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Short Note
Extension of the Aki-Utsu b-Value Estimator for Incomplete Catalogs

by Andrzej Kijko and Ansie Smit

Abstract The Aki (1965) maximum likelihood estimate of the Gutenberg—Richter
b-value is extended for use in the case of multiple catalogs with different levels of
completeness. The most striking feature of this newly derived estimator is its
simplicity—it is more manageable than the well-known and already easy to use
Weichert (1980) solution to the analogs problem. In addition, confidence intervals
for the newly derived estimator are provided.

Introduction

According to the Gutenberg—Richter frequency—
magnitude relation (Gutenberg and Richter, 1944; 1954),
the number of earthquakes 7, having a magnitude equal to
or larger than m, can be expressed by the equation

log(n) = a — bm, (H

where parameter a is a measure of the level of seismicity and
parameter b describes the ratio between the number of small
and large events. The Gutenberg—Richter relation is of sig-
nificant importance to seismic studies because it is used to
describe both tectonic and induced seismicity, can be applied
in different time scales, and holds true over a large interval of
earthquake magnitudes.

Both parameters have been used in a variety of seismo-
logical studies, especially in seismicity simulation (Ogata
and Zhuang 2006; Felzer, 2008), earthquake prediction (Ka-
gan and Knopoff, 1987; Geller, 1997), and seismic hazard
and risk assessment (Cornell, 1968; Beauval and Scotti,
2004). The accurate calculation of this parameter is therefore
of critical importance. It can be shown that the b-value has a
clear physical meaning (e.g., Scholz, 1968; Dieterich, 1994;
Schorlemmer et al., 2005; De Santis et al., 2011). Some
authors (e.g., Bak and Tang, 1989) believe in the universality
of the b-value and its scale independence. Their model,
which is known as the self-organized criticality, became a
classic in the description of seismic activity. The b-value can
be calculated in various ways (for a review on the different
estimation techniques, see Marzocchi and Sandri, 2003).
However, Aki’s classic estimator (Aki, 1965), which consid-
ered earthquake magnitude as a continuous random variable,
is still the preferred estimator. Aki (1965) derived the max-
imum likelihood estimate of the b-value, equivalent to

1
f=————,. 2)
m — Mpyin
where 0 = bIn(10). The parameters m and m,;, are the
average magnitude and the level of completeness of a given

sample of earthquake magnitudes, respectively. Utsu (1965)
was the first to derive this equation for the assessment of the
b-value of Gutenberg—Richter by utilizing the method of
moments; that is, by the comparison of the first population
moment with an equivalent sample moment. It is interesting
to note that estimator (2) was known to statisticians before its
derivation by both Aki and Utsu (e.g., Kulldorff, 1961). In
the following part of this work, estimator (2) will be called
the Aki—Utsu estimator of the b-value.

A complete seismic event catalog, starting from a
specified level of completeness m,;,, is needed in order
to apply estimator (2). The question then arises as to how
to calculate the b-value when the seismic event catalog is
incomplete. In this work, an incomplete catalog is defined
as a catalog that can be divided into subcatalogs, each of a
different level of completeness (Fig. 1). The utilization of
such incomplete catalogs has been discussed by Molchan
et al. (1970), Kijko and Sellevoll (1989, 1992), Rosenblueth
(1986), and Rosenblueth and Ordaz (1987), among others,
but the most elegant, straightforward, and best-known is the
procedure derived by Weichert (1980). In this short article, a
new alternative estimator to the problem that is even more
user friendly than Weichert’s formula is suggested.

Theoretical Background

Assume that a given seismic event catalog can be

divided into s subcatalogs, each with known, but different
1 2 3

levels of completeness, m;, My, ..., My, Leteach of these

subcatalogs last #; years and contain a record of n;

(i=1,2,...,s) number of events with known magni-
tudes. A schematic illustration of such a catalog is given in
Figure 1.

An overall maximum likelihood estimate of the b-value
can be obtained by the application of the additive property of
likelihood functions (Rao, 1973). If applied to the cur-
rent problem, the joint likelihood function, which utilizes
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Figure 1. A schematic illustration of a seismic event catalog

that can be used in the estimation of the Gutenberg—Richter b-value.
(Modified after Kijko and Sellevoll, 1989.)

all earthquakes that occurred within the whole span of the
catalog, is defined as

L =L1L2...LS, (3)

where L; represents the i-th likelihood function based on
data observed within i-th subcatalog and i = 1,2, ..., s.

If magnitudes of seismic events are assumed to be inde-
pendent, identically distributed random variables following
the frequency—magnitude Gutenberg—Richter relation in
equation (1), the probability density function (PDF) of earth-
quake magnitude takes the form (Aki, 1965)

P for m < my,

f(m’ ﬁ) N {ﬁexp[_ﬁ(m - mmin)] for m 2 Mmin ' (4)
where magnitude m is considered as a continuous variable
that may assume any value equal to or larger than the level
of completeness m;,.

_ The maximum likelihood estimator of the parameter /3,
0, is defined as the value of § that maximizes the appropriate
likelihood function.

If the magnitudes of seismic events are assumed to be
independent, identically distributed random variables follow-
ing the PDF in equation (4), the likelihood function for the i-h
subcatalog takes the form

LB) = [[romis 8 =[] Bexpl-Bomi —mi )], (5)
j=1 j=1

where m; is the sample of n; earthquake magnitudes re-
corded during the time span of the i-th subcatalog. Following
equation (3), the joint likelihood function, which utilizes
magnitudes of all the earthquakes that occurred within the
entire span of the catalog, takes the form
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Ky n;

L@ =[] Tr0m» = [[]] Bexol=sm — miy)
i=1 j=1 i=1 j=1
©)

Maximization of the likelihood function in equation (6) pro-
vides the generalized Aki—Utsu S-value estimator

. -1
5=(f‘+f2+...+?) : 7)
B B Bs

where r; = n;/n; n =) {n; is the total number of events
with magnitudes equal to or exceeding the relevant level
of completeness, and (; are the Aki-Utsu estimators
of the [-values, calculated for individual subcatalogs i
(i =1,...,s) according to the classic Aki—Utsu formulation
in estimator (2). Details on the derivation of estimator (7) are
provided in Appendix A. Equation (7) will be called the gen-
eralized Aki-Utsu [-value estimator, and it is applicable in
the assessment of the (3 (or, equivalently, b-value) when the
seismic event catalog can be divided into subcatalogs, each
with a different level of completeness.

The advantage of applying the maximum likelihood
procedure for the estimation of parameters lies in that it
provides straightforward approximations for the standard
errors and confidence intervals. Based on the central
limit theorem, it can be shown (e.g., Mood et al., 1974) that,
under suitable regularity conditions and for a sufficiently
large number of events, the newly derived estimator
0 is approximately normally distributed about its mean
(see equation 7). The sample standard deviation is defined
as

. B
0y = Tﬁ (®)
and its confidence interval as
Bt 20067 . )

In equation (9), z,/» is the (1 — a/2) quintile of the standard
normal distribution. The derivation of equation (8) is pro-
vided in Appendix B. The natural question is how many
events are needed in order to be sure that the newly derived
estimator of 3 is distributed normally. According to Jansson
(1966), the sum of 12 uniformly distributed random num-
bers will create a set of random numbers with a bell-shaped
distribution that is approximately Gaussian. Surprisingly,
such an approximation by only 12 numbers is quite good,
especially if only the central part (mean &= SD) of such a
Gaussian-like distribution is explored. Obviously, if more
inference is to be based on the tail of such a distribution
(confidence intervals, significance levels, etc.) more obser-
vations are required.

The most striking feature of the newly derived (§-value
estimator is its simplicity. Its calculation is straightforward (it
is a simple combination of the classic Aki-Utsu (-value
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estimators computed for each of s subcatalogs), and it is free
of any kind of iterative process. Once the 3-value is known,
the mean seismic activity rate can be calculated. Let A(m,,)
denote the area-characteristic, seismic activity rate of events
with magnitudes m,;, and larger. It can be shown (Kijko and
Sellevoll, 1989; 1992), that if the number of seismic events
per unit of time is a Poisson random variable, the maximum
likelihood estimator of A(m,;,) takes the form

2 n
A(Mpin) = P i . (10)

Zi:] t exp[_ﬁ(mmin - mmin)]
For a complete catalog (ie., where s=1; ml. =
rzninz .sznmzmmin;tztl with =1L = ... =0

and n=n; with np =n3= ... =0), the generalized
Aki-Utsu (-value estimator (7) reduces to the classic
Aki—Utsu formulation in estimator (2), and the maximum
likelihood estimator of A\(m,,;,) takes the standard form n/z.

Example

The performance of the newly derived estimator has
been investigated by the Monte Carlo simulation technique.
It was assumed that a hypothetic seismic catalog can be di-
vided into two subcatalogs, each with the same time span
(e.g., 38 years) and with a level of completeness of m). =
4.5 and m2, = 4.0, respectively. The earthquake mag-
nitudes were generated according to the distribution in
equation (4), where m,;, = 4.0 and § = 2.303 or, equiva-
lently, the Gutenberg—Richter b-value was equal to 1. In
the first subcatalog, only magnitudes equal to or exceeding
the value of m!, = 4.5 were considered. It can be shown
that, after removing the magnitudes in the first subcatalog
below the level of completeness, the second subcatalog con-
tains on average 10~2("n—m) = 10%523.16 times more
events than the first subcatalog. The simulation was repeated
1000 times for different number of events, ranging from 100
to 500. The number of events is defined as the total number
of events in both subcatalogs.

Figure 2 displays the average of 1000 solutions of the b-
value calculated according to the newly derived generalized
Aki-Utsu estimator (7). From this figure it is clear that
estimator (7) performs very well. The slight overestimation
of the b-value for a small number of events confirms the find-
ings of Ogata and Yamashina (1986), that the Aki—Utsu for-
mulation in estimator (2) is biased. If a more precise
assessment of the b-value is required, the bias can be re-
moved by applying the bias-reduction formula provided by
Ogata and Yamashina (1986). One has to admit, that the
Ogata—Yamashina bias is small, if not negligible. In the real
world, the uncertainties surrounding the model, its param-
eters, and the errors in magnitude determination have a more
significant effect on the estimated b-value than the Ogata—
Yamashina bias. Figure 2 also indicates the confidence inter-
vals of the estimated b-value. As expected, as the number of
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Figure 2. Performance of generalized Aki—Utsu b-value esti-
mator (7). On thousand synthetic catalogs of seismic event magni-
tudes were generated. Each catalog was divided into two
subcatalogs, each with a time span of 38 years, and levels of com-
pleteness ml. = 4.5 and m2. = 4.0, respectively.

min min
events increases, the width of the confidence intervals
decreases.

Conclusions

A new maximum likelihood estimate of the Gutenberg—
Richter b-value for multiple catalogs with different levels of
completeness is derived. This estimator is easy to use and
confidence intervals that estimate the margin of error are pro-
vided. The estimator is not based on an iterative process, and
once the 3-value is known, the mean seismic activity rate can
be calculated. The slight overestimation owing to bias for
catalogs with a small number of events can be removed
through the bias-reduction formula provided by Ogata and
Yamashina (1986). This short note illustrates how to com-
bine several catalogs of different levels of completeness in
the case in which earthquake magnitudes are distributed ac-
cording to PDF (see equation 4), which is based on the classic
frequency—magnitude Gutenberg—Richter relation in equa-
tion (1). It is important to note that the applied formalism
is not restricted to any model of earthquake magnitude dis-
tribution. It means, that our approach is open to any alterna-
tive model; for example, when earthquake magnitudes are
binned (Bender, 1983; Guttorp and Hopkins, 1986; Tinti
and Mulargia, 1987), when errors in earthquake magnitudes
determination are taken into account (Tinti and Mulargia,
1985; Rhoades, 1996; Kijko and Sellevoll, 1992), when
uncertainty of the model itself and its parameters are taken
into account (Campbell, 1982), when new parameter such
as the maximum possible earthquake magnitude m,, is
introduced, etc. The only difference is that in some cases
(such as in the case of application of Bender’s model of
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magnitude binning), estimation of the b-value would require
a recursive procedure.

Data and Resources

Only simulated data were used in this short note.
Plots were made using the MATLAB package version
7.10 (R2010).

The MATLAB computer program, used for the calcula-
tion of the newly derived estimator of the b-value, is avail-
able from the authors. In addition to the b-value, the program
can be used for the assessment of the mean activity rate A and
the area-characteristic, maximum possible earthquake mag-
nitude m,,.
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Appendix A

Derivation of the maximum likelihood estimator B for
s = 2. The generalization for any number of subcatalogs fol-
lows intuitively.
From the

L(B) =

condition dInL(B)/dB =0, where
1 [T5L Bexpl—B(m’; — mi, )], it follows that

m:rlin)]

- mfnin)]

2 2 n; m ' .
Z % . Z Z{exp[_/@)( [—(m; —mi ]}
i=1 j=1

i=1 j=1 CXp[ ﬂ(mj

or, equivalently,
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-1 < S
S 3L om0 (AD
i=1 j=1 i=1 j=1
After the introduction of the following notation,
1 YiLmp 1 YEm
_zi_mmin’ _zi_mmin’
B n Ba ny
n n
ry = s and ry = s
n; + ny n; + ny
equation (A1) takes the form
1 _ ry ry
g B B
or, equivalently
1 r rp\ !
== (J + 3) . (A2)
B \Bi B

Equation (A2) describes the generalized Aki-Utsu b-value
estimator in the case of two subcatalogs (s = 2). Extension
of equation (A2) for any number of subcatalogs (s = 1 or
s > 2) is obvious and takes the form of equation (7).

Appendix B

Derivation of the standard error (sample standard
deviation) 7 for s = 2. The generalization for any number
of subcatalogs follows intuitively.

Let Z(0) denote the Fisher information and be defined as

dZ
700) = —E[dgz ln{L(G)}:|,

where E denotes the operator of expectation and 6 is the pa-
rameter to be estimatqd. The standard error of the maximum
likelihood estimator 6 is then defined as
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For the problem in hand, ¢ = 3. The Fisher information for
the maximum likelihood estimator (3 is derived by differen-
tiating equation (A1) for a second time in terms of 3, which
provides the equation

A ng n
I(B) = —E[—ﬂ—; _5_5] for k = 2.
The standard error for B is therefore
. 1
g 3 = )
]
32
or, equivalently,
. 3

VT

For any number of subcatalogs s > 1, the standard error of
the newly derived estimator for (3 takes the form

~

oo P
5= .
‘ \/Zf’:1”i
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