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The concept of lights-out process control is explored in this work (specifically pertaining to the

minerals processing industry). The term is derived from lights-out manufacturing, which is used in

discrete component manufacturing to describe a fully automated production line, i.e. with no human

intervention. Lights-out process control is therefore defined as the fully autonomous operation of a

processing plant (as achieved through automatic process control), without operator interaction.

Process control theory has developed very far to the current status of advanced controllers able to

perform optimisation and even planning functions on complex, possibly nonlinear, processes. The

advances in digital technologies have enabled the industrial implementation of many of these automa-

tion strategies, to the point where the processing industry is achieving all-time highs in production

with less need for human intervention in the process. This trend leads to the natural questioning of the

possibility of fully automated, lights-out, process control.

Model predictive control (MPC) is the most successful advanced control technology used in industry

today. The implementation and successful operation of an MPC is discussed in the lights-out control
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setting. Other enabling technologies that are required for implementation of lights-out control are

discussed and a framework for lights-out process control is presented.

The minerals processing industry is used as a case study in this work to illustrate the current status

and possible advancement towards lights-out process control. To this end, a survey was conducted

regarding the degree of automation in the minerals processing industry. The objectives of the survey

included gauging the extent to which minerals processing operations are automated, how often and

why operators intervene in the process, what inhibits further automation, and what the prospects are

for total process automation.

The survey results, along with available literature, were used to identify some key requirements for

lights-out control. One major requirement for maintaining controller performance automatically is

maintaining the quality of the available plant model (if the controller makes use of the plant model or

plant model parameters). This is achieved through detecting and correcting for significant model-plant

mismatch. If the controller and plant can sufficiently be represented by transfer functions, a closed-form

expression for the mismatch can be used. This expression is derived and applied in this work. If the

controller does not have a transfer function a partial correlation analysis is proposed.

Another prerequisite, specifically for lights-out operation, is the need for active fault-tolerant control

(FTC), as the occurrence of a process fault usually necessitates operator intervention in the process.

Once a process fault has entered the system the process may not be controllable any longer. For

complex nonlinear systems, a constrained controllability analysis is not a trivial task. This work

presents a stochastic method for evaluating the ability of the controller to regulate the plant outputs

while adhering to the input constraints. To not confuse this evaluation with the well-known input-

output controllability, state controllability, or functional controllability analyses the term regulatability

analysis will be used.

Even if process regulatability has been proven, it is still of concern whether the plant can operate

economically with the diagnosed fault. For a certain class of faults it would be more economical to

shut the plant down and repair the fault as soon as possible. A methodology for the economically

driven decision to shut the plant down is therefore presented.

The methods developed are applied to a nonlinear run-of-mine ore milling circuit simulation with
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the vision of lights-out process control. Run-of-mine ore refers to ore taken directly from the mine,

without any pre-processing.

Other considerations such as market changes and the social impact of lights-out process control are

also discussed. Based on available literature regarding the automation of jobs, the current status in

the processing industry, as well as the survey on the status of automation in the minerals processing

industry, it seems as though lights-out process control, at least for simple linear processes, may become

a reality within the next 20 years.
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Die konsep van ligte-uit-prosesbeheer word ondersoek in hierdie werkstuk (met spesifieke betreking

tot die mineraalprosesseringsbedryf). Die uitdrukking is afgelei van ligte-uit-vervaardiging, wat

in die industrie van diskrete komponentvervaardiging gebruik word om ’n totaal geoutomatiseerde

produksielyn te beskryf waar geen menslike interaksie nodig is nie. Ligte-uit-prosesbeheer is dus

gedefinieer as die totale geoutomatiseerde werking van ’n prosesseringsaanleg (met behulp van

outomatiese prosesbeheer), sonder die teenwoordigheid van ’n operateur.

Prosesbeheerteorie het al baie ver gevorder tot waar dit tans moontlik is vir gevorderde beheerders

om optimerings- en beplanningsdoelwitte te bereik vir komplekse, moontlik nie-lineêre, prosesse.

Die vooruitgang van digitale tegnologie het dit ook moontlik gemaak om baie van die gevorderde

beheerstrukture in die industrie te implementeer, tot op die punt waar die prosesseringsbedryf tans

spog met rekord-hoë produksieuitsette wat bereik word met al hoe minder ingryping deur operateurs.

Hierdie tendens laat ’n mens natuurlik bevraagteken of totaal geoutomatiseerde ligte-uit-prosesbeheer

moontlik is.
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Modelvoorspellende beheer (MVB) is die mees suksesvolle gevorderde beheerstrategie wat tans in die

industrie gebruik word. Die implementering en suksesvolle bedryf van MVB word bespreek in die

milieu van ligte-uit-prosesbeheer. Ander tegnologieë wat nodig is om ligte-uit-beheerimplementering

moontlik te maak, word ook bespreek en ’n raamwerk vir so ’n ligte-uit-beheerder word voorgelê.

Die mineraalprosesseringsbedryf word gebruik as ’n gevallestudie in hierdie werkstuk om die huidige

toestand en die moontlike vooruitgang na ligte-uit-prosesbeheer te illustreer. Volgens hierdie doelwit is

’n opname gemaak van die mate van automatisering van prosesse in die mineraalprosesseringsbedryf.

Die doelwitte van die opname sluit in om te bepaal in watter mate prosesse in die mineraalprosesse-

ringsbedryf geoutomatiseerd is, hoe dikwels en hoekom operateurs ingryp in die proses, wat verdere

outomatisasie verhoed, en wat die vooruitsig is vir totale outomatisasie van prosesse.

Die resultate van die opname is tesame met die beskikbare literatuur gebruik om te identifiseer wat die

sleutelbenodigdhede is om ligte-uit-prosesbeheer ’n realiteit te maak. Een van die hoofbenodigdhede

vir outomatiese handhawing van die beheerder se verrigting is outomatiese handhawing van die

kwaliteit van die beskikbare prosesmodel (indien die beheerder gebruik maak van die prosesmodel

of die parameters daarvan). Dit word gedoen deur vas te stel of daar ’n wesenlike verskil is tussen

die aanleg en die beskikbare model van die aanleg, en dan ook te kompenseer vir so ’n verskil. ’n

Uitdrukking word voorgelê vir hierdie verskil in die geval waar die beheerder met ’n oordragsfunksie

voorgestel kan word. Indien die beheerder nie ’n oordragsfunksie het nie, word van ’n parsiële

korrelasie-analise gebruik gemaak.

’n Verdere voorvereiste, spesifiek vir ligte-uit-verwerking, is aktiewe foutbestande beheer, aangesien

die teenwoordigheid van foute in die stelsel dit gewoonlik nodig maak dat die operateur moet ingryp.

Wanneer ’n fout die stelsel begin affekteer, mag dit onmoontlik word om die stelsel verder te beheer.

Vir komplekse nie-lineêre prosesmodelle is die evalusie van die beheerbaarheid met perke op die

insette nie ’n eenvoudige taak nie. ’n Stogastiese metode word voorgelê in hierdie werkstuk om hierdie

evaluering te voltooi. Dit is dus nodig om te weet of die beheerder die uitsitte binne perke kan hou

indien daar ook perke op die insette geplaas is. Hier word verwys na ’n evaluering van reguleerbaarheid

eerder as ’n evaluering van beheerbaarheid, sodat hierdie metode nie verwar word met die welbekende

evaluerings vir inset-uitsetbeheerbaarheid, toestandsbeheerbaarheid, of funksionele beheerbaarheid

nie.
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Selfs indien die beheerbaarheid van ’n proses verseker is, is dit steeds nodig om te evalueer of die proses

vanuit ’n ekonomiese oogpunt nog in bedryf moet bly. Vir ’n sekere tipe fout is dit meer ekonomies

om die proses te stop en die fout so gou moontlik reg te maak. ’n Metode vir so ’n ekonomies gedrewe

evaluering word ook voorgestel.

Die metodes wat ontwikkel is, word dan toegepas op ’n simulasie van ’n maalkring wat onbehandelde

erts maal en wat deur ’n nie-lineêre model beskryf word.

Ander oorwegings rakende ligte-uit-prosesbeheer, soos die verandering van markte en die sosiale

impak, word ook bespreek. Gebaseer op beskikbare literatuur rakende die outomatisering van arbeid,

die huidige stand van sake in die prosesseringsbedryf, en ook die resultate van die opname rakende

die mate van outomatisasie in die mineraalprosesseringsbedryf, blyk dit dat ligte-uit-prosesbeheer,

minstens vir eenvoudige lineêre prosesse, waarskynlik ’n realiteit sal word binne die volgende 20

jaar.
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CHAPTER 1 INTRODUCTION

Digital technology has improved manufacturing systems dramatically, up to the current advent of

the fourth industrial revolution. Within this framework technological advancements are currently

in part developed under the banner “Industry 4.0” (Allgöwer 2014). Some manufacturing plants

are even operated without human intervention, which is called lights-out manufacturing (Baker and

Merchant 1993). Process control is likewise advancing rapidly, and fully automated production is

becoming a reality. Fully automated production is termed lights-out process control, and is the focus

of this work.

Figure 1.1 shows the layout of a generalised control loop. Any controller has objectives, which may

include simple control objectives such as the regulation of controlled variables (CVs) to setpoint,

or simply keeping them within bounds, as well as more advanced optimisation objectives such as

minimising the process energy usage or maximising the economic performance. Based on the controller

objectives and the process outputs a control signal is generated and serves as the exogenous input

to the plant (or process). The process may also be perturbed by external disturbances (which could

be measured [d] or unmeasured [d∗]), and the process outputs [y] are measured. The processing of

plant data could simply be the transduction of measurements into a usable form, or any more complex

operation, some of which will be described later in this work.

The generalised control loop of Figure 1.1 forms the basis on which the methods discussed and

developed in this thesis will build. This structure will later be expanded into a framework for lights-out

process control, which is one of the contributions of this work.
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CHAPTER 1 INTRODUCTION

Control Data processingProcess

Objectives

Control

signal
y

x

dd*

Figure 1.1. Block diagram of a generalised control loop.

1.1 CONTEXT OF THE PROBLEM

Automatic feedback control systems have been in use for more than 2000 years (Bennett 1996), with

some of the earliest known examples being water clocks as described by Vitruvius around 270 B.C. The

development of control theory and the progress in implementations were however very slow until the

development of the centrifugal flyball governor by James Watt in 1788, which was used for regulating

the speed of steam engines (Bennett 1979). Over the following century there were extensive efforts

made to improve the Watt governor, and thousands of patents were granted around the world. In 1868

James Clark Maxwell published a now famous paper entitled “On Governors” in which he described

linear differential equations for various governor mechanisms (Maxwell 1867 - 1868).

The kindling supplied by these developments led to what is known as the first (1760 to ∼1840) and

then the second (∼1840 to 1914) industrial revolutions that predominantly included the replacement of

human and animal muscle power with machine power. Even though the first half of the 20th century saw

widespread industrial application of temperature, pressure, and flow control (Bennett 1996), the rapid

development of digital technology since the 1960s truly made modern process control possible. The

modern control system may comprise digital computer-based advanced process control (APC) systems

that operate industrial processes profitably, while maintaining safety margins, satisfying product quality

restrictions, and preventing violation of environmental constraints.

The advancement of digital technology has progressed along a, now famous, Moore’s Law trajectory

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

that describes how the number of transistors in integrated circuits grew exponentially over time (Brock

and Moore 2006). This dramatic increase in computing power has enabled the application of ever more

complex algorithms, and more complex tasks are now being automated. Brynjolfsson and McAfee

(2014) notes that the second machine age, an age where human mental power is being replaced by

digital technologies, has already begun. This advancement of computing power has also advanced the

field of process control.

The most successful form of advanced control employed today is model predictive control (MPC)

(Bauer and Craig 2008, Samad 2016). Implementing linear MPC controllers is seen as a routine task

for modern control practitioners, and MPC is often used to improve the plant economic performance

(Qin and Badgwell 2003, Craig, Aldrich, Braatz, Cuzzola, Domlan, Engell, Hahn et al. 2011). MPC is

conceptually simple, and can easily deal with complex systems with many inputs and outputs. Input

and output constraints are also generally straightforward to include. These traits have contributed to

the popularity of MPC technology (Mayne 2014). Because of its success, MPC is used in this work to

illustrate the impact of digital technologies on APC.

Developments in MPC technology coupled with the developments in digital technology, indicates that

the process industry appears to be evolving towards lights-out process control, i.e. fully automated

process plants in which no human intervention or supervision is needed. In fact, fully automated

(lights-out) process control is already a reality on some relatively simple process plants that do not

require much more than baselayer proportional-integral-derivative (PID) control to function as required

(The Linde Group 2016, Solar and Benefit 2016). This work, in part, examines if the same will also be

possible in future for more complex plants (specifically within the minerals processing industry) on

which MPC controllers are routinely implemented today.

The term “lights-out process control” is adapted from “lights-out manufacturing,” which was introduced

in the 1980s for discrete manufacturing processes (Jaikumar 1986). Initial advantages of this fully

automated manufacturing approach included additional productivity with minimal impact on labour

costs, as capital equipment could be utilised at night when workers went home for the evening. This

enabled the lights to literally be switched off with the factory operational, hence the term “lights-

out.”

Unlike the discrete manufacturing processes of the 1980s, operations in the process industry are

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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CHAPTER 1 INTRODUCTION

mostly continuous and already run 24/7/365. APC is regarded as a mature technology without which

the process industry cannot operate (Craig et al. 2011). In this light there is a natural drive towards

increasing automation in processing plants as automation tends to reduce variability of process variables

which leads to increased profits (Xu, Huang and Akande 2007), it reduces operating costs (Brann,

Thurman and Mitchell 1996), and leads to improved safety (as human error is one of the principal

causes of accidents (Lees 2012)) and reliability (Bauer and Craig 2008). It is therefore envisioned that

gradually production personnel will be fewer and more sophisticated, while processing systems will

become more automated and efficient (Baker and Merchant 1993). It is noted in Samad and Cofer

(2001) that petroleum refining personnel are decreasing, while refinery output is increasing. This

shows the effect of automation on production.

The drive towards increasing automation is also occurring in industries other than the process industry,

e.g. in the air transportation industry. Kelly, Folds and Sobhi (1993) notes that automated aircraft

are the safest ever flown, even with a smaller crew owing to the reduction in overall workload in the

cockpit. Samad and Cofer (2001) describes how aircraft crews of 5 were required sixty years ago with

domain over aircraft bearing, navigation, and status monitoring. These crews were gradually reduced

while the domain decreased with improved technology, and modern crews of 2 are a good example of

the type of system described by the architecture of Antsaklis, Passino and Wang (1989): operation is

largely automated with an operator (the pilot) to intervene if needed.

The minerals processing industry is used in this work as a case study to illustrate the status of

automation, and how some of the key technologies required for lights-out control may be applied.

Minerals processing operations are under increased pressure to perform with escalating energy costs

and increasingly stringent environmental regulations (Craig et al. 2011), with process control as one

of the widely recognised tools in overcoming these challenges (see e.g. Matthews and Craig (2013)).

Advanced control strategies are required, but Hodouin (2011) notes that the peripheral control tools

are as important as the controller itself. Peripheral control tools refer to all the tools in the control loop

(other than the controller itself) that contribute to improved operation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 1 INTRODUCTION

1.2 RESEARCH OBJECTIVE

Given the current state of automatic process control theory and industrial applications, one may

naturally ask whether lights-process control is a possibility, or whether it will become possible in the

near future. In essence this work presents a treatise pertaining to this question as it applies to the

minerals processing industry.

First of all the objective is to determine the current state of automatic process control, i.e. how far is

control (implementations and theory) on the road to lights-out production? The second objective that

couples with the first, is to identify the enabling technologies that need to be implemented in order for

a process to run lights-out, and to provide a framework for a lights-out process controller.

Key requirements for the implementation of a lights-out process controller should be identified,

discussed, and illustrated. The objective is to demonstrate the working of these methods on a nonlinear

simulation of a minerals processing operation.

1.3 RESEARCH CONTRIBUTION

The main contributions of this study are:

• A review of the development of automatic process control to the current state of advanced

controllers performing optimisation and planning functions for complex nonlinear processes;

• Providing an introduction to lights-out process control and presenting a framework for the

implementation of such a controller;

• Presenting the results of a survey regarding the degree of automation in the minerals processing

industry (including the main limitations to further automation, as well as the prospects of

lights-out process control in this industry);
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CHAPTER 1 INTRODUCTION

• Giving a detailed overview of some of the key concepts required for lights-out control implement-

ations, including model quality analysis, active fault-tolerant control, controllability analysis for

a faulty system, and an economic performance analysis for a faulty system; and

• Presenting a simulation study for a nonlinear grinding mill circuit to illustrate the implementation

of the key concepts introduced for lights-out process control.

The following publications resulted from this study:

• L.E. Olivier and I.K. Craig, Model-plant mismatch expression for classically controlled systems,

In: Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, pp. 11500 – 11505,

2014.

• L.E. Olivier and I.K. Craig, Development and application of a model-plant mismatch expression

for linear time-invariant systems, Journal of Process Control, 32, pp. 77 – 86, 2015.

• L.E. Olivier and I.K. Craig, Fault-tolerant Nonlinear MPC using Particle Filtering, In: Pro-

ceedings of the 11th IFAC Symposium on Dynamics and Control of Process Systems, including

Biosystems (DYCOPS-CAB), Trondheim, Norway, pp. 177 – 182, 2016.

• L.E. Olivier and I.K. Craig, Should I shut down my processing plant? – An analysis in the

presence of faults, submitted to Journal of Process Control, April 2016.

• L.E. Olivier and I.K. Craig, The degree of automation in the minerals processing industry – A

survey on the road to lights-out process control, submitted to Journal of Process Control, August

2016.

The following publications resulted from prior work that is related to this study:

• L.E. Olivier, I.K. Craig, and Y.Q. Chen, Fractional order and BICO disturbance observers for a

run-of-mine ore milling circuit, Journal of Process Control, 22, pp. 3 – 10, 2012.
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• L.E. Olivier, B. Huang, and I.K. Craig, Dual particle filters for state and parameter estimation

with application to a run-of-mine ore mill, Journal of Process Control, 22, pp. 710 – 717, 2012.

• L.E. Olivier and I.K. Craig, Model-plant mismatch detection and model update for a run-of-mine

ore milling circuit under model predictive control, Journal of Process Control, 23, pp. 100 –

107, 2013.

Although not forming part of the core of this thesis, the publication below was also generated during

this study:

• J.D. Le Roux, L.E. Olivier, M.A. Naidoo, R. Padhi, and I.K. Craig, Throughput and product

quality control for a grinding mill circuit using nonlinear MPC, Journal of Process Control, 42,

pp. 35 – 50, 2016.

1.4 ORGANISATION

This thesis is organised as follows:

• Chapter 2 discusses the concept of lights-out process control and how process control has

evolved into its current state. The chapter then describes what impact the advances in digital

technologies has had on MPC technology. The technologies required for lights-out process

control are discussed and a framework for a lights-out process control installation is given.

• Chapter 3 presents the results of a survey regarding the degree of automation in the minerals

processing industry. The survey explores the current status of automation in the industry, the

main limitations to further automation, and the prospects of lights-out process control. The

results of the survey form part of the justification for the work that follows.

• Chapter 4 provides further details on the key enabling technologies required for lights-out

process control.
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CHAPTER 1 INTRODUCTION

• Chapter 5 presents a simulation study of a run-of-mine (ROM) ore milling circuit in a lights-out

process control framework. The key enabling technologies presented in Chapter 4 are applied to

the nonlinear milling circuit process.

• Chapter 6 concludes the work. The main points addressed in the thesis are summarised, and the

prospects of lights-out process control in the minerals processing industry are stated.
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS

CONTROL

The process industry appears to be heading towards lights-out process control, i.e. processes are

increasingly automated and require less human intervention. Production is at record levels, but the

median income is falling and fewer jobs are available (Brynjolfsson and McAfee 2012).

This chapter explores the impact of digital technologies on advanced process control. MPC is used as

a case study for this discussion, owing to its success in the process industry (Qin and Badgwell 2003).

The current trends observed in industry are introduced and discussed, with Industry 4.0 being one

example.

Some specific lights-out process control issues are discussed, such as the prospects of lights-out process

control, and the technologies required to make it a reality. A framework for lights-out process control

is also presented. The likely impact of lights-out process control is discussed, with reference to the

design methodology required for such controllers.

2.1 THE IMPACT OF DIGITAL TECHNOLOGIES ON ADVANCED PROCESS CON-

TROL

The exponential growth of computing, of which the most famous paradigm is known as Moore’s Law,

is well documented (see e.g. Cavin, Lugli and Zhirnov (2012)). Combinatorial effects are obtained

when coupling this growth with the increased networking of computing devices, also known as the

“internet of things.” The extent of this expansion is very large, and it is estimated that as many as 50

billion devices will be connected by 2020 (Perera, Zaslavsky, Christen and Georgakopoulos 2014).
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

This section discusses the impact these advances in digital technologies has on the advanced process

control field, in particular where human mental power is being replaced by digital technologies when

establishing and maintaining APC systems in the form of MPC controllers. MPC is selected as it is

the most successful advanced control strategy currently employed in the process industry (Bauer and

Craig 2008, Qin and Badgwell 2003).

2.1.1 Establishing and maintaining a successful model predictive controller

The impact of advances in digital technologies on MPC technology can be considered through analysing

the steps taken to establish and maintain a successful MPC controller for an industrial process. These

steps are (adapted from Darby and Nikolaou (2012) and Qin and Badgwell (2003)):

1. Economic motivation of MPC:

This step includes compiling an economically driven motivation for the MPC project (Bauer and

Craig 2008). This evaluation should justify the project cost based on the economic returns over

the lifetime of the project.

2. Obtain seed models and do preliminary MPC configuration:

It is crucial for the success of any advanced controller to ensure the health of the baselayer

regulatory control loops upon which it resides. This task is completed in the pretest phase, and

may include maintenance and repair of actuators and sensors, updating of regulatory control

philosophies, and tuning of regulator control loops. For some implementations a significant

portion of the benefits derived from implementing an MPC controller comes from this step (see

e.g. Muller (2016)).

A conceptual design for the MPC is also completed during this step, which includes selecting

the optimisation strategy, the number of MPCs, and choosing the manipulated variables (MVs),

controlled variables (CVs), and disturbance variables (DVs) for each. The seed models (initial

models) are obtained which may include performing some manual plant steps, or they may be

obtained from historic data and/or process simulators.

3. Plant testing:

Data is generated for model identification, typically through automatic step testing software
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

(although manual plant tests may also be performed). Ideally all the parameters that will be used

as MVs will be adjusted, and all measured DVs will also be varied if possible.

This step may take a long time depending on the size of the control installation, and plant

testing is therefore seen as an expensive exercise. Much focus has been placed in the recent

past on performing plant tests optimally and automatically to minimise the disruption to optimal

production and to limit the engineering effort (Zhu, Patwardhan, Wagner and Zhao 2013).

If proper seed models are available (as may be derived from sufficient process knowledge,

historical data, or a plant simulator) plant testing can be done in closed-loop with a relatively

minor effect on plant operation.

In addition, modern digital technology makes it possible to perform plant tests remotely with

associated time and cost savings.

4. Model and controller development:

Plant models are identified from the data obtained in the previous step. Models should be checked

for consistency with process physics, and models may be validated against plant simulators if

they are available.

The design of the MPC(s) is then completed. Sometimes the final design can differ substantially

from the conceptual design depending on the outcomes of plant testing. Initial controller

parameters are specified (e.g. control and prediction horizons, penalization weights for control

violations or excessive MV moves, and optimization weights). Dynamic process simulators are

a good place to test and tune the MPC if they are available (Qin and Badgwell 2003).

5. Controller commissioning and user training:

The MPC is now deployed on the actual plant. Depending on the amount of controller simulations

that were performed in the previous step (as well as the simulator quality) the MPC may be close

to optimal. With little simulation the MPC may still require substantial tuning and testing during

the commissioning phase. Commissioning includes monitoring the controller performance

in the presence of DVs, how CV and MV movements are traded off against each other, and

how aggressive the controller is in responding to CV limit violations or in finding the optimal

operating region. Initial controller parameters specified in the previous step are now refined.

Operator training forms part of this phase, and because the operator is currently the main MPC

customer, sufficient training is critical for the success of the MPC project.
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

6. Controller monitoring and maintenance:

This step includes the use of tools that detect performance degradation as well as the cause(s) of

degradation, to identify issues to operating personnel, to adapt the underlying plant models, and

to retune the MPC controller. MPC performance is monitored (Xu et al. 2007) and controller

maintenance undertaken when some measure of performance degradation is detected.

At some point in time the MPC performance may not be maintainable any longer without plant

re-identification. This often signals the start of an APC revamp project, which starts again from

step 1.

For plants that can be sufficiently described with linear models, steps 3, 4, and most of step 5 are

considered routine. Control practitioners seem to have little difficulty in completing MPC projects

within this category (Camacho and Bordons 2012). The focus for vendors has turned much more

towards implementing MPC projects in a streamlined fashion such that configuration, plant testing, and

commissioning times are minimised. Many practitioners have therefore strived towards streamlining

steps 3, 4, and 5 into one, reducing the disruption to production. Such a method is described in Zhu et

al. (2013) and commercial implementation details can be seen in Golightly (2014).

For a mainly linear plant therefore creating a new MPC controller is relatively straightforward using

modern software tools. Maintaining APC benefits over extended periods of time however is much

more difficult. This difficulty could be because of easily correctable problems such as poor baselayer

maintenance, operational changes, lack of training for new operators, or more problematic requirements

such as automatically diagnosing and updating process models.

Process simulators have enabled more efficient operator training, baselayer performance monitoring

(Huang and Shah 2012) and automatic tuning (Pavković, Polak and Zorc 2014) help to maintain

baselayer performance, process models are maintained through detecting the presence of poor models

(Badwe, Gudi, Patwardhan, Shah and Patwardhan 2009) and updating the models appropriately

(Olivier and Craig 2013). The automated tools that can help with addressing these difficulties are

further discussed in Section 2.2.2.

Changing operating conditions, lack of operator expertise, changes in plant equipment, and controller

technology that is not yet robust result in MPC performance deterioration being of growing concern

among end-users. This situation prompted Hodouin (2011) to make the argument that peripheral control
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

tools are at least as important as the controller itself. Peripheral control tools include all the elements

in the control loop (excluding the controller itself) that contribute to improving controller performance,

such as fault detection and isolation systems (Zhang and Jiang 2008), data reconciliation procedures

(Narasimhan and Jordache 2000), observers, soft sensors (Lin, Recke, Knudsen and Jørgensen 2007),

optimisers, and model parameter tuners. The focus of Hodouin (2011) was also on minerals processing

operations, but most of the arguments made there are valid for the process industry as a whole.

In summary, digital technologies and theoretical advances have made automated modelling and

controller design tools possible that make it easier, quicker and hence cheaper to establish a successful

MPC controller, and to keep it running for longer. In addition, automated tools are increasingly blurring

the distinction between the technologies required to establish an MPC controller and those required to

maintain MPC performance for extended periods of time. With increased automation of MPC operation

and maintenance, the role of the plant operator is likely to evolve from continuously monitoring and

intervening, to a manager-by-exception who may not necessarily be geographically close to the plant

(Brann et al. 1996).

Few examples of such systems already exist for the processing industry, where operators manage

plants with little to no interactions. Details on such implementations are however largely missing from

academic literature although remote plant monitoring is performed by some users and vendors. For

example, Linde has a remote monitoring center in New Jersey, from which it monitors the company’s

network of over 70 atmospheric and process gas plants throughout the U.S., Canada and Mexico (The

Linde Group 2013).

2.1.2 Related industry trends

The advances in digital technology and the increased interconnectivity of devices have brought about

three main initiatives, related to the future of manufacturing and automatic process control. These

are Industry 4.0 (Brettel, Friederichsen, Keller and Rosenberg 2014) that began in Germany, the

Smart Manufacturing Leadership Coalition (SMLC) (Smart Manufacturing Leadership Coalition 2012)

that originated in the USA along with its Smart Process Manufacturing steering committee, and the

Industrial Internet of Things (Raferty 2016) promoted by the Industrial Internet Consortium.
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

Industry 4.0 refers to the 4th industrial revolution. This is the combination of “cyber-physical systems,”

the “internet of things,” and “cloud computing” in order to create self-configuring real-time optimised

processes that allow for customised, modularised, and adaptive production that is energy efficient,

resource efficient, safe, and reliable. A dominant characteristic of Industry 4.0 is that processing

equipment communicate all along the supply chain. A framework for such an interconnected smart

factory in the Industry 4.0 context is given in Wang, Wan, Zhang, Li and Zhang (2016).

But what might the role of advanced control, and specifically MPC, be within the framework of

Industry 4.0? Allgöwer (2014) notes that optimising control plays an important role in realising the

Industry 4.0 goals of processing that is optimal, energy efficient, safe, and reliable. In fact the power

of MPC-driven optimisation for process improvements has led to a recent focus on economic MPC

(Ellis, Durand and Christofides 2014) and distributed, cooperative MPC (Stewart, Venkat, Rawlings,

Wright and Pannocchia 2010). Allgöwer and co-workers see these technologies as contributing largely

toward achieving the aims of Industry 4.0.

The motivation for the SMLC are largely in line with those of Industry 4.0. The main inspiration of

SMLC is that an integrated smart manufacturing enterprise (including suppliers, original equipment

manufacturers (OEMs), and companies up to the supply chain) that is knowledge enabled, and model

rich, will be able to improve decision making and drive action, beyond what could be achieved by

optimisation of the underlying parts.

The Industrial Internet of Things is also concerned with the interconnection of everything along the

value chain; manufacturing, connected vehicles, transportation optimisation, instrumented agriculture,

smart cities etc. The Industrial Internet Consortium is working with industry to set the standards and

best practices for this industrial internet. Many automation companies form part of the consortium

members.

Another related trend is big data analytics (Qin 2014) that can play a significant role in establishing

and maintaining successful MPC controllers. The concepts included within big data analytics can help

to obtain seed models for plant testing, to develop soft-sensors, to detect sensor or actuator failure,

to monitor the health of regulatory and advanced controllers, and to signal the need for maintenance

when significant performance degradation is noted.
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

Incorporating the concepts of big data analytics into the MPC framework is an active research topic.

One main focus is on providing theoretical guarantees for stability and constraint satisfaction in the

light of poor quality of the available real-time data. Goebel and Allgöwer (2014a) and Goebel and

Allgöwer (2014b) have for example proposed algorithms that use subspace clustering techniques to

extract the core of predicted input trajectories off-line, in order to formulate simplified on-line MPC

algorithms.

2.2 LIGHTS-OUT PROCESS CONTROL DEVELOPMENTS

This section presents some additional evidence for the trend of increased automation in the process

industry. The technologies required to realise a lights-out process control strategy are listed, and a

framework for such a controller is presented.

2.2.1 The replacement of process plant operators with automation

One issue to consider is what is likely to happen to the jobs of process operators. Frey and Osborne

(2013) analysed the susceptibility to computerisation (automation) of 702 different occupations. The

model used by Frey and Osborne (2013) gives higher probabilities of computerisation for jobs that

require repetitive (routine) tasks. Their overall conclusion is that 47 % of total US employment is in

the high risk category, meaning that associated occupations are potentially automatable over perhaps a

decade or two. This number is even higher in the developing world, where the overall figure is reported

at 67 %. What is striking from a process control perspective is that many of the most susceptible jobs

are those of plant operators; Table 2.1 provides a selected list in descending order of the probability

of computerisation. Although minerals processing plant operators are not singled out in the analysis,

it is expected that their susceptibility to computerisation should be close to those of the operators

shown.

The data of Frey and Osborne (2013) were grouped by country in the development report of The

World Bank Group (2016), as is illustrated in Figure 2.1. The unadjusted values shown in Figure 2.1

correspond to those in Frey and Osborne (2013). The adjusted values account for the slower pace of

technology adoption in poorer countries, according to the technology adoption lag model of Comin

and Hobijn (2010).
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

Table 2.1. The susceptibility to computerisation of process plant operator jobs (adapted from Frey and

Osborne (2013)).

Rank Occupation Probability of

computerisation

614 Nuclear power reactor operators 0.95

529 Stationary engineers and boiler operators 0.89

516 Metal-refining furnace operators and tenders 0.88

491 Plant and system operators, all other 0.86

487 Chemical plant and systems operators 0.85

486 Power plant operators 0.85

471 Rolling machine setters, operators and tenders, metal

and plastic

0.83

429 Gas plant operators 0.78

389 Petroleum pump system operators, refinery operators,

and gaugers

0.71

339 Wastewater treatment plant and system operators 0.61
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Figure 2.1. Jobs susceptible to automation (over perhaps the next decade or two (Frey and Osborne

2013)) listed by country; adapted from The World Bank Group (2016), with permission.
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

The model of Frey and Osborne (2013) was recently criticised in Arntz, Gregory and Zierahn (2016)

for following an occupation-based approach, i.e. they assume that whole occupations rather than

single job-tasks are automated by technology. The study of Arntz et al. (2016) show that only 9 % of

occupations in Organisation for Economic Cooperation and Development (OECD) countries can be

automated. The study however agrees with Frey and Osborne (2013) that low qualified workers are

likely to bear the brunt of computerisation as the automatability of their jobs is higher compared to

highly qualified workers. The tasks that operators have to perform also generally fall into the tasks

that Arntz et al. (2016) show to be more probable of replacement by digital technologies. Whether

the entire job of the plant operator will be made obsolete by digital technologies is not certain, but

many of the tasks performed by operators will be replaced by digital technologies. Some of these tasks

include: routine process adjustments because of changes in the operating region, reacting to recurring

disturbances that enter the process, and reacting to faults that may arise.

Autor (2015) notes that although automation substitutes for labour, it typically also complements

labour and raises output in ways that lead to higher demand for labour. It is for this reason that expert

commentators often overstate the extent of machine substitution for human labour. It is also mentioned

in Arntz et al. (2016) that jobs can evolve with the introduction of new technologies, and that all the

jobs listed in Frey and Osborne (2013) may not cease to exist, but will look quite different over time.

One example listed by Autor (2015) is the evolution of the job of a bank teller after the introduction of

automatic teller machines. The introduction of these machines reduced the operating cost of a bank

branch which resulted in more branches opening up. The tellers in modern banks are more focused on

personalised service and even marketing as opposed to simply cashing cheques and counting out money.

The introduction of teller machines have therefore increased the number of bank tellers, although their

tasks have changed significantly.

With fewer operator tasks, production personnel will gradually become fewer and more skilled, having

to deal with an increasingly diverse array of tasks. This forms part of a broader trend highlighted by the

changing structure of the supply and demand for skills in Acemoglu and Autor (2011). As an example,

Figure 2.2 shows male wages in the United States over time for the period 1963 – 2008 for various

skill levels. It is evident from this figure that the market is increasingly rewarding skills as measured

by the level of education achieved. In contrast, the wages of those having the education level typically

required of an operator have been almost stagnant in real terms over the last four decades. This figure

also shows how lower educated workers have bore the brunt of the changing digital landscape as agreed
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Figure 2.2. Real, composition adjusted log weekly wages over time for full-time male workers at

different levels of education. The data source is March current population survey data for earnings for

the years 1963 – 2008. The real log weekly wage for each education group is the weighted average of

the relevant composition adjusted cells using a fixed set of weights equal to the average employment

share of each group. Nominal wage values are deflated using a Personal Consumption Expenditure

deflator. Adapted from Acemoglu and Autor (2011), with permission.

by Frey and Osborne (2013) and Arntz et al. (2016).

Brynjolfsson and McAfee (2012) noted that production is at record levels, and yet the median income

is falling and fewer jobs are available. This situation was also noted for petroleum refining by Samad

and Cofer (2001), where refinery personnel are decreasing, but refinery output is increasing. In Rotman

(2013) it is stated that new technologies, such as improved analytics, big data, and artificial intelligence,

are automating many routine tasks. In Frey and Osborne (2013) it is exactly the amount of routine

tasks that operators perform that contribute to the high probabilities listed for their replacement by

automation.

The replacement of the bulk of operator actions by automation is likely to happen over the next 20

years. This time-frame is supported by the analysis horizon of (Arntz et al. 2016) and also in part by

the survey results following in Chapter 3. In fact for processes where the plant can be sufficiently

represented by linear models, i.e. where the control problem is simpler and better understood, operating

in a lights-out fashion may become a reality within the next 20 years. This is despite the criticism of

the Frey and Osborne (2013) model in Arntz et al. (2016), because the actions that operators generally
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

perform for plants in this category are regarded as routine. Even Arntz et al. (2016) agrees that these

actions are automatable over the next 20 years. What exactly theses actions are in minerals processing

plants will be highlighted later in Chapter 3.

2.2.2 Requirements for lights-out process control

The general aim of autonomous control is listed by Passino (1993) as the desire to have the control

system performing well under significant uncertainties in the system and its environment for extended

periods of time, and for the control system to compensate for significant system failures without

external intervention. Successful implementation of this desire on a processing plant satisfies the

original vision of lights-out manufacturing, and such an implementation may be referred to as lights-out

process control. The successful implementation of these objectives also encompass the important

actions currently performed by operators on industrial minerals processing plants.

2.2.2.1 Handling of disturbances and changes in the operating region

Proper handling of disturbances and changes in operating region may seem like a straightforward

requirement, but it is the foundation of a proper controller configuration. These are classical control

problems, but without addressing them properly lights-out process control cannot happen. It will be

shown later in this work that control installations on industrial plants do not always even meet these

requirements, which commonly results in the need for the operator to intervene.

Handling of disturbances is one of the hallmarks of feedback control. When dealing with strong

disturbances however, feedback regulation may not be sufficient to achieve satisfactory disturbance

rejection performance (Yang, Li, Chen and Li 2010). It is then necessary to include the disturbance

rejection requirement into the controller design. This can be achieved through controller tuning for

disturbance rejection (Seborg, Edgar and Mellichamp 2003), or through a more advanced method such

as a disturbance observer (Olivier, Craig and Chen 2012a).

Even though a disturbance observer can be used along with MPC (Yang et al. 2010), disturbances can

also be compensated for through estimating the disturbance magnitude and compensating directly for

it in the MPC objective function (Muske and Badgwell 2002).
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

Many linear model-based controllers do not handle changes in operating region well. This is generally

true for highly nonlinear systems, where direct modelling of the nonlinearity and the deployment of

an explicit nonlinear model-based control strategy (see e.g. Allgöwer and Zheng (2012)) should be

used. Deriving an appropriate nonlinear model is however not a straightforward task (Nelles 2013),

and the decision to use a nonlinear model should not be taken lightly. However, if the operating region

changes significantly during normal operation and the process is sufficiently nonlinear, nonlinear

control methods are required.

Again, for plants where the entire operating region can be sufficiently represented by linear models the

control problem is easier to solve.

2.2.2.2 Autonomous controller maintenance

The requirements for lights-out process control also need to include tools that can perform the functions

described in step 6 of section 2.1.1 autonomously, i.e. automated surveillance of controller performance,

as well as autonomous maintenance through automated adaptation of plant models and retuning of

controllers. These tasks have been, and still are, a significant point of focus for academics and vendors

alike (see e.g. Van den Hof (2013)).

Advanced control strategies are however generally also dependent on proper baselayer control integrity.

Huang and Shah (2012) gives a comprehensive overview of how single-input single-output (SISO)

control loop performance monitoring may be done. Ko and Edgar (2004) defined a minimum variance

control performance metric as a function of the PID controller settings. This benchmark gives a

realistic performance assessment metric of an existing PID loop.

Once improper baselayer performance has been detected, the control engineer may update the cor-

responding controller(s), or an auto-tuning PID algorithm may be employed (see e.g. Pavković et al.

(2014) and Neçaibia and Ladaci (2014)) if the improper baselayer performance is owing to improper

tuning. One major cause of improper tuning is a change in the plant dynamics. Examples of the sources

of changes in plant dynamics are maintenance or equipment changes as well as changes in operating

conditions or parameters. As soon as the plant dynamics change, the controller designed based on the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

20

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

original dynamics will produce sub-optimal control moves. An automated detection and correction

scheme for such differences is therefore of concern.

Improper performance can however also be owing to hardware issues such as valve stiction or transmit-

ter problems. Methods exist to detect valve stiction (Choudhury, Shah, Thornhill and Shook 2006), and

compensation can be done either through tuning (Mohammad and Huang 2012) or through modification

of the controller output signal such as adding pulses to overcome the stiction (Hägglund 2002). The

best remedy however for valve stiction is overhaul of the valve which might sometimes only be done

during a plant shutdown.

Model-based control has proven to be very successful at achieving good control performance. The

performance of the model-based controller is however very dependent on the quality of the process

model that is available (Camacho and Bordons 2012). Process models need to be advanced enough to

accurately represent the process, but simple enough for inclusion in the controller formulation. The

accuracy of process models also degrades over time, and proper model maintenance is a key element in

maximising APC benefits. Traditionally the model is maintained through full process re-identification,

which is a costly and time-consuming exercise (Conner and Seborg 2005). Automated detection

(Badwe et al. 2009, Olivier and Craig 2015) and compensation (Olivier and Craig 2013) of model-plant

mismatch (MPM) is required to maintain controller performance in the lights-out control framework.

Some vendor tools (e.g. Golightly (2014)) make MPC controllers more conservative, and hence robust,

when model mismatch is suspected, leaving the APC still operational, but with a more conservative

approach to optimisation, until the mismatch can be corrected. Effective process modelling for control

is also the focus of Van den Hof (2013).

Auto-tuning of MPC is not yet common, but some examples do exist in the literature. Approaches

based on multi-objective optimization are presented in Liu and Wang (2000) and Vega, Francisco and

Tadeo (2008).

2.2.2.3 Reconfigurable fault-tolerant control

It is also required of the lights-out process controller to adapt to faults that may arise in the process. A

functional architecture for fully autonomous control was introduced by Antsaklis et al. (1989). This
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

article already mentions the need for fault detection and isolation (FDI) as well as adaptability to

handle significant uncertainties. The article does however still envision an operator in the loop with

which the control system should communicate.

There is a distinction between passive fault-tolerant control (FTC) and active FTC (Jiang and Yu

2012), where passive FTC has the objective to tolerate faults. One can rather say that the controller

accommodates faults. This approach to controller design can be likened to robust controller design.

Active FTC aims at reconfiguring the control strategy to achieve optimal performance in the presence

of faults (Zhang and Jiang 2008). This is more in line with what a human operator would try to achieve

when faults are present. Active FTC is therefore one of the major keys to lights-out process control

becoming a reality in the processing industry.

Active FTC rests upon the proper detection, isolation, and identification of a fault (Chen and Patton

2012). Fault detection is making the binary decision that something has gone wrong; fault isolation

is determining the location of the fault; fault identification (also referred to as fault diagnosis) is

determining, or usually estimating, the size and nature of the fault.

Once a fault has been identified the active FTC will adapt to handle the fault the best it can. MPC

is regarded to be well suited to active FTC as many faults can easily be incorporated into the MPC

formulation simply by adjusting the MPC optimisation problem constraints (Patton 2015). A stuck

actuator, for example, can be represented by adjusting the MV limits, and the MPC will automatically

use the available MVs to still minimise the objective function.

There is however a certain class of faults for which the controller will not be able to keep the plant

within output limits. An automated analysis will then be needed to evaluate the plant controllability. An

input-output controllability analysis, as described in Skogestad and Postlethwaite (2005), is sufficient

for linear systems. For nonlinear systems the analysis is not trivial. The well functioning linear

methods (e.g. that of Skogestad and Postlethwaite (2005)) are based on frequency domain analysis

techniques, which may only be valid for nonlinear systems at particular operating points. Other

functional approaches exist, but the results can be difficult to obtain and the scope limited (Yuan, Chen

and Zhao 2011). Simulation based approaches are often prescribed for nonlinear systems (Skogestad

and Postlethwaite 2005:165), and the Monte Carlo based approach of Olivier and Craig (2016b) is one

useful example.
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

Even after the plant controllability has been verified the economic operability of the process needs

to be established. Again there may be a class of faults for which the process can be controlled, but

the economic performance of the process may have been compromised to the extent that it would

be more economical to shut the plant down, repair the fault, and start back up than it would be to

continue operation with the fault. This decision is currently typically made by plant management, but

an automated approach as would be required for lights-out control is described in Olivier and Craig

(2016b).

2.2.2.4 Additional requirements for plant-wide lights-out process control

The requirements listed above may be incorporated to achieve lights-out process control of a unit

operation. Additional requirements are needed to expand the concept into a plant-wide control

framework (Skogestad 2000). These requirements include the proper selection of controlled variables

for process regulation, supervisory control, and optimisation as well as process throughput management.

Skogestad (2004) presents a systematic procedure for the selection of a control structure to achieve

these aims. Another approach to this vertical integration requirement is cascaded MPC as proposed by

Lu (2015).

Horizontal integration of up- and down-stream units is also required. These requirements are not

different in general from the requirements to expand current control strategies into the plant-wide

control arena, but they are essential to achieve the aims of Industry 4.0 and the SMLC.

2.3 A FRAMEWORK FOR LIGHTS-OUT PROCESS CONTROL

Reconfigurable fault-tolerant control is one of the important technologies required for lights-out process

control. The frameworks required for both contain many parallels, meaning that a reconfigurable

FTC framework is a good starting point for formulating a lights-out process control framework. A

framework for reconfigurable FTC is shown in Zhang and Jiang (2008). Consolidating the need for

reconfigurable fault-tolerant control with the general aims of lights-out process control may be achieved

with a structure as presented in Figure 2.3.
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Figure 2.3. Framework for lights-out process control in a processing plant.

The controller is shown in green, the plant elements are shown in blue, and the peripheral tools

required to achieve lights-out process control along with the (optional) process model are shown in

light orange.

In this structure reference is specifically made to Objectives rather than Setpoints as planning and

optimisation functions may also be handled by the controller. The controller supplies the control moves

(u), implemented by the actuators that affect the plant. Measured disturbances are represented by d,

unmeasured disturbances by d∗, and the outputs by y. Actuators and sensors are specifically shown as

they are sources for faults. Plant input and output data are analysed by the fault detection and isolation

block, the results of which are passed to the controller. State estimation is important for the advanced

controller and parameter estimation is required to directly compensate for changes in operating

conditions. The estimated states and parameters are represented by x̂ and p̂ respectively.

The control regime governor is required to determine the control objectives based on the faults. In

the presence of certain faults achievement of certain control objectives may not be possible. In

these situations the control regime governor should adapt the control objectives (w) to ensure that

the plant operates close to the best achievable performance given the limitations. Adjusting control

objectives could include changing optimization targets, adjusting controller limits, or adjusting tuning

parameters.
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

An optimal action for the control regime governor on a processing plant may also be to shut the plant

down (or more commonly an individual unit or subsection of the plant) in order to fix current faults.

This action is never an option on for example an aviation automation system, where the objective must

always be to keep the plant active. This is one major difference between total automation as applied to

a processing plant and aviation, an area in which fault-tolerant control has seen widespread application

(see for example Zhang and Jiang (2008) or Kale and Chipperfield (2005)).

The process model is an optional element in this framework. Model-based control has proven to be

very successful in the process industry, and most of the work presented in this thesis will focus on

model-based algorithms. Advanced control is however possible without an explicit process model (e.g.

fuzzy-logic or statistical process control), as is fault detection and isolation for which many data-driven

approaches exist. The model is however included to illustrate its importance in this work.

Considering Figure 2.3 it is noticeable that the controller to be used in a lights-out control setting

is not a standard model-based controller. The controller must be able to incorporate fault detection

and isolation information, as well as being able to reconfigure its objectives based on the information

supplied by the control regime governor.

2.4 LIKELY IMPACT OF LIGHTS-OUT PROCESS CONTROL

Conjecture regarding the impact of lights-out process control in the minerals processing industry is not

at the core of this work. Some general observations in light of other publications are however briefly

presented in this section.

The impact of increased levels of automation, also in the minerals processing industry, is likely to be

profound. Even if the findings of Frey and Osborne (2013) are overestimating the impact, the number

of operating tasks that can be automated (Arntz et al. 2016) is significant. A survey conducted by

the Citi Group (published in Oxford Martin School and Citi (2016)) showed that 85 % of the Citi

Group’s clients believed that automation will lead to major challenges with regards to labour and

wealth distribution.

Automation and related topics are also increasingly being discussed in political circles. For example,
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the 2016 economic report of the President of the United States explores concerns that increased

automation in the workplace threatens to displace elements of the conventional labour force (Obama

and The Council of Economic Advisers 2016). In addition, the related topic of Industry 4.0 is receiving

significant attention from politicians in Europe, especially in Germany (Davies 2015).

Given the high percentage of jobs that the World Bank reports is susceptible to automation (along the

results of Frey and Osborne (2013)), one might expect that unemployment could increase dramatically

over the next couple of decades. Autor (2015) however notes that although automation substitutes for

labour, it typically also complements labour and raises output in ways that lead to higher demand for

labour. It is for this reason that expert commentators often overstate the extent of machine substitution

for human labour. The Citi Group report also investigated the policies that are most likely to be

effective in offsetting the risks of automation impacting on labour and wealth distribution. The results

showed that investment in education, the encouragement of entrepreneurship, and active labour market

policies are expected to be the most effective. It is interesting to note that education is mentioned as

the primary countermeasure, given the trend of wages in the US for different levels of qualification

given in Acemoglu and Autor (2011) (see Figure 2.2).

Even though some caution exists in the labour market to fully automated systems, 76 % of respondents

to the Citi Group survey still labelled themselves “techno-optimists.” This speaks to the prospects for

automation with regards to increased productivity, decreased downtime, and increased profits. The

World Bank Group (2016) reports that the pessimism concerning the global outlook is not because of

digital technologies, but in spite of them.

Automation is also regarded as one of the major contributors to overcoming the difficulties currently

faced in the processing industry (Craig et al. 2011). This has to do with the major contributions to

optimal operations that automation has produced in the past.

The design premise for establishing a lights-out control system is inherently different from the current

practice for designing advanced controllers. Currently the primary customer for an APC is the plant

operator. As such, the main measures of success of an APC include whether the operator is content

with the controller operation and what the on-line time of the controller is.

Without an operator to satisfy, the APC design should focus on the maximisation of plant economic
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CHAPTER 2 TOWARDS LIGHTS-OUT PROCESS CONTROL

performance. Some practitioners are already exploring an approach where only parts of a larger APC

controller can be switched off or that can have MV limits adjusted by the operator.

In the lights-out control framework a (currently very important) safety barrier is removed from the

processing system, the intelligent human operator. A lights-out processing plant would therefore

require additional safeguards to ensure that the automation system reacts appropriately to all possible

scenarios. Currently safety systems in the processing industry are commonly designed by making

use of a safety integrity level analysis, or a layer of protection analysis (see e.g. Exida (n.d.)). The

safeguards required for lights-out operations would need to be considered when these analyses are

completed.

2.5 CHAPTER CONCLUSION

Much progress has already been made on the path to complete lights-out process operations, and it is

likely to become increasingly difficult and expensive to achieve further autonomy. This is especially

true for operations that employ advanced controllers such as MPC.

As levels of autonomy increase controllers have to become more sophisticated. Approaching total

automation one may ask whether the tasks that the controller have to perform would not necessarily

be performed better by a human operator. Take the failure of a measurement instrument as a simple

example. If a controller is not sophisticated enough to identify the failure of the instrument, it may

make absurd control moves to try and regulate the measured value to its setpoint. A human operator

would easily be able to identify a process reading that does not make sense as an instrument problem,

and would not make changes that would have adverse effects on the process.

Some tasks are therefore seen as being more easily completed by a human than a machine. If the final

stretch towards total automation falls within this category one may reach a point of diminishing returns,

where efforts to achieve increased levels of automation do not outweigh the improved performance

achieved by this automation.

This view should however not inhibit the efforts for establishing the technologies that would increase

the levels of automation in the processing industry. An analogy to facial recognition is listed here as
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illustration. Previously there was a view that computer algorithms would not be able to match humans

in the task of facial recognition. This has however not stopped the development of automated facial

recognition systems and O’Toole, Phillips, Jiang, Ayyad, Pénard and Abdi (2007) shows an example

of such a system that can outperform humans when illumination levels change.

In summary, it is apparent that automatic control, and MPC technology in particular, will play an

increasingly important role in the future of the minerals processing industry (and in fact in the process

industry as a whole). As far as lights-out manufacturing is concerned, there are already a number

of process operations that practice lights-out manufacturing with some remote oversight – typically

with baselayer process control. For process plants that are mostly linear and under MPC control, near

lights-out operation, also with some remote oversight, is likely to become more widespread within the

next decade or so.
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CHAPTER 3 DEGREE OF AUTOMATION IN THE

MINERALS PROCESSING

INDUSTRY

3.1 CHAPTER INTRODUCTION

The minerals processing industry is used in this work as a case study. This chapter pertains specifically

to minerals processing, but parallels to the processing industry as a whole will be drawn where

applicable. Minerals processing operations are under increased pressure to perform with escalating

energy costs and increasingly stringent environmental regulations (Craig et al. 2011), with process

control as one of the widely recognised tools in overcoming these challenges (see e.g. Matthews and

Craig (2013) for a demand side management approach to energy optimisation for a minerals processing

unit operation).

A simplified overview of the metallurgical extraction process, adapted from Hodouin (2011), is shown

in Figure 3.1. Grinding ore into a fine product is generally the first step in the metallurgical extraction

process (Craig and MacLeod 1995). The process of crushing and grinding the ore into small fragments

is known as comminution, and comminution of metal-bearing ore is primarily required to liberate

minerals and to make them amenable to the subsequent metallurgical extraction steps (Marsden and

House 1992). These liberated minerals are then separated through a process such a flotation or leaching.

At this step further regrinding may be specified as needed. In the separation process the rejects are

removed and the final product, the valuable metals, are extracted from the concentrate through some

recovery process such as electrometallurgy or pyrometallurgy.

A survey regarding the degree of automation in the minerals processing industry was conducted. The
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Figure 3.1. Simplified metallurgical extraction process, adapted from Hodouin (2011), with permission.

survey included questions related to the amount of process interaction required from operators, the

main automation challenges, and the prospects for lights-out process control in the industry. The

questionnaire used to conduct the survey is included in its entirety in Addendum A, such that the reader

may see all the information provided to survey respondents.

A survey on the control and economic concerns of grinding mill circuits is presented in Wei and

Craig (2009b). The survey presented here is not limited to grinding mill circuits, and does not focus

specifically on economic performance assessment (see Bauer and Craig (2008) or Wei and Craig

(2009a) for an example in the minerals processing context). Some of the results of this survey are

however in line with Wei and Craig (2009b) and comparisons will be drawn where applicable.

Another survey regarding control in the processing industry is presented in Bauer and Craig (2008).

The survey described in Bauer and Craig (2008) focusses on economic performance assessment and

control pertaining to the processing industry in general, but some of the advanced control results will

also be compared to the results from the survey described in this chapter where applicable.

3.2 SURVEY RESULTS

This section presents the results of the survey regarding the degree of automation in the minerals

processing industry. The objectives of the survey were to determine:

• The degree to which operations in the minerals processing industry are automated;

• How often operators need to intervene in the process and why;
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• What inhibits further automation; and

• What are the challenges on the road to lights-out process control?

The survey was distributed (among others) to academics active in research in the minerals processing

industry, control (including advanced control) practitioners and consultants, production personnel

working on minerals processing plants, as well as process engineers and metallurgists providing process

support. Respondents completed the survey on-line as a web-based questionnaire that was mainly

active during the month of March 2015. In total 55 completed questionnaires were received. This

number compares favourably with the amount of respondents listed in Bauer and Craig (2008), Wei

and Craig (2009b) and Takatsu, Itoh and Araki (1998), even though the reader should interpret results

with caution as the number is relatively small for drawing statistically significant conclusions.

For the survey, the respondents were informed that process automation (or automatic process control)

indicates any automatic regulation with reduced or minimal human intervention. There was a distinction

made between basic control and advanced control; where basic process control is considered to

be designed and built with the process itself, to facilitate basic operation, control, and automation

requirements. Advanced control is typically added subsequently to address particular performance or

economic improvement opportunities. Advanced control is also usually deployed optionally and in

addition to basic process control.

Plant personnel were asked to report on the plants they work on. Researchers and consultants (or

service providers) were asked to report on the general situation they encounter on plants that they

service. Note that each result figure shows the survey question in the figure caption.

Figure 3.2 shows the positions of survey respondents. Noteworthy responses in the “Other” category

are Engineering Managers and Project Managers.

Figure 3.3 shows the geographical locations of respondents, and Figure 3.4 shows the commodities

that respondents are involved with processing. Most respondents are based in Africa, which is largely

owing to the questionnaire distribution.
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Figure 3.2. Responses to the question: “What is your position?”
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Figure 3.3. Responses to the question: “What is you geographical location?”

3.2.1 How far is the minerals processing industry along the road to lights-out process con-

trol?

One of the main indications of the degree of automation of a process is the degree of human intervention

in the process. Along this line the number of actions that plant operators are reported to perform is

shown in Figure 3.5. Most respondents report that operators perform 1 action per 10 to 30 minutes.

Some work has gone into analysis of operator workload with two notable subjective measures being
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Figure 3.4. Responses to the question: “What commodity do you extract?”

the Subjective Workload Assessment Technique (SWAT) (Reid and Nygren 1988) and the NASA Task

Load Index (TLX) (Hart and Staveland 1988). In Connelly (1995) the SWAT technique was used

to find that a good workload level for a distributed control system (DCS) operator performing under

steady state conditions is about 4.4 control moves per hour. When the plant is experiencing a process

transient operators had a moderate workload of 13.6 control moves per hour. An excessive workload

was marked at about 18.6 moves per hour. When operator workload increases much higher than this

value, operator errors increase to an unacceptable level (Connelly 1995). This result shows that panel

operators in the minerals processing industry have acceptable workload levels.

Figure 3.6 shows the perceived level of importance of operator actions, with most respondents rating

on the higher end of the scale. The fact that most modern processing operations are completed

with the aid of a plant operator indicates that the importance of a plant operator is highly regarded

industry-wide.

If operators are performing a fair amount of actions per hour and these actions are very important to

the unit operation, the next important question is what these actions are. The results for this question

are shown in Figure 3.7 with most respondents stating that these actions are for changes in operating

conditions or for normal operational requirements.

When the plant is at steady state the main operating task is to optimise. This means that changes
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1 − One operator action per
     shift

2 − One operator action per
     hour

3 − One operator action per
     30 minutes

4 − At least one operator
     action per 10 minutes

5 − Operators are constantly
     busy

0% 10% 20% 30%

Figure 3.5. Responses to the question: “How many operator actions are required during normal plant

operation?”

1 − These actions have little
     impact on the profitability
     of the unit

2 − Overrides and safety
     systems could also have kept
     the unit running profitably

3 − Necessary but without
     them overrides would still
     keep the unit running

4 − Without these it would be
     difficult to keep the unit
     running

5 − Essential to safe and
     profitable operation

0% 10% 20% 30%

Figure 3.6. Responses to the question: “How important are these operator actions?”

made for normal operational requirements are generally optimisation moves. Operator moves made

for changes in operating conditions shows that plants experience frequent transients. The widespread

use of control for regulation and optimisation (see Bauer and Craig (2008)) implies that there is much

room for improved performance with increased levels of automation.

Coupled with the amount of required operator actions is the amount of control functions that are

generally disabled and therefore have to be regulated manually. Respondents indicated a relatively
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Safety considerations

Other

Poor control setup

Failures of
instruments/equipment

Normal operational
requirements

Changes in operating
conditions

0% 10% 20% 30% 40% 50%

Figure 3.7. Responses to the question: “What is the main reason for operator actions?”

large variance in the amount of times that control functions are disabled on their plants (see Figure 3.8).

Respondents were asked to disregard control functions that are not set up properly and are disabled

permanently. Other than incorrect control set-up, there can be a wide array of reasons why control func-

tions are disabled corresponding to the difficult nature of controlling minerals processing plants. The

difficulty in controlling minerals processing plants are attributed to strong external disturbances, poor

process modelling, and difficulty in measuring process variables (Hodouin 2011). The implementation

of peripheral control tools (see Hodouin (2011) for the definition and Olivier et al. (2012a); Olivier,

Huang and Craig (2012b); Olivier and Craig (2013) for implementation examples) to overcome these

difficulties may help with alleviating the need for disabling control functions. Faults on instruments

and actuating elements (as well as the maintenance thereof) are also large contributors to why control

functions are disabled.

The control technologies used by minerals processing plants is shown in Figure 3.9 (respondents were

asked to select all applicable technologies that they use). This figure indicates that PID control really

is ubiquitous (Samad 2016). This result is interesting to compare with that found in Wei and Craig

(2009b) for grinding mills, where PID was also by far the most common. The emergence of MPC

as the most common advanced control method is in line with the result reported by Bauer and Craig

(2008) for the process industry as a whole.

The scope for lights-out process control on a per-plant basis is related to the relative size of control
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1 − Fewer than once per day

2 − About once per day

3 − About once per shift

4 − About once every 4 hours

5 − At least once per hour

0% 10% 20% 30%

Figure 3.8. Responses to the question: “How often are control functions disabled and operated

manually by the operator?”

Neural networks

Statistical process control

Non−linear models/algorithms

Linear programming

Constraint control

Multivariable control

Fuzzy logic

Expert system−based control

Model predictive control

PID control

0% 25% 50% 75%

Figure 3.9. Responses to the question: “What types of control technologies does your plant/unit use?”
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More than 1000

100 − 1000

20 − 100

Fewer than 20

0% 10% 20% 30% 40%

Figure 3.10. Responses to the question: “How many control loops are on your plant?”

Not sure

More than 100

10 − 100

5 − 10

Fewer than 5

0% 10% 20% 30%

Figure 3.11. Responses to the question: “How many advanced process controllers are on your plant?”

installations typically encountered. Figure 3.10 shows the number of basic controllers and Figure 3.11

shows the number of advanced controllers typically encountered. Here it is interesting to note the

amount of advanced controllers implemented per basic control function.

Regarding on-line process measurements (see Figure 3.12); the fact that respondents feel more

measurements are made than needed for basic control functions indicates that there is room for

implementation of optimising controllers. Optimisation is however generally centred around the most

important process variables. Some important process variables are measured manually (see Figure 3.13)
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1 − Just some measurements
     are made, other than that the
     unit is operated on operator
     experience

2 − Fewer measurements than
     are needed for basic control
     functions

3 − Just enough measurements
     are made for basic control
     functions

4 − More measurements are
     made than are required for
     basic control functions

5 − There is an abundance of
     measurements for control,
     optimisation and planning
     functions

0% 10% 20% 30% 40%

Figure 3.12. Responses to the question: “How many online measurements are made on your

plant/unit?”

which corresponds with the statement by Hodouin (2011) that measurements are difficult to make.

Probably the most promising way in which the unavailability of on-line measurements can be overcome

is through state and parameter estimation. Good overviews of available methods are shown in Haykin

(2001) and Arulampalam, Maskell, Gordon and Clapp (2002), and an implementation pertaining to

minerals processing is presented in Olivier et al. (2012b).

It is shown in Figure 3.14 that most respondents are happy with the performance of their control

systems. The main inhibitor of improved control performance is illustrated by Figure 3.15 to be a

lack of understanding of the process dynamics; a lack of expertise in operating the system is listed

second. Reasons pertaining to automation, namely setting up and maintaining control systems and a

lack of on-line measurements, are listed as third and fourth. The main inclusion in the “Other” category

is instrument failures. There does not seem to be much of a problem with the actuation of control

functions in general.

It is interesting that respondents list the lack of understanding of process dynamics as the main reason

for not achieving better control. Much work has gone into modelling processes in the minerals

processing industry. An overview of modelling techniques for a variety of minerals processing

operations is shown in King (2012). A validated model for a grinding mill circuit is also presented

by Le Roux, Craig, Hulbert and Hinde (2013). This model has the focus of being simple enough
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1 − We do not make use of
     manual measurements

2 − Very few manual
     measurements are made

3 − Some process variables
     are measured manually

4 − Many important process
     variables are measured
     manually

5 − Most of our important
     process variables are
     measured manually

0% 10% 20% 30% 40% 50%

Figure 3.13. Responses to the question: “How many manual measurements are made on your

plant/unit?”

for implementing model-based advanced control while providing accurate predictions. Black box

modelling has also been used to good effect for MPC (see for example Chen, Zhai, Li and Li (2007)).

It does therefore seem that these techniques have not yet found widespread use in industry.

The fact that a lack of expertise in operating the system is listed as the second largest inhibitor of

improved control performance also indicates that there is a large scope for increased automation.

Faults are reportedly only detected through their effects by operators as shown in Figure 3.16. This

implies that in general fault detection and isolation is a manual action. To a certain extent plants also

commonly make use of transmitters and actuators that provide some form of fault feedback. This helps

to isolate some common control system failures (Isermann 2006).

Figure 3.17 shows the functions that advanced controllers perform on minerals processing plants. Most

respondents expectedly indicated that advanced controllers perform regulation and optimisation tasks.

It is less common to see advanced controllers facilitating the switching of control philosophies, or to

perform planning functions. Even though advanced planning functions can be automated (Lu 2015),

advanced control may also perform basic planning functions, such as managing plant throughput. The

fact that few respondents marked “None” on this question indicates the penetration of advanced control

into the minerals processing industry.
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1 − Control functions are
     barely active

2 − We struggle with
     efficient control

3 − The control setup helps
     us to keep the unit
     operational

4 − Our control systems
     perform well

5 − We owe a big portion of
     turnover to our efficient
     controls

0% 10% 20% 30% 40% 50%

Figure 3.14. Responses to the question: “How efficient would you rate the control setup on your

plant/unit to be?”

Lack of actuators to
implement control signals

Other

Difficulty of the control
problem

Focus is placed on other
areas

Lack of instrumentation for
online measurements

Lack of expertise in setting
up and maintaining the
control system

Lack of expertise in
operating the system

Lack of understanding of the
process dynamics

0% 10% 20% 30%

Figure 3.15. Responses to the question: “What do you think is the main factor that inhibits your

control system from performing better?”
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Only during plant walks or
routine inspections are
faults detected

Faults often go undetected
for extended periods of time

Through specialised fault
detection and isolation
software

Transmitters and actuators
are used that provide some
feedback regarding faults
(e.g. open circuit)

Faults are only detected by
operators through their
effects

0% 10% 20% 30% 40%

Figure 3.16. Responses to the question: “How are faults on instruments and actuators detected?”

Not sure

None

Planning functions

Switching of control
philosophies

Optimisation

Regulatory control

0% 20% 40%

Figure 3.17. Responses to the question: “What functions do advanced controllers perform on your

plant/unit?”
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Environmental protection

Other

Safety

Not sure

Reduction in variability of
process variables

0% 25% 50% 75%

Figure 3.18. Responses to the question: “What is the main benefit you gain from advanced process

control?”

Many control implementations and advanced control projects are justified on the promise of reduction

in variability of process variables (Xu et al. 2007). It is comforting to note that most respondents see

such a reduction from their advanced control installations (see Figure 3.18). Even though environmental

compliance is listed as one of the main challenges for control in the future of minerals processing

by Craig et al. (2011), no respondents marked environmental protection as their main benefit from

advanced control. This situation may however change in the future.

Figure 3.19 shows the responses as to whether implemented control systems give users the ability to

achieve regulatory control functions, optimisation functions, and planning functions (such as specifying

the throughput of a unit). The figure shows the number of “yes” responses for each option. As expected

all respondents indicated that they achieve regulation through their controls. More than 60 % indicated

that they can specify optimisation objectives and just over 50 % indicated that they can specify planning

functions. This result does not however indicate that the automated achievement of planning objectives

is widespread in minerals processing. A specific plant may have one planning objective achieved

through control and many others achieved through manual action, and the respondent would have still

answered yes to this question.
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Planning functions

Optimisation

Regulatory control

0% 25% 50% 75% 100%

Figure 3.19. Responses to the question: “Does your control system give you the ability to specify

objectives on the following control layers?”

3.2.2 The prospect of lights-out process control in the minerals processing industry

The final segment of the survey focussed specifically on total automation, or “lights-out” process

control. The statement was made that “It will in future be possible to run our minerals processing

plant(s) (or that of our clients) completely autonomously, i.e. with no human intervention.” This

question couples to the discussion in the previous chapter. Figure 3.20 shows the agreement of

respondents with this statement. Almost half of the respondents either agreed or strongly agreed

with this statement. About one third of respondents either disagreed or strongly disagreed with the

statement.

Respondents were also asked to briefly explain their answer. Respondents in agreement with the

statement widely cited the increased sophistication of modern control systems as a tool for achieving

increased levels of automation. Efficiency of advanced controllers over manual optimisation actions

was also mentioned as a driver towards total automation. Respondents disagreeing with the statement

mostly listed large changes in operating conditions (such as feed ore variations), and equipment failures

as reasons for their disagreement. Even respondents agreeing with the statement listed equipment

failures as a possible stumbling block on the road towards total automation.
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1 − Strongly disagree

2 − Disagree

3 − Neutral

4 − Agree

5 − Strongly agree

0% 10% 20% 30% 40%

Figure 3.20. Responses to the question: “Please record your level of agreement with the following

statement: It will in future be possible to run our minerals processing plant(s) completely autonomously,

i.e. with no human intervention.”

Lastly, respondents to the survey were asked, if they agreed with the statement regarding total auto-

mation, by when they thought it would be possible to run minerals processing plants completely

autonomously; Figure 3.21 shows the result. Most respondents indicated that this would be possible

within the next 20 years. Considering the amount of time it takes for sound control philosophies and

technologies to be widely implemented in industry from the time it was first presented in academic

literature, this estimate may not be far fetched. Conversely however, history has shown than new MPC

technologies are implemented in industry long before sound theoretical bases for such technologies

appear in the academic literature (see e.g. Morari and Lee (1999)). This indication is also in line with

the findings presented earlier in this work.

Most of the technologies required for lights-out process control already exist. The effective combination

of these technologies and the application on an industrial scale are the next steps, and it seems

reasonable to assume that, at least for simpler linear systems, this integration could happen in the next

20 years.
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It will take more than 20
years

Within the next 20 years

Within the next 10 years

Within the next 5 years

Already possible

0% 10% 20% 30%

Figure 3.21. Responses to the question: “If you agree with the statement in the previous question, by

when do you think it will be possible to run your minerals processing plant(s) completely autonom-

ously?”

3.3 SURVEY RESULTS DISCUSSION

The survey results indicate that most minerals processing plants make use of automatic control to some

extent. The application of control ranges in objective from regulation to optimisation and even planning.

Operators do however still intervene in the process to a fair extent. The main reasons for operator

interventions are to adapt the process to changes in operating conditions, optimisation during normal

process operation, and intervention in the presence of failures of instruments or equipment.

Further automation on minerals processing plants will be key in overcoming the challenges that the

industry face at present, and in the future (Craig et al. 2011). The areas to focus on when increasing

the levels of automation should therefore be to automatically handle changes in operating conditions,

optimisation, and maintained control in the presence of faults.

Compensation for changes in operating conditions may be done, among others, through parameter

estimation (Olivier et al. 2012b). Optimisation is already widely applied in the processing industry

(Bauer and Craig 2008). The fact that operators still perform optimisation tasks manually in some cases

indicates that there is a large scope for optimising control in the minerals processing industry.
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Control in the presence of faults may be achieved through active fault-tolerant control (Zhang and

Jiang 2008). The survey indicates that the latter has not received much application in minerals

processing plants. Survey respondents who believe that lights-out process control is not possible in

the minerals processing industry cited the requirement for operator intervention in the presence of

equipment or instrumentation faults as one of the main reasons for their opinion.

3.4 CHAPTER CONCLUSION

A survey was conducted regarding the degree of automation in the minerals processing industry. The

survey results show the current status of automation in the industry as well as some key focus areas

to increase the levels of automation. Increasing the levels of automation will help overcome the

challenges faced by the minerals processing industry at present, and in the future.

The focus areas for increased automation are compensation for changes in operating conditions,

implementation of optimising control, and control in the presence of instrument and equipment faults.

In order to approach lights-out process control the latter will need to see much more application in the

industry.
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CHAPTER 4 KEY TECHNOLOGIES FOR

LIGHTS-OUT PROCESS CONTROL

4.1 CHAPTER INTRODUCTION

This chapter presents more details on some of the key technologies required for lights-out process

control. The details on the technologies provided in this chapter, and the illustration of these methods

through simulation in the next chapter are not intended to be a complete set of details for all the

enabling technologies discussed in Chapter 2. The idea however is to present the core requirements

and some enabling methods developed as part of this work.

The situation where only poor process models are available for control is a common one. When

there is a notable difference between a process and the available model of the process, it is said that

model-plant mismatch (MPM) is present. This situation is not only common, but will usually contribute

to deteriorated controller performance. The availability of poor process models is known to be a source

of poor control performance, in fact this is listed as one of the most significant reasons for poor control

performance in the minerals processing industry by Hodouin (2011). The availability of poor process

models is however not limited to the minerals processing industry, and it is for this reason that research

into handling MPM has received some focus in the recent past (Badwe et al. 2009). Many controller

design methods make use of a plant model, which is why addressing MPM is of concern for automated

plant operations. Section 4.2 presents some methods for managing MPM.

Once a failure has occurred on a processing plant, be it an actuator failure, a sensor failure, or the

failure of a piece of processing equipment, the plant operating performance will likely decrease (Zhang

and Jiang 2008), and this easily develops into production stoppages (Blanke, Izadi-Zamanabadi, Bøgh
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and Lunau 1997). FDI is concerned with detecting that a fault is present, and secondly to isolate the

location of the fault. It is also ideally required to determine the magnitude of the fault. Determining, or

usually estimating, the fault magnitude is referred to as fault diagnosis or fault identification.

After a fault has entered the system it may be possible to regulate the system through an FTC strategy.

Even if an appropriate FTC scheme is in place it may not be possible to regulate the plant for a certain

class of faults. A formal analysis would be required to determine whether the plant can be operated after

the fault has altered the plant response. A linear controllability analysis, as is presented by Skogestad

and Postlethwaite (2005), will be able to say whether the plant is still input-output controllable. Such a

controllability analysis is however not as straightforward in the case of nonlinear systems.

The analyses for nonlinear controllability are classified by Yuan et al. (2011) as being either analytical

or optimisation based. An example of an analytical test is that of functional controllability through

the application of repeated Lie derivatives as shown in Haynes and Hermes (1970). This analysis

does however quickly become complex, and because the result only shows functional controllability,

the interpretation is limited. An optimisation based approach is presented by Perkins and Walsh

(1996), where absolute controllability is requested for all possible combinations of uncertainty and

disturbances. This analysis is formulated like a min-max optimisation problem (Bemporad, Borrelli

and Morari 2003), the solution of which is notoriously conservative (Bemporad 1998, Kerrigan and

Maciejowski 2004). In an industrial plant that is perturbed by many disturbances and in which many

uncertainties are present the probability that all the worst case disturbances and uncertainties will be

present at the same time is very low.

To overcome this conservativeness, and the difficulties in solving nonlinear robust control problems

some research has gone into probabilistic methods for analysis and controller design of uncertain

systems (Tempo, Calafiore and Dabbene 2012, Calafiore and Campi 2006). The focus then is to identify

the probable control performance through a Monte Carlo based analysis, where the uncertain parameter

set is sampled from the allowed set. A Monte Carlo based analysis is performed along these lines in

this work to assess the probable controllability of the plant in the presence of the identified fault(s).

Another advantage of this method is that MV limits (constraints) can be handled directly.

To not confuse this method with a functional controllability, state controllability, or input-output

controllability analysis (all of which are sometimes simply referred to as controllability analyses), the
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term regulatability analysis will be used in this work, with the following definition:

Definition 4.1. A system is defined to be regulatable if ∃
[
ut0 , · · · ,ut f

]
∈U such that

[
yt0 , · · · ,yt f

]
∈Y

as t f → ∞,

where t0 is the starting time of evaluation, U contains the input constraints and Y contains the output

constraints. The evaluation up to t f → ∞ is infeasible in practice, and a finite t f may be selected

provided it is sufficiently large to allow the plant to reach steady state.

After it has been established that the system is regulatable, i.e. the plant can still be operated within

limits, the question arises whether the plant should still be operated from an economic performance

point of view. In other words, is it more economically beneficial to continue to operate with the present

fault(s) until the next planned opportunity for repair (the next planned shut-down), or should the plant

be shut down as soon as possible, the fault(s) repaired, and started up again.

Control performance assessment is an important asset-management technology to maintain efficient

operation of automation systems in processing plants (Jelali 2006). Comparison of the economic

operability with a fault present to that without any faults will give an indication of whether efficient

operation can be maintained. Optimal economic operability is defined as:

Definition 4.2. A system is said to operate economically optimal if the economic performance of

operating in the current mode is at least as great as operating in any other mode, i.e.
∫ t f

0 ψi.dt≥ ∫ t f
0 ψ j.dt

where ψ is the economic performance as a function of time, i represents the current mode of operation,

and j represents all other possible modes of operation.

Economic performance assessment of advanced control is well established in the process industry

(Bauer and Craig 2008). Comparative economic performance against benchmark control has been

presented for example by Zhao, Zhao, Su and Huang (2009) and Julien, Foley and Cluett (2004). In

this work however the comparative economic performance with and without faults is the focus.

The regulatability and economic operability analyses will be introduced in this chapter, and illustrated

in the following chapter through simulation of a nonlinear ROM ore milling circuit model, controlled

by a fault-tolerant nonlinear model predictive controller. Faults are detected and identified by making
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use of the nonlinear generalised likelihood ratio (NL-GLR) method using particle filters, similar to

Olivier and Craig (2016a). The control of the milling circuit is similar to that of Le Roux, Olivier,

Naidoo, Padhi and Craig (2016), which makes use of nonlinear MPC to control the slow milling circuit

dynamics and a simpler controller to control the fast sump dynamics. In Le Roux et al. (2016) a

dynamic inversion controller was used to control the sump, but in this work a PI override controller is

used for its simplicity and ubiquity. The elements required to achieve this implementation are discussed

later in this chapter.

4.2 ADDRESSING MODEL-PLANT MISMATCH

Many controller design methods make use of a plant model. A good plant model usually helps to

improve controller performance, but the dynamics of industrial processes can change significantly

over time (as is shown for a milling circuit in Craig and MacLeod (1995)). As soon as the plant

dynamics change, MPM is present and the controller designed based on the original model will

produce sub-optimal control moves. Examples of the sources of changes in plant dynamics are

maintenance, equipment changes, and changes in operating conditions or parameters. In order to

restore the controller performance the process needs to be re-identified and the controller redesigned,

which is a costly and time-consuming exercise (Conner and Seborg 2005). Apart from the formerly

mentioned problems, process re-identification also often involves intrusive plant tests that disturb the

normal operation of the plant (Badwe et al. 2009).

The tools shown in the rest of this section do not specifically handle structural changes to the plant.

For such changes extensive model updates may be required (e.g. updating the model order). In such a

case full re-identification may be the only viable option.

4.2.1 Addressing model-plant mismatch for classical control systems

The situation addressed in this section includes a variety of controllers, among which the ubiquitous

PID controller. When a plant and its controller are sufficiently linear and time-invariant so that they

can be represented by transfer functions, and this plant is also under classical control (meaning the

controller can also be represented by a transfer function), the MPM can be written as a closed-form
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G(s)

Ĝ(s)

Q(s)

ŷ(s)

y(s)

u(s)

r(s) +
+

-
+

d(s)

e(s) = y(s)-ŷ(s)

Figure 4.1. Block diagram of a control loop with model outputs being generated.

expression. The MPM expression can be used to identify a representative transfer function of the “true

plant” from the currently available plant model.

This closed-form expression for the MPM was first derived in Olivier and Craig (2014) and was

successfully applied to industrial data in Olivier and Craig (2015).

PID control is still very predominant in the processing industry as can be seen from Wei and Craig

(2009b) and the results of the survey presented in Chapter 3. This implies a large scope for implement-

ation of the expression presented in the following section.

4.2.1.1 Closed-form model-plant mismatch expression

Consider the one degree of freedom, negative feedback control loop shown in Figure 4.1, in which all

signals and transfer functions are represented in the Laplace domain. G is the plant that generates the

true output y(s), Ĝ is the model of the plant that generates the model output ŷ(s), Q is the controller,

d(s) is any disturbance that may be present, and r(s) is the reference signal (setpoint).

The derivation of the MPM expression that follows is done for a general multiple-input, multiple-output

(MIMO) system, in which all signals may be vectors and all transfer functions may be matrices. G, Ĝ

and Q are all continuous-time, linear time-invariant (LTI) systems, represented in the Laplace domain.

G and Ĝ have the dimensions ny×nx and Q has the dimensions nx×ny. Also, y, ŷ, r, and v are ny×1

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 KEY TECHNOLOGIES FOR LIGHTS-OUT PROCESS CONTROL

vectors, and u is an nx× 1 vector. For this derivation the number of manipulated variables in the

controller must equal the number of controlled variables in the plant, and consequently nx = ny.

The reference to the Laplace operator (s) will be dropped for ease of representation. Let the residual

(e) be the difference between the actual output and the model output as

e = y− ŷ (4.1)

e = Gu+d− Ĝu (4.2)

e = ∆Mu+d (4.3)

where ∆M = G− Ĝ is the mismatch. This definition for the mismatch is equivalent to the definition for

additive uncertainty presented by Skogestad and Postlethwaite (2005). During this derivation however

∆M is used to represent uncertainty of any magnitude, as opposed to the weighted uncertainty with a

restriction on the maximum singular value in Skogestad and Postlethwaite (2005) (σ̄(∆( jω)) ≤ 1).

The control signal (u(s)) is given by

u = Q(r− y) (4.4)

u = Q(r− [Gu+d]) (4.5)

u = Qr−QGu−Qd (4.6)

(I +QG)u = Qr−Qd (4.7)

u = (I +QG)−1 Q(r−d) (4.8)

u = Q(I +GQ)−1 (r−d) (4.9)

where the push-through rule for matrix manipulation (Skogestad and Postlethwaite 2005:p.68) was

used to go from (4.8) to (4.9). The matrix inverse operation of (4.8) requires that the product QG be

strictly proper. Substitution of (4.9) into (4.3) then gives

e = ∆MQ(I +GQ)−1 (r−d)+d (4.10)

e = ∆MQ
(
I +{∆M + Ĝ}Q

)−1
(r−d)+d (4.11)

e = ∆MQ
(
I +∆MQ+ ĜQ

)−1
(r−d)+d. (4.12)
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The expression G = ∆M + Ĝ is used to go from (4.10) to (4.11). After this substitution all the terms in

(4.11) are known, save for the disturbance if it is unmeasured. Further matrix algebra leads to

(e−d)(r−d)−1 = ∆MQ
(
I +∆MQ+ ĜQ

)−1
(4.13)

(e−d)(r−d)−1 (I +∆MQ+ ĜQ
)

= ∆MQ (4.14)

(e−d)(r−d)−1 (I + ĜQ
)

= ∆MQ− (e−d)(r−d)−1
∆MQ (4.15)

(e−d)(r−d)−1 (I + ĜQ
)

=
[
I− (e−d)(r−d)−1

]
∆MQ. (4.16)

Rewriting the equation with ∆M isolated on the left-hand side gives the closed-form mismatch expres-

sion as:

∆M =
[
I− (e−d)(r−d)−1

]−1
(e−d)(r−d)−1 (I + ĜQ

)
Q−1. (4.17)

This expression may be used to derive the mismatch if the disturbances are known. If the disturbances

are however unmeasured or even unknown, data from a period of operation free from significant

disturbances can be used (if this is possible), and with d = 0 (4.17) becomes

∆M =
[
I− er−1]−1

er−1 (I + ĜQ
)

Q−1. (4.18)

If however unmeasured disturbances cannot be ignored, disturbance estimation techniques (see for

example Lee and Ricker (1994)) may be used to account for their values.

The problem with large unmeasured disturbances also plagues classical system identification techniques.

This is because the output error (the difference between the measured output and the model output)

can be significant in the presence of large disturbances, even if the model is perfect (Zhu 2001).

Usually signals (such as r(s)) will not be square for MIMO systems and will consequently not have an

inverse in the true sense. This issue is addressed in Addendum B, where the provisions required for

applying this expression to MIMO plants are discussed. Sufficient excitation (see Ljung (1999)) is

required in either the disturbance or the reference signal in order for the application of (4.17) to be

sensible. Without sufficient excitation @ (r−d)−1.
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The expression G = ∆M + Ĝ may again be used to obtain the transfer function of the actual plant

as

G =
[
I− (e−d)(r−d)−1

]−1
(e−d)(r−d)−1 (I + ĜQ

)
Q−1 + Ĝ. (4.19)

If (4.18) is used as the mismatch expression, the plant transfer function is given by

G =
[
I− er−1]−1

er−1 (I + ĜQ
)

Q−1 + Ĝ. (4.20)

Notice from the derivation that there is no mathematical limit on the size of ∆M. The limit on how

large ∆M may be is therefore only based on the usable data that can practically be extracted, e.g.

without control valves saturating. The MPM expression works for single-input single-output as well as

multiple-input multiple-output systems.

The requirement for sufficient excitation means that either sufficiently large (and known) changes are

required for the independent variables (such as achieved with sizeable setpoint changes), or sufficiently

large (and known) disturbances should be present, or both. This limitation is however also present for

the MPM detection algorithms presented by Badwe et al. (2009); Kano, Shigi, Hasebe and Ooyama

(2010), and also for most plant identification methods. The expression handles known disturbances

directly, but does not handle unknown disturbances. If it is unavoidable to use data without the presence

of large unmeasured disturbances, their values should first be estimated by making use of, for example,

a Kalman filter (Kalman 1960a). If this is not possible, the MPM expression described in this section

may not yield desirable results.

Identifying the mismatch in the manner proposed in this section is equivalent to identifying the additive

uncertainty in the model (Skogestad and Postlethwaite 2005), where the additive model uncertainty

is also expressed as the difference between the plant and the model. Another possibility is presented

by Böling, Häggblom and Nyström (2004) where the output multiplicative uncertainty is explicitly

defined by matching the output of the uncertainty model to the outputs of a set of known models.

4.2.1.2 Application to controller design

Once the mismatch (∆M) has been identified correctly, the expression G = ∆M + Ĝ may be used to

obtain the representative transfer function of the plant. The representative transfer function of the plant
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may then be used to redesign the controller.

There are many ways of tuning PI(D) controllers. Some of the more common methods include the

Ziegler-Nichols method, the Cohen-Coon method, the internal model control (IMC) tuning relations

(Seborg et al. 2003), the simplified IMC expansion thereof (Skogestad 2003), Lambda tuning (which

is a specific case of the IMC relations), tuning based on the minimisation of the integral error, pole

placement, and loop shaping (see Åström and Hägglund (1995) for more examples). Most of these

methods however make explicit use either of the plant transfer function or of the model parameters

that characterise the transfer function.

There are also many other controller design methods that do not specifically lead to PI(D) controllers

but do produce controllers representable by means of transfer functions. These methods include

linear quadratic Gaussian (LQG) control, as well as H2 and H∞ control, and also MPC in specific

instances.

The method chosen for controller design is not so important, what is however important is that the

reader appreciates how commonly the plant transfer function is used in controller design. In these cases

MPM will cause the controller to perform outside of its original design intent. If the MPM is severe

enough this could lead to the dynamic performance specifications not being met or even instability. In

such a case the MPM expression presented in the previous section may be used to update the available

plant model, and the controller design procedure may be repeated. This will lead to better adherence to

the control specifications.

An example of applying the expression to a general MIMO system, as well as an example of applying

the expression to industrial data are shown in Addendum C. These are not presented along with the

simulation study in the next chapter, as the focus of that study is on a nonlinear model which cannot be

handled directly with this MPM expression.

4.2.1.3 Closed-loop identification to handle mismatch for classical control

The main alternative for handling MPM with classical control (to the closed-form expression presented

in Section 4.2.1.1), is closed-loop identification. Although the expression of Section 4.2.1.1 is related
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to closed-loop identification, it does make use of the explicit expression for the mismatch to identify

the representative plant model. This implies that the model structure is known a priori and can simply

be updated through the mismatch expression.

Model identification techniques that make use of closed-loop data have been introduced some time

ago (see for example Gustavsson, Ljung and Söderström (1977) or Söderström and Stoica (1989)).

A good overview of closed-loop identification is given by Van den Hof (1998), in which different

closed-loop identification techniques are discussed and their characteristic properties are compared.

The methods described by Van den Hof (1998) are mostly based on statistical approaches and do

not make explicit use of the transfer functions representing the system, unlike the method presented

in Section 4.2.1.1. A more recent approach to on-line closed loop identification is given in Kruger,

Li and Irwin (2006), where the joint plant and controller model is identified using subspace model

identification, and thereafter the plant model is separated assuming the controller model is known a

priori.

4.2.2 Addressing MPM when the controller does not have a transfer function

The most common form of advanced control in the process industry is linear MPC (Bauer and

Craig 2008). Unconstrained linear MPC can be represented by a transfer function when the control

horizon is constrained. If these conditions are not met, the MPC cannot be represented by a transfer

function and the closed-form expression shown in Section 4.2.1.1 is not applicable. Assessing the

quality of the underlying MPC model on-line is however still important for sustaining control benefits

over the lifetime of the MPC controller.

Once poor models have been detected, the controller performance can be restored through re-

identification of the process and redesign of the controller, which is a costly and time-consuming exer-

cise (Conner and Seborg 2005). Apart from the formerly mentioned problems, process re-identification

also often involves intrusive plant tests that disturb the normal operation of the plant (Badwe et

al. 2009).

An alternative to full process re-identification is to firstly identify the elements in the process transfer

function matrix that contain significant mismatch, and to only re-identify these. Algorithms for MPM
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Figure 4.2. Closed-loop IMC structure.

detection have been proposed by Badwe et al. (2009) and Kano et al. (2010). These algorithms identify

the transfer function matrix elements that contain mismatch as well as the significance of the mismatch.

This is useful information that can be used to help assess the need for process re-identification. The

method of Kano et al. (2010) makes use of a statistical test and the stepwise method to try and find the

model elements that contribute to the residuals.

In Badwe et al. (2009) a partial correlation analysis is used which is briefly presented next. Consider

the closed-loop IMC layout shown in Figure 4.2. This layout is almost identical to that shown in Figure

4.1, apart from the model output not forming part of the feedback signal in Figure 4.1. The definitions

of all signals in Figure 4.2 are the same as for those in Figure 4.1.

The residuals are again given by equation (4.1), and a correlation between the residuals and the plant

inputs indicates the amount of mismatch. The following relations are obtained from Figure 4.2:

e = [I +∆MQ]−1
∆MQr+[I +∆MQ]−1 d (4.21)

u = Q [I +∆MQ]−1︸ ︷︷ ︸
Sru

r−Q [I +∆MQ]−1︸ ︷︷ ︸
Sdu

d (4.22)

where Sru and Sdu are the input sensitivities from r and d respectively; ∆M = G− Ĝ is the mismatch as

defined previously.

At each sampling instant the values of the manipulated variables are calculated by the controller

based on the difference between the output and the reference vectors. Depending on the interactions

in the model and the design of the controller, correlation may exist between manipulated variables.
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This may lead to the detection of spurious correlation or to the non-detection of hidden correlation

between residuals and manipulated variables. This would in turn obscure the correct identification of

the location of significant MPM. To overcome this Badwe et al. (2009) proposed the use of a partial

correlation analysis.

Data for analysis should be chosen from a period of time where there is sufficient setpoint excitation.

Since models are fitted to the sensitivity functions Sru and Sdu, the setpoints should be sufficiently

exciting to ensure estimation accuracy. In order to ensure that MPM is not incorrectly identified because

of disturbances, the disturbance free components of the manipulated variables are required. These are

the components of the MVs needed to react to setpoint changes and not for disturbance rejection. The

disturbance free components of the MVs are represented as ûr(k) and may be obtained as described by

Badwe et al. (2009). Note that the method does not handle unmeasured disturbances directly. One

needs some information about the disturbances if they are not measured. Alternatively one must select

a region of data where the plant is not significantly perturbed by unmeasured disturbances.

Next, the component of each MV that is uncorrelated with all other MVs is computed. Each MV may

be represented as

ûr
i (k) = Gui ũ

r(k)+ εui(k) (4.23)

where Gui is a model identified between ur
i and all the other MVs, ũr contains all the other MVs except

for ui, and εui is that component of ui that is uncorrelated with all other MVs. The estimate of εui is

then given by:

ε̂ui(k) = ûr
i (k)−Gui ũ

r(k). (4.24)

A similar procedure is applied to calculate the component of each residual that is uncorrelated with all

other MVs except ui,

e j(k) = Ge j ũ
r(k)+ εe j(k). (4.25)

Here Ge j is the model identified between the residual e j and all other MVs, except ui. The estimate for

εe j is then given by

ε̂e j(k) = e j(k)−Ge j ũ
r(k). (4.26)

Non-zero correlation between ε̂e j and ε̂ui indicates the presence of MPM in the ui→ y j channel.
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Next, the course of action to take should be decided once the model elements containing significant

mismatch have been detected. One logical option is to re-identify the elements containing significant

mismatch via an open-loop step test of the plant. It is however common for at least one of the

model elements to be open-loop unstable, which prompts additional considerations in the experiment

design.

The use of manual step-tests to re-identify the model does also require some effort on the part of the

control engineer, but owing to safety concerns such a supervised method is often advisable.

These drawbacks can, among others, be eliminated through the use of a closed-loop identification

procedure. The advantages of using closed-loop identification, as listed by Zhu and Butoyi (2002),

include a reduction in the disruption of process operation, and eliminating the need for manual control

action.

Irrespective of the way in which the new model is found, the objective is to minimise the magnitude of

the residuals produced over the duration of the experiment. Given that the residual is the difference

between the plant and model outputs, the modelling objective can be written as

min
Ĝ

∑
k

∣∣∣y(k)− Ĝu(k)
∣∣∣ (4.27)

s.t. Ĝ ∈G (4.28)

θc(Ĝ)≤ 0 (4.29)

k1 , 0 (4.30)

k f , T (4.31)

where y(k) and Ĝu(k) (with k ∈ [0, . . . ,T ]) are the plant and model outputs respectively. θc(Ĝ) is

the set of inequality constraints on Ĝ, and G is the set of allowed model transfer functions (these

constraints are further discussed in Olivier and Craig (2013)). The summation done in (4.27) will

tend to zero as Ĝ→ G. This statement is however not free from consideration of disturbances. If

unmeasured disturbances affect the plant output during the model re-identification, an incorrect model

could result.
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Open- and closed-loop identification are discussed in Van den Hof (1998); Shardt and Huang (2011),

and an explicit constrained minimisation approach to model update is shown in Olivier and Craig

(2013).

If the mismatch that was corrected in this step was significant, i.e. the new process model differs

significantly from the old one, it may become necessary to re-tune the MPC objective function weights.

This action may be up to the control engineer, but within the framework of lights-out process control

an automatic tuning algorithm for MPC may be preferable. Liu and Wang (2000) and Vega et al.

(2008) present methods based on multi-objective optimisation; Van der Lee, Svrcek and Young (2008)

presents a method based on combining the genetic algorithm with multi-objective fuzzy logic.

4.3 FAULT-TOLERANT CONTROL

FTC strategies can broadly be classified as either being passive or active (Zhang and Jiang 2008). With

passive FTC the objective is to design the controller such that it is robust enough to handle a class of

presumed faults. Active FTC has the objective of isolating faults and adapting the control strategy such

that the stability and control performance of the entire system might be maintained.

A fault-tolerant nonlinear model predictive controller (FT-NMPC) is used in this work to regulate the

plant under fault conditions. The controller will regulate the plant to the best of its ability, irrespective

of whether the regulatability or economic operability conditions are met. The elements of such a

controller are discussed in the following sections.

Prakash, Narasimhan and Patwardhan (2005) shows how fault-tolerant control may be implemented

in the MPC framework. Reviewing the integration of fault-tolerant control with MPC, it is evident

that the design of the state observer is the key to being successful (Deshpande, Patwardhan and

Narasimhan 2009). This is because the observer generates outputs based on a proposed set of faults,

which may be compared to the plant outputs for fault identification. This is true for model-based FDI,

and the requirement of an accurate model for MPC makes model-based FDI the logical choice for use

along with MPC.

One promising fault identification method for nonlinear systems, the NL-GLR method (Deshpande et
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al. 2009), as used in this work, is based on this idea. Particle filtering is used to implement the state

observer.

Particle filtering is an estimation technique based on representing probability densities with weighted

samples (particles) (Arulampalam et al. 2002). Because this representation does not make any

assumption about the form of the distribution, it can be used in general nonlinear, non-Gaussian

systems. Particle filters have been used for FDI before, see e.g. Wang and Syrmos (2008). To the

knowledge of the author they have however only previously been used in the GLR framework for

integration with NMPC by Olivier and Craig (2016a).

The rest of this section describes the elements of the fault-tolerant controller used in the simulation

study of the following chapter.

The discussion in the rest of this chapter pertains to the general discrete time state-space representation

of a dynamic system

xk+1 = f (xk,uk,θk,vk) (4.32)

yk = g(xk,uk,θk,dk,nk) (4.33)

where x ∈ Rn is the state vector and y ∈ Rm is the output vector, f (·) and g(·) are possibly nonlinear

functions describing the state transitions and the outputs respectively, uk contains the exogenous inputs,

θk represents the system parameters, dk ∈ D represents the modelled disturbances, vk is the state noise,

and nk is the measurement noise.

4.3.1 Nonlinear model predictive control

Considering the system presented in equations (4.32) and (4.33), the objective of a model predictive

controller at each sampling instant is to minimise the scalar performance index

min
uk...uk+Nc−1

J(uk, . . . ,uk+Nc−1,xk,r)

s.t. xk+1 = f (xk,uk,θk,vk)

yk = g(xk,uk,θk,dk,nk)

θc(yk . . .yk+Np ,uk . . .uk+Nc−1)≤ 0

(4.34)
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where x : R→Rnx is the state trajectory, u : R→Rnu is the control trajectory, xk is the state at time step

k, r is the reference signal (which may in general specify MV or CV targets), and θc(·) is a possibly

nonlinear constraint function.

The performance index (or objective function) to be minimised penalises output values different from

the reference values, as well as excessive control moves. This ensures that the output values tend to the

reference values without making undue control moves or violating constraints. The flexibility with

which control objectives can be incorporated into the objective function is partly why MPC is such a

popular technology. The objective function used in this work includes linear optimisation objectives,

similar to a variation discussed in Qin and Badgwell (2003) as:

J(·) =
Np

∑
i=1

[
‖yr,i− ŷi +D‖2

Qr
+‖si‖2

Qs
+Qlyi

]
+

Nc−1

∑
i=0
‖∆ui‖2

R, (4.35)

where Np and Nc are the prediction and control horizons respectively; ‖ · ‖2
Q is the Q-weighted 2-norm;

Qr, Qs, Ql , and R are weighting matrices corresponding respectively to the reference tracking, slack

variables for constraint violations, linear optimisation objectives (LP weights), and control movements;

yr is the output reference and ŷ is the output prediction. The slack variables are represented by si and

are defined to be:

si =


yi− yh ; yi > yh

yi− yl ; yi < yl

0 ; yl ≤ yi ≤ yh

, (4.36)

where yl and yh are respectively the output low and high limits. The term, D = yk− ŷk (which is

constant over the prediction horizon), is included to add integral action (i.e. zero off-set tracking) to the

MPC, where yk is the plant output and ŷk is the model output at time step k. This conventional feedback

procedure assumes the difference between the process and model outputs is because of additive

output disturbances, which persist throughout the prediction horizon (Meadows and Rawlings 1997).

Although this method can be sensitive to fluctuations in the output, it is a simple yet effective method

for compensating the effects of output disturbances.

In the presence of non-stationary disturbances this approach may not work as well. In this case one

can augment the system with a constant nonzero disturbance vector (Pannocchia and Rawlings 2003).

The state estimation problem is then extended to also estimate the disturbance values, which then
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eliminates the need for the D-term as described previously. In this work however the simpler approach,

using the D-term, is followed.

If any plant output variable does not have a specific reference value, but should rather be minimised, the

corresponding entry in the Qr matrix could be made zero while the corresponding entry in the Ql matrix

is given a positive weighting value (or a negative weight if the value should be maximised).

Qin and Badgwell (2003) notes that including steady-state optimisation objectives into the dynamic

optimisation algorithm, as done here, may improve controller performance as long as the steady-state

and dynamic objectives do not conflict. As the long as the steady-state optimisation weights are chosen

sensibly, this is in fact the case.

The only difference in this formulation between the linear and nonlinear versions of the MPC is whether

the output predictions are supplied by propagating the control vector through a linear or nonlinear

system function.

In practical applications an MPC generally determines the setpoints for baselayer controls, which

are responsible for operating the actuators (commonly control valves) such that the MPC-determined

setpoints are achieved. If the baselayer control loops are well tuned and sufficiently fast, their re-

spective closed-loop transfer functions may be assumed to be T ≈ 1 (Bequette 2003). Their presence

may therefore be disregarded from the subsequent data analysis steps described in the following

sections.

4.3.2 Fault detection and isolation

Venkatasubramanian, Rengaswamy, Yin and Kavuri (2003a) notes that the desirable characteristics of

the fault diagnosis system are:

• Quick detection and diagnosis;

• Isolability (the ability to distinguish between different failures);

• Robustness (specifically to noise and uncertainties);
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• Novelty identifiability (i.e. to know when an unknown or novel fault enters the system);

• Classification error estimate;

• Adaptability (e.g. changes in operating point);

• Explanation facility;

• Limited modelling requirements;

• Limited storage and computational requirements; and

• Multiple fault identifiability.

Of course it is very difficult to achieve all of the desirable characteristics simultaneously. Usually if the

FDI system becomes more sophisticated to include more features the complexity increases along with

computational requirements, and ease of implementation deteriorates. Using a simpler FDI scheme

alternatively would lead to missing some of the desirable features.

FDI methods can largely be classified as either being data driven or model-based (Venkatasubramanian

et al. 2003a, Venkatasubramanian, Rengaswamy, Yin and Kavuri 2003b, Venkatasubramanian, Ren-

gaswamy, Yin and Kavuri 2003c), based on the process knowledge that is required a priori. The basic

a priori knowledge that is required is the set of failures and the relationship between the observations

and the failures (Venkatasubramanian et al. 2003a).

4.3.2.1 Data driven fault detection and isolation

With data driven FDI the knowledge required is based on past experience of the process. This is

referred to as shallow, evidential, or process history-based knowledge (Yang 2004). These methods

are often used when there is limited knowledge about the fundamental operating principles of the

process, and a large amount of historical data. Data driven methods include neural networks, principal

component analysis (PCA), and qualitative trend analysis (QTA).

For data driven methods it is required to transform the historic data into knowledge of the faults. This is

referred to as feature extraction, and is necessary for diagnosis later on. This feature extraction process
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groups data driven methods into qualitative and quantitative methods. QTA is an example of a qualitat-

ive method, whereas PCA and neural networks are regarded as quantitative. Venkatasubramanian et al.

(2003c) gives a more thorough review of data driven FDI approaches.

4.3.2.2 Model based fault detection and isolation

Model-based a priori knowledge can also be categorised as being qualitative and quantitative. The

model is generally developed based on some fundamental understanding of the process operation. In

quantitative models this understanding is captured by model equations relating the system outputs to

the system inputs. In qualitative models the relationships are expressed by qualitative functions centred

around different units in the process. Observer based methods are quantitative, and methods such as

digraphs and fault trees are qualitative. Venkatasubramanian et al. (2003a) provides a good overview

of quantitative model-based methods, and Venkatasubramanian et al. (2003b) gives an overview of

qualitative methods.

When using MPC for process control a quantitative process model is required. This makes the use

of quantitative model-based FDI a natural choice. Obtaining a quantitative process model is listed as

one of the main limitations to quantitative model-based FDI by Venkatasubramanian et al. (2003a),

but the use of MPC means that such a model will be available. The quality of this model may be

another limitation to FDI accuracy, but model maintenance can also be listed as a need for proper MPC

functioning.

Deshpande et al. (2009) notes that the design of the state observer for fault diagnosis in the MPC

framework is the key to being successful. The choice of FDI method and observer to use also depends

on whether the system can accurately be represented with linear functions. If the system is strongly

nonlinear the problem becomes more complex.

Alcorta Garcia and Frank (1997) provides an overview of methods for observer-based fault diagnosis of

nonlinear systems. Most of these methods are based on generating and evaluating the model residuals

(the difference between the measured outputs and the model predictions).
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4.3.2.3 The nonlinear generalised likelihood ratio method for fault diagnosis

In this work the NL-GLR method of Deshpande et al. (2009) is used. The generalised likelihood ratio

approach to fault diagnosis was popularised early on by Willsky and Jones (1976) and Narasimhan

and Mah (1987). The method was later on expanded to the nonlinear case, and possesses many of the

characteristics of the ideal fault diagnosis system listed in Section 4.3.2 (from Venkatasubramanian et

al. (2003a)). The NL-GLR method is described next.

Consider the innovation sequence calculated from the state observer:

γ(k) = y(k)−g(x̂k,θk), (4.37)

with k ∈ [t, t +N]. Without any faults the innovation sequence is Gaussian white noise (if the model is

a good representation of the plant). If however there are any faults, it is possible to use the test statistic

over the innovation sequence window

ε(t,N) =
t+N

∑
k=t

γ(k)TV (k)−1
γ(k) (4.38)

to detect the fault. Note that V (k) is the innovation covariance. The test statistic follows a central

chi-squared distribution with zero mean Gaussian noise in the innovation sequence. If this test statistic

exceeds a threshold, the fault is confirmed. The threshold and window length are tuning parameters for

the fault detection test. There is a trade-off between the speed of fault detection and the accuracy of

the detection. If the detection window size is increased the detection accuracy of the fault magnitude

will improve, but the time before detection will increase.

Suppose a set of observers is used, each operating with a different postulated fault, and each generates

outputs along with the nominal observer (see Figure 4.3 where Yk represents the plant measurements

and Uk represents the plant inputs). The problem of fault isolation is then finding the fault mode

observer that best explains the measurement sequence {y(t) . . .y(t +N)} generated over the time

window for which the fault was detected. The NL-GLR method can then be stated in mathematical

form as:

min
b̂ f j

(
J f j

)
=

t+N

∑
i=t

γ
T
f j
(i)Vf j(i)

−1
γ f j(i), (4.39)
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Figure 4.3. Observer bank with different postulated faults for the NL-GLR FDI method.

where γ f j(i) and Vf j(i) are respectively the innovations and innovation covariance matrices generated

by the fault mode observer corresponding to fault f j. The isolated fault corresponds to the fault mode

observer for which J f j is the smallest, with b̂ f j the fault magnitude that produces this minimum value.

The fault magnitudes are defined for a variety of faults in the following section.

Because the innovation sequence of (4.37) and the innovation covariance matrix (V (k)) appear directly

in the Kalman filtering framework, it is natural to make use of the Kalman filter as the state observer

(or the extended Kalman filter (EKF) in the nonlinear case). In the linear case the use of the Kalman

filter is wholly justified as it is the optimal estimator (Arulampalam et al. 2002) (assuming also that

the noise is Gaussian). The EKF however, as is often used in the nonlinear case, suffers some known

limitations (see Julier and Uhlmann (2004) for a more complete discussion). It is for this reason that

particle filtering is rather used in this work as further discussed in Section 4.3.4.3.

The NL-GLR method can also be applied in the presence of non-Gaussian noise (Li and

Kadirkamanathan 2001), although the test statistic (equation (4.38)) will follow a different distri-

bution.

4.3.3 Representing faults

There is a set of faults for which fault isolation is a trivial task. Examples include gross sensor

faults that may be detected via a simple data validation scheme, and faults for which there are direct
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measurements available. Many modern sensors will inform the user when they have exceeded the

calibration range, and if such a violation is impossible (e.g. a negative level reading, or a temperature

that has changed quicker than what is physically possible) it is trivial to state that the sensor has failed

at the corresponding condition.

Also consider a flow valve on a line where a flow measurement is made. If the valve is stuck while the

controller is trying to manipulate the flow, the flow reading will be a direct indication of the magnitude

of the fault. This class of faults is not considered in this work. Focus will be placed on actuator errors

where no direct indication is available. Such faults are much more difficult to isolate (Prakash et

al. 2005). Other faults (including, but not limited to, sensor failure, sensor bias, or sensor drift) can

also be included in the set of postulated faults in the observer bank. For completeness these faults are

also described.

If the j-th actuator is stuck abruptly at time t then the corresponding plant input can be represented

as:

uu j(k) = u(k)+
[
bu j − eT

u j
u(k)

]
eu j σ(k− t) (4.40)

where bu j represents the constant value at which the j-th actuator is stuck, eu j is the fault vector with

element j equal to one and all other elements equal to zero, and σ(t) is the unit step function:

σ(t) = 0 if t < 0; σ(t) = 1 if t ≥ 0. (4.41)

Similarly, if a bias occurs in the j-th sensor at time t, then the measured output can be represented

as:

yy j(k) = g(xk,θk)+by j ey j σ(k− t)+n(k), (4.42)

where by j is the bias present in the j-th sensor, and n(k) is again the measurement noise. If the j-th

sensor fails abruptly at time instant t, then the measurement can be represented as:

yy j(k) = g(xk,θk)+
[
by j − eT

y j
g(xk,θk)

]
ey j σ(k− t)+n(k), (4.43)

where by j is the constant output value of the j-th sensor. If there is a drift in the j-th sensor from time

t, the measured output can be represented as:

yy j(k) = g(xk,θk)+by j ey j ζ (k− t)+n(k), (4.44)
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where by j is the drift slope present in the j-th sensor and

ζ (t) = 0 if t < 0; ζ (t) = t if t ≥ 0. (4.45)

Any of these fault representations may be considered by the fault mode observers as used in the

NL-GLR framework. The main drawback of using the NL-GLR method is that fault mode observers

need to be set up for every fault that needs to be identified accurately. Even though the method can

be expanded to handle multiple faults (Deshpande et al. 2009), the number of fault mode observers

required can become very large for a complex process. Dealing with a quick succession of multiple

faults (the one causing the next) is therefore not a trivial task.

When identifying multiple faults the methodology of section 4.3.2.3 stays largely the same, but a fault

mode observer needs to be defined for each postulated multiple fault combination. In equation 4.39,

b̂ f j becomes a vector containing the magnitude estimates for the multiple faults included in the specific

fault mode observer (i.e. those postulated to occur together). An additional fault mode observer is

therefore required for each multiple fault combination, which complicates the solution, and makes

accurate isolability more difficult.

Multiple faults should however be distinguished from subsequent faults. Subsequent faults are said

to occur if there is a sufficient time window between the onset of the faults, to the effect that the first

can be isolated before the second occurs. The NL-GLR method, in the form presented here, handles

subsequent faults directly.

If the plant nonlinearities are not too severe, the NL-GLR method may be simplified through linearisa-

tion of the process model along a nominal trajectory as described by Deshpande et al. (2009). Fault

detection through the application of (4.38) is rather fast, and because fault identification is not expected

to happen too frequently, the trade-off between accuracy in the presence of severe nonlinearity and

fast execution has to be evaluated. In this work the full NL-GLR method is applied because the plant

dynamics are not too fast, and it is therefore sufficient to achieve the fault identification in a reasonable

amount of time.
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p(x0|Y0) p(x1|Y1)

p(x1|Y0) p(x2|Y1)

p(x2|Y2)

f(x0,v0) f(x1,v1)
αp(y1|x1) αp(y1|x1)

y1 y2

...

Figure 4.4. Graphical depiction of the recursive Bayesian estimation algorithm.

4.3.4 State estimation

In the case where process states are not readily available, probabilistic inference as discussed in Van der

Merwe (2004); Ristic, Arulampalam and Gordon (2004) may be used to estimate them. Probabilistic

inference is the problem of estimating the process variables, such as the states or parameters, of a

system from the observations of the system. The inputs applied to the system are known along with

the measured outputs. These known quantities are used in conjunction with the known process model

of the system to calculate the states of the system.

The system presented in equations (4.32) and (4.33) are again applicable. The state estimation objective

then is to calculate xk at time k using the outputs up to that time y1:k. The optimal solution to the

probabilistic inference problem is the recursive Bayesian estimation algorithm, shown in Figure 4.4.

In Bayesian terms the problem is to recursively construct the probability density function p(xk|y1:k),

which is the distribution of the states at time k given all the measurements up to time k. The recursive

nature of the estimation problem implies that the probability density function (PDF) has to be known

to a certain extent at some time in the past. How the PDFs are constructed recursively is specific to

the estimation algorithm used. Some of the common approaches to recursive Bayesian estimation are

discussed next.
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4.3.4.1 The Kalman filter and its variations

The ubiquitous Kalman filter (Kalman 1960a) is the optimal solution to the recursive Bayesian

estimation problem if the underlying system is linear and all probability densities are Gaussian. A

Gaussian probability density function is fully characterised by its mean and standard deviation. It can

further be shown that if p(xk−1|y1:k−1) is Gaussian, p(xk|y1:k) is also Gaussian for linear systems with

Gaussian noise (Arulampalam et al. 2002). The recursive estimation problem in this case only involves

the propagation of the mean and standard deviation of the PDF. Because the system is linear for this

implementation it can be represented as

xk+1 = Fkxk +Bkuk + vk (4.46)

yk = Hkxk +nk, (4.47)

where Fk, Bk and Hk are matrices describing the state transition and output equations respectively. The

state and output noise (vk and nk) are assumed to be zero mean Gaussian, with covariances Q and R

respectively.

Given that the distribution at the previous time step (p(xk−1|Yk−1)) is characterised by the mean

xk−1|k−1
1 and covariance Pk−1|k−1, the predicted mean and covariance are calculated as:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (4.48)

Pk|k−1 = FkPk−1|k−1FT
k +Qk. (4.49)

Once the current measurement becomes available the innovation (measurement residual) is calculated

as

ỹk = yk−Hkx̂k|k−1, (4.50)

and the innovation covariance is calculated as

Sk = HkPk|k−1HT
k +Rk. (4.51)

The optimal Kalman gain is calculated from

Kk = Pk|k−1HT
k S−1

k , (4.52)

1The notation xk|k describes the value of xk given all the measurements up to time k
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and then the updated state estimate (mean) and updated estimate covariance are calculated as

x̂k|k = x̂k|k−1 +Kkỹk (4.53)

Pk|k = (I−KkHk)Pk|k−1. (4.54)

For nonlinear systems the most widely implemented alternative is the EKF (Jazwinski 1970). The

formulation here is basically the same as for the regular Kalman filter except that the system equations

used are the linearised versions around the current operating point. The EKF is widely used for its

relative ease of implementation and similarity to the well-known Kalman filter. Here the mean and

standard deviation of the PDF are also propagated as the full characterisation of the PDF. The EKF

should however be applied with caution as the linearisation step may lead to suboptimal performance,

and sometimes even divergence of the filter (Van der Merwe 2004).

Another extension to the regular Kalman filter is the unscented Kalman filter (UKF) (Julier and

Uhlmann 2004), which makes use of the unscented transform to calculate the transformed mean

and covariance of a distribution which has undergone a nonlinear transformation. The difference

between the UKF and the EKF is that the former uses the nonlinear system equations. The PDF is

however represented through deterministically chosen sample points (known as the Sigma points) that

completely capture the true mean and standard deviation. These sample points are then propagated

through the nonlinear system equations. The statistics of the propagated sample points represent the

true mean and standard deviation accurately to the 2nd order for any nonlinearity.

Many more variations of the Kalman filter exist, such as the central difference Kalman filter (CDKF),

the square-root UKF, and the square-root CDKF. Van der Merwe (2004) provides a more complete

discussion of these variations.

4.3.4.2 Direct numerical integration

Direct numerical integration methods, also known as grid-based methods, make use of an N-

dimensional grid that tiles the state-space, and the Bayesian recursion integrals are then approximated

with large sums over the grid. Figure 4.5 shows how this may be done on a 2-dimensional grid. The

function evaluations are done at the set locations indicated on the x and y axes by the red dots (the

possible values of the state variables). The vertical axis represents the probability density function, the
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Figure 4.5. Graphical depiction of grid-based estimation, adapted from Van der Merwe (2004), with

permission.

value of which will be known at the evaluation locations. Because the grid is fixed it should be selected

to cover a large N-dimensional span of the state-space. These methods are therefore computationally

very intensive and as the dimensionality becomes even moderately high, the computational effort

becomes impractically large (Van der Merwe 2004).

4.3.4.3 Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) methods (Doucet, De Freitas and Gordon 2001) also approximate the

Bayesian integrals with finite sums, but unlike direct numerical integration methods the integration

is done over an adaptive stochastic grid, which makes these methods practically implementable.

Figure 4.6 shows how this approach differs from the grid-based approach. In this instance the grid is

concentrated in the areas of increased likelihood. This means that fewer sampling points are needed to

get comparable accuracy.

These methods do not make any explicit assumptions about the form of the distributions, and are

therefore usable in possibly nonlinear and non-Gaussian systems.

Particle filtering is a technique of practically implementing a recursive Bayesian filter by Monte Carlo

simulations. The required PDF is represented by a set of random samples and associated weights. The

location of the sample represents the location where the PDF is evaluated, and the weight indicates the

value of the PDF at this location. This approach is illustrated in Figure 4.7. The sizes of the particles

in the figure represent the values of the PDF at those locations, and consequently the weights of those

particles.
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Figure 4.6. Graphical depiction of SMC-based estimation, adapted from Van der Merwe (2004), with

permission.

p(xt|Yt)

{xi
t, w

i
t}

Figure 4.7. Distribution representation with particles.

Using this technique the PDF is approximated as

p(xk|Yk)≈
Ns

∑
i=1

wi
kδ (xk− xk

t ) (4.55)

where Ns is the number of particles and {xi
k,w

i
k}Ns

i=1 is the set of particles and associated weights. As

the number of particles becomes large (i.e. as Ns→ ∞) this method of representing the PDF becomes

equivalent to the functional description of the PDF.

The weights are defined to be (Ristic et al. 2004):

wi
k ∝ wi

k−1
p(yk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

k−1,yk)
, (4.56)

where q(xi
k|xi

k−1,yk) is a proposal distribution called an importance density. Ideally the importance

density should be the true posterior distribution, p(xk|Yk), but as this is not known in general, a proposal

distribution is used. One popular suboptimal choice, that is used in this work, is the transitional
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prior

q(xi
k|xi

k−1,yk) = p(xk|xk−1). (4.57)

A complete treaties of the particle filter and some of its variations can be seen in Arulampalam et al.

(2002); Van der Merwe (2004). There are many variations, but the one used in this work (which is a

common implementation (Arulampalam et al. 2002)) is the sampling importance resampling (SIR)

particle filter. The algorithm for the SIR particle filter, given the choice of using the transitional prior

as the importance density and an assumption of Gaussian noise, is listed in Algorithm 4.1.

Algorithm 4.1 SIR particle filter
1. Initialise: For k = 0, draw Ns states (x0) from the prior PDF p(x0).

2. Propagate particles: For each k > 0 sample x̃k ∼ p(xk|xk−1) using the state transition function

(4.32) and the state noise distribution.

3. Calculate weights: The weight of each particle is given by: wk = p(yk|g(x̂k,vk)), which can be

evaluated based on the output function (4.33) and the shape of the output distribution.

4. Normalise weights: Normalise the weights as

w̃i
k =

wi
k

Ns

∑
j=1

w j
k

.

5. Resample: Multiply particles with high importance weights and suppress particles with low

importance weights to overcome the problem of degeneracy (Arulampalam et al. 2002).

6. PDF: The required PDF is then given by

p(xk|Yk)≈
1
Ns

Ns

∑
i=1

δ (xk− xi
k).

7. State estimates: Once the PDF p(xk|Yk) is known, the state estimate is calculated as a point

estimate from the distribution. In this work the mean is used, which simply becomes (in the

particle representation after resampling):

x̂k =
1
Ns

Ns

∑
i=1

xi
k.

The resampling step listed in the SIR particle filter algorithm is necessary to overcome the problem of

degeneracy present in the normal sequential importance sampling algorithm (Doucet et al. 2001). The

problem is that the variance of the importance weights in equation (4.56) can only increase over time.

After a couple of iteration steps all but one particle will have negligible weights. Much time is then

spent computing weights that do not practically contribute to the accuracy of the particle filter. If the
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effective number of particles, given by

N̂e f f =
1

Ns

∑
i=1

(wi
k)

2

, (4.58)

becomes significantly smaller that the actual number of particles, then degeneracy is becoming a

problem. Degeneracy can be eliminated through the use of the resampling step, where particles with

low importance weights are eliminated, and particles with high importance weights are multiplied. In

this work the systematic resampling algorithm of Kitagawa (1996) is used, which uses the cumulative

sum of weights (CSW),

CSWi =
i

∑
j=1

w j
k, (4.59)

and draws samples from u ∈ [0,1] to redistribute the particle locations. The resampling algorithm

pseudo-code is given in Algorithm 4.2, and is illustrated in Figure 4.8; the particles are respectively

represented as xi
k before resampling and xi∗

k after resampling.

Algorithm 4.2 Systematic resampling

[{x j
k
∗
,w j

k}N
j=1] = RESAMPLE[{xi

k,w
i
k}N

j=1]

1. Initialise the CSW: c1 = w1
k

2. FOR i = 2 : N

• Construct CSW: ci = ci−1 +wi
k

END FOR

3. Begin at bottom of the CSW: i = 1

4. Draw a starting point: u1 ∼ U[0, 1
N ]

5. FOR j = 1 : N

• Move along the CSW: u j = u1 +
1
N ( j−1)

• Find the smallest value of i such that u j 6 ci

• Assign sample: x j
k
∗
= xi

k

• Assign weight: w j
k =

1
N

END FOR

One iteration of the SIR particle filter algorithm, including resampling, is illustrated in Figure

4.9.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

76

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 KEY TECHNOLOGIES FOR LIGHTS-OUT PROCESS CONTROL

0

1

• •

• •
• •
• • • •

• • ••• ••• •

ui

{wi
k

xi∗k

xik

Figure 4.8. Resampling procedure used in the SIR particle filter implementation, adapted from Van

der Merwe (2004), with permission.
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Figure 4.9. One iteration of the SIR particle filter, adapted from Van der Merwe (2004), with permis-

sion.
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An interesting comparative study of nonlinear filters is presented in Psiaki (2013). This study includes

most of the filters discussed in this section and highlights some of the strengths and weaknesses of

each. With so many options for implementing probabilistic inference the question arises as to which

method should be used. For linear systems with Gaussian noise the choice is simple because the

Kalman filter is the optimal solution. For nonlinear systems the choice becomes more complex. A

formal approach to performance assessment and filter selection for nonlinear filters is presented in

Tulsyan, Huang, Gopaluni and Forbes (2013). In this work the particle filter was selected because of

its accuracy for nonlinear systems. The particle filter is known to be computationally expensive when

compared for example to the EKF or UKF. The process used in this work does however have relatively

slow dynamics, which allows sufficient time to complete the particle filter calculations.

4.3.5 Fault-tolerant nonlinear model predictive control with particle filters

The way in which MPC is formulated leads to a natural representation of faults within the system.

Actuator failures are easily represented as control constraints, and faults that change the process

dynamics can be accommodated by modifying the internal MPC model. For sensor failures the

information provided by that sensor has to be discarded, or at least adapted in the case of constant

bias.

If one control input becomes constrained, the optimisation algorithm that determines the control moves

will automatically compensate by using alternative control inputs to regulate the outputs according to

the input move weights.

All of the elements described in this section are then combined to form the FT-NMPC as illustrated

in Figure 4.10. The number of fault mode observers required depends on the number of faults that

are postulated to occur. The fault detection algorithm of (4.38) runs continually. When a fault is

detected the fault identification algorithm runs by making use of the fault mode observers. Once fault

identification is complete, the updated controller constraints and parameters are supplied to the NMPC,

which adapts to the identified fault.
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Figure 4.10. FT-NMPC layout

4.4 PLANT REGULATABILITY ANALYSIS

In the event that a fault has been detected, it becomes an important consideration whether the plant

(or processing unit) will still be able to continue operating. If for example an actuator has failed, it is

important to know if the plant will not in any case have to be shut down owing to the unavailability of

that actuator. The first part of this section will describe the approaches that are available for completing

such an analysis, and the second part will describe the method used in this work.

4.4.1 Controllability analysis

The term controllability was already defined long ago by Ziegler and Nichols (1943) as being the

ability of a process to achieve and maintain a desired equilibrium value. Rosenbrock (1970) later

introduced the term “functional controllability,” which is applicable if there exists an input vector

u for t > 0, which generates any suitable output vector, y for t > 0, from the initial condition x(0) = 0.

State controllability was introduced by Kalman (1960b), and is defined as the ability to bring the plant

from any initial state, x(0) = x0, to any final state, x f , in any final time, t f , with a suitable input vector.

The term controllability, without any qualifier, usually refers to state controllability, which is generally

quite limited and has little practical value (Skogestad and Postlethwaite 2005). This is because the

control action required to drive the plant to the final state may be extremely large and can therefore fall
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very far outside of the practical actuator limits, or it can take very long for the plant to reach the final

state.

Morari (1983) introduced the concept of “dynamic resilience,” as the quality of regulation that can be

achieved through feedback. The method of Garcia and Morari (1982) is to use the IMC framework,

where the ideal controller is the inverse of the plant, to determine the best achievable control per-

formance. A good practical approach to controllability analysis is the input-output controllability test

presented in Skogestad and Postlethwaite (2005). Input-output controllability describes the amenability

of a plant model to be controlled, i.e. it is possible to find a controller that will keep the outputs

within specified bounds in the presence of unknown, but bounded, disturbances and model uncertainty.

Input-output controllability is widely used in systems theory (Yuan et al. 2011), largely for the powerful

results that may be obtained with a relatively straightforward method.

A number of the available techniques for analysing controllability of linear processes can handle

right-half-plane zeros and time delays. These can limit process controllability significantly. Yuan et al.

(2011) provides a good overview of which methods are applicable when right-half-plane zeros or time

delays are present.

Many of the methods listed above are based on frequency domain analysis, and are therefore not

directly applicable to nonlinear systems. The simplest approach for a nonlinear system is to linearise

the system around the operating point, and to apply any of the linear methods to the linearised system.

This generally gives good results, even for strongly nonlinear systems, if the operating region does

not vary too much (Yuan et al. 2011). In fault conditions the plant may be pushed to quite a different

operating region and the linearised system analysis may fail.

Methods that handle nonlinear systems directly are categorised by Yuan et al. (2011) as being either

analytical or optimisation based. The analytical methods generally focus on functional controllability.

One of the main limitations to achieving acceptable control performance is the presence of non-

minimum phase characteristics in the system, as is introduced by right-half-plane zeros. For nonlinear

systems the concept of poles and zeros does not exist. The zero dynamics can however be mimicked

by a reduced inverse, which is a minimal order realisation of the system inverse. The analysis of the

zero dynamics will therefore reveal if the system has a stable inverse, and indicate the achievable

performance (Trickett 1994).
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Quantifying state controllability for nonlinear systems can be achieved by making use of repeated Lie

derivatives, as presented by Haynes and Hermes (1970); Hermes (1974). The analysis can however

become quite involved as the system size increases, and the result still only shows state controllability.

This analysis also does not handle control constraints or time delays in the system directly. Owing to

the lack of a powerful nonlinear equivalent to the input-output controllability test, optimisation-based

methods can be used to analyse plants in the presence of uncertainty (with respect to the model or the

disturbances).

The optimisation-based approach of Perkins and Walsh (1996) formulates the controllability analysis

in the fashion of a min-max optimisation problem (Bemporad et al. 2003), the objective of which

is to determine the best control input for the worst possible combination of disturbances and model

uncertainty. This approach ensures controllability for all possible combinations of uncertainty, even

though the probability of all the worst case disturbances appearing simultaneously is very slim. For this

reason the approach gives notoriously conservative answers (Kerrigan and Maciejowski 2004).

On an industrial plant, where many sources of uncertainty exist, the applicability of the optimisation-

based approach of Perkins and Walsh (1996) is limited. A more practical approach is to determine

the stochastic robustness of the system as presented by Ray and Stengel (1993), where Monte Carlo

samples of the uncertainty are drawn before the system is analysed. The method is applied to a linear

system in the presence of uncertainty.

Monte Carlo simulation was also used by Wang and Stengel (2002) for robust control of a nonlinear

system. The application of this approach to nonlinear controllability analysis in the presence of

parametric uncertainty therefore seems warranted. Depending on the simulation configuration these

methods can usually handle system time delays directly. The formulation of this approach is presented

in the following section.

4.4.2 Adaptive hypothesis test for system regulatability

If a probabilistic sense of controllability is acceptable in contrast to a guarantee for all combinations of

uncertainty in the system, the solution is usually easier to calculate and less conservative (Calafiore

and Campi 2006). This analysis can be done via simulation, and the objective of such a simulation
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is to find a set of permissible inputs that will be able to regulate the plant outputs within the output

limits in the presence of unknown disturbances and/or plant parameters. Input constraints are therefore

handled directly, unlike in many of the methods listed above. In order to distinguish this approach

from a well-defined formal controllability analysis, the term regulatability analysis will be used here.

The term was defined in Definition 4.1.

In this section an adaptive hypothesis test is proposed to evaluate the regulatability of a system

represented by equations (4.32) and (4.33).

It is assumed that this plant is nominally regulatable. This means that the system conforms to

Definition 4.1 in the absence of faults. In the presence of at least one fault however the regulatability

condition may not hold any longer. The objective is then to evaluate whether there exists a plant input

vector for which the outputs (and states) remain within their respective limits. The future disturbance

vector is however not known, and a representative disturbance vector (d∗) is selected such that d∗i ∈ D.

The set, D, depends on the plant in question and is defined according to the physical properties of the

disturbances. An evaluation is then carried out to find u ∈U to keep y ∈ Y . If such a u exists, then the

plant is regulatable for d∗i .

Another d∗i ∈ D can then be selected and the search for a u to regulate the plant is repeated. The

outcome of the search with each independent disturbance vector becomes the result of a binomial test.

Choosing successive disturbance vectors in a Monte Carlo manner, and evaluating the regulatability of

the faulty system provides the ability to statistically test whether the system is regulatable using the

constructed binomial distribution.

Up to now the only uncertainty referenced in the plant is because of disturbances. Uncertainty in

plant parameters, i.e. model-plant mismatch, may be included in the analysis by augmenting the

disturbance vector with the uncertain plant parameters as [d∗,θ ∗]T . The uncertain plant parameters are

then included without any loss of generality.

An hypothesis test may be set up for the sequence of binomial samples to complete the regulatability

analysis. The first consideration is the amount of samples required to complete the hypothesis

test. For a one-sided test on a binomial proportion the sample size required is (Montgomery and
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Runger 2006):

n =

[
zα

√
p0(1− p0)+ zβ

√
p(1− p)

p− p0

]2

(4.60)

where p0 is the null hypothesis probability value, p is the test statistic value, and zα and zβ are

respectively the critical values associated with the allowed probabilities of making type I and type II

rejection errors. A type I rejection error is made when the null hypothesis is rejected, when it is in

fact true. A type II rejection error is made when the null hypothesis is not rejected, and it is in fact

false.

Montgomery and Runger (2006) explains that the probability of making a type I rejection error is only

dependent on the critical value that is chosen. This means that the type I error probability can be set

close to a desired value. Since the probability of incorrectly rejecting the null hypothesis can therefore

be directly controlled, rejection of the null hypothesis is said to be a strong conclusion (Montgomery

and Runger 2006:297). The probability of making a type II rejection error is not constant, but depends

on the true value of the parameter in question and the sample size. Because of this dependence the

decision to not reject the null hypothesis is regarded as a weak conclusion. The null hypothesis is

therefore formulated such that it is likely to be rejected (and hence a strong conclusion regarding the

regulatability of the system is likely to be made).

It can be seen from equation (4.60) that the required sample size becomes large when the test statistic

value is close to the null hypothesis value. Equation (4.60) can be rearranged to indicate how far the

null hypothesis can be away from the test statistic, given the number of evaluations, and to still be able

to reject the null hypothesis as

ε =
zα

√
p0(1− p0)+ zβ

√
p(1− p)√

n
, (4.61)

where ε = p− p0 represents the threshold. The critical values, zα and zβ , are constants given the

allowed rejection error probabilities. For example if one accepts a 5% probability of making a type I or

type II rejection error, then the values for both zα and zβ are 1.96. Given that p ∈ [0,1] the maximum

value of p · (1− p) is 0.25. The same is true for p0 · (1− p0). A high limit for the distinguishable
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Figure 4.11. High limit for the distinguishable threshold as a function of the number of evaluations

required.

threshold value given the number of evaluations done can then be computed as:

p(1− p); p0(1− p0) ≤ 0.25 (4.62)

zα

√
p(1− p)+ zβ

√
p0(1− p0) ≤ 0.5zα +0.5zβ (4.63)

ε ≤ 0.5zα +0.5zβ√
n

(4.64)

which is shown in Figure 4.11 as a function of the number of evaluations. It is clear from the figure

that if the required threshold is large the number of evaluations required is small. This would be the

case when most of the evaluations fail, or when most of the evaluations succeed. When the required

threshold is small, the number of evaluations required becomes large, as n→ ∞, ε → 0. This also

makes sense intuitively.

This threshold will be used in the regulatability analysis listed as Algorithm 4.3, with the following

flow:

• Choose the allowed type I and type II rejection errors;

• Do a set number of initial evaluations;

• Define the null hypothesis;

• Define the alternative hypothesis;
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• Define the test statistic;

• Determine whether the null hypothesis can be rejected; and

• If the null hypothesis is not rejected, do another evaluation, up to the evaluation limit.

Algorithm 4.3 Regulatability analysis through adaptive hypothesis testing
1. Choose zα and zβ

2. FOR i = 1 : N0

• Choose disturbance vector d∗ ∈ D

• Evaluate if ∃ u ∈U , s.t. y ∈ Y

• Increase n f ail , if the evaluation fails

END FOR

3. Set p0 =
n f ail

N

4. Set H0 : p = p0

5. Set H1 : p > p0

6. Set p = 1− p0

7. IF (p− p0)> ε

• Reject H0

• STOP evaluation

ELSE IF (i > Nmax)

• Do not reject H0

• STOP evaluation

ELSE

• Choose d∗ ∈ D

• Evaluate if ∃ u ∈U , s.t. y ∈ Y

• Increase n f ail , if the evaluation fails

• Increase N

• GO TO step 3

The adaptive nature of the hypothesis test is encapsulated by the way in which the null hypothesis,

the alternative hypothesis, and the test statistic values are defined (steps 4, 5, and 6 in Algorithm 4.3).

This means the test is to determine whether the test statistic value is larger (or smaller) than the null

hypothesis value by a statistically significant margin. Which is to say the test is to determine whether

the probability of regulatability is significantly larger than the probability of not being able to regulate

the plant. There is no specific requirement for what this value should be.
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An evaluation limit is included to ensure that the evaluation does not proceed indefinitely when the

probability of being able to regulate the plant is indistinguishably close to the probability of not being

able to regulate the plant.

The evaluation to find if ∃ u ∈U, s.t. y ∈ Y listed in Algorithm 4.3 is completed by searching for

a set of inputs that will keep the plant within limits. This can be done in a similar manner to the

minimisation of an objective function in an MPC formulation:

min
u∈U

V (u,xk) (4.65)

with the objective function given by

V (·) =
Nss

∑
i=1

[
‖yr,i− yi‖2

Qr
+‖si‖2

Qs
+Qlyi

]
+‖Tss− tF‖2 +‖y f − y f/2‖2

Qb
. (4.66)

The objective function is purposefully defined similar to that used in the MPC control algorithm. ‖ ·‖2
Q

is again used to represent the Q-weighted 2-norm. Qr is the weighting matrix for setpoint tracking,

yr is the setpoint vector, si is a slack variable vector used to represent output limit violations, and

Ql contains the optimisation weights if optimisation is included in the MPC formulation. Nss is the

prediction horizon, chosen to be long enough for the plant to reach steady state. Additional to the

terms in the standard MPC objective function, Tss is the time to steady state (equal to Nss multiplied by

the sampling period) and tF is the time to failure (if the plant cannot be regulated - see Figure 4.12).

This time to failure is defined as the time at which the process begins to violate critical operating limits.

If the plant outputs are regulatable, tF is set equal to Tss such that the term ‖Tss− tF‖2 reduces to zero.

If the plant outputs are not regulatable this term will contribute a larger value to the objective function

the sooner the plant fails (i.e. the smaller the value of tF ). Furthermore, y f is the steady-state output

vector given by

y f = lim
t f→∞

∫ t f

t0
g(x,u,d∗) dt, (4.67)

y f/2 is a vector containing the outputs when they near steady state, and Qb is a weighting matrix

included to penalise unbalanced ramps in the steady state analysis.

For the practical calculability of y f , a sufficiently large t f may be selected over which the integral in

(4.67) is evaluated. Figure 4.12 illustrates two possible outcomes of this evaluation. The dotted line is

the absolute low limit of a particular output variable, e.g. the safe operating region limit above which
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Time
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Time to failure
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Figure 4.12. Possible outcomes for one iteration of the regulatability analysis. The dotted line is the

low limit; the solid and dashed lines respectively show regulatable and non-regulatable output curves

over time.

the output must remain. The solid line shows an instance where the output can be regulated to stay

above the low limit. The dashed line shows an instance where the output cannot be regulated to remain

above the low limit. In an instance where the output cannot be regulated, the mean time to failure can

also be noted for all iterations of the search.

The initial states used to calculate the plant output predictions in equation (4.66) are the state estimates

at the time of identification of the fault. The optimization problem of (4.65) and (4.66) is then solved.

If it is possible to find an input vector that will maintain the plant within the critical operating limits,

the regulatability condition is satisfied.

Penalisation of MV moves is purposefully omitted from equation (4.66) because it is essentially

a steady state analysis and the regulatability of the plant should not be sacrificed for input move

suppression.

It should be clear that the analysis assumes that no further faults will occur up to the point where the

plant reaches steady state. The analysis therefore excludes fault propagation, where one fault leads to

another. The fault identification algorithm does however handle subsequent faults (see Section 4.3.3).

It could therefore happen that one fault enters the system, it is identified, the regulatability analysis is

performed, and the system may be found to still be regulatable. This fault can then lead to a subsequent

fault, which is again identified, and the regulatability analysis is repeated. The system may now be
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found to not be regulatable. The analysis does therefore not aim to include fault propagation, but it can

handle fault propagation if fault mode observers are set up as required.

Once the regulatability of the system has been established, it is still required to analyse whether the

system can be economically operated with the fault present.

4.5 ECONOMIC PERFORMANCE ANALYSIS

After it has been established that the system is regulatable, i.e. the plant can still be operated within

limits, the question arises whether the plant should still be operated. In other words, should the plant

continue to operate with the present fault(s) until the next planned opportunity for repair (the next

planned shutdown), or should the plant be shut down as soon as possible, the fault(s) repaired, and the

plant started up again.

For this evaluation a plant economic performance function is required. The plant economic performance

function (see e.g. Wei and Craig (2009a)) is defined as the monetary value of operating the plant

per unit time, and is symbolically represented as ψ(u,y). The cumulative value of the economic

performance function over a pre-defined length of time,

Ψi =
∫ t f

t0
ψi (u,y)dt, (4.68)

is also of concern. In order to complete the economic operability analysis there are a number of

monetary value functions required, as are associated with different plant modes. The time periods

over which these are active may also be of concern. The economic values and time periods listed in

Table 4.1 are required. These include values for start-up, shutdown, and nominal operation.

The decision is made to shut down the plant and repair the fault(s) if the cumulative monetary value

of operating the plant (profit minus cost of operation) with the current fault(s) is smaller than the

sum of the costs associated with shutting down and starting up the plant, plus the losses while the

plant is down, plus the marginal cost of repairing the fault(s) right away, plus the cumulative nominal

monetary value of operating the plant after the fault(s) are fixed up to the next planned shut-down.

This evaluation can mathematically be expressed as∫ tS

t0
ψ f dt < ΨSD +ΨO +ΨSU +

∫ tS

t0+tSD+tO+tSU

ψn dt. (4.69)
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Table 4.1. Economic parameters required for economic operability evaluation.

Parameter Description

ΨSD Cost associated with shutting down the plant

tSD Time required to shut down the plant

ΨSU Cost associated with starting up the plant

tSU Time required to start up the plant

ΨO Cost associated with the plant being off-line

tO Time required to repair the current fault(s)

ΨR Marginal extra cost to repair the fault(s) right away

ψn Nominal monetary value for operation (per unit time)

ψ f Monetary value for operation with the current fault (per unit time)

tS Time until the next planned opportunity to repair the current fault(s)

If this is not the case, the plant is operated with the current fault(s) until the next planned repair

opportunity. An example of such an hypothetical situation is illustrated in Figure 4.13. The plant

operating with the fault is represented by the darker box. The lighter boxes represent shutting the plant

down, repairing the fault(s), starting the plant up, and then operating with the nominal profitability

up to the next planned shutdown. Intuitively one expects that the nominal monetary gain should be

sufficiently higher than that of operating with the fault in order to justify a shutdown of the plant. Also,

if tS is very large, then the shut down and repair scenario will be favoured even if ψn is only slightly

larger than ψ f .

It is important to note here that ΨO is not the production loss, as is already accounted for by Ψn not

being included while the plant is off-line. ΨO accounts for any additional costs associated with the

plant being off-line such as penalties for non compliance with product delivery schedules.

This type of decision is intuitively made by plant managers when a fault has been identified. In this

work however the decision making process is formalised such that the proper course of action may be

taken according to the plant economic performance.
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Figure 4.13. Comparison of shut-down, plant repair, start-up, and nominal operation against operating

with fault(s) present.

4.6 CHAPTER CONCLUSION

Some of the key technologies required for lights-out process control were detailed in this chapter. The

methods developed as part of this work were expressed more extensively.

On-line model evaluation, in the form of MPM detection and diagnosis is important to maintain MPC

benefits. A closed-form expression was derived for the MPM if the plant and controller are sufficiently

representable by transfer functions. For MPC, where the controller might not have a transfer function,

a partial correlation analysis (Badwe et al. 2009) may be used to identify the model matrix elements

that contain significant mismatch.

Fault-tolerant control is one of the major requirements for lights-out process control. FTC is quite

easily incorporated into the MPC formulation. Model-based FDI is a natural choice for FTC with

MPC because the model required by the controller can also be used for fault diagnosis. The nonlinear

version of the GLR method is the quantitative fault diagnosis method of choice in this work.

With quantitative model-based fault diagnosis the observer design is the key to being successful. State

estimation for linear systems with Gaussian noise is optimally performed with a Kalman filter. If the

system is nonlinear the observer design becomes more complex. The EKF and UKF are common

choices along with the particle filter as outlined in more detail in this chapter.
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Fault detection 

and isolation

(section 4.3.2)
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Controller
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(section 4.2)
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(section 4.4, 4.5)
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Figure 4.14. Framework for lights-out process control showing the sections of this chapter discussing

the framework elements.

The effective combination of these elements leads to a fault-tolerant MPC that will try to control the

plant optimally irrespective of the faults that may be present. For a certain class of faults however the

plant may not be controllable any longer, and a controllability analysis is required.

A practically useful, constrained, nonlinear controllability analysis in the presence of parametric

uncertainty is introduced in this chapter. This analysis is termed regulatability in order to not be

confused with the many other formal controllability tests that have been proposed previously.

Even if the plant regulatability has been established, the economic operability has to be confirmed.

An economic performance analysis was outlined where the objective is to determine whether it is

more economical to shut the plant down and repair the fault, or to continue operating with the fault

present.

A reduced version of the lights-out process control framework (Figure 2.3) is shown in Figure 4.14; the

main sections of this chapter discussing the specific elements of the framework are indicated.

These methods are applied to a nonlinear ROM ore milling circuit simulation in the next chapter. Note

that application examples for the closed-form MPM expression are presented in Addendum C, as it is

not applicable to nonlinear models.
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CHAPTER 5 SIMULATION STUDY OF A

RUN-OF-MINE ORE MILLING

CIRCUIT

5.1 CHAPTER INTRODUCTION

In this chapter a simulation study of a nonlinear run-of-mine ore milling circuit is presented to illustrate

the use of some of the enabling technologies for lights-out process control (as presented in Chapter 4).

A description of the nonlinear model is presented first, after which the controller design is shown. The

specifics pertaining to the state estimation, regulatability analysis, and economic operability analysis

are presented next. Lastly, the simulation results are shown and discussed.

5.2 PROCESS OVERVIEW

ROM ore milling is generally the first, and most expensive, unit operation in the metallurgical extraction

process (Craig and MacLeod 1995), see Figure 3.1. The layout of a typical milling circuit (which

is used in this chapter) is shown in Figure 5.1. Ore from the mine is added to the grinding mill

along with steel balls and water. The addition of steel balls lets this process be classified as semi-

autogenous grinding (SAG), where an additional grinding medium is added to grind down the feed ore

(Wills 2006).

Ore is ground down into fine particles inside the mill, and exits as a slurry through an end-discharge

grate. Note that large pieces of ore and steel balls cannot pass through the grate. The slurry is sent

to a sump where further water is added. The slurry is then pumped to a cyclone for classification.
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Figure 5.1. Grinding mill circuit layout.

Sufficiently ground down material leaves the top of the cyclone as the product of the milling circuit.

Material that should be ground down further leaves the bottom of the cyclone and re-enters the

mill.

The inputs into the milling circuit are the mill water feed (MIW), the mill feed ore (MFS), the mill

steel balls feed (MFB), the sump water feed (SFW), and the cyclone feed flow-rate (CFF). The speed

of turning of the mill (αspeed) is also sometimes included if the mill motor is fitted with a variable

speed drive, but in this chapter a fixed value is assumed for αspeed . The milling circuit outputs are

the load of material inside the mill (LOAD), the sump volume (SVOL), particle size estimate of the

product (PSE), and the circuit throughput (THP). The mill motor power draw (Pmill) and the cyclone

feed density (CFD) are other variables that can be specified as circuit outputs, but in this work they are

not explicitly controlled.

5.2.1 Modelling of comminution circuits

The discussion that follows here is not intended to be an exhaustive discussion on modelling of

comminution processes. It is meant to give the reader an overview of some other prominent models

that are commonly used, and how these models compare to the one used in this work.
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The most simple form of modelling that is commonly employed is empirical modelling. This is

where models are derived from process data through system identification (Ljung 1999). This form of

modelling is widely applied (see e.g. Craig and MacLeod (1996); Olivier et al. (2012a); Chen et al.

(2007)) and easy to understand. These models are however not directly representative of the physics of

the process, and are mostly linear. The latter is a rather large restriction for a nonlinear process such as

comminution, and model quality can deteriorate quickly as the operating point changes.

A more accurate, and more complex, method of modelling is through the use of nonlinear phenomeno-

logical models. Here the approach is either to represent the phenomenon of breakage of feed into a

product size distribution (population balance model), or to model the interactions of ore particles in

the comminution machine on the basis of Newtonian mechanics (Le Roux et al. 2013). Owing to the

nonlinear nature of comminution these types of models are more accurate and more representative of

the true operation of the process.

One notable comminution circuit model was developed by J. A. Herbst and associates (as discussed in

Rajamani and Herbst (1991); Herbst and Pate (1999)). This model is a verified dynamic population

balance type model. Here the continuous particle size range is divided into a set of discrete intervals.

For each discrete particle size interval a mass balance is compiled in the form:

accumulation = input−out put +generation− consumption. (5.1)

This type of description is common for population balance models. The true characterisation of the

model is the breakage functions that are used and the number of size classifications. The breakage

functions used in Rajamani and Herbst (1991) were verified experimentally for three mills.

Another milling circuit model of note is that presented by the Julius Kruttschnitt Mineral Research

Centre, colloquially referred to as the JK model (see JKTech (1994)). This model is also a nonlinear

population balance model but is a steady-state model, and is described by Morrison and Richardson

(2002) as an industry-accepted tool for analysis and design of comminution circuits. A model of this

type is indeed useful for steady-state simulation and calculating steady-state parameter values, but is

unfortunately not as useful when implementing a model based controller for which a dynamic model

is required. This is because the controller makes explicit use of the dynamics in the model when

calculating the optimal control moves.
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CHAPTER 5 SIMULATION STUDY OF A RUN-OF-MINE ORE MILLING CIRCUIT

The development of the JK model into a dynamic population balance model is discussed by Valery

and Morrell (1995). Another notable model is that presented in Apelt, Asprey and Thornhill (2002).

This model is related to the JK model in that the rock and water charge state equations are the same.

Different models are however presented for the ball charge and mill shell lining states. This model has

36 states of which 27 are used to represent the size classes of solids.

The question is posed in Le Roux et al. (2013); Le Roux and Craig (2013) as to whether so many size

classifications are necessary to adequately represent a comminution circuit. The problem with models

that use many states is twofold. Firstly, large parameter sets are difficult to fit accurately from real

plant data. Secondly, the detailed models can have internal approximations that transmit and amplify

any inaccuracies in an unknown way. A larger model matrix also makes the implementation of a model

based predictive controller more complex. As such, it is preferable to have a model that is as small as

possible while maintaining an acceptable level of accuracy.

5.2.2 Reduced-state nonlinear model

A reduced set model that uses only 3 size classes to represent ore is discussed and validated in Le Roux

et al. (2013). The model parameters, as listed later in Table 5.2, were also derived and justified in that

paper. This model was developed specifically for control purposes and is used in this work. This is a

nonlinear dynamic model, and the reduced number of states makes the controller formulation more

comprehensible and more feasible.

The model is in the form of a phenomenological population balance model with 5 states: rocks, solids,

fines, water, and steel balls. Rocks are defined to be material too large to exit the mill through the

discharge grate. Solids, which is material that is small enough to exit through the discharge grate,

comprises out-of-specification coarse ore and in-specification fine ore. The milling equations shown

later in this chapter express how the material transitions from one state to the next.

The ore feed composition can change significantly, and it is the change in feed material that is the most

important disturbance for the milling circuit. This disturbance effect is also sufficiently incorporated

into the milling circuit equations.
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CHAPTER 5 SIMULATION STUDY OF A RUN-OF-MINE ORE MILLING CIRCUIT

Table 5.1. Subscript nomenclature.

Subscript Description

X�− m – mill; s – sump; c – cyclone

X−� w – water; s – solids; r – rocks; f – fines; b – balls

V−−� i – inflow; o – outflow; u – underflow

The nonlinear model is modular, in the sense that each component (or piece of equipment) is represented

by a separate set of state transition and output equations (i.e. the models for the mill, sump, and cyclone

are presented separately). The flow out of one component becomes the flow into the next component.

As such, when representing the states of material in the pieces of processing equipment in the milling

circuit, subscripts are used to identify the milling circuit component and the material state. When flows

are presented the previously mentioned subscripts are also applicable, but it is also indicated whether

this is an inflow, outflow, or underflow in the case of the cyclone. The subscript nomenclature is listed

in Table 5.1.

5.2.2.1 Mill module

The mill is where the semi-autogenous grinding takes place with the aid of steel balls. The mill has

five states, which are the hold-ups of the five material classifications used by the model. The mill state

transitions are given by:

Ẋmw = MIW−Vmwo

Ẋms = (1−αr)
MFS
Ds
−Vmso +RC

Ẋm f = α f
MFS
Ds
−Vm f o +FP

Ẋmr = αr
MFS
Ds
−RC

Ẋmb =
MFB
Db
−BC,

(5.2)
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where the population balance nature of the equations (compared with equation (5.1)) is clear. The

material outflow equations are:

Vmwo = VV ·ϕ ·Xmw

(
Xmw

Xmw +Xms

)
Vmso = VV ·ϕ ·Xmw

(
Xms

Xmw +Xms

)
Vm f o = VV ·ϕ ·Xmw

(
Xm f

Xmr +Xms

)
.

(5.3)

In (5.2), FP is the amount of fines produced, RC is the amount of rocks consumed, and BC is the

amount of steel balls consumed. These variables are given by:

BC =
1

Dbφb
·Pmill ·ϕ ·

(
Xmb

Xmb +Xmr +Xms

)
(5.4)

RC =
1

Dsφr
·Pmill ·ϕ ·

(
Xmr

Xmr +Xms

)
(5.5)

FP =
Pmill

Dsφ f

[
1+αφ f

(
LOAD
vmill
− vPmax

)] , (5.6)

where ϕ is the rheology factor of the slurry inside the mill. The rheology factor is an indication of

the fluidity and density of the mill slurry, and this has an impact on the milling performance (Shi

and Napier-Munn 2002). Pmill is the mill motor power draw. The rheology factor and mill power are

respectively given by:

ϕ =

max
[
0,
(

Xmw−
(

1
εws
−1
)

Xms

)]
Xmw

0.5

(5.7)

Pmill = Pmax · {1−δPvZ
2
x −δPsZ

2
r } ·
(
αspeed

)αP (5.8)

Zx =
LOAD

vPmax · vmill
−1 (5.9)

Zr =
ϕ

ϕPmax

−1. (5.10)

The rheology factor varies between zero for slurry that has a very low fluidity, e.g. thick mud, and one

for high fluidity, such as for pure water.

The definitions and values of all the other parameters used in these equations are given in Table 5.2.

Units are also shown for all parameters that are not dimensionless.
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CHAPTER 5 SIMULATION STUDY OF A RUN-OF-MINE ORE MILLING CIRCUIT

Table 5.2. Parameters and constants contained in the milling circuit equations.

Parameter Value Description

α f 0.055 Fraction of fines in the ore

αr 0.465 Fraction of rocks in the ore

φ f 29.57 Power per ton of fines produced [kW·h/t]

φr 6.03 Rock abrasion factor [kW·h/t]

φb 90 Steel abrasion factor [kW·h/t]

εws 0.6 Maximum water-to-solids volumetric flow at zero slurry flow

VV 84 Volumetric flow per “flowing volume” driving force [h−1]

Pmax 1661 Maximum mill motor power [kW]

δPv 0.5 Power change parameter for volume of mill filled

δPs 0.5 Power change parameter for fraction solids in the mill

vPmax 0.34 Fraction of mill volume filled for maximum power

ϕPmax 0.57 Rheology factor for maximum mill power

αspeed 0.712 Fraction of critical mill speed

αP 1.0 Fractional power reduction per fractional reduction from maximum

mill speed

vmill 59.1 Mill volume [m3]

αφ f 0.01 Fractional change in kW/fines produced per change in fractional

filling of mill

εc 128.85 Coarse split parameter

αsu 0.87 Parameter related to solids in cyclone underflow

C1 0.6 Constant

C2 0.7 Constant

C3 4 Constant

C4 4 Constant
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5.2.2.2 Sump module

The sump mainly acts as a buffer, and further water is added before the slurry is sent to the cyclone.

The sump contents (water, fine ore, and coarse ore) are assumed to be fully mixed. The sump only

has 3 states, which are the hold-ups of the sump contents. This is because no rocks or steel balls are

discharged from the mill through the discharge grate. The sump state transition equations are given

by

Ẋsw = Vmwo +SFW−Vswo

Ẋss = Vmso−Vsso

Ẋs f = Vm f o−Vs f o,

(5.11)

and the outputs are:

Vswo = CFF ·
(

Xsw

Xss +Xsw

)
Vsso = CFF ·

(
Xss

Xss +Xsw

)
Vs f o = CFF ·

(
Xs f

Xss +Xsw

)
.

(5.12)

5.2.2.3 Cyclone module

The hydrocyclone classifies material based on weight, which relates to the particle size through the

density. Smaller, in-specification, material is forced out of the top of the cyclone as overflow, and is

the product of the milling circuit. Heavier, out-of-specification, material is forced out of the bottom of

the cyclone as the underflow, and is sent back to the mill for further grinding.

The cyclone is described in the form of nonlinear static equations, along the lines of that presented in

Nageswararao, Wiseman and Napier-Munn (2004), as:

Vccu = (Vsso−Vs f o) ·
(

1−C1 · e−
CFF
εc

)(
1−
[

Fi

C2

]C3
)
·
(

1−PC4
i

)
(5.13)

Vcwu = Vswo ·
Vccu−Fu ·Vccu

Fu ·Vswo +Fu ·Vs f o−Vs f o
(5.14)

Vc f u = Vs f o ·
Vccu−Fu ·Vccu

Fu ·Vswo +Fu ·Vs f o−Vs f o
, (5.15)
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CHAPTER 5 SIMULATION STUDY OF A RUN-OF-MINE ORE MILLING CIRCUIT

where Fi and Fu are respectively the fractions of fines in the inflow and underflow. Pi is the fraction of

fines in the feed solids. These variables are given by

Fu = 0.6− (0.6−Fi) · e−
Vccu
αsuεc (5.16)

Fi =
Vsso

Vswo +Vsso
(5.17)

Pi =
Vs f o

Vsso
, (5.18)

and Vc f o =Vs f o−Vc f u and Vcco = (Vsso−Vs f o)−Vccu. Nonlinear static equations are usable because

the cyclone dynamics are much faster than those of the mill.

5.2.2.4 Circuit outputs

The milling circuit outputs are then given by:

LOAD = Xmw +Xms +Xmr +Xmb (5.19)

SVOL = Xsw +Xss (5.20)

PSE =
Vc f o

Vcco +Vc f o
(5.21)

THP = Vcco +Vc f o (5.22)

as well as Pmill given in equation (5.8).

5.3 CONTROLLER DESIGN

There are substantial nonlinearities present in the system equations (which become significant depend-

ing on how much the operating point changes). The rheology factor (ϕ) and mill power usage being

two notable examples. The fact that the controller must be able to handle faults means that it must

have the flexibility to control the process over the entire operating region. Later, when the results are

presented, it will become clear by how much the operating point does change in the presence of faults.

Operation over a wide span with this nonlinear model therefore justifies the use of NMPC over linear

MPC.
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NMPC
PI

override

MV and CV 

constraints

[MIW, MFS, MFB, CFF]

SFW

Mill and sump 

state estimates

Low and high 

level override SPs

Manipulated 

variables

Controlled 

variables *Xsw

Figure 5.2. Interaction between NMPC and PI override controllers.

An NMPC is used to regulate the milling circuit along with an override PI controller to control the

sump, which has faster dynamics. The interaction between the two controllers is shown in Figure 5.2.

This layout is similar to the configuration used in Le Roux et al. (2016), although a dynamic inversion

controller was used in that work instead of the PI override controller used here.

The NMPC receives the controlled variable measurements along with the CV and MV constraints,

and the mill and sump state estimates. It then minimises the objective function of equation (4.35)

using the parameters provided in Table 5.3. The manipulated variable values, that the NMPC provides,

are:

MVNMPC = [MIW, MFS, MFB, CFF, X∗sw] , (5.23)

where X∗sw is the target hold-up of water in the sump. The NMPC CVs are:

CVNMPC = [LOAD, PSE, THP] . (5.24)

The controller is seemingly over-actuated because it has more MVs than CVs. The proper control of

PSE does however require a certain ratio of water to solids into the mill. The amount of steel balls

added to the mill also depend on the amount of feed ore and the feed ore properties. These additional

constraints reduce the degrees of freedom of the NMPC. When controlling at a certain operating point

and there are additional degrees of freedom, the MV move penalisation in the controller formulation

will ensure a minimum move solution.
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The PI override controller then determines the appropriate SFW to achieve the target X∗sw, provided

that the sump level will remain within limits. If the sump level cannot be maintained for the target X∗sw

the SFW value will be adjusted to maintain the level irrespective of the resulting Xsw.

The hold-up of water in the sump (Xsw) has an inherent effect on the cyclone feed density. The cyclone

feed density in turn affects the split of material in the cyclone, and therefore affects the PSE. Even

though the cyclone feed density is not specifically controlled, it is manipulated by adjusting Xsw, which

therefore has an important effect on the product particle size.

The parameters used in the other control loop subsystems are shown in Table 5.4. Note that only

LOAD and PSE have setpoints. The sump level (SVOL) does not need to be at any specific value, as

long as the sump does not run dry or overflow. The circuit throughput (THP) should be maximised,

hence it has an LP weight. The high and low limits for THP do not have practical meaning, they are

chosen wide to allow the controller to maximise the throughput.

The velocity form of the PI controller (Seborg et al. 2003:p.201) is used here for the inherent anti

reset wind-up it provides. The PI override controller layout is shown in Figure 5.3. The controller

comprises the regular Xsw tracking control, as well as low and high level overrides to prevent the sump

from running dry or overflowing. The setpoint of the low level override is set at 1, and that of the

high level override at 19. A middle of three selector chooses the appropriate branch of the PI override

to select when setting the SFW value. The output from each control block is given by the digital PI

velocity form equation (Seborg et al. 2003):

∆pk = pk− pk−1 = Kc

[
(ek− ek−1)+

∆t
τI

ek

]
(5.25)

where ∆t is the sampling time, and Kc and τI are the tuning constants as listed in Table 5.5.

5.4 STATE ESTIMATION DETAILS

In order for the NMPC to be able to calculate the output predictions it needs the mill and sump states.

Full state feedback is not assumed in this work, and two particle filters are used to provide the state

estimates according to the method of Olivier et al. (2012b). No direct measurements of the mill output
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Table 5.3. Values used for controller implementation.

Parameter Symb Value

NMPC parameters

MV high limits U [50, 200, 10, 450, 12]

MV low limits U [0, 0, 0, 200, 4]

Prediction horizon Np 18

Control horizon Nc 3

Execution interval tS 1 minute

CV high limits Y [0.5, 0.85, 100]

CV low limits Y [0.2, 0.5, 5]

Setpoints yr [0.32, 0.67, −]
Reference weight Qr diag([4, 1e4, −])
LP weight Ql diag([0, 0, −2])

MV move weight R diag([0.375, 0.08, 12.5, 0.002, 200])

Slack variable weight S diag([4e5, 2e7, 4e3])

PI override parameters

SFW high limit U 300

SFW low limit U 0

High SVOL override SP - 19

Low SVOL override SP - 1

Execution interval tS 10 seconds

High level 

override

High level 
override SP

Xsw 

tracking

Low level 

override

SVOL

Low level 
override SP

SVOL

Xsw SP 
(from NMPC)

X̂sw 
(from estimation)

MID 

selector
SFW

Figure 5.3. PI override controller layout.
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Table 5.4. Values used for other elements in the implementation.

Parameter Symbol Value

FDI parameters

Window length (samples) N 30

Fault confirmation threshold − 10

Mill particle filter parameters

Number of particles Nm
s 1000

State noise Qm
y 0.01 I5

Output noise Rm
u 0.01 I5

Sump particle filter parameters

Number of particles Ns
s 200

State noise Qs
y 0.05 I3

Output noise Rs
u 0.01 I3

Exponentially weighted moving average filter parameter

Filtering coefficient α 0.18

Table 5.5. PI override controller tuning.

Control branch Kc τI (hours) SP

X∗sw tracking 12 0.005 from NMPC

Low level override 15 0.1 1

High level override 15 0.1 19

components (Vmwo, Vmso, and Vm f o) are however generally possible on an industrial mill, as are required

to complete the mill state estimation.

The sump and mill can be seen as two subsystems for which the states should be estimated separately.

The sump states are in fact directly calculable, as was done in Le Roux et al. (2016). The state

derivatives are however difficult to calculate accurately from the noisy process data, and as such a

particle filter is rather deployed to calculate the sump states. The sump states are estimated first as they

are readily observable by using the current MV and CV values.
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Once the sump states are known the mill output component values are calculated through a component

balance over the sump. This is accomplished by using equations (5.11) and (5.12). Because this

calculation essentially contains the calculation of derivatives, the calculation error can become large

in the presence of noise, which is the case here. The sump state estimates sent to the calculation are

therefore further filtered with the use of a simple exponentially weighted moving average (EWMA)

filter. The filter can be expressed as:

Sk = α · x̂k +(1−α) ·Sk−1, (5.26)

where x̂k is the sump state vector to be filtered, α is the filtering coefficient, and Sk is the filter output

at time k. The filtering coefficient is also listed in Table 5.4.

Now the mill outputs are available and the mill states are estimated by also making use of the mill

inputs. The particle filtering method described in Section 4.3.4.3 is applied separately to estimate

firstly the sump and then the mill states. The particle filter parameters are shown in Table 5.4.

5.5 REGULATABILITY ANALYSIS DETAILS

After any fault is detected the regulatability analysis of Section 4.4 is performed. The weighting

matrices used in the analysis are the same as those used in the NMPC controller (see Table 5.3). The

analysis does however encapsulate the entire milling circuit, i.e. the sump is included unlike in the

NMPC. A slack variable weight for violations in the sump level output is therefore also required, and

this value is set at 107. The time to steady state value used for the analysis is 5 hours. The CV limits

used in the analysis are also the same as those for the NMPC in Table 5.3, but the absolute limits

beyond which the circuit is considered to be non-operational are given by:[
LOAD, PSE, THP, SVOL

]
= [0.70, 0.90, 100, 20] (5.27)

[ LOAD, PSE, THP, SVOL ] = [0.15, 0.30, 0, 0]. (5.28)

The allowable probability of making a type I or type II rejection error is 5 %, for which zα = zβ = 1.96.

The initial number of Monte Carlo samples drawn is 5. For these allowable rejection errors the null

hypothesis will only be rejected if all 5 executions end up producing the same result. If this is not the

case more Monte Carlo iterations are required, and the maximum number of samples taken is set at 20.

The threshold of Figure 4.11 reduces below 0.5 for this number of samples. If the null hypothesis is
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not rejected at this point, a weak conclusion may be drawn regarding the regulatability of the plant,

depending on the number of samples that have caused the plant to not be regulatable. Say for example

that after 20 samples, 11 showed the plant to be regulatable and 9 showed it to not be regulatable. The

difference is not large enough to reject any hypothesis with statistical significance. More samples show

the plant to be regulatable than not, and it may be concluded that the plant can continue operating, but

this conclusion is weak with regards to its statistical significance.

The disturbances considered in the regulatability analysis are changes in the values of α f (the fraction

of fines in the ore), αr (the fraction of rocks in the ore), φ f (the power needed per ton of fines produced),

and φr (the rock abrasion factor). All of these parameters may change significantly during normal

operation depending on the feedstock. The samples for the disturbance values (di) are drawn as

di ∼ U(dn±10%) , (5.29)

where dn = [0.055,0.465,29.57,6.03]T are the nominal parameter values as shown in Table 5.2.

The number of control moves allowed when the regulatability analysis is performed is six. Move

blocking is however used and the blocking vector is given by

UB = [5 10 10 20 20 50] . (5.30)

The initial blocking vector entry is the smallest and the entries then increase, which means that the

initial control move changes are closer together. The controller is thus initially given the chance to

make quicker moves to regulate the plant right after the fault has been detected. The controller is

hereafter allowed to make some longer term moves, and finally to set the steady state MV values.

5.6 ECONOMIC PERFORMANCE ANALYSIS DETAILS

For the economic operability analysis an economic performance function that incorporates faults is

required. The performance function for the mineral value, defined in Wei and Craig (2009a), is used

here:
ψ [$/h] = THP [t/h]× head grade [g/t]

× mineral price [$/g] × recovery [%]
(5.31)
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Figure 5.4. Recovery as a function of PSE, adapted from Wei (2010), with permission.

where the throughput (THP) is an output of the milling circuit, the head grade is given by Matthews

and Craig (2013) to be 3 g/t, the mineral price used is $ 32.00 per gram (which is the price of platinum

at the time of writing), and the recovery is a parabolic function of the PSE, given in Wei and Craig

(2009a), to be

ϑ(PSE) =−0.00978 PSE2 +1.705 PSE−2.955. (5.32)

This function is shown in Figure 5.4.

Note that the THP used in equation (5.31) has the units [t/h]. The THP value obtained from the

simulation (see equation (5.22)) is reported in [m3/h]. It is therefore important to use the cyclone feed

density to convert the throughput, before using the value in the economic performance function. Also

note that the cyclone feed density is not the same as the ore feed density.

Equation (5.31) can be used to obtain the nominal mineral value, as well as the mineral value when

faults are present. If faults are present the PSE and THP values will be affected, and the cumulative

economic performance, calculated using equation (4.68), will also be affected.

The costs associated with shutting down and starting up the plant largely depend on the plant layout.

When this plant is shut down the feed to the mill is cut, but the mill keeps on running for a while

to drain material from the mill. During this time maintaining the target PSE is nearly impossible.

The downstream flotation unit can generally handle the off-specification PSE up to a point, but some
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Table 5.6. Parameter values used in the economic operability evaluation.

Parameter Value Unit

ΨSD 1800 $

ΨSU 2000 $

ΨR 0 $

tSD 2 hours

tSU 2 hours

tO 3 hours

tS 720 hours

material may go un-recovered. Similarly for start-up, some material may go un-recovered while the

mill is getting up to speed and the cyclone is starting to take feed from the mill. Great care is taken to

prevent losses in this process, but it is not possible to eliminate losses altogether.

The other values required for the evaluation, as defined in Table 4.1, are shown in Table 5.6. Note that

the next planned shut-down is scheduled to be one month away, and it is assumed that spares of all

actuators are available, implying that the marginal cost of fixing actuator faults right away is zero. It is

also assumed that there is enough ore available to process, i.e. the milling circuit is the value chain

bottleneck.

5.7 SIMULATION RESULTS

The results for nominal circuit operation, as well as for four separate fault scenarios are shown in

this section to illustrate the performance of the FT-NMPC, as well as the regulatability and economic

operability analyses. In the first simulation MIW gets stuck without the FDI running, and after some

time the fault information is supplied to the controller. This is done to show the effect of a failure

with and without the fault information available. In the second simulation MIW fails again, but this

time the value goes to 0. The regulatability analysis shows that this failure is not as severe (if the fault

information is available from the FDI) and the plant can continue operating. The economic operability

of the plant is somewhat affected, but not to the extent where the plant needs to be shut down.
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The third simulation shows a failure in CFF. The plant is still regulatable in this situation, but the

economic operability is compromised.

The last simulation shows a failure in the ore feed to the plant (MFS) which is also successfully

detected by the FDI algorithm. The outcome of the regulatability analysis however shows that the

plant can likely not be controlled for this failure, and the estimated time to failure is noted.

The FT-NMPC performance for each simulation is shown first, followed by the regulatability analysis

results, and thereafter by the economic operability analysis results. All simulations are propagated at a

sampling period of 10 seconds, and the NMPC executes once per minute.

5.7.1 Nominal operation

The nominal simulation results are shown in Figure 5.5. The plant states and estimates are shown

in Figure 5.6, for the mill and the sump. The nominal operation sets the baseline for the economic

operability analysis, and it is a reference for comparison with the simulation results with faults that

follow. It is clear from Figure 5.6 that the estimates provided by the particle filters are sufficiently

accurate representations of the true states.

The nominal THP values for a variety of PSE targets is shown in Figure 5.7. This data was generated by

operating the nominal plant at different PSE target values, and noting the THP achieved. The economic

performance value for nominal performance, at a PSE of 0.6845 and THP of 20.5 m3/h, is $ 2005.26

per hour. The steady-state PSE and THP values seen here represent a typical throughput-quality

trade-off found in many processes (Bauer and Craig 2008), as opposed to Le Roux et al. (2016) where

a degree of independent control between these two parameters were sought. Independent control is

however not possible if αspeed is not included as an MV.

The reason why αspeed is not included as an MV in this work is because the model is not designed

for large deviations in operating point from the nominal αspeed value. For FTC the controller will

necessarily move the MVs into a completely different region if it expects that is what is required.

Moving αspeed far away from the nominal value may therefore seem like a good option when in fact

the operability of the plant could be compromised. For example, if αspeed is increased too much the
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Figure 5.5. Outputs and inputs for nominal operation. The blue lines on the output plots show the

measured values. On the LOAD and PSE plots the red lines indicate the setpoints. On the THP plot a

red baseline is included with which the measured value may be compared. On the input plots the blue

lines show the control actions requested by the controller, and the red lines show the actual actuator

values (these may differ later when faults are introduced).

mill will start to approach centrifuging (Powell and McBride 2004), where the grinding medium stays

connected to the mill shell for the whole rotation of the mill. In this state very little grinding takes

place, which results in an increased LOAD, decreased THP, and worse control of PSE. At this point

the mill is not operable any longer, but this operating effect is not sufficiently encapsulated in the

model, for which reason αspeed is rather not used as an MV.
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Figure 5.6. States and estimates for nominal operation. The actual state values are shown in blue, and

the state estimates are shown in red.
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Figure 5.8. PSE tracking performance with MIW fault (unknown to NMPC between 0.8 h and 1.5 h,

indicated by the vertical dashed lines). The setpoint is shown in red, and the measured value is shown

in blue.

5.7.2 Mill water feed errors

Simulation scenario 1

The first simulation is run for a total of 3 hours. After 0.8 hours the valve supplying the mill feed water

gets stuck such that the feed water remains constant at a value of 10 m3/h for the rest of the simulation

run. One hour into the simulation the PSE setpoint is increased by 15 % (such a large change will

typically not be performed in practice, and is used here for illustration purposes only). Two hours into

the simulation the PSE setpoint is returned to its original value. The setpoint changes illustrate the

control performance in the presence of faults.

In Figure 5.8 the FDI is not active, and the fault information is artificially supplied to the NMPC after

1.5 hours. This is done to illustrate the control performance when the fault information is not available

against when the fault information is available. It is visible from Figure 5.8 that the controller struggles

to achieve acceptable reference tracking performance without the fault information (the first setpoint

change), but when this information is available the performance is vastly improved. Without the fault

information the controller incorrectly believes that the changes it is making in the MIW are reflected in

the plant. With the fault information available however the controller knows that it cannot make use of

MIW to achieve the required PSE, and it compensates by using the other manipulated variables.

The same scenario is repeated with the FDI active. The result for the PSE tracking is shown in
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Figure 5.9. PSE tracking performance with MIW fault (the FDI is on in this case). The setpoint is

shown in red, and the measured value is shown in blue. The time at which the fault is introduced is

shown by the vertical dashed line.
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Figure 5.10. MIW actuator information for MIW = 10 m3/h fault. The blue line is the requested value

from the controller and the red line is the actual value seen by the plant. The time at which the fault is

introduced is shown by the vertical dashed line.

Figure 5.9. The fault is correctly diagnosed shortly after the setpoint change in PSE is made. In this

situation the PSE tracking is much better from the start.

The MIW actuator information is shown in Figure 5.10. The blue line shows the requested value from

the controller. The red line shows the actual value that affects the plant. Shortly after the PSE setpoint

change the MIW actuator error is detected. The diagnosed actuator value is 9.32 m3/h, which is close

to the actual fault value (10 m3/h).
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Figure 5.11. Simulation results with MIW = 0 m3/h fault (FT-NMPC active). The blue lines show the

measured values on the output plots. On the LOAD and PSE plots the red lines indicate the setpoints.

On the THP plot a red baseline is included. On the input plots the blue lines show the control actions

requested by the controller, and the red lines show the actual actuator values. The vertical dashed lines

show the introduction of the fault.

Simulation scenario 2

For the second scenario the full FT-NMPC is used with no artificial fault information supplied to the

controller. The simulation starts off with the same parameters as before, and there is also a step in the

setpoint of PSE after one hour. There is no step back down to show how the FT-NMPC handles the

higher PSE requirement. In this simulation the value of MIW goes to 0 m3/h. The simulation results

are shown in Figure 5.11. The fault is correctly detected as an MIW actuator error, shortly after the

fault is introduced. The actual value of the faulty MIW is 0 m3/h, and the detected magnitude is 1.09

m3/h.

The regulatability analysis results are shown in Figure 5.12, where the shaded (blue) area shows the
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Figure 5.12. Regulatability analysis results for MIW = 0 m3/h fault.

values within which the variables are predicted to remain given the current fault and disturbances. This

means that values close together, where only a small shaded area is seen, indicate that the plant can be

regulated tightly with the disturbances present. The results indicate that the plant is regulatable with

this fault, and that operations can continue. The disturbance parameter values used in the regulatability

analysis are shown in Table 5.7. This table also shows the parameter values used in the other simulation

scenarios that follow. Note that from a regulatability analysis point of view the fault occurred at

time equal to zero hours. This is because the analysis is performed straight after the fault has been

detected.

At the point where the fault occurred, the predicted steady state values (see Figure 5.12) for PSE

is 0.682 and for THP is 20.39 m3/h. The fault economic performance value then equates to ψ f =

$ 1992.12 per hour. This value is not significantly lower than that of ψn (which is equal to $ 2005.26

per hour). The economic performance comparison, done according to (4.69), shows that it is more

economical to operate the plant with the faulty MIW actuator up to the next planned shutdown than it

would be to shut the plant down in order to repair the fault.
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The reason for the difference between the THP used in the economic performance evaluation and that

seen as the eventual steady-state value in the actual results (Figure 5.11) is the change in PSE setpoint

which has not yet occurred by the time the economic performance comparison takes place. This will

also be noted in the results that follow.

5.7.3 Cyclone feed flow error

Simulation scenario 3

For the third simulation the scenario is similar to that of the second simulation, but this time the CFF

value gets stuck at 360 m3/h after 0.8 hours. The setpoint change remains the same. Shortly after

the fault is introduced it is correctly detected as a CFF actuator error by the FDI algorithm, and the

identified fault magnitude is 368 m3/h. The simulation results with this error are shown in Figure 5.13.

Even though the value of CFF has decreased significantly, the effect on the regulatability of the plant

is minimal. This is indicated by the regulatability analysis results in Figure 5.14. The variability of all

CVs (except for SVOL) is small, showing the ease of regulatability. The variability of SVOL is not of

concern in this case because the steady-state value of the level does not matter, as long as it can be

regulated at steady-state.

The economic performance analysis is carried out next with the steady state values obtained from the

regulatability analysis. The predictions are for PSE at 0.6883 and THP at 18.81 m3/h. The faulty

economic performance value is ψ f = $ 1843.49 per hour. Using the values discussed in Section 5.6,

the analysis shows that it would be more economical to shut the plant down, repair the CFF actuator

and start the plant up again.

Intuitively it makes sense that the shutdown evaluation will favour operating the faulty plant if the next

planned shutdown is in the near future. As the time until the next shutdown is extended, the evaluation

will start to favour the option of rather repairing the fault. This is generally what is done intuitively in

the process industry by plant managers, but the evaluation is usually not quantified according to the

economic performance.
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Table 5.7. Disturbance parameter fractional change values used in the regulatability analyses. The

disturbance value is represented as di = dn(1+∆d).

Iteration ∆α f ∆αr ∆φ f ∆φr

MIW error (see Section 5.7.2)

1 −0.0881 −0.0268 −0.0465 −0.0296

2 0.0592 −0.0409 −0.0637 −0.0253

3 0.0313 −0.0218 −0.0793 −0.0530

4 −0.0107 0.0883 −0.0044 0.0119

5 0.0444 −0.0104 0.0817 0.0133

CFF error (see Section 5.7.3)

1 −0.0857 −0.0416 −0.0175 −0.0495

2 0.0177 −0.0071 −0.0597 0.0250

3 0.0070 0.0692 −0.0301 −0.0562

4 −0.0906 −0.0884 0.0432 0.0179

5 0.0933 0.0605 0.0770 −0.0368

MFS error (see Section 5.7.4)

1 0.0023 0.0790 −0.0398 0.0854

2 −0.0333 −0.0062 −0.0109 −0.0253

3 0.0682 0.0684 −0.0764 0.0448

4 −0.0924 −0.0463 −0.0118 −0.0387

5 −0.0060 0.0140 0.0562 −0.0943

6 0.0362 −0.0241 −0.0554 −0.0452

7 0.0696 −0.0102 −0.0991 −0.0713

8 0.0442 −0.0365 −0.0772 −0.0639

9 0.0812 −0.0746 −0.0443 0.0094
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Figure 5.13. Simulation results with CFF = 360 m3/h fault (FT-NMPC active). The blue lines show

the measured values on the output plots. On the LOAD and PSE plots the red lines indicate the

setpoints. On the THP plot a red baseline is included. On the input plots the blue lines show the control

actions requested by the controller, and the red lines show the actual actuator values. The vertical

dashed lines show the introduction of the fault.

5.7.4 Mill ore feed error

Simulation scenario 4

In the fourth simulation the value of MFS gets stuck at 33.25 t/h after 0.8 hours. This value was

chosen specifically because it is close to the regulatability limit of the milling circuit. This means that

it might not be possible to control the milling circuit for this input value. The regulatability analysis

results are shown in Figure 5.15. It is visible from the results that for some disturbance samples the

plant is regulatable, but for others it is not. In fact, after the initial five Monte Carlo simulations the

null hypothesis was not yet rejected. Four more simulation samples were required, and of the nine

evaluations only two passed.
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Figure 5.14. Regulatability analysis results for CFF = 360 m3/h fault.

The null hypothesis is formulated according to step 3 in Algorithm 4.3, i.e. the null hypothesis is posed

to the effect that the plant can continue operating (with a low probability of failure). Because of the

observed population probability of failure, the null hypothesis is rejected. Note that nine samples were

required in this case to decrease the threshold enough to reject the null hypothesis. The predicted time

to failure is in the region of two hours.

The broad blue areas seen in Figure 5.15 indicate the large deviations that the disturbance values cause,

and show that the plant is not very easy to regulate for this error. At this point the maintenance team

may be informed that an MFS fault has occurred that is likely to cause a plant shutdown within two

hours.

In order to illustrate whether the prediction of failure and the time to failure are correct, the simulation

is allowed to run beyond the point where the regulatability analysis is performed. The simulation

results for the MFS error are shown in Figure 5.16. It is seen that in fact the simulation fails just more

than 2 hours after the regulatability analysis was performed. This is in line with the prediction that

was made. It is clear that the controller struggles to keep the plant running, as the LOAD is falling
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Figure 5.15. Regulatability analysis results for MFS = 33.25 t/h fault.

below the CV low limit and the PSE is above the CV high limit. These two violations are in direct

contrast with each other and the controller does not have the necessary handles to maintain both. This

is the case because the plant in question does not have a variable speed drive fitted to the mill motor,

and therefore αspeed cannot be included as a control handle (the reason for this choice was justified

earlier).

5.7.5 On the ease of solving the optimisation problem

The NMPC optimisation problem is solved in Matlab (version R2012b in this case) using the interior

point algorithm (Byrd, Hribar and Nocedal 1999). The solution is found within the sampling time,

meaning the controller can run in real time.

For the regulatability analysis the same interior point solver is used, but there are cases where the

algorithm struggles to converge to the true solution. The root of the problem is illustrated in Figure 5.17.

The input values are shown in red (the algorithm is trying to find the optimal values of these), the
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Figure 5.16. Simulation results with MFS = 33.25 t/h fault (FT-NMPC active). The blue lines show

the measured values on the output plots. On the LOAD and PSE plots the red lines indicate the

setpoints. On the THP plot a red baseline is included. On the input plots the blue lines show the control

actions requested by the controller, and the red lines show the actual actuator values. The vertical

dashed lines show the introduction of the fault.

output is in blue, and the CV low limit is the blue dotted line.

For the iteration shown, the plant output violates the low limit of zero. The simulation cannot progress

beyond this point, which means that any change in the value of u4 or u5 will have no bearing on the

objective function value. When moving any of these inputs and not noticing a corresponding change in

the output, the optimisation algorithm in some instances terminates prematurely. Other gradient-based

solvers also suffer from this effect, and in fact using derivative-free solvers like the genetic algorithm

(Konak, Coit and Smith 2006), direct search (Kolda, Lewis and Torczon 2003), or simulated annealing

(Ingber 1996), also does not solve the premature termination issue.

One way in which this problem can be overcome is through using alternative initial conditions for the

optimisation algorithm. This is a technique that is sometimes used in global optimisation to overcome
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Figure 5.17. Possible optimisation problems in the presence of a non-regulatable plant failure. The

input is shown in red, the output is shown in blue, and the CV low limit is shown as the dotted blue

line.

the problem of getting stuck at local minima (Floudas 2013). In fact the input values near the time of

failure are likely the ones that need to be re-seeded in order for the optimisation algorithm to continue.

If however the plant really is not regulatable re-seeding should not continue indefinitely.

5.7.6 Possible areas of improvement of the method

When reviewing the desirable characteristics of the ideal fault diagnosis system (from Venkatasub-

ramanian et al. (2003a) and as listed in Section 4.3.2) it is clear that the NL-GLR method is a reasonable

approach, but it suffers some shortcomings. The main features of the method are quick detection,

isolability, a degree of robustness, and adaptability. The gray-box, nonlinear milling circuit model used

also has the advantage of limited modelling requirements, but those are more a feature of the model

used than of the NL-GLR method. The method is also expandable such that it can handle multiple

faults (Deshpande et al. 2009), even though this was not addressed directly in this work.

The method does however not, in the form implemented in this work, have the ability to identify novel

faults. Any fault that is not within the presumed set, i.e. it does not have an associated estimator

defined, will not be diagnosable. What would happen if an unknown fault enters the system, is that the

fault with the closest matching effect on the outputs will be selected. One approach to overcome this

problem is to evaluate the selected fault observer outputs against the actual plant outputs. Even if this
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set of outputs is the closest match, one may still evaluate if the match is good enough to select the fault

as the actual fault. This evaluation could also provide a classification error estimate, which the method

does not provide at present.

The calculations required for the estimator bank generally makes the GLR method computationally

more expensive than some of its peers. Detection is quick, but diagnosis takes some more time. In this

work, where the process dynamics are relatively slow, there is enough time to complete the required

calculations. If the process response is much quicker this may also become limiting.

The premature termination of optimisation as mentioned in the previous section is also an area where

the method can be improved.

When processing plants are shut down to fix a certain fault, other maintenance work can generally also

be carried out for which a shutdown is required, but which is not critical enough to warrant a shutdown.

The amount of additional maintenance work that can be completed while the plant is off-line will in

general count in favour of shutting down the plant. This complexity is not currently handled by the

evaluation to shut the plant down. The quantification of such additional maintenance work is however

not trivial.

5.8 CHAPTER CONCLUSION

This chapter shows the implementation of a fault-tolerant nonlinear MPC to control a milling circuit

simulation in the presence of faults. The NL-GLR method is used for FDI making use of particle

filters. The state estimates used by the NMPC are also provided through particle filtering. The FDI is

successful for a variety of faults simulated, and the FT-NMPC is able to compensate accordingly.

In the event that a fault is detected, a novel regulatability analysis based on Monte Carlo simulations

and an adaptive hypothesis test is used to investigate whether the plant can still be operated with the

fault(s) present. If the plant cannot be regulated with the fault present, the predicted time to failure is

provided.
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If the regulatability analysis is successful, an economic operability analysis is performed. This analysis

shows whether it would be more economical to operate with the fault present up to the next planned

shutdown date, or whether it would be more economical to shut the plant down, repair the fault, start

up again, and then operate up to the next planned shutdown.

The simulation results show the promising nature of the analysis for a variety of faults. Such an

analysis would be a valuable tool on processing plants, where decisions to shut plants down ad hoc in

the presence of faults are rarely quantified according to the economic performance.
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CHAPTER 6 CONCLUSION

The objective of this work is to explore the concept of lights-out process control in the minerals

processing industry. Some of the key considerations are:

• How far along the road to lights-out process control the minerals processing industry is;

• What the requirements are for lights-out process control; and

• Whether these requirements can be successfully implemented on a minerals processing plant,

with the vision of lights-out process control.

6.1 DEGREE OF AUTOMATION IN THE MINERALS PROCESSING INDUSTRY

In order to gauge the status of automation in the process industry a survey was done regarding the

degree of automation in the minerals processing industry. The survey showed that automatic process

control has had a significant impact on the industry, and process control is one of the main tools in

overcoming the problems that the minerals processing industry faces today and in the future (Craig et

al. 2011).

Operators are still intervening in the process to a fair amount. The main reasons for operator intervention

are changes in operating conditions, process optimisation during normal operation, and handling of

faults in process equipment or field instruments. All of these actions could be handled, presumably

more optimally, by an appropriate advanced controller. In fact the amount of operator actions required

indicates the scope for application of more advanced controllers in the industry.
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Respondents to the survey also mostly believed that lights-out operation of minerals processing plants

will be possible in the future, with most respondents indicating that it will be possible within the next

20 years.

6.2 ENABLING TECHNOLOGIES FOR LIGHTS-OUT PROCESS CONTROL

In order for lights-out process control to become a reality there are a few technologies that are required

to be in place. Based on the survey results it seems that an appropriate optimising fault-tolerant

controller that handles changes in operating point well is a must. The effective implementation of such

a controller is challenging enough for nonlinear processes where the modelling effort is significant, but

the maintenance and effective operation of such a controller is also not trivial.

MPC is the most successful APC technology currently employed in the process industry. The effective

establishment and maintenance of an MPC controller is discussed with lights-out process control in

mind (even though lights-out control is not only achieved through MPC). Additional to the control

requirements listed previously, it is also required in the lights-out control framework that the MPC

has a degree of autonomous controller maintenance. The control requirements for lights-out operation

should also be considered from a plant-wide control perspective.

One of the keys to autonomous controller maintenance for linear MPC is automated, on-line model

quality evaluation. The way in which model quality can be quantified is through MPM detection.

A closed-form expression can be used for MPM when the plant and controller can be represented

with transfer functions. Although many control applications fall within this scope, MPC might not

(depending on the conditions listed in Section 4.2.2). A partial correlation analysis is proposed for

MPM detection when MPC is used.

Additionally, to illustrate nonlinear FTC, a fault-tolerant nonlinear MPC controller was designed and

implemented. The key requirements for this controller are effective fault detection and diagnosis, state

estimation, and the correct formulation of the nonlinear optimisation problem. Even with such an

FT-NMPC running, the plant operability in the presence of faults is still of concern. For certain faults

operations can continue without much impact on performance. For other faults however the plant

could have become inoperable. A Monte Carlo based regulatability analysis that handles nonlinear
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plants with input constraints is proposed in this work. This analysis can give a statistically significant

indication of whether the plant is more likely to be operable than not, with the fault present.

Once the regulatability of the process has been established, the next step is to verify the economic

operability of the process with the fault present. The result of this analysis will show whether it may

be more economical to shut the plant down, repair the fault, and then start up again.

These technologies were applied to a nonlinear ROM ore milling circuit simulation. A variety of faults

were selected to show the different evaluation outcomes. The FT-NMPC is effective in optimising

process operations in the presence of faults, provided that the process remains controllable.

6.3 FUTURE WORK

The work presented here is focused on the minerals processing industry. Parallels were drawn to the

entire process industry where applicable. The status of automation found through the survey and in

literature for the minerals processing industry is expected to be in part representative of the process

industry as a whole, but this will have to be verified. In future a similar survey may be conducted for

the entire process industry. Care should however be taken to obtain sufficient representation from all

areas within the process industry.

There are also certain areas where the current FT-NMPC implementation can be improved. In the

previous chapter it was mentioned that the regulatability analysis sometimes terminates prematurely

owing to the difficulty of solving the optimisation problem. A proper re-seeding algorithm is suggested

to overcome this problem.

Regarding fault detection and diagnosis, the main areas where improvements can be made are to

expand the current method to handle multiple faults as well as to handle novel faults. Deshpande et

al. (2009) shows how multiple faults may be handled. For novel faults, it is proposed to correlate the

plant outputs over the detection window to those provided by the closest matching particle filter. A

certain level of correlation may then be required before the fault described by the closest matching

particle filter is selected as the fault that has occurred. This means that novel faults may trigger the
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fault diagnosis algorithm, but they will not trigger the incorrect selection of a fault if the particle filter

outputs do not match the plant outputs to an acceptable degree.

The evaluation of shutting down a plant based on the faulty economic performance is provided in a

general framework here. Some plants do however have other intricacies that affect the decision of

shutting a plant down. These can include statutory maintenance requirements, market commitments

for product delivery, safety concerns, the risk of further failures following a fault, or effects on up- or

downstream units that need to be considered. The economically driven decision to shut the plant down

needs to incorporate these before application on such a plant.

The methods described in this work were applied to a ROM ore milling circuit simulator. Application to

a larger value chain could also be explored to cast the methods completely into a plant-wide application

scenario. Some other plant-wide considerations not covered in this work may arise.

The next step towards lights-out operation could also be to implement an FT-MPC in the lights-out

control framework shown here on an industrial process or a pilot plant.

6.4 ON THE ROAD TO LIGHTS-OUT PROCESS CONTROL

The process industry is seemingly evolving towards lights-out operations. Production outputs are

increasing with fewer operating personnel. The advances in digital technologies have also seemingly

enabled the automation of more advanced tasks such that the replacement of humans may increase

significantly (Frey and Osborne 2013). Autor (2015) warns against overestimating the impact this will

have on unemployment, but the impact on the types of tasks that humans will perform in the future is

still seemingly large.

The job of the process plant operator is expected to evolve dramatically as a large number of tasks

they perform can be automated (or will be automatable in the near future). Operations personnel are

expected to become fewer, and the number of operating units handled per operator is expected to

increase. There are already a number of simpler processes where the operator only has to intervene by

exception, and they do not even necessarily need to be on-site. An increase in this form of operation is

expected in the medium term (over the next 20 years).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

128

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 6 CONCLUSION

In the long term lights-out process control is expected to become a reality, along the survey results

and indications of the literature cited in this work. Firstly simpler processes that can sufficiently

be represented through linear models are expected to operate more in this fashion, and gradually

more complex processes are expected to follow suit. The adaptation of technology in the process

industry will also play a role in the timing of industrial application. Provision of safety and operability

guarantees in the lights-out control framework are also required, and the availability of these will ease

the transition into lights-out operation.
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ADDENDUM A MINERALS PROCESSING INDUSTRY

SURVEY QUESTIONNAIRE

The questionnaire used to conduct the survey regarding the degree of automation in the minerals

processing industry is provided here. This shows the reader the exact information supplied to the

survey respondents.

The results and their analysis are provided in Chapter 3.
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ADDENDUM A MINERALS PROCESSING INDUSTRY SURVEY QUESTIONNAIRE

Degree of automation in the minerals processing industry -
Respondent information

This survey has the aim of trying to determine the degree of process automation (automatic
process control) in the minerals processing industry. By process automation (or automatic process

control) we mean any automatic regulation with reduced or minimal human intervention. Basic
process controls are designed and built with the process itself, to facilitate basic operation,

control, and automation requirements. Advanced process controls are typically added
subsequently to address particular performance or economic improvement

opportunities. Advanced process controls are usually deployed optionally and in addition
to basic process controls.

The survey is aimed at those who operate minerals processing plants, as well as vendors (in-
house or external) who supply, install and service process automation and control equipment. If

you are a vendor, please comment on the typical operation of the processes for which you supply
process automation solutions.

1.1 Basic information:
(This information is optional, it is purely for verification purposes and will not be
published or distributed in any way.)

Name:

Organization:

Department:

Email address:

Contact number:
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ADDENDUM A MINERALS PROCESSING INDUSTRY SURVEY QUESTIONNAIRE

* 1.2 What is your position?
 Process Engineer
 Metalurgist
 Plant Superintendent
 Plant Manager
 Control/Instrumentation Engineer
 Researcher
 Systems Integrator
 Sales Engineer
 Other (please specify)

* 1.3 What is you geographical location?
 Europe
 North America
 South America
 Africa
 Asia
 Oceania

* 1.4 What commodity do you (or your clients) extract?
(Select all appropriate choices)

 Gold
 Copper
 Iron
 Platinum
 Silver
 Zinc
 Lead
 Phosphor
 Coal
 Other

(please specify)
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ADDENDUM A MINERALS PROCESSING INDUSTRY SURVEY QUESTIONNAIRE

* 2.1 How many operator actions are required during normal plant operation? (Disregard
unnecessary actions such as acknowledging nuisance alarms)

 5 - Operators are constantly busy
 4 - At least one operator action per 10 minutes
 3 - One operator action per 30 minutes
 2 - One operator action per hour
 1 - One operator action per shift

* 2.2 How important are these operator actions?
 5 - Essential to safe and profitable operation
 4 - Without these it would be difficult to keep the unit running
 3 - Necessary but without them overrides would still keep the unit running
 2 - Overrides and safety systems could also have kept the unit running profitably
 1 - These actions have little impact on the profitability of the unit

* 2.3 What is the main reason for operator actions?
 Safety considerations
 Normal operational requirements
 Changes in operating conditions (external factors)
 Failures of instruments/equipment
 Poor control setup
 Other (please specify)

* 2.4 How many control loops are on your plant (or plants that you service)?
 Less than 20
 20 - 100
 100 - 1000
 More than 1000

2.5 How many advanced process controllers are on your plant (or plants that you
service)?

 Less than 5
 5 - 10
 10 - 100
 More than 100
 Not sure
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ADDENDUM A MINERALS PROCESSING INDUSTRY SURVEY QUESTIONNAIRE

* 2.6 How often are control functions disabled and operated manually by the operator?
(Only consider control functions that are set up correctly and do not need to be disabled
permanently)

 5 - At least once per hour
 4 - About once every 4 hours
 3 - About once per shift
 2 - About once per day
 1 - Less than once per day

* 2.7 What types of control technologies does your plant/unit use? (select all applicable
options)

 PID control
 Model predictive control
 Expert system-based control
 Multivariable control
 Fuzzy logic
 Neural networks
 Linear programming
 Statistical process control
 Non-linear models/algorithms
 Constraint control

* 2.8 How many online measurements are made on your plant/unit?
 5 - There is an abundance of measurements for control, optimization and planning functions
 4 - More measurements are made than are required for basic control functions
 3 - Just enough measurements are made for basic control functions
 2 - Fewer measurements than are needed for basic control functions
 1 - Just some measurements are made, other than that the unit is operated on operator experience

* 2.9 How many manual measurements are made on your plant/unit?
 5 - Most of our important process variables are measured manually
 4 - Many important process variables are measured manually
 3 - Some process variables are measured manually
 2 - Very few manual measurements are made
 1 - We do not make use of manual measurements

* 2.10 How efficient would you rate the control setup on your plant/unit to be?
 5 - We owe a big portion of turnover to our efficient controls
 4 - Our control systems perform well
 3 - The control setup helps us to keep the unit operational
 2 - We struggle with efficient control
 1 - Control functions are barely active
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ADDENDUM A MINERALS PROCESSING INDUSTRY SURVEY QUESTIONNAIRE

* 2.11 What do you think is the main factor that inhibits your control system from
performing better?

 Lack of expertise in setting up and maintaining the control system
 Lack of expertise in operating the system
 Lack of understanding of the process dynamics
 Difficulty of the control problem
 Lack of instrumentation for online measurements
 Lack of actuators to implement control signals
 Focus is placed on other areas
 Other (please specify)

* 2.12 How are faults on instruments and actuators detected?
 Through specialized fault detection and isolation software
 Transmitters and actuators are used that provide some feedback regarding faults (e.g. open circuit)
 Faults are only detected by operators through their effects
 Faults often go undetected for extended periods of time
 Only during plant walks or routine inspections are faults detected

* 2.13 What functions do advanced controllers perform on your plant/unit? (Select all
applicable options)

 None
 Regulatory control
 Optimization
 Planning functions
 Switching of control philosophies
 Not sure

* 2.14 What is the main benefit you gain from advanced process control?
 Reduction in variability of process variables
 Safety
 Environmental protection
 Not sure
 Other (please specify)
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ADDENDUM A MINERALS PROCESSING INDUSTRY SURVEY QUESTIONNAIRE

* 2.15 Does your control system give you the ability to specify objectives on the
following control layers? (select yes or no for each option)

Yes No

Regulatory control (we can specify basic set-points such as levels
and flows)

Optimization (we can specify optimization objectives such as the
minimization of concentration)

Planning functions (we can specify for example the throughput of
a unit)

* 2.16 Please record your level of agreement with the following statement: It will in future
be possible to run our minerals processing plant(s) (or that of our clients) completely
autonomously, i.e. with no human intervention.

 5 - Strongly agree
 4 - Agree
 3 - Neutral
 2 - Disagree
 1 - Strongly disagree

2.17 Briefly explain why you agree/disagree with the statement in 2.16.

2.18 If you agree with the statement in 2.16, by when do you think it will be possible to
run your minerals processing plant(s) (or that of your clients) completely
autonomously?

 Already possible
 Within the next 5 years
 Within the next 10 years
 Within the next 20 years
 It will take more than 20 years

This concludes the survey. Thank you very much for taking the time to answer these
questions.
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ADDENDUM B PROVISIONS TO APPLY THE

MODEL-PLANT MISMATCH

EXPRESSION FOR LTI SYSTEMS TO

MIMO PLANTS

It was stated in Section 4.2.1.1 that signals such as r(s) are usually not square, which is a problem when

trying to apply the MPM expression for LTI systems to MIMO plants. This is because a non-square

matrix does not have an inverse in the traditional sense. Say for example the output (y(s)) is n×1,

generated by applying an n×1 input signal (u(s)) to an n×n plant (G(s)) as

y = Gu, (B.1)
y1
...

yn

=


g11 · · · g1n

...
. . .

...

gn1 · · · gnn




u1
...

un

 , (B.2)

from which y(s) is calculated to be
y1
...

yn

=


g11u1 + · · ·+g1nun

...

gn1u1 + · · ·+gnnun

 . (B.3)

The MPM expression determines a transfer function from the “inverse” of the input signal as,

G = yu−1. (B.4)

In the SISO case this is not a problem as G, y(s) and u(s) are scalars. In the MIMO case however

the expression cannot be applied directly as the non-square signal u(s) does not have an inverse. If
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ADDENDUM B
PROVISIONS TO APPLY THE MODEL-PLANT MISMATCH EXPRESSION FOR LTI SYSTEMS TO

MIMO PLANTS

however the input signal is rewritten as the diagonal matrix

U =


u1 · · · 0
...

. . .
...

0 · · · un

 , (B.5)

the output becomes

Y =


g11u1 · · · g1nun

...
. . .

...

gn1u1 · · · gnnun

 . (B.6)

Now U is square and does have a matrix inverse, provided it is nonsingular. Applying equation (B.4)

now gives

G = YU−1, (B.7)

G =


g11u1 · · · g1nun

...
. . .

...

gn1u1 · · · gnnun




u1 · · · 0
...

. . .
...

0 · · · u2


−1

, (B.8)

=


g11 · · · g1n

...
. . .

...

gn1 · · · gnn

 , (B.9)

which is equal to the original transfer function.

The input signal can easily be written in the form of a square matrix as in (B.5). The output is however

not usually available as a square matrix. It is however apparent that the first entry of (B.6) is equal

to the first output in (B.3) if u2 · · ·un = 0. This means that a portion of the output signal generated

without excitation in u2 · · ·un can be used to calculate the first entry of (B.6). The same argument holds

for the calculation of the other entries of (B.6).

A similar situation holds true for measured disturbances. If disturbances are however unmeasured, care

would need to be taken to use a portion of data that is disturbance free, as unmeasured disturbances are

not explicitly handled by the expression.
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ADDENDUM C APPLICATION OF THE

MODEL-PLANT MISMATCH

EXPRESSION

Making use of the application provisions listed in Addendum B, the MPM expression for LTI systems

can be applied to general MIMO plants. This Addendum firstly shows the application of the expression

to a simulated MIMO ball mill grinding circuit. Thereafter, an application to industrial plant data is

shown.

C.1 APPLICATION EXAMPLE FOR A MULTIPLE-INPUT MULTIPLE-OUTPUT SYS-

TEM

The application of the MPM expression to a SISO system is straightforward, as presented in Olivier

and Craig (2014). In order to illustrate the working of the MPM expression in the MIMO case, the

algorithm is applied to a 2×2 ball mill grinding circuit for which MPM is introduced. Consider the

ball mill grinding circuit of Figure C.1, which is described in Chen, Yang, Li and Li (2009).

The manipulated variables are the fresh ore feed rate (u1 [t/h]) and the dilution water flow rate

(u2 [m3/h]). The controlled variables are the product particle size (y1 [%−200 mesh]) and the circu-

lating load (y2 [t/h]). The nominal values and constraints for the manipulated and controlled variables

are given in Table C.1. Care should be taken when using the method to not use data where the output

or control variable values are saturated against the limits. This is because saturated data cannot be

represented by a linear function, and are therefore not compatible with the MPM expression.
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION

Ball

mill

Sump

Hydro-

cyclone

Product

Dilution

water

Pump

Circulating

load

Vibratory

conveyor

Ore

Feed water

Ore

feed

Figure C.1. Ball mill grinding example of Chen et al. (2009).

Table C.1. Nominal values and constraints for the 2x2 ball mill grinding circuit variables.

Variable Description Nominal Min Max Unit

u1 Fresh ore feed rate 65 60 70 t/h

u2 Dilution water flow rate 45 40 50 m3/h

y1 Product particle size 70 68 72 %

y2 Circulating load 150 140 170 t/h

The MIMO transfer function model of the milling circuit is given by y1(s)

y2(s)

=

 g11(s) g12(s)

g21(s) g22(s)

  u1(s)

u2(s)

 , (C.1)

where

g11(s) =
−0.58

2.5s+1
e−0.68s (C.2)

g12(s) =
4(1−0.9938e−0.47s)

(2s+1)(6s+1)
e−0.2s (C.3)

g21(s) =
2.2

6s+1
e−0.6s (C.4)

g22(s) =
2.83

3.5s+1
e−0.13s. (C.5)

Milling circuits are often controlled by decentralised PI(D) controllers (Hodouin, 2011; Wei and
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION

N

û

uû yû

w z

Figure C.2. General plant block diagram representation with uncertainty included.

Craig, 2009b) as was also implemented for this circuit by Chen et al. (2009). The diagonal PI controller

is in the form

Q(s) =

 Kc1

(
1+ 1

τI1 s

)
0

0 Kc2

(
1+ 1

τI2 s

)
 , (C.6)

with Kc1 = −2, τI1 = 3.3 min, Kc2 = 0.42, and τI2 = 5.2 min. Next, this plant will be perturbed up

to the point that robust performance is not achieved with the current controller. This gives a good

indication of the point at which process re-identification may be necessary. The robust performance

test is carried out as described by Skogestad and Postlethwaite (2005). The first step of this test is to

represent the uncertainty in each channel in the model through an uncertainty weight of the form

wI(s) =
τs+ r0

(τ/r∞)s+1
(C.7)

where r0 is the relative uncertainty at steady-state, 1/τ is the approximate frequency where the

uncertainty reaches 100%, and r∞ is the magnitude of the weight at higher frequencies. The performance

weight is specified as

wP(s) =
s/M+ωB

s+ωBA
(C.8)

where ωB is the required bandwidth and A and M are respectively the upper bounds on the sensitivity

function at low and high frequencies. Typically A≈ 0 and M ≥ 1. Next, the generalised control config-

uration for representing uncertainty in the plant is derived (Skogestad and Postlethwaite, 2005:113) as

is illustrated in Figure C.2, where w are the exogenous inputs and z the outputs. Nominal stability is

achieved if N is internally stable. The tests for robust stability and robust performance make use of the

structured singular value µ .
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION
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Figure C.3. Robust performance test results for 10% uncertainty. The result for the nominal plant is

shown by the solid line, and for the perturbed plant by the dashed line.

µ(N) is defined as: Find the smallest structured ∆ which makes the matrix I−N∆ singular, then

µ(N) = 1/σ̄(∆), where σ̄ is the maximum singular value. For robust stability:

µ∆ (N11)< 1, ∀ω (C.9)

and N must be nominally stable. For robust performance:

µ
∆̂
(N)< 1, ∀ω, ∆̂ =

 ∆ 0

0 ∆P

 (C.10)

and N is still required to be nominally stable. The test for robust performance is carried out for 10%

gain uncertainty with

WI =
0.21s+0.1

0.1s+1

 1 0

0 1

 (C.11)

and

WP =
0.45s+0.05

s

 1 0

0 1

 . (C.12)

The performance weight specifies integral action and a closed-loop bandwidth of 0.05. This test shows

that the performance specification is achieved for 10% uncertainty (Figure C.3 shows the structured

singular value, µ
∆̂
(N), for this test [solid line]).
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION
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Figure C.4. Response of controlled variables for a step in the particle size showing the setpoint (dotted

line), the nominal response (dashed line), and the perturbed response (solid line).

The plant is then perturbed to be

g11(s) =
−0.464
2s+1

e−0.68s (C.13)

g12(s) =
4(1−1.1014e−0.47s)

(2s+1)(6s+1)
e−0.2s (C.14)

g21(s) =
2.2

6.6s+1
e−0.6s (C.15)

g22(s) =
2.547

3.5s+1
e−0.13s, (C.16)

which is less severe than the mismatch introduced into the system by Chen et al. (2009), but more

severe than allowed by the robust performance analysis weight. Robust performance is then not

achieved, as illustrated in Figure C.3 (the structured singular value is shown by the dashed line for the

perturbed plant). The uncertainty (and also the changed plant model) should now be calculated. The

nominal and perturbed responses for a step in the particle size setpoint are shown in Figure C.4 and

Figure C.5. The nominal and perturbed responses for a step in the circulating load setpoint are shown

in Figure C.6 and Figure C.7.

Once the output signals have been generated the mismatch can be identified. The mismatch is calculated

using (4.18) to be

∆M = G− Ĝ =

 0.0232e−0.68s

s2+0.9s+0.2
−0.0066e−0.67s

s2+0.667s+0.0833
−0.0333e−0.6s s

s2+0.3182s+0.0253
−0.0809e−0.13s

s+0.2857

 , (C.17)

from which the actual transfer function is calculated to be exactly the same as the original transfer

function as given in (C.2) - (C.5).
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Figure C.5. Response of manipulated variables for a step in the particle size showing the nominal

response (dashed line) and the perturbed response (solid line).
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Figure C.6. Response of controlled variables for a step in the circulating load showing the setpoint

(dotted line), the nominal response (dashed line), and the perturbed response (solid line).
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Figure C.7. Response of manipulated variables for a step in the circulating load showing the nominal

response (dashed line) and the perturbed response (solid line).
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION

Petrol to 

storage

Feed from 

stripper

Diesel/Jet fuel to 

storage

Fuel gas
PIC

PDC

FIC

TIC

Figure C.8. Polymer splitter column.

C.2 INDUSTRIAL CASE STUDY

To show the application of the method to industrial data, a case study is presented in this section for a

splitter column which is part of a Polymer Hydrotreating unit. The data presented was collected during

a step testing campaign conducted in 2014.

The purpose of the Polymer Hydrotreater is to convert olefins to the corresponding paraffins to produce

a slate of petrol and diesel or jet fuel. After the hydrotreating reaction has taken place, the material is

sent to a stripper column (which mainly removes unwanted components) and finally into the splitter

column. The splitter column (see Figure C.81 for a simplified process diagram) separates the lighter

petrol cut from the heavier diesel or jet fuel cut. The unit can either produce diesel of jet fuel depending

on the flashpoint2 of the material in the bottoms of the splitter.

The main variables to be controlled in this splitter column are:

1TIC - temperature indicating controller; FIC - flow indicating controller; PDC - differential pressure controller; PIC -

pressure indicating controller
2The flashpoint is the lowest temperature at which the material will vaporise to form an ignitable mixture in air.
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION

Table C.2. Tuning parameters for splitter column controllers.

Loop Kc τI τD

Top temp. 1 8 0.5

% Vaporisation 0.5 2 0

• The temperature near the top of the column (on the tray just below where the reflux is added);

and

• The percentage vaporisation of fluid leaving the heater (this is a good indication of the temperat-

ure).

Together these variables largely define the operation of the column. The top temperature controller

cascades to a reflux flow controller, and the percentage vaporisation controller cascades to a fuel gas

pressure controller. Both control loops are in cascade configurations and the slave loops are sufficiently

fast to ensure that the bandwidth of the slave loops are much larger than the bandwidth of the respective

master control loops. The closed-loop transfer function of the inner loop is therefore approximately

one (Tslave ≈ 1) (Bequette, 2003). With this approximation the focus can shift to the master control

loops.

A 5-hour excerpt of step test data is shown in Figure C.9 (where SP represents the setpoint). Note that

the step test data have been standardised to start from zero for intellectual property reasons. This will

however not have any effect on subsequent modelling as the constant bias is usually removed from all

signals before system identification (Ljung, 1999).

The tuning parameters for the controllers are shown in Table C.2. All time constants shown are in

minutes and the controllers have the form

Q = Kc

(
1+

1
τIs

+
τDs

ατDs+1

)
, (C.18)

with α = 0.1.

It is usually possible to sufficiently represent a binary distillation column with a linear model, if both

products are of high purity and the reflux is large (Skogestad and Morari, 1988), which is the case in

this example. The operating point also does not change significantly during the step testing campaign.
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Figure C.9. Step test data for a period of 5 hours.

These reasons along with the fact that it is possible to obtain a representative linear model for the plant

from the data3, allows this process to be considered sufficiently linear.

In order to apply the MPM expression an initial model is needed (Ĝ in (4.19)). Hereafter the plant has

to be perturbed, and operating data from the perturbed plant should be captured for use. As it is not

possible for production reasons to perturb this industrial plant, the closed-loop operating data available

are therefore assumed to be for the perturbed plant (G in (4.19)).

Model identification of the splitter column was done using third party vendor software. Selected

step-test campaign data were used, and the resulting 2×2 transfer function matrix is shown in (C.19)

(with time in minutes) as: Top temp.

% Vapor.

=

 −0.58
10s+1

4
15s+1 e−3s

0 3.8
2.8s+1 e−0.5s

 ·
 Reflux

Fuel gas

 . (C.19)

3This will be shown later in this section, see Table C.5.
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION

Table C.3. Summary of the referenced models

Model TF Description How obtained

G (C.19) Perturbed plant model. Assumed

unknown for the application of the

MPM expression

SID using 3rd party software

Ĝ (C.20) Assumed original model from which

controller was designed

Adapted G based on plant changes

G∗ (C.27) Calculated model Obtained from (4.17) with plant data

Note again that this model is denoted as G because it is considered to be the perturbed plant. This

model is assumed to be unknown and is simply shown here for the comparison that will be made once

the MPM expression has been applied. A summary of the models referred to in this section is given in

Table C.3.

Consider now the scenario where there was a plant shutdown during which changes were made to

the original plant (represented by Ĝ). Suppose that during the shut down the thermowell housing the

element sensing the top temperature in the column was cleaned of a build-up of residue. This removes

some lag when measuring the top temperature. Suppose also that the transmitter was re-calibrated

for a smaller range. These two changes will cause the time constants of G1,1 and G1,2 to decrease by

similar amounts when compared to Ĝ1,1 and Ĝ1,2, as well as causing the gains of both these transfer

function elements to increase by similar amounts. Suppose that the changes are 20% in either case.

This value is chosen large enough to have a significant impact on the output responses as can be seen

in Figure C.10 and Figure C.11. This means the original model of the plant was:

Ĝ =

 −0.464
12s+1

3.2
18s+1 e−3s

0 3.8
2.8s+1 e−0.5s

 . (C.20)

To reiterate, Ĝ is considered to have been the original model of the plant. The plant model is then

assumed to have changed to G. The plant data available are assumed to be obtained from the closed-

loop system where the plant is represented by G. These data will now be used to apply the MPM

expression.

Q and Ĝ are known; r, u, and y are determined from the data. There are no measured disturbances that
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Figure C.10. Data for the top temperature showing the plant input (dotted line), plant output (solid

line), model output (dashed line), and the error (dash-dot line).

greatly affect the process. A section of data is therefore selected for which no significant unmeasured

disturbances seem to affect the plant so that (4.19) can be applied. Such an excerpt of data is shown

in Figure C.10 for the top temperature when a setpoint change is made. Note that ŷ is generated by

propagating the measured u through the known system Ĝ as

ŷ = Ĝu. (C.21)

A similar section of data is shown in Figure C.11 where a step change in the percent vaporisation is

made.

The last signal needed for the application of the MPM expression is e in the Laplace domain. There

are many ways in which this signal may be obtained, see for example Shardt and Huang (2011) for an

overview of such methods. The method however used here is via a direct transfer function estimation

method (described in Garnier, Mensler and Richard (2003)). The error model driven by the reference

signal is defined as

er−1 = eMr(s) =
B0(s)
A0(s)

(C.22)

with

y− ŷ = eMr r. (C.23)

B0(s) and A0(s) are polynomials in s defined as (Garnier et al., 2003):

B0(s) =
m

∑
i=0

bisi (C.24)
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION
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Figure C.11. Data for the heater outlet % vaporisation showing the plant input (dotted line), plant

output (solid line), model output (dashed line), and the error (dash-dot line).

A0(s) =
n−1

∑
i=0

aisi + sn (C.25)

and n≥ m, where n is the number of poles and m is the number of zeros of eMr(s). The method makes

use of the equation error to fit a continuous-time transfer function model to discrete-time data, and is

included in the continuous time system identification toolbox in Matlab. The equation error is a linear

algebraic function of the model parameters in the form (Young, 1981):

εEE(t) = A0y(t)−B0u(t). (C.26)

This method supplies the signal in the Laplace domain, which means that all the signals needed to

apply the MPM expression are now available. Once the MPM expression of (4.20) has been applied

the calculated plant transfer function (denoted as G∗) is obtained to be

G∗ =

 −0.677
10.40s+1

4.65
15.87s+1 e−3s

0 3.81
2.96s+1 e−0.5s

 . (C.27)

It can be seen that the calculated transfer function G∗ is not significantly different from the identified

model for the actual plant transfer function G in (C.19). The relative differences between the transfer

function element parameters are shown in Table C.4. The main reason for the presence of any difference

here is because of imperfect model identification.
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ADDENDUM C APPLICATION OF THE MODEL-PLANT MISMATCH EXPRESSION

Table C.4. Percentage difference between identified model G and calculated model G∗

Model G(1,1) G(1,2) G(2,2)

Gain K 16.7 % 16.3 % 0.3 %

Time constant τ 4.0 % 5.8 % 5.7 %

Time delay θ - 0 % 0 %
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Figure C.12. Model comparison for G1,1 showing the plant output (solid line), original model Ĝ output

(dashed line), and the calculated model G∗ output (dotted line).

Table C.5. NRMSE for the fit between models and plant output data

Model G(1,1) G(1,2) G(2,2)

Ĝ 44.14 % 51.48 % 87.15 %

G∗ 75.01 % 76.53 % 87.63 %

The question remains whether the calculated transfer function is truly a better reflection of the plant

than the model Ĝ derived previously. To illustrate this the model outputs of Ĝ and G∗ are compared to

the “actual” plant output in Figure C.12, Figure C.13, and Figure C.14 for the three non-trivial transfer

function elements of G. To make the MPM detection worthwhile, the fit between the output related to

G∗1,1 and G∗1,2 and the plant data should be much higher than for the output related to Ĝ1,1 and Ĝ1,2.

This is indeed the case as can be seen from Table C.5 in which the normalised root mean square errors

(NRMSE) for these comparisons are shown.
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Figure C.13. Model comparison for G1,2 showing the plant output (solid line), original model Ĝ output

(dashed line), and the calculated model G∗ output (dotted line).
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Figure C.14. Model comparison for G2,2 showing the plant output (solid line), original model Ĝ output

(dashed line), and the calculated model G∗ output (dotted line).
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“There are many problems, but I think there is a solution to all these problems; it’s just one, and it’s

education.”

– Malala Yousafzai
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