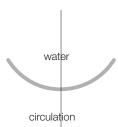

5. DESIGN ENRICHMENT

In this chapter the technology that is used to realise the spatial principles of Chapter 4 is elaborated on. Technology is unpacked in materials and composition. The Material Library Table onpg. 90 is a compilation of significant materials in the design and their intrinsic values. The table forms the vocabulary that articulates the relationship between the materiality of the spaces and their natural environment. These values range from the quantitive to the qualitative and are arranged in a manner that highlights each material's relation to the natural elements of water and the sun. Of this compilation of materials, concrete is elaborated on for its critical role as water container in the scheme and clay brick technology is further investigated for the value it adds to the relationship between city users and their natural environment. The pallet of materials are then brought into composition at critical points in the design to illustrate the concepts that drive the experience of and connections between the materials.

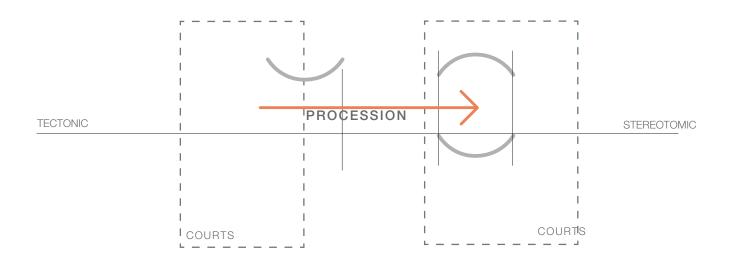
5.1. MATERIALS

The **water plane** is a **monolithic concrete element**. The rationale of the water container gives form to its navigation which in turn conceals and erodes the container according to the programmes in its adjacent courtyards. A **brick skin mediates** the interstitial spaces between the courts, users and the water plane. The modular nature of the brick plane allows a plastic manipulation of the skin to facilitate interaction with the water reservoir and its users.


-													
	C10			NOTES			CONCRETE IS STEREOTOMIC AND DOES NOT DISCLOSE ITS INNER WORKINGS. ITS SURFACE LAYER WITHOLDS AN UNDERSTANDING OF ITS	COMPOSITION AND HOW IT WORKS AND PORTRAYS ITS CONGLOMERATE	NATURE. THE QUALITY OF THE CONCRETE SURFACE	CHARACTERISES THE SPACE AS A WHOLE AND IS PREDISPOSED TO THE ABSTRACT. CONCRETE	IS MALLEABLE DURING CONCEPTION BUT TURNS INTO ROBUST MATERIAL WHEN CAST GIVING IT A	SENSE OF PERMANENCE.	BRICK MASONRY IS A WEAVED STERE- OTOMY WITH A NETWORK OF JOINTS IN THE BRHYTHMIC ROWS OF KNOTS. THIS GIVES RHYTHMIC ROWS OF KNOTS. THIS GIVES T A RICH T A RICH SHADOWS CAST ON THIS NETWORK OF COUNTLESS JOINTS. WHEN BRICK IS MADE FROM THE EARTH T GIVES FORM TO, IT BECOMES OF THE PLACE AND A CONTEXTUAL INTERVENTION. THE FORM OF BRICK IS CHARACTERISED BY MOD- OF BRICK IS CHARACTERISED BY MOD- ULARITY
	C9			THERMAL MASS (KJ/M3.K)	THE ABILITY OF A MATERIAL TO STORE HEAT. BUIDENDING MASS PROVIDEL THERMAL DAMPING		-	2	2060	2			1380
	C8	SUN		SPECIFIC HEAT CAPACITY J/(KG K)		1000			1000				1000
	C7			THERMAL CONDUC- TIVITY W/(M K)	THE RATE AT WHICH HEAT PASSES THROUGH A SPECIFED MATERIAL.	0.23	F		1.15 2.0 2.5 2.5				0.44
	C6			DENSITY KG/M3	A HIGH DENSITY INDICATES A HIGHER HEAT CONDUCTIVITY CONDUCTIVITY CONDUCTIVITY LOW DENSITY MATTERIALS MAY CONTAIN AR WHICH ALOW A LOW	100	r L		1800 2400 2300 2400				1000-2400
	C5			WATER VAPOUR RESISTANCE FACTOR	WATER VAPOUR IS TRANSPORTED THROUGH POROUS MATERIALS PREDMINANTLY BY VAPOUR EY VAPOUR	000 nc	r L		100 120 130				16 20
	C4	WATER		PERMEABILITY				IT IS POROUS AND PERMEABLE. WATER COMPROMISES THE DURABILTY OF A CONCRETE	STRUCTURE AND IS SUBJECT TO DETERIORATION WHEN WATER AND WATER BORNE CHEMICALS	PENETRATES IT. CONCRETE IS WATERPROOFED WITH A BITUMINOUS LAYER.			BRICK IS POROUS AND PER- MEABLE AND HAS GRADES OF EFFLORESENCE. THE AVERAGE WATTER AB- SORPTION OF CLAY BRICKS IS BETWEEN 6-14%. BRICK CAN BE WATTERPROOFED WHEN A SILICA FRIT IS APPLIED AS FLUID AFTER WHICH IT IS AR FLUID AFTER WHICH IT IS FIRED TO FORM A WATTERPROOF PROTECTIVE LAYER OF GLAZED CERAMIC FROM.
	S			APPEARANCE AND TOUCH			CONCRETE DARKENS TEMPORARILY IN COLJOUR WHEN WET AND PERMANENT STAINING MAY BE CAUSED BY THE FLOW OF RAINWATER WHICH COLLECTS AND DEPOSISTS DIRT, WET CONCRETE'S TEXTURE REMAINS UNALTERED.						BRICK DARKENS TEMPORARILY IN COLOUR WHEN WET AND PERMANENT STANING MAY BE CAUSED BY THE FLOW OF RAINMATER WHICH COLLECTS AND DEPOSISTS DIRT WHICH IS LESS OBVIOUS THAN ONCRETE DUE TO THE UNEVEN TEXTURE SUBFACE. IT'S TEXTURE IS SUBFACE. IT'S TEXTURE IS SUBSEQUENTLY UNAFFECTED BY WATER. SMOOTH BRICKS MAY BECOME SUPPERY WHEN WET.
	C2			MATERIAL		BITUMEN FELT/SHEET	CONCRETE MEDIUM DENSITY HIGH DENSITY REINFORCED (WITH 1% OF STEEL) REINFORCED (WITH 2% OF STEEL)				BRICK FRED CLAY MASONRY MORTAR		
		RA	BB		Ť	R2			R3				ц 4
10	⁰⁰ © University of Pretoria												

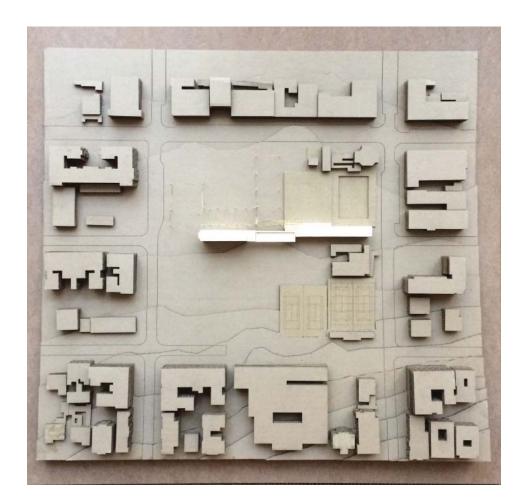
ANU STANUARIDSATION. ITS SWALL LENDS IT TO MANUAL IMPLEMENTATION. STEEL TECHNOLOGY IS BASED ON THE LOGIC OF BENG REDUCED TO THE ESSENTIALS - THE SIMPLEST ECONOMIC FORMULA. IT IS BASED ON PRAGMATISM AND IS A TECHNOLOGY THAT IS STRONGLY ASSOCIATED WITH STRUNCTURAL LOADBEARING (IT IS THE "HIDDEN AID" IN COMPOSITE CONSTRUCTION).	ITS TIES WITH INDUSTRIALISATION MEANS THAT THE MATERIAL IS REGARDED AS UNNATURAL AND PREFABRICATED OFF-	SITE, RENDERING IT AN A-CONTEXTUAL MATERIAL. ITS APPLICATION AND PRODUCTION IS BASED ON REPITITION AND STANDARDISATION AND IT IS CONSIDERED A COLD CLEAN AND PRECISE PERMANENT MATERIAL.	WOOD IS A NATURAL OR RAW PRODUCT WITH PROPERTIES OF IRREGULARITY. IT FINDS APPLCATION IN STANDARDISED AND PREFABRICATED PANELS OR BOARDS THAT LENDS IT A TECTONIC NATURE. THE MATERIAL IS SUPPLE/TENSILE QUALITY AND APPEALING HAPTIC QUALITY AND APPEALING HAPTIC	GLASS REFLECTS OUR WORLD, ITS SURFACE STEPS BACK FROM ITS SUNB DOY AND THE MATERIAL - DESPITE ITS TRANSPARANCY - AWAKENS THE IMPRESSION OF MYSTERIOUS IMPRANCY - AWAKENST HE IMPRESSION OF MYSTERIOUS DETTHATING THEREFORE TECTONIC AND STEREOTOMIC AT THE SAME TIME. IT'S MAIN PURPOSE IS TO LET THROUGH LIGHT. IT IS TRANSPARRENT, HARD AND PRECIOUS OR BRITTLE.
2450 5450	2 3	880 380 380	1600	
20 20 20 20	2 3	160 380 110	0.13 0.13 0.13	
		2800 8900 7200	450 500 700	
				INFINITY
STEEL IS NON PERMEABLE BUT UNTREATED STEEL WIL CORRODE (DEGRADATION DUE TO OXIDATION WHEN THE STEEL IS EXPOSED TO OXYGEN IN THE PRESENCE OF WATER), WATERPROOFING AND CORPOSION PROTECTION MEASURES FOR STEEL INCLUDE HOT DIP GALVANISNG, ZINC DUSTING, POWDER COATING, COPPER OR BRASS PLATING, PAINTING AND BAKED ENAMEL		WATER DOESN'T PENETRATE THE MATERIAL AND NO WATERPROOFING MEASURES ARE APPLIED.	TIMBER HAS A POROUS STRUCTURE THAT IS BEGRADED BY WATER THAT CAN LEAD TO ROT AND DECAY. WATERPROFING TIMBER INCLUDES A SUFFACE COATING (SEALANTS AND VARNISHES) THAT CAN PREVENT MOISTURE FROM ENTERNO THE SUFFACE OF THE TIMBER. ADECUATE VENTLATION AND A VAPOUR BARRIER IS NECCESARY IN COLD INTERIOR ZONES TO PROTECT THE TIMBER AGAINST CONDENSATION.	GLASS IS NON PERMEABLE AND WATERPROOF.
TREATED STEEL HAS NO DISCOLOURATION AS WATER DOESN'T PENETRATE THE MATERAL: SMOOTH AND TREATED STEEL IS SUPPERY WHEN WET THE SOUND OF WATER MAY ALSO RESONATE ON THE MATERAL. UNTREATED STEEL WIL CORRODE LEAVING A PATINA OF RUST AND A ROUGH WEATHERED SURFACE.		ALLUMINIUM ALLOYS, ZINC AND CHROMIUM HAVE NO DISCOLOURDATION. THE SOUND OF WATER MAY RESONATE ON THE MATERIAL A GAREN-BLUE PATINA APPEARS ON THE SURFACE OF COPPER (AND BRASS WHICH IS AN ALLOY OF COPPER AND ZINC) OVER TIME.	VARNISHED TIMBER WILL NOT DISCOLOUR WHEN WET AND IS SLIPPERY WHEN WET	GLASS HAS NO DISCOLOURA- TION. VISIBILITY IS IMPAIRED WHEN ITTIS WET AND IT IS EXTREMELY SUPPERY WHEN WET. GLASS CAN INDICATE THE PRESENCE OF WATER THE NOTHER PRESENCE OF WATER SUCH AS CONDENSATION. THE SOUND OF WATER RESONATES ON THE MATERIAL WITH A DAMPLED EFFECT.
FERROUS METALS STEEL STAINLESS STEEL CAST IRON, WROUGHT IRON, COR-TEN		NON FERROUS METALS ALUMINUM ALLOYS COPPER ZINC TIN (RESISTANT TO COR- ROSION)	TIMBER SOF WOOD 0.14 HARD WOOD 0.16 HARD BOARD 0.20	GLASS (N- SODA LIME GLASS (N- CLUDING FLOAT GLASS)
۴		۶ ۲	2	8

6

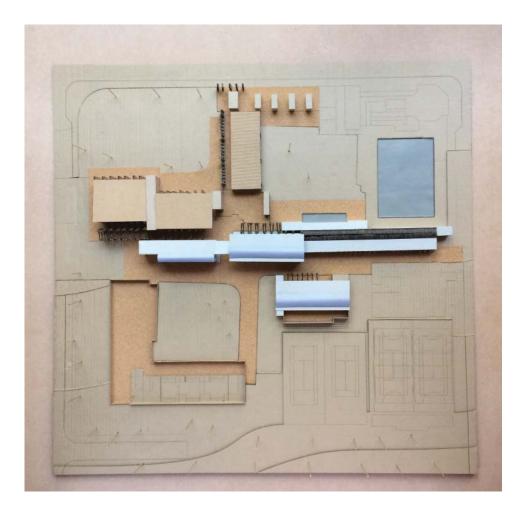

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

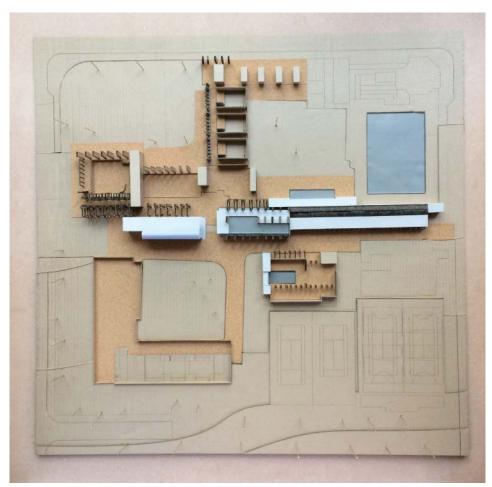
5.2. COMPOSITION

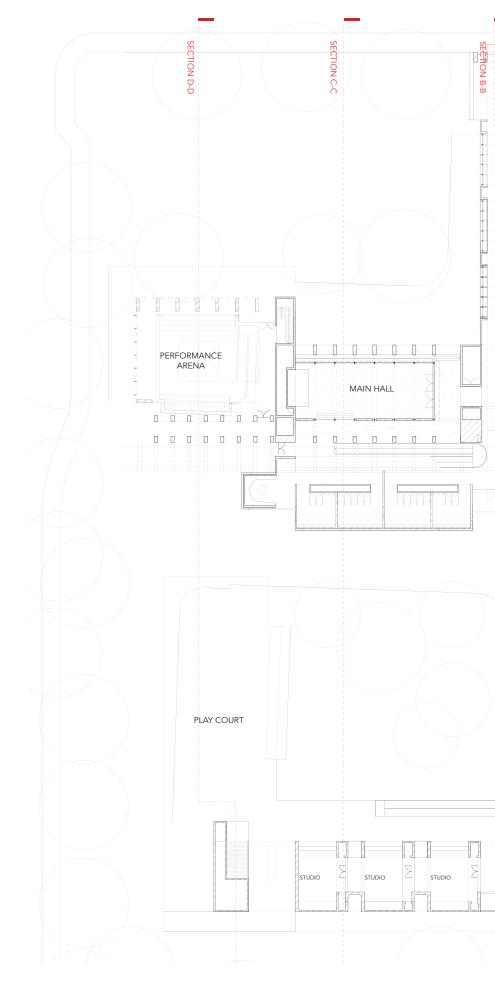
The materials are brought together at critical points in the compostion to illustrate the concepts that drive the experience of and connections between the materials. The composition characterises the form of spaces and guides the structure of the technology. The concept of composition is best described by the user's procession through the spaces in the scheme. The role that water plays in structuring the spaces is evident from Chapter 4. Now a tectonic skin, brick and concrete materialises the procession. In the procession, taken at any point in the design, the user's experience of the composition of materials can be placed on a spectrum which at one end, will start with the tectonic (or lightness) and end in the stereotimic (or heaviness). This spectrum also helps to give structure to the procession through space through the notion of moving from one extreme to another. This procession will see the relationship with water start from a formal one (water collection) to a haptic one (water use). To best illustrate these two spectrums and their spatial material implications, the diagram indicates how circulation is experienced at the concave form of water collection and threatment, and progresses to the convex form of spaces where water is used and touched.

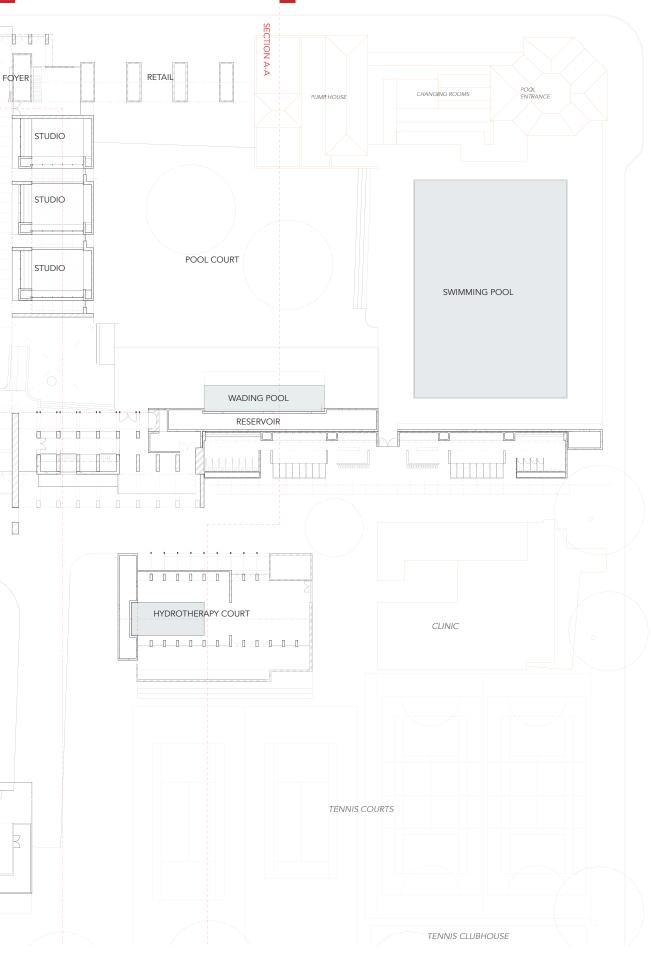

COMPOSITION OF MATERIALS

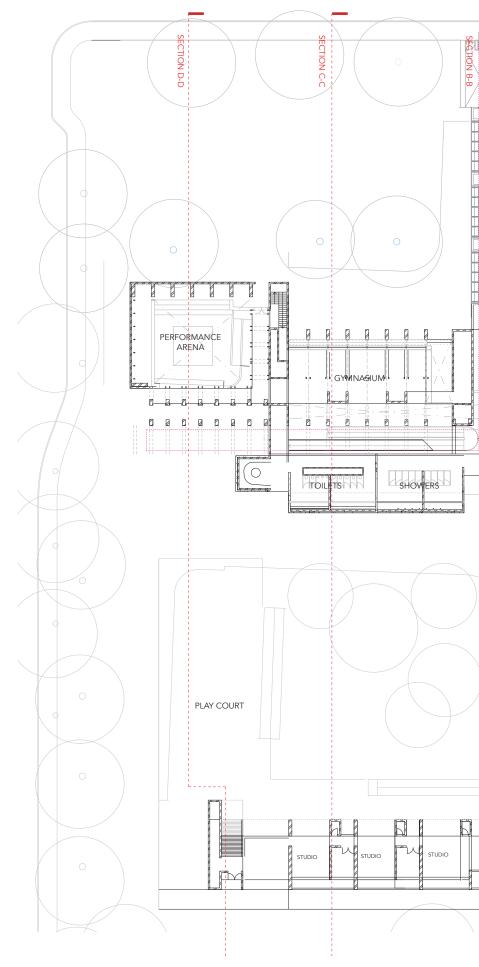
At hte beginning of this spectrum of composition, a tectonic structure frames the circulation that leads the user form the most public ends of the context to water spaces. The frame is a steel column and beam structure that allows a layered skin to protect the users from the natural environment. . The frame gives support to the concave form that transports roof water runoff to the reservoir. The convex steel bend forms the roof. The composition has a strong linear character and is based on repition. Its form scales the circulation routes with the larger presence of the structures surrrounding courts and scales it to a more intimate interor experinece.


The next material in the procession of spaces is brick masonry. The connection between the steel circulation tectonic element and brickwork is expressed as being disconnected and dissimilar and achieved through shadow lines and convex turns and bends towards brickwork. Brickwork gives form to the interstices/conversion between circulation and water spaces. Brickwork is also an important contextual reference that it ties in with the historic masonry built fabric from the context. It acts as a lining membrane and finds application as a carpet that reaches out through the circulation arteries and courts. It also becomes a vertical lining membrane for intersitial programmes. Its structure consists of self supporting walls, reinforced walls and rectangular columns. These ranges of columns gives control over sight lines from the public courts and controlled overlooked views fom inside the spaces. The last and perhaps most prominent role of brick masonry is its connection with the next material in the procession composition - concrete. Here it acts as a mediating membrane between the user and concrete surfaces. It becomes a haptic membrane that brings concrete work to the scale of the individual. The membrane peels away from the concrete from where access to water is gained.

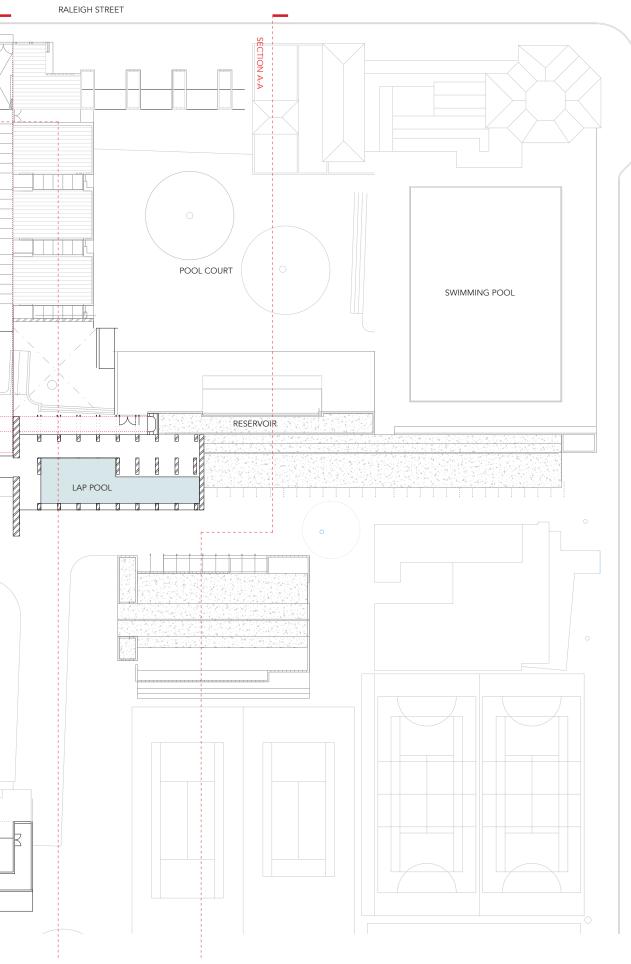

The final material that marks the destination in the composition of procession is oncrete. It is the functional and monolithic container for water and water-based use spaces. Its convex nature results in vaulted spaces. It is cast in situ that lends a sculptural nature to the most private spaces. inpenetrable nature. It is the central element to the design with astrong axis/alignment witht the east west street. Its exterior is rough bush-hammered appearance that transforms into smooth and polished surfaces on its interior.



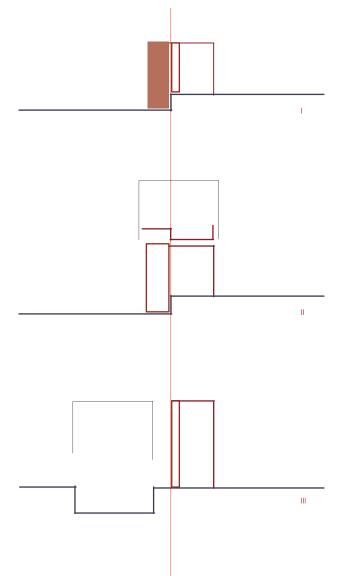


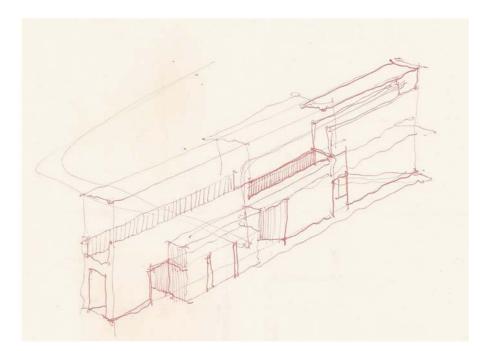


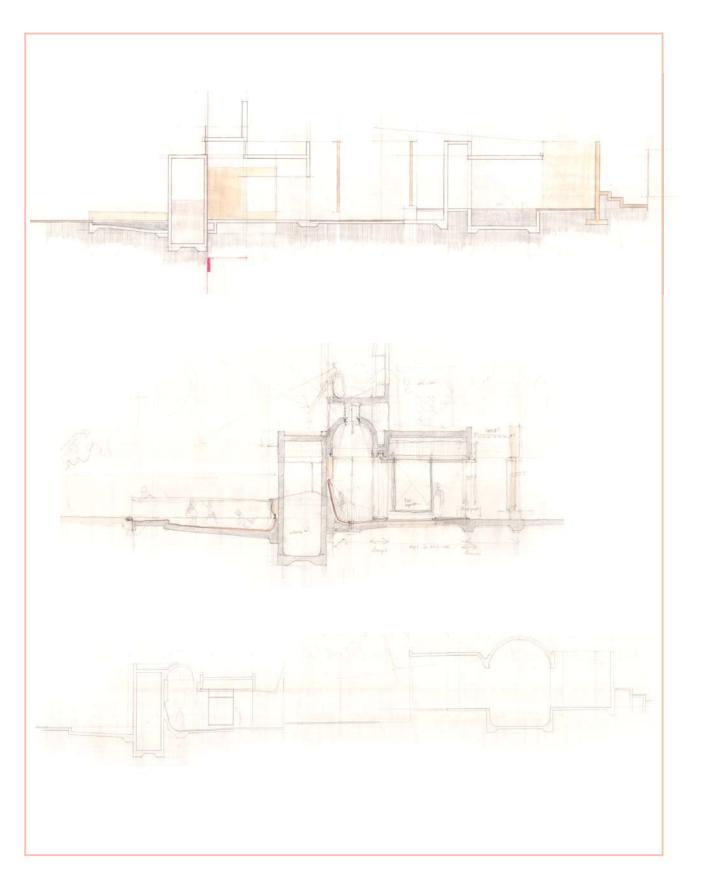
RALEIGH STREET

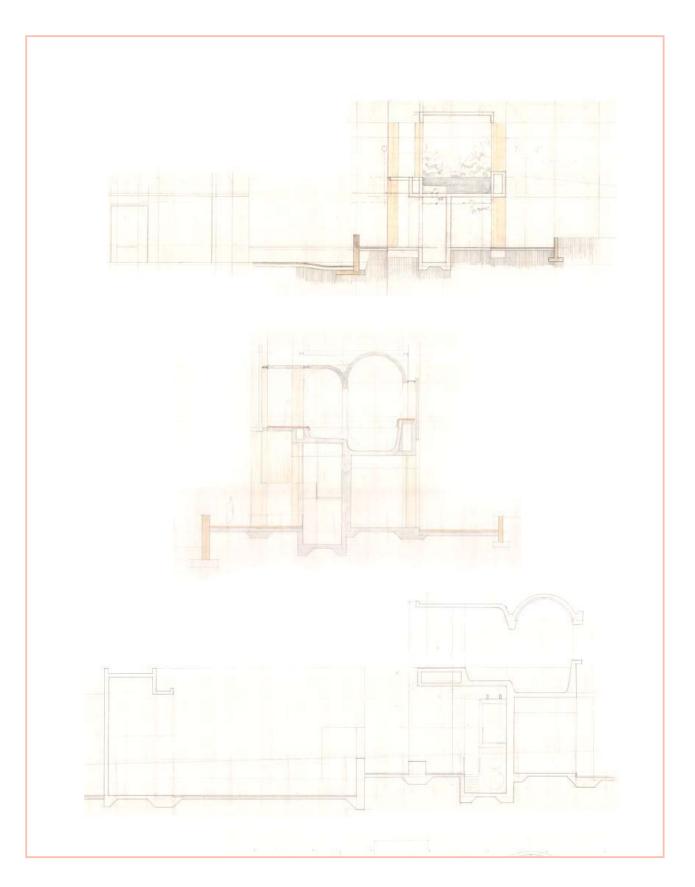


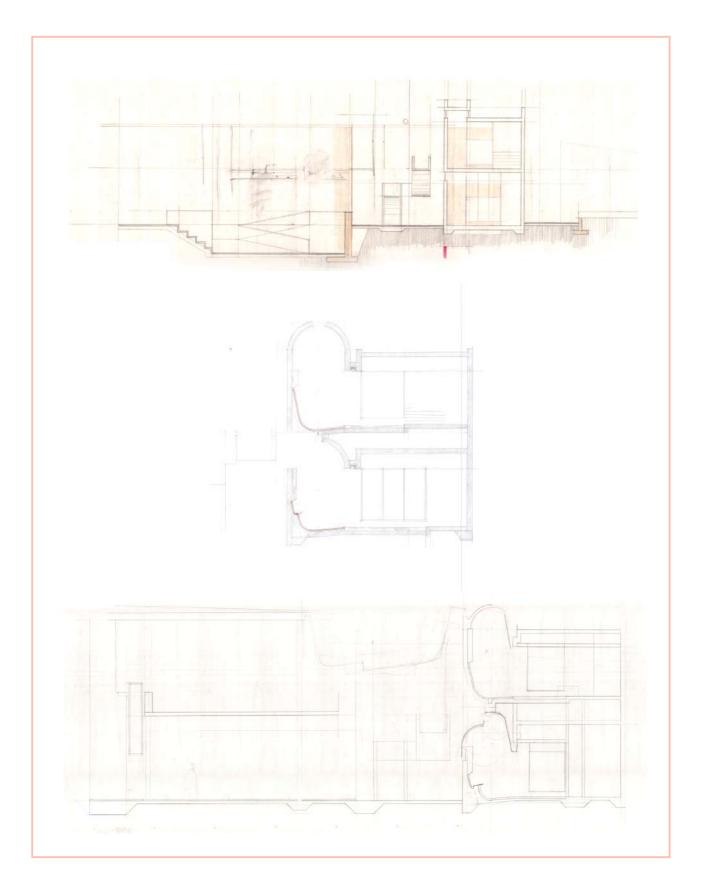
LOWER FLOOR LEVEL 1 1:200 NTS

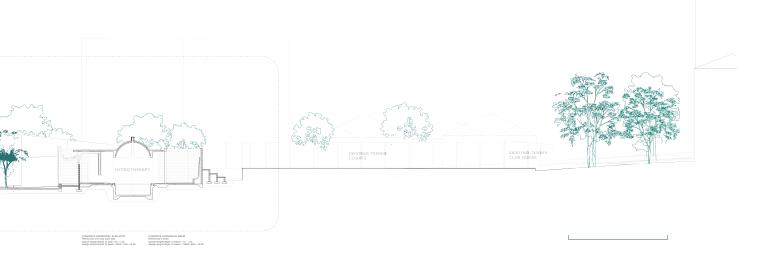


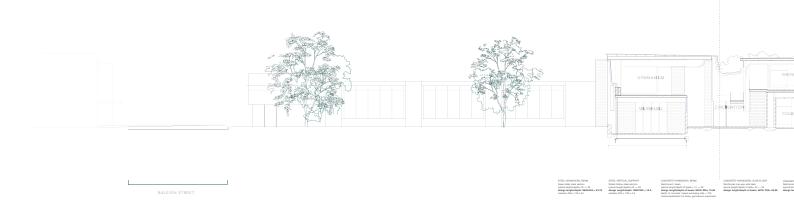



UPPER FLOOR LEVEL 1 1:200 NTS

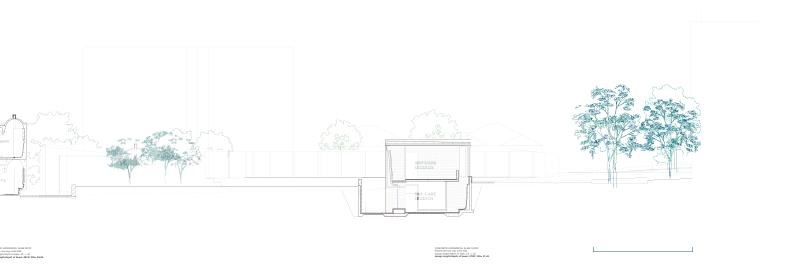


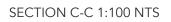


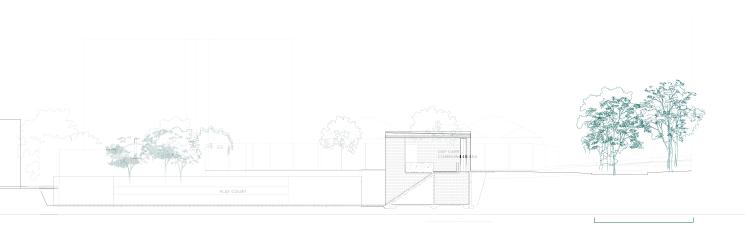


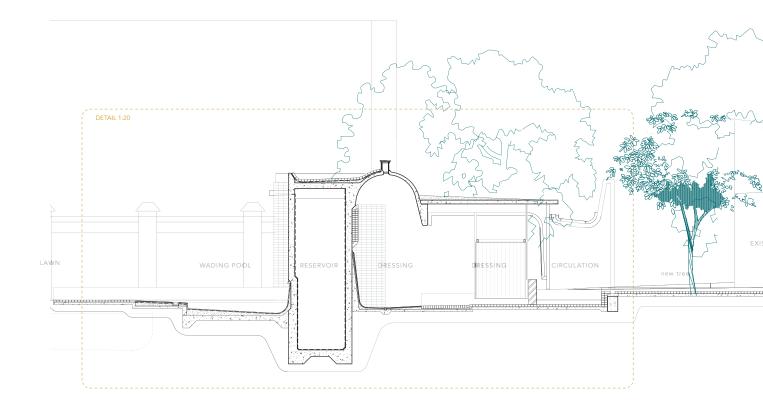


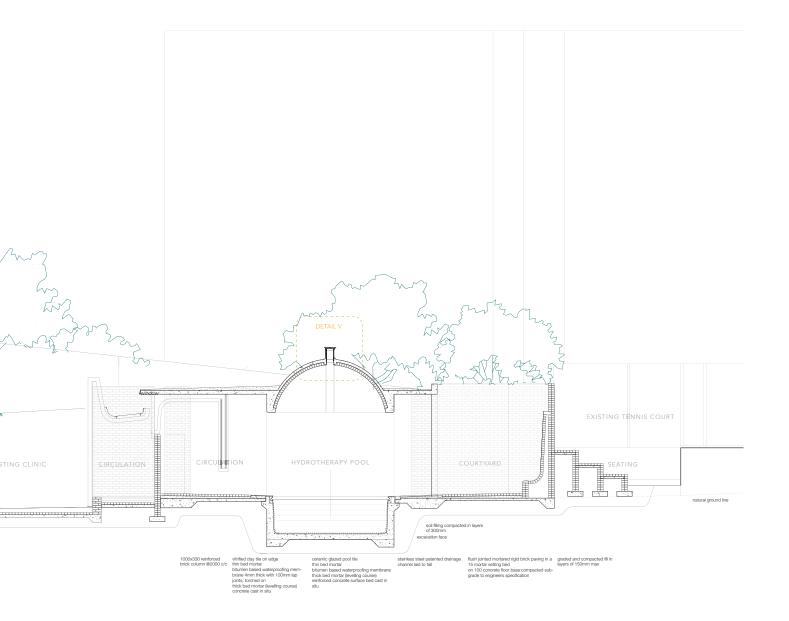
SECTION A-A 1:100 NTS


SECTION B-B 1:100 NTS

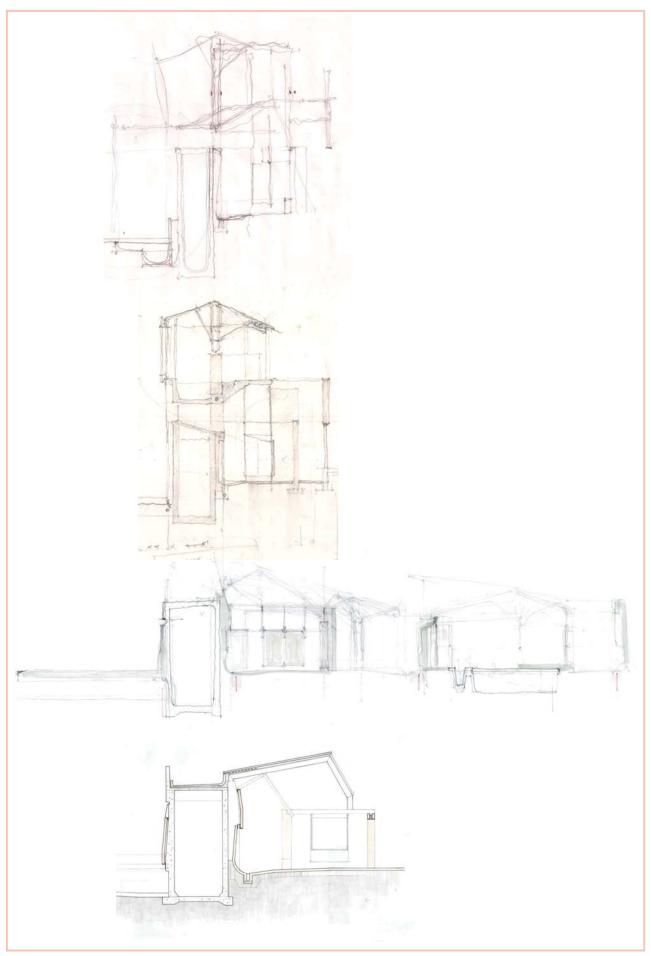




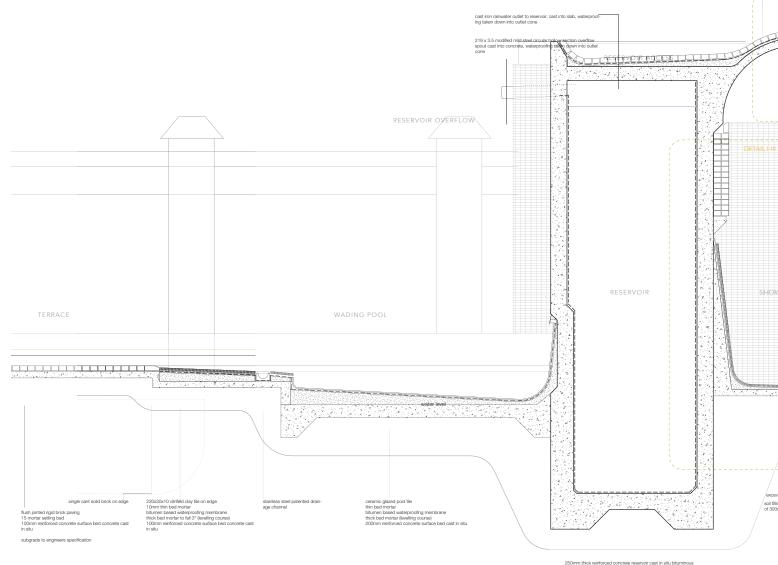


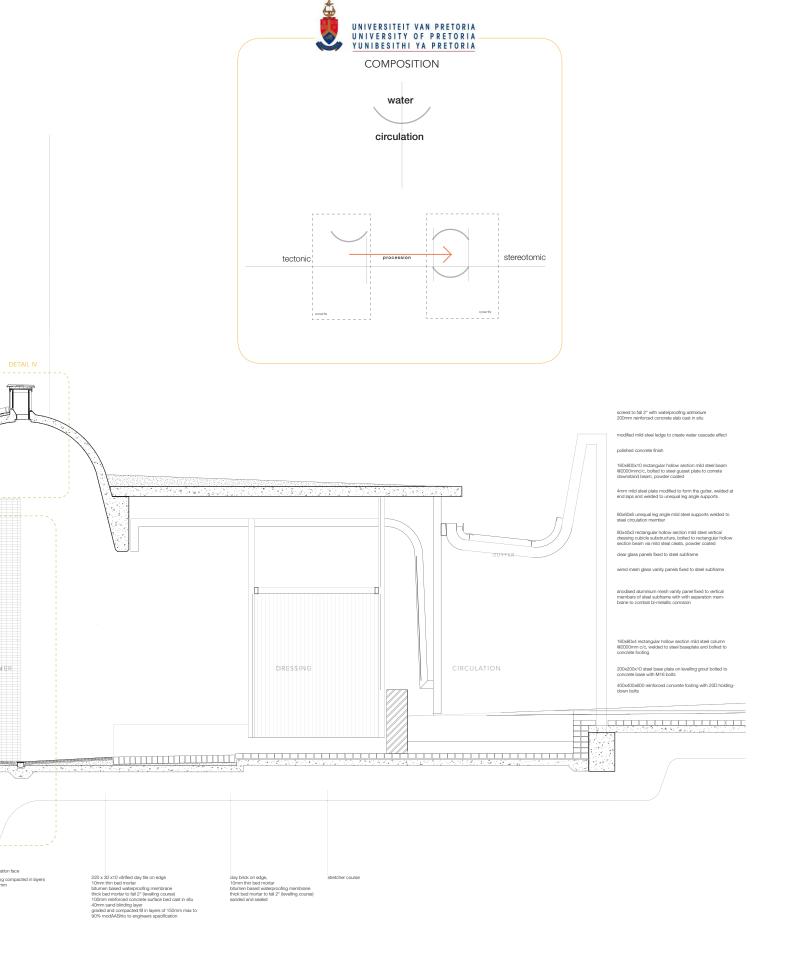

STEEL HORSONTAL BEAM Deep roled steel section typical length/light=18.-> 28 design length/light=18.-> 29.00 member 356 × 171 × 45

SECTION D-D 1:100 NTS

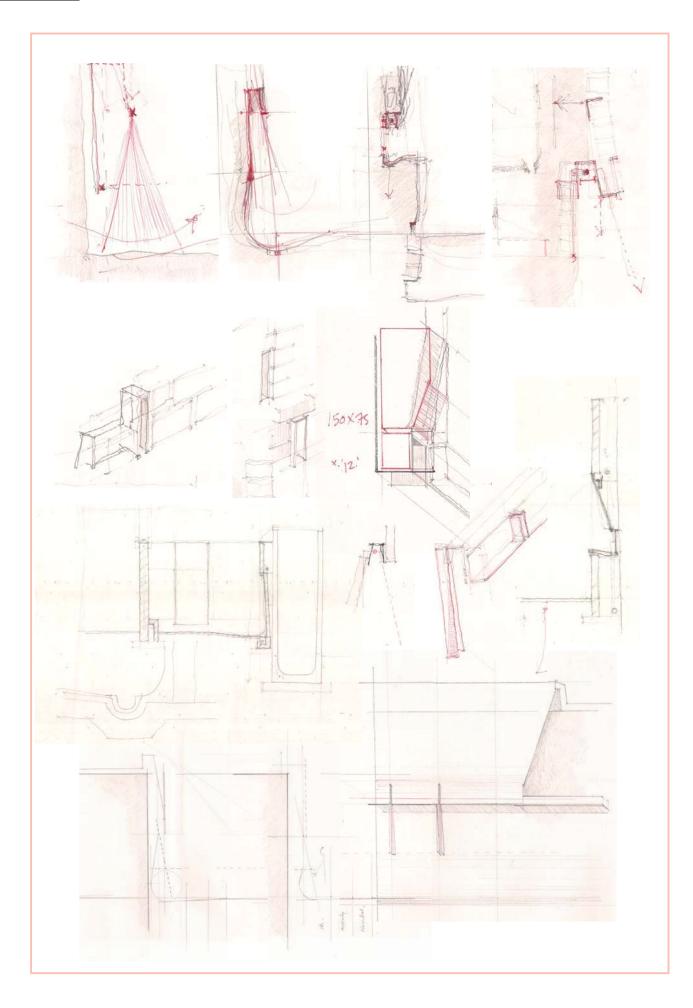



SECTION A-A 1:50 NTS

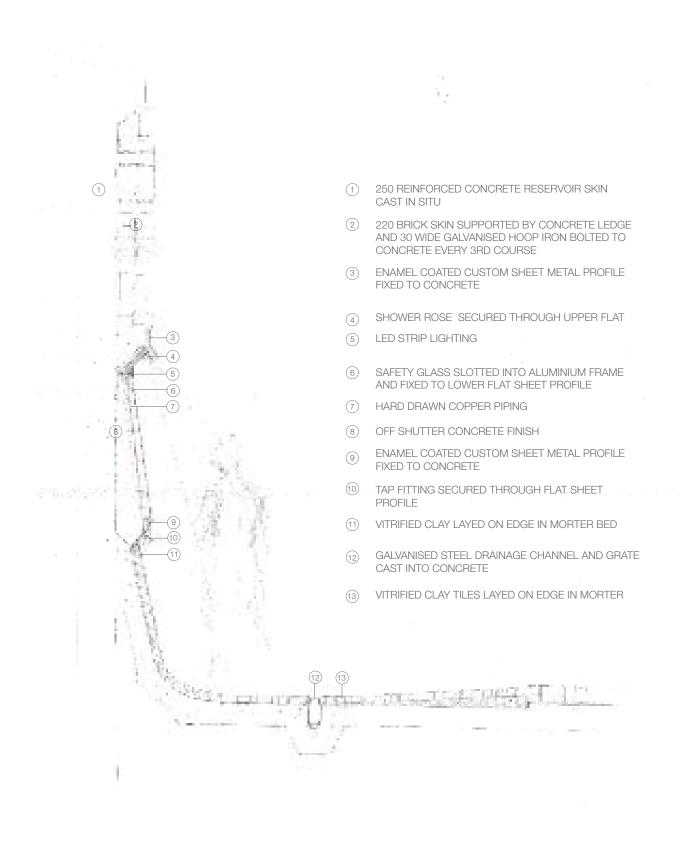

DEVELOPMENT OF THE 1:20 SECTION



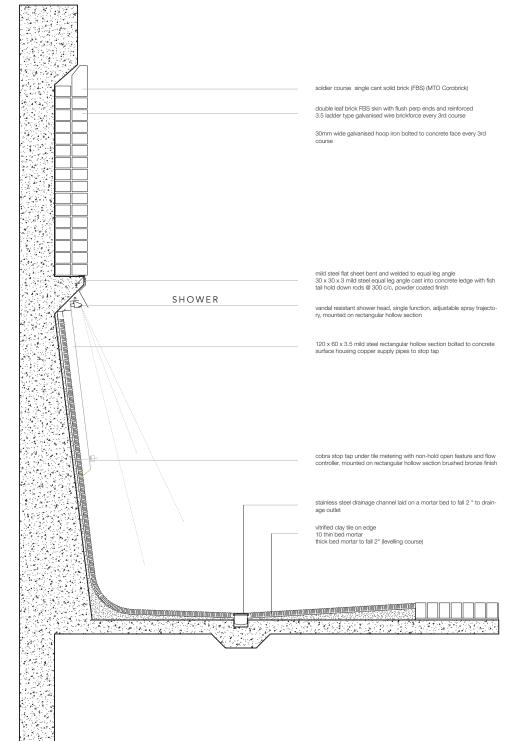
DEVELOPMENT OF THE 1:20 SECTION

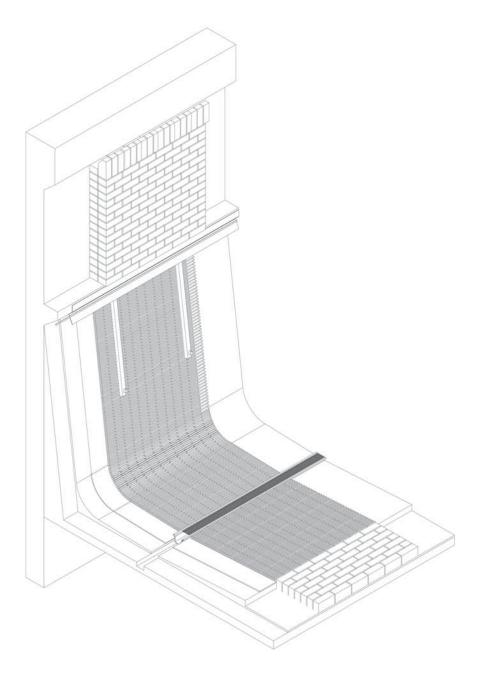


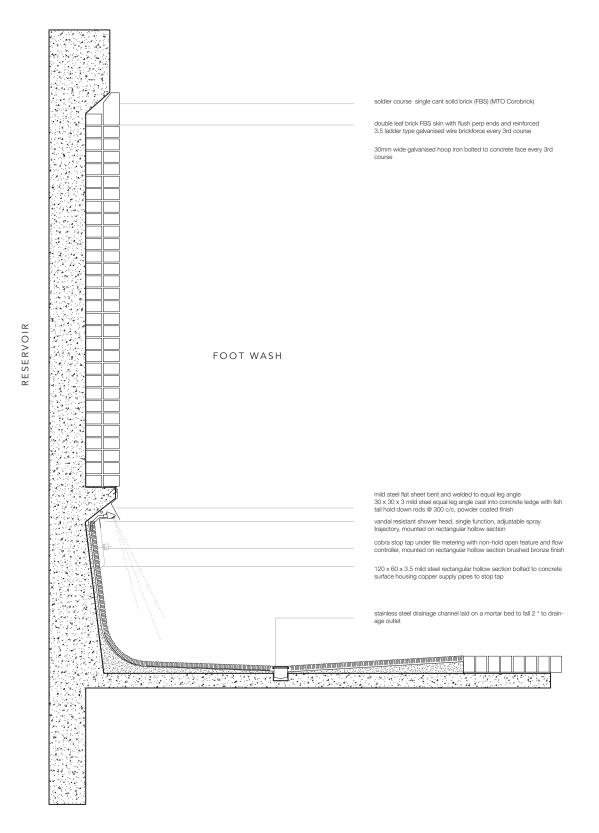
250mm thick reinforced concrete reservoir cast in situ bitumi waterproofing lining bush hammered exterior finish

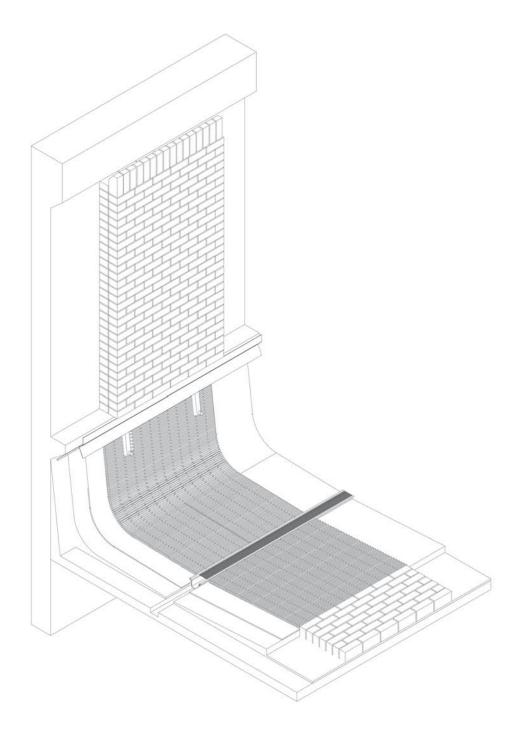


SECTION A-A 1:20 NTS

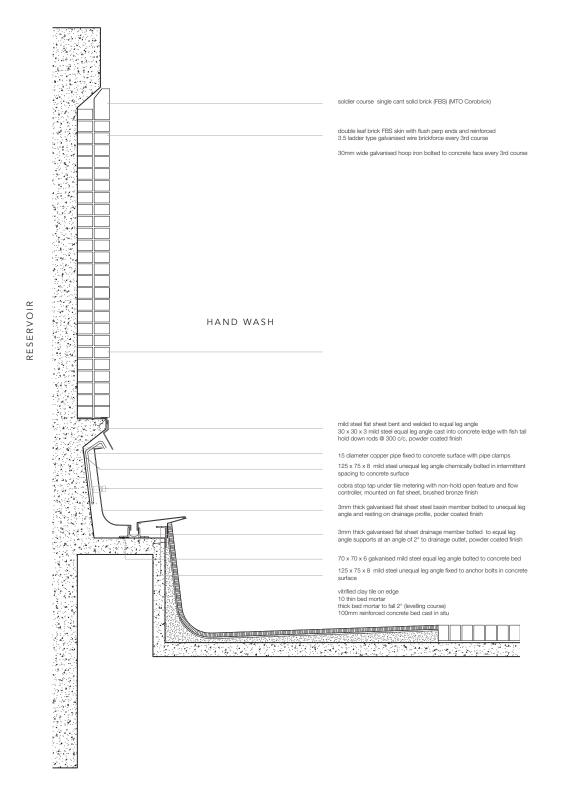


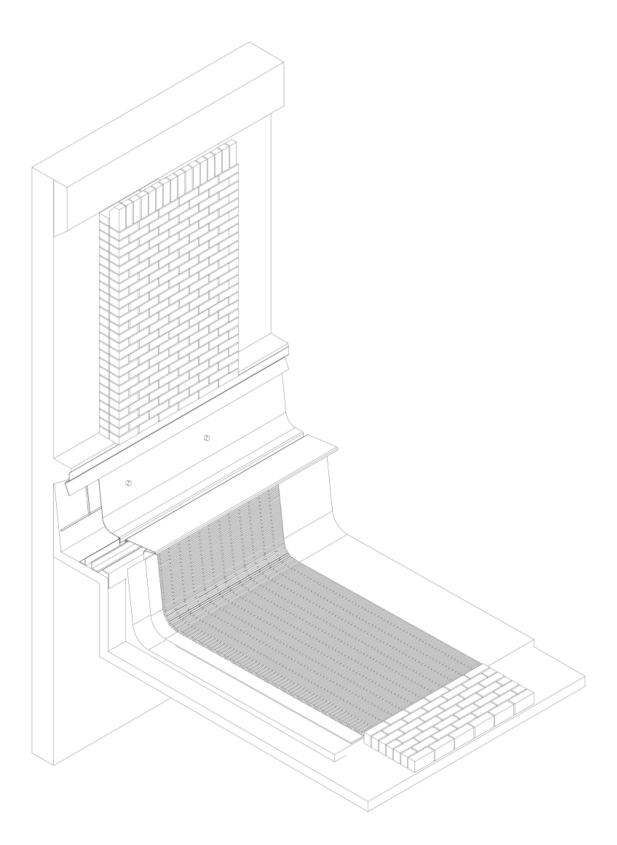

(1:10 TYPE) SHOWER DETAIL I NTS


RESERVOIR

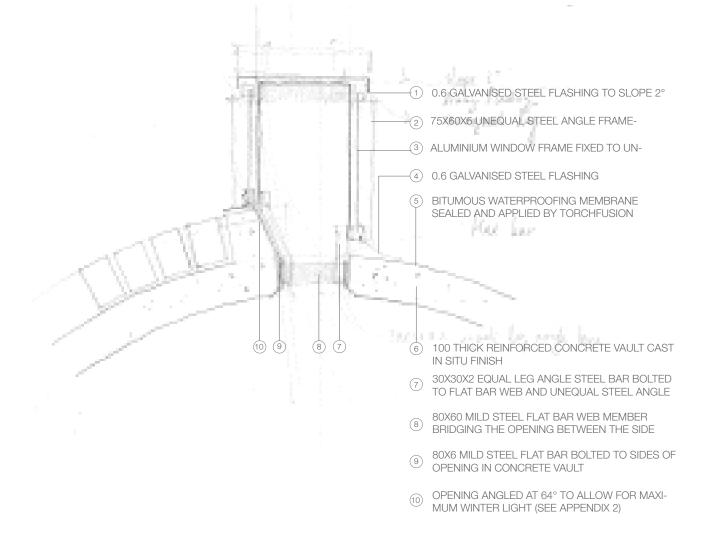


DETAIL I 1:10 NTS

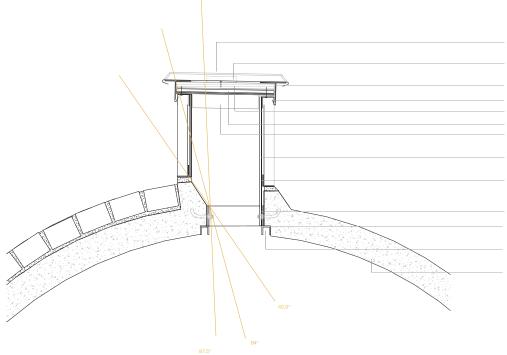




DETAIL II 1:10 NTS



DETAIL III 1:10 NTS



(1:10 TYPE) SKYLIGHT DETAIL II NTS

0.45 Rheinzinc zinc sheet with standing seams folded over cleat and pinched sea rine ply

44 x 38 x 0.6 cleat at 300 c/c nailed to mar

layer of felt

starter clip

drip edge 25 marine plywood solid deck fixed to horisontal leg angle

vinyl faced gypsum ceiling panel nailed to plywood deck

50x50x3 mild steel equal leg angle horisontal member, welded to vertical leg angle, powder

50x50x3 mild steel equal leg angle vertical support welded to mild steel plate, powder coated

45x45x3 mild steel equal leg angle sill welded to vertical supports

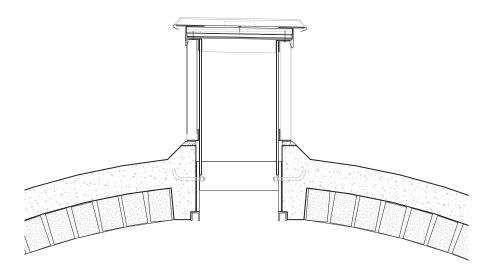
levelling grout

700x8 mild steel plate bolted to concrete surface with pre-cast anchor bolts, powder coated 700x12x180 mild steel plate web member @ 900 c/c, welded to steel plate, powder coated

30x30x3 mild steel equal leg angle shadow line, welded to flat sheet, powder coated

100 reinforced concrete vault cast in situ*

brick on edge permanent vault shuttering with flush morter joints

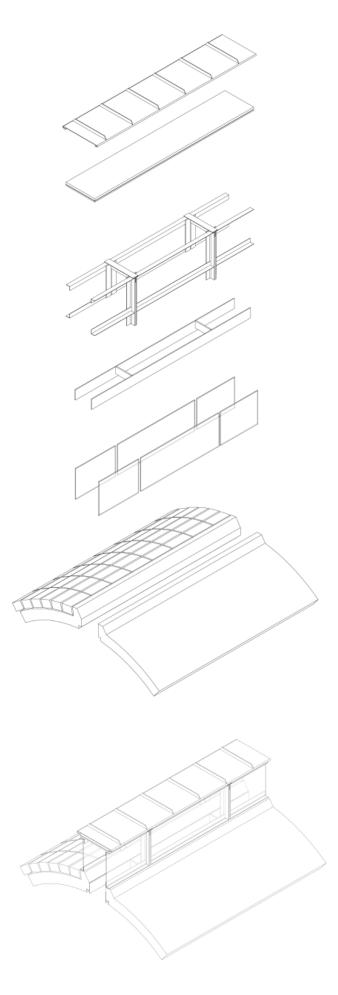

ofing Concrete Admixture

fing admix is added to the concr ete mix at batching stage of the m An integral crystalline wa mix to ratios ranging from 1-2% of the mixture. It consists of Portland cement, very fine treated silica sand and various active, proprietarychemicals. These active chemicals react with moisture and the chemical byproducts of cement hydration

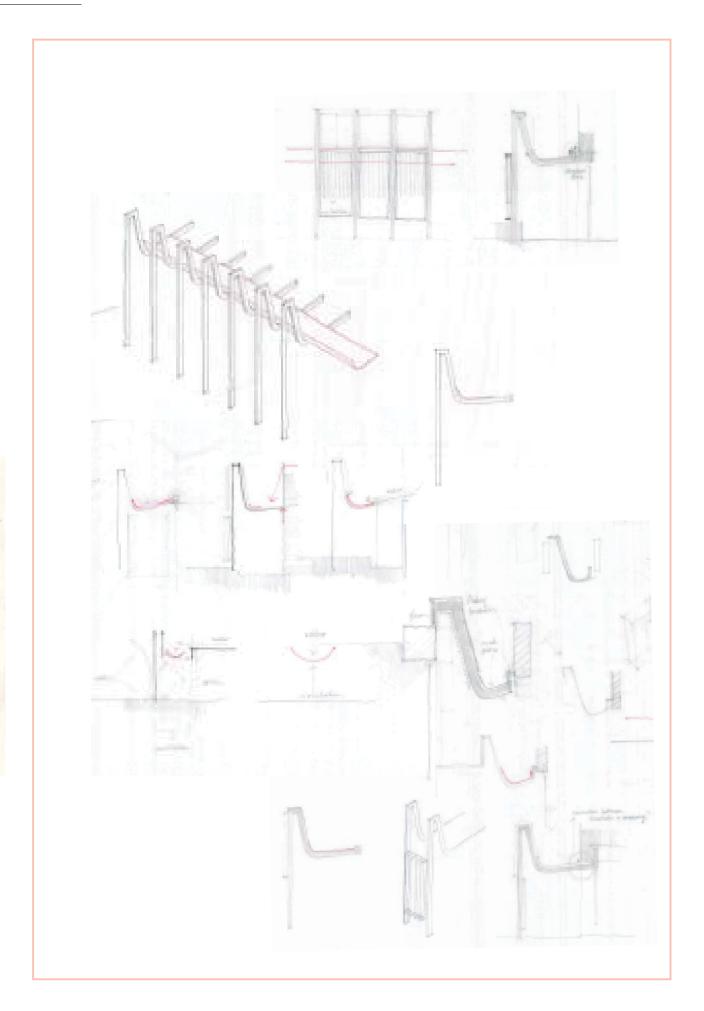
to cause a catalytic reaction that generates a non-soluble crystalline formation throughout the pores and capillary tracts of the concrete so that it becomes impermeable to water and other liquids.

Lafarge Ultra Waterproof Concrete PENETRON ADMIX® Xypex Admix C-1000/C-1000 NF Krystol Internal Membrane™ (KIM®)

CHRYSO@CWA 10

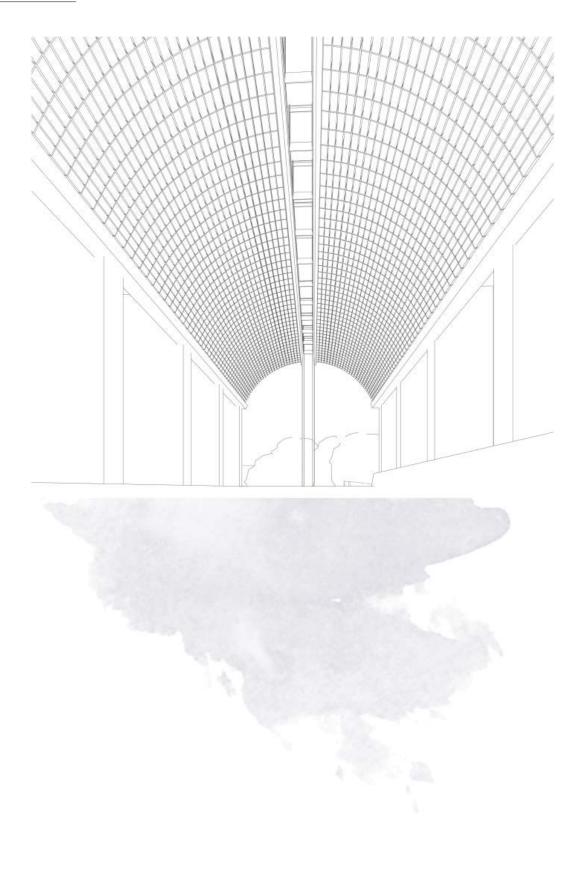


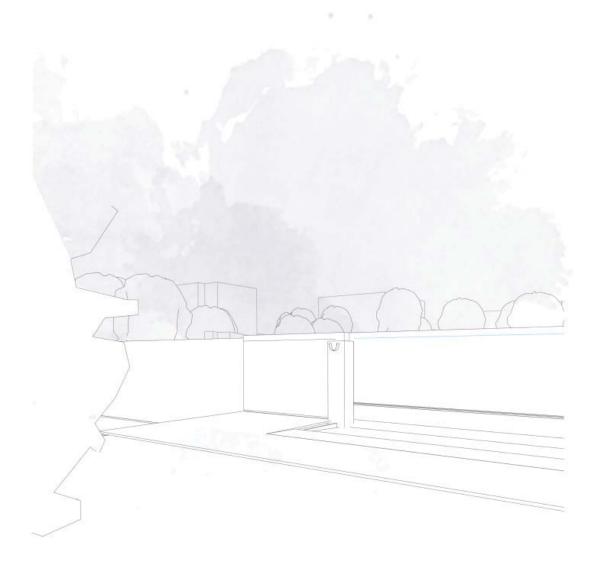
Johannesburg Latitude 26° 08' S Longitude 28° 14'E N winter summer solstice ś The axis of the earth's rotation is tilled at an angle of 23.45° with respect to the plane of the orbit around the Sun. This forms an angular islance of the sum north or south of the earth's equator that is the angle of declination. The sun has a declination angle of 23.5° at the solstices and 0° at the equinoxes The calculation for solar altitude at solar noon for Johannesburg: 22nd January Summer Solstice 64 + 23.5 = 87.5° 22nd March Equinox 90 - 26 = 64° 22nd June Winter Solstice 64 - 23.5 = 40.5° 22nd September Equinox 90-26 = 64°


DETAIL V 1:5 NTS

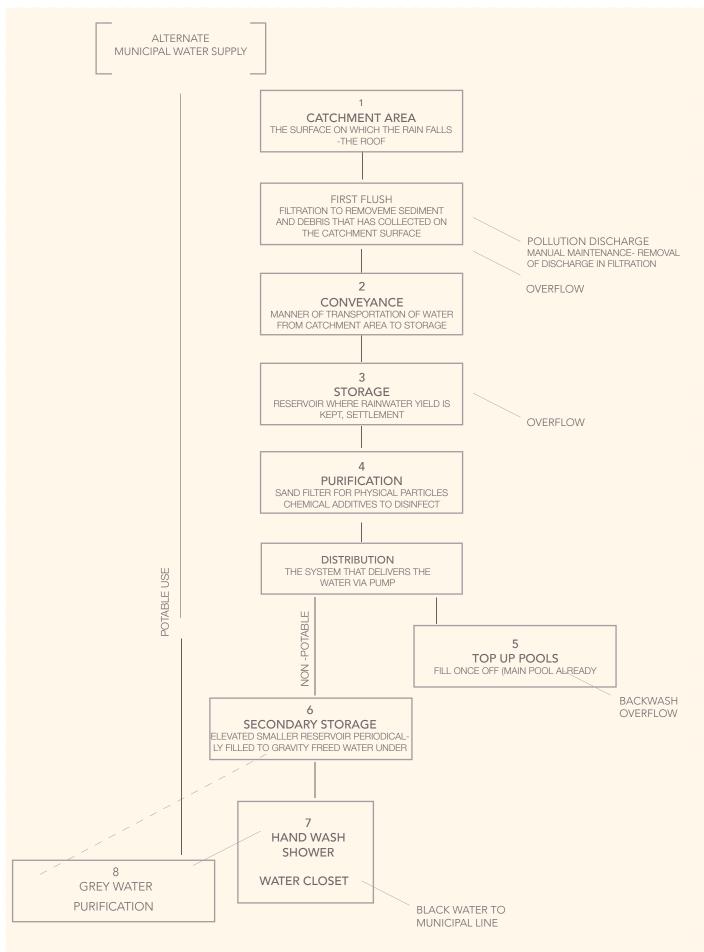
DETAIL IV 1:5 NTS

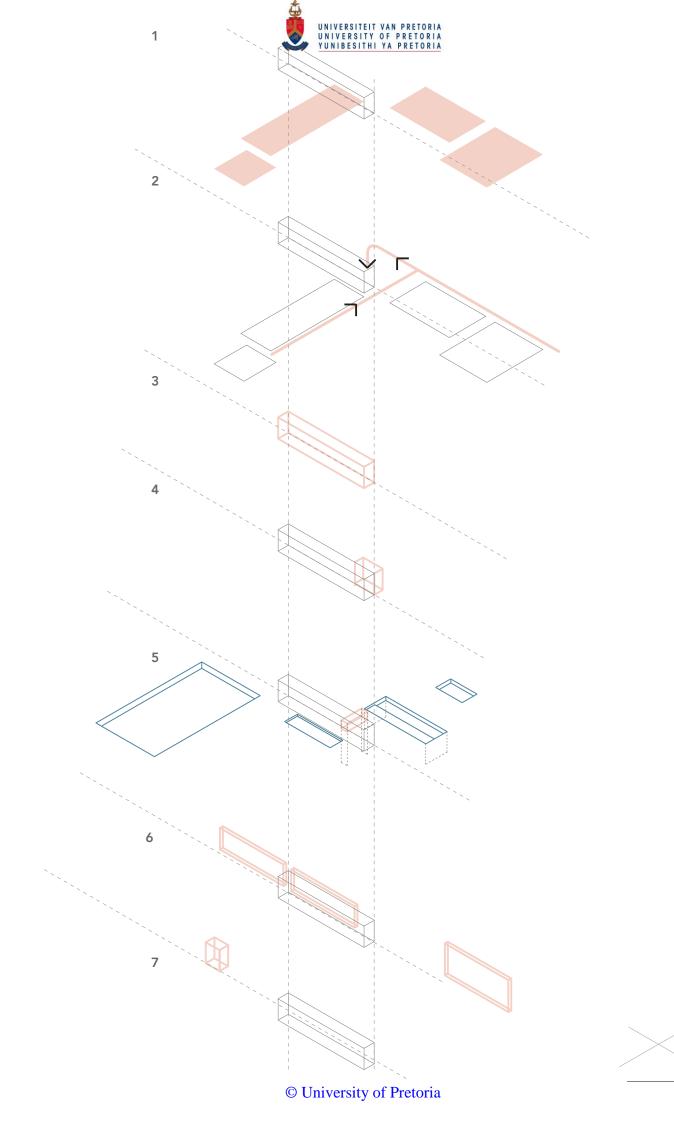
UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA




- 1 200 THICK REINFORCED CONCRETE
- (2) CIRCULAR MILD STEEL HOLLOW SECTION SPOUT
- (3) 100X55X4 STEEL I-SECTION WEB MEMBER BOLTED ТО
- (4) 6 THICK STEEL FLAT SHEET CUSTOM PROFILE GUTTER TO FALL (2) 3) (5) 160X80X4 RECTANGULAR HOLLOW SECTION CIRCULATION COMPONENT WELDED TO WEB MEMBER (6) 200X200X10 STEEL BASE PLATE ON LEVELLING GROUT BOLTED TO CONCRETE BASE WITH M16 BOLTS 7 400X400X600 CONCRETE BASE (8) RIGID BRICK PAVING LAYER ON 100 CONCRETE BED

-(5) 6 7 8 (1:10 TYPE) CIRCULATION DETAIL III NTS





WATER NETWORK

CALCULATING THE AMOUNT OF FACILITIES AND THEIR WATER DEMAND

UNDERSTANDING THE WATER DEMAND OF THE BUILDING

PROGRAMME	AREA (M ²)	WATER AREA	SANS OCCUPANCY	POPULATION		SERVICES								NOTES
					Т	OILET	S		HAND WASH CHANG- ING ROOMS			OW- RS		
					MEN	(URINALS)	WOMEN	MEN	WOMEN	MEN	WOMEN	MEN	WOMEN	
STUDIOS	180		A3	36	1	2	3	2	2					1PERSON/ 5M ²
MAIN HALL	200		A2	120	1	3	5	1	3					1PERSON/ M ² OR CHAIR
					1	1	2	1	1					MAIN HALL PERSONNEL
PERFORMANCE	200		A2	120	1	3	5	1	3					
GYMNASIUM	210		A3	42	3	3	6	3	3	4	4			1PERSON/ 5M ² PEOPLE/HOUR
EXISTING POOL	2200	726		145	3	4	8	4	4	22	22	7	7	5M ² /PERSON STEADY STATE
POOL SURROUND	700		A5	70	2	2	5	3	3					
WADING POOL	300	70		23	1	1	2	2	2	4	4	2	2	3M ² /PERSON 9 PEOPLE/HOUR AND
INDOOR LAP POOL	110	150		28	2	2	3	3	3	4	4	2	2	3M ² /PERSON 10 PEOPLE/45MIN
HYDROTHERAPY	280	55		18	1	1	2	2	2	3	3	1	1	÷3M²/PERSON 33 PEOPLE/HOUR
CARETAKER			НЗ	2	1		1	1	1			1	1	
OFFICES	100		G1	7	1	1	2	1	1					1PERSON/ 15M ²
DAYCARE	300		A3	60	2	3	5	3	3					

POOL CAPACITY - BATHING LOAD FOR UN-PROGRAMMED RECREATIONAL SWIMMING A MINIMUM WATER AREA (OCCUPANCY RATIO) OF 3M2 PER BATHER SHOULD BE ALLOWED TO ENSURE PHYSICAL SAFETY PP 11 THE SPORT ENGLAND FACILITY PLANNING MODEL USES A FIGURE OF 6M2 PER BATHER

TABLE 8 PP48 CHANGING ROOMS AND SHOWERS

SOUTH AFRICAN NATIONAL STANDARD SANS 10400-A:2010 EDITION 3 ISBN 978-0-626-25157-4

PART A: GENERAL PRINCIPLES AND REQUIREMENTS SANS 10400-A: 2010 EDITION 3 A20 CLASSIFICATION AND DESIGNATION OF OCCUPANCIES TABLE 1 - OCCUPANCY OR BUILDING CLASSIFICATION (PP43) A21 POPULATION

POPULATION PER CLASS OF OCCUPANCY OF ROOM OR STOREY OR PORTION THEREOF TABLE 2 - DESIGN POPULATION (PP 45) PART P: DRAINAGE

SANS 10400-P: 2010 EDITION 3 THE MINIMUM NUMBER OF SANITARY FITTINGS TO BE PROVIDED IN ANY BUILDING 4.11 PROVISION OF SANITARY FIXTURES FIXTURES PER TYPE OF OCCUPANCY AND POPULATION TABLE 4 – PROVISION OF SANITARY FIXTURES (PP29) TABLE 6 - PROVISION OF SANITARY FIXTURES FOR PERSONNEL (PP 31) TABLE 7 - PROVISION OF SANITARY FIXTURES FOR PUBLIC, VIS-

POTENTIAL RAINWATER HARVESTING CAPAPCITY

TOTAL AREA OF THE ROOF (M²)	ANNUAL RAINFALL (MM)	POTENTIAL RAINFALL HARVESTING CAPACITY (L)	RUNOFF COEFFICIENT FOR A ROOF	ACTUAL RAINFALL HARVESTING CAPACITY (L)		
A			С			
1670	0.714	1192 M3	0.9	1073 M3		

	AVERAGE MONTHLY PRECIPITATION (MM)	AVERAGE MONTHLY PRECIPITATION (M)	ROOF YIELD (M3)
		Р	PXAXC
JAN	126	0.126	189.378
FEB	90	0.090	135.270
MAR	91	0.091	136.773
APR	52	0.052	78.156
MAY	13	0.013	19.539
JUN	8	0.008	12.024
JUL	4	0.004	6.012
AUG	6	0.006	9.018
SEP	28	0.028	42.084
OCT	73	0.073	109.719
NOV	118	0.118	177.354
DEC	105	0.105	157.815

WATER CAPITA PER DAY FOR SHOWERS, WATER CLOSETS, URINALS AND HAND WASHING

PROGRAMME	POPULA- TION		N	WATER US	6E (L)				
	M + F		TOILETS	i	HANE	D WASH		SHOWER	
VISITORS	FREQUEN- CY USE PP PER DAY	0.25	0.75	0.85	0.75	0.85		0.75	
WATER USE PER APPLI- ANCE		6L	2L	6L	1.4L	1.4L		18 L	
		MALE	(URINALS)	FEMALE	MALE	FEMALE		M +F	
							TOTAL		SUM TOTAL
STUDIOS	36	27	27	92	19	21	186		186
MAIN HALL	120	90	90	306	63	71	620		620
PERFORMANCE ARENA	120	90	90	92	63	71	406		406
GYMNASIUM	42	32	32	214	22	25	324		324
EXISTING POOL COURT	145	109	109	372	77	87	754	1958	2712
POOL SURROUND	70	53	53	179	37	42	362		362
WADING POOL	23	17	17	61	13	14	123	311	434
INDOOR LAP POOL	28	21	21	71	15	17	145	378	523
HYDROTHERAPY	18	14	14	46	9	11	93	243	336
FULL TIME	FREQUEN- CY USE PP	1	2	3	3	3			
CARETAKER	2	6	4	18	4	4	36		
OFFICES	7	21	14	63	15	15	127		

DEMAND PER MONTH INDICATING THE SEASONAL INFLUENCES ON FREQUENCY AND CAPACITY FOR DIFFER-ENT PROGRMMES

														WATER CAPITA A MONTH (L)	DEMAND PER MONTH (M3)
		STUDIOS	MAIN HALL	PERFORMANCE ARENA	GYMNASIUM	EXISTING POOL COURT	POOL SURROUND/ COURT	WADING POOL	INDOOR LAP POOL	НҮДКОТНЕВАРҮ	CARETAKER	OFFICES	DAYCARE		
	WC UR HW	186	620	406	324	754	362	123	145	93	36	127	1092		
	SH					1958		311	378	243					
	JAN	20	16	12	20	20	5	20	20	20	31	24	20	132.906	132.906
	FEB	20	16	12	20	16	5	16	16	16	28	24	20	116.85	116.85
Ŧ	MAR	20	16	12	20	12	5	12	12	12	31	24	20	100.866	100.866
LNOW	APR	20	16	12	20		5		12	12	30	24	20	63.078	63.078
E PER	MAY	20	16	12	20		5		12	12	31	24	20	63.114	63.114
TY US	JUN	20	16	12	20		5		12	12	30	24	20	63.078	63.078
APAC	JUL	20	16	12	20		5		12	12	31	24	20	63.114	63.114
	AUG	20	16	12	20		5		12	12	31	24	20	63.114	63.114
DAYS IN FULL CAPACITY USE PER MONTH	SEP	20	16	12	20		5		12	12	30	24	20	63.078	63.078
DA	OCT	20	16	12	20	12	5	12	12	12	31	24	20	100.866	100.866
	NOV	20	16	12	20	16	5	16	16	12	30	24	20	116.85	116.85
	DEC	20	16	12	20	20	5	20	20	12	31	24	20	132.906	132.906

	ROOF YIELD (M3)	DEMAND PER MONTH (M3)	BALANCE
	PXAXC		
JAN	189.378	132.906	150.738
FEB	135.27	116.85	169.23
MAR	136.773	100.866	205.23
APR	78.156	63.078	220.215
MAY	19.539	63.114	176.64
JUN	12.024	63.078	125.586
JUL	6.012	63.114	68.484
AUG	9.018	63.114	14.388
SEP	42.084	63.078	-6.6.6
OCT	109.719	100.866	8.853
NOV	177.354	116.85	69.357
DEC	157.815	132.906	94.266

WATER BALANCE AND RESERVOIR SIZE

The reservoir size was determined by allowing a volume that will contain the maximum monthly water demand per month as well as the maximum amount of surplus water from the yearly water balance:

length x breadth x height

30m x 2.5m x 5m 375m³

30M 5M 2.5M

