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1. Introduction

Sequencing technology has come a long way since the time when traditional sequencing techniques required many lab-
oratories around the world to cooperate for years in order to sequence the human genome for the first time. The traditional
Sanger sequencing methods [8,10,9], developed in the mid 70’s, had been the workhorse technology for DNA sequencing for
almost 30 years.

Nowadays, sequencing has been reduced to a matter of days or hours and the cost has decreased by many orders of mag-
nitude, making it an accessible experimental procedure to many laboratories. The data resulting from a single sequencing
experiment can be quite large, and it is not uncommon to have data from multiple experiments.

Many algorithms and programmes have been published recently to deal with the task of efficiently mapping the millions
of short reads onto a single reference sequence [2,5-7]. However none of these algorithms addresses the inherent genomic
variability between individuals, opting instead to simply treat it as mismatches, and punish the presence of differences
accordingly. But most importantly, since the reads are quite short, even few changes in the sequence, as part of the natural
diversity, can cause a read to seemingly best match with a different location of the reference than the one it actually
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corresponds to, while others will fail to be mapped entirely. Misaligned reads in turn, lead to false identification of novel
variation.

Very few programmes have been published to also take into account this natural variability. GenomeMapper [11] and
GSNAP [12] address the issue by accepting a list of known variations and including them in their indexes. GenomeMapper
uses an index with a graph structure, which consists of the reference sequence of one of the genomes, and a list of dif-
ferences in the other genomes compared to the first one, to do the mapping. GSNAP implements the ability to align reads
not just to a single reference sequence, but to a reference “space” of all possible combinations of major and minor alleles
from databases like dbSNP.! However, none of the above programmes actually takes as input multiple reference sequences.
Although the combination of a consensus reference and a list of known variants indeed covers the needs for polymorphism-
aware mapping in humans, use of multiple full references could prove relevant in cases of other organisms, for which such
ample data does not exist.

In this paper, we introduce a new approach to this problem. Accepting that the mutation rate between two random
individuals is limited (0.1% on average for humans [4]), as well as the fact that two different assembled versions of a
genomic sequence may differ in even fewer positions, we propose a new practical algorithm to address the problem of
efficiently mapping short reads to a genomic sequence, which changes dynamically.

In particular, the proposed algorithm makes provision to accommodate dynamical changes that may occur in the refer-
ence sequence. With the increasing knowledge of variants, one could simply align against all known genomes for a species
separately. This would come with the overhead of redundant alignments in conserved regions. Therefore, if a small number
of differences (insertions, deletions, replacements) occur within the reference sequence, it is more appropriate to alter the
already mapped reads onto the reference, dynamically. In order to represent the new changes, instead of starting to map
the reads to a new related sequence again from scratch, we propose a faster approach, which encompasses a suitable data
structure that will allow this flexibility and dynamic effects. Thus, the proposed algorithm can take as input either multiple
reference sequences, or a single reference sequence and lists of differences in other sequences compared to the first one.

The remainder of the paper is structured as follows. Section 2 presents the basic definitions that are used throughout the
paper. In Section 3, we formally define the problem solved in this paper. Section 4 presents a new practical algorithm for
addressing the problem of efficiently mapping short reads to a dynamically changing genomic sequence. Finally, in Section 5
we present extensive experimental results, which demonstrate the importance of the proposed approach compared to more
traditional approaches, and we briefly conclude in Section 6 with some future proposals.

2. Basic definitions

A string or sequence is a succession of zero or more symbols from an alphabet X' of cardinality s; the string with zero
symbols is denoted by €. The set of all strings over the alphabet X including ¢, is denoted by X*. The set X+ is defined as
X T = X*\ {€}. A string x of length m is represented by x[0..m — 1], where x[i] € X for 0 <i < m. The length of a string x is
denoted by |x|. We say that X is bounded when s is a constant, unbounded otherwise. A string w is a factor of x if x=uwv
for u,v € X*. It is a prefix of x if u is empty and a suffix of x if v is empty.

Consider the sequences x and y with x[i], y[i] € ¥ U {€}. If x[i] # y[i], then we say that x[i] differs from y[i]. We
distinguish among the following three types of differences:

1. A symbol of the first sequence corresponds to a different symbol of the second one, then we say that we have a
mismatch between the two characters, i.e., x[i] # y[i].

2. A symbol of the first sequence corresponds to “no symbol” of the second sequence, that is x[i] # € and y[i] = €. This
type of difference is called a deletion.

3. A symbol of the second sequence corresponds to “no symbol” of the first sequence, that is x[i] =€ and y[i] # €. This
type of difference is called an insertion.

Another way of seeing this difference is that one can transform string x to y by performing a set of operations. The edit
distance, 8¢ (x, y), between strings x and y, is the minimum number of operations required to transform x into y. These
operations are Replacement of a mismatched symbol, a Deletion or an Insertion of a symbol. The edit distance is symmetrical,
and it holds 0 < 8¢ (x, y) < max(|x|, |y]).

Let t =t[0..n — 1] and x = x[0..m — 1] with m <n. We say that x occurs at position q of t with at most k-differences (or
equivalently, a local alignment of x and t at position q with at most k-differences), if t[q..r], for some r > q, can be transformed
into x by performing at most k of the following operations: inserting, deleting or replacing a symbol.

The Hamming distance &y is defined only for strings of the same length. For two strings x and y, §y(x, y) is the number
of places in which the two strings differ, i.e. have different characters. The Hamming distance is symmetrical, and it holds
0 <38y (x,y) < |x|. For sake of completeness, we define 8y (x, y) = oo for strings x, y such that |x| # |y|.

1 http://www.ncbi.nlm.nih.gov/projects/SNP/.
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0 1 2 3 4 5 6 7 8 9 10 1 H.o H.p H.c
t G ¢C A G T A C A G T A -1 4
G C A G A C A G T A 7 T
G C A G A C T A G T A 7 C
G C A G A C C T A G T A - 8
tE G ¢ A G A C C T A T A
Fig. 1. Array of differences H.
3. Problem definition
We denote the generated short reads by the set {p1, p2, ..., pr}, and we call them patterns. Notice that r is a very large

integer number (r > 108). The length ¢ of each pattern, generated by the next-generation Illumina/Solexa Genome Analyzer,
is currently typically between 25 and 100bp long. We denote the genomic sequence by t = t[0..n — 1], where n > 10°, and
we call it text.

We are now in a position to formally define the problem of mapping short reads to a dynamically changing genomic
sequence as follows.

Problem 1. Given a set of patterns {p1, 02, ..., or} of length ¢, with p; € X*, ¥ ={A,C,G, T} a bounded alphabet, and an
integer threshold h > 0, find whether p;, for all 1 <i <r, occurs in text t of length n and/or in text t, where t,f € ¥* and
Se(t, ) <h.

We also denote the list (array) of differences as H[0..h — 1], where 0 < h « n, similarly as in [11]. Array H stores triplets
such that for each triplet (o, p,c) € H[i], where 0 <i < h, H[i].o represents the edit operation (0 for replacement, 1 for
insertion, —1 for deletion) applied in position H[i].p of t. In the case of replacement or insertion, H[i].c represents the
new symbol (base). The array is constructed in such a way that it is already sorted by H[i].p, i.e. H[i].p < H[i + 1].p, for
all 0<i<h—1. As an example, see Fig. 1. Notice that H describes how text t can evolve into text f. In the case that
t =t[0..n— 1], £, and threshold h are given such that 8¢ (t, ) <h, array H can be computed in O (hn) time and space [3].

4. The DYNAMIC-MAPPING algorithm

The focus of this section is to describe a suitable data structure that will allow us to dynamically alter the already
mapped patterns of a text. Thus, if we have a text t and a non-exact copy of t, say ¢, then we want to change the already
mapped patterns of t, to reflect the ones that are present in t. Therefore, if the patterns have already been mapped to t, we
want to avoid the mapping to  from scratch, but rather alter the already mapped patterns of t.

To contribute to the efficiency of the proposed procedure we will use word-level parallelism by storing factors of t
and ¢ into computer words. These words will be referred to as signatures. The signature o (x) of a string x is obtained by
transforming the string to its binary equivalent. This is done by using 2-bits-per-base encoding of the DNA alphabet, and
storing its decimal value into a computer word. The reason for using the signatures is that we can easily preprocess the text
by indexing its factors in a data structure.

An outline of the Dynamic-Mapping algorithm is as follows.

(1) PREPROCESSING PHASE ‘

Without loss of generality, we split each factor of length ¢ of ¢, t; =t[i..i + £ — 1], into v equal fragments ti’ =tli +
je/v.i+(j+1)e/v—1],forall 0<i<n—£+1,0< j<v. We build an array of linked lists £[s], for all 0 <s < 22¢/V, We
compute o(tij), the signature of t,] and insert the couple (u,v) in L[o (tij)], where for each (u, v) € L[o (tij)], u represents
the starting position of t,.j in t, and v indicates whether there exists a mapped pattern at tfu — (v — 1)¢/v.u— (v —1)¢/v +
£—1] (v=1), or not (v =0). Thus, the couples (u, v) € L[s], for all 0 <'s < 22t/ are sorted by u.

(11) PATTERN MAPPING

The algorithm for mapping a pattern p to the text t is outlined in Algorithm 1. It matches all occurrences of p in t by
updating L (setting v =1 to the corresponding elements). In the case that Algorithm 1 returns true, then p is added to a
new list M of mapped patterns. In the case that Algorithm 1 returns false, then p is added to a new list / of unmapped
patterns. Note that function f(j,d), 1< j < v, determines the positional distance A between two observations of signatures
J(pj) and o (pi~1) at slots dj and dj_q of the lists [Z[o(pj)] and E[U(,ojfl)], respectively, i.e. A =£[o(pf)][dj].u -
Llo (pI™H]ldj_1].u.

In practice, for long patterns, e.g. £ =72, and small number of fragments, e.g. v =3, it would be impractical to keep
L in memory. Hence, the supported lengths of fragment range from 5 to 13, similarly as in [11] and [12]. As a result, the
proposed approach for pattern mapping can only be applied for a prefix of the pattern. If the length of fragment is 12 and
v =3, we consider the prefix of length 36 of the pattern, as a seed, to do the mapping, and then align the suffix of the
pattern to the corresponding factor of the text.
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Input : L, p, {, v
Output: true if p occurs in ¢

{Compute the signature of each fragment p’ of p}
for (j €[0,v—1]) = (d;,s7) := (0,0(p’)); rof
(matched, j) := (false, 1);
do (dy < |L[s°)]) —
do (d; < |L[S']) AN (A < l/v) —
{Calculate the next positional distance A}
(dj7A) L= (dj + Lf(jv d))
od
if (A=l/v)AN([Gi<v-1))—
{L[s™] found for m =0...j}
Ji=g+ L
I (A=t/v)n(i=v—-1)—
{L[s™] found for m =0...v — 1. Record match & continue}

L[s7)[dj].v:=1;
(matched, j, dy) := (true,1,do + 1);
| (A>¢/v)—

{L[s] not found. Match not possible from dy. Restart from do + 1}
(s do) := (L, do+1);
[ (d; = |L[]])) =
{No more matches possible. Terminate search}
(4, do) := (1,do + 1);
fi
od
return matched

Algorithm 1. The algorithm for mapping pattern p to the text t.

0 1 2 3 4 5 6 7 8 9 10 1 H.o H.p P
Stringt G C A G T A C A G T A -1 4 -1

G C A G A C A G T A 7 0

G C A G A C T A G T A 7 1

G ¢C A G A C C T A G T A - 8 0
Stingt G C A G A C C T A T A

Fig. 2. Array of prefix sums P.
0 1 2 3 5 6 7 9

4 8 10
Stingt G C A G T A C A G T A
Stingf G C A G A C C T A T A

Fig. 3. Affected fragments: t[4 —3 + 1+ i..4 +i], for all 0 < i < 3, which are t[2..4] = AGT, t[3..5] = GTA and t[4..6] = TAC, and t[7 — 3+ 1+i..7 + 1],
for all 0 < i < 2, which are t[5..7] = ACA and t[6..8] = CAG, and t[7 —3+1+i..7+1i], for all 0 <i < 2, which are t[5..7] = ACA and t[6..8] = CAG, and
t[8 —3+1+i..8+1], for all 0 <i < 3, which are t[6..8] = CAG, t[7..9] = AGT and ¢[8..10] = GTA.

(111) DyNAMIC UPDATE )

Assume that we have a new text f, where 8¢ (t, f) < h. We compute array H and a new array P, where P[i] = le_:h H[j].0
represents the prefix sum of H[i].o, for all 0 <i < h. As an example, see Fig. 2.

Assume that we have an edit operation H[A].0, for some O < A < h, in position H[A].p = p of t. We compute the
signatures of all the £/v fragments of ¢, affected by operation H[A].0. Let s be the signature of the jth affected fragments
of t, and L[sj][q] the qth element of the linked list £[s;]. For each edit operation H[A].0, for all 0 < A < h, the affected
fragments are defined as follows.

e Replacement: t[p —¢/v+1+i..p+i], forall 0 <i<£/v
e Insertion: t[p —£/v+1+i.p+i],forall0<i< /v —1
e Deletion: t[p —¢/v+1+i.p+il, forall 0<i<£/v

Similarly as in Algorithm 1, we find and delete the affected fragment from L[s;], such that L[sj][qlu=p —£/v +1+1,
to denote that it is no longer a fragment of . As an example, see Fig. 3 for £ =6 and v = 2, which uses the array H from
Fig. 1.
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0 1 2 3 4 5 6 7 H.p H.o P
Stingt ¢ A T G G A C A 1 0 0

c G T G G A C A 2 1A

C G G G A C A 7 1
Stingf C G G G A C€C G A

Fig. 4. New position of t[4..6] = GAC is P[NEW(H, p)]+p=P[1]+4=3.

0 1 2 3 4 5 6 7 8 9 10

Stingt G C A G T A C A G T A

Stingf G C A G A C C€C T A T A
Fig. 5. New fragments: (4 —1—i..4—1+3 —1—1], for all 0 < i < 2, which is £[3..5] = GAC, £[2..4] = AGA, and {[7+0—i—1..7+0+3 —2 — ], for all
0 <i < 3, which is £[6..8] = CTA, £[5..7] = CCT, £[4..6] = ACC, and £[7 +1—i—1..74+1+3 -2 —1i], for all 0 <i < 3, which is £[7..9] = TAT, £[6..8] = CTA,

£[5..7]1=CCT, and {[8 + 0 —i..8 +0+3 — 1 — ], for all 0 < i < 2, which is £[8..10] = ATA, {[7..9] = TAT.

If L[sj1[q].v =1, i.e. there exist mapped patterns on that fragment of t, then we need to unmap those patterns by adding
them to the list of unmapped patterns U{. For each edit operation H[A].o0, for all 0 < A < h, the added patterns are defined
as follows.

o Replacement: t[p — €+ 1+i.p+i],forall 0<i< ¢
e Insertion: t[p — €+ 1+i.p+i],forall 0<i< ¥ —1
e Deletion: t[p —¢+1+i.p+i],forall0<i<?¢

Note that the unmapped patterns were initially mapped at fragment t[p — ¢/v + 1 +1i..p +i].

Let NEW(H, p) be a binary-search operation that returns the maximum index i such that H[i].p < p. We compute and
store in place the new position of each fragment in our structure. The new positions can be computed as P[NEW(H, p)] + p.
As an example, see Fig. 4.

We compute the signatures of all the ¢/v new fragments of f, affected by H[A].0. Let s j be the signature of the jth new
fragment of £. For each edit operation H[A].0, for all 0 < A < h, the new fragments are defined as follows.

e Replacement: t[p + P[A] —i.p+ P[A]+£¢/v —1—i], forall 0 <i < ¢£/v
e Insertion: t[p + P[A]—1 —i..p + P[A] +¢/v—2—i],forall 0<i<¢/v
e Deletion: t[p + P[A] —i..p+ P[]+ €/v —2—i], forall 0 <i<£/v—1

Similarly as in Algorithm 1, we insert the new fragment as the qth element L[s;][q] of L[s;], to denote that it is a
fragment of f, by preserving the ascending order of the positions in the elements. As an example, see Fig. 5 for £ =6 and
v = 2, which uses the array H from Fig. 1.

(1v) PATTERN RE-MAPPING
The algorithm for re-mapping the patterns of list I/ to the new text t is identical to Algorithm 1.

Lemma 4.1. Given a set of patterns {p1, p2, ..., pr} of length ¢, a text t =t[0..n — 1], and the number of fragments v, the DyNAMIC-
MAPPING algorithm finds whether p;, for all 1 <i <, occursin t, in time O(n +rv|Q |), where | Q | is the size of the largest linked list
in L.

Proof. By using the sliding window mechanism, we read t[0..n — 1] from left to right, calculating the signature o(tij) of
each factor of length ¢/v of t, ti] =tli+je/v.i+(G+1e/v—1],forall0<i<n—£+1,0<j<v, and we add the

couple (u,v), u=i+ j¢/v, v=0, as the last element of L[o (t;’)] in time O(1). As soon as we compute a(tg), then each
of the rest signatures can be retrieved in constant time (using “shift”-type operation), resulting in a total of O(n) for the
PREPROCESSING PHASE. Trivially, the resulting lists of signatures are sorted by the position u in ascending order. Since each
linked list £[s], for all 0 <'s < 22¢/V is sorted by u, the PATTERN MAPPING (see Algorithm 1) can be done in time O(v|Q]),
i.e. the worst case is that all v fragments of a pattern occur in the last elements of linked lists of size |Q |, resulting in a
total time of O(rv|Q |). Hence, asymptotically, the total amount of time is O(n+rv|Q|). O

Lemma 4.2. Given a set of patterns M of length £ mapped to t = t[0..n — 1], a set U of unmapped patterns, a text t, and an integer
threshold h > 0, such that 8¢ (t,t) < h, the DYNaAMIC-MAPPING algorithm finds whether the patterns in U U M occur in t, in time
O(hn+hi Q|+ U|vIQ.

Proof. The array H of the edit operations can be computed in O(hn) time [3]. The array P of the prefix sums can be
computed in time O(h) from H. For each edit operation H[i].o, for all 0 <i < h, we need to find and delete O(%) elements

from £, add O(¢) patterns to U, and then add (9(%) new elements in £. In addition, we compute the new position of
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Table 1
Mapping 4,639,636 36bp-long simulated reads to four sequences of the E. coli chromosome (4,639,675bp), and 1,000,000 36bp-long simulated reads to
four sequences of a mouse chromosome X region (1,000,000bp).

Reference 1st alignment 2nd alignment 3rd alignment 4th alignment
E. coli 97,61% 93,87% 97,61% 93,87%
Mouse 74,04% 71,05% 74,04% 71,05%

Table 2

The total number of reads to be mapped by the DyNAMICc-MAPPING algorithm in each alignment.
Reads 1st alignment 2nd alignment 3rd alignment 4th alignment
E. coli 4,639,636 286,714 286,714 286,714
Mouse 1,000,000 178,004 177,962 178,004

each fragment of £ in our structure by using a binary search operation on array P in time O(nlogh). These result in a total
time of O(hn + h§|Q\ + nlogh) for the DYNAMIC UPDATE. The PATTERN RE-MAPPING (see Algorithm 1) can be done in time

O(U|v|Q]). Hence, asymptotically, the total amount of time is O(hn +h§|Q| +UviQ|). O

Theorem 4.3. The DYNAMIC-MAPPING algorithm can solve Problem 1 in time O(rv|Q |+ hn+h % [Q1).
Proof. Immediate from Lemma 4.1 and Lemma 4.2. O

In the case that the array of differences H is given, the total complexity of DyNAMIC-MAPPING algorithm can be reduced
to O(rv|Q | +nlogh+h&|Q)).

Theorem 4.4. The DyNAMIC-MAPPING algorithm can solve Problem 1 using O 24V +hn — £/v + r£) space.

Proof. The array £ consists of exactly 22¢/V linked lists indexing the 22¢/V possible signatures of length 2¢/v. A text of
length n consists of exactly n — ¢/v 4+ 1 factors of length ¢/v, and thus the total number of elements contained in the
linked lists of £ is exactly n — ¢/v 4 1. The space required for keeping the r patterns (each of length ¢) in memory is r¢.
Additionally, in the case that array H is not given, an extra hn space is required for computing array H [3]. O

5. Experimental results

The proposed algorithm was implemented in C programming language, and was developed under GNU/Linux operating
system. The programme takes as input arguments, either multiple files of the reference sequences, or one file with a single
reference sequence, all in FASTA format, and lists of differences of other sequences compared to the first one. In addition, it
takes a file with the short reads in FASTA format, and then produces a SOAP-like tab-delimited text file with the hits, one
for each sequence, as output.

The fact that we are interested in reporting a read only in a case that it occurs exactly once in the reference sequence
(best hit), as well as the fact that the algorithm should also do the alignment on the reverse chain of the reference sequence,
complicated the implementation of the algorithm. For instance, notice that a best hit on the first sequence is not necessarily
a best hit on the second, since a potential difference in the second sequence may result in that read to be aligned more
than once against the second sequence.

In order to validate the correctness of DYNAMIC-MAPPING algorithm, we used two reference sequences in four arguments
as input, such that the first argument is the same as the third, and the second the same as the fourth. The first reference
sequence is the Escherichia coli strain K-12 substrain MG1655, obtained from GenBank database, and the second one is
a simulated sequence generated by inserting 5000 random replacements in the first sequence. The short reads were ob-
tained by simulating 4,639,636 36bp-long reads from the first sequence. In addition, to further validate the correctness
of DYNAMIC-MAPPING algorithm, we have conducted the same experiment to map 1,000,000 36bp-long simulated reads,
generated from a mouse chromosome X 1Mbp region, obtained from the NCBI library, back to the same region they came
from, and to a second reference sequence with 1000 mixed replacements, insertions and deletions.

The results in Table 1 demonstrate the correctness of DYNAMIC-MAPPING algorithm in practice: the percentage of the
mapped reads in the first and the second alignment is exactly the same as the third and the fourth, respectively. After
the first alignment, which is done in PATTERN MAPPING, the rest of the alignments are done in PATTERN RE-MAPPING, which
is based only on DyNAMIc UPDATE, thus, avoiding to map all the reads from scratch. The main advantage of the proposed
approach becomes evident in Table 2: the number of reads to be mapped decreases significantly after the first alignment.

In order to check the efficiency of DyNAMIC-MAPPING algorithm, we compared its performance with three reference
sequences, to the respective performance of three runs (one for each reference sequence) of SOAP2 (v2.20) [7], which
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Table 3
Mapping 62,254,884 40bp-long simulated reads to three sequences of a mouse chromosome 16 region (62,254,923bp). Both programmes were run with
40bp-long seed, and reported exact best hits only.

Programme Total time 1st alignment 2nd alignment 3rd alignment
SOAP2 3775 s 91,69% 88,26% 88,26%
DyYNAMIC-MAPPING 2158 s 91,69% 88,26% 88,26%

Table 4

The individual elapsed times of each step of the DyNAMic-
MAPPING algorithm.

Step Elapsed time
PREPROCESSING PHASE 34s

1ST ALIGNMENT 1343 s
DyNAMIC UPDATE 198 s

2ND ALIGNMENT 144 s
DyYNAMIC UPDATE 263 s

3RD ALIGNMENT 175 s

Table 5

Mapping 4,639,636 40bp-long simulated reads to two
references of the E. coli chromosome (4,639,675bp) us-
ing a list of differences of the second sequence compared

to the first.
Programme Total time
GenomeMapper 70 s
DYNAMIC-MAPPING 30s

is, up-to-date, one of the most popular and efficient known read aligners. We used three reference sequences in three
arguments as input; the first reference sequence is a mouse chromosome 16 region (62,254,923bp), obtained from the
NCBI library, and the second and the third are simulated sequences generated by inserting 60,000 random replacements
in the first sequence. The short reads were obtained by simulating 62,254,884 40bp-long reads from the first sequence. In
each case, effort was made to make the two programmes run in as much similar way as possible, so that the speed and
sensitivity comparisons are fair. Thus, SOAP2 was always given the modifier -1 <INT> to adjust the seed length to be equal
to the seed length of DyNAMIC-MAPPING. Furthermore, the programmes were set to report only exact best (non-repetitive)
matches, otherwise SOAP2 results would be chosen at random between equal hits. In SOAP2 this was achieved with the use
of -M 0 -r 0 modifiers.

As it is demonstrated by the results in Table 3, DYNAMIC-MAPPING is able to complete the assignment much faster.
DyNAMIC-MAPPING finished in 2158 s, while SOAP2 in 3775 s. In terms of reported best hits, both programmes report the
same percentage of alignment for all three reference sequences, a fact that further demonstrates the correctness of DyNAMIC-
MAPPING algorithm, in practice. In Table 4, the individual elapsed times of each step of the DyNaAMIC-MAPPING algorithm for
the same experiment are reported. It is demonstrated that after the first alignment, the total time required for a dynamic
update and a following alignment is much less than the time required for the first alignment.

As a last experiment, we compared the performance of DYNAMIC-MAPPING algorithm with one reference and a list of
differences, to the respective performance of GenomeMapper (v0.3) [11]. We used as input the E. coli chromosome, and
as a list of differences 5000 mixed replacements, insertions and deletions. The short reads were obtained by simulating
4,639,636 40bp-long reads from the E. coli chromosome. In Table 5, it is demonstrated that DYNAMIC-MAPPING is able to
complete the assignment much faster.

The experiments were conducted on a desktop PC, using a single core of a 2.67 GHz Intel Core i7 920 CPU and 8 GB
of main memory, running GNU/Linux operating system. The implementation is available at a website,> which is set up
for maintaining the source code and the documentation. The datasets used in the presented experimental results are also
available for further testing on the same website.

6. Conclusion
With the continuous increasing knowledge of variants between individuals, a simple method would be to map a set of

reads against all known genomes for a species separately. There exist many different programmes for this task. However,
this procedure will come with the overhead of redundant alignments in conserved regions.

2 http://www.inf kcl.ac.uk/pg/dynmap.
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In this paper, we studied the problem of mapping short reads to a dynamically changing genomic sequence. The
DYNAMIC-MAPPING algorithm, firstly proposed in [1], makes provision to accommodate dynamical changes that may oc-
cur in the genomic sequence. Therefore, if there occur changes within the genomic sequence, the already mapped reads can
be altered dynamically. In order to represent the new changes, instead of starting to map the reads to the new sequence
again from scratch, we employ a suitable data structure that allows this flexibility and dynamic effects.

The presented experimental results demonstrate that the proposed approach can gain performance in comparison to
more traditional approaches. We have demonstrated that it can match and outperform current popular software, such as
SOAP2 and GenomeMapper, in terms of speed, while producing comparable numbers of hits. The presented experimental
results are very promising, and they suggest that further research and development in this direction is desirable. The main
contribution of this paper is the fact that the proposed algorithm can be extended and applied to address the problem
of mapping short reads to multiple related genomes. This advantage should become much more drastic once hundreds
of genomes are incorporated into the structure. This should improve the workflow, as the separate handling of separate
references by the existing aligners would become increasingly impractical.

It is important to note that DYNAMIC-MAPPING is still under development and several features will be made available
soon. Our immediate target is to further optimise and extend our algorithm to accommodate a small number of mismatches
within the reads. The data structure of the proposed algorithm is suitable for this extension. The idea of using the pigeonhole
principle can be applied similarly as in [2]. The general idea for the k-mismatches problem is that inside any match of a
pattern of length m, with at most k-mismatches, there must be at least m — k symbols belonging to the pattern. In our case,
by requiring some of the fragments to be exactly matched, the non-candidates can be excluded very quickly. For example,
to admit two mismatches, a read can be split into four fragments. The two mismatches can exist in at most two of the
fragments (at the same time). Then, if we try all six combinations of the two fragments as the seed, we can catch all hits
with two mismatches.

Furthermore, building a complete software tool, which will be based on the presented algorithm, and will be used by
biologists for mapping millions of short reads to multiple related genomes, is already on the way.
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