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Abstract 

This paper investigates the factors that influence the phase noise 

performance of an oscillator and proposes a modified structure for improved 

phase noise performance. A single and multiphase oscillator analysis using 

the harmonic balance method is presented. The modified structure increases 

the oscillation amplitude without increasing the bias current and leads to 

improved phase noise performance as well as decreased power consumption. 

The modification is analyzed and the figure of merit of the oscillator shows a 

significant improvement of 21 dB. Numerical and analytical solutions are 

presented to predict the oscillation frequency and phase noise. The analytical 

solution is used to approximate the first harmonic and can be combined with 

numerical simulations to extrapolate phase noise performance. 

Keywords: harmonic analysis, oscillators, phase noise, SPICE. 

1 Introduction 
Oscillators are ubiquitous to radio frequency circuits, where frequency 

translations and channel selection play a central role in the analog 

communications channel. Oscillators also form part of digital systems as a 

time reference [1]. Typical heterodyne receivers require an intermediate 

frequency channel. The associated oscillators and variable filters can only be 

centered perfectly at a single frequency and degrade performance at the 

boundaries of the channel. These circuits also require image-rejecting filters 

and phase-locked loops to enable down-conversion. The penalty for these 

components is increased circuit area and power consumption [2]. A direct 

down-conversion circuit will enable the number of components in the system 

to be reduced. A requirement added by the structural change is a passive 

sub-harmonic mixer. Quadrature oscillators can be achieved by cross-

coupling two nominally identical LC differential voltage-controlled 
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oscillators (VCOs) [3]. Because of the widespread use of VCOs in wireless 

communication systems, the development of comprehensive nonlinear 

analysis is of great interest for both theory and applications [4].  A key 

characteristic that defines the performance of an oscillator is the phase noise 

measurement and extensive work has been done to quantify phase noise. The 

VCO is also a key component in phase-locked loops and will contribute to 

most of the out-of-band phase noise, as well as a significant portion of in-

band noise [5]. Current state-of-the-art modulation techniques, implemented 

at 60 GHz, such as quadrature amplitude modulation and orthogonal 

frequency domain multiplexing, require phase noise specifications better 

than 90 dBc/Hz at a 1 MHz offset [6]. It has been shown that owing to the 

timing of the current injection, the Colpitts oscillator tends to outperform 

other oscillator structures in terms of phase noise performance [7]. The 

Colpitts oscillator has a major flaw in that the startup gain must be relatively 

high when compared to the cross-coupled oscillator. The oscillation 

amplitude cannot be extended as in the cross-coupled case [8]. The 

oscillation amplitude is generally limited by the oscillator’s bias current and 

is given as tank2 PI R


[9].  The phase noise is defined by a stochastic 

differential equation, which can be used to predict the system’s phase noise 

performance. The characteristics of the oscillator can then be defined using 

the trajectory. The model projects the noise components of the oscillator 

onto the trajectory and then translates the noise into the resulting phase and 

amplitude shift [10]. The phase noise performance of an oscillator can be 

improved by altering the shape of the trajectory. The trajectory of the 

oscillator can be separated into slow and fast transients. The phase noise 

performance can be improved by improving the shape of the slow manifold 

of the oscillator [11]. Close-in phase noise can be directly improved by 

improving the loaded quality factor of the tank circuit [12]. The Colpitts and 

differential Colpitts oscillator are selected as the basis for analyzing 

performance. The organization and contribution of this paper are as follows: 

In Section II the factors that influence phase noise are discussed; the results 

are compared to a system where the non-linear restorative force has been 

omitted to produce closed form solutions. Several characteristics influencing 

phase noise are identified. In Section III, a simple single-phased Colpitts 

oscillator is analyzed. The analysis is based on the harmonic balance 

technique and is analytically extracted for the first Fourier component, which 

is simultaneously estimated. This method can be extended for higher order 

harmonics [13]. The approximate frequency–amplitude relationship for a 

conservative nonlinear oscillatory system in which the restoring force has an 

exponential form is studied. The solutions are valid for the complete range of 

oscillation amplitudes, including limiting cases of amplitudes approaching 

zero and infinity. The analysis used in this paper produces accurate results 

because of the large number of harmonics that are explained using this 

technique [13]. Modified nodal analysis is used to determine the differential 
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system describing the oscillator. The set of equations is non-linear and a 

closed form solution does not exist. The oscillation frequency and amplitude 

can be fully explained using this technique, and an approximation of the first 

harmonic component is made. The transistor is modeled using the full 

voltage-controlled Ebers-Moll bipolar junction transistor model. Section IV 

extends the approach discussed in Section III to a differential Colpitts 

oscillator. This structure is then used as the basis for the improved 

multiphase oscillator. The section shows the subtle difference between this 

structure and the cross-coupled oscillator. Section V introduces the modified 

multiphase oscillator with analysis to predict the oscillation amplitude and 

frequency. This is verified through a MATLAB simulation of the describing 

differential equation, which can be done either in the time domain or in the 

frequency domain, using a numerical harmonic balance procedure. The time 

domain approach tends to generate less accurate solutions and is more 

computationally expensive. Section VI provides a brief discussion on the 

phase noise of the oscillator. Finally the multiphase oscillator is analyzed. A 

general simulation program with integrated circuit emphasis (SPICE) 

solution is also compared in order to verify the analysis. A new oscillator 

structure is introduced with current locking to enable the generation of 

quadrature oscillations. The structure takes advantage of the noise-shaping 

characteristics of the Colpitts oscillator but relaxes the start-up requirements 

associated with the structure. The result is a multiphase oscillator with 

reduced power consumption and improved phase noise performance. 

2 Oscillator performance 
The phase noise of an oscillator can be improved without difficulty by 

increasing the amplitude of the oscillating voltage and the power associated 

with the first harmonic, or by improving the quality factor of the tank circuit. 

These methods are well noted [14]. There are limitations to both of these 

approaches and it is useful to define a performance metric for the oscillator. 

The figure of merit (FOM) is defined as follows: 

                   

(1) 

where  fL  is the phase noise at a f  offset frequency in dBc/Hz, 0f  is 

the oscillation frequency and DCP is the steady state power consumption of 

the circuit in Watts(1). From (1) it is clear that there are two ways to 

improve the FOM: improve the phase noise or decrease the power 

consumption of the oscillator. Phase noise has been shown to be stationary 
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and to have increasing variance with time. The total power of the circuit is 

defined by (2). 

 
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where iX  are the Fourier components of the oscillator’s stable limit cycle in 

volts squared relative to a 1 Ω load. The phase noise is then given as: 
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and  0ssS f f  is the power spectral density in W/Hz, at a frequency 

offset of f  Hz. The result of (1) and (2) is that phase noise can be reduced 

by decreasing the total number of harmonics within the system. The total 

energy of the system is limited and the summation of all the components 

must be equal to the steady state power consumption. To identify methods of 

reducing phase noise one needs to analyze how noise perturbations are 

translated into phase noise in an autonomous system. Equations (4) and (5) 

give one a basis to begin analyzing phase noise and identify methods that 

can be used to reduce phase noise. The phase noise of a circuit with 

stationary noise sources is then approximately: 
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for small c, 00 ff  and 
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where ci is the function that describes a noise source i and c is the sum of all 

the noise source contributions. Equation (5) is the projection of the noise, 

assumed stationary, described by   sxB  and a function of  sx  onto the 

trajectory of the specific node of the system without the presence of noise. It 

then describes how the noise source is translated into phase noise. The FOM 

can therefore be improved by reducing the constants, ic . This can be 

achieved in two ways, by manipulating the manner in which noise is 

translated into phase noise or by reducing noise within the system. Initially it 
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was shown that to calculate the phase noise of an oscillator, the noise at each 

node should be projected in the relative state space to the node of interest to 

predict phase noise. A description of calculating phase noise is given 

in [1]. The theory is then later expanded to show that only a single variable 

in the state space is required to obtain the relevant perturbation projection 

vector (PPV) [16]. The tank current is equivalent to the first derivative of the 

tank voltage and can be seen as a function of the rate of change of phase. 

This enables noise sources that are in the form of current perturbations to be 

directly analyzed, with the PPV being the tangent of the limit cycle. This 

corresponds directly with the idea of an impulse sensitivity function 

introduced [7]. The assumption is that the noise is a wide sense stationary 

variable. The case of colored noise sources is considered in [10]. An 

interesting analysis, which is conducted in [17], is similar to the method 

presented here. In this work a lower-order active device is included as the 

restorative element for the lossy tank circuit and enables subtle differences to 

be included. In [17], the active device is removed from the model and 

approximated with an ideal switch, which is mathematically tractable. The 

currents from the ideal switches are then injected into a tank circuit as 

impulses and the PPV is calculated exactly under the listed assumptions. The 

ideal switch tends to approximate the cross-coupled transistors as the gain of 

the active transistor is taken in the limit to infinity, although this is only true 

for the basic configuration.  This yields results that agree with ―intuitive‖ 

selection of the oscillator structure. The results highlight a few important 

aspects. The optimum difference between the eigenvectors representing the 

current and voltage of the tank circuit is ½. This then results in the 

sensitivity of noise-to-phase-noise conversion being minimized when the 

voltage and current are out of phase and the voltage is at a maximum. This 

corresponds directly with the Colpitts oscillator where the current injection 

is out of phase with the oscillation voltage. Secondly, the coefficient 

describing the PPV onto the current variable in the state space is given as: 

 
 22

1
1

1

QC

L

F
 ,                             (6) 

where F describes how the  components of the tank circuit will contribute to 

the PPV of the noise current sources. The interesting result here is the fact 

that an increased Q will improve phase noise, as stated before. The ratio of C 

to L will also influence phase noise. Finally, by considering the slow 

transients of the system, the manifold can be analyzed and the shape of the 
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PPV relative to specific state variables in the slow manifold can be 

manipulated to improve phase noise. 

3 Modelling oscillators for analysis 

3.1 Single-phase Colpitts oscillator 
Figure 1 shows the basic Colpitts oscillator. Equation (7) is the result of 

nodal analysis. 

 

Figure 1. Basic Colpitts oscillator. 
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where iQ1+ is the collector current of Q1, v+ is the tank voltage with respect to 

ground, Ctot is the total capacitance associated with the tank circuit. After 

applying the Ebers-Moll equations for the transistor collector current, (8) is 

derived. 

 
2

2

1
exp exp

1
0

BCBE
s

T R T

tot p tot tot

vv
I

V Vv v
v

C R t C t C Lt


 



     
                     

   

                     

(8) 

where vBE and vBC represent the base-emitter and base-collector voltages of 

Q1 respectively. This equation then resembles the Van der Pol equation, 
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which has been extensively studied [19]. Equation (8) does not have an 

explicit closed form solution.  

The equation is simplified (see Appendix A) to yield (9).  
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            (9) 

The oscillation frequency can also be dramatically increased from the third 

term, 
tot PC R


 in (9), when the feedback constant is small and the loaded 

tank quality is small, before the last term dominates and reduces oscillation 

frequency. The term PR is frequency-dependent; its effects are initially 

deliberately excluded from the analysis, but will tend to change the 

oscillation frequency. To deal with these effects, the assumption is made that 

the analysis is based on the fact that the tank circuit is insignificantly loaded 

by the feedback network. The objective is then to place the oscillator on the 

verge of being voltage-limited and the amplitude can be set as the limit 

defined by the bias; in this example it is ½VCC. To calculate the loading on 

the circuit, the authors rely on the defined set of assumptions that the first 

harmonic’s current is set by the modified Bessel function defining the 

Fourier transform of the function  exp cos( )x t . The transconductance of 

the first harmonic is well known to be 2IBIAS/VT. This then allows the loaded 

impedance of the tank circuit to be defined as   2||
2

T
P

BIAS

V
Z n

I


 
 
 

, at the 

first harmonic. The dependence of the impedance on frequency is not 

limiting and (9) can be iteratively analyzed until the equations are balanced. 

To limit the frequency deviations the non-linearity should be kept small and 

the tank impedance as large as possible. The limitation to (9) is the 

assumption that the combination of C1 and C2 does not load the tank circuit. 

This assumption allows the base-emitter voltage to be expressed as a 

fraction, defined by n, of the tank voltage. The assumptions are therefore 

valid for large values of n, as well as for small bias currents where the 

impedance into the emitter is larger than the tank impedance. The factors 
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that influence phase noise and the assumption that the tank is not 

significantly loaded by the feedback circuit lead to the false assumption that 

the oscillation amplitude and bias currents cannot be separated. The theory 

states that if the bias current is reduced, the oscillation amplitude must 

decrease. This result can be verified with most feedback oscillators. The two 

are in fact not necessarily inter-dependent and can be decoupled if an 

external current is injected into the emitter of the active transistor. First it 

will be demonstrated that the assumption that the first harmonic is limited by 

bias current is not necessarily true. Starting with the circuit in Fig. 1 and (7), 

another state variable is included in the form of vE, the emitter voltage.  

Firstly, it is assumed that the transistor β is large and the transistor emitter 

and collector currents can be interchanged. This is only true if the transistor 

is in saturation, which could be violated and should be verified not to be so 

in each specific case. Equation (7) can be modified to: 
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and the additional node added to obtain the following sets of equations: 
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After some manipulation (see Appendix B) we arrive at  
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(16) 

Equation (16) can be used to predict the oscillation frequency as well as the 

values of A1 and A2, the amplitude of the first and second harmonic 

component of the oscillator. Increasing the ratio 2

2 1

C

C C

 
 

 

 will increase the 

amplitude of the first harmonic of the collector current, if the tank circuit is 

not significantly loaded, which is not true for the general oscillator. The 

structure must be modified to allow the tank loading to be decoupled from 

the feedback ratio. The results show that if the small loop gain can be set to 

ensure oscillation begins, the average collector current can be reduced after 

oscillation begins, or if the closed loop gain is increased the bias current can 

be reduced, by almost the same factor. Equation (16) shows that for large 

quality factors the oscillation frequency will decrease rapidly as the number 

of harmonics in the feedback voltage is increased. The number of harmonics 

in the feedback voltage is not related to the number of harmonics present in 

the tank, but rather the amplitude of the feedback voltage.  

3.2 Differential Colpitts oscillator 

The single-phase Colpitts oscillator is modified. Two tank circuits are 

coupled and forced to oscillate out of phase. The modification is shown in 

Fig. 2.  
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Figure 2. Differential Colpitts oscillator. 

The two coupled single-phase Colpitts oscillators are identical. Nodal 

analysis leads to (17) and (18): 
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where iC1+ is the collector current of Q1. IS1 is the saturation current. VT is the 

thermal voltage, 1Bv   and 1Bv  are the base voltages of Q1 and Q2 

respectively. Then, applying the same steps as before, it can be shown that 
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The collector current is set by the base-emitter voltage of the particular 

transistor. The currents can be further expanded and the result is shown in 
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where v1D is the differential voltage across both tank circuits. Then, applying 

the partial derivative, it can be shown that: 
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The system is expanded as a set of first-order differential equations: 
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; using these equations, a numerical 

solution for the differential equation can be derived. The equation can also 

be used directly to generate phase plots for the system.  With algebraic 

manipulation, using the same harmonic balance technique given in the 

previous section, an approximate closed form solution defining the 

oscillation frequency and amplitude can be derived. 

3.3 Multiphase Colpitts oscillator 

The currents of two differential Colpitts oscillators are cross-coupled to 

enable the generation of a quadrature oscillator. When the two differential 

tank circuits are coupled the result is a 90° shift in the differential voltages 

and four oscillations that are separated by equal phases are generated [18]. 

The modified Colpitts oscillator is shown in Fig. 3 and Fig. 4. An additional 

gain stage is introduced into the feedback loop. This enables the start-up 

conditions associated with the Colpitts oscillator to be altered. The tank 

circuits of each of the oscillators’ branches are decoupled from the feedback 
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loop. This separation allows the loaded quality factor of the relative tank 

circuit to be improved. The closed-loop gain is also increased. When the 

modified circuits describing equations are analyzed, it can be seen how the 

feedback voltage is increased. This simultaneously increases the tank 

voltage. The oscillator is designed to enable the feedback voltages at the 

base of transistors Q2, Q3, Q8, and Q9 to be smaller than 50 mV, which 

enables small-signal linear analysis of the gain to be applied. The additional 

components used to modify the quadrature oscillator increase the space 

required to implement the oscillator. The increase in size is in line with other 

quadrature oscillators implemented with similar technology nodes, such as 

the transformer coupled and travelling wave oscillators. The layout 

complexity is however significantly increased and interconnection becomes 

more challenging. There is also a further assumption that the additional gain 

stage introduced into the oscillator structure does not introduce large phase 

deviations. This can be ensured in the design phase; however if care is not 

taken, subharmonic or superharmonic oscillations as well as frequency 

pulling will occur. The modification improves the phase noise performance 

by exploiting several different facts. The bias currents required to ensure 

start-up of the oscillators are reduced and a very low power oscillator can be 

realized. The ratio of the capacitors C1 and C2 can be increased by 

approximately the same factor as the gain added to the feedback loop. The 

loaded quality factor of the tank circuit is improved. The cross-coupled 

voltages remain equivalent to the unmodified system, leaving the harmonic 

content of the tank circuit unaffected. The current injections into the tank 

circuit are optimum in terms of the ½ shift between the current and voltage. 

The noise contribution to the tank circuit is reduced by careful selection of 

the gain block parameters. The remaining noise components are set by the 

specific process and the quality of the passive components. Thus the 

modifications proposed aim to improve every aspect identified to have an 

influence on the oscillators’ phase noise performance, except for device and 

component level optimizations. The gain of the transistors Q1, Q4, Q7, and 

Q10 is set to 18 dB to optimize the phase noise of the oscillator. The emitter 

voltages are then defined by the following equations: 

2
1 1

2 1

8.5E

C
v v G

C C
 

 
   

                         (24) 

2
1 1

2 1

8.5E

C
v v G

C C
 

 
   

                                          (25) 
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2
1 1

2 1

8.5E

C
v v G

C C
 

 
   

 

                                        

(26) 

2
2 2

2 1

8.5E

C
v v G

C C
 

 
   

 

                                        

(27) 

2
2 2

2 1

8.5E

C
v v G

C C
 

 
   

                                         (28)

 

where G  is the phase shift associated with the gain stage. Then, collecting the 

terms and defining the differential voltages and currents, equations (29) and (30) can 

be derived. 

 

(a) 

 

 

(b) 

Figure 3. Multiphase Colpitts oscillator. 
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(a) 

 

(b) 

Figure 4. Multiphase Colpitts oscillator. 

 

2
1 1 1 2

2
0CD D D D

tot

i v v i
C

t L tt

  
   

                                  (29) 

2
2 2 2 1

2
0CD D D D

tot

i v v i
C

t L tt

  
   

                                  (30)

 

where 1 1 1CD C Ci i i  
, 2 2 2CD C Ci i i  

, 1 1 1Dv v v  
, 2 2 2Dv v v   ,  

1 1 1Di i i  
, and 2 2 2Di i i  

. 
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Then, after several algebraic steps, if 
 

2

1 2

8.5

2 t

C
K

V C C



, 22 F EE

tot

I
A

C


 ,

1 .F EE

tot

I
B P A

C


 

    

1
1

Dv
x

t





, 2

2
Dv

x
t





, 

exp B
s

t

V
Q I

V


 

   
   it can be shown that:  

1
1

Dv
x

t





                                                    

(31) 

2
2

Dv
x

t




                                                    (32) 

         21 1
1 1 2 2. cosh . . 1 tanh D
D G G D G G

tot

x v
Q K Kv x P A K Kv x

t C L
   


     

           (33) 

         22 2
2 2 1 1. cosh . . tanh 1 D

D G G D G G

tot

x v
Q K Kv x P A K Kv x

t C L
   


     


  

   (34) 

This reflects the modified nodal analysis, which can then be used to solve 

the system numerically. It is interesting to note that in the conventional 

cross-coupled pair the terms with the hyperbolic sine are replaced with the 

tanh function, which demonstrates how the maximum gain is no longer 

restricted. This is the only mathematical difference between the two circuits. 

The magnitude of the cross-coupled currents is important in terms of the 

performance of the system and should be set at a minimum while still 

ensuring quadrature oscillations. An added benefit of the additional gain 

block becomes apparent when looking at (31) to (34), where it is seen that 

the cross-coupling of the currents is magnified for a given oscillation 

amplitude. The phase noise improvements are not specifically clear in the 

differential equation, but are clearer when looking at the bias currents and 

the 8.5 factor reduction that can be achieved with this specific configuration.
  

3.4 A brief analysis of phase noise 

To characterize the phase noise in the oscillator, the phase error is defined at 

a given point in time as   t  - the following is then considered: 

         cos cosdif t A t t t A t      ,                      (35)  

where the phase shift is due to the injected error signal  dif t , which 

causes an amplitude shift of  t  and phase change,  t .  cosA t  is the 
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expected oscillator output given a noiseless system. The term  t  will be 

reduced by the natural amplitude-limiting nature of the oscillator, which 

must be valid for a stable oscillatory system. To characterize the phase noise, 

the first and second order moments of the differential equations that define 

the system [1] are analyzed. 

       , , 0I X t dt dQ X B X t dW t    .                            (36)  

The term  ,I X t represents the linear and nonlinear resistive components 

of the system and  dQ X  represents the inductive and capacitive 

components of the system.   is a multiplier associated with perturbation 

theory, the factor  ,B X t  is a noise-modulating function and  W t is a 

vector of uncorrelated Wiener processes. The     E sX t x t ,
 
which is 

the solution to (36) when the noise sources are ignored. The second order 

statistics are characterized by the autocorrelation function 

    E
T

n nX t X t , which is defined as  K t . The second order statistics 

are solved around the known steady-state solution  sx t  and the Taylor 

expansion of  X t  around the steady-state solution. 

4 Numerical simulations 
The differential equation (8) is solved numerically with the aid of MATLAB 

and generates     E sX t x t ; both a transient analysis and a shooting 

balance method are applied. The shooting balance method generates the state 

transition matrix and generates the Hessian required for calculating the phase 

noise using (36) and calculating  K t . The component parameters are 

selected to match standard transistors available in a SPICE library. The tank 

circuit is loaded with a resistive component to reduce the quality factor of 

the tank circuit significantly to 10. This is done for demonstration purposes 

to increase the phase noise associated with the tank circuit. For the selected 

―standard‖ transistors, the IS of the transistor is 10
-17

 A; the following 

selections are made: VB = 0.75 V, VCC = 1.2 V, C1/(C1+C2) = 0.35, 

1/(Ctot.L) = 10
20

, and Ctot = 1 pF and Rp = 100 Ω to intentionally reduce the 

tank circuits quality factor significantly. This yields an oscillation frequency 
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estimate of 5.03 MHz for the standard approximation, (14) yields 1.59 GHz. 

A lower frequency oscillator is demonstrated. The oscillation frequency is 

then 1.59 GHz, compared to the SPICE result of 1.6 GHz. Fig. 4 shows the 

multiphase oscillator. The current injection in Fig. 5 shows the 90° phase 

shift of the current injection relative to the tank current; the tank current and 

voltage must be out of phase. It is clear from Fig. 6 that the stable limit cycle 

is more strongly influenced by noise during periods when the rate of change 

of current with respect to voltage is at its maximum and is influenced by the 

coupling currents that induce the quadrature oscillations. The modified nodal 

analysis is extended and the different noise sources are added to the model. 

Applying the same approach to the multiphase Colpitts oscillator (24) using 

a larger tank capacitance and smaller DC bias, and setting the cross-coupling 

currents to 0.039 times the main oscillator’s current results in Fig. 5 to 

Fig. 8. The noise sources are modeled as stationary sources with 0 mean and 

variance defined by the relative source characteristic projected to the tank 

node of the circuit. A Monte Carlo simulation is performed; the noise is 

added in the time domain and weighted appropriately. The results are 

compared to the expected value of the phase noise derived using the 

approach from [1] and [5].  The total power consumption of the oscillator is 

improved from 40.8 mW to 4.8 mW. Drawing comparisons to other 

quadrature oscillators manufactured in a similar process technology node 

yields: 50.4 mW for a ring oscillator [20], 24 mW for a parallel coupled 

oscillator [21] and 19.2 mW for a transformer coupled oscillator [22]. 

The additional gain stage is biased at a current of 1 mA and included in the 

power consumption of the total oscillator for comparison purposes. Fig. 7 

shows the spectrum of the modified Colpitts oscillator. The phase noise is 

estimated to be -92 dBc at a 1 MHz offset, directly from the figure. The 

phase noise of the oscillator has not specifically been optimized. The 

analysis shows an improvement of approximately 20 log10(8.5) or a phase 

noise of -102 dBc at 1 MHz offset. The FOM is significantly improved by 

21 dB. If the original oscillator were optimized the performance 

improvement would be reduced, but not more than 8 dB. 
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Figure 5. Tank voltage versus transistor injection current for the multiphase oscillators. 

 

Figure 6. Phase plot for the unmodified oscillator including noise. 

 

Figure 7. Spectrum of oscillator and modified oscillator. 
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5 Conclusion 
The approach followed in this paper describes oscillator behavior from a 

circuit level analysis. The derived equations do not have a closed form 

solution but are re-formulated using harmonic balance techniques to yield an 

approximate solution. The results from this closed form approximation are 

very close to both the numerical solutions of the differential equations as 

well as the SPICE solutions for the same circuits. The derived equations are 

able to predict amplitude and frequency in the single-phase example 

accurately and are extended to provide a numerical platform for defining the 

amplitude and frequency of a multiphase oscillator. The analysis identifies 

several different circuit components that influence the phase noise 

performance of an oscillator. A circuit level modification is then identified 

that enables some of the factors and their interactions to be decoupled. It is 

demonstrated that the phase noise performance of a Colpitts oscillator can be 

significantly improved by making the proposed changes to the oscillator. 

The FOM of the oscillator is improved even further. If it is considered that in 

most cases the collector current will account for approximately 85% of the 

phase noise, it is then clear that the methods proposed here will improve 

phase noise performance, for example from a given level of -106 dBc/Hz to -

113 dBc/Hz. This would not account for further improvements the 

modification would incorporate in the limit cycle. The FOM would be 

improved even further by another 9 dB by the change in the power 

consumption relating to an average increase in performance of 16 dB. Future 

work could include further modeling of the phase shift in the feedback 

network, including the transmission lines in the feedback networks using the 

harmonic balance technique in a numerical form. The feedback technique 

can also be modified to be applicable to single and differential oscillators. 
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6 Appendix A 
The truncated harmonic balance method is applied to equation (8). If 

 cosv A t ,  sin
v

A t
t

 


 


, and  
2

2

2
cos

v
A t

t
 


 


 then 

substituting into (8) yields: 

     

   

1 2 12
sin exp cos

cos( )

1
sin cos 0

tot

tot P tot

AK t K K A t
A t

C

A
t A t

C R C L

  
 


 

 
 

 
   

 

    (A1) 

where ω is the oscillation frequency, 
 

1
1

1 2T

C
K

V C C



,

2 exp B
s

T

V
K I

V

 
  

  , and A is the oscillation amplitude. Equation (9) can be 

analyzed specifically for a given bias condition. The amplitude is limited by 

the saturation condition of the oscillator, with the maximum first harmonic 

oscillation limited to 2VCC. After simplifying terms in an exponential series 

the following can be derived: 
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 
  

 



      

(A2)
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The first harmonic is then equated to zero. The terms  sin t  and 

 2 1cos n t
 are both odd terms, with  2cos n   being an even term. The 

multiplication of two odd terms results in an even term, and odd terms 

multiplied by even terms are odd. The first harmonic is under consideration 

and therefore to simplify the equations, terms containing the multiplication 

of even and odd terms are considered. This approach leads to (A1) defining 

the oscillation frequency and amplitude for the oscillator. For the solution of 

(A3), only the first harmonic term is considered and the equation can be 

rewritten as in (B1). This yields a slight overestimate, assuming BV  is below 

the bandgap voltage of the process. For larger bias voltages the non-linearity 

becomes large and higher order harmonics are necessary to estimate the 

oscillator’s FOM accurately. This is the bias voltage and sets the bias current 

of the active transistor. For BV
 
greater than the bandgap voltage plus 2 TV  

the oscillation frequency is predicted to be 1.8% more than the resonant 

frequency of the tank circuit, which is the oscillation frequency anticipated 

for an oscillator that is in the voltage-limited regime. This point has been 

demonstrated to yield optimal conditions for phase noise performance in an 

oscillator. The transistor model is simplified and the base-to-collector 

current is ignored. This is a valid assumption if the transistor is in the region 

of being current-limited or in the early voltage limited area. 
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(A3) 
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7 Appendix B 
To solve for the new variables, (13) and (14) are solved. The solution to (13) 

is approached in a similar fashion as before. The solution of (14) is assumed 

to have the form: 

   1 2cos cos 2Ev A t A t    and  1 cosv A t , and CONSTI  is set by 

the bias conditions. Substituting these values into (15) and (16) and then 

solving simultaneously for the variables 1A , 2A ,  , and A  lead to the 

following set of equations: 
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                              (B1) 

which leads to three separate equations: 
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  (B4) 

Equations (B1) to (B4) are only valid for small values of A1 and A2. The 

error in the truncated exponential function also results in large errors when 

using (B3) and (B4) to estimate the oscillation frequency. The equations do 

however provide a good basis for the estimation of the ratio of A1/A2. The 

result from (B5) shows that the average current into the emitter is a function 

of the emitter voltage, not just the bias current. Increasing the feedback 

voltage will increase the average current, and the associated shot noise of the 

bias current. The first harmonic of the collector current is not limited by the 



23 

 

bias current and will continue to increase as the emitter feedback voltage is 

increased. To investigate the oscillation frequency more accurately, equation 

(B4) is considered. The equation can be expanded using (B5). The 

exponential term is separated into even and odd components as before. The 

result is given by (24). 
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with the coefficients defined by: 
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The result of the analysis is that the amplitude of A1 relative to A, the 

oscillation amplitude, is not equal to 2
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