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Abstract 

TM data and other medium spatial resolution satellite data are used in geological and lithological-

mineralogical classification on regular basis, although their usefulness is limited because of relatively 

coarse spectral resolution. In this contribution, we provide an example for the application of TM data 

for classification of rocks and minerals within the Neoarchean sedimentary and volcanic basin of 

Griqualand West, South Africa. An improved methodology is introduced that results in significantly 

higher classification accuracy. The TM multispectral image and Principal Component analysis (PCA) 

image of the test area were individually combined with textural features and then classified 

individually using a Maximum-Likelihood supervised classification (MLC). Subsequently, the two 

classified images were integrated, compared and re-classified in a knowledge-based system (KBS) 

using the generalized supplementary geological map on 1:250000 scale. With this method, the 

accuracy was improved from 54.3% to 83.2%, when compared to the former supervised classification. 

The method integrates the spectral and textural features, greatly contributing to the precision of the 

lithological classification, mapping and prospecting, in extensive areas where field work is limited by 

time and cost constrains. 
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1. Introduction

Geological remote sensing by multi-spectral satellite imagery is based on differences in 

physical and chemical properties of all rock types. Through these disparities, different rock 

types reflect electromagnetic energy in different ways, permitting for identification of unique 

or typical spectral characteristics of the rock mineralogy. In addition to the spectral features, 

textural features of the rocks, influenced by e.g. weathering (and thus also indirectly reflecting 

physical and chemical properties), erosion and drainage pattern, provide useful supporting 

information to distinguish rock types. The globally available satellite images, such as the 

Landsat Thematic Mapper (TM) imagery, are widely used in classification processes, with the 

purpose of generating lithological maps and detecting mineral anomalies, mostly in arid and 

semiarid regions. 

Factors like the only moderate spatial resolution of 30 m and the low spectral resolution in 

seven bands only, limit the usefulness and classification accuracy of Landsat TM image data, 

when based solely on spectral bands. Moreover, lithological boundaries are not necessarily 

distinct and sharp and can be obscured by scree and other deposits. In addition to that 

different kinds of rock types may show analogous spectral characteristics, resulting in spectral 

overlap and misclassification. Thus, many advanced classification approaches have been put 

forward in the general remote sensing literature, to improve the classification accuracy. For 

example, textural features, as proposed above, were used to improve the urban areas and land 

cover classification (Shaban and Dikshit, 2001; Rao et al., 2002; Chen et al., 2004); e.g. the 

artificial neural networks (ANN) was efficiently used in land cover classification (Kavzoglu 

and Mather, 2003); “fuzzy classification” was efficient in decreasing the mix-pixel problem 

(Shalan et al., 2003), and the knowledge-based system (KBS), especially, incorporating GIS, 
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plays an important role because it is capable of managing different sources of data (Stefanov, 

2001; Daniels, 2006; Lu and Weng, 2006; Alaaddin, 2008). 

The principal component analysis (PCA) is widely used in geology (Loughlin, 1991) as an 

image processing approach. The first component encompasses the brightness information, 

sometimes called albedo. The second and all other subsequent principal components 

encompass divergences in spectral reflectance among surface materials which depend on their 

mineralogical-chemical characteristics and other properties, such as e.g. surface roughness. 

Conventionally principal components 1, 2, 3 are displayed as RGB (red, green, blue) 

composite, because the first three components carry most of the information. In this 

contribution, the components 4, 3, 2 were combined in RGB, because with this combination, 

different geological features appear better noticeable in different colours and thus, show better 

differentiation. 

One of the major visual properties of rocks is their texture, which is important in image 

interpretation. The textural features of the various rock types are influenced by many factors. 

For example, the same rock type may show different texture features because of its different 

surrounding environment or different structural history, dip angle and outcrop conditions. 

Therefore, it should be assumed that textural parameters can also assist in rock type 

discrimination and classification. Among many textural measures that have been developed, 

the grey-level co-occurrence matrix (GLCM)-based analysis and geostatistical-based analysis 

are used most commonly in classification improvement. Some researchers compared these 

two methods and then used the superior one (Lloyd et al., 2003; Zhang et al., 2003), but 

seldom research in combining these two methods. 

In the study area in South Africa, Griqualand West, the only official geological map 

available is one at a coarse scale of 1:250000 (Council for Geosciences, 1995) which is not 

nearly elaborate enough for detailed planning. For ongoing prospect campaigns maps of a 

scale of 1:100.000 or larger are necessary. Therefore, the use of TM imagery, supported by 
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ancillary data sets is the common solution for geologists, despite their limited spatial 

resolution. 

To overcome this constraint, the approach presented here, uses GLCM textural features, 

plus geostatistical textural features separated from the original spectral bands and principle 

components. Both were mathematically combined and incorporated into the maximum-

likelihood supervised classification (MLC). The results were subsequently incorporated into a 

knowledge-based system (KBS), where the different classified images were compared and 

reclassified, according to the criterions extracted from the interpretation of the TM image and 

the analysis of the existing digital geological map. The resulting classification will be used for 

compiling lithological maps based on remote sensing data and ground controlling. The area 

was selected as test site for the newly defined classification algorithm due to its wide range of 

different lithological units, due to the intensive field knowledge and availability of existing 

maps in various scales and its mineral potential. 

2. Study area

The Griqualand West sub-basin of the Transvaal Supergroup is one of the three 

Neoarchean to Paleoproterozoic structural basins on the Kaapvaal Craton of Southern Africa. 

The other sub-basins are the Transvaal sub-basin in South Africa and the Kanye sub-basin in 

Botswana. The Griqualand west sub- basin can be further subdivided into the Ghaap Plateau 

and the Prieska compartments. Both compartments are thought to be separated by a NW-SE 

trending fault zone (Griquatown Fault Zone; GFZ). They display similar, but not identical 

lithological successions of partly differing ages in their lower stratigraphic levels, and have a 

different mineral potential (Altermann, 1996; Altermann and Nelson, 1998). The northern 

Ghaap Plateau basin compartment supplies the world with giant iron and manganese deposits. 

The mineral potential of the southern, Prieska, basin compartment, has not been yet fully 
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recognized, although the world‟s largest blue asbestos (crocidolite) deposits were mined here 

in the past. 

The study area (Fig. 1) is located in the southwest of the Griqualand West Basin, in the 

Prieska compartment, between Westerberg and Prieska. The oldest rocks in the area consist of 

granitic basement comprising various intrusive bodies ranging down to 2.9 Ga. These are 

covered with an angular unconformity by the 2.7 Ga basaltic – andesitic, partly porphyritic 

lavas of the Ventersdorp Supergroup. The Transvaal Supergroup follows unconformably on 

the lavas with a lacuna of at least 50 million years (Eriksson et al. 2006). It commences with 

quartzites and lavas (2.64 Ga, Walraven and Martini, 1995; Altermann, 1996), shales, 

carbonates and two successive banded iron formations (BIF). These are the Kuruman BIF (K-

BIF) and the Griquatown BIF (G-BIF), of Neoarchean to Paleoproterozoic age, and without 

noticeable unconformities (Beukes, 1986). The carbonates and banded iron formations (BIF) 

are intercalated with relatively thin but regionally extensive and uniform tuff beds. The Meso- 

to Neoproterozoic are not preserved in the study area; the sedimentary record only 

recommences with the upper Paleozoic (Permo-Carboniferous) glacial Dwyka deposits 

(Visser, 1989), followed by Mesozoic Karoo rocks (not preserved in the study area, apart 

from occasional intrusive dikes). Tertiary to Recent sands and alluvial and fluvial sand 

deposits cover the Precambrian and Paleozoic rocks. A Proterozoic diabase sill of regional 

extend intruded into the Neorchean and Paleoproterozoic rocks has been folded with the strata 

(Altermann and Hälbich, 1990; 1991). The relatively less extensive, Mesozoic Karoo dikes 

are not folded and follow straight lineaments, which are well visible on satellite images but 

difficult to find in the field due to the alluvial cover. Both dike generations and the tuffs 

intercalated with the Neoarchean stromatolitic carbonates, display a similar, near basaltic 

composition (Altermann, 1997), but are genetically not related to each other. Rare and small 

Proterozoic syenite intrusions, presumably of 1.1 Ga, are scattered throughout the area. 

5



Fig. 1: Geological overview map of the study area at the south-western margin of the Kaapvaal 

Craton, Transvaal Supergroup. The test area used for the classification is indicated. 

Area investigated 
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The outcropping Neoarchean and Paleoproterozoic rocks have been extensively deformed 

during several events, encompassing up to seven phases between >2.5 Ga and 1.1 Ga 

(Altermann and Hälbich, 1991). The circa NW-SE striking Doringberg Fault crosses the area 

under investigation and marks the youngest deformation event of c. 1.1 Ga. In the area 

between Prieska, Westerberg and Griquatown, stacking of thrust packages, particularly in the 

banded iron formations, affected the stratigraphy and thickness of various formations. Large 

and small scale folds and cleavage are, however developed in all Precambrian rocks 

(Altermann and Hälbich, 1991). The metamorphic grade in the Precambrian southwestern 

Griqualand West Basin, as reflected by metamorphic petrology and illite crystallinity, 

decreases from low to very low grade, approximately from west to east (Altermann, 1997). 

The ground cover percentage of the Karoo vegetation in this arid area, with mean annual 

rainfall of less than 200 mm per year, strongly varies between the seasons, but is usually far 

below 20% except of a narrow belt of gallery forests along the Orange River, where it can be 

very dense during the length of the year. 

3. Material and methods

A small test area of about 185 km
2
, of which the northern boundary coincides with the

southern banks of the Orange River in Griqualand (Fig. 1) was selected as test area. Here, 

detailed field work has already been carried out between 2000 and 2005 by a large group of 

students (Frei and Altermann, 2006). A GIS -based geological map at a scale of 1:25000 was 

compiled by Glas (2008) from these data. This detailed map was later used to assess the 

classification accuracy. As soon as the accuracy was high enough, the proposed classification 

method was used to classify the entire study area. 

Beside the pre-processing procedures (geometric and radiometric corrections) and 

Maximum-Likelihood supervised classification (MLC) (Li et al., 2009), textural analysis was 
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performed in this research. The textural features were incorporated into MLC as extra bands 

and contributed significantly to improve the classification accuracy. 

3.1. Data preparation 

The Landsat TM data (Path/Row 179/80+81) of the study area were acquired on 26
th

, May,

1984, when the rainfall had been so little throughout the period before the data acquisition 

that the influence of vegetation cover can be disregarded. An ETM+ image from 2000 and the 

Geological Map at the scale of 1:250000 (Council for Geosciences, 1995) were also available. 

The ETM image contains record noise but it is rectified to UTM projection using the WGS 84 

ellipsoid. The rectified ETM data set was used as basic data to rectify the TM data and the 

scanned geological map (Council for Geosciences, 1995). According to the algorithm 

optimum index factor (OIF) (Chavez et al., 1984), bands 7, 4, and 1 of the available TM 

image were combined in RGB, and then atmospheric correction was performed over the 

shadowed areas by a linear regression (Kaufman and Sendra, 1988). The data set was then 

rectified using a second order polynomial model and at least 6 ground control points (GCP) 

(Leica Geosystems, 2003), resulting in an overall RMS error of less than 1 pixel and check 

points error of less than 0.5 pixels. The RMS error is defined as the distance between the 

desired output coordinate for a GCP and the actual output coordinate for the same point, when 

the point was transformed with the geometric transformation model. The geological map 

1:250000 was rectified in the same way, but using a first-order polynomial nearest-neighbour 

transformation and re-projected into the UTM projection zone 34 (WGS 84). The rectified 

TM image of the test area is shown in Figure 2(a). 

In order to highlight geological features, such as the Banded Iron Formation (BIF), 

principal component analysis (PCA) was conducted, based on the input of all reflective 

channels of the TM data set and output of the first six components (PC 7 almost entirely 
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Fig.2.: (a) is a TM colour composite  (bands7, 4, 1 as RGB),  (b) is a PCA composite 

(PC4, PC3, PC2 as RGB).  

In image (a) K-BIF outcrops appear in dark brown to dark red colours, occupying large areas. 

G-BIF appears red; carbonate (C) appears cyan, with a NW-SE texture; quartzite (Q) show in 

clear blue colours. In image (b) G-BIF outcrops exhibit in eye-catching green colours. 

a 

K-BIF 
G-BIF 

Q 

C 

C 

K-BIF in 

orange 

colour

K-BIF in 

green 

colour

G-BIF 

b 
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consist of noise), then principal components 4, 3, 2 were combined in RGB (Fig 2 (b)). The 

existing 250.000 geological map (Council for Geosciences, 1995) was digitized. Different ID 

values were allocated to the different rock types, to be used as ancillary data in KBS. All the 

processing was supported by the software ERDAS IMAGINE 9.3
©

 and ArcGIS 9.2
©

.

The investigated area is well known for its occurrence of ferrous carbonate rocks and 

overlying iron formations, the lower of which being the chemically precipitated Kuruman 

Banded Iron Formation (K-BIF), and the upper one, the resedimented, granular Griquatown 

Banded Iron Formation (G-BIF) (Beukes, 1986). The combination of the multispectral TM 

image (Fig. 2(a)) and the geological map, allows the interpretation that K-BIF and G-BIF 

occupy most of the test area, followed by BIF footwall  carbonates, and shales and quartzites 

below the carbonates. The K-BIF outcrops in most parts of the study area are large blocks in 

dark red or brown colour. The G-BIF appears in clear red-pink colour (Fig. 2(a)). The 

quartzite (Q) appears in light blue and the carbonates (C) in blue-green colour. In the PCA 

image (Fig. 2(b)), the G-BIF is represented in distinct green colour, while the quartzites and 

the aeolian quartz sands appear in red and pink colours respectively. 

3.2. Maximum-Likelihood supervised classification (MLC) 

In a supervised classification, spectral signatures are calculated from specified training 

sites in the image, by defining various polygons representing different rock types. The 

spectral signatures are then used to classify all pixels in the scene. Specific signature polygons 

were defined separately from the reflectance data in the multispectral image and in the PCA 

composite. Maximum- likelihood classification (MLC) was then preformed for each data set 

individually. Then post-classification analysis was carried out in order to re-code the class 

values of each rock type, using the lithological IDs derived from the geological map. This 

procedure ensured that the same IDs are allocated to the respective rock types in the two 
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classification results, as in the digital geological map 1:250000 (Council for Geosciences, 

1995). Pixels covered by shadow in both images were treated as an exception and omitted 

from this ID process, for lack of correlation with the geological map (1:250000). 

Classification results of both data sets were compared to the detailed field geological map 

(Glas, 2008). 256 test points were picked randomly in the two classified images and the 

reference map. The accuracy reports were created by comparing the random point‟s class 

values in classified images with their values in the reference map. The data processing was 

carried out using the ERDAS IMAGINE 9.3
© 

.

3.3. Textural analysis 

Texture is defined as the combination of the magnitude and frequency of tonal change on 

an image. It is produced by the aggregate effect of all of the many small features that make up 

a particular area of surface. Textural features of rock outcrops, caused by e.g. drainage, 

erosion, or weathering, provide useful supporting information to distinguish rock types, and 

can be incorporated to assist the classification. For example, carbonates in the study area 

exhibit a coarse NW-SE texture, while K-BIF outcrops have a relatively smooth texture. 

Discussed below are two of the most widely used methods to perform the textural analysis. 

3.3.1 Grey-level co-occurrence matrix (GLCM)-based texture analysis 

The grey-level co-occurrence matrix (Haralick, 1979), also known as grey-level spatial 

dependence matrix, is by far the most widely used approach in remote sensing, for the 

computation of second order textural features. Each element of the matrix P (i, j) represents 

the “number” of occurrences of the pair of grey-levels i and j, which are a distance d (offset) 

apart in the original image. Several textural features can then be derived from this matrix. 

That is to say, the “number” in a fixed window is calculated from the pixel values in the 
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original image to form the matrix, after which the central pixel value in the window is 

replaced by the textural feature value derived from this matrix. The window is then moved 

across the entire image, pixel by pixel and line by line. 

Previous research shows that a small size of the moving window is preferable in analyzing 

the textural features of coarse resolution images (Shaban, and Dikshit, 2001; Chen, et al., 

2004). Therefore, for all seven, most popular (Rao et al., 2002) textural features which were 

tested and applied in this contribution, a moving window of 3*3 pixels was used. These seven 

textural parameters are defined as follows: N is the number of pixels in a moving window, e.g. 

for a 3*3 window, N is 9. 

(a) Mean 

Mean = 




1

0,

),(
N

ji

jiiP  (1)  

The Mean is an indicator of the distribution of grey levels. 

(b) Standard deviation 

St-de = 





1

0,

2)),((
1 N

ji

jiPMean
N

(2)  

The Standard deviation denotes the dispersion of grey levels as defined by the sum of the 

squares. Generally, coarse - textured features are associated with higher standard deviations. 

(c) Entropy 

Entropy = 




1

0,

)),(log(),(
N

ji

jiPjiP  (3) 

Entropy measures the disorder of an image. With increasing textural variability of the image, 

the GLCM element values become very low, and the entropy becomes very high. 

(d) Contrast 
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Contrast= 

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ji

jiPji   (4) 

The Contrast measures the amount of local variances in an image, which represent the 

difference between the highest and the lowest values of a contiguous set of pixels. This means 

that high contrast values imply a highly coarse texture. 

(e) Correlation 

Correlation = 




1

0,

),())((N

ji ji

jiPji




 (5) 

Hereby, µ is the mean and σ is the standard deviation. Correlation is a measure of grey tone 

linear dependencies in the image. High correlation values imply a linear relationship between 

the grey levels of pixel pairs. 

(f) Energy 

Energy = 




1

0,

2),(
N

ji

jiP (6)  

Energy, or in other terms, the “Angular Second Moment” or “Uniformity”, is a measure of the 

textural uniformity of an image, i.e., pixel pair repetition. The energy is high when grey value 

distribution has a constant or periodic form. 

(g) Homogeneity 

Homogeneity = 


 

1

0, 1

),(N

ji ji

jiP
(7) 

Homogeneity, also known as “Inverse Difference Moment, assumes higher values for smaller 

grey tone differences in pixel pair elements. 

The computation of GLCM is mainly based on a single band; in this study TM band 5 was 

selected because of its high standard deviation. From band 5 displayed as grey- scale image, 

test sites were selected which represent the five main different rock types (examples listed in 

Fig. 3). Based on these sample sites, the GLCM values were computed and 7 features were 
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(a) Texture samples of carbonate covered area 

(b) Texture samples of Griquatown BIF (G-BIF) covered area 

(c) Texture samples of Kuruman BIF (K-BIF) covered area 

d) Texture samples of (Schmidtsdrif Subgroup) quartzite covered area

e) Texture samples of fluvial sand

Fig. 3: (a) Texture samples of carbonate rocks show clear NW-SE trending linear patterns 

where black and pale grey values alternate. The texture of the Kuruman BIF in (c) is much 

more heterogeneous and clearly less linear, but a weak NW-SE trend is still recognizable, 

compared to the textures in (b) (d) and (e), which are all visually similar. Each square covers an 

area of 570 *570 m. 
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derived separately, with offset values of 1 and 5 respectively. For each sample site, the 

average value GLCM for four directions (N-S, E-W, N45°E, N45°W) was calculated. For 

each specific rock type the average value for each textural feature was calculated, based on all 

sample sites. All textural feature values were normalized between 0 and 1 for comparison (Fig. 

4). 

Figure 4 shows that the seven different textural statistics values behave differently for 

different rock types. The following three texture features, „st-de‟ and „homogeneity‟ at d=1 

and „contrast‟ at d=5, were selected as they turned out to be most efficient to differentiate the 

rock types. Due to the coarse spatial resolution of the image, a moving window not larger than 

3*3 pixels was used to compute these three textural features (Chen et al., 2004). 

When d=1, five main lithology types could be separated when analyzing the differences 

for  the X values for “mean”, “st-de”, “correlation” and “homogeneity”. However, the Y 

values for  “mean” and “correlation”, were too closely spaced to be usable for  discrimination. 

Hence, “st-de” and “homogeneity” proved to be more suitable parameters for discriminating 

between different rock types. For d=5, the most suitable textural feature for lithological 

discrimination was “contrast” (Fig. 4). From these textural features, namely “st-de”, 

“correlation” and “contrast”, three GLCM textural bands were derived and used for further 

analysis (see below). 

3.3.2. Geostatistic-based texture analysis 

Geostatistical methods are used increasingly in remote sensing, in order to both 

characterize the spatial correlation and to improve classification accuracy (Jakomulska and 

Stawiecka, 2002). The geostatistical approach implies that each pixel of the image has two 

characters: local variability and spatial regularity (Figure 5). This means that the values for 

the nested pixel values are variable on local scale, but, at the same time, show regularity on 
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Fig. 4: Capability of different textural features, to discriminate between different rock types 

when d=1 (a) and d=5 (b). The X axis represents different textural features. The Y axis shows 

the normal value (between 0 and 1). For each textural feature, a large difference of the normal 

values between two rock types indicates a high probability to discriminate between them. For 

example, the normal values of the recent fluvial sand and Archean carbonate in “mean” are 

sufficiently far apart from each other, so they can be discriminated well using the “mean”, but 

for Griquatown BIF and Kuruman BIF, their normal values in “mean” are too close to each 

other, to be differentiated. 

(a) 

(b) 
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Fig. 5: The principle of variogram calculation between nested pixels. “h” is the 

distance between nested pixels. The detailed equation is discussed in section 3. 

Xi Xi+h 

h=2 

h=1 

h=3 

17



large spatial scale. Fig. 5 is an illustration of the variogram calculation between nested pixels, 

while the equitation below illustrates the mathematical combination of these two characters. 

Variogram r (h) = 



)(

1

2))()((
)(2

1 hN

i

ii hXDNXDN
hN

(8)  

N (h): the number of the pixels in moving window 

h: (lag interval) the distance between nested pixels 

Since textural analyses are often based on single bands only, and since only one  

geostatistical feature can be derived from one band (Chica-Olmo and Abarca-Hernandez, 

2000), in this contribution, six geostatistical parameters were calculated separately from six 

TM bands (bands 1-5 and 7), plus three additional geostatistical features from the three 

principle components 1, 2 and 3. As with the textural features described in 3.3.1, again 

average values were calculated for four directions (N-S, E-W, N45°E, N45°W) to show 

textural characteristics (Shaban and Dikshit, 2001). 

All textural calculations described in Section 3.3 were performed using the software Matlab 

7
©

.

4. Application of textural analysis to the TM data

4.1.MLC based on the combination of spectral features 

All these textural analysis resulted in a total of three GLCM bands and nine geostatistic  

textural bands (six from the six TM bands, three more from the three PC bands). 

As a next step, the original PCA bands were stacked with the three calculated GLCM  

texture bands, to generate a 9-band image which was named PCA-GLCM . Also the six PCA 

bands were combined with those three geostatistic textural bands, which had been derived 
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from PC 1, 2 and 3, in order to produce a second 9-band image, which was named PCA-GEO 

respectively. 

 The original 6–band TM image (bands 1-5 and 7) was combined with three GLCM 

texture bands to generate a third 9-band image, which was named TM-GLCM. Similarly, the 

six original TM bands were also combined with those six geostatistic texture bands, which 

have been derived from the six TM bands, which resulted in a new 12-band image , named 

TM-GEO. 

For each of these four new images (PCA-GLCM, PCA-GEO, TM-GLCM, TM-GEO), 

separate Maximum-Likelihood-Classification (MLC) was carried out. This was followed by 

post-classification which incorporated the ID values from the existing digital geological map 

(same steps as described in Section 3.2) and recoded the class values, in order to have 

corresponding values between classification results. 

4.2. Knowledge-based classification (KBS) 

A knowledge-based system algorithm was used, in order to reclassify pixels, which were 

misclassified in previous classification attempts, and to improve the overall classification 

accuracy. This included correction factors derived from the digitized geological maps as well 

as from visual image interpretation. 

Disregarding the problem of mixed pixel for now, each object in the field, as represented 

by one specific pixel, should ideally be classifiable into one of the pre-defined classes of rock 

types. Hence, in two classification results of the same area, corresponding pixels of the same 

position should belong to the same lithology class after the above described re-coding. 

 However, this was not the case. The discrepancies were partly caused by the different 

spectral band combinations (original, or PC) used for classification, which highlight different 

rock properties.  On the other hand,  the limited spatial and spectral resolution of the TM data, 
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wavelength which leads to misclassification of pixels, due to the mixed-pixel problem also 

resulted in discrepancies. Such mismatching pixels were investigated in more detail, to 

analyze the cause for the misclassification. Some of the corresponding pixels which had 

identical (geological) class ID values were considered to have a low risk of misclassification, 

and were named “consistent pixels”. Other corresponding pixels, however, of different class 

ID values, were therefore at a high risk of being misclassified, and named “inconsistent 

pixels”, accordingly. 

An algorithm was designed to preserve the class ID values of the “consistent pixels” and 

simultaneously to pick out the “inconsistent pixels” by marking them with the class ID value 

1, the same class value as shadow pixels. The class ID values of the consistent pixels were 

kept unchanged in the KBS, ensuring that the accuracy of the reclassified image can not be 

lower than that from the traditional maximum likelihood classification solely. 

The inconsistent pixels (class value = 1), the shadow pixels (class value = 1) and the 

unclassified pixels (class value = 0) were reclassified simultaneously in the KBS, using the 

geological map 1: 250000 (Council for Geosciences, 1995). A new algorithm was designed 

and applied, in order to replace those pixels with values 0 or 1, with the ID values from the 

geological map. Both new algorithms were implemented in the „Spatial Modeler‟ of the 

ERDAS IMAGINE 
©

 software package

5. Results and discussion

5.1. Supervised Maximum-Likelihood classification (MLC) 

Table 1 shows the classification accuracy and Kappa coefficient of six images. The Kappa 

coefficient expresses the percentage of error reduction through a supervised classification 

process, as compared to the classification accuracy of a completely random classification. For 
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example, a value of 0.82 means that through classification process 82 % of the errors were 

avoided, which a completely random classification would have generated (Congalton, 1991). 

The textural feature-combined images (3 thru 6) have a higher classification accuracy 

compared to the original images consisting of six TM bands or three PCA bands only. This 

shows that textural features can complement the classification well. As shown in Fig. 3a, 

carbonate outcrops have a distinct NW-SE trending directional texture, but the river sand (Fig. 

3e) does not. K-BIF outcrops (Fig. 3c) show homogeneous texture, but G-BIF (Fig.3b) exhibit 

a relatively heterogeneous texture. In spite of these clear textural differences, when using the 

TM bands alone,  misclassification of pixels was unavoidable, especially for pixels located 

near the border between two different rock types, e.g., pixels near the outcrop border between 

K-BIF and carbonate rocks, or near the border between K-BIF and diabase dikes. Another 

reason for misclassification is the spectral similarity between diverging lithologies, such as 

between the river sand and carbonate rocks, calcrete and some talus material deposits. Even 

more so, for the chemically-mineralogically almost identical BIF misclassification occurs. In 

the classified PCA image, G-BIF can be discriminated well, but misclassification also occurs, 

such as between carbonates (CaMgCO3) and river sand (SiO2). 

The differences in the accuracy of the various classification attempts are summarized in 

Table 1 and 2. Classification results increase significantly, when instead of using TM image 

(54.3%), only the texture bands (as contained in stacked images TM-GLCM and TM-GEO) 

are used for classification (64.5% and 64.84% accuracy, respectively). A slight improvement 

was achieved when newly created images PCA-GLCM and PCA-GEO were used for 

classification  (accuracy of 66.8% each) compared to the original PCA image without textural 

bands (64.45%). The accuracy level for normal TM bands can thus be increased significantly 

by incorporating textural –feature bands, while for PCA and PCA composites the increase, is 

insignificant- however, the initial classification accuracy from PCA containing composites is 

already much higher than that of normal TM band alone. 
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Table 1: 

Classification accuracy of the different TM and PC based composites and composites 

incorporating textural parameters 

Classified 

Images 

TM 

(1) 

PCA 

(2) 

PCA-GLCM 

(3) 

PCA-GEO 

(4) 

TM-GLCM 

(5) 

TM-GEO 

(6) 

Accuracy 54.3% 64.45% 66.8% 66.8% 64.5% 64.84% 

Kappa 0.4622 0.5957 0.65 0.6499 0.6191 0.6338 

Table 2:  
Classification accuracy of different lithological units based on multispectral TM data (6 bands) 

and TM-PCA data (6 PCs). 

Lithologic Classes Accuracy based on 

multispectral data 

(%) 

Accuracy based on 

TM-PCA data  

(%) 

Lithologic Classes Accuracy based on 

multispectral data 

(%) 

Accuracy based 

on TM-PCA data 

(%) 

Shadow area 100 100 Terrace gravel 34 73.68 

Fluvial sand 85.71 83.33 Carbonate 65.22 41 

Kuruman BIF 57.83 62.5 Calcrete 37.5 57.14 

River 100 100 Quartzite 50 50 

Silt and mudstone 50 87 Eolian sand 66.67 64 

Diabase sills 55.56 56 Reddish eolian sand 67 73.33 

Griquatown BIF 63.64 91 Vegetation 100 100 

Overall accuracy: 54.3% (multispectral data); 64.45% (PCA data) (see table 1) 
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5.2. Knowledge-based system classification (KBS) 

Based on the procedure described in Section 4.2., from the six images in Table 1, two 

classified images must be selected for comparison and KBS based classification. Many 

factors should be considered for the image selection. In chapter 5.1. it could be shown, that 

the incorporation of textural features can indeed improve classification accuracy, so images 

(3)-(6) in Table 1, combining textural features, have the priority to be selected. Secondly, 

since the TM multispectral image and the PCA image (Fig. 2a, b) highlight different aspects 

of the spectral signature of the rocks, both images combined, complement each other for the 

best differentiation of the various lithological units. Therefore, images (3) and (4), combining 

TM image and textural features, belong to one group and the images (5) and (6), combining 

PCA image and textural features, belong to another group. Two images need to be selected 

out from these two groups individually. In the latter group, image (6) TM-GEO which 

incorporates geostatistic features, is given priority because of the relatively higher accuracy of 

classification. In the former group, the two results have similar accuracy. But the geostatistic 

features of image (4) PCA-GEO contained some of the same geostatistic bands as image (6) 

TM-GEO. To ensure maximum difference between selected classification results, image (3), 

PCA-GLCM was selected for the comparison and for the input into the KBS, together with 

image (6) TM-GEO. 

When interpreting the accuracy tables (Table 1 and 2) resulting from the comparison 

between classified PCA image and the reference map, it is found that the percentage of 

correctly classified pixels in the rock type of G-BIF is especially high, with 91%, compared to 

the TM multispectral image, where it is 64%. That is to say, the G-BIF can be recognized and 

distinguished well in PCA image and this superiority of the PCA image for G-BIF will be 
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Fig. 6: Final Knowledge- Based System (KBS) classification result based on user defined Maximum-Liklihood Classification (MLC) and 

the integration of geological map data. 
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adopted in KBS. In the algorithm, the class value representing G-BIF is kept unchanged, no 

matter whether or not the covered pixels are inconsistent. 

To a large extent, the percentage of misclassified pixels decreases as soon as the 

inconsistent pixel values are replaced with the ID value in geological map. Besides, 

unclassified pixels and shadow covered pixels can be given a specific class value according to 

the geological map. 

As a final step, the accuracy of the final classified image (Fig. 6) is assessed by using the 

detailed geological map of the test area, at a scale of 1:25000 (Glas, 2008). The overall 

accuracy is 83.2% and the Kappa coefficient is 0.7965, meeting the quality requirements for 

subsequent lithological mapping. 

The information gained by the sensors only reflects the surface condition of the objects, 

and may often conceal the reality, such as in the case of the greenish parts and the orange 

colour part in of the BIF (in Figure 2, a). The green colour may result from the mineralogical 

composition but may equally be caused by differences in the vegetation coverage. The orange 

colour may result from the high reflectance of silica. Thus, the field check for details is 

indispensable, even though remote sensing is superior in obtaining a fast overview of a large 

area. 

6. Conclusions and Outlook

In the arid test area bordering the southern bank of the Orange River, in Griqualand West, 

South Africa, multispectral TM bands and respective PCA bands, were combined with 

textural feature bands to create multi-layer images. These were classified using MLC, and 

then compared and reclassified in KBS, with the help of a digital geological map at a scale of 

1:250000. 
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The resulting classified thematic image combines the advantages of the TM multispectral 

image and the PCA image, spectral features and textural features, allowing for the 

discrimination of different rock types with high accuracy. 

Even though the accuracy was improved considerably after the KBS classification, the 

traditional MLC accuracy for both, multispectral image and PCA image, was not satisfactory. 

This is even the case when the texture information is combined in the images, because of the 

coarse spatial resolution of TM data and the spectral similarity between different rock types. 

Thus, misclassification can not be avoided if only the texture features are used. 

Nevertheless, the results demonstrate that textural features of the lithology can become useful 

assistant information when they are combined with spectral features. The method used herein 

is expected to contribute to the generation of a detailed lithological map in the study area of 

the southwestern Prieska sub-basin in South Africa, especially under the conditions of limited 

data source and field work possibility, when for example, only TM image and a general 

geological map on a large scale are available. Further more, using the herein introduced 

method, geological maps can be updated more easily by implementing the information gained 

from recent satellite images and advanced image processing methods. 

To improve the MLC accuracy, an artificial neural network (ANN) could be designed in 

the future, for the classification employing the texture features, spectral features and principle 

components as input. Generally speaking, the more features are included in the ANN, the 

higher classification accuracy can be achieved. Additionally, DEM, geophysical and 

geochemical data can also be considered as ancillary data sets to assist classification in KBS. 

However, such data must be incorporated into a GIS, which is difficult because of the 

punctual character of geochemical data (sampling problem). These ideas will be further 

developed in future research. 
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