Onderstepoort Journal of Veterinary Science and Animal Industry, Volume 15, Numbers 1 and 2, July and October, 1940.

Printed in the Union of South Africa by the Government Printer, Pretoria.

The Biological Values of the Proteins of Oats, Barley, Wheatbran and Pollard.

By J. S. C. MARAIS and D. B. SMUTS, Section of Nutrition, Onderstepoort.

The value of cereals in human and animal nutrition is fully recognized and appreciated. In fact it has become a regular and prominent portion of the daily dietaries of man and an inseparable portion in the balanced rations of stock.

Similarly its by-products have through years of experience attained an increasing popularity in the nutrition of farm animals. Lately the value of wheaten bran as a natural means of stimulating peristalsis in human beings has been recorded. Although these products as a group are not high in protein and therefore generally regarded as energy producing nutrients, they nevertheless contribute a fair quantity of protein to the daily aggregate of protein intake of both man and stock. It is consequently of importance that a detailed knowledge about the constitution and availability of the proteins contained in cereals and their by-products should be available, in order to assess their true nutritional value and to supplement in a practical way the indispensable amino acids which may be deficient. For this reason the above cereals and by-products were investigated by means of the Thomas-Mitchell nitrogen balance method for the estimation of their respective biological values.

In determinations on the biological values of proteins at different levels of protein intake Mitchell (1924) obtained values of 79 and 65 for oats at 5 and 10 per cent. protein levels. Smuts and Malan (1938) determined the biological value for rolled breakfast oats at 8 per cent. level as being 84, which is very near the value of 83 for pre-cooked oatmeal as determined by Murlin and Mattill (1938). In a comparison between barley and oats Osborne and Mendel (1920) could not assign any difference in the nutritive value between the two proteins. Neither oats nor barley can meet the growth requirements according to Steenbock and Gross (1918). Similar are the results of Hughes (1937) namely that barley as the only source of protein in the ration of pigs allows only slow growth, with a high food intake per unit bodyweight increase. For wheatbran and barley Gaucher and Popov (1936) determined the biological values 82 and 62 respectively. The proteins of bran and of the embryo are superior

to that of the endosperm according to Johns and Finks (1920), Osborne and Mendel (1919) and Boas Fixsen and Jackson (1932). A rather low biological value of 57 has been determined by Klein and co-workers (1926) for wheatbran, whilst Wan (1935) determined the much higher value of 72. Excellent growth and reproduction were observed on rats with treated and untreated wheatbran.

EXPERIMENTAL.

In principle the method described by Mitchell (1924) has been adopted. Male rats of 100-150 grams were used. It was found that the larger rats gave less trouble as regards food consumption and thereby the danger of any tissue breakdown that may be caused by insufficient energy intake was greatly minimised. Only one biological value was determined on a series of six rats. The nitrogen low period was conducted either prior to or after the protein periods. Six to seven day periods were allowed on a nitrogen low ration to establish constant nitrogen excretion. For the protein periods at least 10 days were allowed. The collection periods were of seven days' duration. The urine was collected in acid and the daily faeces digested by the Kjeldahl method. To distinguish between faeces of the preliminary periods and collection periods Fe₂O₃ was used as a marker. At the end of the collection period the week's digests of faeces were made up to volume and aliquots distilled for nitrogen determination. urine collected over the period was made up to a known volume and aliquots digested for nitrogen determination. The rations were made up so as to contain approximately 8 per cent. protein. The composition of the rations are given in Table 1. All the rations were analysed for nitrogen. To prevent deterioration the rations were kept in an ice chest.

RESULTS.

The nitrogen metabolism data as well as the calculations of the biological values are given in Table II. The standardizing periods on the nitrogen low ration preceded the protein periods in the cases of oats and barley and followed the protein periods directly again in the cases of wheatbran and pollard.

As can be seen from these results the biological values for oats, barley, wheatbran and pollard are $83 \pm 2 \cdot 04$, $77 \pm 1 \cdot 98$, $74 \pm 2 \cdot 82$ and $84 \pm 1 \cdot 66$ respectively. These biological values differ only slightly from the figures expressing the percentage utilizable protein which are $79 \pm 2 \cdot 73$, $68 \pm 2 \cdot 52$, $72 \pm 2 \cdot 82$ and $83 \pm 1 \cdot 44$ for oats, barley, wheatbran and pollard respectively. These small differences are due to the high digestibilities of the proteins. The digestibilities as determined are $95 \pm 1 \cdot 25$, $89 \pm 1 \cdot 51$, $98 \pm 1 \cdot 44$ and $99 \pm 0 \cdot 82$ for oats, barley, wheatbran and pollard respectively.

It is obvious from these results that these proteins are fairly well balanced and that they differ only slightly in their nutritive value; barley being the poorest and pollard the best. The explanation for the fact that pollard is better than wheatbran must be sought in the supplementary effect of the endosperm and epidermis of the wheat kernel, as pollard contains a higher percentage endosperm than wheatbran.

SUMMARY.

The biological values and digestibilities of the proteins of whole oats seed, unpearled barley, wheatbran and pollard have been determined and a figure expressing the percentage utilizable protein calculated.

Table 1.

Percentage Compositions of Rations.

Ingredients.	N Low.	Oats Seed.	Barley.	Wheat Bran.	Pollard
Whole oats seed		69-6		_	
Whole barley			82.5		
Wheat bran	-			69.6	
Pollard	─		_		45.5
Butterfat(1)	8.0	8.0	8.0	8.0	8.0
od liver oil	$2 \cdot 0$	2.0	2.0	$2 \cdot 0$	2.0
ucrose	$10 \cdot 0$	10.0	2.5	10.0	10.0
Harris yeast(2)	$2 \cdot 0$	2.0	$2 \cdot 0$	$2 \cdot 0$	2.0
Salt mixture(3)	$2 \cdot 0$	2.0	2.0	2.0	2.0
Whole egg(4)	$3 \cdot 8$	-	_		_
VaCl	$1 \cdot 0$	1.0	1.0	1.0	1.0
Agar	$2 \cdot 0$				
Starch (dextrinized)	69 · 2	5.4		5.4	29.5
TOTAL	100.0	100.0	100.0	100.0	100.0
PERCENTAGE N	0.64	1.46	1.59	1.56	1.58

⁽¹⁾ The butter fat has been filtered through a course filter paper to remove casein.

REFERENCES.

- BOAS FIXSEN, M. A., and JACKSON, H. M. (1932). The biological values of protein. IV. The biological values of the proteins of wheat, maize and milk. *Biochem. J.*, Vol. 26, p. 1923.
- GAUCHER, G., and POPOV, I. D. (1936). The biological value of some protein feeds used in Bulgaria. Ann. Univ. Sofia. 5, Fac. Agron. Sylvicult, Vol. 14, pp. 209-238.
- HUGHES, E. H. (1937). Biological value of casein as a supplement to the protein of barley in rations for pigs. J. Agric. Res., Vol. 55, pp. 461-465.
- JOHNS, C. O., AND FINKS, A. J. (1920). Studies in nutrition. VI. The nutritive value of peanut flour as a supplement to wheat flour. J. Biol. Chem., Vol. 42, p. 569.
- KLEIN A., HARROW, B., PINE, L., and FUNK, C. (1926). The nutritive value of various layers of the wheat and corn kernel. Amer. J. Physiol., Vol. 76, p. 237.

⁽²⁾ Vitamin B. preparation prepared by "The Harris Laboratories", Fuckahoe, New York.

⁽³⁾ A new salt mixture described by Hubbel, R., Mendel, J. B. and Wakeman, A. J. (1937), J. Nutr. Vol. 14, pp. 273-285.

⁽⁴⁾ The whole egg has been dried on a waterbath and extracted with ether.

BIOLOGICAL VALUES OF PROTEINS.

- MITCHELL, H. H. (1924). A method of determining the biological value of protein. J. Biol., Chem., Vol. 58, p. 873-903.
- MITCHELL, H. H. (1924). The biological values of proteins at different levels of intake. J. Biol. Chem., Vol. 58, pp. 905-925.
- MURLIN, J. R., and MATTILL, H. A. (1938). Digestibility and nutritional value of cereal proteins in the human subject. J. Nutr., Vol. 16, pp. 15-33.
- OSBORNE, T. B., AND MENDEL, L. B. (1919). The nutritive value of the wheat kernel and its milling products. J. Biol. Chem., Vol. 37, p. 557.
- OSBORNE, T. B., and MENDEL. L. B. (1920). Nutritive value of the proteins of the barley, oats, rye and wheat kernels. J. Biol. Chem., Vol. 41, p. 275.
- SMUTS, D. B., AND MALAN, A. 1. (1938). Plant Proteins II. The biological values of lucernemeal, sesamemeal, peanutmeal, coprameal, cottonseed-meal and oatmeal. Onderstepoort J. Vet. Sci. and Animal Industry, Vol. 10, pp. 207-219.
- STEENBOCK, H., and GROSS, E. G. (1918). Dietary qualities of barley. J. $Biol.\ Chem.,\ Vol.\ 35,\ pp.\ 62-74.$
- WAN, . (1935). The biological value of proteins and the digestibility of food constituents of mixed vegetarian diets containing processed wheat brans. Chinese J. Physiol., Vol. 9, pp. 125-140.

Nitrogen Metabolism Data and the Calculation of the Biological Value. TABLE 2.

	age utili- zable Pro- tein.	111111
	gical Value,	111111
True	Diges- tibi- lity.	11111
Appa-	rent Diges- tibi- lity.	111111
;	Ba- lance.	Mgm.
	N Re- tained.	Mgm.
	Food N in Urine.	Mgm.
enous	Per Day.	Mgm.
Endogenous N.	Per 100 Gram Wgt.	Mgm. 15.4 15.3 18.9 14.8 15.0 14.5
Daily	Uri- nary N.	Mgm. 18.5 24.6 26.4 19.2 16.0 19.3
	Absor- oed N.	Mgm.
,	Food N in Facces.	Mgm.
		Mgm.
Metabolic N.	Per Gram Food.	Mgm. 3.70 3.36 3.49 3.29 3.32 3.13
	Daily Faecal N.	Mgm. 39.6 37.0 31.4 33.2 30.2
	Daily N In- take.	Mgm.
Daily	Food In- take.	Gm. 11.0 11.0 9.0 10.1 9.1
	Aver- age Wgt.	Gm. 120 161 146 130 107 133
	Final Wgt.	Gm. 119 157 135 127 107 132
	Initial Wgt.	Gm. 120 164 144 132 107 134
	Rat No.	7 8 9 10 11 12

. 1	, ,		
76 73 88 88 78 78 76		11][1]	72 65 69 67 74 63
28 80 88 88 88 88 88 88 88 88 88 88 88 88		111111	73 77 77 76 83 76
91 96 97 97 96 96		111111	88 88 89 89 89 89
66 73 75 74 73 70		111111	68 68 68 64 61 61
++++++ 70.3.6 7.9.9 7.9.3.6		111111	103.2 84.0 95.3 95.3 64.6 73.0
116.9 124.1 152.4 120.7 142.6 141.6		11111	187.6 163.1 168.6 145.9 170.7
21.8 39.2 15.4 229.4 26.9 27.8		111111	0.000.47
21.4 21.0 22.2 20.3 22.6 22.6		111111	mt. N) 21.7 520.1 63.19.9 56.18.2 18.2 18.3 19.3 44.
15.4 18.9 18.9 14.8 15.0		15.5 13.8 13.8 12.3	Whole Barley Period (1·59 per cent. 3·85 62·7 19·7 239·5 73·6 15·5 21·7 3·1 59·0 28·2 224·6 81·6 14·7 20·1 3·4 53·4 25·8 219·1 70·4 13·8 19·9 3·91 53·2 16·4 199·8 72·0 13·8 18·2 3·86 56·4 26·0 206·1 53·6 12·3 18·2 3·55 50·4 38·4 18·7 4 64·0 15·1 19·3
43.2 66.4 46.4 51.6 50.4	riod.	21.6 20.0 19.2 18.4 17.6 19.6	1.59 73.6 81.6 70.4 72.0 53.6 64.0
138.7 163.3 167.8 150.1 169.5 169.4	N-Low Period	111111	239.5 224.6 219.1 199.8 206.1 187.4
13.1 7.5 7.9 7.2 16.0	N-L	111111	19.7 19.7 28.2 25.8 16.4 26.0 38.4
38.5 39.3 41.5 34.9 40.2 39.8		11111	Barle 62.7 53.4 53.2 56.4 50.4
3.70 3.36 3.29 3.32 3.13		3.85 3.71 3.47 3.91 3.86 3.55	3.85 3.47 3.47 3.91 3.55
51.6 46.8 47.4 39.6 47.4 55.8		35.8 33.0 30.2 34.4 38.3 34.1	82.4 69.6 88.8 88.8
151.8 170.8 173.7 154.8 176.7 185.4		111111	259.2 252.8 244.9 216.2 232.1 225.8
10.4 11.7 11.9 10.6 12.1 12.7			16.3 15.9 13.6 14.2
139 178 164 150 135 156		139 136 139 133 143 130	140 137 144 131 148 128
139 179 168 153 140 160		138 135 140 134 144 132	155 150 158 142 156
133 177 160 147 130 152		140 137 138 132 142 127	125 124 130 120 140 120
8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 8 8 10 11 12 12	L & & & O 1 1 2 1

Table 2—(continued).

Nitrogen Metabolism Data and the Calculation of the Biological Value. N-Low Period.

Per cent- age utili- zable Pro-			75 69 80 68 73 73		11111		88 87 88 88 88 88 88 88 88 88 88 88 88 8		
Biolo- gical Value.	: 1 : : . :				75 68 76 82 82 69 73 74	7. 199	111111		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
True Diges- tibi- lity.		,	100 99 97 100 100		111!:1		100 95 99 100 100 100 99		
Apparent Diges- tibi- lity.			77 73 73 72 72 72 72 72 72 72 72 72 72 72 72 72		11111.		74 76 77 77 76 76		
N Ba- lance.			+ + + 85.3 + + 82.4 + 64.9 + 67.0				102.2 + 76.4 + 119.2 + 119.2 + 85.6 + 121.7		
N Re- tained.	Mgm.	.(1).		162.1 132.3 150.4 198.4 142.9		11111	İ	175.6 129.3 141.9 178.6 154.7 201.9	
Food N in Urine.	Mgm.		53.0 63.0 47.4 43.8 55.3 44.7		!	-	33.0 17.2 35.9 26.0 38.1 39.9		
Endogenous N. Per 100 Per Gram Day.	Mgm.	cent. A	17.3 19.4 27.0 26.6 17.5	· [()	18.2 23.6 19.3 12.2 22.7		
Endog N Per 100 Gram Wgt.	Mgm. 13.2 15.3 20.0 18.9 114.2 11.8	(1.56 per ce	13.2 20.0 18.9 14.2 11.8		20.7 20.7 17.1 9.1 16.7	per cent.	15.0 20.7 17.1 9.1 16.7 15.2		
Daily Uri- nary N.	Mgm. 17.2 19.6 28.8 26.4 18.4 14.8		70.4 82.4 74.4 70.4 72.8 58.4	Period	17.6 23.6 19.2 12.4 21.6 22.4	88 per	51.2 40.8 55.2 38.2 60.8 62.4		
Absorbed N.	Mgm.	Period (1	215.2 195.3 197.8 242.2 180.2	N-Low F		d (1.58	208.6 145.6 177.8 204.6 192.8 241.8		
Food N in Faeces.	Mgm.		2 · 8 · 9 · 0 · 1 · 1 · 9 · 0 · 0 · 1 · 0 · 0 · 0 · 0 · 0 · 0 · 0	N-1	11111	Pollard Period	0.00 0.00		
bolic L. Per Day.	Mgm.	Wheatbran	49.5 43.6 41.0 60.6 42.5 38.5		11111	Hard	55.8 29.3 47.3 48.8 59.2		
_ C ⊆	Mgm. 3.59 3.43 2.95 3.79 3.63 3.67	Whe	3.59 3.43 2.95 3.79 3.63 3.67		2.93 3.45 3.45 3.64 3.87	Pe	4.23 3.45 3.64 3.64 3.87		
Daily Faceal N.	Mgm. 36.6 28.8 36.0 31.8 37.2 37.8		49.6 46.4 60.0 68.0 44.8 38.4		39.3 29.0 26.6 36.4 37.2 41.8		55.2 37.6 41.6 48.0 46.4 57.6		
Daily N In- take.	Mgm.		215·3 198·1 216·8 249·6 182·5 163·8		1111[208.6 154.8 180.1 205.4 192.8 241.7		
Daily Food In- take.	Gm. 10·2 8·4 12·2 8·4 8·4 7·5 10·3		13.8 12.7 13.9 16.0 11.7		9.3 10.0 10.8		13.2 9.8 11.4 13.0 12.2 15.3		
Aver-	Gm. 130 128 144 140 130 125		131 127 135 141 141 123 116		117 114 112 137 129 147		121 114 113 134 136 148		
Initial Final Wgt. Wgt.	Gm. 130 130 144 144 129 129		140 136 145 145 155 130 122		116 115 110 139 129 149		121 119 121 144 143 160		
Initia Wgt.	Gm. 129 129 126 143 141 130 125		122 118 125 125 127 110		118 114 114 135 129 145		121 109 105 123 129 135		
Rate No.	13 14 15 17 18		11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0		22 22 23 24 24		22 22 23 24		