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Abstract

The Holland-Batt spline is well known when it comes to plotting spiral separation

performance. The spline, which consists of a linear curve and power curve, has been

successfully used to �t test work data that is presented as cumulative recovery of a valuable

mineral versus the cumulative mass yield to valuable mineral concentrate. The bene�t of

this curve �tting process is that it produces a mathematical expression that is essential

for simple mass �ow modelling calculations. Although the mathematics is simple, the

�tting process can be quite cumbersome. This work enhances the Holland-Batt spline

with a few adjustments to improve the �t accuracy and ease the �tting process through

(1) smoothing the transition zone between the linear and power law curves, (2) applying

the principles to both low and high density particles, (3) use Visual Basic user-de�ned

functions to simplify test work sheets in Excel and (4) use Excel Solver to automate the

curve �tting process. These steps are applied to an example test work data set to clearly

demonstrate the approach. The enhanced method is easy and simple to apply to spiral

concentrator mass �ow modelling.
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Introduction

The spiral concentrator, better known as a spiral, remains a competitive processing technology
because it has comparatively low capital cost and high separation e�ciency in a well-designed
circuit con�guration.

Regular assessment of spiral separation performance is important to ensure that the most
suitable operational conditions (feed rate, solids concentration, medium viscosity) are applied
to maintain high recoveries of valuable mineral for a speci�c feed material (particle size, density
and shape distributions). The most common method for quantifying separation e�ciency is to
plot cumulative recovery of the valuable mineral versus cumulative mass yield to concentrate
containing the valuable mineral. The closer the data points are to ideal recovery (100% recovery
at 100% concentrate grade), the higher the separation e�ciency. This article discusses �tting
of a consistent mathematical relationship of cumulative recovery versus cumulative yield to test
work data points. The resulting relationship can then be used to identify data quality problems,
as well as to analyse process performance.
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Linear and polynomial regression are standard methods to �t empirical models to experi-
mental data. Test work errors can force the �tted relationship into a speci�c direction, which
may result in a model that is not physically meaningful. There are many other equations that
can be used to �t series of data points, but these may not be consistent over di�erent test work
conditions that are applied in spiral concentrator test work. Its area of applicability may be
very small and will require recalibration once the operating area has shifted. This is typical of
an empirical model.

The ideal equation is one that realistically describes the physical behaviour of the process
under investigation, and that can be �tted accurately and consistently on test work data. This
implies a model of a more fundamental nature. Such a relationship needs to be supported by
large amounts of test work data and/or fundamental analysis before it can be accepted as an
equation suitable to �t test work data.

The technique presented in this article is demonstrated on an example data set of a typical
heavy mineral feed material with a grade of 14% by mass that was fed to a rougher spiral.

Example Test Work Data

Table 1 provides some data obtained from spiral test work. The spiral product was divided
into seven mass fractions with a mouth-organ splitter. The fractions are numbered from the
inside of the spiral (1) to the outside (7). The slimes content (%SLM) of each split fraction was
determined by screening on a 45µm screen. A sink-�oat technique with tetra-bromo ethane
(TBE) at 2.98 g/cm3 was used on the dried de-slimed sand fraction to determine the total
heavy mineral content (%THM, sink fraction) and remaining �oat fraction (%QRT) of each
split fraction. The �oat fraction consisted mostly of quartz. The head grade of THM, QRT
and SLM were calculated with the mass weighted assay of each mass fraction. The right-hand
side of Table 1 provides the cumulative �gures based on the fractional values on the left-hand
side.

Table 1: Example of test work data obtained from a spiral test with mouth-organ splitter.
(Slimes is de�ned as particles smaller than 45µm.)

Split Fractional THM QRT Slimes Cum. Cum. THM Cum. QRT Cum. Slimes
Fraction Mass Content Content Content Mass Recovery Recovery Recovery
No. % % % % % % % %
1 4.16 92.34 7.27 0.38 0.00 0.00 0.00 0.00
2 3.65 90.91 8.65 0.44 4.16 27.95 0.36 0.60
3 4.43 45.17 54.29 0.54 7.81 52.12 0.74 1.21
4 8.27 13.59 86.18 0.23 12.25 66.69 3.62 2.11
5 9.17 6.93 92.63 0.45 20.52 74.87 12.14 2.85
6 34.83 4.81 93.81 1.38 29.69 79.49 22.30 4.40
7 35.48 3.23 91.00 5.77 64.52 91.67 61.38 22.56

Head/Total 100.00 13.74 83.61 2.64 100.00 100.00 100.00 100.00

The heavy mineral material, or sink fraction, is referred to as 'high-density material' in this
text; and the light minerals, or �oat fraction, as 'low-density material'.

Holland-Batt Recovery Curve

Holland-Batt (1990) proposed a combination of two simple equations to �t spiral recovery data.
A straight line (Equation 1) and a power law (Equation 2) are combined to describe cumulative
valuable mineral recovery as a function of cumulative mass yield to concentrate (Figure 1).
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In industry, this function is commonly known as a double-spline (Equation 3). Symbols are
de�ned in the nomenclature section towards the end of this article.

rlin = ay (1)

rpow = 100
( y

100

)b
(2)

r = min(rlin, rpow) = min

(
ay, 100

( y

100

)b)
(3)
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Figure 1: Holland-Batt double-spline recovery curve �tted to test-work data.

The yield-recovery curve can be divided into three zones, namely the grade zone, the tran-
sition zone and the decay zone (Figure 2a). The grade zone is primarily determined by the
number of high-density particles that are concentrated at the inner side of the spiral trough,
and is described by the straight line section. An increase in the number of high-density particles
would result in a decrease in the gradient of the straight line, and a larger portion of the spline
would be represented by the linear section.

The decay zone, described by the power law, is the result of high-density particles remaining
in the bulk of low-density particles, demonstrating a steady decrease in concentration. The
decay zone is in�uenced by the sum of all the factors that could inhibit movement of high-
density particles into the grade zone. Such factors may include increased throughput, increased
solids concentration, increased viscosity (slimes content) and increased medium-density particle
concentration.

Since the grade and decay zones are completely di�erent in nature and in the separation
mechanism involved, there is naturally a transition zone between them. The gradient of the
curve in the transition zone would be less than that of the straight line but greater than the
gradient of the power law. Holland-Batt (1990) proposed a second-order polynomial to smooth
the transition from the linear section to the power law section. This adds a third section to the
spline.

The Holland-Batt spline function could be �tted e�ortlessly to all the yield-recovery data
from our test work as well as spiral testwork data from other researchers, although the second-
order polynomial caused �tting problems in some cases. The bene�t of the �tted relationship
is that it provides structure to the data representation within which outliers can be easily
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Figure 2: Enhanced Holland-Batt triple spline for recovery of high-density material.

identi�ed, investigated and explained. It furthermore provides a continuous relationship that
can be used to calculate and plot yield-grade and yield-e�ciency relationships over the entire
yield range.

Figure 1 provides an example of the Holland-Batt equation (excluding the polynomial sec-
tion) �tted on the yield-recovery data (cumulative THM recovery vs cumulative mass %) of the
THM assay from Table 1. The �gure also shows the values for parameters a and b to achieve
the closest �t to the testwork data.

The Holland-Batt spline function is applied to both high-density and low-density material
here. For the sake of brevity, the functions are referred to as 'high-density recovery curve' and
'low-density recovery curve'.

Enhanced Holland-Batt Recovery Curve

Although the Holland-Batt spline shows reasonable agreement to test work data, the �t can
often be improved, especially around the transition point from the linear section to the power
law section. This is illustrated in Figure 1. Four enhancement were made to the Holland-Batt
equation to improve the equation �tting process with regards to accuracy and calculation speed.
These improvements are discussed in the remainder of this section.

Transition Zone Polynomial

The second-order polynomial approach used by Holland-Batt may be adequate for typical
THM recovery curves, since the transition zone is small. It does however have some problems
associated with it, especially for larger transitions zones that involve medium-density minerals
(3 to 4 g/cm3).

The second-order polynomial uses three pieces of information to determine the three poly-
nomial coe�cients. The �rst is a data point located on the straight line section, and the second
a data point located on the power law section. The third data point is determined somewhat
arbitrarily based on the speci�ed smoothing interval (refer to Holland-Batt 1990, p. C14). The
resulting �t does not guarantee gradient continuity at the cross-over points from the linear and
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power-law sections to the polynomial section. This creates curve �tting problems in some cases.
The suggested enhancement to the Holland-Batt approach is to �t a third-order polynomial

between the linear and power law sections. This function has four coe�cients, and therefore
requires four pieces of information to �t it. Referring to Figure 2b, the �rst two items are
the coordinate (y1, r1) and gradient (y1, r

′
1) at the transition from the linear section to the

polynomial. The other two are the coordinate (y2, r2) and gradient (y2, r
′
2) at the transition from

the power-law to the polynomial. Once the transition zone (also called smoothing interval) half-
width (c) is speci�ed, all four of these items become available automatically without requiring
any further decisions. This method therefore does not use any arbitrary data points for the
polynomial �t.

Furthermore, the �tted third-order polynomial guarantees continuity in both the recovery
value and the gradient of the recovery curve. This ensures a completely smooth transition
from the linear section to the power law section. The bene�t of this is not clearly illustrated
with the example test work data set presented here, since it has a narrow transition zone. The
importance of a smooth �t does, however, become clear when spiral splitter position selections
must be made within the transition zone.

This enhancement results in a triple spline that consists of a linear section rlin(y), a polyno-
mial section rpol(y) and a power law section rpow(y). The width of the transition zone is varied
to improve the accuracy of the �t.

Figure 2 demonstrates the three sections and the three parameters (a, b and c) used to
specify the form of the triple spline. The region around the transition point in Figure 2a
is enlarged in Figure 2b to demonstrate the coordinates and parameters used to �t the the
third-order polynomial.

Parameter a speci�es the gradient of rlin(y), and always starts from the origin ((0,0) point).
This parameter is referred to by Holland-Batt (1990) as the 'upgrade ratio'. The higher
the high-density material concentration, the lower the gradient. This parameter is con-
strained at the y-axis and the gradient is rarely greater than 100, based on practical
experience, and cannot be less than 1. If the gradient is 1, no separation occurs. If the
gradient is less than one, it is described by the low-density recovery curve with its origin
at the (100, 100) point.

Parameter b speci�es the power law exponent of rpow(y). The higher the value of b, the
more dilution of high-density particles into the bulk material and the lower the separation
e�ciency. This parameter is constrained at b = 0.001, which is su�ciently small to match
the r = 100% line, and at the zero separation line, which is at b = 1. This recovery curve
always ends in the (100, 100) point where 100% of the high-density particles are recovered
in 100% of the mass. From a recovery point of view this parameter has the strongest
in�uence on the high-density recovery curve.

Parameter c speci�es the half-width of the transition zone (ycross − y1 or y2 − ycross). The
purpose of rpol(y) is to ensure a smooth transition from rlin(y) to rpow(y). The higher
the value of this parameter, the larger is the portion of the spline that is described by
rpol(y). The parameter is constrained between zero and ycross for y-values of less than
50. If c is larger than ycross, the spline would not include a linear section, and it would
not pass through the origin. For y-values greater than 50, c may not exceed the value of
100 − ycross since then rpow(y) would be ignored and the spline would not pass through
the (100,100) point.

The three spline sections and their parameter limits are summarised in Table 2. The four
unknown parameters d0, d1, d2 and d3 in rpol(y) are determined for the conditions where rlin(y)
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and rpow(y) overlap rpol(y) exactly. Referring to Figure 2b, the �rst overlap point (y1, r1) is
where the recovery and yield values of rlin(y) and rpol(y) are equal and the gradients are also
equal:

At point (y1, r1) : rlin(y1) = rpol(y1)

and
drlin(y1)

dy
=

drpol(y1)

dy

(
or r′lin(y1) = r′pol(y1)

)
Table 2: Enhanced Holland-Batt triple-spline formulae and parameter limits for high-density
material recovery.

Spline Segment Formula Parameter Limits

Linear rlin(y) = ay 1 < a < 100

Polynomial rpol(y) = d3y
3 + d2y

2 + d1y + d0 0 < c < [a(100(b−1))]
1

b−1

for 0 < y < 50

0 < c < 100− [a(100(b−1))]
1

b−1

for 50 < y < 100
Power Law rpow(y) = 100( y

100
)b 0.001 < b < 1

At the second overlap point (y2, r2) the recovery and yield values of rpow(y) and rpol(y) are
equal and the gradients are also equal therefore:

At point (y2, r2) : rpow(y2) = rpol(y2)

and
drpow(y2)

dy
=

drpol(y2)

dy

(
or r′pow(y2) = r′pol(y2)

)
These conditions result in four unknowns (d0, d1, d2 and d3) and the following four equations:

r(y1) = d3y
3
1 + d2y

2
1 + d1y1 + d0 = ay1

r′(y1) = 3d3y
2
1 + 2d2y1 + d1 = a

r(y2) = d3y
3
2 + d2y

2
2 + d1y2 + d0 = 100

( y2
100

)b
r′(y2) = 3d3y

2
2 + 2d2y2 + d1 = 100(1−b)by

(b−1)
2

This is a system of linear equations in di that can be solved with matrix algebra. Equations 4
and 5 express the equations in matrix notation.

y31 y21 y1 1

3y21 2y1 1 0

y32 y22 y2 1

3y22 2y2 1 0



d3

d2

d1

d0

 =


ay1

a

100
(

y2
100

)b
100(1−b)by

(b−1)
2

 (4)

Yd = r (5)

The values of the unknowns are determined by Equation 6.

d = Y−1r (6)

Combining the formulas of the three sections, Equation 7 describes the high-density recovery
triple spline.

r(y) =


rlin(y) = ay, if 0 ≤ y < (ycross − c)

rpol(y) = d3y
3 + d2y

2 + d1y + d0, if (ycross − c) ≤ y ≤ (ycross + c)

rpow(y) = 100
(

y
100

)b
, if (ycross + c) < y ≤ 100

(7)
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User-de�ned Functions

An Excel Visual Basic module was created to implement Equations 7 and 10 as user-de�ned
functions (named Spline_HighDensity and Spline_LowDensity). The functions require the
user to supply four parameters (a, b, c and y) and calculates cumulative recovery. This avoids
having to do the same calculations many times over inside spreadsheet cells, which is time
consuming and error prone. All the calculations are therefore done in the background, which
makes it user friendly and keeps the data sheets dealing with large volumes of data neat and
clear. The Visual Basic code for the two functions are provided in Listings 1 and 2.

Limiting conditions for the permissible envelope of separation are also considered and pro-
grammed to ensure that the functions remain robust over the entire range of input parameter
value. An error message guides the user if spline parameter values are speci�ed that violate the
permissible separation envelope.

This envelope is limited on the right side by the zero separation line that intersects the
origin and the (100,100) point, on the left side by the theoretical grade line (r = 100y

grade
), and by

the r = 100 horizontal line on top. Figure 3 shows this envelope.
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Figure 3: Permissible envelope for the high-density recovery curve (indicated in grey).

Automated Curve Fitting

Selecting the three parameters (a, b and c) to arrive the best �t to a test work data set may
be counter intuitive to the user and it may take a long time. Di�erent users can also have
di�erent parameter selection results for the same test work data set. To avoid these problems
the procedure of �tting a spline to test work data was automated.

A macro was created in a second Excel Visual Basic module to rapidly calculate the spline
parameters (a, b and c) to produce the �t that minimises the error calculated with Equation
8. The macro code is not provided here, since it is speci�c to the layout of the worksheets we
used. The macro inputs are:

• Starting values for (a, b and c).
These are determined through visual evaluation by plotting the recovery spline and test-
work data points on the same graph, similar to Figure 1. As long as reasonable values
are provided, the optimisation routine is not very sensitive to the starting values.
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• The test work data set.
The cumulative mass and cumulative THM recovery columns of Table 1 is an example of
what the macro would use. It consists of seven separate cuts in the example data set.

Determining the optimal set of spline parameters is a non-linear constrained optimisation prob-
lem. The macro uses Excel's Solver facility to �nd a solution. Equation 8 is the objective
function. The ri (spline) terms are calculated with the user-de�ned functions described in the
previous section. Parameters a, b and c are the optimisation variables adjusted to minimise the
objective function. The values of these variables are constrained according to the parameter
limits in Table 2 and Table 3 to force the spline to remain inside the valid separation envelope.
This curve �tting process takes only a few seconds and many data �ts can be done in a short
period of time.

sum of squared errors =
7∑

i=1

(ri (test work) − ri (spline))
2 (8)

Low-density Recovery Curve

In almost all relevant literature references (Henderson and MacHunter 2003; Richards and
Palmer 1997; Holland-Batt 1995) only the recovery of high-density material (THM) is plotted.
The recovery (or rejection) of low-density material (QRT) is omitted and as a result not �tted.
The position and consistency of the recovery curve for low-density material can be crucial for
spiral performance assessment since it usually represents more than 80% of the mass on the
spiral and a small movement in this curve can result in a signi�cant in�uence on mass yield.
The Holland-Batt equation was further extended to accommodate the recovery of low-density
material.

For the power law to function correctly, it was mirrored to the (100, 100) point as the
new origin. The high-density formulae and parameter limits in Table 2 and Equation 7 are
converted to low-density equivalents by replacing (y) with (y∗), and (r) with (r∗). The mirror
calculations are shown in Equation 9. The resulting low-density equivalents are shown in Table
3 and Equation 10.

Mirror

{
Yield y∗ = 100− y,

Recovery r∗ = 100− r
(9)

Table 3: Enhanced Holland-Batt triple-spline formulae and parameter limits for low-density
material recovery.

Spline Segment Formula Parameter Limits

Linear r∗lin(y
∗) = ay∗ 1 < a < 100

Polynomial r∗pol(y
∗) = d3(y

∗)3 + d2(y
∗)2 + d1(y

∗) + d0 0 < c < [a(100(b−1))]
1

b−1

for 0 < y∗ < 50

0 < c < 100− [a(100(b−1))]
1

b−1

for 50 < y∗ < 100

Power Law r∗pow(y
∗) = 100( y∗

100
)b 0.001 < b < 1

r(y) =


r∗lin(y

∗) = ay∗, if 0 ≤ y∗ < (y∗cross − c)

r∗pol(y
∗) = d3(y

∗)3 + d2(y
∗)2 + d1(y

∗) + d0, if (y∗cross − c) ≤ y∗ ≤ (y∗cross + c)

r∗pow(y
∗) = 100

(
y∗

100

)b
, if (y∗cross + c) < y∗ ≤ 100

(10)
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As expected, the low-density recovery curve is dominated by the grade zone, which is located
on the outside of the spiral. Figure 4a demonstrates the di�erent spline sections for low-
density material recovery and Figure 4b provides detail of the transition zone. The permissible
separation envelope for the recovery of low-density material is also signi�cantly smaller (Figure
5), since it represents the bulk of the mass on the spiral.
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Figure 4: Enhanced Holland-Batt triple spline for low-density material recovery.
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Figure 5: Permissible envelope for the low-density material recovery curve (indicated in grey).

Conclusions

This simple, yet e�ective curve �tting method can be applied to all spiral test-work data to
create a robust mathematical relationship for recovery versus yield, which can be used easily for
mass balance calculations on spiral circuits. Spiral separation e�ciency can also be measured
more consistently.
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The mathematical equations used are simple, with only three parameters. These triple
spline parameters can also be correlated well to spiral separation behaviour (grade, decay and
transition), which makes them physically meaningful.

The enhancements made to the Holland-Batt recovery curve in this study have important
bene�ts, such as performing a mass balance of multiple density classes (high, medium and low).
The automated �tting assists in dealing with large data sets and it also improves the accuracy
and speed of the curve �tting process. The user-de�ned functions keep the test-work sheets in
Excel neat and user friendly.

Nomenclature

Symbols

a gradient of straight line segment, dimensionless
b exponent of power law segment, dimensionless
c transition zone half width, mass %
dj coe�cient for polynomial order j term
r cumulative high-density material recovery, mass %
r∗ cumulative low-density material recovery, mass %
y cumulative mass yield to high-density concentrate, mass %
y∗ cumulative mass yield to low-density tailings, mass %

Subscripts

cross the point where the linear and power-law sections cross
i spiral split fraction index

lin linear section
pol polynomial section
pow power-law section
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Code Listings

Listing 1: Visual Basic code for calculating high-density material recovery curve.

1 Public Function Spline_HighDensity ( a As Double , b As Double , c As Double , y As Double )
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2
3 'The combination o f t h r e e curves d e s c r i b e s the cumulat ive recovery o f c e r t a i n

4 ' mass c l a s s as a func t i on o f mass y i e l d to concentra te .

5 ' a i s the g rad i en t o f the s t r a i g h t l i n e , de f ined by r l i n

6 ' b i s the power law , de f ined by rpow

7 ' c i s the d i s t ance at c ros s po in t o f r l i n and rpow

8 ' y i s the cumula t ive mass y i e l d to concen tra te

9 ' r i s the the cumulat ive recovery o f c e r t a i n mass c l a s s

10 ' r po l i s de f i ned by the po lynomia l f unc t i on t ha t connects r l i n and rpow

11 ' c ro s s po in t i s de f ined by r l i n and rpow i n t e r s e c t i o n

12
13 Dim r l i n As Double , rpow As Double
14 r l i n = a ∗ y
15 rpow = 100 ∗ ( ( y / 100) ^ b)
16
17 Dim y_cross As Double
18 y_cross = ( a ∗ (100 ^ (b − 1 ) ) ) ^ (1 / (b − 1) )
19
20 Dim y1 As Double , y2 As Double , r1 As Double , r2 As Double
21 Dim r1_ As Double , r2_ As Double
22 y1 = y_cross − c
23 y2 = y_cross + c
24 r1 = a ∗ y1
25 r2 = 100 ∗ ( ( y2 / 100) ^ b)
26 r1_ = a
27 r2_ = ((100 ∗ ( ( ( y_cross + c + 1) / 100) ^ b) − (100 ∗ ( ( ( y_cross + c ) / 100) ^ b ) ) ) ) _
28 / ( ( y_cross + c + 1) − ( y_cross + c ) )
29
30 Dim Z As Variant
31 ReDim Z(4 , 4) As Double
32 Z(1 , 1) = (1)
33 Z(1 , 2) = ( y1 )
34 Z(1 , 3) = ( y1 ^ 2)
35 Z(1 , 4) = ( y1 ^ 3)
36 Z(2 , 1) = (1)
37 Z(2 , 2) = ( y2 )
38 Z(2 , 3) = ( y2 ^ 2)
39 Z(2 , 4) = ( y2 ^ 3)
40 Z(3 , 1) = (0)
41 Z(3 , 2) = (1)
42 Z(3 , 3) = (2 ∗ y1 )
43 Z(3 , 4) = (3 ∗ y1 ^ 2)
44 Z(4 , 1) = (0)
45 Z(4 , 2) = (1)
46 Z(4 , 3) = (2 ∗ y2 )
47 Z(4 , 4) = (3 ∗ y2 ^ 2)
48
49 Dim R As Variant
50 ReDim R(4 , 1) As Double
51 R(1 , 1) = ( r1 )
52 R(2 , 1) = ( r2 )
53 R(3 , 1) = ( r1_)
54 R(4 , 1) = ( r2_)
55
56 Dim Zinver s e As Variant
57 Z inver s e = WorksheetFunction . MInverse (Z)
58
59 Dim Coef f As Variant
60 Coef f = WorksheetFunction .MMult( Zinverse , R)
61
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62 Dim d0 As Double , d1 As Double , d2 As Double , d3 As Double
63 d0 = Coef f (1 , 1)
64 d1 = Coef f (2 , 1)
65 d2 = Coef f (3 , 1)
66 d3 = Coef f (4 , 1)
67
68 Dim rpo l As Double
69 rpo l = d0 + d1 ∗ y + d2 ∗ y ^ 2 + d3 ∗ y ^ 3
70
71 I f y <= y1 And y >= 0 Then

72 Spline_HighDensity = r l i n
73 Else I f y <= y2 And y > y1 Then

74 Spline_HighDensity = rpo l
75 Else I f y > y2 And y <= 100 Then

76 Spline_HighDensity = rpow
77 Else

78 Spline_HighDensity = "unknown"
79 End I f

80
81 End Function

Listing 2: Visual Basic code for calculating low-density material recovery curve.

1 Public Function Spline_LowDensity ( a As Double , b As Double , c As Double , y As Double )
2
3 Dim y_
4 y_ = 100 − y
5
6 Dim r as Double
7 r = Spline_HighDensity ( a , b , c ,y_)
8
9 Dim r_ as Double
10 r_ = 100 − r
11
12 Spline_LowDensity = r_
13
14 End Function
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