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Abstract

In this paper, we generalize the Wishart distribution utilizing a fresh approach

that leads to the hypergeometric Wishart generator distribution with the Wishart

generator and the Wishart as special cases. Important statistical characteristics

are derived. The significance of this generator distribution is further demon-

strated by assuming a special case as a prior for the underlying matrix variate

normal model.
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1. Introduction

The Wishart distribution, which represents the sum of squares (and cross

products) of n draws from a multivariate normal model, and its generalizations

are among the most prominent probability distributions in multivariate statis-

tical analysis, arising naturally in applied research and as a basis for theoretical

models. The reader is referred to [3] and [14] for a more extensive study regard-

ing the theoretical as well as the practical uses of the Wishart distribution.

∗Corresponding author
Email address: janet.vanniekerk@up.ac.za (Janet van Niekerk )

1Department of Statistics, Faculty of Natural and Agricultural Sciences,University of Pre-
toria, Pretoria, South Africa

2Department of Statistics, School of Mathematical Sciences, Shahrood University of Tech-
nology, Shahrood, Iran. Department of Statistics, Faculty of Natural and Agricultural Sci-
ences, University of Pretoria, Pretoria, South Africa

Postprint submitted to Journal of LATEX Templates February 14, 2017



Various generalizations and extensions have been proposed for the Wishart

distribution because of its importance in matrix theory. To mention a few:

Sutradhar and Ali [26] generalized the Wishart distribution for the multivari-

ate elliptical models, while Teng et al. [27] considered matrix-variate elliptical

models in their study. Wong and Wang [32] defined the Laplace–Wishart distri-

bution, while Letac and Massam [17] defined the normal quasi-Wishart distribu-

tion. In the context of graphical models, Rovetaro [24] defined the hyper-inverse

Wishart and Wang and West [31] extended the inverse Wishart distribution for

using hyper-Markov properties (see [8]), while Bryc [5] proposed the compound

Wishart and q-Wishart in graphical models. Abul-Magd et al. [1] proposed

a generalization to Wishart–Laguerre ensembles. Adhikari [2] generalized the

Wishart distribution for probabilistic structural dynamics, and Dı́az-Garćıa and

Gutiérrez-Jáimez [9] extended the Wishart distribution for real normed division

algebras. Munilla and Cantet [22] also formulated a special structure for the

Wishart distribution to apply in modeling the maternal animal. In MIMO sys-

tems, Lopez-Martinez et al. [19] applied the complex Wishart distribution and

Kumar et al. [16] used the eigenvalue distribution of the sum of Wishart random

variates.

The above generalizations and applications justify the study of new models

within the Wishart ensemble. In this paper, we propose a construction method-

ology for creating new matrix variate distributions. The approach is based on

a composition of a known statistical distribution combined with a Borel mea-

surable function of the trace operator over the matrix space. Bekker and Roux

[4] studied the normal-Wishart prior for the normal model, using this as a

springboard for the application of the new developed model as a prior for the

covariance matrix of the matrix variate normal model.

The paper is organized as follows: In Section 2, the hypergeometric Wishart

generator distribution is proposed with the focus on its characteristics in Sec-

tion 3. In Section 4, some special cases are highlighted to set the platform for

the application as a prior in Section 5. A specific member of this new distribu-

tion (derived by [28]) is compared to well-known prior models for the covariance
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matrix of the matrix variate normal model. The simulation study illustrates

that this prior can outperform the inverse Wishart and Wishart priors, using

different measures. Finally, an application with real data is presented.

2. Hypergeometric Wishart generator distribution

The key idea in this section is to propose a generalized form based on a

combination of a generalized matrix-variate hypergeometric distribution [28]

and the shape generator h. From this form emanates what we call a Wishart

generator distribution. Note this latter form contains the cases presented in [6]

and [9].

In what follows, we use the following notations and conventions. First,

aaa = (a1, . . . , as), bbb = (b1, . . . , bt), and sFt(·; ·) is the hypergeometric function

of matrix argument; see Eq. (1.6.1) on p. 34 of [14]. Furthermore, Cκ(·) is the

zonal polynomial of order κ [21], Cκ,τφ (·, ·) is the invariant polynomial [7], C is

the set of complex numbers, Sm is the space of positive definite m×m matrices,

Γm is the multivariate gamma function [14] and Γ is Euler’s gamma function.

Definition 1. A random matrix XXX ∈ Sm is said to have the hypergeomet-

ric Wishart generator distribution (HWGD) with parameters a1, . . . , as ∈ C,

b1, . . . , bt ∈ C, (s ≤ t), ΩΩΩ,ΣΣΣ ∈ Sm, degrees of freedom n ≥ m and shape genera-

tor h 6= 1, if it has the following density function

f(XXX) = `n,m|ΣΣΣ|−n/2|XXX|n/2−(m+1)/2
sFt (aaa;bbb;ΩΩΩXXX)h{tr(ΣΣΣ−1XXX)} (1)

where, from Theorem 1 on p. 480 of [27] and Definition 7.3.1 on p. 258 of [21],

`−1
n,m = |ΣΣΣ|−n/2

∫
Sm

|XXX|n/2−(m+1)/2
sFt (aaa;bbb;ΩΩΩXXX)h{tr(ΣΣΣ−1XXX)}dXXX

= |ΣΣΣ|−n/2
∞∑
k=0

∑
κ

(a1)κ · · · (as)κ
(b1)κ · · · (bt)κ

1

k!

∫
Sm

|XXX|n/2−(m+1)/2h{tr(ΣΣΣ−1XXX)}Cκ(ΩΩΩXXX)dXXX

= Γm (n/2)

∞∑
k=0

∑
κ

(a1)κ · · · (as)κ (n/2)κ γk(n/2)

(b1)κ · · · (bt)κk! Γ(nm/2 + k)
Cκ(ΩΩΩΣΣΣ) (2)

We denote this as XXX ∼ HWGm(ΣΣΣ,ΩΩΩ, aaa,bbb, n, h).
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Remark 1. The shape generator in Definition 1 should sometimes admit the

Taylor series expansion, but this will be mentioned where needed.

Definition 2. A random matrixXXX = YYY −1 ∈ Sm, with YYY ∼ HWGm(ΣΣΣ,ΩΩΩ, aaa,bbb, n, h)

is said to have the inverse hypergeometric Wishart generator distribution (IH-

WGD) with parameters a1, . . . , as ∈ C, b1, . . . , bt ∈ C, (s ≤ t), ΩΩΩ,ΣΣΣ ∈ Sm,

degrees of freedom n ≥ m and shape generator h 6= 1, if it has the following

density function

f(XXX) = `n,m|ΣΣΣ|−n/2|XXX|−n/2−(m+1)/2
sFt

(
aaa;bbb;ΩΩΩXXX−1

)
h{tr(ΣΣΣ−1XXX−1)}, (3)

with `−1
n,m as defined in (2). Eq. (3) follows from (1) by making the transforma-

tion YYY −1 = XXX with Jacobian J(YYY →XXX) = |XXX|−(m+1) ; see Eq. (1.3.13) in [14].

We denote this by XXX ∼ IHWGm(ΣΣΣ,ΩΩΩ, aaa,bbb, n, h).

3. Properties

In the following section some properties of the hypergeometric Wishart gen-

erator distribution (1) are derived.

Theorem 1. For XXX ∼ HWGm(ΣΣΣ,ΩΩΩ, aaa,bbb, n, h), the rth moment of the determi-

nant of XXX is equal to E(|XXX|r) = `n,m|ΣΣΣ|r/`n+2r,m, where `n,m and `n+2r,m are

defined in (2).

Proof. The result follows immediately from Eq. (1).

Theorem 2. Suppose that XXX ∼ HWGm(ΣΣΣ,ΩΩΩ, aaa,bbb, n, h). The characteristic

function of XXX is given by

ψXXX(TTT ) = `n,m|ΣΣΣ|−n/2
∑
φ

θκ,ρφ (a1)ρ · · · (as)ρh(k) (0)

k!r!(b1)ρ · · · (bt)ρ

× Γm (n/2) ik+r−mn/2|TTT |−n/2Cκ,ρφ
(
ΣΣΣ−1TTT ,ΩΩΩTTT

)
,

where ∑
φ

=

∞∑
k=0

∑
κ

∞∑
r=0

∑
ρ

∑
φ∈κ,ρ

with `n,m as defined in (2) and θκ,τφ = Cκ,τφ (IIIm, IIIm)/Cφ(IIIm).
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Proof. From (1) follows

ψXXX(TTT ) = `n,m

∫
Sm

|ΣΣΣ|−n/2|XXX|n/2−(m+1)/2
sFt (aaa;bbb;ΩΩΩXXX)

× h{tr
(
ΣΣΣ−1XXX

)
}etr (iTXTXTX) dXXX. (4)

Using the Taylor series expansion of h and Eq. (7) on p. 784 of [13], we have

sFt (aaa;bbb;ΩΩΩXXX)h{tr
(
ΣΣΣ−1XXX

)
}

=

∞∑
k=0

∑
κ

∞∑
r=0

∑
ρ

(a1)ρ · · · (as)ρh(k) (0)

k!r!(b1)ρ · · · (bt)ρ
Cκ
(
ΣΣΣ−1XXX

)
Cρ (ΩΩΩXXX) ,

with h(k)(0) the kth derivative of h at the point 0. Hence from (4), using

Eq. (2.8) on p. 497 of [7] and Eq. (5.13) on p. 22 of [10], we can write∫
Sm

|XXX|n/2−(m+1)/2
sFt (aaa;bbb;ΩΩΩXXX)h{tr

(
ΣΣΣ−1XXX

)
}etr (iTXTXTX) dXXX

=

∞∑
k=0

∑
κ

∞∑
r=0

∑
ρ

(a1)ρ · · · (as)ρh(k) (0)

k!r!(b1)ρ · · · (bt)ρ

×
∫
Sm

|XXX|n/2−(m+1)/2Cκ
(
ΣΣΣ−1XXX

)
Cρ (ΩΩΩXXX) etr (iTXTXTX) dXXX,

which is the same as

∑
φ

θκ,ρφ (a1)ρ · · · (as)ρh(k) (0)

k!r!(b1)ρ · · · (bt)ρ

∫
Sm

|XXX|n/2−(m+1)/2Cκ,ρφ
(
ΣΣΣ−1XXX,ΩΩΩXXX

)
etr (iTXTXTX) dXXX

=
∑
φ

θκ,ρφ (a1)ρ · · · (as)ρh(k) (0)

k!r!(b1)ρ · · · (bt)ρ
Γm (n/2) |iTTT |−n/2Cκ,ρφ

(
iΣΣΣ−1TTT , iΩΩΩTTT

)
,

and the result follows.

Theorem 3. Let XXX ∼ HWGm(ΣΣΣ,ΩΩΩ, aaa,bbb, n, h), and AAA ∈ Sm. Then AAAXXXAAA> ∼

HWGm
(
AAAΣΣΣAAA>,AAA>−1ΩΩΩAAA−1, aaa,bbb, n, h

)
.

Proof. Note that the Jacobian of the transformation YYY = AAAXXXAAA> is given by

J(XXX → YYY ) = |AAA|−(m+1), and the result follows easily.

Remark 2. From Theorem 3, one can conclude that ifXXX ∼ HWGm(ΣΣΣ,ΩΩΩ, aaa,bbb, n, h)

with ΣΣΣ = AAA−1AAA>−1 and ΩΩΩ = AAA>AAA, then AAAXXXAAA> ∼ HWGm (III, III,aaa,bbb, n, h).
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Theorem 4. Let XXX ∼ HWGm(ΣΣΣ,ΩΩΩ, aaa,bbb, n, h). The joint density function of

the diagonal matrix of the eigenvalues of XXX, i.e., ΛΛΛ = diag(λ1, . . . , λm), λm >

· · · > λ1 > 0 is given by

g (ΛΛΛ) =
`n,mπ

m2/2

Γm (m/2)

m∏
i<j

(λi − λj) |ΣΣΣ|−n/2
m∏
i=1

λ
n/2−(m+1)/2
i

×
∑
φ

θκ,ρφ
(a1)ρ · · · (as)ρh(k) (0)Cκ,ρφ (ΣΣΣ−1,ΩΩΩ)Cφ(ΛΛΛ)

k!r!(b1)ρ · · · (bt)ρCφ(IIIm)
,

with `n,m as defined in (2).

Proof. From Theorem 3.2.17 on p. 104 of [21] the density function of ΛΛΛ is

given by

g (ΛΛΛ) =
πm

2/2

Γm (m/2)

m∏
i<j

(λi − λj)
∫
Om

f(HΛHHΛHHΛH>)dHHH (5)

for any HHH ∈ Om = {HHHm×m|HHH>HHH = HHHHHH> = IIIm}, where dHHH is the normalised

Haar measure on Om (see p. 72 of [21]) with Om the space of orthogonal m×m

matrices. Note that from (1),∫
Om

f(HΛHHΛHHΛH>)dHHH = `n,m|ΣΣΣ|−n/2|ΛΛΛ|n/2−(m+1)/2

×
∫
Om

h{tr
(
ΣΣΣ−1HΛHHΛHHΛH>

)
} sFt

(
aaa;bbb;ΩΩΩHΛHHΛHHΛH>

)
dHHH. (6)

Since h admits a Taylor expansion and using Eqs. (2.4) and (2.8) on pp. 466–467

of [7] as well as Eq. (7) on p. 784 of [13], we can write∫
Om

h{tr
(
ΣΣΣ−1HΛHHΛHHΛH>

)
} sFt

(
aaa;bbb;ΩΩΩHΛHHΛHHΛH>

)
dHHH

=

∞∑
k=0

∑
κ

∞∑
r=0

∑
ρ

(a1)ρ · · · (as)ρh(k) (0)

k!r!(b1)ρ · · · (bt)ρ

×
∫
Om

Cκ
(
ΣΣΣ−1HΛHHΛHHΛH>

)
Cρ
(
ΩΩΩHΛHHΛHHΛH>

)
dHHH,

which reduces to∑
φ

θκ,ρφ (a1)ρ · · · (as)ρh(k) (0)

k!r!(b1)ρ · · · (bt)ρ

∫
Om

Cκ,ρφ
(
ΣΣΣ−1HΛHHΛHHΛH>,ΩΩΩHΛHHΛHHΛH>

)
dHHH

=
∑
φ

θκ,ρφ (a1)ρ · · · (as)ρh(k) (0)

k!r!(b1)ρ · · · (bt)ρ
Cκ,ρφ (ΣΣΣ−1,ΩΩΩ)Cφ(ΛΛΛ)

Cφ(IIIm)
. (7)
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Figure 1: Joint density function of the largest and smallest eigenvalue for m = 2 and n = 5

(Left), n = 10 (Middle) and n = 15 (Right) with c1 = 1; c2 = −2 (Top), c2 = −1 (Middle)

and c2 = 0 (Bottom).

The proof is complete from (5), (6) and (7) .

Remark 3. Let ΣΣΣ = c1IIIm,ΩΩΩ = c2IIIm. Then

g (ΛΛΛ) =
`n,mπ

m2/2

Γm (m/2)

m∏
i<j

(λi − λj) c−nm/21

×
m∏
i=1

λ
n/2−(m+1)/2
i h

(
c−1
1 trΛΛΛ

)
sFt (aaa;bbb; c2ΛΛΛ) . (8)

Figure 1 illustrates the joint density function of the eigenvalues — see (8) — for

m = 2,ΣΣΣ = c1IIIm,ΩΩΩ = c2IIIm, s = 0, t = 0, and h(·) = exp(·) for specific values of

the parameters.

4. Special cases

This section focuses on special cases of (1) and link them to existing lit-

erature. Table 1 lists some members of the hypergeometric Wishart generator

distribution; see (1). The hypergeometric Wishart distribution, as given in

Table 1, is considered further in Section 5.
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Distribution f(XXX) s, t,ΩΩΩ h(x)

Matrix-variate t

Γ
(
nm
2 + p

)
Γm
(
n
2

)
Γ (p)

|ΣΣΣ|−n
2

× |XXX|n2−
m+1

2 {1 + tr
(
ΣΣΣ−1XXX

)
}−(nm

2 +p)
s = t = 0,ΩΩΩ = 000 (1 + x)−(nm

2 +p)

Power Wishart

Γ(nm2 )ba
nm
2b

Γm(n2 )Γ
(
nm
2b

) |ΣΣΣ|−n
2

× |XXX|n2−
m+1

2 exp
[
−a{tr(ΣΣΣ−1XXX

)
}b]

s = t = 0,ΩΩΩ = 000 exp
(
−axb

)

Logistic Wishart

nm
2 ab

nm
2

Γm
(
n
2

) |ΣΣΣ|−n
2 |XXX|n2−

m+1
2

× etr
(
−bΣΣΣ−1XXX

)
{1− a etr

(
−bΣΣΣ−1XXX

)
}−2

s = t = 0,ΩΩΩ = −bΣΣΣ−1 {1− a exp(−bx)}−2

Sin Wishart

2Γ
(
nm
2

)
a

nm+2
4 exp

(
b2

4a

)
bΓm

(
n
2

)
Γ
(
nm+2

4

)
1F1

(
1− nm

4 ; 3
2 ; b

2

4a

) |ΣΣΣ|−n
2

× |XXX|n2−
m+1

2 exp{−a tr
(
ΣΣΣ−1XXX

)2} sin{b tr
(
ΣΣΣ−1XXX

)
}

s = t = 0,ΩΩΩ = 000 exp
(
−ax2

)
sin(bx)

Logarithmic Wishart

Γ
(
nm
2

)
Γm
(
n
2

)
Γ
(
nm
2

) |ΣΣΣ|−n
2 |XXX|n2−

m+1
2

× etr
(
−ΣΣΣ−1XXX

)
ln{tr

(
ΣΣΣ−1XXX

)
}

s = t = 0,ΩΩΩ = −ΣΣΣ−1 ln(x)

Hypergeometric Wishart

1

Γm(n2 ) v+1Fw
(
nm
2 , a1, . . . , av; b1, . . . , bw; c

) |ΣΣΣ|−n
2 |XXX|n2−

m+1
2

× vFw{a1, . . . , av; b1, . . . , bw; c tr(ΣΣΣ−1XXX)}etr(−ΣΣΣ−1XXX)

s = t = 0,ΩΩΩ = −ΣΣΣ−1
vFw(a1, . . . , av; b1, . . . , bw; cx)

Table 1: Some special cases of the hypergeometric Wishart generator distribution (1)
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Case 1: Let s = 0 , t = 1 and b1 > 0, then (1) simplifies to

f(XXX) = `n,m|ΣΣΣ|−n/2|XXX|n/2−(m+1)/2
0F1

(n
2

;ΩΩΩXXX
)
h{tr(ΣΣΣ−1XXX)}. (9)

The normalizing constant is given by

`−1
n,m = Γm (n/2)

∞∑
k=0

∑
κ

γk(n/2)

k!Γ(nm/2 + k)
Cκ(ΩΩΩ),

The density function (9) is termed the non-central Wishart generator dis-

tribution (NWGD) and denoted as XXX ∼ NWGm(ΣΣΣ,ΩΩΩ, b1, n, h). The den-

sity function of ZZZm×m = YYY >YYY , where YYY p×m has a matrix elliptical dis-

tribution, i.e., YYY ∼ EC(MMM,ΣΣΣ, g) derived by [27] (see also [9] and [10]) is

of the same functional form as in Definition 1 if we take s = 0, t = 1,

b1 = n/2, ΩΩΩ = ΣΣΣ−1/2ΥΥΥΣΣΣ−1/2 and h(x) = g(2)(x+ trΥΥΥ).

Case 2: Note that letting s = 0, t = 0 and ΩΩΩ = 000 in Definition 1, the density

function (1) simplifies to

f(XXX) = `n,m|ΣΣΣ|−n/2|XXX|n/2−(m+1)/2h{tr(ΣΣΣ−1XXX)} (10)

with

`−1
n,m =

Γm(n/2)γ0(n/2)

Γ(nm/2)
, γ0 (n/2) =

∫
R+

ynm/2−1h(y)dy

from Theorem 1 on p. 480 of [27], provided that the above integral exists.

The density function in (10) is termed the Wishart generator distribution

(WGD) and denoted as XXX ∼ WGm(ΣΣΣ, n, h). The name of the distribution

is motivated by the fact that for s = 0, t = 0, ΩΩΩ = 000 and h(x) = exp(−x/2)

in Definition 1, it yields the Wishart distribution (see [3]) with

`n,m =
Γ(nm/2)

Γm(n/2)γ0(n/2)
and γ0 (n/2) = 2nm/2Γ (nm/2) ,

denoted as XXX ∼ Wm(ΣΣΣ, n). This specific form (10) is also called the

Wishart elliptical distribution by [6].

Some properties of the Wishart generator distribution (10) are given below.

Suppose that XXX ∼ WGm(ΣΣΣ, n, h).
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1. The rth moment of the determinant of XXX is equal to

E (|XXX|r) =
Γ (mn/2) Γm (r + n/2) γ0 (r + n/2)

Γ (mr +mn/2) Γm (n/2) γ0 (n/2)
|ΣΣΣ|r.

2. The characteristic function of XXX is given by

ψXXX(TTT ) =
Γ (nm/2)

γ0 (n/2)

∞∑
k=0

∑
κ

γk (n/2) (n/2)κ
k!Γ (mn/2 + k)

Cκ (iTTTΣΣΣ) .

3. The joint density function of the eigenvalues ΛΛΛ = diag(λ1, . . . , λm), λm >

· · · > λ1 > 0, of XXX is given by

g (ΛΛΛ) =
πm

2/2Γ(nm/2)

Γm (m/2) Γm(n/2)γ0(n/2)

m∏
i<j

(λi − λj) |ΣΣΣ|−n/2

×
m∏
i=1

λ
n/2−(m+1)/2
i

∞∑
k=0

∑
κ

h(k) (0)Cκ
(
ΣΣΣ−1

)
Cκ (ΛΛΛ)

k!Cκ (IIIm)
.

4. The distribution of statistics is important in hypothesis testing in order

to compute p-values and power. Therefore, we give the distributions of

statistics of two independent components of matrix variates where one has

the Wishart generator distribution. Let ΣΣΣ = αΨΨΨ and YYY ∼ Wm(βΨΨΨ, p),

where α and β are enriching parameters. Then

(i) The random variable BBB1 = XXX−1/2YYYXXX−1/2 has the following density

function

g(BBB1) =
Γm{(n+ p)/2}

Γm (p/2) Γm(n/2)

(
α

β

)pm/2
|ΨΨΨ|−(n+p)|BBB1|p/2−(m+1)/2

× EDDD

{
etr
(
− 1

2β
ΨΨΨ−1DDD1/2BBB1DDD

1/2
)}

with DDD ∼ WGm(αΨΨΨ, n+ p, h) as in (10). EDDD(·) denotes the expected

value with respect to the distribution of DDD. Alternatively

g(BBB1) =
Γm {(n+ p)/2}

2(n+p)m/2Γm (p/2) Γm(n/2)

(
α

β

)pm/2
|BBB1|p/2−(m+1)/2

×
∞∑
k=0

∑
κ

1

k!

(
− α

2β

)k (
n+p

2

)
κ
γκ
(
n+p

2

)
Γ {(mn+mp)/2 + k}

Cκ(BBB1)
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(ii) The random variable BBB2 = (XXX + YYY )−1/2XXX(XXX + YYY )−1/2 has the fol-

lowing density function

g(BBB2) =
Γm{(n+ p)/2}

Γm (p/2) Γm(n/2)

(
α

β

)pm/2
|BBB2|−p/2−(m+1)/2

× |IIIm −BBB2|p/2−(m+1)/2EBBB

[
etr
{
− 1

2β
BBB(IIIm −BBB2)

}]
with BBB ∼WGm(αBBB−1

2 , n+ p, h) as in (10) and ΨΨΨ = III.

5. Application

To emphasize the contribution of model (1), a special case of the hyper-

geometric Wishart generator distribution, namely the hypergeometric Wishart

distribution (see Table 1, [28]), is applied as a subjective prior for the covariance

matrix of the matrix-variate normal model.

The conjugate inverse Wishart prior for the covariance matrix has been

considered and applied in the literature by many authors; see, e.g., [23]. The use

of the Wishart distribution as a prior was investigated in [4, 29, 30]. The good

performance of the Wishart prior paves the way for the speculative research of

other unconventional prior distributions for the covariance matrix of the matrix

variate normal model.

Consider the matrix variate normal model, XXXp×m ∼ Np×m(µµµp×m,ΦΦΦp×p ⊗

ΣΣΣm×m) with density function given by

f(XXX) = (2π)
−mp/2 |ΦΦΦ|−m/2|ΣΣΣ|−p/2etr

{
−1

2
(XXX −µµµ)

>
ΦΦΦ−1 (XXX −µµµ)ΣΣΣ−1

}
with ΦΦΦ a known p × p matrix and µµµ and ΣΣΣ unknown. Now consider an objec-

tive prior for µµµ, and the hypergeometric Wishart distribution (Definition 1 with

s = 0, t = 0 and h(x) = vFw(a1, . . . , av; b1, . . . , bw; cx) as in Table 1) with pa-

rameters ΘΘΘ, a1, . . . , av, b1, . . . , bw, c and n as the subjective prior for ΣΣΣ, denoted

as ΣΣΣ ∼ HWm(ΘΘΘ, a1, . . . , av, b1, . . . , bw, c, n), such that the joint prior density

11



function is

π (µµµ,ΣΣΣ) =
|ΘΘΘ|−n/2|ΣΣΣ|n/2−(m+1)/2

Γm(n/2) v+1Fw (nm/2, a1, . . . , av; b1, . . . , bw; c)

× vFw{a1, . . . , av, b1, . . . , bw; c tr
(
ΘΘΘ−1ΣΣΣ

)
}etr

(
−ΘΘΘ−1ΣΣΣ

)
. (11)

For v = w = 0 and c = 1/2 in (11), the prior density function of ΣΣΣ is the density

of a Wishart random matrix with parameter ΘΘΘ and n degrees of freedom.

5.1. Posterior density functions and Bayes estimators

Based on a single observation, XXX, the joint posterior density function is

q (µµµ,ΣΣΣ) ∝ |ΣΣΣ|(n−p)/2−(m+1)/2etr
{
−1

2
(XXX −µµµ)

>
ΦΦΦ−1 (XXX −µµµ)ΣΣΣ−1

}
×vFw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ

)
}etr

(
−ΘΘΘ−1ΣΣΣ

)
.

The marginal posterior density function of µµµ is given by

q(µµµ|xxx) ∝
∫
Sm

|ΣΣΣ|(n−p)/2−(m+1)/2etr
{
−1

2
(xxx−µµµ)

>
ΦΦΦ−1 (xxx−µµµ)ΣΣΣ−1 −ΘΘΘ−1ΣΣΣ

}
×vFw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ

)
}dΣΣΣ

∝ EΣΣΣ∗

[
etr
{
−1

2
(xxx−µµµ)

>
ΦΦΦ−1 (xxx−µµµ)ΣΣΣ∗−1

}
×vFw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ∗

)
}
]
,

where ΣΣΣ∗ ∼ Wm (ΘΘΘ/2, n− p) . Hence

q (µµµ|xxx) = CµµµEΣΣΣ∗

[
etr
{
−1

2
(xxx−µµµ)

>
ΦΦΦ−1 (xxx−µµµ)ΣΣΣ∗−1

}
×v Fw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ∗

)
}
]
,

where

C−1
µµµ =

∫
µµµ

EΣΣΣ∗

[
etr
{
−1

2
(xxx−µµµ)

>
ΦΦΦ−1 (xxx−µµµ)ΣΣΣ∗−1

}
×v Fw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ∗

)
}
]
dµµµ

12



can be rewritten as

C−1
µµµ =

∫
Sm

1

Γm{(n− p)/2}2m(n−p)/2 |ΣΣΣ|
(n−p)/2−(m+1)/2|1

2
ΘΘΘ|−(n−p)/2etr

(
−ΘΘΘ−1ΣΣΣ

)
×
∫
µµµ

etr
{
−1

2
(xxx−µµµ)

>
ΦΦΦ−1(xxx−µµµ)ΣΣΣ−1

}
dµµµ

×v Fw{a1, . . . , av, b1, . . . , bw; c tr
(
ΘΘΘ−1ΣΣΣ

)
}dΣΣΣ

and hence

C−1
µµµ =

(2π)
mp/2 |ΦΦΦ|m/2Γm(n/2)|ΘΘΘ|p/2

Γm{(n− p)/2}
EΣΣΣ1 [vFw{a, . . . , av, b, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ∗

)
}],

where ΣΣΣ1 ∼ Wm (ΘΘΘ/2, n). Therefore,

q (µµµ|xxx) =
Γm{(n− p)/2} (2π)

−mp/2 |ΦΦΦ|−m/2|ΘΘΘ|−p/2

Γm(n/2)EΣΣΣ1 [vFw{a, . . . , av, b, . . . , bw; c tr (ΘΘΘ−1ΣΣΣ∗)}]

× EΣΣΣ∗

[
etr
{
−1

2
(xxx−µµµ)

>
ΦΦΦ−1 (xxx−µµµ)ΣΣΣ∗−1

}
×v Fw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ∗

)
}
]
,

where ΣΣΣ∗ ∼ Wm (ΘΘΘ/2, n− p) and ΣΣΣ1 ∼ Wm (ΘΘΘ/2, n) .

The marginal posterior density function of ΣΣΣ is given by

q (ΣΣΣ|xxx) = CΣΣΣ|ΣΣΣ|(n−p)/2−(m+1)/2
vFw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ

)
}

× etr
(
−ΘΘΘ−1ΣΣΣ

) ∫
µµµ

etr
{
−1

2
(xxx−µµµ)

>
ΦΦΦ−1 (xxx−µµµ)ΣΣΣ−1

}
dµµµ

∝ |ΣΣΣ|n/2−(m+1)/2
vFw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ

)
}

× etr
(
−ΘΘΘ−1ΣΣΣ

)
with

C−1
ΣΣΣ = 2nm/2Γm

(n
2

) ∣∣∣ΘΘΘ
2

∣∣∣n/2EΣΣΣ1
[vFw{a, . . . , av, b, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ1

)
}],

where ΣΣΣ1 ∼ Wm (ΘΘΘ/2, n) . Hence

q (ΣΣΣ|xxx) =
|ΘΘΘ|−n/2|ΣΣΣ|n/2−(m+1)2

Γm (n/2) EΣΣΣ1
[ vFw{a, . . . , av, b1, . . . , bw; c tr (ΘΘΘ−1ΣΣΣ1)}]

×v Fw{a1, . . . , av, b1, . . . , bw; c tr
(
ΘΘΘ−1ΣΣΣ

)
}etr

(
−ΘΘΘ−1ΣΣΣ

)
.

13



Remark 4. Note that

q (µµµ|ΣΣΣ) ∝ etr
{
−1

2
(µµµ− xxx)

>
ΦΦΦ−1 (µµµ− xxx)ΣΣΣ−1

}
,

i.e., µµµ|ΣΣΣ,xxx ∼ N (xxx,ΦΦΦp×p ⊗ΣΣΣm×m) and

q (ΣΣΣ|µµµ) ∝ |ΣΣΣ|(n−p)/2−(m+1)/2etr
{
−1

2
(XXX −µµµ)

>
ΦΦΦ−1 (XXX −µµµ)ΣΣΣ−1 −ΘΘΘ−1ΣΣΣ

}
× vFw{a1, . . . , av, b1, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ

)
}.

Under the squared error loss function, the Bayes estimator is the posterior mean

value. Hence the Bayes estimator of µµµ is

µ̂µµ = E(µµµ|XXX) (12)

since

E(µµµ−XXX|XXX) =

∫
µµµ

(µµµ−XXX) q (µµµ|XXX) dµµµ

=
Γm{(n− p)/2} (2π)

−mp/2 |ΦΦΦ|−m/2|ΘΘΘ|−p/2

Γm(n/2)EΣΣΣ1 [ vFw{a, . . . , av, b, . . . , bw; c tr (ΘΘΘ−1ΣΣΣ∗)}]

× EΣΣΣ∗
[
vFw{a, . . . , av, b, . . . , bw; c tr

(
ΘΘΘ−1ΣΣΣ∗

)
}
]

×
∫
µµµ

(µµµ−XXX) etr
{
−1

2
(XXX −µµµ)

>
ΦΦΦ−1 (XXX −µµµ)ΣΣΣ∗−1

}
dµµµ.

It is quite clear that the integrand is an odd function and (12) follows. As for

the Bayes estimator of |ΣΣΣ|r, it is given by

E(|ΣΣΣ|r|XXX) =
v+1Fw{(n/2 + r)m, a1, . . . , av, b1, . . . , bw; c}Γm(n/2 + r)

Γm (n/2) EΣΣΣ1
[vFw{a, . . . , av, b, . . . , bw; c tr (ΘΘΘ−1ΣΣΣ1)}]

from Eq. 7.522(5), on p. 814 of [12], where ΣΣΣ1 ∼ Wm (ΘΘΘ/2, n) .

5.2. Simulation study

In this section the results of the preceding subsection will be applied to a

simulated dataset to illustrate the advantage of the hypergeometric Wishart

distribution as a prior for the covariance matrix of the matrix variate normal

model.
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5.2.1. Set-up/Preliminaries

A sample of size n is simulated from a multivariate normal distribution

with a dimensionality of m, zero mean vector and identity covariance matrix,

i.e., XXX1×m ∼ Nm(0001×m, IIIm×m). The assumed priors are the inverse Wishart,

Wishart and hypergeometric Wishart distributions, i.e., ΣΣΣ ∼ IWm(ΘΘΘ1, n1),ΣΣΣ ∼

Wm(ΘΘΘ1, n2) and ΣΣΣ ∼ HWm(ΘΘΘ1, a1, b1, c, n3), respectively, with ΘΘΘ1 = 4 × IIIm,

m = 3, n1 = 9.5, n2 = 3, a1 = 1, b1 = 2, c = 1, n = 20, n3 = 3.

Posterior samples of size 10,000 are simulated using a Gibbs sampling scheme

with an additional Metropolis–Hastings algorithm [15], adapted from [29, 30].

The convergence of the Markov chain of matrices is evaluated graphically using

three measures, the determinant, trace and largest eigenvalue of the simulated

matrix. Figure 2 illustrates these three measures for the chain. It is clear from

Figure 2 that the algorithm converges.

Figure 2: Determinant, trace and largest eigenvalue of matrices simulated from the Gibbs

sampler
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5.2.2. Results

The estimates calculated for ΣΣΣ under the three different priors as well as the

MLE are

Σ̂ΣΣMLE =


3.089 1.852 −0.669

1.852 4.158 2.612

−0.669 2.612 7.191

 , Σ̂ΣΣIW =


15.542 −6.885 −0.345

−6.885 58.719 −18.033

−0.345 −18.033 26.675

 ,

Σ̂ΣΣW =


1.226 −0.211 0.208

−0.211 1.228 0.0998

0.208 0.0998 0.735

 , Σ̂ΣΣHW =


0.877 0.042 −0.05

0.042 0.963 0.005

−0.05 0.005 1.0026

 .
The above estimates are obtained for one posterior sample. The Frobenius norm

[11] of the errors, defined as

||Σ̂ΣΣ−ΣΣΣ||F =

√
tr{(Σ̂ΣΣ−ΣΣΣ)>(Σ̂ΣΣ−ΣΣΣ)},

is calculated for each estimate and given in Table 2.

Frobenius norm Value

||Σ̂ΣΣMLE −ΣΣΣ||F 0.5241

||Σ̂ΣΣIW −ΣΣΣ||F 66.547

||Σ̂ΣΣW −ΣΣΣ||F 0.4479

||Σ̂ΣΣHW −ΣΣΣ||F 0.1151

Table 2: Error norms calculated from the simulated sample

The hypergeometric Wishart prior results in the smallest Frobenius norm

of the error. For further investigation, this sampling scheme is repeated 100

times to obtain 100 estimates under each prior as well as the MLE for each of

the 100 simulated samples. The Frobenius norm of the error for each estimate

(excluding the inverse-Wishart due to poor performance) and every repetition

is calculated and illustrated in Figure 3.

It is clear that the hypergeometric Wishart prior results in the lowest Frobe-

nius norm and therefore produces less error than the other three estimators.
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Figure 3: Frobenius norm of the estimation errors (left) and The empirical cumulative dis-

tribution function (ECDF) of the Frobenius norm of the estimation errors (right) for 100

repititions

Additionally, the empirical cumulative distribution function (ECDF) of each

set of Frobenius norms calculated for each estimator is obtained and displayed

in Figure 3. The ECDF which is the leftmost in the figure is regarded as the

best since for a specific value of the error norm, a higher proportion of estimates

from that particular prior results in less error. From Figure 3 we conclude that

the hypergeometric Wishart prior results in an estimate of ΣΣΣ with the least

error and preference should be given to this prior. To validate the graphical

interpretation, a two-sample Kolmogorov–Smirnov test is performed, pairwise,

on the four different ECDF’s and the p-value for each pair is calculated as given

in Table 3.

Pairwise comparison p-value

W and HW < 0.001

MLE and HW < 0.001

Table 3: p-values of the Kolmogorov–Smirnov two-sample test based on samples of the Frobe-

nius norms

From Table 3 it is clear that the ECDF of the errors under the hypergeomet-

ric Wishart prior is significantly different from the other priors. Therefore, the

assertion can be made that the hypergeometric Wishart prior structure produces
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an estimate with frequentist superiority.

5.3. Abalone dataset

The age of abalone is determined by cutting the shell through the cone,

staining it, and counting the number of rings through a microscope. This is a

very time-consuming task. Other measurements which can be obtained easily

can give an indication of the number of rings. The abalone dataset is from [18]

and contains eight variables and has a sample size of 4177. We will use the six

continuous variables: length-longest shell measurement, diameter-perpendicular

to length, height, whole weight-weight of whole abalone, shucked weight-weight

of the meat, viscera weight-gut weight after bleeding and shell weight-weight

after being dried. Only a subsample of size 20 will be used due to the scarcity

of abalone and since the focus of the study is estimation for small sample sizes.

Thus we have a multivariate sample of dimension 6 and sample size 20. The

subsample is tested for multivariate normality using Royston’s test [25]. Hence,

XXX1×6 ∼ N (µµµ1×6,ΣΣΣ6×6).

The assumed priors are ΣΣΣ ∼ IWm(ΘΘΘIW , nIW ),ΣΣΣ ∼ Wm(ΘΘΘW , nW ) and

ΣΣΣ ∼ HWm(ΘΘΘHW , a1, b1, c, nHW ), respectively. The hyperparametrs are cho-

sen as ΘΘΘIW = 4SSS1, nIW = 9,ΘΘΘW = 0.25SSS1, nW = 3,ΘΘΘHW = 0.5SSS1, a1 = 1, b1 =

2, c = 0.9, nHW = 3, with SSS1 equal to the sample covariance matrix of the

available data excluding the 20 observations in the chosen subsample.

The Bayes estimate calculated for ΣΣΣ under these priors using the Gibbs sampler,

as well as the MLE are

Σ̂ΣΣMLE =



.014 .012 .004 .054 .015 .012

.012 .01 .003 .045 .013 .01

.004 .003 .002 .017 .005 .004

.054 .045 .017 .24 .065 .052

.015 .013 .005 .065 .019 .014

.012 .01 .004 .052 .014 .012


,
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Σ̂ΣΣIW =



.006 .005 .002 .026 .001 .006

.005 .004 .002 .022 .006 .005

.002 .002 .001 .008 .002 .002

.026 .022 .008 .120 .033 .027

.007 .006 .002 .033 .009 .007

.006 .005 .002 .027 .007 .006


,

Σ̂ΣΣW =



.009 .008 .003 .038 .01 .008

.008 .006 .002 .032 .009 .007

.003 .002 .001 .011 .003 .003

.038 .032 .011 .186 .047 .038

.01 .009 .003 .047 .013 .01

.008 .007 .003 .038 .01 .009


,

and

Σ̂ΣΣHW =



.011 .009 .003 .045 .012 .01

.009 .008 .003 .038 .01 .008

.003 .003 .001 .013 .004 .003

.045 .038 .013 .209 .055 .045

.012 .01 .004 .055 .015 .012

.01 .008 .003 .045 .012 .011


.

Based on these estimates of ΣΣΣ, a multivariate normal dataset of size 20 is sim-

ulated for each estimate, i.e., YYY i,1×6 ∼ N6(XXX, Σ̂ΣΣQ), Q = (MLE, IW,W,HW),

and visually illustrated as an image where each observation forms a row and

each variable a column of pixels. An entry is used as the intensity for a pixel.

This allows for visual inspection of the plausibility of the estimates since the

true value of ΣΣΣ is unknown.

Figure 4 displays the images based on the real dataset and the simulated

samples using the calculated estimates. The image closest to the image based

on the real dataset, is indicative of the most plausible estimate of ΣΣΣ.

It is clear from Figure 4, that the sample based on the estimate of ΣΣΣ under

the hypergeometric Wishart prior is closest to the real dataset. Additionally,
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Figure 4: Images based on the real dataset (top left) and simulated samples - based on MLE

(top center), HW (top right), W (bottom left), IW (bottom right)

the Mahalanobis distance [20] was calculated for each observation between the

real dataset and each of the simulated datasets. The mean, per sample, of these

distances is given in Table 4.

Estimate used MLE IW W HW

Mean Mahalanobis distance 17.3247 29.0114 7.0470 5.4523

Table 4: Mean Mahalanobis distance between the real dataset and each simulated sample

Table 4 supports the findings of Figure 4 since the distance between the

real dataset and the simulated sample based on Σ̂ΣΣHW is the smallest. Thus, the

estimate under the hypergeometric Wishart prior, Σ̂ΣΣHW , fits the data best. The

estimate under the Wishart prior is also plausible from Figure 4 and Table 4.

These results support the findings in Section 5.2.2.

6. Conclusion

In this paper we defined the hypergeometric Wishart generator distribution

by combining a Borel measurable function of a trace operator over matrix space

with the kernel of the generalized matrix variate hypergeometric distribution.

Several statistical properties of this newly defined distribution were studied. The

Wishart generator distribution is a member of this class and might be impor-
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tant for a number of practical signal processing applications including synthetic

aperture radar (SAR), multi-antenna wireless communication and direct imag-

ing of extra-solar planets. The Bayesian analysis of the matrix variate normal

model demonstrated the novelty of this new model by considering, specifically,

the hypergeometric Wishart distribution, as a prior for the covariance matrix.
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