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Methods S1. Additional experimental procedures 

 

Maize field trials 

The CML444 and SC Malawi RIL population (145 RIL, F7:S6) (Messmer et al., 2009) was planted in 

December 2008 at Baynesfield Estate in KwaZulu-Natal Province, South Africa. The plot design was a 

randomized block with three replicates. Each replicate of a RIL was a row of 10 plants. RILs were 

inoculated at the six leaf stage by placing into the whorls 50g per plant of dry powdered maize leaf 

material collected from GLS infected maize in the previous season.  RILs were also exposed to natural 

inoculum from the environment since Baynesfield is a hotspot for the disease. GLS disease severity 

was scored on a per row basis using a 1-9 scale, where 1 and 9 represent no GLS disease and full GLS 

susceptibility, respectively (Berger et al., 2014).  The maturity of the maize RILs was between 

Reproductive 1 and Reproductive 4 over this period.  The PROC GLM procedure of SAS 9.3 (SAS 

Institute, Cary, NC) was used to calculate least square means of the GLS disease scores for each of the 

four ratings (92, 99, 109 and 116 days after planting (DAP)) using a mixed model approach 

considering replication as random effects and genotypes as fixed effects (Berger et al., 2014). These 

least square mean values were used to perform QTL mapping of the GLS disease phenotype (see later).  

For the validation experiment, maize inbred line B73 was planted in December 2012 in three 

replicate rows of 10 plants each at Hildesheim Research Station, PANNAR SEED Pty Ltd, Greytown, 

KwaZulu-Natal, South Africa.  Hildesheim is situated 96 km from Baynesfield Estate, and is a site of 

regular GLS disease screening due to favourable conditions for GLS disease, and therefore plants were 

subject to natural inoculum of C.zeina. 

 

RNA extraction and microarray analysis  

RNA was extracted from three biological replicates of 100 selected maize RILs at 103 DAP, sampled 

at Baynesfield Estate, KwaZulu-Natal in March 2009. The RNA from the three biological replicates of 

each of the 100 RILs was pooled to create 100 samples. Each biological replicate consisted of 10 cm X 

10 cm leaf pieces from two different plants in a RIL row.  Total RNA was extracted using Qiazol, treated 

with DNAse, and purified with RNeasy Plant Mini kit according to manufacturer’s instructions (Qiagen, 
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Hilden, Germany).  Total RNA was shown to be of good quality using an Agilent Bioanalyser (average 

RIN number = 7.7). 

The 100 RILs were selected out of the 145 that were planted using genotype data used for 

construction of the genetic map Q-Map 2.0 (reported in Berger et al., 2014), such that pairs of RILs 

with dissimilar genomes could be processed on fifty microarray slides, according to the “distant pair” 

experimental design for two-colour dye microarrays described by Fu and Jansen (Fu and Jansen, 

2006).  RNA was amplified from each of the 100 RIL samples using the Amino Allyl MessageAmpII 

aRNA Amplification kit (Ambion, Dallas, USA), labelled with either Cy3 or Cy5 (100 pmol each), and 

hybridized to Agilent-016047 maize 4×44 K microarrays. This microarray had previously been 

annotated based on the maize inbred B73 genome sequence annotations (Coetzer et al., 2011).  

The microarrays were scanned using a Tecan LS Re-loaded scanner (Tecan, Mannedorf, 

Switzerland).  Image acquisition and analysis was carried out using the GenePix Pro 6.1 software 

(Molecular Devices, Sunnyvale USA).  The Agilent RNA Spike-in kit (Agilent Technologies, Santa Clara, 

USA) was used.  The quality of each array was determined by evaluating probe spot, background spot 

and control spot intensity (Methods S1 Table 1).  There was high correlation between the expected 

and observed spike-in controls (0.992, Methods S1 Table 1).  Median background variance was low 

(less than 16%) and foreground spot median values were similar for both channels (2253 and 2456 

for Cy5 and Cy3 respectively, excluding flagged spots, Methods S1 Table 1). Normalization of the 

expression data was performed in the R-based software package limma (Smyth, 2004), with a 

weighting of zero for flagged spots. Background correction was performed using the normexp method 

(offset =50) (Ritchie et al., 2007). The loess method was used for normalization within arrays and 

Aquantile for normalization between arrays (Yang and Thome, 2003). After normalization, 50 datasets 

of M and A values represented the expression data from 100 RILs. Back-conversion of the normalized 

data was required to obtain separate expression values per reporter for each of the 100 RILs, by 

solving simultaneously for R (Red intensity; Cy5 channel) and G (Green intensity; Cy3 channel) from 

the formulas   
 

 
         and       (

 

 
), yielded   √

   

   and   √     . Out of the 42,034 

maize gene reporters on the Agilent arrays, after removal of flagged reporters, back-converted 
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intensity expression profiles for 30,280 reporters across the 100 RILs were obtained.  Microarray data 

have been deposited in the NCBI Gene Expression Omnibus (Accession # GSE76242). 

 

Methods S1 Table 1. Quality control summary of microarray data from 100 maize RILs 

  Min. 
1st 

Quartile 
Median 

3rd 

Quartile 
Max. 

% flagged spots 43 51 54 58 69 

Variance in Cy5 background 6.5 9.9 12.6 32.2 175.1 

Variance in Cy3 background 3.1 6.3 15.6 20.9 70.4 

Mean Cy5 intensity (including flagged spots) 209 897 1115 1477 3808 

Mean Cy5 intensity (excluding flagged spots) 512 1959 2253 2969 6808 

Mean Cy3 intensity (including flagged spots) 323 823 1192 1498 2653 

Mean Cy3 intensity (excluding flagged spots) 795 1821 2456 3094 5018 

Cy5 negative controls that are not flagged (%) 0 0 0 0.7 2.6 

Cy3 negative controls that are not flagged (%) 0 0 0 0.7 2.6 

Correlation coefficient between expected and 

mean observed Agilent spike-in controls: 
0.871 0.988 0.99 1 1 

 

Gene co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) was performed as described previously 

(Langfelder and Horvath, 2008) with an R-script modified for this study (Methods S2). The input data 

matrix consisted of expression values of 30,280 microarray reporters for each of the 100 RILs. Prior to 

the analysis, the expression values for each reporter were normalized relative to the mean value for 

that reporter across the 100 RILs, and then log10-transformed. A filtering step removed reporters with 

zero variance as well as those with more than 50% missing entries. The best estimate soft-

thresholding power (β) for this dataset was 12, since this was the lowest power for which the scale-

free topology fit index was above 0.8 (Zhang and Horvath, 2005). The minimum module size was set to 

30.  The output of WGCNA was the identification of co-expression modules and calculation of an 

“eigengene” for each module (a summary expression profile representing the module) (Langfelder and 

Horvath, 2008).  In addition, module membership (MM) scores (scale of 0-1) are calculated for each 

gene, which represent the correlation of each gene with the eigengene for each module. Candidate 

module hub genes were identified, by ranking the reporters within each co-expression module by their 
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MM scores. A hub gene is expected to have a similar gene expression profile to the module eigengene, 

since it is highly co-expressed with many of the genes in a module.   

To determine whether module eigengenes were significantly correlated with GLS disease scores, a 

permutation approach was followed. For each of the 42 modules, resampling (10,000 iterations) without 

replacement, of the GLS scores across the 100 RILs was performed in R. For each permutation the 

correlation coefficient between the permuted GLS scores and the module eigengene expression values was 

calculated. The resulting collection of correlation coefficients (for a specific module) represented the null 

distribution of the test statistic for that module, and the p-value was calculated as the proportion of these 

correlation coefficients that was greater than or equal to the absolute value of the observed correlation 

coefficient (using the actual data). Calculated p-values were adjusted for multiple testing by controlling the 

false discovery rate (Benjamini and Hochberg, 1995). 

Fisher’s exact tests (Upton, 1992) were used to determine whether each co-expression module with 

a significant correlation to GLS disease (Table 1) was enriched for genes that were either significantly 

induced (FDR<0.05) or significantly repressed (FDR<0.05) in the susceptible interaction RNAseq 

experiment. Lists of maize gene IDs were extracted per co-expression module, based on the reporter - 

gene model annotation from the Maize microarray annotation database (Coetzer et al., 2011). Two 2x2 

contingency tables were created per co-expression module, with the number of successes defined as 

the number of genes that were significantly induced or repressed, respectively, in the RNAseq 

experiment. Fisher’s exact tests were performed with the fisher.test() function in R (R Core Team, 

2014) and the resulting p-values were adjusted for multiple testing by controlling the false discovery 

rate (Benjamini and Hochberg, 1995). 

 

eQTL data analysis pipeline developed in Galaxy. 

An eQTL data analysis pipeline (Figure S5) was developed as part of this study. It was implemented 

in Python and R, and developed as three consecutive workflows in the online data analysis platform 

Galaxy (http://galaxyproject.org).  The eQTL data analysis pipeline is available through Galaxy 

(Giardine et al., 2005) via the Toolshed (http://toolshed.g2.bx.psu.edu). 

http://galaxyproject.org/
http://toolshed.g2.bx.psu.edu/
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 The first workflow, called the eQTL permutation workflow (Figure S5A) is designed to determine 

the likelihood ratio (LR) threshold that corrects for genome-wide markers and multiple e-traits. It 

allows the user to specify the number of traits to permute and the number of permutations per trait. 

After randomly selecting the specified number of traits from the e-traits input file, these traits are 

equally divided into 40 sub-files for independent parallel computing. Zmapqtl (QTL Cartographer’s 

composite interval mapping module) permutes the trait values and the genotypes per selected e-trait, 

and calculates the global maximum likelihood ratio (LR) per permutation. The pipeline then integrates 

the global maximum LR results by calculating the 95th percentile LR per e-trait (Table S16); and 

calculates an estimated experiment-wise LOD threshold (derived from average of all the calculated 

maximum LR thresholds) (Table S16). To convert LR to LOD values, LOD=0.217xLR is applied. 

The second workflow, called the eQTL mapping workflow (Figure S5B), splits the entire expression 

traits (e-traits) file into 40 sub-files; identifies eQTLs by running QTL Cartographer as 40 independent 

parallel tasks using different nodes on a compute cluster; and concatenates the 40 eQTL result files 

after the parallel runs. The workflow permits the setting of several parameters, including the model 

for stepwise regression, the model for interval mapping, the walk speed and the likelihood ratio (LR) 

threshold (as determined by the permutation workflow; Figure S5A). It also allows the inclusion of 

“other traits”, so that factors that are potential confounders can be eliminated in the regression 

analysis.  

The third workflow, called eQTL backend workflow (Figure S5C), aims to classify eQTLs as cis or 

trans and to identify eQTL hotspots. As eQTLs have centimorgan (cM) positions and genes (or 

microarray reporters) have base pair (bp) positions, firstly, the genetic and physical maps are linked. 

The resulting lookup table is used to proportionally estimate a cM-based position for each gene. 

Secondly, cis/trans-eQTL classification is carried out.  An eQTL that is located within a distance of half 

the average size of an eQTL from the location of its linked gene is classified as cis, and an eQTL that is 

located further than half the average size of an eQTL from the location of its linked gene, often on a 

different chromosome, as trans (see below for discussion of cis/trans eQTL classification). The average 

size of an eQTL was 12.5 cM for the current study so a distance of 6.25 cM from a reporter was used 

for cis-eQTL classification. 
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Thirdly, to identify trans-eQTL hotspots, the frequency of trans-eQTLs and genes throughout the 

genome are calculated per 2 cM bin. eQTL peaks and gene models are counted per sliding window 

(consisting of two or three 2 cM bins). Fourthly, with this information available, two tests are 

conducted: (i) whether the trans-eQTL frequency is higher than that expected by chance, and (ii) 

whether gene density is an explanatory factor for trans-eQTL hotspots. In (i) mentioned above, the 

expected maximum number of trans-eQTL peaks per cM is calculated with a permutation approach. 

Each of the identified eQTLs are randomly assigned to 1 cM of the total number of cM on the map, and 

the resulting maximal number of eQTLs per bin is stored. The procedure is repeated 1000 times and 

the threshold corresponding to 95% of the obtained distribution established (Potokina et al., 2008). 

This serves as a threshold to test if the trans-eQTL frequency per sliding window is significantly high. 

Sliding windows for which the number of trans-eQTL peaks per cM is above the permutation threshold 

are marked as potential trans-eQTL hotspots. In (ii) mentioned above, the proportion of genes to trans-

eQTL peaks per cM is calculated for each sliding window. Here the null hypothesis, which is tested for 

each sliding window, is that the proportion of genes to trans-eQTL peaks in a specific sliding window is 

the same as the proportion of genes to trans-eQTL peaks across the whole genome, i.e. that the number 

of trans-eQTLs can be explained simply by local gene density. Sliding windows for which the null 

hypothesis is rejected, thus with a significant trans-eQTL excess or deficiency compared to gene 

number, are identified (chi-squared test p-value <0.0001). Finally, sliding windows with (i) the 

number of trans-eQTL peaks per cM that are above the permutation threshold and (ii) significant 

trans-eQTL excess compared to gene number, are called “unbiased” trans-eQTL hotspots. Adjacent 

sliding windows that meet the specified hotspot criteria are merged to form larger hotspot regions. 

Fifthly, a GO over-representation analysis is conducted on each identified hotspot using the TopGO 

R package (Alexa and Rahnenfuhrer, 2010). A Fisher’s exact test is applied and significant GO-terms 

(http://www.geneontology.org) per trans-eQTL hotspot are listed in an output file. In an additional 

optional step, each hotspot is split according to the parental allele associated with higher expression 

and further GO over-representation analyses are performed on the resulting subsets. 

 

http://www.geneontology.org/
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eQTL data analysis pipeline input files 

The e-traits file consisted of microarray-based gene expression profiles for 19,281 reporters in 

maize leaf samples across 100 RILs. Functions from Windows QTL Cartographer were used to convert 

the linkage map and cross information into a map file and a cross file, respectively, suitable for the QTL 

Cartographer modules Rcross, SRmapqtl and Zmapqtl. eQTL mapping was performed using the 

parameters mentioned above for QTL mapping. Sequences of all 10 chromosomes (in FASTA format) 

of the maize B73 reference genome (RefGen) v2 (Schnable et al., 2009) were downloaded from the 

maizesequence.org FTP site (http://ftp.maizesequence.org/current/), in order to construct the 

chromosome length file. To generate the markers file, the MaizeGDB locus lookup tool (Andorf et al., 

2010) was used to extract the physical positions of most markers. In cases where the physical 

coordinates on the B73 genome sequence were not available, primer or marker sequences were 

downloaded from MaizeGDB (http://www.maizegdb.org) and located on the maize B73 reference 

genome v2.0 using the basic local alignment search tool (BLAST) (Altschul et al., 1990). The gene 

positions file consisted of the reporter start and end bp positions, which was extracted from the Maize 

Microarray Annotation Database (Coetzer et al., 2011). In order to generate a suitable gene2GO 

mapping file for GO enrichment analysis, the Zea mays V5a GO annotation file was downloaded from 

the AgriGO website (http://bioinfo.cau.edu.cn/agriGO/). 

 

Cis/trans-eQTL classification implemented in eQTL data analysis pipeline 

Previous global eQTL mapping studies in plants implemented 3.5 – 10 cM windows around gene 

loci to define cis-eQTL (Holloway et al., 2011; Potokina et al., 2008; Swanson-Wagner et al., 2009; West 

et al., 2007), whereas others called cis-eQTL if the gene was within the eQTL support interval or the 

genetic map bin containing the eQTL peak (Drost et al., 2010; Keurentjes et al., 2007; Shi et al., 2007; 

Wang et al., 2010). In our study we chose to apply a rule for defining cis-eQTL by calculating the 

average genetic interval size of eQTLs across the study, which was 12.5 cM.  We then scored  cis-eQTL 

as those that were within half the interval size of the gene exhibiting the cis-eQTL (6.25 cM).  This 

approach is therefore dependent upon the resolution of the study at hand and the key parameters, 

namely population size and statistical test applied to detect eQTL.  The principle can therefore be 

http://bioinfo.cau.edu.cn/agriGO/
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applied consistently across eQTL studies.  We defined trans-eQTL the same way as most authors, 

namely those eQTL on the same or different linkage group that did not overlap with a gene’s cis-eQTL 

interval (Holloway et al., 2011; Keurentjes et al., 2007; Li et al., 2013). Other authors chose a stringent 

definition of trans-eQTL as only those on different linkage groups (Kloosterman et al., 2012; Swanson-

Wagner et al., 2009), however this creates an additional category of eQTL and does not account for 

trans-regulated genes on the same linkage group. 

 

Meta analysis to integrate co-expression, eQTL and phenotypic QTL data 

The centimorgan (cM) positions of the phenotypic GLS QTL and trans-eQTL hotspots on Q-Map 2.0 

for the CML444 X SC Malawi RIL population (Berger et al., 2014) were used to determine if there was 

overlap between them.  In addition a permutation test was conducted to establish how many overlaps 

would be significant.  The calculation took into account that the average size of a  trans-eQTL hotspot 

was 7 cM (which divided the genome in 266 bins), and the average size of a QTL was 14 cM. The 

calculation was conducted as follows: (i) Each of the 21 hotspots was randomly assigned to one of 266 

bins on the genome (without replacement). (ii) The start bin of each of the 8 QTLs was also randomly 

assigned to one of the 266 bins on the genome and the adjacent bin to the right was also selected as a 

QTL bin. (iii) The number of bins selected to be both a “hotspot bin” and a “QTL bin” was stored (the 

number of overlaps). (iv) This process (i)-(iii) was repeated 10,000 times and finally the 95th 

percentile was calculated (the expected number of overlaps).  

Fisher’s Exact tests were applied to search for over-representation of genes in each co-expression 

module with genes in each trans-eQTL hotspot.  The gene lists for each trans-eQTL hotspot were split 

into two sub-lists based on which allele was associated with higher expression, since we had observed 

parental allele directional bias (Table S6).  Analysis of gene sets based on directional expression is an 

approach highlighted by Väremo et al (Varemo et al., 2013). Fisher's exact tests were used to 

determine whether each co-expression module was enriched for genes with eQTLs in a common trans-

eQTL hotspot using a customized script in R (Methods S3). Thus for a specific co-expression module, 

the proportion of reporters with eQTLs in a given trans-eQTL hotspot was compared to the proportion 

of reporters in the genome (all reporters included in the analysis, i.e. 19281) with eQTLs in that trans-
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eQTL hotspot. Therefore, for each of the 8 co-expression modules significantly correlating with GLS 

severity, 42 tests were performed (21 hotspots were split according to the parental allele associated 

with higher expression). The p-values were adjusted for multiple testing by controlling the false 

discovery rate (Benjamini and Hochberg, 1995) (Table S9).  

“A posteriori network eQTL” analysis (as named by Hansen et al., 2008) was carried out as follows: 

the module eigengene expression profiles of the eight gene co-expression modules correlating with 

GLS severity (Table 1) were extracted, using functions from the WGCNA package in R. Module 

eigengene eQTLs were mapped using QTL Cartographer with parameters described above for the 

global eQTL analysis. The estimated experiment-wise LOD threshold (LOD=2.8) for eQTL mapping was 

applied.  

 

RNAseq analysis of maize inbred line B73 

Maize inbred B73 plants were planted in three replicate rows of 10 plants each at Hildesheim 

Research Station, PANNAR SEED Pty Ltd, Greytown, KwaZulu-Natal in December 2012.  The plants 

developed typical GLS disease symptoms initiating at the lower leaves and progressing to upper leaves 

through the season.  GLS disease was scored for each replicate row of B73 plants at five intervals from 

66-103 DAP using the 1-9 scale described above.  At 77 DAP, with the plants at VT stage of 

development, the average GLS scores were between 4 to 5 with well-developed lesions on lower leaves 

(average of 8% lesion surface area determined by digital image analysis as described in Korsman et al., 

2012) but very few lesions and only at chlorotic stage on leaves above the ear (average of 0.2% lesion 

surface area) (Methods S1 Figure 1a).  Therefore, to collect material that reflected a difference 

between C. zeina infected B73 leaves and control B73 leaf material, samples were collected from two 

lower leaves (second and third leaf internode below ear), and two upper leaves (second and third 

internode above ear), respectively, from three biological replicate plants. Methods S1 Figure 1a 

illustrates the difference in symptoms between upper and lower leaf samples.  Leaf samples were 

collected and total RNA was isolated as described above for the maize RILs.  However, prior to RNA 

extraction the leaf powder of each sample which had been crushed in a frozen mortar and pestle in 

liquid nitrogen, was mixed thoroughly and a sub-sample of 5g was removed for fungal gDNA 
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quantification using a C. zeina species specific qPCR assay previously developed in the group (Korsman 

et al., 2012). Methods S1 Figure 1b shows that there is a significantly greater amount of C. zeina gDNA 

(as a proxy for fungal biomass) in the lower leaf samples compared to the upper leaf samples, which 

had very low but detectable amounts of C. zeina gDNA.  The upper leaves had a few chlorotic spots 

indicative of early stages of fungal invasion (indicated by arrows in Methods S1 Figure 1ai), however 

were sufficiently devoid of GLS symptoms to serve as a control for comparison to lower leaves with 

severe GLS lesions (Methods S1 Figure 1aii). 

RNA integrity of the six maize samples was confirmed using an Experion™ Automated 

Electrophoresis System (Bio-Rad Laboratories Ltd., Hercules, USA) using Experion™ RNA StdSens 

Analysis Kit (Bio-Rad Laboratories Ltd., Hercules, USA) before sending to BGI Tech Solutions Co., Ltd. 

(Beijing Genome Institute; Hong Kong) where 200 bp short-insert libraries were prepared.  Strand 

specific RNA-sequencing of libraries was performed on Illumina HiSeqTM 2000 with a 100 bp paired-

end module (Illumina Inc., San Diego, USA).    
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Methods S1 Figure 1. Gray leaf spot (GLS) disease symptoms (a) and quantification of Cercospora 

zeina infection in field grown B73 maize plants (b). 

(a) Representative upper and lower leaves of field grown B73 maize plants infected with C. zeina. 

Samples were photographed at 77 days after planting. (i) The upper leaf displays small, immature 

lesions (arrows) characteristic of early GLS disease symptoms.  (ii) Rectangular, mature lesions were 

visible on the lower leaf which indicates a late stage of GLS disease. (b) The qPCR assay was used to 

quantify fungal gDNA expressed as ng C. zeina gDNA per mg maize gDNA (Korsman et al., 2012) of all 

biological replicates of upper and lower leaves of the same field grown B73 maize plants used for RNA 

extraction and represented in (a).  The asterisk (*) represents a significant difference between samples 

(T-test, p<0.05).  Standard errors are illustrated by error bars. 

 

ii. Lower leaf: severe C. zeina infection i. Upper leaf: early C. zeina infection 
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Differential gene expression analysis of B73 RNAseq data 

The quality of the raw sequence data was assessed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Data were then filtered to remove 

adapters and trimmed for quality using Trimmomatic to remove adapters, to remove the leading low 

quality 3 bases, to scan the read with a 4-base wide sliding window, cutting when the average quality 

per base drops below 15, and to drop reads below 36 bases long (Bolger et al., 2014)(v0.30; settings 

TruSeq3-PE-2.fa:2:30:10 LEADING:3 SLIDINGWINDOW:4:15 MINLEN:36). Methods S1 Table 2 reports 

the number of filtered RNAseq reads for each sample. 

 

Methods S1 Table 2  RNAseq reads for B73 samples after filtering. 

Sample Insert size 

(bp) 

Read 

length (bp) 

Raw reads Clean (filtered) 

reads 

B73 (upper leaf)(control) Rep 1 200 90 28,517,956 26,295,478 

B73 (upper leaf)(control)  Rep 2 200 90 28,516,418 26,408,614 

B73 (upper leaf)(control)  Rep 3 200 90 28,517,626 26,005,796 

B73 (lower leaf) (C. zeina infected) Rep 1 200 90 28,517,456 26,795,094 

B73 (lower leaf) (C. zeina infected) Rep 2 200 90 28,516,650 26,502,110 

B73 (lower leaf) (C. zeina infected) Rep 3 200 90 25,924,952 24,690,360 

 

Filtered reads were aligned to v5b.60 of the Zea mays genome (Andorf et al., 2016) using GSNAP to 

output in SAM format using 15-kmer length, both genome and the suffix array were loaded into 

memory (Wu and Nacu, 2010) with the following setting: -n 3 -A sam --quality-protocol illumina -B 5 -

k 15 --maxsearch 50  -t 16  -N 1 --split-output output_file--no-sam-headers --force-xs-dir. The longest 

transcript gene structure in the Z. mays annotation GFF3 file (Andorf et al., 2016) was used to estimate 

the transcript abundance in each locus by Htseq (Anders et al., 2015) (http://www-

huber.embl.de/users/anders/HTSeq/doc/overview.html).  

Read counts were imported into R v3.1.0 (R Core Team, 2014) using the Bioconductor v2.14 

(Gentleman et al., 2004) edgeR  package v3.6.8 (Robinson et al., 2010) to calculate normalised read 

counts and perform differential expression analysis. RNAseq samples made up a paired design 

experiment, with lower leaf tissue (C. zeina infected) and matched upper leaf tissue (control) from 

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
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three plants. We used the GLM (generalized linear models) function in edgeR to account for any 

differences between the plants. The R code is available in supplementary file Methods S4.   

 

Glasshouse trial of maize B73 for RT-qPCR and Kauralexin analysis 

Maize inbred line B73 plants were grown in pots containing a sand/coir mix (1:1) in a greenhouse 

set to 21 +/− 5°C and 60% relative humidity.  Leaves of plants at the V8-V10 stage were inoculated 

with C. zeina as previously described (Korsman et al., 2012).  A 10cm2 area surrounding the 

inoculation point was harvested immediately (to represent 0 dpi) or after 18 days, at which time 

lesions had developed.  Both inoculation treatments were carried out on three plants in order to 

sample three biological replicates.  Leaf samples from each plant were subjected to both RNA 

extraction (as described above) or kauralexin extraction.  Kauralexin extraction, derivitisation and GC-

MS analysis was carried according to (Schmelz et al., 2011).  The Maxima First Strand cDNA Synthesis 

Kit for RT‐qPCR with dsDNase (Thermo Scientific, Waltham, USA) was used to generate cDNA from 

one μg of total RNA.  Primers targeting An2 were obtained from (Schmelz et al., 2011).  Primers were 

designed to target AC214360.3_FGP001 (ent-kaurene synthase, KS) and GRMZM2G161472 (putative 

kaurene oxidase, KO) as follows: KS-F: 5’- ACTCATCTCCGCTCACGAAT-3’; KS-R: 5’-

ACCGGGGAGTTGATCTTCTT-3’; KO-F: 5’- GAAGCATCCAGGCAGTGAAC-3’; KO-R: 5’- 

GAGGTACACATGCAACGGGT-3’.   RT-qPCR was carried out using KAPA SYBR® FAST qPCR Kit (Kapa 

Biosystems, Boston, USA) on the Rotor-Gene™ 6000 11 instrument (Corbett Life Science, Sydney, 

Australia).  All samples were analysed by RT-qPCR in triplicate.  Relative gene expression was 

normalized using the reference genes Lugein (Manoli et al., 2012) and RNA Polymerase II (Ma et al., 

2006) using qBase+ (www.biogazelle.org). An unpaired t-test was used to determine significantly 

different expression between the 0dpi and 18dpi samples.   
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