellin biosynthesis to support disease or 

phytoalexin biosynthesis by the maize host. 

Maize B73 plants were inoculated with C. zeina in a glasshouse experiment, and 

samples collected prior to inoculation (0 dpi) and after the development of GLS disease 

lesions (18 dpi). RT-qPCR confirmed induction of all three diterpenoid biosynthesis 

pathway genes and chemical analysis showed accumulation of total kauralexins in 

response to C. zeina (Figure 3).  Kauralexins have anti-fungal activity (Schmelz et al., 

2011), and thus expression of the pathway is most likely a maize host defence response, 

albeit unsuccessful. 

DISCUSSION 

The systems genetics approach employed in this study enabled detailed exploration 

of the genetic architecture of gene expression in a sub-tropical maize RIL population 

(CML444 x SC Malawi) grown in the field under GLS disease pressure.  We utilized a 

range of filters to discriminate between responses to C. zeina challenge and other foliar 

traits.  First, gene co-expression network analysis revealed that three out of the 42 

modules were correlated with GLS disease scores.  Second, eQTL analysis identified four 

trans-eQTL hotspots that coincided with phenotypic QTLs for GLS severity. Third, meta-

analysis of co-expression modules, eQTLs, and phenotypic QTL data allowed 

identification of genomic regions harboring polymorphisms contributing to co-

expression modules GY-s and TQ-r as well as trait variation.  Finally, we uncovered a 
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Figure 4. Model of the transcriptional network associated with susceptibility based on the GY-s co-expression module and genes induced in maize line B73 by 

Cercospora zeina. 

Reporters are indicated by filled spheres or filled triangles (if the corresponding gene is also induced in B73 by C. zeina), and grouped according to functional categories 

noted in Table S3. Functional categories were further grouped based on whether their expression is proposed to be the result of putative fungal manipulation, defence 

responses or either. Reporters with trans-expression quantitative trait loci in hotspots 9a(S) or 10c(S) are shown with lines emanating from boxes labelled HS9a(S) or 

HS10c(S), respectively. 
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subset of 99 genes in the susceptibility-associated GY-s module that were up-regulated 

in the susceptible maize inbred line B73 in response to GLS measured with an 

independent technique, RNAseq. 

Many QTLs for GLS disease severity have been mapped in maize (Berger et al., 2014; 

Wisser et al., 2006), however very little is known of the molecular responses 

downstream of the recognition event leading to resistance or susceptibility.  This study 

uncovered a transcriptional network based on the GY-s co-expression module of 185 

reporters (representing 179 genes) that were highly correlated with GLS disease scores 

across the sub-tropical maize population.  Based on the functional processes and genes 

that were co-expressed, we propose a model of how the network may be the product of 

both manipulation by the fungus and maize defence responses (Figure 4).  

First, a suite of processes related to nutrient acquisition are co-expressed, 

particularly the glyoxylate pathway, dicarboxylic acid transport and lipid metabolism, 

which points to the conversion of lipid derived acetate into energy rich carbohydrates 

(Figure 4).  Genes involved in lipid metabolism and elements of the glyoxylate pathway 

(citrate synthase and isocitrate lyase) were shown to be induced during the 

necrotrophic phase of the wheat leaf pathogen Zymoseptoria tritici (Rudd et al., 2015).  

In this study, two SWEET sugar transporters were co-expressed, and several 

components of primary metabolism, as well as protein and nucleotide catabolism 

(Figure 4).  Sugar uptake has been shown to be important for virulence of other maize 

pathogens, namely Ustilago maydis and during the hemibiotrophic phase of 

Colletotrichum graminicola (Lingner et al., 2011; Schirawski, 2015).  A noteworthy 

maize gene in the network is an orthologue of At_WRKY75 involved in protection of 

Arabidopsis plants from phosphorus starvation (Devaiah et al., 2007). 
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Second, genes encoding maize defence responses are co-expressed in the network, 

namely three enzymes associated with maize kauralexin biosynthesis, 13 genes 

involved in secondary metabolism, several genes encoding PR proteins (chitinases, 

beta-1-3-glucanases, osmotins) or with the GO term “response to chitin” (Figure 4), 

including a MYB transcription factor and an orthologue of AtWRKY53, a positive 

regulator of basal defence responses (Murray et al., 2007).  PR protein and secondary 

metabolite pathway gene expression was also observed in susceptible wheat leaves 

infected with Zymoseptoria tritici (Rudd et al., 2015).  Expression of PR proteins was 

reported in the interaction between C. graminicola and a highly susceptible maize line 

(Vargas et al., 2012). 

Stress responses, such as chaperones, ABC transporters and glutathione-S-

transferases were also represented in the maize susceptibility network (Figure 4), 

illustrating the importance of detoxification in the response to C. zeina infection.  The 

phytotoxin cercosporin is considered to be a hallmark of GLS disease (Shim and Dunkle, 

2002).  Wisser et al., 2011 identified SNPs in a maize glutathione S-transferase gene 

explaining variation in response to GLS in a panel of diverse inbred lines by association 

mapping.  In our study, although the reporter (A-92_P031881) for this gene did not 

cluster with any of the co-expression modules, its expression was significantly 

correlated with low GLS scores (Table S1), and it had a large effect cis-eQTL (LOD = 

17.9) with higher expression associated with the CML444 allele (Table S7). 

Third, a set of processes that could fall into either category of responses was included 

in the network, namely signaling and transcription (Figure 4).  Calcium signaling is 

represented by two calmodulin-like proteins with triple EF-hand Ca+2 binding motifs, a 

calmodulin-binding protein, a calcium dependent protein kinase, and a calcium-
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dependent lipid binding protein.  Calcium signaling is central to plant immunity, and in 

Arabidopsis, calmodulin-like calcium binding proteins that are positive and negative 

regulators of defence gene transcription have been reported (Seybold et al., 2014). 

In Arabidopsis, jasmonate signaling leads to resistance to necrotrophic pathogens 

(Tsuda and Somssich, 2015), and the JASMONATE ZIM domain proteins (JAZ) are 

repressors of jasmonate response gene expression (Thines et al., 2007; Zhang et al., 

2015).  In our study, maize orthologues of Arabidopsis JAZ1 and two JAZ2-like proteins 

were co-expressed in the GY-s module (hormone signaling category, Figure 4), raising 

the intriguing possibility that they may be targets of effectors to promote susceptibility, 

as has been shown previously in Arabidopsis (Jiang et al., 2013).  Another maize gene in 

the GY-s module was an orthologue of the rice and Arabidopsis CHY RING zinc-finger 

domain proteins, the mutants of which show reduced stomatal aperture (Hsu et al., 

2014).  GLS pathogens enter maize leaves through stomata (Kim et al., 2011), thus this 

gene may represent another target of the pathogen to facilitate stomatal entry.  

 The model in Figure 4 illustrates that components of the susceptibility 

transcriptional network share trans-eQTLs in the hotspots that coincide with QTL9a 

and QTL10, which may indicate gene(s) that influence gene expression in the network 

(Table S11).  Parental line SC Malawi alleles at trans-eQTL hotspot HS9a(S) result in 

higher expression of two calcium signaling genes (Figure 4).  Interestingly, the only 

reporter in the network with a cis-eQTL that co-localizes with the susceptible allele of 

QTL9a and its trans-eQTL hotspot encodes a calmodulin-like protein (A_92_P037035) 

(Table S10).  Figure 4 illustrates that neither trans-eQTL hotspots are predominantly 

associated with responses grouped as fungal manipulation or maize defences, although 

trans-eQTL HS9a(S) is associated with eight reporters of lipid metabolism.  The three 

30



diterpenoid (kauralexin) biosynthesis reporters do not have trans-eQTLs in these 

hotspots, however they each have overlapping trans-eQTLs on chromosome 8 which 

may represent a site of co-regulation (Table S7). 

Finally, a significant proportion of genes in the network (55%) from the sub-tropical 

maize RIL population are induced by C. zeina in the susceptible temperate model maize 

inbred B73 (reporters corresponding to these genes indicated by triangles in Figure 4).  

These include both putative fungal manipulation targets, such as the glyoxylate 

pathway, lipid metabolism, dicarboxylic acid transport, and catabolic processes, as well 

as defense responses such as stress responses, PR proteins and secondary metabolism, 

including the three enzymes of diterpenoid biosynthesis.  In this regard, metabolite 

analysis showed a significant increase in the products of this pathway (i.e. kauralexins) 

in C. zeina infected B73 plants (Figure 3).   This result supports the hypothesis that 

induction of this pathway represents maize defence responses, since kauralexins have 

anti-fungal activity (Schmelz et al., 2011), rather than fungal manipulation of gibberellin 

biosynthesis.  A reason for the lack of effectiveness of kauralexins may be that C. zeina is 

able to detoxify, tolerate or even utilize kauralexins, similar to Gibberella pulicaris which 

detoxifies phytoalexins to enhance virulence on potato tubers (Desjardins et al., 1992). 

Genes involved in calcium signaling, transcription and hormone signaling are also 

common to the B73 susceptible response.  Taken together, this work has uncovered a 

transcriptional network associated with susceptibility to C. zeina in maize made up of 

candidate genes that may be targets of fungal manipulation, and defence response 

genes.  Expression of the latter group can be explained by two hypotheses, (i) anti-

fungal products that are ineffective at a late stage of pathogen establishment: or (ii) 

inappropriate “defences” that do not target C.  zeina, in an opposite fashion to 
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Pseudomonas syringae that promotes jasmonate signaling to suppress anti-bacterial 

salicylic acid signaling (Zhang et al., 2015). 

This study also identified a transcriptional network associated with resistance to GLS 

in maize, based on the TQ-r co-expression module, which may represent downstream 

events after recognition of the fungus in plants with resistance alleles on chromosome 9 

(QTL9a and QTL9b). This module had lower absolute correlation with GLS disease 

scores than the GY-s susceptibility module which may reflect the time of sampling (103 

DAP).  Resistant RILs may have mounted induced responses earlier in the season, which 

may have been dampened by 103 DAP, although GLS is a polycylic disease and therefore 

continuous inoculum pressure would be expected (Ward et al., 1999).  Nevertheless, 

suggestive resistance-related candidate genes were found to be expressed in the TQ-r 

network. 

A maize orthologue of Arabidopsis COI-1, the jasmonate receptor, had the highest 

module membership in the TQ-r network, which implicates jasmonate responses in 

resistance to GLS.  This fits the model that jasmomate signaling confers resistance to 

necrotrophs (and the necrotrophic phase of pathogens such as C. zeina) (Glazebrook, 

2005).  Further, our data fit the current biochemical model of jasmonate-induced gene 

expression described in Arabidopsis (Zhang et al., 2015), namely positive regulators 

(COI-1 and a paralogue) are co-expressed in the resistant module TQ-r, and negative 

regulators (three JAZ genes) are co-expressed in the susceptible module GY-s.  

Furthermore, in Arabidopsis, COI-1 is the F-box subunit of an SCF-type ubiquitin E3 

ligase.  The TQ-r module was enriched for the GO term “cullin-RING ubiquitin ligase 

complex” that included a quarter of all genes with this term, encoding an E3 ubiquitin 

ligase SCF-complex subunit SKP1, a SKP1-interacting protein, a SKP1-like protein, a F-

box protein, and 15 proteins with transducin/WD40 domains.  These include 
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orthologues of MAX2 and SCD1 of Arabidopsis, both of which are involved in stomatal 

aperture and defence responses (Korasick et al., 2010; Piisilä et al., 2015)(Table S6).   

Taken together, co-expression of these genes in the TQ-r network implicate 

ubiquitination and protein turnover in resistance to C. zeina, possibly via COI-1 and 

jasmonate responses (Nagels Durand et al., 2016). 

 Callose deposition in the form of local cell wall thickenings, called papillae, is a 

typical response of plants to fungal attack (Ellinger et al., 2013).  Hinch and Clarke 

(1982) documented callose formation in maize roots as a response to infection with 

Phytophthora cinnamomi.  Transgenic Arabidopsis expressing a callose synthase pmr4 

had elevated early callose deposition that halted penetration of the powdery mildew 

pathogen (Ellinger et al., 2013). More recently, PMR4 was shown to be an effector of a 

RabA4c GTPase required for callose biosynthesis (Ellinger et al., 2014). In our study, 

expression of a maize callose synthase was the most highly correlated with low GLS 

disease scores in the TQ-r module, and the module also contained a Rab GTPase 

(A_92_P009206).  Although these are not predicted to be the maize orthologues of pmr4 

and it’s GTPase partner, these results implicate callose biosynthesis in resistance 

conferred through the TQ-r module. The orthologue of Arabidopsis pmr4 

(A_92_P000970) together with three other callose synthases (A_92_P001619; 

A_92_P016646; A_92_P005832) (Table S1) had expression correlation with resistance 

(i.e. low disease scores), but they were not included in TQ-r. 

A limitation of the experimental design of our study was that we were unable to 

distinguish between constitutive or induced responses to C. zeina in the maize RIL 

population, since we captured both responses by sampling plants challenged with GLS 

disease in the field, and did not replicate the whole trial with fungicide treatments.   

However, allelic differences in both types of responses could be relevant to resistance or 
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susceptibility to GLS.  For example, a wheat lipid transfer protein was expressed 50-fold 

higher in the absence of pathogen in a line carrying a QTL for Fusarium resistance 

compared to the isogenic line lacking the QTL (Schweiger et al., 2013). 

In addition to the three co-expression modules correlated with GLS disease 

responses, we considered whether our data could reveal biological insights for other 

foliar traits.  Maize inbred line CML444 exhibits improved drought tolerance traits 

compared to SC Malawi, namely higher chlorophyll content, smaller leaves, higher 

photosynthetic capacity under water stress, and deeper roots (Messmer et al., 2009; 

Trachsel et al., 2009; Trachsel et al., 2010).  QTLs have been mapped for those traits in 

this population (Trachsel et al., 2010), and some of the leaf co-expression modules 

unrelated to GLS could reflect such allelic differences.  Interestingly, two of the trans-

eQTL hotspots identified in our study coincided with QTLs for early vigour traits 

described by (Trachsel et al., 2010), namely (i) trans-eQTL HS_5c (Table S9) which 

coincided with the QTL for leaf area and shoot dry weight in bin 5.08, and (ii) trans-

eQTL_HS_7 (Table S9) which coincided with a QTL for leaf chlorophyll content in bin 

7.03. 

Expression QTL analysis at the level of resolution provided by the CML444 X SC 

Malawi RIL population of 100 individuals and a genetic map with 167 markers revealed 

20,206 eQTLs for 12,725 reporters out of 19,281 reporters tested.  The number of 

eQTLs detected per reporter (1.6) is consistent with previous eQTL studies in maize 

which ranged from 1.1 – 3 (Schadt et al., 2003; Swanson-Wagner et al., 2009; Li et al., 

2013; Shi et al., 2007). Previous authors noted that the effect of cis-eQTLs were 

significantly greater than that of trans-eQTLs (Holloway et al., 2011; Li et al., 2013; 

Schadt et al., 2003; Swanson-Wagner et al., 2009), and we observed the same in our 

data with cis-eQTLs explaining on average a greater percentage of the variation in 
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expression than trans-eQTLs (30% vs 15%, respectively).  Several explanations have 

been put forward for the differences in the effect of each type of eQTL, for example (i) 

that major effect trans-eQTLs may be deleterious (Swanson-Wagner et al., 2009), or (ii) 

it is the result of ascertainment bias between cis-eQTL (only one possible locus) and 

trans-eQTL (multiple loci across the genome). 

We observed a striking pattern of parental allelic bias for 17 of the 21 trans-eQTL 

hotspots (Table S9), an observation also made in several previous eQTL studies (Li et 

al., 2013; Swanson-Wagner et al., 2009).   An explanation for this could be that one or 

more polymorphisms underlie the trans-eQTL hotspot with a particular parental allele 

or haplotype causing higher expression of the majority of the target genes with eQTLs in 

the hotspot.  

In conclusion, the identification of a transcriptional network associated with 

susceptibility to the pathogen causing GLS disease in maize that has elements in 

common between sub-tropical and temperate maize highlights potential targets of 

C. zeina effectors.  Our data also raises the hypothesis that the fungus exploits the host’s 

glyoxylate pathway and lipid metabolism to release energy rich carbohydrates.  

Involvement of the jasmonate pathway in resistance to C. zeina is supported by 

expression of the jasmonate receptor COI-1 and enrichment of ubiquitination processes 

in resistant plants, and co-expression of JAZ repressors in susceptible plants.  Further 

exploration of these hypotheses will require development of near-isogenic lines, fine-

mapping of large-effect eQTL and mutant/over-expression studies of candidate genes. 
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EXPERIMENTAL PROCEDURES 

Germplasm and field trials 

A recombinant inbred line population (145 RIL, F7:S6) derived from a cross between 

subtropical white dent maize inbred lines CML444 and SC Malawi (Messmer et al., 

2009) was planted at Baynesfield Estate in KwaZulu-Natal Province, South Africa. GLS 

disease severity data was collected at 92, 99, 109 and 116 days after planting (DAP) 

(Figure 1).  For the validation experiment, maize inbred line B73 was planted in three 

replicate rows of 10 plants each at Hildesheim Research Station, PANNAR SEED Pty Ltd, 

Greytown, KwaZulu-Natal, South Africa (Methods S1). 

RNA extraction and microarray analysis 

RNA was extracted from leaf samples of three biological replicates of 100 selected 

CML444 X SC Malawi maize RILs, sampled at Baynesfield at 103 DAP. Microarray 

expression data was obtained for 100 RILs after two-colour Cy-dye labeling of cDNA 

and hybridization to Agilent-016047 maize 4×44 K microarrays (Coetzer et al., 2011) 

(Methods S1). Microarray data have been deposited in the NCBI Gene Expression 

Omnibus (Accession # GSE76242). 

Gene co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) was performed as 

described previously (Langfelder and Horvath, 2008) with an R-script modified for this 

study (Methods S1, Methods S2). The input data matrix consisted of expression values 

of 30,280 microarray reporters for each of the 100 RILs. After normalization and 

filtering 19,281 reporters remained in the data set, representing 14,201 maize gene 
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models (Coetzer et al., 2011). The output of WGCNA was the identification of co-

expression modules and calculation of an “eigengene” for each module (a summary 

expression profile representing the module) (Langfelder and Horvath, 2008).  

A weighted average GLS disease score (WA) was calculated for the three replicates of 

each RIL. The weight for each of the four rating days were calculated as follows:  ((total 

number of days that span the sampling period (24)) – (the absolute value of the 

difference between 103 DAP (RNA sampling day) and DAP for the rating))/(total 

number of days that span the sampling period (24)), expressed as a proportion of the 

sum across the four ratings. The weighted average for each RIL replicate was then 

calculated by multiplication of the score at each rating by its weight, summed across the 

four ratings.  Thus, more weight was given to ratings that were closer to 103 DAP, the 

time point when samples were collected for RNA analysis (Figure 1).  The least square 

means of the weighted average GLS disease scores were used for correlation analysis 

with expression profiles.  Pearson correlation was used to determine the correlations 

between (i) the expression profile of each gene and the GLS disease scores (reported as 

gene significance (GS) scores); and (ii) each module eigengene with the GLS disease 

scores. P-values for the correlations mentioned in (ii) were calculated based on a 

resampling method (Methods S1). A p-value correction for multiple testing by 

controlling the false discovery rate (FDR) was conducted for all statistical tests in this 

paper (Benjamini and Hochberg, 1995). 

QTL mapping 

QTL mapping for GLS disease severity was conducted using the genetic linkage map 

QMap 2.0 (Berger et al., 2014) for the CML444 X SC Malawi population. QTL 

Cartographer (Basten et al., 1994) was used to map QTLs at each of the four ratings (92, 
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99, 109 and 116 DAP) using the least square mean values of the GLS disease scores.  A 

walking speed of 2 cM was used in composite interval mapping with forward regression 

and backward elimination (p-value=0.1). Permutation-based LOD score thresholds 

were calculated per rating to approximate α=0.05 experiment-wise (Churchill and 

Doerge, 1994). 

eQTL data analysis 

An eQTL data analysis pipeline (Figure S5; Methods S1) was developed in Python 

(http://www.python.org) to analyze microarray-based gene expression profiles for 

19,281 reporters in the maize leaf samples across 100 RILs of the CML444 X SC Malawi 

population. It was implemented in the online data analysis platform Galaxy 

(http://galaxyproject.org) (Giardine et al., 2005), which provides a user-friendly web-

based interface for command-line tools. The pipeline, available as three consecutive 

workflows via the Toolshed (http://toolshed.g2.bx.psu.edu), (i) determines the 

likelihood ratio (LR) threshold that corrects for genome-wide markers using 

permutation tests (Churchill and Doerge, 1994) via QTL Cartographer’s Zmapqtl 

module (Basten et al., 1994) and multiple e-traits (in this study, the 95th percentiles for 

105 randomly chosen e-traits were determined by 1000 permutations each, and the 

average LR of the 95th percentiles was taken as the “estimated experiment-wise 

threshold” (conversion LOD = 0.217 X LR)(Table S16)), (ii) maps eQTLs, using QTL 

Cartographer (Basten et al., 1994) (with parameters: walking speed of 2 cM; composite 

interval mapping; forward regression and backward elimination (p-value=0.1); 

estimated experiment-wise LOD threshold = 2.8), as independent parallel tasks using 

different nodes on a compute cluster; and (iii) classifies eQTLs as cis or trans (in this 

study eQTLs closer than 6.25 cM – half the average size of an eQTL – to its linked gene 
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were called cis-eQTLs) in order to identify significant trans-eQTL hotspots (by firstly 

calculating the genome wide frequency of eQTLs and then normalizing for local gene 

density).  R (R Core Team, 2014) was employed for statistical analysis and data 

visualisation (mainly in workflow iii). 

Meta analysis 

Fisher's exact tests with correction for FDR (Benjamini and Hochberg, 1995) were 

used to determine whether each co-expression module was enriched for genes with 

eQTLs in each trans-eQTL hotspot using a customized script in R (Methods S1, Methods 

S3). 

Module eigengene eQTLs were mapped using parameters described for the global 

eQTL analysis. A Circos diagram (Krzywinski et al., 2009) was constructed to visualise 

the integration of QTL, eQTL and co-expression data. 

Annotation and GO enrichment analysis 

The best Arabidopsis TAIR10 and maize annotations were retrieved from the Zea 

mays annotation file, which was released as part of Phytozome version 7.0 

(http://www.phytozome.net). Additional annotation information was obtained using 

Blast2GO and MapMan, which were used to manually classify genes into functional 

categories (Thimm et al., 2004). BiNGO (Maere et al., 2005) was used to identify 

enriched GO-terms (http://www.geneontology.org). 
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RNAseq, RT-qPCR and kauralexin analysis of maize inbred line B73 

RNAseq was conducted on leaf samples collected from B73 plants grown in the field 

at Hildesheim Research Station, South Africa.  Three biological replicates each of C. zeina 

infected leaves and control leaves were subjected to RNAseq separately using Illumina 

technology. Reads were mapped to v5b.60 of the Z. mays genome, transcripts were 

quantified using HTseq (Anders et al., 2015), and differential expression determined 

with edgeR software (Methods S1 and Methods S4) (Robinson et al., 2010).  RNAseq 

data have been deposited in the NCBI Gene Expression Omnibus (Accession # 

GSE81344). Fisher’s exact tests with correction for FDR were used to determine 

whether the co-expression modules were enriched for significantly induced or 

repressed genes in the B73 RNAseq experiment (Methods S1 and Methods S3).  

RT-qPCR and kauralexin analysis was conducted on maize B73 plants grown in a 

glasshouse.  At the V8-V10 stage the plants were leaf inoculated with C. zeina 

CMW25467 using methods described in (Korsman et al., 2012).  Three biological 

replicate leaf samples from independent plants were sampled at 0dpi and 18 dpi (after 

GLS lesions had developed), and subjected to RNA extraction and kauralexin 

quantification. Kauralexin extraction, derivitisation and GC-MS analysis was carried out 

according to (Schmelz et al., 2011). RT-qPCR analysis of putative kauralexin 

biosynthesis genes (GRMZM2G044481; AC214360.3_FGP001 and GRMZM2G161472) is 

described in Methods S1. 
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Methods S4. R-script for EdgeR analysis of maize B73 RNAseq data. 
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Appendix S1.  Legends for Supporting Material 

Figure S1 Systems genetics strategy.  

(A) Gene co-expression analysis, i.e. microarray gene expression profiles of leaf material from 

C. zeina-infected plants of the CML444 X SC Malawi maize RIL population were subjected to 

weighted gene co-expression analysis (WCGNA) to identify modules of co-expressed genes. 

Phenotypes (GLS disease severity measurements) across the same individuals were 

incorporated to identify co-expression modules that correlated positively or negatively with 

GLS severity. (B) Global eQTL analysis with the same microarray expression data was 

performed.  (C) QTL analysis for the phenotype (GLS severity) was carried out. (D) Overlap 

analysis to identify regions in the genome where GLS severity QTL overlapped with trans 

eQTL hotspots. (E) Meta-analysis combined co-expression analysis with the QTL/trans-eQTL 

hotspot overlap analysis in order to arrive at a genetic basis for the observed coordinated 

expression responses to GLS disease. 

Figure S2. Graph of eigengene values for GY-s and TQ-r gene co-expression modules in the 

maize RIL population.   The y-axis scale is the log expression values of the module eigengenes, 

and the x-axis scale is the GLS disease severity score for the 100 RILs of the CML444 X SC 

Malawi population.  The RILs have been sorted from the most resistant (GLS score = 1) to 

most susceptible (GLS score = 9)(left to right).   The green line represents the fitted regression 

line through the GY-s module eigengene log expression values, with deviations from the line 

shown by the filled green colour.  Reporters in the GY-s module are positively correlated with 

GLS severity across the RILs (correlation = 0.71; FDR-adjusted p-value = 4E-15), i.e. RILs with 

low GLS disease scores (resistant RILs) have with low module eigengene expression values, 

and RILs with high GLS disease scores have high module eigengene expression values.  

Reporters in the TQ-r module show the opposite behavior (correlation = -0.31; FDR-adjusted 
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p-value = 0.03), with a fitted regression line through the TQ-r module eigengene log 

expression values shown by a blue line, and deviations from the line shown by the filled blue 

colour. 

Figure S3 Genomic distribution of eQTL from the maize RIL population.  Scatter plot of the 

genomic relationships between eQTL positions (x-axis) and the corresponding expression 

trait (reporter) positions (y-axis) on the maize genome for the CML444 X SC Malawi maize RIL 

population grown in the field with GLS disease pressure. The figure was generated by the 

“classification” component of the Backend workflow of the eQTL data analysis pipeline. The 

color-key distinguishes between cis-eQTL (blue) and trans-eQTL (green). The ten maize 

chromosomes are separated by grey dashed lines. 

Figure S4. Trans-eQTL distribution and hot-spots in the maize RIL population.  Distribution of 

trans-eQTLs per cM and identification of trans-eQTL hotspots across the ten maize 

chromosomes for the CML444 X SC Malawi maize RIL population grown in the field with GLS 

disease pressure. This figure was generated by the “hotspots” component of the Backend 

workflow. The y-axis gives the number of trans-eQTLs per cM that was calculated per sliding 

window bin (x-axis). The horizontal line shows the permuted threshold (p-value < 0.05) for 

detection of trans-eQTL hotspots. Sliding window bins where the number of eQTLs per cM 

was above the permutation threshold and with significant eQTL excess compared to gene 

number (chi-squared test p-value< 0.0001), were declared as “unbiased” eQTL hotspots and 

marked in red. 

Figure S5. Flow diagram of the eQTL data analysis pipeline implemented in Galaxy, described 

in Methods S1. 
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Table S1.  Co-expression module membership of all 19,281 reporters and correlation of 

reporter expression with GLS disease scores across 100 RILs of the CML444 X SC Malawi 

population. 

Table S2. Co-expression modules identifed by WGCNA of microarray data from 100 RILs of 

the CML444 X SC Malawi population. 

Table S3.  Reporters in the GY-s co-expression module of the maize RIL population, and 

expression in B73-C. zeina. 

Table S4.  Reporters and enriched GO term in the PT-s co-expression module of the maize RIL 

population. 

Table S5. Reporters in the TQ-r co-expression module of the maize RIL population, and 

expression in B73-C. zeina. 

Table S6. Enriched GO-terms for the TQ-r module. 

Table S7. All eQTLs identified from microarray data from the CML444 X SC Malawi maize 

population. 

Table S8. Global eQTL summary and cis/trans-eQTL classification. 

Table S9. All trans-eQTL hotspots, and co-expression modules enriched for reporters in these 

trans-eQTL hotspots. 

Table S10.  Reporters with cis-eQTLs that overlap the GLS QTLs. 

Table S11. Reporters in the GY-s module with eQTLs in eQTL_HS9a(S) and/or 

eQTL_HS10c(S). 

Table S12. Reporters in the TQ-r module with eQTLs in eQTL_HS9a(R) and eQTL_HS9b(R). 

Table S13. Differentially expressed genes in maize inbred B73 challenged with C. zeina 

(RNAseq data). 

Table S14.1 GO enrichment of B73 genes significantly induced by C. zeina (RNAseq; 

FDR<0.05) that are present in the GY-s co-expression module 
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Table S14.2 Maize B73 genes significantly induced by C. zeina (RNAseq; FDR<0.05) that are 

present in the GY-s co-expression module 

Table S15. Comparison of co-expression module gene lists and list of DEGs in B73 challenged 

with C. zeina. 

Table S16.  eQTL permutation workflow output for 105 randomly selected expression traits. 

Methods S1. Additional experimental procedures. 

Methods S2. R-script for WGCNA of maize RIL population microarray data. 

Methods S3. R-script for Fisher’s Exact tests to determine whether co-expression modules 

were enriched for genes with eQTLs in trans-eQTL hotspots. 

Methods S4. R-script for EdgeR analysis of maize B73 RNAseq data. 
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