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ABSTRACT

Robust regression and local polynomial smoothing are applied to the inverse problem for
the logistic differential equation (DE) model, in order to develop a more objective, accurate
and automatable trends model. A method of inferring the time shift parameter is proposed
and applied, allowing the closed form solution of the DE to be used for the prediction of
ownership levels in Johannesburg.

A simulation study is employed to verify and evaluate the application of non-linear
regression to the inverse problem. It is demonstrated that considerable improvements in
accuracy, over the transformation to linear-form method, can be obtained. However, on
application to actual data, the non-linear regression algorithm fails to converge.

The appropriateness of the methods in the case of lower asymptote and early growth
phase data, and heterogeneous populations are investigated by simulation.

1. BACKGROUND

The car ownership data available to the City is from the vehicle register. Typically, data
from administrative sources contain a large proportion of outliers. Moreover, car ownership
data are a time series with a significant degree of autocorrelation, in violation of lest
squares assumptions. These deficiencies are usually overcome by the manual removal of
outliers. The main shortcoming of such a procedure is that it is subjective. This can lead to
ad hoc influences on inferences, most dangerously in the direction of preconceived beliefs.

Therefore, the methods of analysis used must be correspondingly robust and obijective.
They should not be too sensitive to departures from model assumptions or the presence of
a substantial number of outliers. Given the contaminated nature of the data, ordinary least
squares regression is not suitable. Robust regression techniques are recommended.

2. GOALS

1. To develop a more robust and objective analysis method. Specifically, to eliminate the
need for the removal of outliers.

2. To develop a method of inferring the time parameter of the solution of the logistic DE.

3. To improve the accuracy of the numerical method.

4. To investigate the performance of the techniques on early growth data.

5. To investigate the performance of the techniques on heterogeneous population data.
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3. THE LOGISTIC DIFFERENTIAL EQUATION

The logistic differential equation (DE) is traditionally used to model the growth in car
ownership. The DE is used in a wide range of bounded growth applications, such as
quantitative ecology and chemical kinetics (Arrowsmith and Place, 1992 p. 12). Although
the logistic equation is a very simple non-linear DE (quadratic), it can give rise to a rich
and complex dynamics that has made the logistic DE one of the most famous and studied
DE in mathematics (Arrowsmith and Place, 1992 pp. 245-250). The Logistic DE can be
written as:

dx «

28 _ 1

o= o xl@=x) (1)

X(ty ) = X, (2)
where

tis time.

The time unit used in this study is the year, and 0h00 1% January is t=0. Car ownership
level (ownership per thousand (1000) of the population) at time t is designated as x(t). The
initial (t =t,) level of ownership is xo. a is the saturation level of ownership parameter, and

K is the ownership growth rate parameter.

The car ownership level x(t) is called a state variable, and a and k are referred to as
parameters. A closed form solution for the above DE is:

X(t)=alt+e )" (3)
Where

y is the time parameter arising, as a constant of integration, out of the initial
conditions of the DE.

4. THE INVERSE PROBLEM

The problem of inferring the parameters of a DE from a sample of observations (x;, t;)
constitutes what is known as an inverse problem. The standard method of inferring the
values of the parameters aq, K is to apply a linearizing transformation. This changes the
non-linear DE inverse problem to a linear regression problem. Applying the transformation

1X%,-% kK
== " (a-X 4
(s —la-x) (4)

to the data gives the regression equation:

Yi :K_Exi (5)
a

The parameters can be obtained from the regression parameters By (intercept) and {31
(gradient), by

P
__Fo 6
“==p (6)
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and
K= f, (7)

Note that the transformation method does not infer a value for the time parameter y. As a
consequence, future values of car ownership cannot be forecast. Neither can errors with
respect to observed values be inferred.

5. METHOD OF VIRTUAL SAMPLES

Linear regression cannot be used directly to infer the time parameter. However, the
inferred saturation and growth parameters can be used to construct a virtual sample of
time parameters. The time parameter can then be inferred as the arithmetic mean of the
virtual sample.

The predicted value of the i™ observation of the car ownership level is:-
% =all+e ) (8)

solving for the time parameter gives

@:g+imﬂﬁ—q (9)
K X

{7}, will be called a virtual sample (for the time parameter). Since y has a strong physical
meaning, it is assumed that the mean and variance exist for the distribution of 7,, hence
by the Law of Large Numbers:

. 14,
y=m,==>7 (10)

6. ROBUST REGRESSION
Three robust regression methods are described below.

6.1 Least Trimmed Squares (LTS)

Least Trimmed Squares (LTS) is a rather simple method, consisting of three steps. In step
one, an ordinary least squares regression is performed. The second step is to calculate
the confidence intervals corresponding to the data points, and remove any points lying
outside the intervals. Thirdly, an ordinary least squares regression is performed on the
reduced data set. LTS, despite its intuitive appeal, suffers from a serious disadvantage.
There exists a substantial risk that the initial OLS will not approximate the dominant trend
in the data.

6.2 MM-Robust Regression

MM-Robust Regression is performed in two steps. In the first step, the subset of
observations constituting the dominant trend is identified by use of the S-estimate of
location and scale. In the second step, the regression is performed with points further from
the dominant trend having their influence discounted.
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The kernel function p. will give a greatly inflated value to points situated ‘far’ from the
dominant location. When the sum of the kernels is minimized the distant points (outliers)
will contribute large terms in the sum, and therefore will have little influence on the
regression parameters. The kernel function used in this application of MM-Robust
regression is the bi-square function (“S-Plus 2000 Guide to Statistics vol. 17 1999 p. 283).

6.2.1 Finding the Dominant Trend
The S-estimate of location and scale is found by solving the equation:

13 —0'x ) 1
< pc(_y. v -]:_ (11)
P iz S 2
for a set of n; =[(6.9)2° | sub-samples from the original sample of the points (x1;, ... Xpiy Yi)
for i= 1, .... n. The S-estimate of location 6° of the dominant trend is approximated by the

smallest 0 in the re-samples, and the corresponding scale s is the S-estimate of scale (“S-
Plus 2000 Guide to Statistics vol. 17 1999 p. 282), (Yohai 1987 p. 646).

6.2.2 M-Estimators
An M-estimator (of 0) is a generalization of the maximum likelihood estimator. The M-
estimator of 6 for the kernel function p is:

n _o "y
Q?A:argminlz,oC Ym0 % | (12)
oenn(e?) N3 S

The notation QeNN(@O) is taken to indicate that the appropriate value of 6, among the
minimizing arguments. That is the one closest to 8° (“S-Plus 2000 Guide to Statistics vol.
1” 1999 pp. 282 & 283), (Yohai 1987 pp. 644 & 645).

6.3 Local Polynomial Smoothing

In order to transform the non-linear DE into a simple linear equation, the gradient at each
observed point has to be calculated. The errors in calculating the gradient can be amplified
by a small but opposite error in car ownership (x), at adjoining points. A substantial
reduction in the errors incurred can be obtained by the use of local polynomial smoothing
(LOcally WEighted Scatter plot Smoothing, i.e. LOWESS) a robust inference technique
(Fan J. and Gijbels 1.1996 pp. 24-26).

7. APPLICATION TO JOHANNESBURG DATA

7.1 _Methodology

The data are those published in the “Moving SA” November 1997 (Appendix 10.2 “Car
Registration Data” Table 4, Appendix 10.3 “Population Data” Table 4) car ownership study.
For reasons discussed above, several regression methods will be applied. The regression
algorithms are: 1. ordinary least squares, a non-robust method, 2. least trimmed squares,
3. robust regression (MM-regression). In addition, the result of smoothing the data prior to
applying the linearizing transformation will be compared.

7.2 Comparing Regression Algorithms
The results of running the Moving SA data under the three regression algorithms are given
in Table 1 below. The abbreviations DNE: does not exist, and Dev.: diverges are used.
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Table 1 Comparison of inferred Values of Parameters

No LOWESS LOWESS
Regression

Algorithm

NLR a K NLR

SN
A

>
Y

Ordinary Least

Squares (OLS) 121 | -0.054 DNE Dev. | 428.2 | +0.065 | 1977.5 | Dev.

Least Trimmed

Squares (LTS) 33| -0.0046 DNE Dev. | 454.4 | +0.059 | 1979.9 | Dev.

MM-Robust
Regression 30| -0.004 DNE Dev. 484.7 | +0.041 | 1985.3 | Dev.
(MMRR)

7.3 Conclusions

1. The values of the parameters, inferred using LOWESS, are more credible than those
obtained without LOWESS. The regression algorithms, applied after LOWESS, make
little difference to the credibility of the parameter values. Credibility is based on
comparative values and professional judgment.

2. A more objective method is to use the goodness of fit. The scatter plot of the original
un-smoothed data against the predicted curve (Figure 3) shows that MM-Robust
regression with local polynomial smoothing gives a good fit to the data.

3. Figure 1 shows the convergence of the bandwidth parameter to a stable value allowing
an objective choice of bandwidth to be made. Considering the closeness of the fit
(Figure 3) it is unlikely that the convergence of a, xare artefacts of the smoothing
algorithm. A belief further supported by the similarity of both of the limiting values («,
x ) of the bandwidths on convergence.

4. It has been shown that smoothing the data produces (Figure 2) objectively obtained
results in an automated way.

5. These improved values of the parameters are not in the convergence region of the
non-linear algorithm.

6. The virtual sample method enabled the time parameter to be inferred.

Table 2 Forecasts

Year | 2010 | 2015 | 2020 | 2025 | 2030
Ownership (cars per 1000 persons) | 355.6 | 374.0 | 390.6 | 405.1 | 417.9
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Convergence of Alpha under LOWESS Smoothing
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Figure 1

Figure 1 is the plot of the saturation parameter against the proportional bandwidth.
The un-linearized data was smoothed at various bandwidths and the limiting bandwidth
was selected for the smoothing transformation.

Moving SA (Johannesburg) Linearized Logistic DE
All Times, Data Smoothed, Robust Linear Regression
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Figure 2

Figure 2 is the scatter plot of the MM-robust regression fit to the linearized smoothed
data. The inferred values of the parameters: Beta 0 hat (intercept), and Beta 1 hat
(gradient), are displayed in the upper left hand corner of the plot; as are the inferred
logistic parameters alpha hat and kappa hat, calculated from the regression parameters.
Note the excellent R squared value of 0.95.
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Moving SA (Johannesburg)
All Times, Data Smoothed, Robust Linear Regression
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Figure 3: Nota Bene: Scatter diagram of the original un-smoothed data. Hence the diagram
is a true refection of the fit of the model to the data.

8. SIMULATION STUDY OF THE APPLICATION OF NON-LINEAR REGRESSION

8.1 The Two Stage Method

Stage 0 Simulate Data: Stage 0.1: Prior values for the parameters are set. Stage 0.2:
Random observation times at a given average observation rate are generated. Stage 0.3
Using the generated observation times and the prior parameter values the car ownership
levels are computed, from the logistic model (equation 3). Stage 0.4: Gaussian noise
(error) is then added to the solution. A sample size of 108 and a standard deviation of 35
(vehicles per thousand persons) is used in all of the simulations. Stage 1 Linear
Regression: Apply the linearization transformation to the logistic differential equation, from
which is obtained, by robust regression, a value of the saturation parameter (a) and the
growth parameter (k). Stage 2 non-Linear Regression: Using the values obtained from
the first stage as initial values; solve the nonlinear least-squares problem (algorithm:
Gauss-Newton).

8.2 Conclusions

1. The good approximation of the inferred values to the pre-set, known values of the
parameters, and the good fits shown in the scatter plot (Figure 4); verify that the coded
algorithm is correct.

2. The saturation parameter (a) is accurately inferred by non-linear regression the mean
absolute error (MAE) is approximately 1%. For MMRR the MAR is approximately 30%.

3. Both methods are lest accurate for the growth parameter (k). For MMRR the MAE is in

excess of 100%. In contrast, for the nonlinear method the MAE is about 3%.

The time parameter (y) is most accurate (MAE 0.1%).

Non-linear regression clearly out-performs the other inference methods.

Nonlinear robust regression proper is worth investigating.

ook

518



Test Logistic Model Fit using nls
Simulated data for: Sigma (error) = 35 Sample Size = 108
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Figure 4
Figure 4 is the scatter plot for the non-linear regression.

1. The points are the untransformed simulated data.

2. The solid curve is the inferred ownership.

3. The dashed curve is the ‘actual’ ownership in terms of prior set values of the
parameters.

4. the actual and inferred values of the parameters displayed in the upper left-hand
corner.

9. SENSITIVITY TO EARLY LOW GROWTH PHASE DATA

9.1 Goal
To determine the effect on inferred values of the parameters of only having observations
from the early growth phase of the logistic curve.

9.2 Method
The method used is similar to that used in the simulation study of non-linear regression.

1. Prior values for the parameters are set. 2. The observation period (0, T) is defined as a
proportion (T/ y) of the period (0, y). 3. Random observation times at a given average
observation rate are generated in the interval (0, T). 4. Using the generated observation
times and the prior parameter values, the car ownership levels are computed, from the
logistic model (eq. 3). 5. Gaussian noise is then added to the solution. 6. The two-stage
non-linear regression method is used to infer the parameters.

9.3 Conclusion

1. Using the restricted data there is a large under estimation of all three parameters. 2. The
error is greater the lower the proportion of (0, y) that is used. 3. Errors are substantially
reduced as T approaches y.
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Test Logistic Model Fit on Simulated Data using nls
Sigma (error) =35 Sample Size =108 Portion Tail = 0.65
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Figure 5

Figure 5 is a scatter plot of the non-linear regression fit to the simulation test on the early
growth phase data.

1. The points are the truncated simulated data for 65% of way to the maximum growth
point y.

2. The solid curve represents the inferred ownership values.

3. The dashed curve is the actual ownership values.

4. the actual and inferred values of the parameters are displayed in the upper left-hand
corner.

10.EFFECTS OF SUB-POPULATIONS

10.1 Goal

Due to the poverty resulting from previous discriminatory practices in South African
society, certain groups were less able to attain car ownership. Subsequently various
measures have been put in place to accelerate the socio-economic development of
previously disadvantaged groups. Both the previous discrimination and the corrective
measures possibly constitute systematic departures from the simple logistic growth model.
The goal of the sub-populations effects investigation is to determine a possible range of
variation due to the above effects.

10.2 Method

Once again the method used is similar to that used in simulation study of non-linear
regression. 1. Two populations are considered, a previously disadvantaged population,
and an economically advantaged population. 2. Two sets of prior values for the parameters
are chosen. 3. It is assumed that, in the long run, the socio-economic conditions of the two
populations will equalize, producing a common saturation parameter (a=650). 4. The
difference in development is modelled using the time parameter (y) and the growth
parameter (k). 5. The sample size and standard deviations are as before. 6. Values the car
ownership levels are generated using the logistic model

(x(t)= x4(t)+ xat (13))
where

xi(t)= ai(1+e™)) (14)

7. Gaussian noise is then added to the solution.
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10.3 Conclusion

1. The departures from the simple homogeneous model are clearly apparent by inspection
of the scatter plot (Figure 6). 2. If the parameters are to be inferred, the simplest method
would be to separately model the populations using the two stage method.

Scatter Plot: Simulated Logistic Growth
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Figure 6

Figure 6 is the scatter plot of the simulation of the non-homogeneous population.
This simulation assumes both a delay effect and a corrective intervention effect of doubling
the growth rate parameter for the previously disadvantaged group.

1.
2.
3.

Disadvantaged population: a=650, y=2000, k=0.2773;
Advantaged population: a=650, y=1970, k=0.1387.
The dashed curve is the simulated ownership values.

11. SUMMARY OF CONCLUSIONS

1.

The difficulties presented by poor quality data can be mitigated by the use of LOWESS
and robust regression. The procedure is fully objective and automatic. Consequently
the need for the removal of outliers has been eliminated.

The virtual sample method has enabled the time parameter to be inferred and hence
predictions of car ownership levels to be made.

Non-Linear regression has been shown, on simulated data, to be a more accurate
numerical method.

. Using simulated data, restricted to the early growth phase, it has been shown that there

are large under estimates of all three parameters.
Significant departures from the Logistic DE model have been shown for simulated
heterogeneous population data.

12.WAY FORWARD

1.

2.

3.

The difficulties presented by poor quality data can be mitigated by the use of
appropriate methods of analysis.

In the medium term consideration should be given to sample survey methods to
supplement and audit the administrative data.

In the long term consideration should be given to bringing the administrative process
more closely in line with the needs of transport planning while meeting the needs of
other stakeholders.

521



13.REFERENCES

(1]
[2]

[3]
[4]
[5]

[6]

Arrowsmith, DK and Place, CM, 1992. “Dynamical Systems”, Chapman & Hall

Fan, J. and Gijbels, |. 1996. “Local Polynomial Modelling and Its Applications”,
Chapman & Hall

Seber, GAF and Wild CJ, 1989. “Nonlinear Regression”, John Wiley & Sons
“S-Plus 2000 Guide to Statistics vol. 17 1999, MathSoft Inc.

Yohai, V.J. 1987, “High Breakdown and High Efficiency Robust Estimates for
Regression”,

The Annals of Statistics vol. 15, no. 20, pp. 642-656

522



	Organising Committee
	Review Process and Referees
	Search SATC 2007 Index
	PLENARY ADDRESSES
	Beyond Mechanistic-Empirical Design: Toward a Paradigm Shift in Pavement Engineering
	Developing Rational and Coherent Transport Policy: Lessons from the Sub Saharan Transport Policy Programme

	STUDENT ESSAY COMPETITION
	Student Essay Competition
	Transportation Policy, Planning and Implementation Case Study
	Analysis of Traffic Features in Vehicle Access Roads to Large Public Buildings in the Urban Area

	PUBLIC TRANSPORT
	Urban Non-Motorised Transport (NMT): A Critical Look at the Development of Urban NMT Policy and Planning Mechanisms in South Africa from 1996 - 2006
	Public Transport Service Modal Choice, Affordability and Perceptions in an Unpalatable Economic Environment: The Case of an Urban Corridor in Harare (Zimbabwe)
	Public Transport Network Classification: A Proposed Outline for Tshwane

	TRAFFIC MANAGEMENT AND SAFETY
	Sustainable Safety in the Netherlands and the Applicability in South Africa
	The Challenges of Implementing a National Road Safety Strategy, and Progress with Overcoming Them
	The Role and Function of the South African Road Traffic Management Corporation
	Safe Society Safe Mobility
	National Initiatives to Prevent and Combat Vehicle Crime
	Crime and Public Transport: Designing a Safer Journey
	Use of Technology in Enforcement: Project e-Force
	Analysis of the Problems Experienced by Scholars during School Travel: A Case Study
	World Cup 2010 Traffic Simulation
	Analysis of the Scientific Aspects Related to Minibus Taxi Collisions
	AARTO: Road Users Rights and Obligations
	The Road Transport Management System (RTMS): A Self Regulation Initiative in Heavy Vehicle Transport in South Africa
	An Evaluation of the Benefits of Intelligent Speed Adaptation
	Limpopo Pave Strategy: A New Approach to Provincial Traffic Resource Management in South Africa

	INFRASTRUCTURE
	Aggregate Packing Characteristics of Good and Poor Performing Asphalt Mixes
	Bitumen Rubber Chip and Spray Seals in South Africa
	Bitumen Rubber Asphalt in South Africa and Experience in China
	The Application of Locally Developed Pavement Temperature Prediction Algorithms in Performance Grade (PG) Binder Selection
	The Performance of Stabilized Pebble Bases under Light Urban Traffic in Luanda, Republic of Angola
	Evaluation of Possible Swelling Potential of Soil
	Surface Moduli Determined with the Falling Weight Deflectometer used as Benchmarking Tool
	Applications of Observational Techniques in Pavement Engineering
	A Rational Mechanistically-Based Approach for Allocating Highway Costs
	Application of the Portable Pavement Seismic Analyser (PSPA) for Pavement Analysis
	Comparison of Contact Stresses of the Test Tyres used by the 1/3rd Scale Model Mobile Load Simulator (MMLS3) and the Full-Scale Test Tyres of the Heavy Vehicle Simulator (HVS) – A Summary
	Use of Neural Networks in the Prediction of Bearing Capacity of Pavement Structures
	Heavy Vehicle Simulator Testing on Pre-Cast Concrete Panels
	Aspects of Cement Treated Mozambique Sand base Material Performance under MMLS3 and MLS10 APT Trafficking
	The Use of Innovative Technologies to Facilitate Rapid Repair of Concrete Pavements: A Case Study for South Africa

	AVIATON
	Air Transport and the Challenges for 2010

	CAPACITY BUILDING
	The Training and Accreditation of Road Builders and Artisans in Namibia

	TRANSPORT PLANNING
	The Time has Come …To Talk of Many Things … Of Empires and Silos… And Study Tour Flings
	Expectations of the National Transport Master Plan
	Towards 2020: Public Transport Strategy and Action Plan
	Promoting Transit Oriented Development in the Atlantis Corridor, Cape Town: Towards an Implementable Model
	Considerations with Regard to a BRT for Tshwane
	Some Observations on Car Availability and Car use, and Implications for TDM Policy
	Generic Guidelines for Implementing Transport Policy
	Impact of Rapid Urbanisation of South African Cities on their Transport Policies: A Theoretical Perspective
	A Review of Traffic and Transportation Management Plans from 1995 and 1996, and Lessons Learnt for 2010
	The Triggers of Behaviour Change and Implications for TDM Targeting: Findings of a Retrospective Commuter Travel Survey in Cape Town
	The Pace of Behaviour Change and Implications for TDM Response Lags and Monitoring: Findings of a Retrospective Commuter Travel Survey in Cape Town
	The Question of Road Traffic Congestion and Decongestion in the Greater Johannesburg Area: Some Perspectives
	Application of Robust Methods to Car Ownership Trends Modelling in Johannesburg
	Creating Livable Communities: A Case Study of the Heartland Site Somerset West
	Gender and Transport: Towards a Practical Analysis Framework for Improved Planning
	Transport Interchanges – Mode or Node?

	TRAFFIC ENGINEERING
	Saturation Flow Rates
	Koeberg Nuclear Emergency Plan: Traffic Evacuation Model
	Turbo Roundabouts as an Alternative to Two Lane Roundabouts
	The Modern Roundabout – Transition from Rural to Urban Environment?
	Speed Trends on Major Roads in South Africa
	Calibrating Microscopic Simulation Models
	Micro-Simulation Modelling of ITS Measures on the Ben Schoeman Highway
	The Role of Microscopic Simulation Modelling in the Planning of Transport Corridors: An Application of Paramics to Klipfontein Corridor

	RAIL AND TRANSPORT LOGISTICS
	The Workings of the Port/Rail Interface at the Port of Durban
	Leveraging Global Railway Insight into South Africa and Africa
	Some Global Touchstones in Railway Adaptation
	A Life Cycle Cost Analysis of the Gauteng to Durban Freight Corridor: Initial Road Corridor Infrastructure Costing
	A Life Cycle Cost Analysis of the Gauteng to Durban Freight Corridor: Road Corridor Maintenance Costing
	Transport and the Accelerated Growth Initiative of South Africa: Have we Mainstreamed?
	Managing Operational Safety in all Phases of the Life Cycle of Railway Operations

	6th SA-CHINA TRANSPORT TECHNOLOGY FORUM
	Influence of Polyester Fibre on the Performance of Asphalt Mixes
	Use of External Prestressing in Hewei Bridge in China
	Influence and Mechanism of Ultraviolet Aging on Bitumen Performance
	Research on the Performance of Locally Developed Epoxy Asphalt Mixes
	UI Formulation for Cable State of Existing Cable-Stayed Bridge
	The Development and Application of an Incident Management System for the Northern Section of Ninglian Expressway
	World Cup 2010 Traffic Simulation Long-Term Aging of Polypropylene Asphalt Paving Mixtures
	Evaluation of Rutting Resistance of Asphalt Pavements by Circular Road Tracking Test
	The Influence of Temperature on the Performance of Waterproofing Materials Applied to Orthotropic Steel Bridge Deck Pavement
	Analysis of Traffic Features in Vehicle Access Roads to Large Public Buildings in the Urban Area
	Primary Research on a Binder Extraction Method for Asphalt Mix Modified by Using Seam Asphalt Mix Modifier

	Assistance & Help
	Disclaimer
	Exit



