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ABSTRACT
Human African Trypanosomiasis (HAT) and Nagana in cattle, com-
monly called sleeping sickness, is caused by trypanosome protozoa
transmitted by bites of infected tsetse flies. We present a determinis-
tic model for the transmission of HAT caused by Trypanosoma brucei
gambiense between human hosts, cattle hosts and tsetse flies. The
model takes into account the growth of the tsetse fly, from its lar-
val stage to the adult stage. Disease in the tsetse fly population is
modeled by three compartments, and both the human and cattle
populations are modeled by four compartments incorporating the
two stages of HAT. We provide a rigorous derivation of the basic
reproduction number R0. For R0 < 1, the disease free equilibrium
is globally asymptotically stable, thus HAT dies out; whereas (assum-
ing no return to susceptibility) for R0 > 1, HAT persists. Elasticity
indices for R0 with respect to different parameters are calculated
with baseline parameter values appropriate for HAT in West Africa;
indicating parameters that are important for control strategies to
bring R0 below 1. Numerical simulations with R0 > 1 show values
for the infected populations at the endemic equilibrium, and indi-
cate that with certain parameter values, HAT could not persist in the
human population in the absence of cattle.
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1. Introduction

Human African trypanosomiasis (HAT) and Nagana in cattle is generally known as sleep-
ing sickness. It is a serious parasitic disease that affects 36 sub-Saharan Africa countries,
threatening the life of millions of people in rural settlements. Sleeping disorders, the origin
of its name, are a key feature of the advanced stage of the disease when the central ner-
vous system is affected. In the absence of treatment, the outcome is usually fatal; see, for
example, Rock et al. [20]. The trypanosome protozoa causing the disease are transmitted
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to humans or cattle by the bite of an infected tsetse fly. There are two different types of
human sleeping sickness that are caused by two different subspecies of trypanosomes:
gambiense sleeping sickness, caused by Trypanosoma brucei gambiense (T. b. gambiense)
transmitted by flies of the Glossina palpalis group, is generally considered to be a chronic
disease and is foundmostly inWest and Central Africa; and rhodesiense sleeping sickness,
caused by Trypanosoma brucei rhodesiense, transmitted by flies of the Glossina morsitans
group, is an acute disease that occurs mainly in East Africa [20]. Gambiense sleeping
sickness constitutes 98% of all the cases declared, and the most affected country is the
Democratic Republic of the Congo, with more than 75% of the recorded gambiense
cases [10].

The first descriptions of sleeping sickness are fromwhat is known now asMali. Travelers
recognized the symptoms but were unaware of the relationship with the tsetse fly. We are
indebted to Aldo Castellani, for his renowned work on identification of the trypanosoma
as the causal agent of sleeping sickness [6]. For a long time, African farmers knew from
experience that there was a link between biting flies and outbreaks of trypanosomiasis or
Nagana in their livestock. But this link was formally established for the first time by David
Bruce [4], whoworked in what is nowKwazuluNatal, South Africa. He observed that cattle
and healthy dogs sent into tsetse fly infested areas caught the same parasite in the blood and
got sick, suggesting that Nagana was the same as the ‘tsetse disease’. A review of wildlife
infested tsetse fly regions showed that trypanosomeswere also in their blood, leading Bruce
to suggest that this disease could be eradicated by destroying wildlife. The existence of the
life cycle of the parasite in the insect was found after 16 years of research [5].

Tsetse flies, which are the vectors of HAT and Nagana, are large and robust biting flies
that are common in sub-Saharan African between the Sahara and the Kalahari Deserts.
The life cycle of the tsetse fly is very unusual because it does undergo a total metamor-
phosis (i.e. eggs, larvae, pupae and adults), but only a single larva develops in the uterus
of the female fly at any given time [10]. Tsetse flies are obligate hematophagous insects,
meaning both male and female flies survive purely on a diet of blood. Female tsetse flies
mate just once, almost immediately after emergence from their puparium. In thewild,mat-
ing probably occurs close to, or even on, the host animal around the time of the female’s
first blood meal. She produces a single egg at a time, which develops within her uterus
into a fully developed larva that she places on the ground nine days later [20, 23]. Once
laid, the larval stage is only of very short duration (a few minutes), just the time it takes
for the larva to burrow itself into the ground where it immediately becomes a pupa. The
fly emerges 22–60 days later, depending on the temperature. Once the female fly has fed
and mated, the whole cycle begins again. The mother tsetse fly will continue to produce
a single larva at roughly 10- to 12-day intervals for her entire life [23]. During her life-
span a female can theoretically give birth to only a maximum of 8–10 offspring (in reality
much lower). Wild male tsetse can achieve a life-span of almost 5 months (but in real-
ity, very rarely that long). When a tsetse fly bites humans or cattle, trypanosomiasis can
be transmitted to humans or to cattle by an infectious fly. Trypanosomiasis in humans
and cattle progresses from haemolymphatic (stage I) to meningoencephalitic (stage II),
over a period of a few months to several years [16, 20]. The first stage of sleeping sickness
in humans presents with non-specific symptoms, such as fever, headache and joint pain.
Often first stage infected humans are unaware that they are infected and they continue to
do their daily activities where they can be bitten by tsetse flies; whereas in the second stage
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infected humans are usually very sick with neurological symptoms and are bed bound. In
infected areas, screening campaigns to detect patients in the first stage of HAT are often
conducted, and once humans become symptomatic (stage II) they are offered treatment
by drugs [20]. There have been reports of vertical transmission from infectious human
mothers to their babies, however the risk is unknown and under reported [16]. Trypanoso-
miasis can be transmitted to a biting fly from an infectious host in the first or second stage
of the disease.

Compartmental modelling of vector-borne diseases began with the Ross–Macdonald
model [17, 22]; see, for example, Anderson and May [1, Section 14.3], which is a two-
dimensional model for malaria. In 1988, Rogers [21] extended this model to make it more
relevant for West African trypanosomiases transmitted by T. b. gambiense by including
more than one host species (e.g. domestic animals and humans), an incubation period and
a period of temporary immunity for the human host, a probability of disease transmission
from a bite by a susceptible fly on an infectious host, and survival of a vector between
being infected and transmitting infection. Analysis of the resulting three-dimensional
model included determining a disease threshold, the equilibrium disease prevalence, and
evaluating these for data appropriate for a West African village. A five variable compart-
mental model for the dynamics of HAT including tsetse flies and humans was formulated
by Artzrouni and Gouteux [3]. They included susceptible, incubating, asymptomatic and
removed humans, and compared their model results with data from the Democratic
Republic of Congo. In a subsequent paper, these authors [2] used their model to com-
pare control strategies. Chalvet-Monfray et al. [7] then extended this to two patches, to
model a village and plantations. More recently Hargrove et al. [13] modelled the control
of trypanosomiasis caused by T. b. rhodiense in multiple hosts. Their model predicted that
treating cattle with insecticide is generally more effective than treating cattle with drugs.
Kajunguri et al. [14] also formulated a multi-host model for HAT caused by T. b. rhodi-
ense, and in particular found that restricted application of insecticide to cattle on only
their legs and belly (favoured tsetse feeding sites) provides a cost-effective method of con-
trol. Funk et al. [12] developed a multiple host model for gambiense HAT and provided
field data estimates of the basic reproduction number in Bipindi, Cameroon. A very recent
comprehensive survey and reference list on mathematical models of HAT epidemiology is
provided by Rock et al. [20], where they also stress the need for further model develop-
ment to understand HAT transmission and to suggest control strategies. In fact, in 2012,
the World Health Organization set a target date of 2020 for HAT elimination [25]. Cur-
rent strategies for controlling and eliminating gambiense HAT are reviewed by Steinmann
et al. [28].

Our model of gambiense HAT includes the life cycle of tsetse flies, incubation periods
for both flies, humans and cattle (which may include domestic livestock and wild animals)
and cross transmission between vector and hosts. As in Funk et al. [12], we assume that
both humans and cattle are hosts forT. b. gambiense.We give amathematical analysis of our
model, presenting a rigorous derivation of the basic reproduction number and some new
global stability results. By proposing a general model that can be adapted to suit different
settings and scenarios, our objective is to contribute to the understanding of the trans-
mission dynamics of HAT and provide tools to suggest strategies for control. This paper
is structured as follows. We introduce the model in Section 2 by considering the growth
dynamics of the tsetse fly, the transmission dynamics of the tsetse fly and the human and
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cattle host populations. In Section 3, we calculate the basic reproduction number, and study
the stability of the disease free equilibrium (DFE). We also prove in Section 3 that there
exists a globally asymptotically stable endemic equilibrium in the case in which return to
susceptibility is ignored. In Section 4, parameter values collected from the literature on
HAT are used to calculate elasticity indices and to compute numerical solutions of our
model. We draw our conclusions in Section 5.

2. Model formulation

2.1. Modelling the dynamics of growth of the tsetse fly

We first model the growth dynamics of the tsetse fly. From the life cycle described in
Section 1, it is sufficient to consider two life stages, namely pupal and adult flies. A similar
approach is given in [19] in which three life stages of mosquitoes are taken in a model for
chikungunya.

Let L(t) be the number of pupae at time t and A(t) be the number of (male and female)
adult flies at time t. The dynamics of L and A are modelled by the following system:

dL
dt

= bLWA
(
1 − L

KL

)
− (σL + dL)L, (1)

dA
dt

= σLL − dFA. (2)

Here, bL is the rate at which female flies give birth to larvae;W is the proportion of female
flies in the population of adult flies; KL is the pupal carrying capacity of the nesting site;
σL is the transfer rate of pupae into adult tsetse flies, so 1/σL is the average time as a pupa;
dL and dF are the mortality rate of pupae and adult flies, respectively; with all parameters
assumed positive.

2.1.1. Equilibrium points.
The threshold defined by

r = σL

σL + dL
bLW
dF

, (3)

is important when calculating equilibrium points of system (1)–(2), as shown in the fol-
lowing result. The parameter r can be interpreted as the probability of surviving the pupal
stage multiplied by the birth rate divided by the death rate.

Proposition 1: Let

D =
{
(L,A) ∈ R

2
+|0 ≤ L ≤ KL, 0 ≤ A ≤ σL

dF
KL

}
.

(i) The set D is positively invariant with respect to the system (1)–(2), whenever the initial
conditions lie in int(D).

(ii) The system (1)–(2) always has a trivial fly-free equilibrium (L,A) = (0, 0). If r ≤ 1,
this is the only equilibrium. If r > 1, then there is a unique positive equilibrium with
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larvae and adults present given by

(L∗,A∗) =
(
1 − 1

r

)
KL

(
1,

σL

dF

)
. (4)

(iii) If r < 1, then the equilibrium point (0, 0) is globally asymptotically stable in D.
(iv) If r > 1, then the equilibrium (L∗,A∗) defined by (4) is globally asymptotically stable in

int(D).

Proof: Parts (i) and (ii) follow easily from the system (1)–(2).
Linearizing the system (1)–(2) about an equilibrium, gives the Jacobian matrix

J =
⎛
⎝−bLWA

KL
− (σL + dL) bLW

(
1 − L

KL

)
σL −dF

⎞
⎠ , (5)

where (L,A) = (0, 0) or (L∗,A∗).
For part (iii), when (L,A) = (0, 0), the characteristic equation of J is

λ2 + (σL + dL + dF)λ + (σL + dL)dF(1 − r) = 0,

which implies that (0, 0) is locally asymptotically stable if r < 1. Global asymptotic sta-
bility for r<1 is proved using the Lyapunov function V = (dF/bLW)L + A, giving V̇ =
−dF(AL/KL) − σL(1/r − 1) L ≤ 0, and using LaSalle’s invariance principle.

For part (iv), if r>1 then (5) at (L∗,A∗) has the characteristic equation

λ2 +
(
bLW

(
1 − 1

r

)
σL

dF
+ (σL + dL) + dF

)
λ + bLWσL + (σL + dL)dF = 0,

which implies that (L∗,A∗) is locally asymptotically stable. The Bendixson–Dulac crite-
rion on the system (1)–(2) shows that there can be no periodic solution in D. Thus the
Poincaré–Bendixson theorem; see, for example [[26, p. 9], [9, Theorem 1, p. 327, 329]],
shows that the unique positive equilibrium (L∗,A∗) is globally asymptotically stable in
int(D). �

2.2. Formulation of the full model

2.2.1. Modelling transmission dynamics of the tsetse fly and the host populations
Tsetse flies become infected by biting infectious vertebrate hosts. Then infectious tsetse flies
infect susceptible hosts when they take future blood meals. We model the dynamics of the
population of vectors as described by the system (1)–(2), with the evolution of this system
governed by the threshold r defined in (3). If r<1, the population of tsetse flies will be
extinguished, otherwise they evolve toward an equilibrium given by (4). For our fullmodel,
we assume that r>1 and that the flies are at the equilibrium (L∗,A∗). Trypanosomiasis in
the fly population ismodelled by an SEI compartmental model. It is assumed that a fly once
infected will never recover or be removed. So we subdivide the adult fly population into
three compartments, SF susceptible tsetse flies, EF exposed tsetse flies infected but not yet
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infectious and IF infectious tsetse flies that are able to transmit the disease once they bite a
susceptible host. Thus the total adult fly population is

A∗ = SF + EF + IF . (6)

The human and cattle host populations are described by a Malthus model. We denote
by NH and NC the total size of the human and cattle host populations, respectively, at
time t and bH , bC, dH , dC are the rates of birth and mortality of the human and cattle host
populations, respectively. The dynamics of NH and NC are governed by

dNH

dt
= (bH − dH)NH = αHNH , (7)

dNC

dt
= (bC − dC)NC = αCNC, (8)

where αH = bH − dH and αC = bC − dC are the growth rates of the human and cattle
population respectively. If αH < 0(αC < 0), the human (cattle) population will be extin-
guished, it will remain constant if αH = 0(αC = 0), and will grow exponentially if αH >

0(αC > 0). We assume that αH = 0(αC = 0), i.e. bH = dH(bC = dC), so that the human
(cattle) population is constant over the period of the study and there is no human and cattle
death due to HAT.

Trypanosomiasis in the human and cattle host populations is modelled with four
compartments in each population:

• susceptible hosts SH(SC), humans (cattle) who are at risk and free of the disease;
• exposed hosts EH(EC), humans (cattle) who are in the latent stage of the disease, they

are infected but unable to transmit the disease;
• infectious hosts IH(IC), humans (cattle) who are able to transmit the disease to tsetse

flies if they are bitten [12]. These compartments contain hosts in the first stage of the
disease unaware they are infected or with only minor symptoms; and

• removed hosts RH(RC), consisting of humans (cattle) in the second stage of the disease
who are very sick and not exposed to flies, so that they do not pass on infection, as well
as humans (cattle) who are undergoing treatment and are also not exposed to flies. We
assume that treatment commences at the beginning of stage II, as this is usually when
hosts become symptomatic. These compartments also contain removed humans (cattle)
that have developed temporary immunity after recovery from stage II or treatment and
they can neither transmit nor acquire HAT, but they will become susceptible again after
the period of temporary immunity has lapsed.

The constant total human and cattle populations are defined by

NH = SH + EH + IH + RH , (9)

NC = SC + EC + IC + RC. (10)

The dynamics of T. b. gambiense in the tsetse fly population, assuming that transmission
to flies occurs from humans and cattle in only the first stage of HAT, is given by the system

dSF
dt

= σLL∗ − dFSF − (1 − p)ac
IH
NH

SF−pav
IC
NC

SF , (11)



JOURNAL OF BIOLOGICAL DYNAMICS 353

dEF
dt

= (1 − p)ac
IH
NH

SF + pav
IC
NC

SF − (qF + dF)EF , (12)

dIF
dt

= qFEF − dFIF , (13)

where L∗ is the number of pupae at equilibrium given by (4), a is the vector blood feeding
rate, c is the probability that a fly becomes infected after biting an infectious human, v is the
probability that a fly becomes infected after biting infectious cattle, 1/qF is the incubation
period in the fly, dF is the naturalmortality rate of adult flies and p is the proportion of tsetse
fly bites on cattle (thus (1 − p) is the proportion of bites on humans). This proportion is
assumed to be constant as in Funk et al. [12]; for a discussion of this assumption see Rock
et al. [20, Section 3.3].

The dynamics ofT. b. gambiense in the human host population is governed by the system

dSH
dt

= bHNH + κHRH − (1 − p)ab
IF
NH

SH − bHSH ,

dEH
dt

= (1 − p)ab
IF
NH

SH − (qH + bH)EH,

dIH
dt

= qHEH − (γH + bH)IH ,

dRH
dt

= γHIH − (bH + κH)RH ,

where b is the probability that an infectious fly infects a human host, bH is the birth
rate of the human population, dH = bH is the human mortality rate, 1/qH is the average
incubation period for a human host, 1/γH is the average length of stage I for humans cor-
responding to the infectious period. For untreated humans, 1/κH is the sum of the average
length of stage II and the average temporary immunity period. For treated humans, 1/κH
is the sum of the average length of treatment and the average temporary immunity period.
Note that we assume that the average length of treatment is equal to the average length of
stage II. Similarly, the dynamics of T. b. gambiense in the cattle host population is governed
by the system

dSC
dt

= bCNC + κCRC−pau
IF
NC

SC − bCSC,

dEC
dt

= pau
IF
NC

SC − (qC + bC)EC,

dIC
dt

= qCEC − (γC + bC)IC,

dRC
dt

= γCIC − (bC + κC)RC.

where u is the probability that an infectious fly infects a cattle host, bC is the birth rate of the
cattle population, dC = bC is the cattle mortality rate 1/qC is the average incubation period
for cattle, 1/γC is the average length of stage I for cattle corresponding to the infectious
period. For untreated cattle, 1/κC is the sumof the average length of stage II and the average
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temporary immunity period. For treated cattle, 1/κC is the sum of the average length of
treatment and the average temporary immunity period. As in humans, we assume that the
average length of treatment is equal to the average length of stage II for cattle.

Thus, the dynamics of the transmission of sleeping sickness are then described by the
system of Equations (14)–(24), where we have assumed that there is no death due to the
disease, no vertical transmission, and all parameters are positive, except that κH and κC are
nonnegative. The equations are ordered with infected classes first.

dEF
dt

= (1 − p)ac
IH
NH

SF + pav
IC
NC

SF − q̃FEF , (14)

dIF
dt

= qFEF − dFIF , (15)

dEH
dt

= (1 − p)ab
IF
NH

SH − q̃HEH , (16)

dIH
dt

= qHEH − γ̃HIH, (17)

dEC
dt

= pau
IF
NC

SC − q̃CEC, (18)

dIC
dt

= qCEC − γ̃CIC, (19)

Figure 1. Flow diagram of HAT transmission dynamics.
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dSF
dt

= σLL∗ − dFSF − (1 − p)ac
IH
NH

SF−pav
IC
NC

SF , (20)

dSH
dt

= bHNH + κHRH − (1 − p)ab
IF
NH

SH − bHSH , (21)

dSC
dt

= bCNC + κCRC−pau
IF
NC

SC − bCSC, (22)

dRH
dt

= γHIH − (bH + κH)RH , (23)

dRC
dt

= γCIC − (bC + κC)RC, (24)

where γ̃i = γi + bi, q̃i = qi + bi, for i ∈ {H,C} and q̃F = qF + dF .
Figure 1 shows a flow diagram for this system and Table 1 describes the model param-

eters. Note that all cross transmission terms are normalized with respect to the host
population as is common in vector-borne disease models [1, Section 14.3]. Nonnega-
tive initial conditions with EF(0) + IF(0) + EH(0) + IH(0) + EC(0) + IC(0) positive and

Table 1. Description of model parameters, indicating baselines, ranges and references. The first six
parameters describing larval and adult fly populations are fixed at their baseline values.

Parameter Description Baseline value Value range with time unit = 1 day

σL Rate of maturation from pupal to adult fly 1
30

1
60 to

1
22 [18]

dF Fly death rate 1
33

1
30 to

1
62 [3]

W Proportion of female flies 6
10 Estimated guess, female flies are more

abundant than males
dL Pupa death rate 1

100 Estimated guess, in natural conditions
very few pupae die

KL Pupa carrying capacity 300,000 Estimated guess

bL Larva birth rate 0.6
9 An adult female is expected to produce

one larva every 9 days. [18, 20]

bH Human population birthrate = deathrate 1
50×365 10 to 40 births per 1000 per year [14]

bC Cattle population birthrate = deathrate 1
15×365 Estimated guess

qF Incubation rate of the flies 1
25

1
25 to

1
30 [[3], [21, Table 2]]

qH , qC Incubation rate of humans, cattle 1
12

1
10 to

1
14 , incubation period is between

10 and 14 days [3]
a Fly biting rate 1

4
1
10 to

1
3 , a fly is expected to have 1 bite

every 3–10 days [21]
p Proportion of tsetse fly bites on cattle 0.7 [21, Table 2]
b,u Probability that an infectious fly infects a human,

cattle
0.62 [21, Table 2]

c,v Probability that a fly becomes infected after biting
an infectious human, cattle

0.01 Estimated guess [21, Table 2]

γH , γC Human, cattle rate of progression from stage I to
stage II

1
30 ,

1
25 [21, Table 2]

κH , κC Human, cattle rate of progression from stage II to
recovery and loss of temporary immunity for
untreated humans, cattle; and humans, cattle
rate of progression from start of treatment to
recovery and loss of temporary immunity for
treated humans, cattle

1
90 ,

1
75 [21, Table 2]
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small, complete the formulation of our HAT model in the invariant region

� =
⎧⎨
⎩(EF , IF ,EH , IH ,EC, IC, SF , SH ,RH , SC,RC) ∈ R

11
+ |
⎧⎨
⎩

EF + IF + SF = A∗,
EH + IH + SH + RH = NH
EC + IC + SC + RC = NC

⎫⎬
⎭
⎫⎬
⎭.

(25)

3. Model equilibria and stability

3.1. Calculation of reproduction numbers

System (14)–(24) always has the DFE, X∗
0 = (0, 0, 0, 0, 0, 0,A∗,NH ,NC, 0, 0). To consider

the local stability of X∗
0 , we follow the notation of [29] and consider only the infected com-

partments given by (14)–(19). Assuming that no humans or cattle are treated, the resulting
threshold for stability of the DFE is the basic reproduction numberR0. Alternatively, with
treatment this threshold is a control reproduction number. Linearizing about the DFE and
writing the resulting Jacobian J=F−V where F contains the new infections gives

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 (1 − p)ac
A∗

NH
0 pav

A∗

NC
0 0 0 0 0 0
0 (1 − p)ab 0 0 0 0
0 0 0 0 0 0
0 pau 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (26)

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

q̃F 0 0 0 0 0
−qF dF 0 0 0 0
0 0 q̃H 0 0 0
0 0 −qH γ̃H 0 0
0 0 0 0 q̃C 0
0 0 0 0 −qC γ̃C

⎞
⎟⎟⎟⎟⎟⎟⎠
. (27)

Taking the inverse gives

V−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
q̃F

0 0 0 0 0

qF
q̃FdF

1
dF

0 0 0 0

0 0
1
q̃H

0 0 0

0 0
qH

q̃H γ̃H

1
γ̃H

0 0

0 0 0 0
1
q̃C

0

0 0 0 0
qC

q̃Cγ̃C

1
γ̃C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and thus

FV−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
(1 − p)acqHA∗

q̃H γ̃HNH

(1 − p)acA∗

γ̃HNH

pavqCA∗

q̃Cγ̃CNC

pavA∗

γ̃CNC

0 0 0 0 0 0

(1 − p)abqF
q̃FdF

(1 − p)ab
dF

0 0 0 0

0 0 0 0 0 0
pauqF
q̃FdF

pau
dF

0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (28)

Taking the spectral radius ρ(FV−1) gives

R0 = ρ(FV−1) =
√

(1 − p)2a2bcqFqHA∗

q̃FdFq̃H γ̃HNH
+ p2a2uvqFqCA∗

q̃FdFq̃Cγ̃CNC
. (29)

HereR2
0 can be written as the sum of two terms,

R2
0 = (1 − p)2R2

0H + p2R2
0C, (30)

where, in the absence of treatment,R0H is the basic reproduction number of the human-
fly infection andR0C is the basic reproduction number of the cattle-fly infection. InR0H ,
the ratio abqF/q̃FdF represents the number of secondary human infections caused by one
infectious fly, acqHA∗/q̃H γ̃HNH represents the number of secondary fly infections caused
by one infectious human. Note that 1/dF is the average lifetime of flies, qF/q̃F is the pro-
portion (probability) of surviving the exposed class for flies, similarly qH/q̃H for humans,
and 1/γ̃H is the average death adjusted infectious period of humans. Similarly, in R0C,
the ratio avqF/q̃FdF represents the number of secondary cattle infections caused by one
infectious fly, auqCA

∗/q̃Cγ̃CNC represents the number of secondary fly infections caused
by one infectious cattle host, with the corresponding interpretation of cattle parameters.
The progression rates κH and κC do not occur inR0. In the case of treatment, relation (30)
still holds for corresponding control reproduction numbers.

The following remark pertain toR0 and its relationship to p.

Remark 2: Considering R2
0H and R2

0C as fixed, by (30), it is obvious to see that R2
0

is a quadratic function of variable p ∈ [0, 1], and its minimum is attained at p =
R2

0H/(R2
0H + R2

0C). In fact, this minimum value is exactly R2
0,min = R2

0HR2
0C/(R2

0H +
R2

0C), where R0,min < R0H and R0,min < R0C in this case. If R0H < R0C, then for
p ∈ [0, 2R2

0H/(R2
0H + R2

0C)], it follows thatR0 ≤ R0H < R0C with equalityR0 = R0H
holding only at either endpoint of the interval. Similarly, if R0C < R0H then for p ∈
[(R2

0H − R2
0C)/(R2

0H + R2
0C), 1] it follows that R0 ≤ R0C < R0H , also with equality

R0 = R0H holding only at either endpoint of the interval.

3.2. Stability of DFE

By Theorem 2 in [29], ifR0 < 1, then the DFE given by X∗
0 is locally asymptotically stable,

but ifR0 > 1, then it is unstable. We now use a Lyapunov function as in [24] to prove that
in our model HAT dies out ifR0 is below the threshold.
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Theorem 3: IfR0 < 1, then theDFEX∗
0 of system (14)–(24) is globally asymptotically stable

in �. If R0 > 1, then X∗
0 is unstable, the system is uniformly persistent and there is at least

one equilibrium in int(�).

Proof: Dynamics of the infected compartments are given by (14)–(19). Rewrite these as

dx
dt

= (F − V)x − f (x, y),

where x = (EF , IF ,EH , IH ,EC, IC)T, y = (SF , SH , SC,RH ,RC)T, matrices F and V are given
by (26) and (27), and

f (x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
(1 − p)

acIH
NH

+ pav
IC
NC

)
(A∗ − SF)

0

(1 − p)abIF
(
1 − SH

NH

)
0

pauIF
(
1 − SC

NC

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ 0,

since SF ≤ A∗, SH ≤ NH , SC ≤ NC in �.
Matrices F and V are entrywise nonnegative with

V−1F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
(1 − p)acA∗

q̃FNH
0

pavA∗

q̃CNC

0 0 0
(1 − p)acqFA∗

q̃FdFNH
0

pavqFA∗

q̃dFNC

0
(1 − p)ab

q̃H
0 0 0 0

0
(1 − p)abqH

γ̃Hq̃H
0 0 0 0

0
pau
q̃C

0 0 0 0

0
pauqC
q̃Cγ̃C

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since V−1F is reducible, we cannot directly use the result of Theorem 2.2 of [24], rather
we construct a Lyapunov function as in the proof of Theorem 5.1 of [24]. We proceed to
calculate the left eigenvector (w1,w2,w3,w4,w5,w6) of V−1F corresponding toR0. Thus

(w1,w2,w3,w4,w5,w6)V−1F = R0(w1,w2,w3,w4,w5,w6).

A solution to (w1,w2,w3,w4,w5,w6)V−1F = R0(w1,w2,w3,w4,w5,w6) is

w1 = 0, w3 = 0, w5 = 0,

w2 = 1, w4 = (1 − p)acqFA∗

q̃FdFNHR0
, w6 = pavqFA∗

q̃FdFNCR0
.
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Let

Q = (w1,w2,w3,w4,w5,w6)V−1(EF , IF ,EH , IH ,EC, IC)T

= qFEF
q̃FdF

+ IF
dF

+ w4qHEH
q̃H γ̃H

+ w4IH
γ̃H

+ w6qCEC
q̃Cγ̃C

+ w6IC
γ̃C

≥ 0.

Then differentiating along solutions of the system using (14)–(19) gives

Q̇ = −IF − w4IH − w6IC + (1 − p)2IFSHR2
0H

NHR0
+ p2IFSCR2

0C
NCR0

+ w4R0IHSF
A∗ + w6R0ICSF

A∗ .

The derivative Q̇ can be written as

Q̇ = (R0 − 1)(IF + w4IH + w6IC) + R0(w4IH + w6IC)

(
SF
A∗ − 1

)

+ R0IF

(
(1 − p)2R2

0H
R2

0

SH
NH

+ p2R2
0C

R2
0

SC
NC

− 1

)
. (31)

Since SF ≤ A∗, SH ≤ NH and SC ≤ NC in �, the last two terms above are nonpositive.
Hence, Q̇ ≤ 0 provided that R0 < 1. Furthermore, Q̇ = 0 implies that IF = IH = IC =
0, SF = A∗, SH = NH and SC = NC. It can be verified that the largest invariant subset Q̇ =
0 is the singleton {X∗

0 }. By LaSalle’s invariant principle, X∗
0 is globally asymptotically stable

in� provided thatR0 < 1. ConsiderR0 > 1 in (31). The first term in the derivation of (31)
is positive in the interior of �. The next two terms in (31) equal zero when SF = A∗, SH =
NH and SC = NC. Therefore, by continuity, Q̇ remains positive in a small neighbourhood
ofX∗

0 , implying thatX∗
0 is unstable. Using a uniformpersistence result fromFreedman et al.

[11] and an argument as in the proof of Proposition 3.3 of Li et al. [15], it can be shown that
when R0 > 1, instability of X∗

0 implies that the system is uniformly persistent. Uniform
persistence and the positive invariance of the compact set � thus imply the existence of at
least one positive equilibrium. �

3.3. Endemic equilibrium

AssumeR0 > 1, and denote a positive equilibrium by

X∗ = (E∗
F , I

∗
F ,E

∗
H , I

∗
H ,E

∗
C, I

∗
C, S

∗
F , S

∗
H , S

∗
C,R

∗
H ,R

∗
C) ∈ int(�).

At this endemic equilibrium, the variables satisfy (14)–(24)with the left-hand sides equal to
zero.We confine analysis to the case κH = 0 and κC = 0, that is, assuming that on recovery
HAT confers permanent immunity (or that there is no recovery from stage II or treatment).
In this case, RH occurs only in (23) giving R∗

H = γHI∗H/bH , and RC occurs only in (24)
givingR∗

C = γCI∗C/bC andwe can drop the variablesRH andRC from further consideration.

Theorem 4: If R0 > 1 and κH = κC = 0, then there is a unique endemic equilibrium X∗
of (14)–(18) that is globally asymptotically stable in int(�).
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Proof: The proof, which relies on the construction of a Lyapunov function (suggested by
Zhisheng Shuai) is given in the Appendix. �

Numerical simulations indicate that the uniqueness and global asymptotic stability of
X∗ remain true for the model with κH > 0 and κC > 0 (i.e. on recovery HAT confers
temporary immunity). However, we do not have a theoretical proof of this.

4. Parameter values, elasticity indices and numerical simulations

Weassume that the carrying capacity of tsetse pupaeKL = 300, 000, the human population
NH = 300, and the cattle population NC = 50. Baseline parameter values given in Table 1
were collected from the literature on HAT inWest Africa as cited, and values that were not
found in the literature were estimated. Values from Table 1 give r=1.0154 from (3), the
number of larvae L∗ � 4545, and the number of adult flies A∗ � 5000. Note that since by
our assumptions the compartments RH and RC contain hosts in stage II (or in treatment)
and recovered hosts, 1/γH + 1/κH = 30 + 90 days and 1/γC + 1/κC = 25 + 75 days have
the same values as given by Rogers [21] for the sums of the duration of infection and immu-
nity in species 1 and 2, although the definitions of our parameters are different. Stage I of
gambiense HAT in humans in Africa may last for several months [16, 20] (i.e. γH may be
much smaller than the above value). Thus our baseline values apply more to our model
with treatment giving control reproduction numbers.

4.1. Elasticity indices

From Theorems 3 and 4, it is apparent that the value of R0 plays a crucial role in deter-
mining whether or not HAT persists in the population. Thus, it is important to determine
the sensitivity of R0 to each parameter. Calculating the values of (∂R0/∂ν)(ν/R0) for
a parameter ν, given the baseline values of parameters in Table 1, leads to the elasticity
indices in Table 2. These elasticity indices measure the ratio of the relative change inR0 to
the relative change in parameter ν, and are ordered from largest to smallest in magnitude.
This linearized sensitivity analysis gives an idea of parameters that are important in reduc-
ingR0 below 1 to control HAT. The fly blood feeding (biting) rate has the largest elasticity
index, followed by the proportion of fly bites on cattle, and then by the probability of dis-
ease transmission between flies and cattle and the rate of progression to the second stage
for cattle. Davis et al. [8] concluded that the proportion of bites that the fly takes on humans
is the most important factor forR0 in HAT caused by T. b. gambiense.

4.2. Numerical simulations

Assuming the human population is 300, the cattle population is 50, the tsetse pupa carry-
ing capacity is 300,000 and one initial infectious fly, the model equations (14)–(24) were
numerically solved using the baseline parameter values given in Table 1. With these val-
ues R0 = 3.0298, R0H = 1.9051 and R0C = 4.2505 > R0H , indicating the importance
of cattle for HAT transmission. The resulting numbers in each compartment are given in
Figure 2, in which HAT approaches an endemic equilibrium as R0 > 1. Since the blood
feeding rate a has the largest elasticity index, we decreased this value by 50%, thus assuming
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Table 2. Elasticity indices ofR0 relative to different model parameters.

Parameter Formula
∂R0

∂ν

ν

R0
Values of the parameter Elasticity index

a 1 0.25 1

p −p(1 − p)
R2

0H

R2
0

+ p2
R2

0C

R2
0

0.7 0.8814

u
1

2
p2

R2
0C

R2
0

0.62 0.4822

v
1

2
p2

R2
0C

R2
0

0.01 0.4822

γC − 1

2
p2

R2
0C

R2
0

γC

γC + bC
0.04 −0.4800

qF
1

2

dF
dF + qF

0.04 0.2155

b
1

2
(1 − p)2

R2
0H

R2
0

0.62 0.0178

c
1

2
(1 − p)2

R2
0H

R2
0

0.01 0.0178

γH − 1

2
(1 − p)2

R2
0H

R2
0

γH

γH + bH
0.0333 −0.0178

bC − 1

2
p2

γC + qC + 2bC
(γC + bC)(qC + bC)

bC
R2

0C

R2
0

0.00018 −0.0032

qC
1

2
p2

R2
0C

R2
0

bC
qC + bC

0.0011 0.0010

bH − 1

2
(1 − p)2

γH + qH + 2bH
(γH + bH)(qH + bH)

bH
R2

0H

R2
0

0.00005 −0.00004

qH
1

2
(1 − p)2

R2
0H

R2
0

bH
qH + bH
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Figure 2. Numbers of humans, cattle and flies in each compartment with baseline parameter values as
in Table 1 with IF = 1, NH = 300, NC = 50 and L∗ = 4545, giving approximate equilibrium values S∗C =
5, E∗

C = 5, I∗C = 10, R∗
C = 30, S∗H = 165, E∗

H = 12, I∗H = 31, R∗
H = 92, S∗F = 4929, E∗

F = 31, I∗F = 40. For
these parameter values, the reproduction numbers areR0 = 3.0298, R0H = 1.9051, R0C = 4.2505.
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Figure 3. Numbers of humans, cattle and flies in each compartment with baseline parameter val-
ues as in Table 1 except a = 0.25

2 with IF(0) = 1, NH = 300, NC = 50, L∗ = 4545, giving approx-
imate equilibrium values S∗C = 21, E∗

C = 3, I∗C = 7, R∗
C = 19, S∗H = 269, E∗

H = 3, I∗H = 7, R∗
H =

21, S∗F = 4979, E∗
F = 9, I∗F = 12. For these parameter values, the reproduction numbers are R0 =

1.5149, R0H = 0.9526, R0C = 2.1253.

a fly has 1 bite every eight days, and present the results in Figure 3, in which the infectious
human, cattle and fly numbers are decreased by 75%, 30% and 70%, respectively. Note that
in this caseR0 = 1.5149,R0H = 0.9526 < 1 andR0C = 2.1253, thus HAT could not per-
sist in a human-fly population without cattle. If we further reduced a to below 0.0825 then
(with the other parameters as in Table 1)R0 < 1, indicating control of the disease in the
vector and hosts.

5. Concluding remarks

This study provides a rigorous derivation of the basic reproduction R0 for our model of
HAT transmission between tsetse flies, human and cattle hosts. By using a Lyapunov func-
tion, we prove that for R0 < 1, the DFE is globally asymptotically stable, thus HAT dies
out; whereas forR0 > 1, the disease persists in all the populations. Under the assumption
that HAT confers permanent immunity upon recovery, or that a host remains in stage II of
the disease or in treatment for their entire lifetime (i.e. κC = κH = 0), we further prove the
existence of a unique endemic equilibrium that is globally asymptotically stable in the inte-
rior of the invariant region. Using parameter values appropriate for HAT in Central Africa
(mostly gleaned from the literature), we calculate elasticity indices forR0 with respect to
different model parameters. Based on our numerical elasticity indices, R0 is very sensi-
tive to pertubations in the fly blood feeding rate. It is also sensitive to cattle transmission
parameters but less sensitive to human transmission parameters.

We note that, from our simulations at baseline parameter values, the number of infec-
tious humans is about 10% of the population at equilibrium; this is higher than suggested
by available data, for example, 7% [21] or 1–2 % [12, 20]. Treatment with drugs for the first
and second stage of HAT is available, but we have only included treatment at the beginning
of stage II. Our model does not distinguish between hosts in stage II of HAT, those under
treatment and those recovered. In addition, ourmodel ignores human and cattle death due
to HAT, whereas if untreated and allowed to progress to the second stage, HAT is usually
fatal. Further consideration of treatment and death due to HAT should be incorporated in
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an extended model, and may help to reduce the simulated number of infectious hosts to
observed values. However, our elasticity indices give an indication that HAT can be pre-
vented by adequate control of the flies by reducingR0 below 1. In fact, vector control is now
recognized as part of the field strategy to eliminate HAT caused by T. b. gambiense [27].
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Appendix. Proof of Theorem 4

Consider

VH = SH − S∗
H − S∗

H ln
SH
S∗
H

+ EH − E∗
H − E∗

H ln
EH
E∗
H

+ q̃H
qH

(
IH − I∗H − I∗H ln

IH
I∗H

)
.

Differentiating along solutions, using (16), (17), (23) with κH = 0, substituting bHNH = (1 − p)
ab(I∗F/NH)S∗

H + bHS∗
H and γ̃HI∗H = qHE∗

H gives

V̇H = bHS∗
H

(
2 − SH

S∗
H

− S∗
H
SH

)
+ (1 − p)ab

(
I∗FS∗

H
NH

− I∗F
NH

S∗2
H
SH

+ IFS∗
H

NH
− E∗

H
EH

IFSH
NH

)

+ q̃HE∗
H

(
2 − IH

I∗H
− EH

E∗
H

I∗H
IH

)
.
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Note that 2 − x − 1/x ≤ 0 for x> 0 with equality if and only if x= 1, thus the first bracket in V̇H is
nonpositive. For the last bracket, (16) gives q̃HE∗

H = (1 − p)abI∗FS
∗
H/NH . Using this

V̇H ≤ (1 − p)ab
I∗FS∗

H
NH

(
3 − S∗

H
SH

+ IF
I∗F

− IF
I∗F

E∗
H

EH
SH
S∗
H

− IH
I∗H

− EH
E∗
H

I∗H
IH

)
.

Similarly, defining

VC = SC − S∗
C − S∗

C ln
SC
S∗
C

+ EC − E∗
C − E∗

C ln
EC
E∗
C

+ q̃C
qC

(
IC − I∗C − I∗C ln

IC
I∗C

)
.

differentiating along solutions, simplifying as above using (18)–(20) with κC = 0 and q̃CE∗
C =

pau(I∗F/NC)S∗
C gives

V̇C ≤ pau
I∗FS∗

C
NC

(
3 − S∗

C
SC

+ IF
I∗F

− IF
I∗F

SC
S∗
C

E∗
C

EC
− IC

I∗C
− EC

E∗
C

I∗C
IC

)
.

Similarly, defining

VF = SF − S∗
F − S∗

F ln
SF
S∗
F

+ EF − E∗
F − E∗

F ln
EF
E∗
F

+ q̃F
qF

(
IF − I∗F − I∗F ln

IF
I∗F

)
,

differentiating along solutions and simplifying as above, gives

V̇F ≤ (1 − p)ac
I∗HS∗

F
NH

(
3 − S∗

F
SF

− IF
I∗F

− I∗F
IF

EF
E∗
F

+ IH
I∗H

− IH
I∗H

SF
S∗
F

E∗
F

EF

)

+ pav
I∗CS

∗
F

NC

(
3 − IF

I∗F
− I∗F

IF
EF
E∗
F

− S∗
F
SF

+ IC
I∗C

− IC
I∗C

SF
S∗
F

E∗
F

EF

)
.

Now, consider the linear combination VFHC = (cI∗HS∗
F/bI

∗
FS

∗
H)VH + (vI∗CS

∗
F/uI

∗
FS

∗
C)VC + VF ,

where the constants can be found from the graphical approach in [24]. This gives

V̇FHC ≤ (1 − p)ac
I∗HS∗

F
NH

(
6 − S∗

H
SH

− S∗
F
SF

− IF
I∗F

SH
S∗
H

E∗
H

EH
− EH

E∗
H

I∗H
IH

− IH
I∗H

SF
S∗
F

E∗
F

EF
− EF

E∗
F

I∗F
IF

)

+ pav
I∗CS

∗
F

NC

(
6 − S∗

C
SC

− S∗
F
SF

− IF
I∗F

SC
S∗
C

E∗
C

EC
− EC

E∗
C

I∗C
IC

− IC
I∗C

SF
S∗
F

E∗
F

EF
− EF

E∗
F

I∗F
IF

)
.

The terms in the first bracket above can be written as

1 − S∗
H
SH

+ ln
S∗
H
SH

+ 1 − S∗
F
SF

+ ln
S∗
F
SF

+ 1 − IFSHE∗
H

I∗FS∗
HEH

+ ln
IFSHE∗

H
I∗FS∗

HEH

+ 1 − EHI∗H
E∗
HIH

+ ln
EHI∗H
E∗
HIH

+ 1 − IHSFE∗
F

I∗HS
∗
FEF

+ ln
IHSFE∗

F
I∗HS

∗
FEF

+ 1 − EFI∗F
E∗
FIF

+ ln
EFI∗F
E∗
FIF

.

since the ln terms cancel. Noting that 1 − x + ln x ≤ 0 for x> 0 with equality if and only if
x= 1. Similarly rewriting the terms in the second bracket, shows that V̇FHC ≤ 0. Also consider-
ing the case of equality, it can be seen that V̇FHC = 0 if and only if (EF , IF ,EH , IH ,EC, IC, SF , SH) =
(E∗

F , I
∗
F ,E

∗
H , I

∗
H ,E

∗
C, I

∗
C, S

∗
F , S

∗
H).

Thus VFHC is a Lyapunov function, proving uniqueness and global asymptotic stability of X∗ in
int(�) provided thatR0 > 1 and κH = κC = 0.
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